WO2019078053A1 - Piezoelectric device and method of manufacturing same - Google Patents
Piezoelectric device and method of manufacturing same Download PDFInfo
- Publication number
- WO2019078053A1 WO2019078053A1 PCT/JP2018/037636 JP2018037636W WO2019078053A1 WO 2019078053 A1 WO2019078053 A1 WO 2019078053A1 JP 2018037636 W JP2018037636 W JP 2018037636W WO 2019078053 A1 WO2019078053 A1 WO 2019078053A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film material
- piezoelectric
- film
- piezoelectric layer
- group
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 239000011347 resin Substances 0.000 claims abstract description 163
- 229920005989 resin Polymers 0.000 claims abstract description 163
- 239000000463 material Substances 0.000 claims description 328
- 229920000642 polymer Polymers 0.000 claims description 18
- 230000010287 polarization Effects 0.000 claims description 17
- 238000009954 braiding Methods 0.000 claims description 16
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 12
- 239000004626 polylactic acid Substances 0.000 claims description 12
- 238000009940 knitting Methods 0.000 claims description 7
- 239000010410 layer Substances 0.000 description 354
- 238000000926 separation method Methods 0.000 description 101
- 239000012528 membrane Substances 0.000 description 53
- 239000013067 intermediate product Substances 0.000 description 15
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000009941 weaving Methods 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000007751 thermal spraying Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229920001432 poly(L-lactide) Polymers 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229930182843 D-Lactic acid Natural products 0.000 description 1
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229940022769 d- lactic acid Drugs 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- UQDJGEHQDNVPGU-UHFFFAOYSA-N serine phosphoethanolamine Chemical compound [NH3+]CCOP([O-])(=O)OCC([NH3+])C([O-])=O UQDJGEHQDNVPGU-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R17/00—Piezoelectric transducers; Electrostrictive transducers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/06—Forming electrodes or interconnections, e.g. leads or terminals
- H10N30/063—Forming interconnections, e.g. connection electrodes of multilayered piezoelectric or electrostrictive parts
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/06—Forming electrodes or interconnections, e.g. leads or terminals
- H10N30/067—Forming single-layered electrodes of multilayered piezoelectric or electrostrictive parts
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/09—Forming piezoelectric or electrostrictive materials
- H10N30/098—Forming organic materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/50—Piezoelectric or electrostrictive devices having a stacked or multilayer structure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/857—Macromolecular compositions
Definitions
- the present disclosure relates to a piezoelectric device and a method of manufacturing the same, and more particularly to a piezoelectric device in which a plurality of piezoelectric layers are stacked and a method of manufacturing the same.
- a piezoelectric device is manufactured by laminating a piezoelectric layer made of a stretched resin film having piezoelectricity and a conductive layer.
- polarization is generated in the piezoelectric layer when a tensile force or the like is applied. Therefore, a voltage can be extracted from the conductive layer.
- a piezoelectric layer made of a stretched resin film of poly L-lactic acid resin and a piezoelectric layer made of a stretched resin film of poly D-lactic acid resin which is an optical isomer of poly L-lactic acid resin are electrically conductive
- a piezoelectric device is disclosed which is alternately stacked through layers.
- An object of the present disclosure is to apply a force when a plurality of piezoelectric layers having the same piezoelectric property are stacked, and force is applied even if the facing surfaces of adjacent piezoelectric layers are not electrically isolated from each other. And a method of manufacturing the same.
- a piezoelectric device includes a piezoelectric layer included in a first group, a piezoelectric layer included in a second group, and a conductive layer.
- the piezoelectric layers included in the first group and the piezoelectric layers included in the second group are alternately stacked.
- a conductive layer is interposed between the piezoelectric layer included in the first group adjacent to the stacking direction and the piezoelectric layer included in the second group.
- the piezoelectric layer included in the first group and the piezoelectric layer included in the second group are stretched resin films.
- the piezoelectric layer included in the first group and the piezoelectric layer included in the second group have a tensile force direction with respect to the stretching direction and a polarization direction of the piezoelectric layer generated by the tensile force when the tensile force is applied. It has piezoelectric characteristics whose relationship is identical to each other.
- the stretching directions of the piezoelectric layers included in the first group are all the same.
- the stretching directions of the piezoelectric layers included in the second group are all the same.
- the extension direction of the piezoelectric layer included in the first group intersects the extension direction of the piezoelectric layer included in the second group.
- the manufacturing method of the piezoelectric device prepares the 1st film material and the 2nd film material.
- Each of the first film material and the second film material comprises a stretched resin film.
- At least one of the first film material and the second film material further includes a conductive film overlapping the stretched resin film.
- the stretched resin film of the first film material and the stretched resin film of the second film material have a relationship between the direction of tensile force with respect to the direction of stretching when tensile force is applied, and the direction of polarization generated by the tensile force.
- the manufacturing method is such that the first film material and the second film material intersect in such a manner that the stretching direction of the stretched resin film of the first film material crosses the stretching direction of the stretched resin film of the second film material. Including braiding and folding.
- a force is applied even if a plurality of piezoelectric layers having the same piezoelectric property are stacked and electrical isolation is not made between the facing surfaces of adjacent piezoelectric layers.
- a piezoelectric device is obtained which can generate a voltage depending on the force.
- FIG. 1 is a schematic cross-sectional view showing a piezoelectric device according to a first embodiment of the present disclosure.
- FIG. 2 is an exploded perspective view showing an outline of the piezoelectric device according to the first embodiment of the present disclosure.
- FIG. 3A is a schematic view showing the top surface of the first film material in the first embodiment.
- FIG. 3B is a schematic view showing the lower surface of the first film material in the first embodiment.
- FIG. 3C is a schematic view showing the top surface of the second film material.
- FIG. 3D is a schematic view showing the lower surface of the second film material.
- FIG. 3E is a side view showing an example of the first film material and the second film material.
- FIG. 4A is a schematic view showing an example of braiding and folding in the method of manufacturing a piezoelectric device according to the first embodiment of the present disclosure.
- FIG. 4B is a schematic view showing an example of braiding and folding in the method of manufacturing a piezoelectric device according to the first embodiment of the present disclosure.
- FIG. 4C is a schematic view showing an example of braiding and folding in the method of manufacturing a piezoelectric device according to the first embodiment of the present disclosure.
- FIG. 4D is a view showing an example of an intermediate product produced by braiding and folding.
- FIG. 4E is a side cross-sectional view of the intermediate product.
- FIG. 5A is a schematic cross-sectional view showing a piezoelectric device according to a second embodiment of the present invention.
- FIG. 5A is a schematic cross-sectional view showing a piezoelectric device according to a second embodiment of the present invention.
- FIG. 5B is an exploded perspective view showing an outline of a piezoelectric device according to a second embodiment.
- FIG. 6A is a schematic view showing the top surface of the first film material and the second film material in the second embodiment.
- FIG. 6B is a schematic view showing the lower surface of the first film material and the second film material in the second embodiment.
- FIG. 7A is a schematic view showing an example of braiding and folding in the method of manufacturing a piezoelectric device according to the second embodiment of the present disclosure.
- FIG. 7B is a schematic view showing an example of braiding and folding in the method of manufacturing a piezoelectric device according to the second embodiment of the present disclosure.
- FIG. 7C is a schematic view showing an example of braiding and folding in the method of manufacturing a piezoelectric device according to the second embodiment of the present disclosure.
- FIG. 7D is a view showing an example of an intermediate product produced by braiding and folding.
- FIG. 8A is a schematic cross-sectional view showing a piezoelectric device according to a third embodiment of the present disclosure.
- FIG. 8B is an exploded perspective view showing the outline of the piezoelectric device according to the third embodiment.
- FIG. 9A is a schematic view showing the top surface of the first film material in the third embodiment.
- FIG. 9B is a schematic view showing the lower surface of the first film material in the third embodiment.
- FIG. 9C is a schematic view showing the top surface of the second film material in the third embodiment.
- FIG. 10A is a schematic view showing an example of braiding and folding in the method of manufacturing a piezoelectric device according to the third embodiment of the present disclosure.
- FIG. 10B is a schematic view showing an example of braiding and folding in the method of manufacturing a piezoelectric device according to the third embodiment of the present disclosure.
- FIG. 10C is a schematic view showing an example of braiding and folding in the method of manufacturing a piezoelectric device according to the third embodiment of the present disclosure.
- FIG. 10D is a view showing an example of an intermediate product produced by braiding and folding.
- FIG. 10A is a schematic view showing an example of braiding and folding in the method of manufacturing a piezoelectric device according to the third embodiment of the present disclosure.
- FIG. 10B is a schematic view showing an example of braiding and folding in the method of manufacturing a piezoelectric device according to the third embodiment of the present disclosure.
- FIG. 10C is a schematic view showing an example of braiding and folding in the method of manufacturing a pie
- FIG. 11A is a schematic view showing an example of the electrode pattern of the conductive film on the first film material and the second film material and the marking on the conductive film.
- FIG. 11B is a schematic view showing an example of the electrode pattern of the conductive film on the first film material and the second film material and the marking on the conductive film.
- FIG. 11C is a schematic view showing an example of the electrode pattern of the conductive film on the first film material and the second film material and the marking on the conductive film.
- FIG. 11D is a schematic view showing an example of the electrode pattern of the conductive film on the first film material and the second film material and the marking on the conductive film.
- FIG. 11E is a schematic view showing an example of the electrode pattern of the conductive film on the first film material and the second film material and the marking on the conductive film.
- FIG. 11F is a schematic view showing an example of the electrode pattern of the conductive film on the first film material and the second film material and the marking on the conductive film.
- FIG. 11G is a view showing an example of the position of the terminal portion when the piezoelectric device is viewed from above.
- FIG. 12 is a schematic view for explaining the piezoelectric characteristics.
- the piezoelectric device 1 includes a piezoelectric layer 10 (hereinafter, also simply referred to as a piezoelectric layer 10) included in a first group and a piezoelectric layer 20 (hereinafter, also simply referred to as a piezoelectric layer 20) included in a second group. ) Are alternately stacked.
- the conductive layer 30 is interposed between the piezoelectric layer 10 and the piezoelectric layer 20 adjacent to each other.
- Each of the piezoelectric layer 10 and the piezoelectric layer 20 is a stretched resin film.
- the piezoelectric layer 10 and the piezoelectric layer 20 have piezoelectric characteristics in which the relationship between the direction of tensile force with respect to the stretching direction and the direction of polarization of the piezoelectric layer generated by the tensile force are the same when tensile force is applied. .
- the stretching directions of the piezoelectric layers 10 are all the same.
- the stretching directions of the piezoelectric layers 20 are all the same.
- the extension direction of the piezoelectric layer 10 and the extension direction of the piezoelectric layer 20 intersect.
- the piezoelectric property is the property of the piezoelectric layer in which the polarization according to the tensile force occurs when the tensile force is applied, and this property depends on the direction of the tensile force and the tensile force. Also included is the relationship with the direction of polarization that occurs.
- the piezoelectric layer 10 which is a stretched resin film and the piezoelectric layer 20 which is a stretched resin film have the same piezoelectric characteristics.
- the piezoelectric layer 10 and the piezoelectric layer 20 have the same piezoelectric characteristics, for example, the piezoelectric layer 10 and the piezoelectric layer 20 have the following configuration.
- Each of the piezoelectric layer 10 and the piezoelectric layer 20 is a stretched resin film having a thickness and stretched in one direction (direction of + X in FIG. 12) orthogonal to the thickness direction.
- the surface facing in one direction along the thickness is defined as the upper surface
- the surface facing in the opposite direction to the upper surface is defined as the lower surface.
- the terms of the upper surface and the lower surface do not restrict the posture of the piezoelectric layer 10 and the piezoelectric layer 20.
- a tensile force is applied to the piezoelectric layer 10 in a direction inclined with respect to the stretching direction (the direction of + X) of the piezoelectric layer 10
- polarization occurs in the piezoelectric layer 10.
- a tensile force is applied to the piezoelectric layer 20 in a direction inclined with respect to the stretching direction (direction of + X) of the piezoelectric layer 20.
- Piezoelectric layer when tensile force is applied to the piezoelectric layer 10 in a direction (direction of + Y in FIG.
- Polarization occurs in a direction (the direction of + Z in FIG. 12) such that the top surface of 10 is positively charged. Also in the case where tensile force is applied to the piezoelectric layer 20 in a direction (+ Y direction) inclined clockwise as viewed from the upper surface side with respect to the extension direction (+ X direction) of the piezoelectric layer 10, Polarization occurs in a direction (the direction of + Z) such that the upper surface is positively charged.
- the piezoelectric layer 10 and the piezoelectric layer 20 have the same piezoelectric characteristics.
- the piezoelectric layer 10 and the piezoelectric layer 20 have the same piezoelectric characteristics.
- polarization occurs such that the upper surface of the piezoelectric layer 10 is charged positively (in the direction of + Z, for example), and polarization occurs such that the lower surface of the piezoelectric layer 20 is charged positively (in the direction of -Z). Then, the piezoelectric layer 10 and the piezoelectric layer 20 have different piezoelectric characteristics.
- the piezoelectric layer 10 and the piezoelectric layer 20 are laminated such that the stretching directions of the piezoelectric layer 10 and the piezoelectric layer 20 are the same, and a piezoelectric device is manufactured, a force is applied to the piezoelectric device 1
- the directions of polarization in all the piezoelectric layers 10 and 20 are the same.
- opposite charges are generated on the facing surfaces of the piezoelectric layer 10 and the piezoelectric layer 20 adjacent to each other. Therefore, if the surfaces of the piezoelectric layer 10 and the surface of the piezoelectric layer 20 adjacent to each other are not electrically isolated from each other, charges are canceled.
