WO2019080659A1 - 超快速加热工艺生产超高强度马氏体冷轧钢板的方法 - Google Patents

超快速加热工艺生产超高强度马氏体冷轧钢板的方法

Info

Publication number
WO2019080659A1
WO2019080659A1 PCT/CN2018/105128 CN2018105128W WO2019080659A1 WO 2019080659 A1 WO2019080659 A1 WO 2019080659A1 CN 2018105128 W CN2018105128 W CN 2018105128W WO 2019080659 A1 WO2019080659 A1 WO 2019080659A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
cold
steel sheet
rolled steel
heating process
Prior art date
Application number
PCT/CN2018/105128
Other languages
English (en)
French (fr)
Inventor
罗海文
温鹏宇
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Priority to EP18833148.2A priority Critical patent/EP3702477B1/en
Priority to US16/252,908 priority patent/US11261504B2/en
Publication of WO2019080659A1 publication Critical patent/WO2019080659A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to the technical field of metal heat treatment, in particular to a method for producing ultra-high strength martensitic cold-rolled steel sheet by an ultra-rapid heating process.
  • Low carbon steel with martensite microstructure is an important representative of advanced high-strength steel (AHSS) in the field of steel materials. Its tensile strength is generally in the range of 900-1500 MPa, which can be mainly used for side collision protection of vehicles. High-strength application parts such as bumpers.
  • AHSS high-strength steel
  • the current steel industry is faced with the need to improve product performance to ensure safety, while requiring lightweight body to reduce energy consumption standards and reduce pollutant emissions, thereby meeting the corresponding requirements for energy conservation and environmental protection.
  • the martensitic cold-rolled steel sheet (thickness less than 2mm) produced now is produced by continuous annealing after cold rolling, and the annealing time is more than 3 minutes. Due to the limitation of the length of the production line, the annealing time does not exceed 10 minutes. Compared with the hood annealing with a slow heating rate, the heating rate of continuous annealing is significantly faster, and the annealing temperature of the steel sheet can be accurately controlled.
  • the relatively high heating rate during continuous annealing can delay the recrystallization process, whereby the deformation storage accumulated by cold rolling deformation can accelerate the austenite reverse phase transformation, and can obtain austenite grains of suitable size in a short time and Martensite is formed after cooling.
  • the annealing process of the present invention unlike the conventional continuous annealing, uses ultra-rapid heating to heat the cold-rolled steel sheet to austenite single-phase region in a very short time without heat preservation or extremely short holding time ( ⁇ 5s). Immediately after the water cooling process. Through the ultra-rapid heating process to produce cold-rolled martensitic steel, the annealing time can be shortened to several seconds, and the strength exceeds the martensite steel produced by the continuous annealing process, achieving ultra-high strength, thereby improving the efficiency and energy saving of the heat treatment process. Upgrade to an unprecedented level.
  • the preheating process is used in the front section of the rapid heating to avoid distortion during the heat treatment of large steel plates.
  • the technical problem to be solved by the present invention is to provide an ultra-high-speed heating process for producing ultra-high-strength martensitic cold-rolled steel sheets, which reduces annealing time, greatly improves production efficiency, reduces energy consumption, and further improves strength.
  • the invention starts from a conventional cold rolled steel sheet, and is mainly a cold deformed pearlite and ferrite structure.
  • the cold-rolled steel sheet may be preheated, that is, heated to a range of 300-500 ° C at a heating rate of 1 to 10 ° C / s, and then the cold-rolled steel sheet is heated to austenite at a heating rate of 100-500 ° C / s.
  • the single-phase zone can also be heated directly to the austenite single-phase zone at 100-500 ° C / s without preheating, and the water is cooled to room temperature after the holding time is 0-5 s.
  • the process can also achieve higher strength than the continuous product, and the tensile strength reaches 1800MPa-2300MPa, which increases the efficiency and energy saving of the heat treatment process to an extremely high level.
  • the heating rate in the range of 100-500 ° C / s can be achieved by the application of the transverse flux induction heating technology, and thus the feasibility of industrial production is also present.
  • the mechanism of ultra-rapid heating to improve performance is mainly due to the rapid heating delaying the recrystallization of cold-rolled deformed microstructure, thereby maintaining the deformation storage energy and deformation structure to a greater extent, accelerating the austenite reverse phase transition kinetics, especially promoting the Austrian
  • the nucleus of the celite can obtain a large amount of fine martensite structure after water cooling, thereby greatly increasing the tensile strength.
  • the method includes the following steps:
  • Hot rolling after slab casting or ingot casting The slab or ingot obtained in step (1) is heated by 1050-1250 ° C, and rolled by rough rolling mill and hot rolling mill to a thickness of 2.5-15 mm. , coiled at 500-700 ° C;
  • step (3) The hot lap obtained after the coiling in step (2) is subjected to pickling treatment, and then directly subjected to room temperature cold rolling to 0.5-2 mm;
  • the cold-rolled steel sheet obtained in the step (3) to an ultra-rapid heating process, heating the cold-rolled steel sheet to a heating rate of 1-10 ° C / s to 300-500 ° C, and then again at 100-500 ° C / s Heating rate to cold-rolled steel sheet to austenite single-phase region 850-950 ° C; or negligible preheating process directly at 100-500 ° C / s heating rate, rapid heating of the sample to the austenite single-phase region and control
  • the final temperature is 850-950 ° C; no matter which heating process, the steel plate is water-cooled immediately after the heat is not more than 5 s, and the ultra-high strength cold-rolled steel plate is obtained.
  • the thickness of the cold rolled steel sheet obtained in the step (3) is less than 2 mm.
