WO2019078265A1 - Analysis device and total organic carbon measurement device - Google Patents

Analysis device and total organic carbon measurement device Download PDF

Info

Publication number
WO2019078265A1
WO2019078265A1 PCT/JP2018/038692 JP2018038692W WO2019078265A1 WO 2019078265 A1 WO2019078265 A1 WO 2019078265A1 JP 2018038692 W JP2018038692 W JP 2018038692W WO 2019078265 A1 WO2019078265 A1 WO 2019078265A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
diameter
heating furnace
combustion tube
seal member
Prior art date
Application number
PCT/JP2018/038692
Other languages
French (fr)
Japanese (ja)
Inventor
中森 明興
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2019549322A priority Critical patent/JP6879377B2/en
Publication of WO2019078265A1 publication Critical patent/WO2019078265A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion

Definitions

  • the present invention is an analyzer equipped with a heating furnace for heating a combustion tube into which a sample is introduced, thereby burning and oxidizing the sample, and an all-organic carbon measuring apparatus equipped with the analyzer. About.
  • TOC total organic carbon
  • TN total nitrogen
  • the collected sample is introduced into the combustion unit, and in the all-organic carbon measuring device, the carbon component in the sample is burned, oxidized and decomposed to be carbon dioxide, and in the total nitrogen measuring device, the sample is The nitrogen components of the catalyst are burned and oxidized to be converted to nitrogen oxide (NO), and a gas containing them is introduced into the cell of the detection unit.
  • NO nitrogen oxide
  • the detection unit of the water quality analyzer will be described.
  • the absorbance derived from the carbon dioxide concentration in the gas introduced to the cell is measured.
  • the total nitrogen measuring device the amount of luminescence derived from the nitrogen oxide concentration in the gas led to the cell is measured.
  • the peak area value of the detection signal data obtained by these measurements total organic carbon or total nitrogen in the sample is quantified. That is, in order to quantify total organic carbon or total nitrogen, a calibration curve indicating the relationship between total organic carbon or total nitrogen and the area value of the peak of the detection signal data is prepared in advance, and the measured is measured. Based on the calibration curve, total organic carbon or total nitrogen can be quantified from the area value of the peak according to the signal data (see Patent Document 1).
  • a combustion unit into which the collected sample is introduced is disposed in the heating furnace.
  • the sample is heated to 680 ° C. by a heating furnace in the presence of abundant purified air in a combustion tube filled with a platinum catalyst.
  • the outer periphery of the heating furnace may be surrounded by an outer wall of a heat insulating material mainly composed of ceramic fibers or alumina fibers so that heating of the combustion tube by the heating furnace is performed efficiently and uniformly (Patent Document 2) reference).
  • the outer periphery of the heating furnace is surrounded by the outer wall made of a heat insulating material, heat can be prevented from escaping from the outer periphery of the heating furnace.
  • the heat insulating performance can be maintained relatively by covering the upper part of the casing of the heating furnace with a ceramic member (a lid or the like) having a hole through which the combustion tube main body can be inserted.
  • a ceramic member a lid or the like
  • the outlet portion of the combustion tube is generally a thin tube portion for catalyst holding and piping connection, which causes a large gap with the hole.
  • the lower portion of the casing of the heating furnace is provided with a hole of a larger diameter than the outer diameter of the combustion tube main body. The reason for this is to be able to be pulled out when the combustion tube main body is broken inside the furnace. Therefore, this structure can not be avoided for maintenance.
  • the analyzer concerning the 1st mode of the present invention is provided with the heating furnace which heats a combustion pipe, in order to burn and oxidize and decompose the sample introduced into the combustion pipe,
  • the case In the lower part of the case of the furnace, the case is penetrated and a hole with a diameter larger than the outer diameter of the combustion tube main body is bored, and heat insulation having a hole into which the thin tube part at the outlet of the combustion tube main body is inserted
  • a sealing member made of a material is attached to a hole in a lower portion of a casing of a heating furnace to seal the flow of heat.
  • ceramic-made is suitable.
  • casing lower part of a heating furnace is suitable.
  • the seal member may be provided with flanges having a diameter smaller than the diameter of the hole and larger than the diameter of the hole at both ends of the body longer than the lower housing thickness of the heating furnace.
  • the portion may have a hole into which the thin tube portion of the outlet portion of the combustion tube main body is inserted, and a tapered portion may be formed from the upper flange portion toward the body portion, and the seal member is in the axial direction May be divided into at least two.
  • the flange portion above the seal member has a function to prevent the seal member from falling from the hole when the seal member is mounted in the hole formed in the lower portion of the casing of the heating furnace.
  • the seal member is divided in the axial direction allows the seal member (upper flange portion) having a flange portion with a diameter larger than the diameter of the hole portion to be inserted into the heating furnace from the hole portion.
  • the present invention is not limited to two divisions.
  • the center of gravity moves to the upper side (inner side of the heating furnace) of the seal member, and when the seal member is pushed upward from below, the difference between the outer diameter of the body portion and the diameter of the hole portion
  • the presence of the (gap) allows the seal member to spread outward (left and right in the case of two divisions), and helps the left and right weight balance to easily spread laterally.
  • the large diameter side of the tapered portion may be equal to or less than or equal to the diameter of the hole in the hole.
  • the large diameter side of the tapered portion preferably has a diameter substantially equal to the diameter of the hole, but the category including the diameter equal to or less than the diameter of the hole includes the diameter of the trunk as the minimum diameter. That is, when the large diameter side of the tapered portion has the same diameter as the diameter of the body portion, the tapered portion substantially does not exist, but the present invention also includes this.
  • the combustion tube is a reaction unit that burns, oxidizes and decomposes the carbon component in the sample to convert it to carbon dioxide, and light is transmitted to the cell and the cell that circulates the gas from the reaction unit.
  • It is a total organic carbon measuring apparatus provided with the measurement part which has a light source which irradiates, and a detector which detects the light which permeate
  • the lower portion of the casing of the heating furnace is a seal member made of a heat insulating material having a hole at its central portion for inserting and holding a thin tube portion at the outlet of the combustion tube main body.
  • the heat exchanger can be effectively thermally insulated simply by installing the combustion pipe in the heating furnace, since it is mounted in the hole of the housing to seal the heat outflow. Further, since the thin tube portion at the outlet of the combustion tube main body is held by the lower housing of the heating furnace via the seal member, it can be stably attached in the heating furnace.
  • the seal member can be easily attached from the hole bored in the lower portion of the casing of the heating furnace. It can be easily performed only by pushing up the seal member upward (inside the heating furnace) in inserting the hole into the hole in the center part. Therefore, the variation at the time of attachment of the combustion pipe in a heating furnace by a worker can be eliminated, and stable measurement of total organic carbon etc. becomes possible.
  • the all-organic carbon measuring apparatus 11 supplies a carrier gas to send a carrier gas to the all-organic carbon measuring unit 12 and the combustion tube 14 of the oxidation reaction unit 13 provided in the all-organic carbon measuring unit 12. And a multiport valve 16 for switching them.
  • a sampling syringe 17 for measuring and collecting sample water is connected to a common port of the multiport valve 16.
  • other ports include 1) a sample introduction unit, 2) hydrochloric acid used when removing inorganic carbon components from sample water, 3) dilution water, and 4) inorganic carbon reaction unit 18 5)
  • the drain drain ports are connected to one another.
  • the total organic carbon measurement apparatus 11 is configured to be able to inject the sample collected from the autosampler 19 into the combustion pipe 14 of the total organic carbon measurement unit 12.
  • An exemplary volume of the sampling syringe 17 is around 5 mL.
  • a vent gas inlet (not shown) for introducing a carrier gas is provided.
  • the vent gas inlet is connected to the carrier gas supply unit 15 via the solenoid valve 20.