- the piezoelectric layers 10 and the piezoelectric layers 20 are alternately arranged and stacked, and the extending direction of the piezoelectric layer 10 intersects with the extending direction of the piezoelectric layer 20. ing. Therefore, when a force such as tensile force is applied to the piezoelectric device 1, the direction of the force applied to the piezoelectric layer 10 with respect to the extension direction of the piezoelectric layer 10 and the direction of the force applied to the piezoelectric layer 20 with respect to the extension direction of the piezoelectric layer 20 are , Different.
- the piezoelectric layer 10 and the piezoelectric layer 20 have the same piezoelectric characteristics, the piezoelectric layer 10 and the piezoelectric layer 20 are polarized in opposite directions. Therefore, the same charge is generated on the facing surfaces of the piezoelectric layer 10 and the piezoelectric layer 20 adjacent to each other.
- the piezoelectric device 1 although the plurality of piezoelectric layers 10 and 20 having the same piezoelectric characteristic are stacked, the opposing surfaces of the adjacent piezoelectric layers 10 and 20 are electrically connected. Even if not isolated, it is possible to generate a voltage according to the force when a force is applied. The voltage thus generated can be extracted from the conductive layer 30 interposed between the piezoelectric layer 10 and the piezoelectric layer 20.
- the first film material 101 and the second film material 201 are prepared.
- Each of the first film material 101 and the second film material 201 includes the stretched resin film 400.
- a conductive film 301 is further provided, in which at least one of the first film material 101 and the second film material 201 overlaps the stretched resin film 400.
- the stretched resin film 400 (401) of the first film material 101 and the stretched resin film 400 (402) of the second film material 201 have the same piezoelectric characteristics.
- the stretching direction of the stretched resin film 401 of the first film material 101 and the stretching direction of the stretched resin film 402 of the second film material 201 intersect Braid and fold as you like.
- the piezoelectric device 1 can be manufactured from the first film material 101 and the second film material 201 provided with the stretched resin films 400 having the same piezoelectric characteristics as each other.
- the piezoelectric layer 10 can be manufactured from the stretched resin film 401
- the piezoelectric layer 20 can be manufactured from the stretched resin film 402
- the conductive layer 30 can be manufactured from the conductive film 301, respectively.
- the piezoelectric layer 10 included in the first group in the above description and the piezoelectric layer 20 included in the second group are names for convenience to distinguish between the two, and the first group in the above description
- the names of the piezoelectric layer 10 included in and the piezoelectric layer 20 included in the second group may be interchanged.
- the first film material 101 and the second film material 201 in the above description are convenient names for distinguishing the two, and in the above description, the first film material 101 and the second film
- the names of the materials 201 may be replaced.
- one of the first film material 101 and the second film material 201 may be provided with the conductive film 301.
- the first film material 101 may include the conductive film 301 overlapping on both sides of the stretched resin film 401.
- the first film material 101 and the second film material 201 may both include the conductive film 301.
- the piezoelectric device 1 is, for example, traffic sensors, traffic fields such as tire pressure sensors, security fields such as intrusion detection and theft alert, acoustic pickups such as acoustic pickups, fish finders and sonars, and medical treatments such as ultrasonic diagnostics etc. It is applicable to various fields, such as the field and the field of floor power generation.
- the direction in which the piezoelectric layer 10 and the piezoelectric layer 20 are stacked is referred to as the vertical direction, and one side in the vertical direction is referred to as the upper side, and the opposite side to the upper side is referred to as the lower side.
- the vertical direction, the upper side, and the lower side are convenient names, and these terms do not limit the orientation and posture of the piezoelectric device 1.
- the piezoelectric device 1 includes a piezoelectric layer 10, a piezoelectric layer 20, and a conductive layer 30, as shown in FIG.
- the piezoelectric layer 10 and the piezoelectric layer 20 are alternately stacked side by side.
- the conductive layer 30 is interposed between the piezoelectric layer 10 and the piezoelectric layer 20 adjacent to each other. That is, the piezoelectric layer 10, the conductive layer 30, the piezoelectric layer 20, and the conductive layer 30 are repeatedly arranged in this order and stacked.
- the assembly of the piezoelectric layer 10, the piezoelectric layer 20, and the conductive layer 30 is hereinafter referred to as a laminated body 5.
- the laminate 5 may or may not further include the conductive layer 30 overlapping the top surface of the piezoelectric layer 10 and the piezoelectric layer 20 which is the uppermost layer.
- the laminate 5 may or may not include the conductive layer 30 overlapping the lowermost one of the piezoelectric layer 10 and the piezoelectric layer 20.
- the piezoelectric layer 10 and the piezoelectric layer 20 are stretched resin films.
- the extension direction (D1 direction shown in FIG. 2) of the piezoelectric layer 10 is orthogonal to the vertical direction
- the extension direction (D2 direction shown in FIG. 2) of the piezoelectric layer 20 is orthogonal to the vertical direction.
- the stretched resin film has piezoelectricity.
- the stretching directions (D1 direction) of the piezoelectric layers 10 are all the same.
- the stretching direction (D2 direction) of the piezoelectric layer 20 is also the same.
- the same direction is not limited to exactly the same direction. Even if the stretching direction is slightly different, in view of technical common sense, it may be in a state in which it can be regarded as strictly the same direction, that is, a state in which the intended action of the present embodiment can be obtained. That is, substantially the same direction is included in the same direction.
- the angle between the extension directions of the two piezoelectric layers 10 is preferably 30 degrees or less, regardless of whichever two piezoelectric layers 10 included in the first group are selected. If the angle formed by the stretching direction is 30 degrees or less, it can be said that the stretching direction is the same direction.
- the angle formed by the stretching direction is more preferably 20 degrees or less, further preferably 10 degrees or less, and particularly preferably 0 degrees. In this case, the piezoelectric device 1 can generate a higher voltage when a force is applied.
- the angle between the stretching directions of the two piezoelectric layers 20 is preferably 30 degrees or less, regardless of whichever two piezoelectric layers 20 are included in the second group. If the angle formed by the stretching direction is 30 degrees or less, it can be said that the stretching direction is the same direction.
- the angle formed by the stretching direction is more preferably 20 degrees or less, further preferably 10 degrees or less, and particularly preferably 0 degrees. In this case, the piezoelectric device 1 can generate a particularly high voltage when a force is applied.
- the extension direction of the piezoelectric layer 10 and the extension direction of the piezoelectric layer 20 intersect. That is, the extension direction of the piezoelectric layer 10 and the extension direction of the piezoelectric layer 20 are not the same.
- the angle between the extension direction of any piezoelectric layer 10 selected from the piezoelectric layers 10 included in the first group and the extension direction of any piezoelectric layer 20 selected from the piezoelectric layers 20 included in the second group is It is preferable that it is 75 degrees or more and 105 degrees or less. In this case, the piezoelectric device 1 can generate a particularly high voltage when a force is applied.
- the angle between the extension direction of the piezoelectric layer 10 and the extension direction of the piezoelectric layer 20 is preferably 80 degrees or more and 100 degrees or less, and more preferably 85 degrees or more and 95 degrees or less.
- the piezoelectric layer 10 and the piezoelectric layer 20 preferably contain the same kind of helical polymer.
- the piezoelectric layer 10 includes a helical polymer
- the piezoelectric layer 20 also includes a helical polymer
- the helical polymer in the piezoelectric layer 10 and the helical polymer in the piezoelectric layer 20 are the same type.
- the piezoelectric layer 10 and the piezoelectric layer 20 be a stretched resin film containing the same type of helical polymer.
- the piezoelectric layer 10 and the piezoelectric layer 20 can have particularly high piezoelectric characteristics, and the piezoelectric device 1 can generate a higher voltage when a force is applied.
- the helical polymer in the piezoelectric layer 10 is oriented in the extending direction of the piezoelectric layer 10, and the helical polymer in the piezoelectric layer 20 is oriented in the extending direction of the piezoelectric layer 20. That is, the direction in which the helical polymer is oriented is the stretching direction.
- the helical polymer has a molecular chain having a helical structure.
- Helical polymers include, for example, polymers or copolymers in units of chiral molecules. The same species means that molecular structures are the same including optical activity.
- the helical polymer is preferably L-polylactic acid or D-polylactic acid. That is, it is preferable that each of the piezoelectric layer 10 and the piezoelectric layer 20 contain L-form polylactic acid or D-form polylactic acid.
- the piezoelectric device 1 can generate a particularly high voltage when a force is applied.
- both L-polylactic acid and D-polylactic acid are biodegradable polymers, it is expected to reduce environmental burden. That is, the piezoelectric device can be made an environment-friendly device.
- the thickness of the piezoelectric layer 10 and the piezoelectric layer 20 is, for example, 3 ⁇ m or more and 200 ⁇ m or less.
- the conductive layer 30 is electrically connected to the piezoelectric layer 10 and the piezoelectric layer 20 in contact with the conductive layer 30.
- the conductive layer 30 has conductivity.
- the conductive layer 30 is, for example, at least one metal selected from the group consisting of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, and tungsten, or at least one metal It is made of one kind of metal oxide.
- the thickness of the conductive layer 30 is, for example, 10 nm or more and 5 ⁇ m or less.
- the conductive layer 30 has a main body portion 30a and a terminal portion 30b.
- the main body portion 30 a has dimensions smaller than those of the piezoelectric layer 10 and the piezoelectric layer 20 when viewed from above.
- the main body portion 30 a is not in contact with the peripheral portion of the piezoelectric layer 10 overlapping the conductive layer 30, and is not in contact with the peripheral portion of the piezoelectric layer 20 overlapping the conductive layer 30.
- the terminal portion 30 b protrudes from the edge of the main body portion 30 a and is in contact with a part of the peripheral portion of the piezoelectric layer 10 and a part of the peripheral portion of the piezoelectric layer 20.
- the conductive layer 30 has the same dimensions as the piezoelectric layer 10 and the piezoelectric layer 20 when viewed from above, and is in contact with the entire piezoelectric layer 10 overlapping the conductive layer 30 and the entire piezoelectric layer 20 overlapping the conductive layer 30. May be Conductive layer 30 may have any other suitable shape and dimension.
- the layer 32 is included.
- the voltage generated in the piezoelectric device 1 is extracted from the conductive layer 30 to the outside.
- the piezoelectric device 1 may include an external electrode electrically connected to the conductive layer 30.
- the outer electrode is provided, for example, along the outer surface of the laminate 5.
- the external electrode includes an electrode electrically connected to the first conductive layer 31 and an electrode electrically connected to the second conductive layer 32.
- the piezoelectric device 1 includes the external electrode, the voltage generated in the piezoelectric device 1 can be extracted from the external power to the outside.
- the conductive layer 30 has the terminal portion 30b, the external electrode and the conductive layer 30 can be easily electrically connected by providing the external electrode in contact with the terminal portion 30b.
- the outer electrode is made of at least one material selected from the group consisting of, for example, aluminum, zinc, tin, lead, nickel, iron, copper, and brass, and an alloy of two or more of these metals. .
- the outer electrode may be made of an easily deformable material such as conductive rubber.
- the outer electrode may be made of a conductive paste, a conductive adhesive, or a conductive sheet.
- opposing surfaces of the piezoelectric layer 10 and the piezoelectric layer 20 adjacent to each other via the conductive layer 30 are electrically connected by the conductive layer 30. That is, the facing surfaces of the piezoelectric layer 10 and the piezoelectric layer 20 are not electrically insulated, and between the piezoelectric layer 10 and the piezoelectric layer 20, the piezoelectric layer 10 and the piezoelectric layer 20 are electrically No insulating layer is provided to insulate.
- a layer which does not electrically insulate between the piezoelectric layer 10 and the piezoelectric layer 20 may be interposed between the piezoelectric layer 10 and the piezoelectric layer 20.
- an adhesive layer may be interposed between the piezoelectric layer 10 and the piezoelectric layer 20 for bonding the outer edge portion of the piezoelectric layer 10 and the outer edge portion of the piezoelectric layer 20.
- an adhesive layer may be interposed to bond the two and not electrically insulate between the two.
- an adhesive layer may be interposed to bond the two and not electrically insulate between the two.
- the number of piezoelectric layers 10 and the number of piezoelectric layers 20 are not limited to the numbers shown in FIG. 1, and the numbers of piezoelectric layers 10 and piezoelectric layers 20 may be set appropriately according to the application, the required power generation, etc. Good.
- a method of manufacturing the piezoelectric device 1 according to the first embodiment will be described with reference to FIGS. 3A to 3E and 4A to 4E.
- the first film material 101 and the second film material 201 are prepared.
- the first film material 101 comprises a stretched resin film 401.
- the second film material 201 comprises a stretched resin film 402.
- the first film material 101 further includes a conductive film 301 overlapping the stretched resin film 401.
- the second film material 201 does not have a conductive film. That is, the second film material 201 consists only of the stretched resin film 402.
- the stretched resin film 401 is a material for producing the piezoelectric layer 10 and has the same configuration as the piezoelectric layer 10 except for the shape.
- the stretched resin film 402 is a material for producing the piezoelectric layer 20, and has the same configuration as the piezoelectric layer 20 except for the shape. For this reason, the stretched resin film 401 and the stretched resin film 402 have the same piezoelectric characteristics.
- stretching resin film 402 contain the same kind of helical polymer.
- the helical polymer is preferably L-polylactic acid or D-polylactic acid.
- the stretched resin film 401 is in the form of a strip having a predetermined length, and the stretching direction of the stretched resin film 401 coincides with the longitudinal direction of the stretched resin film 401.
- the stretched resin film 402 is also in the shape of a strip having a predetermined length, and the stretching direction of the stretched resin film 402 matches the length direction of the stretched resin film 402.
- the width dimension of the stretched resin film 401 and the width dimension of the stretched resin film 402 are preferably the same.
- the conductive film 301 is a material for manufacturing the conductive layer 30. Therefore, the material of the conductive film 301 is the same as that of the conductive layer 30.
- the conductive film 301 can be formed by vapor deposition of a conductive material, for example, on the stretched resin film 401.