  • the chemical composition of the slab or ingot obtained in the step (1) is 0.1-0.3 wt% C, 0.5-2.5% Mn, 0.05-0.3 wt% Si, 0.05-0.3 wt% Mo, 0.01-0.04 wt% Ti, 0.1- 0.3 wt% Cr, 0.001-0.004 wt% B, P ⁇ 0.020 wt%, S ⁇ 0.02 wt%, the balance being Fe and inevitable impurities.
  • Step (4) The ultra-rapid heating process is implemented by electric resistance or magnetic induction channel heating.
  • Step (4) A steel sheet prepared by an ultra-rapid heating process has a microstructure characterized by martensite and may retain a small amount of ferrite, bainite structure, and carbide, and may also retain some deformed structure.
  • the steel plate prepared by the ultra-rapid heating process has a yield strength of ⁇ 1100 MPa, a tensile strength of 1800 MPa to 2300 MPa, a total elongation of 12.3%, and a uniform elongation of 5.5-6%.
  • the preheating process in step (4) can prevent the distortion of the large cold-rolled steel sheet during the heat treatment process, but after the preheating process is cancelled, the ultra-rapid heating process can directly improve the performance.
  • Ni 0.1-3.0 wt%
  • Cu 0.5-2.0 wt. %
  • Nb 0.02-0.10 wt%
  • V 0.02-0.35 wt%
  • RE (rare earth) 0.002-0.005 wt%
  • Ca 0.005-0.03 wt%.
  • Ni can further improve the hardenability or low-temperature impact toughness of the steel; the addition of Nb, V and other refined prior austenite grains leads to the final microstructure refinement; the addition of Cu, V, etc. increases the strength of the steel by precipitation strengthening; N] adjusts the stability of austenite.
  • the process adopts cold rolling initiation structure, adopts preheating or non-preheating method, and increases heating rate. Heating the sample to 100-500 ° C / s to the austenite single-phase zone, the holding time does not exceed 5 s, can greatly retain the deformation structure, promote austenite nucleation and accelerate the austenite reverse phase transformation, after water cooling A fine martensite structure is obtained, which significantly increases the strength while maximizing process efficiency.
  • FIG. 1 is a schematic view showing the initial structure of a martensite cold rolled steel sheet having a thickness of 1.4 mm according to an embodiment of the present invention
  • FIG. 2 is an optical micrograph of a martensite cold-rolled steel sheet heated to 5 ° C / s to 400 ° C, and then heated at 300 ° C / s to 900 ° C for 0.5 s after cooling in an embodiment of the present invention
  • 3 is an EBSD (electron backscatter diffraction) Image Quality photo of a martensitic cold-rolled steel sheet heated to 5 ° C / s to 400 ° C, and then heated at 300 ° C / s to 900 ° C for 0.5 s. ;
  • Fig. 5 is a summary of the mechanical properties of a sample obtained by ultra-rapid heat treatment of a martensitic cold-rolled steel sheet according to an embodiment of the present invention.
  • the invention provides a method for producing an ultra-high strength martensitic cold-rolled steel sheet by an ultra-rapid heating process, the method comprising the following steps:
  • Hot rolling after slab casting or ingot casting The slab or ingot obtained in step (1) is heated by 1050-1250 ° C, and rolled by rough rolling mill and hot rolling mill to a thickness of 2.5-15 mm. , coiled at 500-700 ° C;
  • step (3) The hot lap obtained after the coiling in step (2) is subjected to pickling treatment, and then directly subjected to room temperature cold rolling to 0.5-2 mm;
  • Table 1 shows the chemical composition (wt%) of ultra-rapid heating martensite cold-rolled steel sheets
  • the chemical composition shown in Table 1 was used, and the hot rolled product was obtained by rolling, continuous casting and hot rolling rolling, and cold rolling was performed after pickling treatment to obtain a cold rolled steel sheet having a thickness of 1.4 mm, and cold rolling.
  • the tissue is pearlite + ferrite with severe cold deformation.
  • the tensile strength 1530 MPa, yielding 1100 MPa and a total elongation of 6.5% can be obtained.
  • the test sample can be reached by preheating and ultra-rapid heating to 900 ° C water-cooling.
  • the ultra-rapid heating experiment is performed on a thermal simulation test machine, and the cold-rolled sample is heated to 5 ° C / s to 400 ° C by resistance heating, and then heated to a temperature of 850-950 ° C at a heating rate of 300 ° C / s. Temperature, heat preservation and quenching immediately after different time within 0-5s.
  • the cold-rolled martensitic steel sheet was heated directly to the final temperature at a heating rate of 300 ° C / s without preheating, without direct thermal water cooling, and the corresponding mechanical properties are also given in Table 2. It can be found that the strength of the steel sheet is further improved after the preheating is canceled, and the tensile strength at the final temperature of 900 ° C and 950 ° C substantially exceeds or approaches 2.3 GPa, while the plasticity is not impaired.
  • Figure 1 shows that the starting structure of the current cold-rolled sheet is mainly pearlite + ferrite with severe cold deformation.
  • the optical micrograph of Figure 2 shows that there are fine prior austenite grain boundaries in the microstructure, and a large number of them are less than 1 micron;
  • the Image quality image of backscatter diffraction (EBSD) shows that the structure is mainly martensite, including a large number of martensite laths and martensite inclusion structures.
  • Figure 4 shows the tensile curve under the current process.
  • the ultra-rapid heat treated sample has more excellent tensile strength and uniform elongation.
  • Figure 5 is a summary of the mechanical properties under ultra-rapid heating.
  • the heating temperature is increased to the range of 900 °C-950 °C to obtain the best balance of mechanical properties.
  • the 900 °C tensile strength is higher and the 950 °C plasticity is better.
  • Steel plates without isothermal properties have better mechanical properties. It can be concluded that the current method has great technological advantages and is expected to be put into actual production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一种超快速加热工艺生产超高强度马氏体冷轧钢板的方法,通过钢的冶炼与凝固、铸坯或铸锭开坯后的热连轧及卷取、酸洗、室温冷轧等常规制造工序后,对冷轧马氏体钢板进行脉冲式超快速加热,以加热速率100-500℃/s加热至奥氏体单相区,最后不经历保温或极短的保温时间立即水冷样品获取马氏体组织。制得马氏体钢抗拉强度在1800-2300MPa的范围内,总延伸率可达12.3%;相比于同一马氏体钢种的连续退火产品,抗拉强度提升700MPa以上,总延伸率最大增幅达6%。很大程度地保持形变存储能与形变组织,加速了逆相变奥氏体的形核,避免了单相区奥氏体晶粒的粗大,可在水冷后获得细小马氏体组织保证超高强度,工艺效率高。