  • the gas venting mechanism is realized by the sampling syringe 17.
  • the carrier gas supply unit 15 is configured to supply high purity air as a carrier gas.
  • the carrier gas supply unit 15 includes, in order from the upstream side, a carrier gas inlet, a solenoid valve, a pressure regulating valve that regulates pressure, a pressure gauge that measures pressure, a mass flow controller that regulates flow, a flow meter, And the humidifier is connected.
  • the carrier gas whose flow rate is measured and humidified is sent to the combustion tube 14. Further, the carrier gas whose flow rate is adjusted for humidification is also supplied to the sampling syringe 17 as a ventilation gas through the solenoid valve 20.
  • the combustion tube 14 of the oxidation reaction unit 13 includes a sample injection unit 21 at the top.
  • a thin tube portion 14 a is provided at the outlet of the combustion tube 14 main body.
  • An oxidation catalyst for converting all of the carbon components in the sample into carbon dioxide is held at the inlet of the thin tube portion 14a.
  • the oxidation catalyst may contain a metal oxide or a noble metal.
  • the combustion tube 14 is inserted into the heating furnace 22 and heated to 680 ° C., for example.
  • the carrier gas supply unit 15 is connected to the sample injection unit 21 via a check valve (not shown) that prevents backflow of the carrier gas.
  • the narrow tube portion 14 a of the combustion tube 14 main body is connected to the carrier gas inlet of the inorganic carbon reaction unit 18 via the cooling unit 23 and the backflow prevention trap 24.
  • the inorganic carbon reaction unit 18 when measuring inorganic carbon, phosphoric acid is supplied as an inorganic carbon reaction liquid by an optional means such as a pump, and the sample water is supplied to the inorganic carbon reaction unit 18 as a multiport valve. Direct injection is performed by the switching of 16 and the operation of the sampling syringe 17. In the injected sample water, inorganic carbon is generated as carbon dioxide, and the carbon dioxide is led to the dehumidifying electron cooler 25.
  • the inorganic carbon reaction liquid of the inorganic carbon reaction unit 18 is discharged from a drain solenoid valve (not shown).
  • the gas passed through the dehumidifying electron cooler 25 is not shown as a non-dispersive infrared analysis method (NDIR) via a dehumidifier for removing water or a membrane filter (for removing a halogen scrubber and foreign matter).
  • NDIR non-dispersive infrared analysis method
  • the measurement unit 26 includes a cell in which a light source and a detector are disposed opposite to each other. The intensity of the detector output signal corresponds to the amount of total carbon or inorganic carbon. The amount of inorganic carbon can be determined by subtracting the amount of inorganic carbon from the amount of total carbon measured in this manner.
  • the discharged carbon dioxide is adsorbed by a CO 2 absorber (not shown). Further, a drain pot (not shown) for removing water is connected to the dehumidifying electronic cooler 25.
  • the oxidation reaction unit 13 includes a heating furnace 22 and a combustion tube 14 (see FIG. 2C) attached to the inside of the heating furnace 22.
  • the lower casing 22a of the heating furnace 22 penetrates the casing 22a in the thickness direction (the thickness of the casing 22a is indicated by t in FIG. 2) and the outer diameter of the main body of the combustion tube 14 A hole 7 having a hole diameter d2 larger than d1 (see FIG. 2C) is provided.
  • the reason for this configuration is to allow removal when the combustion tube 14 is broken inside the heating furnace 22 and is a structure that can not be avoided for maintenance.
  • the seal member 1 is mounted in a hole 7 provided in the lower housing 22 a of the heating furnace 22.
  • the seal member 1 is divided into two.
  • the seal member 1 has rod-shaped body portions 4a and 4b.
  • the body portions 4 a and 4 b have a diameter smaller than the diameter d 2 of the hole 7.
  • the length of the body portions 4 a and 4 b (the dimension in the thickness direction of the lower housing 22 a) is larger than the thickness of the lower housing 22 a of the heating furnace 22.
  • the flanges 2a, 2b, 3a, 3b are connected to both ends of the body 4a, 4b (in the thickness direction of the lower housing 22a).
  • the flanges 2a, 2b, 3a, 3b have a diameter d3 larger than the diameter d2 of the hole 7. .
  • a hole 6 is provided at the center of the seal member 1.
  • the hole 6 may be provided at a position deviated from the central portion of the seal member 1.
  • the narrow tube portion 14 a of the main body of the combustion tube 14 is inserted into the hole 6.
  • the upper flanges 2a, 2b are not disk-like, as shown in the top view of FIG. Thereby, the seal member 1 (upper flanges 2a and 2b) can be mounted in the heating furnace 22 from the hole 7 while maintaining the function as the flanges 2a and 2b.
  • the seal member 1 is formed with tapered portions 5a, 5b that taper from the upper flange portions 2a, 2b toward the body portions 4a, 4b.
  • the maximum diameter of the tapered portions 5a and 5b is set to the same diameter as the inner diameter d2 of the hole portion 7.
  • the minimum diameter of the tapered portions 5a, 5b is the same as the diameter of the body portions 4a, 4b.
  • the position of the smallest diameter portion in the body portions 4a and 4b is desirably equal to or less than the upper one-third of the length (axial direction) of the body portions 4a and 4b.
  • the tapered portions 5 a and 5 b can position the center of gravity of the seal member 1 upward (inside the heating furnace 22).
  • FIGS. 2A to 2C an operation of attaching the combustion pipe 14 (thin tube portion 14a) to the seal member 1 will be described with reference to FIGS. 2A to 2C.
  • the lower flange portions 3a and 3b are heating furnaces from the state of FIG. 2A.
  • the seal member 1 is pushed upward into the heating furnace 22 by hand until it abuts on the lower housing 22a of 22.
  • the seal member 1 Since the seal member 1 is divided into two parts, as shown in FIG. 2B, the seal member 1 spreads to the left and right due to the difference (gap) between the outer diameter of the body 4a, 4b and the hole diameter d2 of the hole 7.
  • the center of gravity is located at the upper part by forming the tapered portions 5a and 5b. This helps the seal member 1 to spread to the left and right easily with the upper and lower weight balance.
  • a chamfered portion 8 is formed on the lower flange 3a, 3b side of the hole 6 provided in the sealing member 1. As a result, the collision of the lower flanges 3a and 3b of the seal member 1 can be alleviated, and the left and right spread can be further permitted.
  • the hand pushing up the seal member 1 while inserting the thin tube portion 14a of the combustion tube 14 from the inside of the heating furnace 22 into the hole 6 of the seal member 1 When released, the seal member 1 is fixed around the narrow tube portion 14 a and can be held by the seal member 1.
  • the seal member 1 is pushed down until the upper flanges 2a and 2b abut against the hole 7, and the taper is set such that the upper flanges 2a and 2b and the maximum diameter are the same as the inner diameter d2 of the hole 7
  • the holes 7 are sealed and thermally insulated by 5a and 5b.
  • the maximum diameters of the tapered portions 5 a and 5 b are set to the same diameter as the inner diameter d 2 of the hole 7.
  • the first aspect of the present invention is An analyzer comprising a heating furnace for heating a combustion tube into which a sample is introduced, thereby burning the sample for oxidative decomposition.
  • a thin tube portion is provided at the outlet of the combustion tube,
  • the heating furnace has a housing, The lower part of the casing of the heating furnace is provided with a hole penetrating the casing, The diameter of the hole is larger than the outer diameter of the combustion tube,
  • the hole is provided with a sealing member for sealing the hole,
  • the sealing member is made of a heat insulating material,
  • the sealing member is provided with a hole for inserting a thin tube portion of the combustion tube, It is an analyzer.
  • the seal member may have a body and a brim.
  • the body may have a diameter smaller than the diameter of the hole and may have a length larger than the thickness of the lower casing of the heating furnace.
  • the flanges may be provided at both ends of the body, The flange may have a diameter larger than the diameter of the hole,
  • the seal member may have a tapered portion formed from the flange portion toward the body portion.
  • the seal member may be divided into at least two in the axial direction. .
  • the tapered portion may have a diameter equal to or less than the diameter of the hole on the large diameter side.
  • the second aspect of the present invention is An all-organic carbon measuring apparatus comprising a measuring unit,
  • the combustion tube is a reaction unit which is disposed in the heating furnace and burns, oxidizes and decomposes a carbon component in a sample, and converts it into carbon dioxide.
  • the measuring unit is an all-organic carbon measuring apparatus having a cell for circulating the gas from the reaction unit, a light source for irradiating the cell with light, and a detector for detecting the light transmitted through the cell.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Combustion & Propulsion (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