- the conductive film 301 may be formed, for example, by applying an adhesive and then overlapping a conductive sheet such as a metal foil.
- the thickness of the conductive film 301 matches the thickness of the conductive layer 30.
- the first film material 101 includes a conductive film 301 overlapping on one surface (hereinafter referred to as the upper surface) of the stretched resin film 401 and the surface on the opposite side to the upper surface of the stretched resin film 401 (hereinafter referred to as the lower surface). .
- the conductive film 301 on the upper surface of the stretched resin film 401 is divided into a plurality of separation films.
- the separation membranes are arranged in the longitudinal direction of the stretched resin film 401 at intervals.
- the separation film includes a first separation film 311 corresponding to the first conductive layer 31 and a second separation film 312 corresponding to the second conductive layer 32.
- the first separation membranes 311 and the second separation membranes 312 are alternately arranged.
- the conductive film 301 on the lower surface of the stretched resin film 401 is also divided into a plurality of separation films, and this separation film also includes a first separation film 311 and a second separation film 312.
- Each separation membrane has one protrusion 311 b (312 b) corresponding to the terminal 30 b.
- the protrusion 311 b (312 b) protrudes in the direction along the longitudinal direction of the stretched resin film 401.
- the protrusion 311 b in the separation membrane on the upper surface of the stretched resin film 401 and the protrusion 312 b in the separation membrane on the lower surface of the stretched resin film 401 protrude in mutually opposite directions with respect to the longitudinal direction.
- the first separation membrane 311 on the upper surface of the stretched resin film 401 and the second separation membrane 312 on the lower surface of the stretched resin film 401 constitute a pair, and the first separation membrane 311 and the second separation membrane 312 in each pair are It is opposed via the stretched resin film 401.
- the second separation membrane 312 on the upper surface of the stretched resin film 401 and the first separation membrane 311 on the lower surface of the stretched resin film 401 respectively constitute a pair, and the second separation membrane 312 and the first separation membrane in each pair 311 are opposed via the stretched resin film 401.
- the conductive film 301 is preferably provided with a mark.
- a person who is engaged in the manufacture of the piezoelectric device 1 can grasp the correct positional relationship between the first film material 101 and the second film material 201 based on the marks provided on the conductive film 301. Therefore, the piezoelectric device 1 can be manufactured smoothly.
- the first separation film 311 is provided with marks having different shapes such as “A” and the second separation film 312 “B”, the first separation film 311 and the second separation film 312 are provided. Can be easily identified.
- the upper surface and the lower surface of the stretched resin film 401 can be easily identified. It can be done. Marking is performed in an appropriate manner. For example, marking is performed by partially applying an ink or the like to the conductive film. Marking may be performed by removing a part of the conductive film and using the removed part as a mark.
- the piezoelectric device 1 can be manufactured by weaving and folding as described above.
- the stretched resin film 401 in the first film material 101 and the stretched resin film 402 in the second film material 201 have the same piezoelectric characteristics.
- One type of film can be used. For this reason, it is possible to suppress the trouble of manufacturing and to reduce the cost.
- the first stretching direction of the stretched resin film 401 of the first film material 101 first crosses the stretching direction of the stretched resin film 402 of the second film material 201.
- the end of the film material 101 and the end of the second film material 201 are overlapped.
- the second film material 201 is used as a length of the first film material 101. Repeating folding along the side and overlapping on the first film material 101 is repeated.
- the piezoelectric device 1 can be easily manufactured by weaving and folding the first film material 101 and the second film material 201, it is possible to save time and effort in manufacturing. It can contribute to the improvement of efficiency.
- first film material 101 and the second film material 201 are long, they can be wound and folded in accordance with an appropriate dimension, for example, by unwinding the stretched resin film 401 wound in a reel shape. , The production efficiency can be further improved.
- the knitting and folding of the first film material 101 and the second film material 201 are performed, for example, as follows.
- the first extending direction of the stretched resin film 401 of the first film material 101 and the extending direction of the stretched resin film 402 of the second film material 201 cross each other.
- the end of the film material 101 and the end of the second film material 201 are overlapped.
- the first film material 101 is disposed such that the upper surface of the stretched resin film 401 is directed upward.
- one first separation membrane 311 faces upward.
- the longitudinal direction of the first film material 101 and the longitudinal direction of the second film material 201 overlap in an orthogonal state.
- the conductive film 301 is marked, it is easy for a person engaged in manufacturing to correctly set the positional relationship between the first film material 101 and the second film material 201.
- the first film material 101 is folded back along the long side of the second film material 201 and superimposed on the second film material 201. Thereby, one second separation film 312 in the first film material 101 is superimposed on the second film material 201.
- the second film material 201 is folded along the long side of the first film material 101 and overlaid on the first film material 101. Thereby, the second film material 201 is superimposed on one first separation film 311 in the first film material 101.
- the first film material 101 is folded back and then the second film material 201 is folded back repeatedly.
- a product as shown in FIG. 4D which is produced by knitting and folding the first film material 101 and the second film material 201, will be referred to as an intermediate product 6.
- the first film material 101 and the second film material 201 are woven and folded, the first film material 101 of the stretched resin film 401 in the first film material 101 is folded back, and thus the second film
- the piezoelectric layer 10 is produced from the portion overlapping the material 201.
- the piezoelectric layer 20 is produced from the portion of the stretched resin film 402 in the second film material 201 which is overlapped with the first film material 101 by folding back the second film material 201.
- the conductive layer 30 is manufactured from the conductive film 301.
- the first conductive layer 31 is produced from the first separation film 311
- the second conductive layer 32 is produced from the second separation film 312.
- Each first conductive layer 31 is composed of one first separation film 311, and each second conductive layer 32 is composed of one second separation film 312.
- the extension directions of the piezoelectric layers 10 are all the same, and the extension directions of the piezoelectric layers 20 are also the same. Furthermore, the extension direction of the piezoelectric layer 10 and the extension direction of the piezoelectric layer 20 are orthogonal to each other.
- the portion where the stretched resin film and the stretched resin film are directly overlapped may be heat-sealed or bonded with an adhesive.
- the separation membrane and the stretched resin film may be heat-sealed, or bonded with an adhesive that does not inhibit the electrical connection between the separation membrane and the stretched resin film.
- the first film material 101 can be separated into a plurality of piezoelectric layers 10
- the second film material 201 can be separated into a plurality of piezoelectric layers 20.
- the laminate 5 shown in FIG. 1 is obtained.
- a conductive layer derived from the protrusion 311 b (312 b) of the separation membrane on the cut surface formed by cutting off the folded portions of the first film material 101 and the second film material 201. Can be exposed.
- the laminated body 5 is provided with an external electrode as needed.
- the external electrode can be produced by a known method such as a thermal spraying method.
- the voltage can be efficiently extracted from the piezoelectric device 1 by electrically connecting the external electrode to the terminal portion 30 b.
- the method of weaving and weaving is not limited to the above description.
- the first film material 101 and the second film material 201 may be folded from a state in which the portions other than the end portions are overlapped.
- the first film material 101 and the second film material 201 may be overlapped so that the stretching directions intersect.
- the pattern of the conductive film is not limited to the above description.
- the position of the protrusion 311 b (312 b) is appropriately set in accordance with the position of the terminal portion 30 b in the piezoelectric device 1.
- various patterns corresponding to the positions and shapes of terminals formed from the projecting portions 311b (312b) of the conductive film 301 can be formed.
- the conductive film 301 may not be separated into a plurality of separation films. Even in such a case, the conductive film can be separated into a plurality of conductive layers by cutting the folded portion from the intermediate product.
- each conductive layer 30 includes the first layer 33 and the second layer 34 in the first embodiment. Furthermore, each conductive layer 30 comprises two terminal parts. Otherwise, the configuration of the piezoelectric device 1 according to the second embodiment is the same as that of the piezoelectric device 1 according to the first embodiment.
- symbol is attached
- the first layer 33 and the second layer 34 overlap in the vertical direction.
- the first layer 33 overlaps the piezoelectric layer 10
- the second layer 34 overlaps the piezoelectric layer 20.
- the first layer 33 and the second layer 34 are electrically connected.
- the first layer 33 and the second layer 34 may be in direct contact with each other.
- the first layer 33 and the second layer 34 may be bonded with an adhesive having conductivity or an adhesive that does not inhibit the electrical connection between the first layer 33 and the second layer 34.
- Each conductive layer 30 includes a terminal portion 33 b of the first layer 33 and a terminal portion 34 b of the second layer 34.
- the two terminal portions of the first conductive layer 31 project in directions orthogonal to each other, and the two terminal portions of the second conductive layer 32 also project in directions orthogonal to each other. Furthermore, the two terminal portions of the first conductive layer 31 and the two terminal portions of the second conductive layer 32 respectively project in four different directions.
- a method of manufacturing the piezoelectric device 1 according to the second embodiment will be described with reference to FIGS. 6A, 6B and 7A to 7D.
- the first film material 101 and the second film material 201 are prepared.
- the first film material 101 comprises a stretched resin film 401.
- the second film material 201 comprises a stretched resin film 402.
- the first film material 101 further includes a conductive film 301 overlapping the stretched resin film 401.
- the second film material 201 also further includes a conductive film 302 overlapping the stretched resin film 401.
- the stretched resin film 401 and the stretched resin film 402 have the same configuration as in the case of the first embodiment.
- the conductive film 301 in the first film material 101 has the same configuration as the conductive film 301 in the first embodiment except that the thickness matches the thickness of the first layer 33.
- the conductive film 302 in the second film material 201 has the same configuration as the conductive film in the first film material 101 of the first embodiment except that the thickness matches the thickness of the second layer 34. That is, the second film material 201 includes the conductive film 302 overlapping the upper surface of the stretched resin film 402 and the lower surface of the stretched resin film 402. The conductive film 302 on the upper surface of the stretched resin film 402 is divided into a plurality of separation films, and these separation films correspond to the first separation film 311 corresponding to the first conductive layer 31 and the second conductive layer 32. And a second separation membrane 312.
- the conductive film 302 on the lower surface of the stretched resin film 402 is also divided into a plurality of separation films, and these separation films also correspond to the first separation film 311 corresponding to the first conductive layer 31 and the second conductive layer 32. And a second separation membrane 312.
- the piezoelectric device 1 can be manufactured smoothly.
- the first separation film 311 and the second separation film 312 are provided with marks of different shapes, the first separation film 311 and the second separation film 312 can be easily distinguished.
- the conductive film 301 overlapping the upper surface of the stretched resin film 401 and the conductive film 301 overlapping the lower surface of the stretched resin film 401 are provided with marks of different shapes, the upper surface and the lower surface of the stretched resin film 401 can be easily identified. It can be done.
- the conductive film 302 overlapping the upper surface of the stretched resin film 402 and the conductive film 302 overlapping the lower surface of the stretched resin film 402 are provided with marks of different shapes, the upper surface and the lower surface of the stretched resin film 402 can be easily identified. It can be done.
- the first film material 101 and the second film material 201, the stretching direction of the stretched resin film 401 of the first film material 101, and the stretched resin film 402 of the second film material 201 can be manufactured by braiding and folding so that the stretching direction of and cross each other.
- the first film material 101 and the second film material 201 are woven and folded, for example, as follows.
- the stretching direction of the stretched resin film 401 of the first film material 101 and the stretching direction of the stretched resin film 402 of the second film material 201 intersect each other.
- the end of the film material 101 and the end of the second film material 201 are overlapped.
- the first film material 101 is disposed such that the upper surface of the stretched resin film 401 is directed upward.
- one first separation membrane 311 faces upward.
- the end of the second film material 201 is superimposed on the end of the first film material 101 in such a manner that the longitudinal direction of the first film material 101 and the longitudinal direction of the second film material 201 are orthogonal to each other.
- one first separation membrane 311 is directed downward at the end of the second film material 201. That is, the first separation film 311 of the second film material 201 is superimposed on the first separation film 311 of the first film material 101. In this case, if the conductive film 301 is marked, it is easy for a person engaged in manufacturing to correctly set the positional relationship between the first film material 101 and the second film material 201.
- the first film material 101 is folded back along the long side of the second film material 201 and overlaid on the second film material 201. Thereby, one second separation membrane 312 in the first film material 101 is superimposed on one second separation membrane 312 in the second film material 201.
- the second film material 201 is folded along the long side of the first film material 101 and overlaid on the first film material 101. Thereby, one first separation membrane 311 in the second film material 201 is superimposed on one first separation membrane 311 in the first film material 101.
- the first film material 101 is folded back and then the second film material 201 is folded back repeatedly.
- An article as shown in FIG. 7D which is produced by knitting and folding the first film material 101 and the second film material 201 in this manner, is hereinafter referred to as an intermediate product 6.
- the first film material 101 and the second film material 201 are woven and folded, the first film material 101 of the stretched resin film 401 in the first film material 101 is folded back, and thus the second film
- the piezoelectric layer 10 is manufactured from the portion overlapping the film material 201.
- the piezoelectric layer 20 is produced from the portion of the stretched resin film 402 in the second film material 201 which is overlapped with the first film material 101 by folding back the second film material 201.
- the conductive layer 30 is manufactured from the conductive film 301.
- the first separation film 311 is made of the first separation film 311 of the first film material 101
- the first separation film 311 is made of the first separation film 311 of the second film material 201.
- the first conductive layer 31 is produced from the first layer 33 and the second layer 34 of In addition, the first layer 33 is produced from the second separation membrane 312 of the first film material 101, and the second layer 34 is produced from the second separation membrane 312 for the second film material 201. And the second layer 34 produce the second conductive layer 32. That is, each first conductive layer 31 is composed of two first separation films 311, and each second conductive layer 32 is composed of two second separation films 312.
- the extension directions of the piezoelectric layers 10 are all the same, and the extension directions of the piezoelectric layers 20 are also the same. Furthermore, the extension direction of the piezoelectric layer 10 and the extension direction of the piezoelectric layer 20 are orthogonal to each other.