Description

超快速加热工艺生产超高强度马氏体冷轧钢板的方法 技术领域
本发明涉及金属热处理技术领域,特别是指一种超快速加热工艺生产超高强度马氏体冷轧钢板的方法。
背景技术
具有马氏体显微组织的低碳钢在钢铁材料领域是先进高强度钢(AHSS)的重要代表,其抗拉强度范围一般在900-1500MPa的区间内,可主要用作车身侧面碰撞保护及保险杠等高强应用部件。当前钢铁行业面临着产品性能提升的需求来保证安全,同时要求车身轻量化以降低能耗标准,并减少污染物排放,进而满足相应的节能环保的要求。
现在生产的马氏体冷轧薄钢板(厚度小于2mm),是冷轧后通过连续退火工艺生产,退火时间多在3分钟以上,由于生产线长度的限制,退火时间不超过10min。与加热速率缓慢的罩式退火相比,连续退火的加热速度显著变快,且可以准确控制薄钢板的退火温度。连续退火时相对较高的加热速率,可以推迟再结晶过程,由此冷轧变形积累的形变存储能会加快奥氏体逆相变,可以在短时间获得尺寸合适的奥氏体晶粒并经冷却后形成马氏体。
近十几年来,得益于横向磁通感应加热技术的发展,可以实现超快速的脉冲式加热。而本发明的退火工艺,不同于以往的连续退火,就是利用超快速加热,将冷轧钢板在极短时间内加热到奥氏体单相区,不经保温或者极短保温时间(<5s)后立刻水冷的工艺。通过超快速加热工艺来生产冷轧马氏体钢,可以将退火时间缩短到数秒内,而且强度超过连续退火工艺生产的马氏体钢,达到超高强度,从而将热处理工艺的效率和节能性提升到前所未有的水平。此外,在快速加热前段采用预热工艺,可以避免大型钢板热处理生产过程中的扭曲变形。
发明内容
本发明要解决的技术问题是提供一种超快速加热工艺生产超高强度马氏体冷轧钢板的方法,减少退火时间,极大地提升生产效率、降低能耗,并进一步提高了强度。本发明以常规冷轧钢板为起始组织,主要为冷变形的珠光体和铁素体组织。冷轧钢板可以先经预热,即以加热速率1到10℃/s加热到300-500℃的区间,随后再以100-500℃/s的加热速率对冷轧钢板进行加热至奥氏体单相区,也可不经预热直接以100-500℃/s加热至奥氏体单相区,保温时间0~5s后水冷至室温。此工艺除了可以将生产周期缩短到数秒内,并且还可以获得比连退产品更高的强度,抗拉强度达到1800MPa-2300MPa,将热处理工艺的效率和节能性提升到极高水平。目前,通过应用横向磁通感应加热技术的设备可以实现100-500℃/s范围内的加热速率,因而也存在工业化生产的可行性。超快速加热改善性能的机理主要是由于快速加热推迟了冷轧变形组织的再结晶,进而更大程度地保持形变存储能与形变组织,加速了奥氏体逆相变动力学,尤其是促进了奥氏体形核,水冷后可以获得大量的细小马氏体组织,进而大幅度提升抗拉强度。
具体的,该方法包括如下步骤:
(1)钢的冶炼与凝固:通过转炉、电炉或感应炉炼钢,采用连铸生产铸坯或模铸生产铸锭;
(2)铸坯或铸锭开坯后的热轧:将步骤(1)中得到的铸坯或铸锭经1050-1250℃加热,由粗轧机、热连轧机组轧制到2.5-15mm厚度,在500-700℃卷取;
(3)将步骤(2)中卷取后得到的热连轧卷进行酸洗处理,随后直接进行室温冷轧至0.5-2mm;
(4)对步骤(3)获得的冷轧钢板进行超快速加热工艺处理,将冷轧钢板以加热速率1-10℃/s加热到300-500℃,随后再以100-500℃/s的加热速率对冷轧钢板进行加热至奥氏体单相区850-950℃;或者可忽略预热工艺直接以100-500℃/s的加热速率,快速加热样品至奥氏体单相区且控制终温为850-950℃;无论哪种加热工艺下,钢板在 保温不超过5s后立即水冷,得到超高强度冷轧钢板。
其中,步骤(3)中获得的冷轧钢板厚度低于2mm。
步骤(1)所得铸坯或铸锭的化学成分为0.1-0.3wt%C,0.5-2.5%Mn,0.05-0.3wt%Si,0.05-0.3wt%Mo,0.01-0.04wt%Ti,0.1-0.3wt%Cr,0.001-0.004wt%B,P≤0.020wt%,S≤0.02wt%,余量为Fe及不可避免杂质。
步骤(4)超快速加热工艺采用电阻或者磁感应通道加热实现。
步骤(4)经超快速加热工艺所制备的钢板,其组织特征为马氏体、并可能保留少量的铁素体、贝氏体组织以及碳化物,此外还可能保留一些形变组织。步骤(4)经超快速加热工艺制备的钢板,屈服强度≥1100MPa,抗拉强度为1800MPa-2300MPa,总延伸率达到12.3%,且均匀延伸率达到5.5-6%。步骤(4)中采用预热工艺可以防止大型冷轧钢板在热处理过程中的扭曲变形,但取消预热工艺后,直接进行超快速加热工艺可以进一步提高性能。
在所述步骤(1)所制得的铸坯或铸锭中另加以下一种或多种元素,可以有类似性能或性能进一步提高:Ni:0.1-3.0wt%、Cu:0.5-2.0wt%、Nb:0.02-0.10wt%、[N]:0.002-0.25wt%、V:0.02-0.35wt%、RE(稀土):0.002-0.005wt%、Ca:0.005-0.03wt%。其中添加Ni可进一步提高钢的淬透性或低温冲击韧性;添加Nb、V等细化原奥氏体晶粒导致最终组织细化;添加Cu、V等通过析出强化提高钢的强度;添加[N]调节奥氏体的稳定性。