The present invention pertains to an analysis device provided with a heating furnace for heating a combustion tube into which a sample is introduced and thereby combusting the sample and performing oxidation decomposition. A small tube part is provided to an outlet of the combustion tube. The heating furnace has a housing. A hole part passing through the housing of the heating furnace is provided in a lower portion of the housing. The diameter of the hole part is greater than the outside diameter of the combustion tube. A sealing material that seals the hole part is provided in the hole part. A hole for the insertion of the small tube part of the combustion tube is provided in the sealing material.

Description

分析装置および全有機体炭素測定装置Analyzer and total organic carbon measurement device
 本発明は、試料が導入される燃焼管を加熱し、これにより前記試料を燃焼して酸化分解させるための加熱炉を備えた分析装置、および、当該分析装置を備えた全有機体炭素測定装置に関する。 The present invention is an analyzer equipped with a heating furnace for heating a combustion tube into which a sample is introduced, thereby burning and oxidizing the sample, and an all-organic carbon measuring apparatus equipped with the analyzer. About.
 例えば、下水、河川水、工場排水などの水質調査では、全有機体炭素(TOC)および全窒素(TN)の測定が重要な項目の一つになっている。水質分析装置として、試料(水)中に含まれている全有機体炭素(TOC)を測定する燃焼触媒酸化方式の全有機体炭素測定装置(TOC計)や、全窒素(TN)を測定する全窒素測定装置(TN計)が知られている。また、全有機体炭素と全窒素の両方を測定することができる分析装置も知られている。これらの水質分析装置では、採取した試料を燃焼部に導入し、全有機体炭素測定装置では試料中の炭素成分を燃焼して酸化分解させて二酸化炭素に変換し、全窒素測定装置では試料中の窒素成分を燃焼して酸化分解させ酸化窒素(NO)に変換し、それらを含むガスが検出部のセルに導入される。 For example, measurement of total organic carbon (TOC) and total nitrogen (TN) is one of the important items in the survey of water quality such as sewage, river water, and factory drainage. As a water quality analyzer, measure the total organic carbon measuring device (TOC meter) of combustion catalytic oxidation type that measures the total organic carbon (TOC) contained in the sample (water) and the total nitrogen (TN) Total nitrogen measuring devices (TN meters) are known. Also, analyzers capable of measuring both total organic carbon and total nitrogen are known. In these water quality analyzers, the collected sample is introduced into the combustion unit, and in the all-organic carbon measuring device, the carbon component in the sample is burned, oxidized and decomposed to be carbon dioxide, and in the total nitrogen measuring device, the sample is The nitrogen components of the catalyst are burned and oxidized to be converted to nitrogen oxide (NO), and a gas containing them is introduced into the cell of the detection unit.
 水質分析装置の検出部について説明する。全有機体炭素測定装置では、セルに導かれたガス中の二酸化炭素濃度に由来した吸光度が測定される。全窒素測定装置では、セルに導かれたガス中の酸化窒素濃度に由来した発光量が測定される。これらの測定により得られた検出信号データのピークの面積値を求めることにより、試料中の全有機体炭素または全窒素が定量される。即ち、全有機体炭素または全窒素の定量を行なうために、あらかじめ全有機体炭素または全窒素と検出信号データのピークの面積値との関係を示す検量線を用意しておき、測定された検出信号データによるピークの面積値から当該検量線に基づいて全有機体炭素または全窒素を定量することができる(特許文献1参)。 The detection unit of the water quality analyzer will be described. In the total organic carbon measurement apparatus, the absorbance derived from the carbon dioxide concentration in the gas introduced to the cell is measured. In the total nitrogen measuring device, the amount of luminescence derived from the nitrogen oxide concentration in the gas led to the cell is measured. By determining the peak area value of the detection signal data obtained by these measurements, total organic carbon or total nitrogen in the sample is quantified. That is, in order to quantify total organic carbon or total nitrogen, a calibration curve indicating the relationship between total organic carbon or total nitrogen and the area value of the peak of the detection signal data is prepared in advance, and the measured is measured. Based on the calibration curve, total organic carbon or total nitrogen can be quantified from the area value of the peak according to the signal data (see Patent Document 1).
 通常、採取した試料が導入される燃焼部(燃焼管)は加熱炉内に配置されている。試料は白金触媒が充填された燃焼管内で潤沢な精製空気の存在下、加熱炉により680℃まで加熱される。
 加熱炉による燃焼管の加熱が高効率にかつ均一になされるように、加熱炉の外周は、セラミックスファイバーやアルミナ質繊維を主成分とする断熱材の外壁によって囲われることがある(特許文献2参照)。
Usually, a combustion unit (combustion pipe) into which the collected sample is introduced is disposed in the heating furnace. The sample is heated to 680 ° C. by a heating furnace in the presence of abundant purified air in a combustion tube filled with a platinum catalyst.
The outer periphery of the heating furnace may be surrounded by an outer wall of a heat insulating material mainly composed of ceramic fibers or alumina fibers so that heating of the combustion tube by the heating furnace is performed efficiently and uniformly (Patent Document 2) reference).
特開2012-137377号公報JP 2012-137377 特開2012-137459号公報JP, 2012-137459, A
 加熱炉の外周は断熱材からなる外壁によって囲われているため、加熱炉外周から熱が逃げることは防止できる。しかし、加熱炉の筐体の上部と下部付近は、燃焼管の軸方向上下部分が加熱炉から突出した状態で加熱炉内に配置される都合上、断熱材で囲うことが困難である。従って、これらの部分から熱が逃げやすくなり、加熱炉内の上方および下方の部分が中央部に比べて温度が低くなることは避けられなかった。 Since the outer periphery of the heating furnace is surrounded by the outer wall made of a heat insulating material, heat can be prevented from escaping from the outer periphery of the heating furnace. However, it is difficult to surround the upper and lower portions of the casing of the heating furnace with a heat insulating material for convenience of being disposed in the heating furnace with the upper and lower portions in the axial direction of the combustion tube protruding from the heating furnace. Therefore, heat was easily released from these parts, and it was inevitable that the upper and lower parts in the furnace had a lower temperature than the central part.
 ここで、加熱炉の筐体上部は、燃焼管本体が挿通できる穴部を備えたセラミック製の部材(蓋など)で覆うことにより比較的断熱性能を維持することができる。しかし、加熱炉の筐体の下部では、そのような部材を設置することが難しい。従って、従来、加熱炉の筐体の下部に設けられた(燃焼管本体の外径より大きな径の)穴部と燃焼管の出口部との隙間から熱が逃げるという問題を解決するニーズがあった。
 特に、燃焼管の出口部は触媒保持や配管接続のために細管部となっているのが一般的であり、これにより穴部との間により大きい隙間が生じていた。
 なお、前記のとおり、加熱炉の筐体下部には、燃焼管本体の外径以上の大きな径の穴部が設けられている。この理由は、燃焼管本体が加熱炉内部で破損したときに抜き取れるようにするためであり。従って、この構造は、メンテナンス上、避けることができない。
Here, the heat insulating performance can be maintained relatively by covering the upper part of the casing of the heating furnace with a ceramic member (a lid or the like) having a hole through which the combustion tube main body can be inserted. However, in the lower part of the casing of the heating furnace, it is difficult to install such a member. Therefore, there is a need to solve the problem that the heat escapes from the gap between the hole (larger than the outer diameter of the combustion tube main body) and the outlet of the combustion tube conventionally provided in the lower part of the casing of the heating furnace The