- the portion where the stretched resin film of the first film material and the stretched resin film of the second film material are directly overlapped may be heat-sealed or bonded with an adhesive.
- the separation membrane and the stretched resin film may be bonded with an adhesive that does not inhibit the electrical connection between the separation membrane and the stretched resin film.
- Overlapping separation membranes may be adhered with an adhesive having conductivity or an adhesive which does not inhibit the electrical connection between the separation membranes.
- the first film material 101 can be separated into a plurality of piezoelectric layers 10
- the second film material 201 can be separated into a plurality of piezoelectric layers 20.
- the laminated body 5 shown to FIG. 5A is obtained.
- the terminal portion of the conductive layer derived from the protruding portion of the separation membrane can be exposed on the cut surface formed by cutting off the folded portion of the first film material 101.
- the laminated body is provided with an external electrode as needed.
- the external electrode can be produced by a known method such as a thermal spraying method.
- a voltage can be efficiently extracted from the piezoelectric device 1 by electrically connecting the external electrode to the terminal portion.
- the stretched resin film 401 in the first film material 101 and the stretched resin film 402 in the second film material 201 can have the same configuration, and the conductive film in the first film material 101
- the conductive films 302 in the film 301 and the second film material 201 can also have the same configuration. That is, the first film material 101 and the second film material 201 can have the same configuration. Therefore, it is not necessary to prepare different materials as the first film material 101 and the second film material 201, and the piezoelectric device 1 can be manufactured from the same film material. For this reason, it is possible to suppress the trouble of manufacturing.
- the terminal portion in the first conductive layer 31 and the terminal portion in the second conductive layer 32 project in directions orthogonal to each other. There is. Except for this, the piezoelectric device 1 according to the third embodiment includes substantially the same components as the piezoelectric device according to the first embodiment. In the following, the same components as those of the first embodiment will be described by attaching the same reference numerals and omitting the redundant description.
- a method of manufacturing the piezoelectric device 1 according to the third embodiment will be described with reference to FIGS. 9A to 9D and 10A to 10D.
- the first film material 103 and the second film material 203 are prepared.
- the first film material 103 comprises a stretched resin film 401.
- the second film material 203 comprises a stretched resin film 402.
- the first film material 103 further includes a conductive film 303 overlapping the stretched resin film 401.
- the second film material 203 also further includes a conductive film 304 overlapping the stretched resin film 402.
- the stretched resin film 401 and the stretched resin film 402 have the same configuration as in the case of the first embodiment.
- the first film material 103 includes a conductive film 303 overlapping on one surface (hereinafter referred to as the upper surface) of the stretched resin film 401 and the surface on the opposite side to the upper surface of the stretched resin film 402 (hereinafter referred to as the lower surface). .
- the conductive film 303 on the upper surface of the stretched resin film 401 is divided into a plurality of separation films.
- the separation membranes are arranged in the longitudinal direction of the stretched resin film 401 at intervals. Between adjacent separation membranes on the upper surface of the stretched resin film 401, there is a blank portion 501 in which no separation membrane is provided. That is, on the upper surface of the stretched resin film 401, the separation membrane and the blank portion 501 are alternately arranged.
- the dimensions of the blank portion 501 are slightly larger than the separation membrane.
- the length of the blank portion 501 (the dimension along the longitudinal direction of the first film material 103) is the same as the width dimension of the first film material 103.
- the conductive film 303 on the lower surface of the stretched resin film 401 is also divided into a plurality of separation films.
- the lower surface of the stretched resin film 401 also has a blank portion 501 similar to the upper surface. That is, on the lower surface of the stretched resin film 401, the separation membrane and the blank portion 501 are alternately arranged.
- the first separation film 331 on the upper surface of the stretched resin film 401 and the blank portion 501 on the lower surface of the stretched resin film 401 constitute a pair, respectively, and the blank portion 501 on the upper surface of the stretched resin film 401 and the lower surface of the stretched resin film 401
- the separation membranes also form pairs.
- the separation membrane in each pair and the blank portion 501 face each other via the stretched resin film 401.
- the separation membranes 331 in the first film material 103 are all the first separation membranes 331 corresponding to the first conductive layer 31.
- the second film material 203 also includes a conductive film 304 overlapping the upper surface of the stretched resin film 402 and the lower surface of the stretched resin film 402. Furthermore, as in the case of the first film material 103, each conductive film is divided into a plurality of separation films, and on the upper surface and the lower surface of the stretched resin film 402, like the first film material 103, blank portions 502 are provided. is there. That is, the second film material 203 has the same configuration as the first film material 103.
- the separation membranes in the second film material 203 are all second separation membranes 332 corresponding to the second conductive layer 32.
- the piezoelectric device 1 can be manufactured smoothly.
- the first film material 103 and the second film material 203, the stretching direction of the stretched resin film 401 of the first film material 103, and the stretched resin film 402 of the second film material 203 can be manufactured by braiding and folding so that the stretching direction of and cross each other.
- the knitting and folding of the first film material 103 and the second film material 203 are performed, for example, as follows.
- the first extending direction of the stretched resin film 401 of the first film material 103 and the extending direction of the stretched resin film 402 of the second film material 203 intersect with each other.
- the end of the film material 103 and the end of the second film material 203 are overlapped.
- the first film material 103 is disposed such that the upper surface of the stretched resin film 401 is directed upward.
- one first separation membrane 331 faces upward.
- the end of the second film material 203 is superimposed on the end of the first film material 103 such that the longitudinal direction of the first film material 103 and the longitudinal direction of the second film material 203 are orthogonal to each other.
- one blank portion 502 is directed downward at the end of the second film material 203. That is, the blank portion 502 of the second film material 203 is superimposed on the first separation film 331 of the first film material 103. In this case, if the conductive film 303 (304) is marked, it is easy for a person engaged in manufacturing to correctly set the positional relationship between the first film material 103 and the second film material 203.
- the first film material 103 is folded along the long side of the second film material 203, and is superimposed on the second film material 203. Thereby, one blank portion 501 of the first film material 103 is superimposed on one second separation film 332 of the second film material 203.
- the second film material 203 is folded along the long side of the first film material 103 and overlaid on the first film material 103. Thereby, one blank portion 502 in the second film material 203 is superimposed on one first separation film 331 in the first film material 103.
- the second film material 203 is folded back repeatedly.
- a product as shown in FIG. 10D which is produced by knitting and folding the first film material 103 and the second film material 203, is referred to as an intermediate product 6.
- the first film material 103 and the second film material 203 are woven and folded, the first film material 103 of the stretched resin film 401 in the first film material 103 is folded back, and thus the second film material
- the piezoelectric layer 10 is manufactured from the portion overlapping with 203.
- the piezoelectric layer 20 is produced from the portion of the stretched resin film 402 in the second film material 203 which is overlapped with the first film material 103 by folding back the second film material 203.
- the conductive layer 30 is manufactured from the conductive film 303 (304).
- the first conductive layer 31 is produced from the first separation membrane 331 which is the separation membrane of the first film material 103, and the second separation membrane 332 which is the separation membrane of the second film material 203.
- the second conductive layer 32 is produced. That is, each first conductive layer 31 is formed of one first separation film 331, and each second conductive layer 32 is formed of one second separation film 332.
- the extension directions of the piezoelectric layers 10 are all the same, and the extension directions of the piezoelectric layers 20 are also the same. Furthermore, the extension direction of the piezoelectric layer 10 and the extension direction of the piezoelectric layer 20 are orthogonal to each other.
- the portion where the stretched resin film and the stretched resin film are directly overlapped may be heat-sealed or bonded with an adhesive.
- the separation membrane and the stretched resin film may be heat-sealed, or bonded with an adhesive that does not inhibit the electrical connection between the separation membrane and the stretched resin film.
- the first film material 103 can be separated into a plurality of piezoelectric layers 10
- the second film material 203 can be separated into a plurality of piezoelectric layers 20.
- the laminated body 5 shown to FIG. 8A is obtained.
- the cut surface formed by cutting off the folded portion of the first film material 103 and the cut surface formed by cutting off the folded portion of the second film material 203, The terminal portion 30b of the conductive layer derived from the projection of the separation membrane can be exposed.
- the laminated body 5 is provided with an external electrode as needed.
- the external electrode can be produced by a known method such as a thermal spraying method.
- the voltage can be efficiently extracted from the piezoelectric device 1 by electrically connecting the external electrode to the terminal portion.
- the stretched resin film 401 in the first film material 103 and the stretched resin film 402 in the second film material 203 can have the same configuration, and the conductive film in the first film material 103
- the conductive films 304 in the film 303 and the second film material 203 can also have the same configuration. That is, the first film material 103 and the second film material 203 can have the same configuration. Therefore, it is not necessary to prepare different materials as the first film material 103 and the second film material 203, and the piezoelectric device 1 can be manufactured from the same film material. For this reason, it is possible to suppress the trouble of manufacturing.
- each conductive layer is made of one separation film and is not divided into two layers as in the second embodiment, contact resistance between layers occurs in the conductive layer. Absent.
- a force is obtained even if a plurality of piezoelectric layers having the same piezoelectric characteristic are stacked and electrical isolation is not made between facing surfaces of adjacent piezoelectric layers. It is industrially useful to obtain a piezoelectric device capable of generating a voltage according to a force when a force is applied.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Piezo-Electric Transducers For Audible Bands (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Provided are a piezoelectric device which, even though a plurality of piezoelectric layers having the same piezoelectric characteristics are stacked and the opposed surfaces of adjacent piezoelectric layers are not electrically insulated, is capable of generating a voltage corresponding to a tensile force when one is applied, and a method of manufacturing the same. The piezoelectric device (1) comprises a plurality of alternately stacked layers of piezoelectric layers (10) included in a first group and piezoelectric layers (20) included in a second group, with electrically conductive layers (30) interposed between the piezoelectric layers (10) and the piezoelectric layers (20) adjacent to each other. The piezoelectric layers (10) included in the first group and the piezoelectric layers (20) included in the second group are stretched resin films having the same piezoelectric characteristics. The piezoelectric layers (10) included in the first group have the same stretch direction, and the piezoelectric layers (20) included in the second group have the same stretched direction. The stretched direction of the piezoelectric layers (10) included in the first group and the stretched direction of the piezoelectric layers (20) included in the second group intersect each other.
Description
本開示は、圧電デバイス及びその製造方法に関し、詳しくは複数の圧電層を積層させた圧電デバイス及びその製造方法に関する。
The present disclosure relates to a piezoelectric device and a method of manufacturing the same, and more particularly to a piezoelectric device in which a plurality of piezoelectric layers are stacked and a method of manufacturing the same.
従来、圧電性を有する延伸樹脂フィルムからなる圧電層と、導電層とを積層して圧電デバイスを作製することが行われている。このような圧電デバイスは、引張力などが加えられると、圧電層に分極が生じる。そのため、導電層から電圧を取り出すことができる。
Conventionally, a piezoelectric device is manufactured by laminating a piezoelectric layer made of a stretched resin film having piezoelectricity and a conductive layer. In such a piezoelectric device, polarization is generated in the piezoelectric layer when a tensile force or the like is applied. Therefore, a voltage can be extracted from the conductive layer.
例えば、特許文献1では、ポリL-乳酸樹脂の延伸樹脂フィルムからなる圧電層と、ポリL-乳酸樹脂の光学異性体であるポリD-乳酸樹脂の延伸樹脂フィルムからなる圧電層とを、導電層を介して交互に積層した圧電デバイスが開示されている。
For example, in Patent Document 1, a piezoelectric layer made of a stretched resin film of poly L-lactic acid resin and a piezoelectric layer made of a stretched resin film of poly D-lactic acid resin which is an optical isomer of poly L-lactic acid resin are electrically conductive A piezoelectric device is disclosed which is alternately stacked through layers.
しかしながら、特許文献1に開示の圧電デバイスは、圧電特性の異なる二種の圧電層を必要とするため、生産性が悪く、またコストもかかる、さらに光学異性体を持たない同特性を有する圧電フィルムに対しては同構造の圧電デバイスを実現できないといった問題があった。
However, since the piezoelectric device disclosed in Patent Document 1 requires two types of piezoelectric layers having different piezoelectric characteristics, the productivity is low and the cost is high, and a piezoelectric film having the same characteristics without optical isomers is also required. However, there is a problem that the piezoelectric device of the same structure can not be realized.
一方、圧電特性を同じくする樹脂フィルムからなる圧電層を積層して圧電デバイスを作製し、その圧電デバイスに引張力などを加えると、隣り合う圧電層の対向し合う面には、分極により互いに異なる電荷が生じる。このため、隣り合う圧電層間に導電層を介在させることで圧電層の対向し合う面間を電気的に接続すると、圧電層に生じた電荷は打ち消されてしまう。そのため、圧電層の対向し合う面間には絶縁層を設けて、圧電層の対向し合う面間を電気的に絶縁しなければならず、絶縁層の厚みの分だけ圧電デバイスの寸法が大きくなってしまう。そのため、圧電デバイスの小型化、軽量化には不向きであるといった問題がある。
On the other hand, when a piezoelectric device is produced by laminating piezoelectric layers made of resin films having the same piezoelectric characteristics and tensile force or the like is applied to the piezoelectric device, the opposing surfaces of adjacent piezoelectric layers differ from each other due to polarization. A charge is generated. For this reason, when the conductive layers are interposed between the adjacent piezoelectric layers to electrically connect opposing surfaces of the piezoelectric layers, the charges generated in the piezoelectric layers are canceled. Therefore, an insulating layer must be provided between the facing surfaces of the piezoelectric layers to electrically insulate between the facing surfaces of the piezoelectric layers, and the size of the piezoelectric device is increased by the thickness of the insulating layer. turn into. Therefore, there is a problem that it is not suitable for reducing the size and weight of the piezoelectric device.