本发明的上述技术方案的有益效果如下:
上述方案中,有别于加热速率低、退火时间长的马氏体冷轧钢板的连续退火工艺,本工艺通过采用冷轧起始组织,采用预热或者不预热的办法,通过提高加热速率至100-500℃/s加热样品至奥氏体单相区,保温时间不超过5s,可以极大程度地保留形变组织,促进奥氏体形核和加速奥氏体逆相变,水冷后可以获得细小的马氏体组织,从而显著提升强度,同时将工艺效率提升至极致。
附图说明
图1为本发明实施例中1.4mm厚度马氏体冷轧钢板的起始组织示意图;
图2为本发明实施例中马氏体冷轧钢板经5℃/s加热至400℃,再以300℃/s加热至900℃保温0.5s后冷却的光学显微镜照片;
图3为本发明实施例中马氏体冷轧钢板经5℃/s加热至400℃,再以300℃/s加热至900℃保温0.5s后冷却的EBSD(电子背散射衍射)Image Quality照片;
图4为本发明实施例中马氏体冷轧钢板经5℃/s加热至400℃,再以300℃/s加热至900℃保温0.5s后冷却的样品的拉伸曲线;
图5为本发明实施例中马氏体冷轧钢板经超快速加热处理后所获得样品的力学性能总结。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明提供一种超快速加热工艺生产超高强度马氏体冷轧钢板的方法,该方法包括如下步骤:
(1)钢的冶炼与凝固:通过转炉、电炉或感应炉炼钢,采用连铸生产铸坯或模铸生产铸锭;
(2)铸坯或铸锭开坯后的热轧:将步骤(1)中得到的铸坯或铸锭经1050-1250℃加热,由粗轧机、热连轧机组轧制到2.5-15mm厚度,在500-700℃卷取;
(3)将步骤(2)中卷取后得到的热连轧卷进行酸洗处理,随后直接进行室温冷轧至0.5-2mm;
(4)对步骤(3)获得的冷轧钢板进行超快速加热工艺处理,将冷轧钢板以加热速率1-10℃/s加热到300-500℃,随后再以100-500℃/s的加热速率对冷轧钢板进行加热至奥氏体单相区850-950℃;或者可忽略预热工艺直接快速加热样品至奥氏体单相区且控制终温为 850-950℃;无论哪种加热工艺下,钢板在保温不超过5s后立即水冷,得到超高强度冷轧钢板。
实施例
表1采用超快速加热马氏体冷轧钢板的化学成分(wt%)
钢种 C Si Mn Mo Cr Ti B Fe
MS1500 0.18 0.28 1.5 0.15 0.13 0.04 0.002 Rest
本实施例试验采用表1所示的化学成分,由转炉、连铸和热连轧产线轧制获得热轧产品,酸洗处理后进行冷轧,获得1.4mm厚度的冷轧钢板,冷轧组织为冷变形严重的珠光体+铁素体。对冷轧板进行900℃-3分钟连续退火后可以获得抗拉强度1530MPa,屈服1100MPa以及总延伸率6.5%的力学性能;而经由预热、超快速加热到900℃水冷的试验样品,可达到2257MPa的抗拉强度以及10.2%的总延伸率,此外屈服强度也高达1115MPa。具体地,超快速加热实验在热模拟试验机上先进行预热工艺,通过电阻加热以5℃/s加热冷轧样品至400℃,随后以300℃/s加热速率加热至850-950℃区间不同温度,保温0-5s内不同时间后立即水冷淬火。通过表2对超快速加热与连退样品的性能进行对比后发现,超快速加热样品的抗拉强度增幅超过700MPa,同时延伸率提升了3.7%,甚至在加热终温950℃时可以达到5.8%。此外,可以发现等温时间的延长会导致抗拉强度的降低。特别指出,该冷轧钢板加热至900℃和950℃不保温直接淬火,获得了最高抗拉强度和良好延伸率。
不采用预热直接以300℃/s的加热速率加热冷轧马氏体钢板到终 点温度,不保温直接快速水冷,相应的力学性能也在表2给出。可以发现取消预热后钢板的强度得以进一步提升,在终温900℃时以及950℃时抗拉强度基本超过或接近2.3GPa,同时塑性也未损害。
图1展示了当前种的冷轧板的起始组织主要为冷变形严重的珠光体+铁素体。而经预热超快速加热到900℃处理后样品,由图2光学显微镜照片可以看出以的微观组织中存在细小的原奥氏体晶界,其中有大量尺寸小于1微米;由图3电子背散射衍射(EBSD)的Image quality图像可知该组织主要为马氏体,其中包括大量的马氏体板条、马氏体包结构。图4为当前工艺下的拉伸曲线,超快速加热处理的样品具有更为优异的抗拉强度和均匀延伸率。图5为超快速加热下力学性能的总结,可以判断加热温度的提升至900℃-950℃的区间可以获得最佳的力学性能平衡,900℃抗拉强度更高而950℃塑性更优,此外没有等温的钢板力学性能更好。由此可以得出,当前方法具有极大的工艺优势,有望投入到实际生产当中。
表2冷轧马氏体钢板进行超快速加热及连退工艺的力学性能
Figure PCTCN2018105128-appb-000001
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