In particular, the outlet portion of the combustion tube is generally a thin tube portion for catalyst holding and piping connection, which causes a large gap with the hole.
As described above, the lower portion of the casing of the heating furnace is provided with a hole of a larger diameter than the outer diameter of the combustion tube main body. The reason for this is to be able to be pulled out when the combustion tube main body is broken inside the furnace. Therefore, this structure can not be avoided for maintenance.
 従って、加熱炉による燃焼管の加熱を効率よくかつ均一に行うため、例えば、加熱炉の筐体下部の穴部と燃焼管(具体的には、出口部に設けられた細管部)の隙間に加熱炉の下方から石英ウールなどの綿状の断熱材を詰める作業が行われている。加熱炉の断熱が不十分な場合、燃焼管内の触媒温度が安定せず、測定値にバラツキが生じ、分析装置の性能に悪影響を与えることになる。
 本発明は、このような従来技術の課題を解決するためになされたものである。
Therefore, in order to efficiently and uniformly heat the combustion tube by the heating furnace, for example, in the gap between the hole in the lower part of the casing of the heating furnace and the combustion tube (specifically, the thin tube portion provided at the outlet) A work of packing cotton-like heat insulating material such as quartz wool is performed from below the heating furnace. If the heat insulation of the heating furnace is insufficient, the catalyst temperature in the combustion tube will not be stable, the measured values will vary, and the performance of the analyzer will be adversely affected.
The present invention has been made to solve such problems in the prior art.
 上記課題を解決するため、本発明の第1の態様に係る分析装置は、燃焼管に導入された試料を燃焼して酸化分解させるために、燃焼管を加熱する加熱炉を備えており、加熱炉の筐体下部に当該筐体を貫通し燃焼管本体の外径より大きな径の穴部を穿設するとともに、燃焼管本体の出口部の細管部が挿入される孔を中心部に有する断熱材からなるシール部材を、加熱炉の筐体下部の穴部に装着して熱の流れを封止するようにしたものである。
 断熱材の材質としては、適宜のものが適用できるが、セラミックス製が好適である。また、シール部材の形状としては、加熱炉の筐体下部の穴部の径と略同径の円柱体が好適である。
In order to solve the above-mentioned subject, the analyzer concerning the 1st mode of the present invention is provided with the heating furnace which heats a combustion pipe, in order to burn and oxidize and decompose the sample introduced into the combustion pipe, In the lower part of the case of the furnace, the case is penetrated and a hole with a diameter larger than the outer diameter of the combustion tube main body is bored, and heat insulation having a hole into which the thin tube part at the outlet of the combustion tube main body is inserted A sealing member made of a material is attached to a hole in a lower portion of a casing of a heating furnace to seal the flow of heat.
Although an appropriate thing can be applied as a material of a heat insulating material, ceramic-made is suitable. Moreover, as a shape of a sealing member, the cylindrical body of a diameter substantially the same as the diameter of the hole of the housing | casing lower part of a heating furnace is suitable.
 第1の態様において、シール部材は、穴部の径より小さい径で加熱炉の下部筐体厚みより長い胴部の両端に穴部の径より大きい径のツバ部を備えていてもよく、中心部に燃焼管本体の出口部の細管部が挿入される孔を有していてもよく、かつ上方のツバ部から胴部に向ってテーパー部が形成されていてもよく、シール部材が軸方向に少なくとも二分割されていてもよい。 In the first aspect, the seal member may be provided with flanges having a diameter smaller than the diameter of the hole and larger than the diameter of the hole at both ends of the body longer than the lower housing thickness of the heating furnace. The portion may have a hole into which the thin tube portion of the outlet portion of the combustion tube main body is inserted, and a tapered portion may be formed from the upper flange portion toward the body portion, and the seal member is in the axial direction May be divided into at least two.
 この実施形態で、シール部材の上方のツバ部は、シール部材を加熱炉の筐体下部に穿設された穴部に装着したときに当該穴部からシール部材が落下するのを防止する機能を有する。また、シール部材が軸方向に分割されているのは、穴部の径より大きい径のツバ部を備えているシール部材(上方のツバ部)を穴部より加熱炉内へ挿入することを可能にするためであるが、二分割に限定されるものではない。
 さらに、テーパー部を形成することにより、シール部材の上方(加熱炉内側)に重心が移動し、シール部材を下方から上方に向って押し上げたときに、胴部外径と穴部の径の差(隙間)があることによりシール部材が外方(二分割のときは左右)に広がるのを許容するとともに、上下重量バランスにより容易に左右に広がるのを助ける。
In this embodiment, the flange portion above the seal member has a function to prevent the seal member from falling from the hole when the seal member is mounted in the hole formed in the lower portion of the casing of the heating furnace. Have. In addition, the fact that the seal member is divided in the axial direction allows the seal member (upper flange portion) having a flange portion with a diameter larger than the diameter of the hole portion to be inserted into the heating furnace from the hole portion. However, the present invention is not limited to two divisions.
Furthermore, by forming the tapered portion, the center of gravity moves to the upper side (inner side of the heating furnace) of the seal member, and when the seal member is pushed upward from below, the difference between the outer diameter of the body portion and the diameter of the hole portion The presence of the (gap) allows the seal member to spread outward (left and right in the case of two divisions), and helps the left and right weight balance to easily spread laterally.
 第1の態様において、テーパー部の大径側が穴部の穴径と同径または同径以下としたものであってもよい。テーパー部の大径側は穴部の径と略同径が好ましいが、穴部の径と同径以下の範疇には、最小径として胴部の径を含むものである。すなわち、テーパー部の大径側が胴部の径と同径であるときにはテーパー部が実質的に存在しないことになるが、これも本発明は含むものである。 In the first aspect, the large diameter side of the tapered portion may be equal to or less than or equal to the diameter of the hole in the hole. The large diameter side of the tapered portion preferably has a diameter substantially equal to the diameter of the hole, but the category including the diameter equal to or less than the diameter of the hole includes the diameter of the trunk as the minimum diameter. That is, when the large diameter side of the tapered portion has the same diameter as the diameter of the body portion, the tapered portion substantially does not exist, but the present invention also includes this.
 本発明の第2の態様は、燃焼管は、試料中の炭素成分を燃焼して酸化分解させて二酸化炭素に変換する反応部であり、反応部からのガスを流通させるセル、セルに光を照射する光源およびセルを透過した光を検出する検出器を有する測定部を備えた全有機体炭素測定装置である。 In the second aspect of the present invention, the combustion tube is a reaction unit that burns, oxidizes and decomposes the carbon component in the sample to convert it to carbon dioxide, and light is transmitted to the cell and the cell that circulates the gas from the reaction unit. It is a total organic carbon measuring apparatus provided with the measurement part which has a light source which irradiates, and a detector which detects the light which permeate | transmitted the cell.