本開示の目的は、同じ圧電特性を有する複数の圧電層が積層され、かつ隣り合う圧電層の対向し合う面の間が電気的に絶縁されていなくても、力が加えられた場合に力に応じた電圧を生じさせることができる圧電デバイス及びその製造方法を提供することにある。
An object of the present disclosure is to apply a force when a plurality of piezoelectric layers having the same piezoelectric property are stacked, and force is applied even if the facing surfaces of adjacent piezoelectric layers are not electrically isolated from each other. And a method of manufacturing the same.
本開示の一態様に係る圧電デバイスは、第一の群に含まれる圧電層と、第二の群に含まれる圧電層と、導電層と、を有する。第一の群に含まれる圧電層と第二の群に含まれる圧電層とが交互に積層する。積層する方向において隣り合う第一の群に含まれる圧電層と第二の群に含まれる圧電層との間に導電層が介在する。第一の群に含まれる圧電層、及び第二の群に含まれる圧電層は、延伸樹脂フィルムである。第一の群に含まれる圧電層と第二の群に含まれる圧電層とは、引張力が加えられた場合の、延伸方向に対する引張力方向と、引張力によって生じる圧電層の分極方向との関係が互いに同一である圧電特性を有する。第一の群に含まれる圧電層の延伸方向は、いずれも同一方向である。第二の群に含まれる圧電層の延伸方向は、いずれも同一方向である。第一の群に含まれる圧電層の延伸方向と第二の群に含まれる圧電層の延伸方向とは交差する。
A piezoelectric device according to an aspect of the present disclosure includes a piezoelectric layer included in a first group, a piezoelectric layer included in a second group, and a conductive layer. The piezoelectric layers included in the first group and the piezoelectric layers included in the second group are alternately stacked. A conductive layer is interposed between the piezoelectric layer included in the first group adjacent to the stacking direction and the piezoelectric layer included in the second group. The piezoelectric layer included in the first group and the piezoelectric layer included in the second group are stretched resin films. The piezoelectric layer included in the first group and the piezoelectric layer included in the second group have a tensile force direction with respect to the stretching direction and a polarization direction of the piezoelectric layer generated by the tensile force when the tensile force is applied. It has piezoelectric characteristics whose relationship is identical to each other. The stretching directions of the piezoelectric layers included in the first group are all the same. The stretching directions of the piezoelectric layers included in the second group are all the same. The extension direction of the piezoelectric layer included in the first group intersects the extension direction of the piezoelectric layer included in the second group.
また、本開示の一態様に係る圧電デバイスの製造方法は、第一のフィルム材と第二のフィルム材とを用意する。第一のフィルム材と第二のフィルム材の各々は、延伸樹脂フィルムを備える。第一のフィルム材と第二のフィルム材とのうち少なくとも一方は、延伸樹脂フィルムに重なる導電膜を更に備える。第一のフィルム材の延伸樹脂フィルムと、第二のフィルム材の延伸樹脂フィルムとは、引張力が加えられた場合の延伸方向に対する引張力の方向と、引張力によって生じる分極の方向との関係が、互いに同一である圧電特性を有する。製造方法は、第一のフィルム材と第二のフィルム材とを、第一のフィルム材の延伸樹脂フィルムの延伸方向と、第二のフィルム材の延伸樹脂フィルムの延伸方向とが、交差するように編み込み折りすることを含む。
Moreover, the manufacturing method of the piezoelectric device concerning one mode of the present disclosure prepares the 1st film material and the 2nd film material. Each of the first film material and the second film material comprises a stretched resin film. At least one of the first film material and the second film material further includes a conductive film overlapping the stretched resin film. The stretched resin film of the first film material and the stretched resin film of the second film material have a relationship between the direction of tensile force with respect to the direction of stretching when tensile force is applied, and the direction of polarization generated by the tensile force. Have the same piezoelectric properties as one another. The manufacturing method is such that the first film material and the second film material intersect in such a manner that the stretching direction of the stretched resin film of the first film material crosses the stretching direction of the stretched resin film of the second film material. Including braiding and folding.
本開示の一態様によれば、同じ圧電特性を有する複数の圧電層が積層され、かつ隣り合う圧電層の対向し合う面の間が電気的に絶縁されていなくても、力が加えられた場合に力に応じた電圧を生じさせることができる圧電デバイスが得られる。
According to one aspect of the present disclosure, a force is applied even if a plurality of piezoelectric layers having the same piezoelectric property are stacked and electrical isolation is not made between the facing surfaces of adjacent piezoelectric layers. In this case, a piezoelectric device is obtained which can generate a voltage depending on the force.
まず、本開示の実施形態に係る圧電デバイスの構成の概要について、図1を参照して説明する。
First, an outline of a configuration of a piezoelectric device according to an embodiment of the present disclosure will be described with reference to FIG.
本実施形態に係る圧電デバイス1は、第一の群に含まれる圧電層10(以下、単に圧電層10ともいう)と第二の群に含まれる圧電層20(以下、単に圧電層20ともいう)とが交互に並んで積層する。隣り合う圧電層10と圧電層20との間に導電層30が介在する。圧電層10及び圧電層20は、いずれも延伸樹脂フィルムである。圧電層10と圧電層20とは、引張力が加えられた場合の、延伸方向に対する引張力の方向と、この引張力によって生じる圧電層の分極方向との関係が互いに同一である圧電特性を有する。圧電層10の延伸方向は、いずれも同一方向である。圧電層20の延伸方向は、いずれも同一方向である。圧電層10の延伸方向と圧電層20の延伸方向とは交差する。
The piezoelectric device 1 according to the present embodiment includes a piezoelectric layer 10 (hereinafter, also simply referred to as a piezoelectric layer 10) included in a first group and a piezoelectric layer 20 (hereinafter, also simply referred to as a piezoelectric layer 20) included in a second group. ) Are alternately stacked. The conductive layer 30 is interposed between the piezoelectric layer 10 and the piezoelectric layer 20 adjacent to each other. Each of the piezoelectric layer 10 and the piezoelectric layer 20 is a stretched resin film. The piezoelectric layer 10 and the piezoelectric layer 20 have piezoelectric characteristics in which the relationship between the direction of tensile force with respect to the stretching direction and the direction of polarization of the piezoelectric layer generated by the tensile force are the same when tensile force is applied. . The stretching directions of the piezoelectric layers 10 are all the same. The stretching directions of the piezoelectric layers 20 are all the same. The extension direction of the piezoelectric layer 10 and the extension direction of the piezoelectric layer 20 intersect.
明細書中の説明において、「圧電特性」とは、引張力が加えられた場合に引張力に応じた分極が生じる圧電層の性質であり、この性質には、引張力の方向と引張力によって生じる分極の方向との関係も含まれる。延伸樹脂フィルムである圧電層10と延伸樹脂フィルムである圧電層20とは、互いに同一の圧電特性を有する。すなわち、圧電層10及び圧電層20に引張力が加えられた場合の、延伸方向に対する引張力方向と、この引張力によって生じる圧電層10及び圧電層20の分極の方向との関係が、いずれも同一である。
In the description in the specification, the "piezoelectric property" is the property of the piezoelectric layer in which the polarization according to the tensile force occurs when the tensile force is applied, and this property depends on the direction of the tensile force and the tensile force. Also included is the relationship with the direction of polarization that occurs. The piezoelectric layer 10 which is a stretched resin film and the piezoelectric layer 20 which is a stretched resin film have the same piezoelectric characteristics. That is, when a tensile force is applied to the piezoelectric layer 10 and the piezoelectric layer 20, the relationship between the tensile force direction with respect to the stretching direction and the polarization direction of the piezoelectric layer 10 and the piezoelectric layer 20 generated by this tensile force is both It is the same.
図12を参照して、より具体的に説明すると、圧電層10と圧電層20とが同じ圧電特性を有する場合、例えば圧電層10と圧電層20とが次の構成を有する。圧電層10と圧電層20は、いずれも厚みを有し、厚み方向に直交する一方向(図12における+Xの方向)に延伸された延伸樹脂フィルムである。圧電層10と圧電層20のいずれにおいても、厚みに沿った一方向を向く面を上面、上面とは反対方向を向く面を下面と規定する。なお、上面及び下面の用語は、圧電層10及び圧電層20の姿勢を規制するものではない。圧電層10に圧電層10の延伸方向(+Xの方向)に対して傾斜する方向に引張力をかけると、圧電層10に分極が生じる。圧電層20に圧電層20の延伸方向(+Xの方向)に対して傾斜する方向に引張力をかけても、圧電層20に分極が生じる。圧電層10に圧電層10の延伸方向(+Xの方向)に対して、上面側から見て時計回り方向に傾斜した方向(図12における+Yの方向)に引張力がかけられた場合に圧電層10の上面が正に帯電するような方向(図12における+Zの方向)の分極が起こる。圧電層20に圧電層10の延伸方向(+Xの方向)に対して、上面側から見て時計回り方向に傾斜した方向(+Yの方向)に引張力がかけられた場合も、圧電層20に上面が正に帯電するような方向(+Zの方向)の分極が起こる。
More specifically, referring to FIG. 12, when the piezoelectric layer 10 and the piezoelectric layer 20 have the same piezoelectric characteristics, for example, the piezoelectric layer 10 and the piezoelectric layer 20 have the following configuration. Each of the piezoelectric layer 10 and the piezoelectric layer 20 is a stretched resin film having a thickness and stretched in one direction (direction of + X in FIG. 12) orthogonal to the thickness direction. In both of the piezoelectric layer 10 and the piezoelectric layer 20, the surface facing in one direction along the thickness is defined as the upper surface, and the surface facing in the opposite direction to the upper surface is defined as the lower surface. The terms of the upper surface and the lower surface do not restrict the posture of the piezoelectric layer 10 and the piezoelectric layer 20. When a tensile force is applied to the piezoelectric layer 10 in a direction inclined with respect to the stretching direction (the direction of + X) of the piezoelectric layer 10, polarization occurs in the piezoelectric layer 10. Even when a tensile force is applied to the piezoelectric layer 20 in a direction inclined with respect to the stretching direction (direction of + X) of the piezoelectric layer 20, polarization occurs in the piezoelectric layer 20. Piezoelectric layer when tensile force is applied to the piezoelectric layer 10 in a direction (direction of + Y in FIG. 12) inclined clockwise as viewed from the top side with respect to the extension direction (+ X direction) of the piezoelectric layer 10 Polarization occurs in a direction (the direction of + Z in FIG. 12) such that the top surface of 10 is positively charged. Also in the case where tensile force is applied to the piezoelectric layer 20 in a direction (+ Y direction) inclined clockwise as viewed from the upper surface side with respect to the extension direction (+ X direction) of the piezoelectric layer 10, Polarization occurs in a direction (the direction of + Z) such that the upper surface is positively charged.
上記の場合には、圧電層10と圧電層20とが同じ圧電特性を有する。上記において、時計回りを反時計回りと言い換えた場合も、圧電層10と圧電層20とは同じ圧電特性を有する。これに対して、圧電層10に上面が正(例えば+Zの方向)に帯電するような分極が起こり、かつ圧電層20に下面が正に帯電(例えば-Zの方向)するような分極が起こるならば、圧電層10と圧電層20とが異なる圧電特性を有する。
In the above case, the piezoelectric layer 10 and the piezoelectric layer 20 have the same piezoelectric characteristics. In the above, also when counterclockwise is reworded clockwise, the piezoelectric layer 10 and the piezoelectric layer 20 have the same piezoelectric characteristics. On the other hand, polarization occurs such that the upper surface of the piezoelectric layer 10 is charged positively (in the direction of + Z, for example), and polarization occurs such that the lower surface of the piezoelectric layer 20 is charged positively (in the direction of -Z). Then, the piezoelectric layer 10 and the piezoelectric layer 20 have different piezoelectric characteristics.
仮に、圧電層10と圧電層20とをこれらの圧電層10及び圧電層20の延伸方向が同じ方向となるように積層して圧電デバイスを作製したならば、圧電デバイス1に力が加えられた場合、全ての圧電層10及び圧電層20における分極の方向は同じになる。この場合、隣り合う圧電層10と圧電層20との対向し合う面には、互いに逆の電荷が生じる。そのため、隣り合う圧電層10と圧電層20との対向し合う面の間が電気的に絶縁されていないと、電荷が打消しあってしまう。
Assuming that the piezoelectric layer 10 and the piezoelectric layer 20 are laminated such that the stretching directions of the piezoelectric layer 10 and the piezoelectric layer 20 are the same, and a piezoelectric device is manufactured, a force is applied to the piezoelectric device 1 In this case, the directions of polarization in all the piezoelectric layers 10 and 20 are the same. In this case, opposite charges are generated on the facing surfaces of the piezoelectric layer 10 and the piezoelectric layer 20 adjacent to each other. Therefore, if the surfaces of the piezoelectric layer 10 and the surface of the piezoelectric layer 20 adjacent to each other are not electrically isolated from each other, charges are canceled.
これに対し、本実施形態に係る圧電デバイス1では、圧電層10と圧電層20とが交互に並んで積層しているとともに、圧電層10の延伸方向と圧電層20の延伸方向とが交差している。そのため、圧電デバイス1に引張力などの力が加えられると、圧電層10にかかる力の圧電層10の延伸方向に対する向きと、圧電層20にかかる力の圧電層20の延伸方向に対する向きとは、異なる。そのため、圧電層10と圧電層20は同じ圧電特性を有するにもかかわらず、圧電層10と圧電層20は逆方向に分極する。このため、隣り合う圧電層10と圧電層20との対向し合う面には、互いに同一の電荷が生じる。
On the other hand, in the piezoelectric device 1 according to the present embodiment, the piezoelectric layers 10 and the piezoelectric layers 20 are alternately arranged and stacked, and the extending direction of the piezoelectric layer 10 intersects with the extending direction of the piezoelectric layer 20. ing. Therefore, when a force such as tensile force is applied to the piezoelectric device 1, the direction of the force applied to the piezoelectric layer 10 with respect to the extension direction of the piezoelectric layer 10 and the direction of the force applied to the piezoelectric layer 20 with respect to the extension direction of the piezoelectric layer 20 are , Different. Therefore, although the piezoelectric layer 10 and the piezoelectric layer 20 have the same piezoelectric characteristics, the piezoelectric layer 10 and the piezoelectric layer 20 are polarized in opposite directions. Therefore, the same charge is generated on the facing surfaces of the piezoelectric layer 10 and the piezoelectric layer 20 adjacent to each other.