  1. 一种超快速加热工艺生产超高强度马氏体冷轧钢板的方法,其特征在于:包括如下步骤:
    (1)钢的冶炼与凝固:通过转炉、电炉或感应炉炼钢,采用连铸生产铸坯或模铸生产铸锭;
    (2)铸坯或铸锭开坯后的热轧:将步骤(1)中得到的铸坯或铸锭经1050-1250℃加热,由粗轧机、热连轧机组轧制到2.5-15mm厚度,在500-700℃卷取;
    (3)将步骤(2)中卷取后得到的热连轧卷进行酸洗处理,随后直接进行室温冷轧至0.5-2mm;
    (4)对步骤(3)获得的冷轧钢板进行超快速加热工艺处理,将冷轧钢板以加热速率1-10℃/s加热到300-500℃,然后以100-500℃/s的加热速率再加热至奥氏体单相区850-950℃;之后,钢板在保温不超过5s后立即水冷,得到超高强度冷轧钢板。
  2. 根据权利要求1所述的超快速加热工艺生产超高强度马氏体冷轧钢板的方法,其特征在于:所述步骤(4)中超快速加热工艺为:将冷轧钢板直接以100-500℃/s的加热速率,超快速加热至奥氏体单相区且控制终温为850-950℃。
  3. 根据权利要求1所述的超快速加热工艺生产超高强度马氏体冷轧钢板的方法,其特征在于:所述步骤(3)中获得的冷轧钢板厚度低于2mm。
  4. 根据权利要求1所述的超快速加热工艺生产超高强度马氏体冷轧钢板的方法,其特征在于:所述步骤(1)所得铸坯或铸锭的化学成分为0.1-0.3wt%C,0.5-2.5%Mn,0.05-0.3wt%Si,0.05-0.3wt%Mo,0.01-0.04wt%Ti,0.1-0.3wt%Cr,0.001-0.004wt%B,P≤0.020wt%,S≤0.02wt%,余量为Fe及不可避免杂质。
  5. 根据权利要求1所述的超快速加热工艺生产超高强度马氏体冷轧钢板的方法,其特征在于:所述步骤(4)中的超快速加热工艺采用电阻或者磁感应通道加热实现。
  6. 根据权利要求1所述的超快速加热工艺生产超高强度马氏体 冷轧钢板的方法,其特征在于:所述步骤(4)经超快速加热工艺制备的钢板,屈服强度≥1100MPa,抗拉强度为1800MPa-2300MPa,总延伸率达到12.3%,且均匀延伸率达到5.5-6%。
  7. 根据权利要求1所述的超快速加热工艺生产超高强度马氏体冷轧钢板的方法,其特征在于:在所述步骤(1)所制得的铸坯或铸锭中另加以下一种或多种元素:Ni:0.1-3.0wt%、Cu:0.5-2.0wt%、Nb:0.02-0.10wt%、[N]:0.002-0.25wt%、V:0.02-0.35wt%、RE:0.002-0.005wt%、Ca:0.005-0.03wt%。
PCT/CN2018/105128 2017-10-26 2018-09-12 超快速加热工艺生产超高强度马氏体冷轧钢板的方法 WO2019080659A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18833148.2A EP3702477B1 (en) 2017-10-26 2018-09-12 Method for producing ultra high strength martensitic cold-rolled steel sheet by means of ultra fast heating process
US16/252,908 US11261504B2 (en) 2017-10-26 2019-01-21 Method for producing ultra-high-strength martensitic cold-rolled steel sheet by ultra rapid heating process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711019854.4 2017-10-26
CN201711019854.4A CN107794357B (zh) 2017-10-26 2017-10-26 超快速加热工艺生产超高强度马氏体冷轧钢板的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/252,908 Continuation US11261504B2 (en) 2017-10-26 2019-01-21 Method for producing ultra-high-strength martensitic cold-rolled steel sheet by ultra rapid heating process