 本発明の第1の態様に係る分析装置によれば、燃焼管本体の出口部の細管部を挿入して保持する孔を中心部に有する断熱材からなるシール部材を、加熱炉の筐体下部の穴部に装着して熱の流出を封止するようにしたものであるから、燃焼管を加熱炉内に設置するだけで効果的に断熱することができる。また、燃焼管本体の出口部の細管部がシール部材を介して加熱炉の下部筐体に保持されるので、加熱炉内において安定的に取り付けることができる。
 さらに、シール部材は分割されている実施形態では、ツバ部を備えていても加熱炉の筐体下部に穿設した穴部から容易に装着することができ、燃焼管本体の出口部の細管部を中心部の孔に挿入するにあたって、シール部材を上方(加熱炉内側)に押し上げるだけで容易に行うことができる。
 そのため、作業者による加熱炉内への燃焼管の取り付け時のバラツキをなくすることができ、安定した全有機体炭素等の測定が可能となる。
According to the analyzer according to the first aspect of the present invention, the lower portion of the casing of the heating furnace is a seal member made of a heat insulating material having a hole at its central portion for inserting and holding a thin tube portion at the outlet of the combustion tube main body. The heat exchanger can be effectively thermally insulated simply by installing the combustion pipe in the heating furnace, since it is mounted in the hole of the housing to seal the heat outflow. Further, since the thin tube portion at the outlet of the combustion tube main body is held by the lower housing of the heating furnace via the seal member, it can be stably attached in the heating furnace.
Furthermore, in the embodiment in which the seal member is divided, even if the seal member is provided with the flange portion, the seal member can be easily attached from the hole bored in the lower portion of the casing of the heating furnace. It can be easily performed only by pushing up the seal member upward (inside the heating furnace) in inserting the hole into the hole in the center part.
Therefore, the variation at the time of attachment of the combustion pipe in a heating furnace by a worker can be eliminated, and stable measurement of total organic carbon etc. becomes possible.
全有機体炭素測定装置の一実施例を示す流路構成図である。It is a flow-path block diagram which shows one Example of a total organic carbon measuring apparatus. 加熱炉の筐体下部に装着されるシール部材を示す断面図であり、シール部材の形状を示す。It is sectional drawing which shows the seal member with which the housing | casing lower part of a heating furnace is mounted | worn, and shows the shape of a seal member. 加熱炉の筐体下部に装着されるシール部材を示す断面図であり、シール部材へ燃焼管を取り付ける前の状態を示す。It is sectional drawing which shows the seal member with which the housing | casing lower part of a heating furnace is mounted | worn, and shows the state before attaching a combustion pipe to a seal member. 加熱炉の筐体下部に装着されるシール部材を示す断面図であり、シール部材へ燃焼管を取り付けた後の状態をそれぞれ示す。It is sectional drawing which shows the sealing member with which the housing | casing lower part of a heating furnace is mounted | worn, and shows the state after attaching a combustion pipe to a sealing member, respectively.
 以下、図面を用いて本発明の分析装置を説明する。まず、図1を用いて分析装置の実施形態の一例として、全有機体炭素測定装置について説明する。 Hereinafter, the analyzer of the present invention will be described using the drawings. First, an all-organic carbon measuring apparatus will be described as an example of an embodiment of an analyzing apparatus with reference to FIG.
 図1において、全有機体炭素測定装置11は、全有機体炭素測定部12と、全有機体炭素測定部12に設けられている酸化反応部13の燃焼管14にキャリアガスを送るキャリアガス供給部15と、それらを切り換えるマルチポートバルブ16とを備えている。
 マルチポートバルブ16の共通ポートには、試料水を計量して採取するためのサンプリングシリンジ17が接続されている。他のポートには、図示していないが、1)試料導入部、2)試料水から無機体炭素成分を除去する際に使用される塩酸、3)希釈水、4)無機体炭素反応部18、5)燃焼管14および6)排出用ドレンの各ポートがそれぞれ接続されている。このように、全有機体炭素測定装置11は、オートサンプラ19から採取した試料を全有機体炭素測定部12の燃焼管14に注入できるように構成されている。
In FIG. 1, the all-organic carbon measuring apparatus 11 supplies a carrier gas to send a carrier gas to the all-organic carbon measuring unit 12 and the combustion tube 14 of the oxidation reaction unit 13 provided in the all-organic carbon measuring unit 12. And a multiport valve 16 for switching them.
A sampling syringe 17 for measuring and collecting sample water is connected to a common port of the multiport valve 16. Although not shown, other ports include 1) a sample introduction unit, 2) hydrochloric acid used when removing inorganic carbon components from sample water, 3) dilution water, and 4) inorganic carbon reaction unit 18 5) The combustion pipes 14 and 6) The drain drain ports are connected to one another. As described above, the total organic carbon measurement apparatus 11 is configured to be able to inject the sample collected from the autosampler 19 into the combustion pipe 14 of the total organic carbon measurement unit 12.
 サンプリングシリンジ17の例示的な容量は5mL程度である。サンプリングシリンジ17のバレル下部には、キャリアガスを導入するための通気ガス入口(図示省略)が設けられている。その通気ガス入口は、電磁弁20を介してキャリアガス供給部15に接続されている。この実施形態では、ガス通気機構は、サンプリングシリンジ17によって実現される。 An exemplary volume of the sampling syringe 17 is around 5 mL. At the lower part of the barrel of the sampling syringe 17, a vent gas inlet (not shown) for introducing a carrier gas is provided. The vent gas inlet is connected to the carrier gas supply unit 15 via the solenoid valve 20. In this embodiment, the gas venting mechanism is realized by the sampling syringe 17.
 キャリアガス供給部15は、高純度空気をキャリアガスとして供給するように構成されている。図示していないが、キャリアガス供給部15には、上流側から順に、キャリアガス入口、電磁弁、圧力を調節する調圧弁、圧力を計測する圧力計、流量を調節するマスフローコントローラ、流量計、および加湿器が接続されている。
 流量が計量されて加湿されたキャリアガスは、燃焼管14に送られる。また、サンプリングシリンジ17にも、加湿用の流量調整されたキャリアガスが、通気ガスとして、電磁弁20を介して供給される。
The carrier gas supply unit 15 is configured to supply high purity air as a carrier gas. Although not shown, the carrier gas supply unit 15 includes, in order from the upstream side, a carrier gas inlet, a solenoid valve, a pressure regulating valve that regulates pressure, a pressure gauge that measures pressure, a mass flow controller that regulates flow, a flow meter, And the humidifier is connected.
The carrier gas whose flow rate is measured and humidified is sent to the combustion tube 14. Further, the carrier gas whose flow rate is adjusted for humidification is also supplied to the sampling syringe 17 as a ventilation gas through the solenoid valve 20.
 酸化反応部13の燃焼管14は、上部に試料注入部21を備えている。燃焼管14本体の出口部には細管部14aが設けられている。細管部14aの入口部には、試料中の炭素成分の全てを二酸化炭素に変換するための酸化触媒が保持されている。当該酸化触媒は、金属酸化物や貴金属を含んでいてよい。燃焼管14は、加熱炉22内に挿入されて、例示的には680℃に加熱される。
 試料注入部21には、キャリアガスの逆流を防止する逆止弁(図示省略)を介してキャリアガス供給部15が接続されている。燃焼管14本体の細管部14aは、冷却部23と逆流防止トラップ24を介して、無機体炭素反応部18のキャリアガス導入口に接続されている。
The combustion tube 14 of the oxidation reaction unit 13 includes a sample injection unit 21 at the top. A thin tube portion 14 a is provided at the outlet of the combustion tube 14 main body. An oxidation catalyst for converting all of the carbon components in the sample into carbon dioxide is held at the inlet of the thin tube portion 14a. The oxidation catalyst may contain a metal oxide or a noble metal. The combustion tube 14 is inserted into the heating furnace 22 and heated to 680 ° C., for example.