このため、本実施形態に係る圧電デバイス1は、同じ圧電特性を有する複数の圧電層10、20が積層されているにもかかわらず、隣り合う圧電層10、20の対向し合う面間が電気的に絶縁されていなくても、力が加えられた場合に力に応じた電圧を生じさせることができる。そして、このように生じた電圧を、圧電層10と圧電層20との間に介在する導電層30から取り出すことができる。
Therefore, in the piezoelectric device 1 according to the present embodiment, although the plurality of piezoelectric layers 10 and 20 having the same piezoelectric characteristic are stacked, the opposing surfaces of the adjacent piezoelectric layers 10 and 20 are electrically connected. Even if not isolated, it is possible to generate a voltage according to the force when a force is applied. The voltage thus generated can be extracted from the conductive layer 30 interposed between the piezoelectric layer 10 and the piezoelectric layer 20.
圧電デバイス1の製造方法の概要について、図3A~図3E及び図4A~図4Eを参照して説明する。
An outline of a method of manufacturing the piezoelectric device 1 will be described with reference to FIGS. 3A to 3E and FIGS. 4A to 4E.
圧電デバイス1の製造に当たっては、第一のフィルム材101と第二のフィルム材201とを用意する。第一のフィルム材101と第二のフィルム材201の各々は、延伸樹脂フィルム400を備える。第一のフィルム材101と第二のフィルム材201とのうち少なくとも一方が延伸樹脂フィルム400に重なる導電膜301を更に備える。第一のフィルム材101の延伸樹脂フィルム400(401)と、第二のフィルム材201の延伸樹脂フィルム400(402)とは、同じ圧電特性を有する。すなわち、延伸樹脂フィルム401及び延伸樹脂フィルム402に引張力が加えられた場合の、延伸方向に対する引張力の方向と、この引張力によって生じる延伸樹脂フィルム401と延伸樹脂フィルム402の分極の方向との関係は、同一である。第一のフィルム材101と第二のフィルム材201とを、第一のフィルム材101の延伸樹脂フィルム401の延伸方向と、第二のフィルム材201の延伸樹脂フィルム402の延伸方向とが、交差するように編み込み折りをする。
In manufacturing the piezoelectric device 1, the first film material 101 and the second film material 201 are prepared. Each of the first film material 101 and the second film material 201 includes the stretched resin film 400. A conductive film 301 is further provided, in which at least one of the first film material 101 and the second film material 201 overlaps the stretched resin film 400. The stretched resin film 400 (401) of the first film material 101 and the stretched resin film 400 (402) of the second film material 201 have the same piezoelectric characteristics. That is, when a tensile force is applied to the stretched resin film 401 and the stretched resin film 402, the direction of the tensile force with respect to the stretching direction and the direction of polarization of the stretched resin film 401 and the stretched resin film 402 generated by this tensile force The relationship is identical. In the first film material 101 and the second film material 201, the stretching direction of the stretched resin film 401 of the first film material 101 and the stretching direction of the stretched resin film 402 of the second film material 201 intersect Braid and fold as you like.
このため、互いに同じ圧電特性を有する延伸樹脂フィルム400を備える第一のフィルム材101と第二のフィルム材201とから、圧電デバイス1を作製することができる。
For this reason, the piezoelectric device 1 can be manufactured from the first film material 101 and the second film material 201 provided with the stretched resin films 400 having the same piezoelectric characteristics as each other.
これにより、例えば延伸樹脂フィルム401から圧電層10を、延伸樹脂フィルム402から圧電層20を、導電膜301から導電層30を、それぞれ作製することができる。
Thereby, for example, the piezoelectric layer 10 can be manufactured from the stretched resin film 401, the piezoelectric layer 20 can be manufactured from the stretched resin film 402, and the conductive layer 30 can be manufactured from the conductive film 301, respectively.
なお、上記の説明における第一の群に含まれる圧電層10と第二の群に含まれる圧電層20は、両者を区別するための便宜的な名称であり、上記の説明において第一の群に含まれる圧電層10及び第二の群に含まれる圧電層20の名称を入れ替えてもよい。同様に、上記の説明における第一のフィルム材101及び第二のフィルム材201は、両者を区別するための便宜的な名称であり、上記の説明において第一のフィルム材101と第二のフィルム材201の名称を入れ替えてもよい。
The piezoelectric layer 10 included in the first group in the above description and the piezoelectric layer 20 included in the second group are names for convenience to distinguish between the two, and the first group in the above description The names of the piezoelectric layer 10 included in and the piezoelectric layer 20 included in the second group may be interchanged. Similarly, the first film material 101 and the second film material 201 in the above description are convenient names for distinguishing the two, and in the above description, the first film material 101 and the second film The names of the materials 201 may be replaced.
また、本実施形態では、第一のフィルム材101と第二のフィルム材201とのうち、いずれか一方が導電膜301を備えていてもよい。この場合、例えば第一のフィルム材101が、延伸樹脂フィルム401の両面上にそれぞれ重なる導電膜301を備えていてもよい。第一のフィルム材101及び第二のフィルム材201が、いずれも導電膜301を備えていてもよい。
Further, in the present embodiment, one of the first film material 101 and the second film material 201 may be provided with the conductive film 301. In this case, for example, the first film material 101 may include the conductive film 301 overlapping on both sides of the stretched resin film 401. The first film material 101 and the second film material 201 may both include the conductive film 301.
圧電デバイス1は、例えばトラフィックセンサ、タイヤ空気圧センサなどの交通分野、侵入検知、盗難警戒などのセキュリティ分野、音響ピックアップ、魚群探知機、ソナーなどの音響・超音波の分野、超音診断などの医療分野、床発電の分野など、種々の分野に適用可能である。
The piezoelectric device 1 is, for example, traffic sensors, traffic fields such as tire pressure sensors, security fields such as intrusion detection and theft alert, acoustic pickups such as acoustic pickups, fish finders and sonars, and medical treatments such as ultrasonic diagnostics etc. It is applicable to various fields, such as the field and the field of floor power generation.
以下、より具体的に実施形態について説明する。
Hereinafter, the embodiment will be described more specifically.
[第1の実施形態]
以下の説明において、圧電層10及び圧電層20が積層する方向を上下方向とし、上下方向のうちの一方側を上方、上方の反対側を下方という。なお、上下方向、上方、下方は、便宜的な名称であり、これらの用語は、圧電デバイス1の向き及び姿勢を制限しない。 First Embodiment
In the following description, the direction in which thepiezoelectric layer 10 and the piezoelectric layer 20 are stacked is referred to as the vertical direction, and one side in the vertical direction is referred to as the upper side, and the opposite side to the upper side is referred to as the lower side. Note that the vertical direction, the upper side, and the lower side are convenient names, and these terms do not limit the orientation and posture of the piezoelectric device 1.
以下の説明において、圧電層10及び圧電層20が積層する方向を上下方向とし、上下方向のうちの一方側を上方、上方の反対側を下方という。なお、上下方向、上方、下方は、便宜的な名称であり、これらの用語は、圧電デバイス1の向き及び姿勢を制限しない。 First Embodiment
In the following description, the direction in which the
第1の実施形態に係る圧電デバイス1は、図1に示すように、圧電層10と圧電層20と導電層30とを備える。圧電層10と圧電層20とは交互に並んで積層している。隣り合う圧電層10と圧電層20との間に導電層30が介在している。すなわち、圧電層10、導電層30、圧電層20及び導電層30が、この順に繰り返し並んで積層している。圧電層10、圧電層20及び導電層30の集合体を、以下、積層体5という。
The piezoelectric device 1 according to the first embodiment includes a piezoelectric layer 10, a piezoelectric layer 20, and a conductive layer 30, as shown in FIG. The piezoelectric layer 10 and the piezoelectric layer 20 are alternately stacked side by side. The conductive layer 30 is interposed between the piezoelectric layer 10 and the piezoelectric layer 20 adjacent to each other. That is, the piezoelectric layer 10, the conductive layer 30, the piezoelectric layer 20, and the conductive layer 30 are repeatedly arranged in this order and stacked. The assembly of the piezoelectric layer 10, the piezoelectric layer 20, and the conductive layer 30 is hereinafter referred to as a laminated body 5.
積層体5は、圧電層10及び圧電層20のうち最も上方にある層の上面に重なる導電層30を更に備えてもよく、備えなくてもよい。積層体5は、圧電層10及び圧電層20のうち最も下方にある層に重なる導電層30も備えてもよく、備えなくてもよい。
The laminate 5 may or may not further include the conductive layer 30 overlapping the top surface of the piezoelectric layer 10 and the piezoelectric layer 20 which is the uppermost layer. The laminate 5 may or may not include the conductive layer 30 overlapping the lowermost one of the piezoelectric layer 10 and the piezoelectric layer 20.
圧電層10、及び圧電層20は、延伸樹脂フィルムである。圧電層10の延伸方向(図2に示すD1方向)は上下方向と直交し、圧電層20の延伸方向(図2に示すD2方向)は上下方向と直交する。
The piezoelectric layer 10 and the piezoelectric layer 20 are stretched resin films. The extension direction (D1 direction shown in FIG. 2) of the piezoelectric layer 10 is orthogonal to the vertical direction, and the extension direction (D2 direction shown in FIG. 2) of the piezoelectric layer 20 is orthogonal to the vertical direction.
延伸樹脂フィルムは、圧電性を有する。
The stretched resin film has piezoelectricity.
圧電層10の延伸方向(D1方向)は、いずれも同一方向である。
The stretching directions (D1 direction) of the piezoelectric layers 10 are all the same.
圧電層20の延伸方向(D2方向)も、いずれも同一方向である。
The stretching direction (D2 direction) of the piezoelectric layer 20 is also the same.
同一方向であるとは、厳密に同じ方向である場合に限られない。延伸方向が僅かに異なっていても、技術常識を鑑み、厳密に同じ方向である場合と同視できる状態、すなわち本実施形態の所期の作用が得られる状態であればよい。すなわち、同一方向には、ほぼ同一方向が含まれる。
The same direction is not limited to exactly the same direction. Even if the stretching direction is slightly different, in view of technical common sense, it may be in a state in which it can be regarded as strictly the same direction, that is, a state in which the intended action of the present embodiment can be obtained. That is, substantially the same direction is included in the same direction.
第一の群に含まれるいかなる二つの圧電層10を選択しても、二つの圧電層10の延伸方向のなす角は、30度以下であることが好ましい。延伸方向のなす角が30度以下であれば、延伸方向が同一方向であるといえる。延伸方向のなす角は、20度以下であればより好ましく、10度以下であれば更に好ましく、0度であれば特に好ましい。この場合、圧電デバイス1は、力が加えられた場合に、より高い電圧を生じさせることができる。
The angle between the extension directions of the two piezoelectric layers 10 is preferably 30 degrees or less, regardless of whichever two piezoelectric layers 10 included in the first group are selected. If the angle formed by the stretching direction is 30 degrees or less, it can be said that the stretching direction is the same direction. The angle formed by the stretching direction is more preferably 20 degrees or less, further preferably 10 degrees or less, and particularly preferably 0 degrees. In this case, the piezoelectric device 1 can generate a higher voltage when a force is applied.
第二の群に含まれるいかなる二つの圧電層20を選択しても、二つの圧電層20の延伸方向のなす角は、30度以下であることが好ましい。延伸方向のなす角が30度以下であれば、延伸方向が同一方向であるといえる。延伸方向のなす角は、20度以下であればより好ましく、10度以下であれば更に好ましく、0度であれば特に好ましい。この場合、圧電デバイス1は、力が加えられた場合に、特に高い電圧を生じさせることができる。
The angle between the stretching directions of the two piezoelectric layers 20 is preferably 30 degrees or less, regardless of whichever two piezoelectric layers 20 are included in the second group. If the angle formed by the stretching direction is 30 degrees or less, it can be said that the stretching direction is the same direction. The angle formed by the stretching direction is more preferably 20 degrees or less, further preferably 10 degrees or less, and particularly preferably 0 degrees. In this case, the piezoelectric device 1 can generate a particularly high voltage when a force is applied.
圧電層10の延伸方向と圧電層20の延伸方向とは交差する。すなわち、圧電層10の延伸方向と、圧電層20の延伸方向とは、同一方向ではない。
The extension direction of the piezoelectric layer 10 and the extension direction of the piezoelectric layer 20 intersect. That is, the extension direction of the piezoelectric layer 10 and the extension direction of the piezoelectric layer 20 are not the same.
第一の群に含まれる圧電層10から選択されるいかなる圧電層10の延伸方向と、第二の群に含まれる圧電層20から選択されるいかなる圧電層20の延伸方向とのなす角も、75度以上、105度以下であることが好ましい。この場合、圧電デバイス1は、力が加えられた場合に、特に高い電圧を生じさせることができる。圧電層10の延伸方向と圧電層20の延伸方向とのなす角は、80度以上100度以下であることがより好ましく、85度以上95度以下であることが更に好ましい。
The angle between the extension direction of any piezoelectric layer 10 selected from the piezoelectric layers 10 included in the first group and the extension direction of any piezoelectric layer 20 selected from the piezoelectric layers 20 included in the second group is It is preferable that it is 75 degrees or more and 105 degrees or less. In this case, the piezoelectric device 1 can generate a particularly high voltage when a force is applied. The angle between the extension direction of the piezoelectric layer 10 and the extension direction of the piezoelectric layer 20 is preferably 80 degrees or more and 100 degrees or less, and more preferably 85 degrees or more and 95 degrees or less.