Publications (1)

Publication Number Publication Date
WO2019080659A1 true WO2019080659A1 (zh) 2019-05-02

Family

ID=61547878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105128 WO2019080659A1 (zh) 2017-10-26 2018-09-12 超快速加热工艺生产超高强度马氏体冷轧钢板的方法

Country Status (4)

Country Link
US (1) US11261504B2 (zh)
EP (1) EP3702477B1 (zh)
CN (1) CN107794357B (zh)
WO (1) WO2019080659A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115125380A (zh) * 2022-06-24 2022-09-30 舞阳钢铁有限责任公司 台车炉与连续炉配合高效加热轧制合金钢的方法
CN115305317A (zh) * 2022-07-11 2022-11-08 北京科技大学 一种提高冷拔高碳钢丝强塑性的电脉冲处理方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107794357B (zh) * 2017-10-26 2018-09-14 北京科技大学 超快速加热工艺生产超高强度马氏体冷轧钢板的方法
CN109321828A (zh) * 2018-11-06 2019-02-12 鞍钢股份有限公司 一种1600MPa级冷轧马氏体钢及其生产方法
CN110592471A (zh) * 2019-08-26 2019-12-20 邯郸钢铁集团有限责任公司 1200MPa级冷轧马氏体钢板及其制备方法
JP2024512668A (ja) 2021-04-02 2024-03-19 宝山鋼鉄股▲分▼有限公司 引張強度≧980MPaの二相鋼と溶融亜鉛メッキ二相鋼およびそれらの急速熱処理製造方法
CN115181886B (zh) * 2021-04-02 2023-07-11 宝山钢铁股份有限公司 980MPa级别低碳低合金双相钢及快速热处理制造方法
EP4317512A4 (en) 2021-04-02 2024-10-09 Baoshan Iron & Steel Co Ltd LOW-CARBON, LOW-ALLOYED AND HIGHLY FORMABLE DUAL-PHASE STEEL WITH TENSILE STRENGTH OF MORE THAN OR EQUAL TO 590 MPA, HOT-DIP GALVANIZED DUAL-PHASE STEEL AND MANUFACTURING PROCESS THEREOF
CN115181898B (zh) * 2021-04-02 2023-10-13 宝山钢铁股份有限公司 一种1280MPa级别低碳低合金Q&P钢及其快速热处理制造方法
CN115181890B (zh) * 2021-04-02 2023-09-12 宝山钢铁股份有限公司 1180MPa级别低碳低合金双相钢及快速热处理制造方法
CN115181892B (zh) * 2021-04-02 2023-07-11 宝山钢铁股份有限公司 1180MPa级别低碳低合金TRIP钢及快速热处理制造方法
EP4317511A4 (en) 2021-04-02 2024-10-02 Baoshan Iron & Steel LOW-ALLOY LOW-CARBON QUENCHED AND TEMPERED STEEL OR HOT-DIPPED GALVANIZED QUENCHED AND TEMPERED STEEL HAVING A TENSILE STRENGTH OF 1,180 MPA OR MORE, AND METHOD FOR MANUFACTURING SAME
CN115181891B (zh) * 2021-04-02 2023-07-11 宝山钢铁股份有限公司 980MPa级别低碳低合金热镀锌双相钢及快速热处理热镀锌制造方法
CN113444871A (zh) * 2021-07-21 2021-09-28 山西阳煤化工机械(集团)有限公司 一种基于高频脉冲电流调控铁素体不锈钢强韧化的方法
CN113652612B (zh) * 2021-08-19 2022-04-15 北京理工大学 非均质片层结构中锰钢及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170017A (ja) * 1995-10-18 1997-06-30 Nisshin Steel Co Ltd 高強度高靭性鋼板の製造方法