The carrier gas supply unit 15 is connected to the sample injection unit 21 via a check valve (not shown) that prevents backflow of the carrier gas. The narrow tube portion 14 a of the combustion tube 14 main body is connected to the carrier gas inlet of the inorganic carbon reaction unit 18 via the cooling unit 23 and the backflow prevention trap 24.
 無機体炭素反応部18は、図示していないが、無機体炭素測定時には無機体炭素反応液としてリン酸がポンプなど任意の手段によって供給され、無機体炭素反応部18に試料水がマルチポートバルブ16の切替えとサンプリングシリンジ17の作動によって直接に注入される。注入された試料水中では、無機体炭素が二酸化炭素として発生し、二酸化炭素は除湿用電子クーラ25に導かれる。
 なお、無機体炭素反応部18の無機体炭素反応液はドレン用電磁弁(図示省略)から排出される。
Although the inorganic carbon reaction unit 18 is not illustrated, when measuring inorganic carbon, phosphoric acid is supplied as an inorganic carbon reaction liquid by an optional means such as a pump, and the sample water is supplied to the inorganic carbon reaction unit 18 as a multiport valve. Direct injection is performed by the switching of 16 and the operation of the sampling syringe 17. In the injected sample water, inorganic carbon is generated as carbon dioxide, and the carbon dioxide is led to the dehumidifying electron cooler 25.
The inorganic carbon reaction liquid of the inorganic carbon reaction unit 18 is discharged from a drain solenoid valve (not shown).
 除湿用電子クーラ25を経由したガスは、図示していないが、水分を除去する除湿器や(ハロゲンスクラバおよび異物を除去するための)メンブレンフィルタを介して、非分散形赤外分析方式(NDIR)の測定部26に導かれる。測定部26は、図示していないが、両端に光源および検出器が対向配置されているセルを備えている。検出器の出力信号の強度は、全炭素または無機体炭素の量に相当する。
 このようにして測定された全炭素の量から無機体炭素の量を差し引きすれば、全有機体炭素の量を求めることができる。
 なお、排出された二酸化炭素は、CO2アブソーバ(図示省略)に吸着される。また、除湿用電子クーラ25には、水分を除去するためのドレンポット(図示省略)が接続されている。
Although not shown, the gas passed through the dehumidifying electron cooler 25 is not shown as a non-dispersive infrared analysis method (NDIR) via a dehumidifier for removing water or a membrane filter (for removing a halogen scrubber and foreign matter). ) To the measurement unit 26). Although not illustrated, the measurement unit 26 includes a cell in which a light source and a detector are disposed opposite to each other. The intensity of the detector output signal corresponds to the amount of total carbon or inorganic carbon.
The amount of inorganic carbon can be determined by subtracting the amount of inorganic carbon from the amount of total carbon measured in this manner.
The discharged carbon dioxide is adsorbed by a CO 2 absorber (not shown). Further, a drain pot (not shown) for removing water is connected to the dehumidifying electronic cooler 25.
 つぎに、酸化反応部13について、図2を用いて説明する。酸化反応部13は、加熱炉22と、加熱炉22内に取り付けられる燃焼管14(図2C参照)とを備えている。
 図2Aにおいて、加熱炉22の下部筐体22aには、当該筐体22aを厚み方向(図2において筐体22aの厚みはtで示されている)に貫通して燃焼管14本体の外径d1(図2C参照)より大きな穴径d2の穴部7が設けられている。このように構成される理由は、燃焼管14が加熱炉22内部で破損したときに抜き取れるようにするためであり、メンテナンス上、避けることができない構造である。
Next, the oxidation reaction unit 13 will be described with reference to FIG. The oxidation reaction unit 13 includes a heating furnace 22 and a combustion tube 14 (see FIG. 2C) attached to the inside of the heating furnace 22.
In FIG. 2A, the lower casing 22a of the heating furnace 22 penetrates the casing 22a in the thickness direction (the thickness of the casing 22a is indicated by t in FIG. 2) and the outer diameter of the main body of the combustion tube 14 A hole 7 having a hole diameter d2 larger than d1 (see FIG. 2C) is provided. The reason for this configuration is to allow removal when the combustion tube 14 is broken inside the heating furnace 22 and is a structure that can not be avoided for maintenance.
 シール部材1は、加熱炉22の下部筐体22aに設けられた穴部7に装着される。シール部材1は、二分割されている。シール部材1は、棒状の胴部4a、4bを有している。胴部4a、4bは、穴部7の径d2より小さい径を有する。胴部4a、4bの長さ(下部筐体22aの厚み方向の寸法)は、加熱炉22の下部筐体22aの厚みより大きい。胴部4a、4bの(下部筐体22aの厚み方向における)両端には、ツバ部2a、2b、3a、3bが接続されている。ツバ部2a、2b、3a、3bは、穴部7の径d2より大きい径d3を有する。。また、シール部材1の中心部には、孔6が設けられている。孔6は、シール部材1の中心部からずれた位置に設けられていてもよい。孔6には、燃焼管14本体の細管部14aが挿入される。
 ツバ部2a、2b、3a、3bのうち上方のツバ部2a、2bは、図2Aの上面図に示すとおり、円盤状ではなく、円盤の一部が切除された形状を有している。これにより、ツバ部2a、2bとしての機能を維持しつつ、穴部7よりシール部材1(上方のツバ部2a、2b)を加熱炉22内へ装着することができる。
The seal member 1 is mounted in a hole 7 provided in the lower housing 22 a of the heating furnace 22. The seal member 1 is divided into two. The seal member 1 has rod-shaped body portions 4a and 4b. The body portions 4 a and 4 b have a diameter smaller than the diameter d 2 of the hole 7. The length of the body portions 4 a and 4 b (the dimension in the thickness direction of the lower housing 22 a) is larger than the thickness of the lower housing 22 a of the heating furnace 22. The flanges 2a, 2b, 3a, 3b are connected to both ends of the body 4a, 4b (in the thickness direction of the lower housing 22a). The flanges 2a, 2b, 3a, 3b have a diameter d3 larger than the diameter d2 of the hole 7. . Further, a hole 6 is provided at the center of the seal member 1. The hole 6 may be provided at a position deviated from the central portion of the seal member 1. The narrow tube portion 14 a of the main body of the combustion tube 14 is inserted into the hole 6.
Among the flanges 2a, 2b, 3a, 3b, the upper flanges 2a, 2b are not disk-like, as shown in the top view of FIG. Thereby, the seal member 1 (upper flanges 2a and 2b) can be mounted in the heating furnace 22 from the hole 7 while maintaining the function as the flanges 2a and 2b.
 シール部材1には、上方のツバ部2a、2bから胴部4a、4bに向って先細りするテーパー部5a、5bが形成されている。この実施形態では、テーパー部5a、5bは、図2Aに示すとおり、その最大径が穴部7の内径d2と同径に設定されている。
 テーパー部5a、5bの最小径は胴部4a、4bの径と同径である。最小径部の胴部4a、4bにおける位置は、胴部4a、4bの長さ(軸方向)の上側1/3以下が望ましい。これにより、テーパー部5a、5bがシール部材1の重心を上方(加熱炉22内側)に位置させることができる。
The seal member 1 is formed with tapered portions 5a, 5b that taper from the upper flange portions 2a, 2b toward the body portions 4a, 4b. In this embodiment, as shown in FIG. 2A, the maximum diameter of the tapered portions 5a and 5b is set to the same diameter as the inner diameter d2 of the hole portion 7.
The minimum diameter of the tapered portions 5a, 5b is the same as the diameter of the body portions 4a, 4b. The position of the smallest diameter portion in the body portions 4a and 4b is desirably equal to or less than the upper one-third of the length (axial direction) of the body portions 4a and 4b. Thus, the tapered portions 5 a and 5 b can position the center of gravity of the seal member 1 upward (inside the heating furnace 22).
 以下、図2A~図2Cを用いて、燃焼管14(細管部14a)をシール部材1に取り付ける作業について説明する。