圧電層10及び圧電層20は、同一種の螺旋高分子を含むことが好ましい。言い換えると、圧電層10は螺旋高分子を含み、圧電層20も螺旋高分子を含み、圧電層10中の螺旋高分子と圧電層20中の螺旋高分子は同一種であることが好ましい。さらに言い換えると、圧電層10及び圧電層20は、同一種の螺旋高分子を含む延伸樹脂フィルムであることが好ましい。この場合、圧電層10と圧電層20とは特に同一性の高い圧電特性を有することができ、圧電デバイス1は、力が加えられた場合に、より高い電圧を生じさせることができる。圧電層10中の螺旋高分子は圧電層10の延伸方向に配向し、圧電層20中の螺旋高分子は圧電層20の延伸方向に配向している。すなわち、螺旋高分子の配向している方向が延伸方向である。
The piezoelectric layer 10 and the piezoelectric layer 20 preferably contain the same kind of helical polymer. In other words, it is preferable that the piezoelectric layer 10 includes a helical polymer, the piezoelectric layer 20 also includes a helical polymer, and the helical polymer in the piezoelectric layer 10 and the helical polymer in the piezoelectric layer 20 are the same type. Furthermore, in other words, it is preferable that the piezoelectric layer 10 and the piezoelectric layer 20 be a stretched resin film containing the same type of helical polymer. In this case, the piezoelectric layer 10 and the piezoelectric layer 20 can have particularly high piezoelectric characteristics, and the piezoelectric device 1 can generate a higher voltage when a force is applied. The helical polymer in the piezoelectric layer 10 is oriented in the extending direction of the piezoelectric layer 10, and the helical polymer in the piezoelectric layer 20 is oriented in the extending direction of the piezoelectric layer 20. That is, the direction in which the helical polymer is oriented is the stretching direction.
螺旋高分子は、螺旋構造を持つ分子鎖を有する。螺旋高分子は、例えばキラル分子を単位とするポリマー又はコポリマーを含む。同一種とは、光学活性を含めて、分子構造が同一であることを意味する。
The helical polymer has a molecular chain having a helical structure. Helical polymers include, for example, polymers or copolymers in units of chiral molecules. The same species means that molecular structures are the same including optical activity.
螺旋高分子は、L体ポリ乳酸又はD体ポリ乳酸であることが好ましい。すなわち、圧電層10及び圧電層20が、いずれもL体ポリ乳酸又はD体ポリ乳酸を含有することが好ましい。螺旋高分子がL体ポリ乳酸又はD体ポリ乳酸であると、圧電デバイス1は、力が加えられた場合に、特に高い電圧を生じさせることができる。さらに、L体ポリ乳酸及びD体ポリ乳酸は、いずれも生分解性の高分子であるため、環境負荷の低減が期待される。すなわち、圧電デバイスを環境調和型のデバイスにできる。
The helical polymer is preferably L-polylactic acid or D-polylactic acid. That is, it is preferable that each of the piezoelectric layer 10 and the piezoelectric layer 20 contain L-form polylactic acid or D-form polylactic acid. When the helical polymer is L-polylactic acid or D-polylactic acid, the piezoelectric device 1 can generate a particularly high voltage when a force is applied. Furthermore, since both L-polylactic acid and D-polylactic acid are biodegradable polymers, it is expected to reduce environmental burden. That is, the piezoelectric device can be made an environment-friendly device.
圧電層10及び圧電層20の厚みは、例えば3μm以上200μm以下である。
The thickness of the piezoelectric layer 10 and the piezoelectric layer 20 is, for example, 3 μm or more and 200 μm or less.
導電層30は、導電層30に接する圧電層10及び圧電層20に電気的に接続されている。導電層30は、導電性を有する。導電層30は、例えばインジウム、スズ、亜鉛、ガリウム、アンチモン、チタン、ケイ素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、及びタングステンからなる群から選択される少なくとも一種の金属、又は少なくとも一種の金属の酸化物から作製される。導電層30の厚みは、例えば10nm以上5μm以下である。
The conductive layer 30 is electrically connected to the piezoelectric layer 10 and the piezoelectric layer 20 in contact with the conductive layer 30. The conductive layer 30 has conductivity. The conductive layer 30 is, for example, at least one metal selected from the group consisting of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, and tungsten, or at least one metal It is made of one kind of metal oxide. The thickness of the conductive layer 30 is, for example, 10 nm or more and 5 μm or less.
第1の実施形態では、導電層30は、本体部30aと端子部30bとを有する。本体部30aは、上方から見て、圧電層10及び圧電層20より小さい寸法を有する。本体部30aは、導電層30に重なっている圧電層10の周縁部には接せず、導電層30に重なっている圧電層20の周縁部にも接しない。端子部30bは本体部30aの縁から突出し、圧電層10の周縁部の一部及び圧電層20の周縁部の一部に接している。なお、導電層30は、上方から見て圧電層10及び圧電層20と同じ寸法を有し、かつ導電層30に重なる圧電層10の全体及び導電層30に重なる圧電層20の全体と接していてもよい。導電層30がこれら以外の適宜の形状及び寸法を有していてもよい。
In the first embodiment, the conductive layer 30 has a main body portion 30a and a terminal portion 30b. The main body portion 30 a has dimensions smaller than those of the piezoelectric layer 10 and the piezoelectric layer 20 when viewed from above. The main body portion 30 a is not in contact with the peripheral portion of the piezoelectric layer 10 overlapping the conductive layer 30, and is not in contact with the peripheral portion of the piezoelectric layer 20 overlapping the conductive layer 30. The terminal portion 30 b protrudes from the edge of the main body portion 30 a and is in contact with a part of the peripheral portion of the piezoelectric layer 10 and a part of the peripheral portion of the piezoelectric layer 20. The conductive layer 30 has the same dimensions as the piezoelectric layer 10 and the piezoelectric layer 20 when viewed from above, and is in contact with the entire piezoelectric layer 10 overlapping the conductive layer 30 and the entire piezoelectric layer 20 overlapping the conductive layer 30. May be Conductive layer 30 may have any other suitable shape and dimension.
導電層30には、下方に圧電層10が、上方に圧電層20がそれぞれ重なっている第一導電層31と、上方に圧電層10が、下方に圧電層20がそれぞれ重なっている第二導電層32とが含まれる。
In the conductive layer 30, the first conductive layer 31 in which the piezoelectric layer 10 is overlapped with the lower part, and the piezoelectric layer 20 is overlapped with the upper part, and the second conductive in which the piezoelectric layer 10 is overlapped with the upper part. And the layer 32 is included.
圧電デバイス1で発生する電圧は、導電層30から外部に取り出される。圧電デバイス1は、導電層30に電気的に接続される外部電極を備えてもよい。外部電極は、例えば積層体5の外面に沿って設けられる。外部電極は、第一導電層31に電気的に接続されている電極と、第二導電層32に電気的に接続されている電極とを含む。圧電デバイス1が外部電極を備えると、圧電デバイス1で発生する電圧を、外部電力から外部へ取り出すことができる。導電層30が端子部30bを有すると、外部電極を端子部30bと接するように設けることで、外部電極と導電層30を容易に電気的に接続できる。
The voltage generated in the piezoelectric device 1 is extracted from the conductive layer 30 to the outside. The piezoelectric device 1 may include an external electrode electrically connected to the conductive layer 30. The outer electrode is provided, for example, along the outer surface of the laminate 5. The external electrode includes an electrode electrically connected to the first conductive layer 31 and an electrode electrically connected to the second conductive layer 32. When the piezoelectric device 1 includes the external electrode, the voltage generated in the piezoelectric device 1 can be extracted from the external power to the outside. When the conductive layer 30 has the terminal portion 30b, the external electrode and the conductive layer 30 can be easily electrically connected by providing the external electrode in contact with the terminal portion 30b.
外部電極は、例えばアルミニウム、亜鉛、スズ、鉛、ニッケル、鉄、銅、及び真鍮、並びにこれらのうちの二種以上の金属の合金からなる群から選択される、少なくとも一種の材料から作製される。外部電極は、導電性ゴムなどの変形容易な材料で作製されてもよい。外部電極は、導電性ペースト、導電性接着剤、又は導電性シートから作製されてもよい。
The outer electrode is made of at least one material selected from the group consisting of, for example, aluminum, zinc, tin, lead, nickel, iron, copper, and brass, and an alloy of two or more of these metals. . The outer electrode may be made of an easily deformable material such as conductive rubber. The outer electrode may be made of a conductive paste, a conductive adhesive, or a conductive sheet.
第1の実施形態では、導電層30を介して隣り合う圧電層10及び圧電層20の、対向し合う面同士が、導電層30で電気的に接続されている。すなわち、圧電層10及び圧電層20の、対向し合う面同士は電気的に絶縁されておらず、圧電層10と圧電層20との間には、圧電層10と圧電層20とを電気的に絶縁するための絶縁層は配置されない。なお、圧電層10と圧電層20との間には、導電層30以外に、圧電層10と圧電層20との間を電気的に絶縁しない層が介在していてもよい。例えば、圧電層10と圧電層20との間に、圧電層10の外縁部と圧電層20の外縁部とを接着する接着層が介在していてもよい。圧電層10と導電層30との間に、両者を接着し、かつ両者間を電気的に絶縁しない接着層が介在していてもよい。圧電層20と導電層30との間に、両者を接着し、かつ両者間を電気的に絶縁しない接着層が介在していてもよい。
In the first embodiment, opposing surfaces of the piezoelectric layer 10 and the piezoelectric layer 20 adjacent to each other via the conductive layer 30 are electrically connected by the conductive layer 30. That is, the facing surfaces of the piezoelectric layer 10 and the piezoelectric layer 20 are not electrically insulated, and between the piezoelectric layer 10 and the piezoelectric layer 20, the piezoelectric layer 10 and the piezoelectric layer 20 are electrically No insulating layer is provided to insulate. In addition to the conductive layer 30, a layer which does not electrically insulate between the piezoelectric layer 10 and the piezoelectric layer 20 may be interposed between the piezoelectric layer 10 and the piezoelectric layer 20. For example, an adhesive layer may be interposed between the piezoelectric layer 10 and the piezoelectric layer 20 for bonding the outer edge portion of the piezoelectric layer 10 and the outer edge portion of the piezoelectric layer 20. Between the piezoelectric layer 10 and the conductive layer 30, an adhesive layer may be interposed to bond the two and not electrically insulate between the two. Between the piezoelectric layer 20 and the conductive layer 30, an adhesive layer may be interposed to bond the two and not electrically insulate between the two.
また、圧電層10の数と圧電層20の数は図1に示される数に限られず、圧電層10及び圧電層20の数は、用途、必要とする発電量などに応じて適宜設定すればよい。
Further, the number of piezoelectric layers 10 and the number of piezoelectric layers 20 are not limited to the numbers shown in FIG. 1, and the numbers of piezoelectric layers 10 and piezoelectric layers 20 may be set appropriately according to the application, the required power generation, etc. Good.
第1の実施形態に係る圧電デバイス1の製造方法について、図3A~図3E及び図4A~図4Eを参照して説明する。
A method of manufacturing the piezoelectric device 1 according to the first embodiment will be described with reference to FIGS. 3A to 3E and 4A to 4E.
第一のフィルム材101及び第二のフィルム材201を用意する。第一のフィルム材101は、延伸樹脂フィルム401を備える。第二のフィルム材201は、延伸樹脂フィルム402を備える。第一のフィルム材101は、延伸樹脂フィルム401に重なる導電膜301を更に備える。一方、第二のフィルム材201は、導電膜を備えない。すなわち、第二のフィルム材201は、延伸樹脂フィルム402のみからなる。
The first film material 101 and the second film material 201 are prepared. The first film material 101 comprises a stretched resin film 401. The second film material 201 comprises a stretched resin film 402. The first film material 101 further includes a conductive film 301 overlapping the stretched resin film 401. On the other hand, the second film material 201 does not have a conductive film. That is, the second film material 201 consists only of the stretched resin film 402.
延伸樹脂フィルム401は、圧電層10を作製するための材料であり、形状を除き、圧電層10と同じ構成を有する。延伸樹脂フィルム402は、圧電層20を作製するための材料であり、形状を除き、圧電層20と同じ構成を有する。このため、延伸樹脂フィルム401と延伸樹脂フィルム402とは、同一の圧電特性を有する。また、延伸樹脂フィルム401と延伸樹脂フィルム402とは、同一種の螺旋高分子を含むことが好ましい。さらに、螺旋高分子は、L体ポリ乳酸又はD体ポリ乳酸であることが好ましい。
The stretched resin film 401 is a material for producing the piezoelectric layer 10 and has the same configuration as the piezoelectric layer 10 except for the shape. The stretched resin film 402 is a material for producing the piezoelectric layer 20, and has the same configuration as the piezoelectric layer 20 except for the shape. For this reason, the stretched resin film 401 and the stretched resin film 402 have the same piezoelectric characteristics. Moreover, it is preferable that the extending | stretching resin film 401 and the extending | stretching resin film 402 contain the same kind of helical polymer. Furthermore, the helical polymer is preferably L-polylactic acid or D-polylactic acid.
延伸樹脂フィルム401は、所定の長さを有する帯状であり、延伸樹脂フィルム401の延伸方向は、延伸樹脂フィルム401の長さ方向と一致する。延伸樹脂フィルム402も、所定の長さを有する帯状であり、延伸樹脂フィルム402の延伸方向は、延伸樹脂フィルム402の長さ方向と一致する。延伸樹脂フィルム401の幅寸法と、延伸樹脂フィルム402の幅寸法は、同じであることが好ましい。
The stretched resin film 401 is in the form of a strip having a predetermined length, and the stretching direction of the stretched resin film 401 coincides with the longitudinal direction of the stretched resin film 401. The stretched resin film 402 is also in the shape of a strip having a predetermined length, and the stretching direction of the stretched resin film 402 matches the length direction of the stretched resin film 402. The width dimension of the stretched resin film 401 and the width dimension of the stretched resin film 402 are preferably the same.