US20080118390A1 (en) * 2004-03-31 2008-05-22 Jfe Steel Corporation High-Stiffness High-Strength Thin Steel Sheet and Method For Producing the Same
CN102644021A (zh) * 2012-04-23 2012-08-22 武汉钢铁(集团)公司 一种600MPa级低工艺敏感性冷轧双相钢及生产方法
CN102925790A (zh) * 2012-10-31 2013-02-13 钢铁研究总院 一种连续退火工艺生产高强塑积汽车用钢板的方法
CN106636925A (zh) * 2016-12-30 2017-05-10 北京科技大学 一种高强塑积冷轧trip钢及其制备方法
CN107127212A (zh) * 2017-04-20 2017-09-05 北京科技大学 超快速加热工艺生产高强塑积中锰冷轧钢板的方法
CN107794357A (zh) * 2017-10-26 2018-03-13 北京科技大学 超快速加热工艺生产超高强度马氏体冷轧钢板的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1145709C (zh) 2000-02-29 2004-04-14 川崎制铁株式会社 应变时效硬化特性优良的高强度冷轧钢板及其制造方法
WO2008042982A2 (en) * 2006-10-03 2008-04-10 Cola Jr Gary M Microtreatment of iron-based alloy, apparatus and method therefor, and articles resulting therefrom
KR101318274B1 (ko) 2009-12-28 2013-10-15 주식회사 포스코 쌍롤식 박판 주조공정에 의해 제조된 마르텐사이트계 스테인리스강 및 그 제조방법
IN2014DN07405A (zh) * 2012-02-22 2015-04-24 Nippon Steel & Sumitomo Metal Corp
KR101736636B1 (ko) * 2015-12-23 2017-05-17 주식회사 포스코 방진특성이 우수한 고Mn강판 및 그 제조방법
CN107619993B (zh) * 2016-07-13 2019-12-17 上海梅山钢铁股份有限公司 屈服强度750MPa级冷轧马氏体钢板及其制造方法
WO2018123356A1 (ja) * 2016-12-28 2018-07-05 株式会社神戸製鋼所 高強度鋼板および高強度電気亜鉛めっき鋼板
US10973261B2 (en) 2017-07-06 2021-04-13 Vuber Technologies, Llc Vaporization device and process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170017A (ja) * 1995-10-18 1997-06-30 Nisshin Steel Co Ltd 高強度高靭性鋼板の製造方法
US20080118390A1 (en) * 2004-03-31 2008-05-22 Jfe Steel Corporation High-Stiffness High-Strength Thin Steel Sheet and Method For Producing the Same
CN102644021A (zh) * 2012-04-23 2012-08-22 武汉钢铁(集团)公司 一种600MPa级低工艺敏感性冷轧双相钢及生产方法
CN102925790A (zh) * 2012-10-31 2013-02-13 钢铁研究总院 一种连续退火工艺生产高强塑积汽车用钢板的方法
CN106636925A (zh) * 2016-12-30 2017-05-10 北京科技大学 一种高强塑积冷轧trip钢及其制备方法
CN107127212A (zh) * 2017-04-20 2017-09-05 北京科技大学 超快速加热工艺生产高强塑积中锰冷轧钢板的方法
CN107794357A (zh) * 2017-10-26 2018-03-13 北京科技大学 超快速加热工艺生产超高强度马氏体冷轧钢板的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115125380A (zh) * 2022-06-24 2022-09-30 舞阳钢铁有限责任公司 台车炉与连续炉配合高效加热轧制合金钢的方法
CN115125380B (zh) * 2022-06-24 2023-08-22 舞阳钢铁有限责任公司 台车炉与连续炉配合高效加热轧制合金钢的方法
CN115305317A (zh) * 2022-07-11 2022-11-08 北京科技大学 一种提高冷拔高碳钢丝强塑性的电脉冲处理方法
CN115305317B (zh) * 2022-07-11 2023-10-13 北京科技大学 一种提高冷拔高碳钢丝强塑性的电脉冲处理方法