 図2Bにおいて、燃焼管14の出口部の細管部14aをシール部材1の中心部に穿設されている孔6に取り付けるにときには、図2Aの状態から、下方のツバ部3a、3bが加熱炉22の下部筐体22aに当接するまで、シール部材1を加熱炉22内に向って手で押し上げる。
Hereinafter, an operation of attaching the combustion pipe 14 (thin tube portion 14a) to the seal member 1 will be described with reference to FIGS. 2A to 2C.
When attaching the thin tube portion 14a at the outlet of the combustion tube 14 to the hole 6 bored in the center of the seal member 1 in FIG. 2B, the lower flange portions 3a and 3b are heating furnaces from the state of FIG. 2A. The seal member 1 is pushed upward into the heating furnace 22 by hand until it abuts on the lower housing 22a of 22.
 シール部材1は二分割されているので、図2Bに示すとおり、胴部4a、4bの外径と穴部7の穴径d2の差(隙間)があることにより左右に広がる。ここで、テーパー部5a、5bが形成されていることにより、上部に重心がある。これにより、上下の重量バランスで、容易にシール部材1が左右に広がるのを助ける。
 なお、シール部材1に設けられた孔6の下方ツバ部3a、3b側には、面取り部8が形成されている。これにより、シール部材1の下方のツバ部3a、3bの衝突を緩和し、左右に広がるのをより一層許容することができる。
Since the seal member 1 is divided into two parts, as shown in FIG. 2B, the seal member 1 spreads to the left and right due to the difference (gap) between the outer diameter of the body 4a, 4b and the hole diameter d2 of the hole 7. Here, the center of gravity is located at the upper part by forming the tapered portions 5a and 5b. This helps the seal member 1 to spread to the left and right easily with the upper and lower weight balance.
A chamfered portion 8 is formed on the lower flange 3a, 3b side of the hole 6 provided in the sealing member 1. As a result, the collision of the lower flanges 3a and 3b of the seal member 1 can be alleviated, and the left and right spread can be further permitted.
 図2Cに示すとおり、シール部材1の上方を左右に広げた状態で、加熱炉22内から燃焼管14の細管部14aをシール部材1の孔6に差し込みながらシール部材1を押し上げている手を離すと、細管部14aの周りにシール部材1が固定され、これにより、シール部材1によって保持することができる。シール部材1は、上方のツバ部2a、2bが穴部7に当接するまで押し下げられ、上方のツバ部2a、2bと最大径が穴部7の内径d2と同径に設定されているテーパー部5a、5bにより穴部7は封止され、かつ、断熱される。
 なお、図示している実施形態では、テーパー部5a、5bの最大径が穴部7の内径d2と同径に設定されている。これにより、シール部材1の上方のツバ部2a、2bは円盤状ではなく一部が切除されていても、上方のツバ部2a、2bの切除部から熱が逃げることはない。
As shown in FIG. 2C, the hand pushing up the seal member 1 while inserting the thin tube portion 14a of the combustion tube 14 from the inside of the heating furnace 22 into the hole 6 of the seal member 1 When released, the seal member 1 is fixed around the narrow tube portion 14 a and can be held by the seal member 1. The seal member 1 is pushed down until the upper flanges 2a and 2b abut against the hole 7, and the taper is set such that the upper flanges 2a and 2b and the maximum diameter are the same as the inner diameter d2 of the hole 7 The holes 7 are sealed and thermally insulated by 5a and 5b.
In the illustrated embodiment, the maximum diameters of the tapered portions 5 a and 5 b are set to the same diameter as the inner diameter d 2 of the hole 7. As a result, even if the flanges 2a and 2b above the seal member 1 are not disk-like but partially cut away, heat does not escape from the cutouts of the upper flanges 2a and 2b.
 以上、本発明の例示的な実施形態について説明したが、本発明の範囲は説明した実施形態に限定されるべきではなく、さまざまな実施形態を包含するものと理解されるべきである。以下、本発明の態様について述べる。 While exemplary embodiments of the present invention have been described above, the scope of the present invention should not be limited to the described embodiments, but should be understood to encompass various embodiments. Hereinafter, aspects of the present invention will be described.
 本発明の第1の態様は、
 試料が導入される燃焼管を加熱し、これにより前記試料を燃焼して酸化分解させるための加熱炉を備えた分析装置であって、
 前記燃焼管の出口部には、細管部が設けられ、
 前記加熱炉は、筐体を有し、
 前記加熱炉の筐体の下部には、前記筐体を貫通する穴部が設けられ、
 前記穴部の径は前記燃焼管の外径より大きく、
 前記穴部には、該穴部を封止するシール部材が設けられ、
 前記シール部材は、断熱材で作られており、
 前記シール部材には、前記燃焼管の細管部を挿入するための孔が設けられている、
 分析装置である。
The first aspect of the present invention is
An analyzer comprising a heating furnace for heating a combustion tube into which a sample is introduced, thereby burning the sample for oxidative decomposition.
A thin tube portion is provided at the outlet of the combustion tube,
The heating furnace has a housing,
The lower part of the casing of the heating furnace is provided with a hole penetrating the casing,
The diameter of the hole is larger than the outer diameter of the combustion tube,
The hole is provided with a sealing member for sealing the hole,
The sealing member is made of a heat insulating material,
The sealing member is provided with a hole for inserting a thin tube portion of the combustion tube,
It is an analyzer.
 本発明の第1の態様において、
 前記シール部材は、胴部とツバ部とを有していてもよく、
 前記胴部は、前記穴部の径より小さい径を有し且つ前記加熱炉の下部筐体の厚みより大きい長さを有していてもよく、
 前記ツバ部は、前記胴部の両端に設けられていてもよく、
 前記ツバ部は、前記穴部の径より大きい径を有していてもよく、
 前記シール部材には、前記ツバ部から前記胴部に向かってテーパー部が形成されていてもよく、
 前記シール部材は、軸方向に少なくとも二分割されていてもよい。。
In the first aspect of the present invention,
The seal member may have a body and a brim.
The body may have a diameter smaller than the diameter of the hole and may have a length larger than the thickness of the lower casing of the heating furnace.
The flanges may be provided at both ends of the body,
The flange may have a diameter larger than the diameter of the hole,
The seal member may have a tapered portion formed from the flange portion toward the body portion.
The seal member may be divided into at least two in the axial direction. .
 本発明の第1の態様において、
 前記テーパー部は、その大径側において、前記穴部の径以下の径を有していてもよい。
In the first aspect of the present invention,
The tapered portion may have a diameter equal to or less than the diameter of the hole on the large diameter side.
 本発明の第2の態様は、
 測定部とを備えた全有機体炭素測定装置であって、
 前記燃焼管は、前記加熱炉内に配置され試料中の炭素成分を燃焼して酸化分解させて二酸化炭素に変換する反応部であり、
 前記測定部は、前記反応部からのガスを流通させるセル、前記セルに光を照射する光源および前記セルを透過した光を検出する検出器を有する
 全有機体炭素測定装置である。
The second aspect of the present invention is
An all-organic carbon measuring apparatus comprising a measuring unit,
The combustion tube is a reaction unit which is disposed in the heating furnace and burns, oxidizes and decomposes a carbon component in a sample, and converts it into carbon dioxide.
The measuring unit is an all-organic carbon measuring apparatus having a cell for circulating the gas from the reaction unit, a light source for irradiating the cell with light, and a detector for detecting the light transmitted through the cell.
1 ・・・シール部材
2a、2b ・・・上方のツバ部
3a、3b ・・・下方のツバ部
4a、4b ・・・胴部
5a、5b ・・・テーパー部
6 ・・・孔
7 ・・・穴部
8 ・・・面取り部
11 ・・・全有機体炭素測定装置
12 ・・・全有機体炭素測定部
13 ・・・酸化反応部
14 ・・・燃焼管
14a ・・・細管部
15 ・・・キャリアガス供給部
16 ・・・マルチポートバルブ
17 ・・・サンプリングシリンジ
18 ・・・無機体炭素反応部
19 ・・・オートサンプラ
20 ・・・電磁弁
21 ・・・試料注入部
22 ・・・加熱炉
22a  ・・・加熱炉の下部筐体
23 ・・・冷却部
24 ・・・逆流防止トラップ
25 ・・・除湿用電子クーラ
26 ・・・測定部
d1 ・・・燃焼管本体の外径
d2 ・・・穴部の穴径
d3 ・・・ツバ部の径
t ・・・筐体厚み
 
1 · · · Seal member 2a, 2b · · · upper flange portion 3a, 3b · · · lower flange portion 4a, 4b · · · body portion 5a, 5b · · · taper portion 6 · · · hole 7 · · · · Holes 8 · · · Chamfered portion 11 · · · Total organic carbon measurement device 12 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · oxidation tube 14 · · · · · · · · · narrow tube Carrier gas supply unit 16 Multiport valve 17 Sampling syringe 18 Inorganic carbon reaction unit 19 Autosampler 20 Solenoid valve 21 Sample injection unit 22 · Heating furnace 22a · · · Lower housing 23 of heating furnace · · · Cooling unit 24 · · · · reverse flow prevention trap 25 · · · electronic cooler for dehumidification · · · · · measurement unit d1 · · · · · · diameter of the main body of the combustion tube d2 ··· Hole diameter of hole d 3 ··· Diameter of flange portion t ··· Case Body thickness

Claims (4)

  1.  試料が導入される燃焼管を加熱し、これにより前記試料を燃焼して酸化分解させるための加熱炉を備えた分析装置であって、
     前記燃焼管の出口部には、細管部が設けられ、
     前記加熱炉は、筐体を有し、
     前記加熱炉の筐体の下部には、前記筐体を貫通する穴部が設けられ、
     前記穴部の径は前記燃焼管の外径より大きく、
     前記穴部には、該穴部を封止するシール部材が設けられ、
     前記シール部材は、断熱材で作られており、
     前記シール部材には、前記燃焼管の細管部を挿入するための孔が設けられている、
     分析装置。
    An analyzer comprising a heating furnace for heating a combustion tube into which a sample is introduced, thereby burning the sample for oxidative decomposition.
    A thin tube portion is provided at the outlet of the combustion tube,
    The heating furnace has a housing,
    The lower part of the casing of the heating furnace is provided with a hole penetrating the casing,
    The diameter of the hole is larger than the outer diameter of the combustion tube,
    The hole is provided with a sealing member for sealing the hole,
    The sealing member is made of a heat insulating material,
    The sealing member is provided with a hole for inserting a thin tube portion of the combustion tube,
    Analysis equipment.
  2.  請求項1記載の分析装置であって、
     前記シール部材は、胴部とツバ部とを有し、
     前記胴部は、前記穴部の径より小さい径を有し且つ前記加熱炉の下部筐体の厚みより大きい長さを有し、
     前記ツバ部は、前記胴部の両端に設けられ、
     前記ツバ部は、前記穴部の径より大きい径を有し
     前記シール部材には、前記ツバ部から前記胴部に向かってテーパー部が形成され、
     前記シール部材は、軸方向に少なくとも二分割されていることを特徴とする分析装置。
    The analyzer according to claim 1, wherein
    The seal member has a body and a brim.
    The body has a diameter smaller than the diameter of the hole and has a length larger than the thickness of the lower case of the heating furnace.
    The flanges are provided at both ends of the body,
    The flange portion has a diameter larger than the diameter of the hole, and the seal member is formed with a tapered portion from the flange portion toward the body portion.
    The analyzer is characterized in that the seal member is divided into at least two in the axial direction.
  3.  請求項2記載の分析装置であって、
     前記テーパー部は、その大径側において、前記穴部の径以下の径を有することを特徴とする分析装置。
    The analyzer according to claim 2, wherein
    The analyzer according to claim 1, wherein the tapered portion has a diameter equal to or less than the diameter of the hole on the large diameter side.
  4.  請求項1に記載の分析装置と、
     測定部とを備えた全有機体炭素測定装置であって、
     前記燃焼管は、前記加熱炉内に配置され試料中の炭素成分を燃焼して酸化分解させて二酸化炭素に変換する反応部であり、
     前記測定部は、前記反応部からのガスを流通させるセル、前記セルに光を照射する光源および前記セルを透過した光を検出する検出器を有する
     全有機体炭素測定装置。
     
    An analyzer according to claim 1;
    An all-organic carbon measuring apparatus comprising a measuring unit,
    The combustion tube is a reaction unit which is disposed in the heating furnace and burns, oxidizes and decomposes a carbon component in a sample, and converts it into carbon dioxide.
    The measurement unit includes a cell for circulating the gas from the reaction unit, a light source for irradiating the cell with light, and a detector for detecting the light transmitted through the cell.
PCT/JP2018/038692 2017-10-18 2018-10-17 Analysis device and total organic carbon measurement device WO2019078265A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019549322A JP6879377B2 (en) 2017-10-18 2018-10-17 Analyzer and total organic carbon measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-201448 2017-10-18
JP2017201448 2017-10-18

Publications (1)

Publication Number Publication Date
WO2019078265A1 true WO2019078265A1 (en) 2019-04-25

Family

ID=66174422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038692 WO2019078265A1 (en) 2017-10-18 2018-10-17 Analysis device and total organic carbon measurement device

Country Status (2)

Country Link
JP (1) JP6879377B2 (en)
WO (1) WO2019078265A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137377A (en) * 2010-12-27 2012-07-19 Shimadzu Corp Analyzer
JP2012137459A (en) * 2010-12-28 2012-07-19 Shimadzu Corp Analyzer with electric furnace
CN102778530A (en) * 2012-08-10 2012-11-14 宇星科技发展(深圳)有限公司 Dry-type oxidation reactor
CN102944454A (en) * 2012-10-23 2013-02-27 杭州泰林生物技术设备有限公司 Combustion furnace for total organic carbon determination

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137377A (en) * 2010-12-27 2012-07-19 Shimadzu Corp Analyzer
JP2012137459A (en) * 2010-12-28 2012-07-19 Shimadzu Corp Analyzer with electric furnace
CN102778530A (en) * 2012-08-10 2012-11-14 宇星科技发展(深圳)有限公司 Dry-type oxidation reactor
CN102944454A (en) * 2012-10-23 2013-02-27 杭州泰林生物技术设备有限公司 Combustion furnace for total organic carbon determination

Also Published As

Publication number Publication date
JPWO2019078265A1 (en) 2020-10-22
JP6879377B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
KR100890062B1 (en) Sample gas sampleing probe unit and exhaust gas telemetering system using the same
US20090084199A1 (en) Quick-change sorbent trap module and method
US8021617B2 (en) Flue gas monitoring and dynamic spiking for sulfur trioxide/sulfuric acid
US7802485B2 (en) Atmospheric sampling apparatus with flexible line and probe
WO2014205222A1 (en) System for analyzing mercury
KR101692995B1 (en) sample gas sampleing probe unit for reducing water-inflow
JP5533641B2 (en) Analysis equipment
HU222554B1 (en) Environmental monitoring of organic compounds
JP4025702B2 (en) Method and apparatus for analyzing sulfur component by ultraviolet fluorescence method
JP2009541732A (en) Dopant delivery and detection system
CN101573615B (en) Method for monitoring concentration of water-containing substance in watery medium
KR20200081868A (en) Toc measuring system using high frequency heating combustion
WO2019078265A1 (en) Analysis device and total organic carbon measurement device
JP2003207448A (en) Gas-analyzing apparatus
US20180156762A1 (en) Analytical device for constituents of a sample
US11435329B2 (en) Reaction tube for elemental analysis
Kondrat’Eva et al. Comparative study of gas-analyzing systems designed for continuous monitoring of TPP emissions
JP4542930B2 (en) Exhaust gas analyzer
JP5609633B2 (en) Analyzer with electric furnace
EP0713091A1 (en) A catalyst assembly
JP2008232695A (en) Water quality analyzer
JP2000065696A (en) Filter device and sulfur analytical system provided with filter device
JPS6126854A (en) Measuring device for component of gas
CN111569688B (en) Wide-range standard poison gas generator
JPH0546500B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549322

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867668

Country of ref document: EP

Kind code of ref document: A1