Also Published As

Publication number Publication date
EP3702477C0 (en) 2023-11-22
EP3702477B1 (en) 2023-11-22
CN107794357A (zh) 2018-03-13
US11261504B2 (en) 2022-03-01
EP3702477A1 (en) 2020-09-02
EP3702477A4 (en) 2021-03-31
CN107794357B (zh) 2018-09-14
US20190153558A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
WO2019080659A1 (zh) 超快速加热工艺生产超高强度马氏体冷轧钢板的方法
CN103215516B (zh) 一种700MPa级高强度热轧Q&amp;P钢及其制造方法
CN107127212B (zh) 超快速加热工艺生产高强塑积中锰冷轧钢板的方法
CN109371317B (zh) 一种1000MPa级超快冷冷轧双相钢板及其制备方法
US8440030B2 (en) Fine spheroidized steel sheet with excellent heat treatment characteristic and method for manufacturing the same
CN106319368B (zh) 一种经济型薄链板及其制造方法
WO2018076965A1 (zh) 一种抗拉强度在1500MPa以上且成形性优良的冷轧高强钢及其制造方法
JP2016503458A (ja) 高成形性超高強度冷間圧延鋼板及びその製造方法
EP4317512A1 (en) Low-carbon, low-alloy and high-formability dual-phase steel having tensile strength of greater than or equal to 590 mpa, hot-dip galvanized dual-phase steel, and manufacturing method therefor
CN104928456B (zh) 一种提高普冷铁素体轻质钢延展性的制造方法
CN107012398B (zh) 一种铌微合金化trip钢及其制备方法
EP4317511A1 (en) Low-carbon low-alloy q&amp;p steel or hot-dip galvanized q&amp;p steel with tensile strength greater than or equal to 1180 mpa, and manufacturing method therefor
JP5640931B2 (ja) 加工性及び焼入性に優れた中炭素冷延鋼板とその製造方法
CN113502382B (zh) 一种980MPa级超高延展性冷轧高强钢的制备方法
CN111647800B (zh) 一种可直接切削的热轧圆钢的制备方法
CN106834941A (zh) 一种热冲压成形钢及其生产方法
US20240167138A1 (en) Dual-phase steel and hot-dip galvanized dual-phase steel having tensile strength greater than or equal to 980mpa and method for manufacturing same by means of rapid heat treatment
CN115323278A (zh) 一种屈服700MPa级低密度钢及其热处理方法
CN101942600A (zh) 一种高强度高塑性中锰trip热轧钢板的制备方法
CN116900178A (zh) 一种高Cr-Si合金化免镀层热成形钢的进阶热冲压成形方法
CN114752851A (zh) 一种屈服强度960MPa级低裂纹敏感性钢板及其制造方法
JP3103268B2 (ja) 耐フルーティング性に優れた容器用鋼板の製造方法
CN111733366A (zh) 一种含铝冷轧超高强钢及其制备方法、应用
CN109898018A (zh) 一种冷轧1300MPa级的马氏体钢及其生产方法
JPH1088237A (ja) 高炭素冷延鋼帯の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18833148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018833148

Country of ref document: EP

Effective date: 20200526