導電膜301は、導電層30を作製するための材料である。このため、導電膜301の材質は、導電層30と同じである。導電膜301は、導電性を有する材料を、例えば延伸樹脂フィルム401上に蒸着することによって形成することができる。導電膜301は、例えば接着剤を塗布してから金属箔などの導電性シートを重ねて形成してもよい。
The conductive film 301 is a material for manufacturing the conductive layer 30. Therefore, the material of the conductive film 301 is the same as that of the conductive layer 30. The conductive film 301 can be formed by vapor deposition of a conductive material, for example, on the stretched resin film 401. The conductive film 301 may be formed, for example, by applying an adhesive and then overlapping a conductive sheet such as a metal foil.
第1の実施形態では、導電膜301の厚みは、導電層30の厚みに一致する。
In the first embodiment, the thickness of the conductive film 301 matches the thickness of the conductive layer 30.
第一のフィルム材101は、延伸樹脂フィルム401の一つの面(以下、上面という)と、延伸樹脂フィルム401の上面とは反対側の面(以下、下面という)にそれぞれ重なる導電膜301を備える。延伸樹脂フィルム401の上面の導電膜301は、複数の分離膜に分かれている。分離膜は、間隔をあけて、延伸樹脂フィルム401の長手方向に並んでいる。分離膜は、第一導電層31に対応する第一分離膜311と、第二導電層32に対応する第二分離膜312とを含む。第一分離膜311と、第二分離膜312とは、交互に並んでいる。同様に、延伸樹脂フィルム401の下面の導電膜301も複数の分離膜に分かれており、この分離膜も第一分離膜311と第二分離膜312とを含む。各分離膜は、端子部30bに対応する一つの突出部311b(312b)を有する。突出部311b(312b)は、延伸樹脂フィルム401の長手方向に沿った方向に突出している。さらに、延伸樹脂フィルム401の上面の分離膜における突出部311bと、延伸樹脂フィルム401の下面の分離膜における突出部312bとは、長手方向に関して互いに逆方向に突出している。延伸樹脂フィルム401の上面の第一分離膜311と、延伸樹脂フィルム401下面の第二分離膜312とは、それぞれ対を構成し、各対における第一分離膜311と第二分離膜312は、延伸樹脂フィルム401を介して対向している。同様に、延伸樹脂フィルム401の上面の第二分離膜312と、延伸樹脂フィルム401下面の第一分離膜311とは、それぞれ対を構成し、各対における第二分離膜312と第一分離膜311は、延伸樹脂フィルム401を介して対向している。
The first film material 101 includes a conductive film 301 overlapping on one surface (hereinafter referred to as the upper surface) of the stretched resin film 401 and the surface on the opposite side to the upper surface of the stretched resin film 401 (hereinafter referred to as the lower surface). . The conductive film 301 on the upper surface of the stretched resin film 401 is divided into a plurality of separation films. The separation membranes are arranged in the longitudinal direction of the stretched resin film 401 at intervals. The separation film includes a first separation film 311 corresponding to the first conductive layer 31 and a second separation film 312 corresponding to the second conductive layer 32. The first separation membranes 311 and the second separation membranes 312 are alternately arranged. Similarly, the conductive film 301 on the lower surface of the stretched resin film 401 is also divided into a plurality of separation films, and this separation film also includes a first separation film 311 and a second separation film 312. Each separation membrane has one protrusion 311 b (312 b) corresponding to the terminal 30 b. The protrusion 311 b (312 b) protrudes in the direction along the longitudinal direction of the stretched resin film 401. Furthermore, the protrusion 311 b in the separation membrane on the upper surface of the stretched resin film 401 and the protrusion 312 b in the separation membrane on the lower surface of the stretched resin film 401 protrude in mutually opposite directions with respect to the longitudinal direction. The first separation membrane 311 on the upper surface of the stretched resin film 401 and the second separation membrane 312 on the lower surface of the stretched resin film 401 constitute a pair, and the first separation membrane 311 and the second separation membrane 312 in each pair are It is opposed via the stretched resin film 401. Similarly, the second separation membrane 312 on the upper surface of the stretched resin film 401 and the first separation membrane 311 on the lower surface of the stretched resin film 401 respectively constitute a pair, and the second separation membrane 312 and the first separation membrane in each pair 311 are opposed via the stretched resin film 401.
導電膜301にマーキングをすることが好ましい。すなわち、導電膜301にマークを設けることが好ましい。この場合、圧電デバイス1の製造に従事する者は、導電膜301に設けられたマークに基づいて、第一のフィルム材101と第二のフィルム材201との正しい位置関係を把握できる。そのため、圧電デバイス1の製造を円滑に行うことができる。例えば、図11Aに示すように、第一分離膜311に「A」、第二分離膜312に「B」という、互いに異なる形のマークを設けると、第一分離膜311と第二分離膜312とが容易に識別されうる。また、延伸樹脂フィルム401の上面に重なる導電膜301と、延伸樹脂フィルム401の下面に重なる導電膜301に、互いに異なる形のマークを設けると、延伸樹脂フィルム401の上面と下面とが容易に識別されうる。マーキングは、適宜の方法で行われる。例えばマーキングは、導電膜にインク等を部分的に塗布することで行われる。マーキングは、導電膜の一部を除去し、この除去された部分をマークとすることで行われてもよい。
It is preferable to mark the conductive film 301. That is, the conductive film 301 is preferably provided with a mark. In this case, a person who is engaged in the manufacture of the piezoelectric device 1 can grasp the correct positional relationship between the first film material 101 and the second film material 201 based on the marks provided on the conductive film 301. Therefore, the piezoelectric device 1 can be manufactured smoothly. For example, as shown in FIG. 11A, when the first separation film 311 is provided with marks having different shapes such as “A” and the second separation film 312 “B”, the first separation film 311 and the second separation film 312 are provided. Can be easily identified. In addition, when the conductive film 301 overlapping the upper surface of the stretched resin film 401 and the conductive film 301 overlapping the lower surface of the stretched resin film 401 are provided with marks of different shapes, the upper surface and the lower surface of the stretched resin film 401 can be easily identified. It can be done. Marking is performed in an appropriate manner. For example, marking is performed by partially applying an ink or the like to the conductive film. Marking may be performed by removing a part of the conductive film and using the removed part as a mark.
第一のフィルム材101と第二のフィルム材201とを、第一のフィルム材101の延伸樹脂フィルム401の延伸方向と、第二のフィルム材201の延伸樹脂フィルム402の延伸方向とが、交差するように編み込み折りをすることで、圧電デバイス1を作製できる。
In the first film material 101 and the second film material 201, the stretching direction of the stretched resin film 401 of the first film material 101 and the stretching direction of the stretched resin film 402 of the second film material 201 intersect The piezoelectric device 1 can be manufactured by weaving and folding as described above.
第1の実施形態に係る圧電デバイス1の製造方法によれば、第一のフィルム材101における延伸樹脂フィルム401と、第二のフィルム材201における延伸樹脂フィルム402として、同一の圧電特性を有する同一種のフィルムを用いることができる。このため、製造上の手間を抑制することができ、コストを低減させることもできる。
According to the method of manufacturing the piezoelectric device 1 according to the first embodiment, the stretched resin film 401 in the first film material 101 and the stretched resin film 402 in the second film material 201 have the same piezoelectric characteristics. One type of film can be used. For this reason, it is possible to suppress the trouble of manufacturing and to reduce the cost.
なお、編み込み折りをするとは、二つの材料の一部同士を重ねた状態で、二つの材料のうち一方と他方を交互に繰り返し折り返すことで、二つの材料のうち一方を折り返した部分と他方を折り返した部分とを交互に重ねることをいう。
In addition, to fold and fold, in a state in which two materials are partially overlapped, one and the other of the two materials are alternately and repeatedly folded, whereby a portion and the other are obtained by folding one of the two materials. It refers to alternately stacking the folded part.
編み込み折りするに当たっては、例えばまず、第一のフィルム材101の延伸樹脂フィルム401の延伸方向と、第二のフィルム材201の延伸樹脂フィルム402の延伸方向とが、交差するように、第一のフィルム材101の端部と第二のフィルム材201の端部を重ねる。次に、第一のフィルム材101を第二のフィルム材201の長辺に沿って折り返して第二のフィルム材201に重ねてから、第二のフィルム材201を第一のフィルム材101の長辺に沿って折り返して第一のフィルム材101に重ねることを、繰り返す。
In knitting and folding, for example, the first stretching direction of the stretched resin film 401 of the first film material 101 first crosses the stretching direction of the stretched resin film 402 of the second film material 201. The end of the film material 101 and the end of the second film material 201 are overlapped. Next, after the first film material 101 is folded along the long side of the second film material 201 and stacked on the second film material 201, the second film material 201 is used as a length of the first film material 101. Repeating folding along the side and overlapping on the first film material 101 is repeated.
このため、第一のフィルム材101と第二のフィルム材201とから編み込み折りをすることで圧電デバイス1を、容易に製造することができるため、製造上の手間を省略することができ、生産効率の向上に寄与することができる。
For this reason, since the piezoelectric device 1 can be easily manufactured by weaving and folding the first film material 101 and the second film material 201, it is possible to save time and effort in manufacturing. It can contribute to the improvement of efficiency.
第一のフィルム材101及び第二のフィルム材201は、長尺であるので、例えばリール状に巻いた延伸樹脂フィルム401を巻き出して、適宜の寸法に合わせて、編み込み折りすることができるため、生産効率をより向上させることができる。
Since the first film material 101 and the second film material 201 are long, they can be wound and folded in accordance with an appropriate dimension, for example, by unwinding the stretched resin film 401 wound in a reel shape. , The production efficiency can be further improved.
より具体的には、第1の実施形態では、第一のフィルム材101と第二のフィルム材201との編み込み折りは、例えば次のように行われる。
More specifically, in the first embodiment, the knitting and folding of the first film material 101 and the second film material 201 are performed, for example, as follows.
まず、図4Aに示すように、第一のフィルム材101の延伸樹脂フィルム401の延伸方向と、第二のフィルム材201の延伸樹脂フィルム402の延伸方向とが、交差するように、第一のフィルム材101の端部と第二のフィルム材201の端部を重ねる。具体的には、例えば第一のフィルム材101を、延伸樹脂フィルム401の上面が上方を向くように配置する。この第一のフィルム材101の端部において、一つの第一分離膜311が上方を向いている。この第一のフィルム材101の端部における第一分離膜311の上に、第二のフィルム材201の端部を、第一のフィルム材101の長手方向と第二のフィルム材201の長手方向とが直交する状態で重ねる。この場合、導電膜301にマーキングされていれば、製造に従事する者は、第一のフィルム材101と第二のフィルム材201との位置関係を正しく設定することが容易である。
First, as shown in FIG. 4A, the first extending direction of the stretched resin film 401 of the first film material 101 and the extending direction of the stretched resin film 402 of the second film material 201 cross each other. The end of the film material 101 and the end of the second film material 201 are overlapped. Specifically, for example, the first film material 101 is disposed such that the upper surface of the stretched resin film 401 is directed upward. At the end of the first film material 101, one first separation membrane 311 faces upward. On the first separation film 311 at the end of the first film material 101, the end of the second film material 201, the longitudinal direction of the first film material 101 and the longitudinal direction of the second film material 201. And overlap in an orthogonal state. In this case, if the conductive film 301 is marked, it is easy for a person engaged in manufacturing to correctly set the positional relationship between the first film material 101 and the second film material 201.
次に、図4Bに示すように、第一のフィルム材101を第二のフィルム材201の長辺に沿って折り返して第二のフィルム材201に重ねる。これにより、第一のフィルム材101における一つの第二分離膜312が第二のフィルム材201に重ねられる。次に、図4Cに示すように、第二のフィルム材201を第一のフィルム材101の長辺に沿って折り返して第一のフィルム材101に重ねる。これにより、第一のフィルム材101における一つの第一分離膜311の上に第二のフィルム材201が重ねられる。このように、第一のフィルム材101を折り返してから第二のフィルム材201を折り返すことを、繰り返し行う。これにより、第一のフィルム材101と第二のフィルム材201とを編み込み折りして作製された、図4Dに示すような物を、以下、中間品6という。
Next, as shown in FIG. 4B, the first film material 101 is folded back along the long side of the second film material 201 and superimposed on the second film material 201. Thereby, one second separation film 312 in the first film material 101 is superimposed on the second film material 201. Next, as shown in FIG. 4C, the second film material 201 is folded along the long side of the first film material 101 and overlaid on the first film material 101. Thereby, the second film material 201 is superimposed on one first separation film 311 in the first film material 101. As described above, the first film material 101 is folded back and then the second film material 201 is folded back repeatedly. Hereinafter, a product as shown in FIG. 4D, which is produced by knitting and folding the first film material 101 and the second film material 201, will be referred to as an intermediate product 6.
このように、第一のフィルム材101と第二のフィルム材201とを編み込み折りすると、第一のフィルム材101における延伸樹脂フィルム401の、第一のフィルム材101を折り返すことで第二のフィルム材201に重なった部分から、圧電層10が作製される。また、第二のフィルム材201における延伸樹脂フィルム402の、第二のフィルム材201を折り返すことで第一のフィルム材101に重なった部分から、圧電層20が作製される。さらに、導電膜301から導電層30が作製される。第1の実施形態では、第一分離膜311から第一導電層31が作製され、第二分離膜312から第二導電層32が作製される。各第一導電層31は一つの第一分離膜311で構成され、各第二導電層32は一つの第二分離膜312から構成される。この場合、圧電層10の延伸方向はいずれも同じ方向であり、圧電層20の延伸方向もいずれも同じ方向である。さらに、圧電層10の延伸方向と圧電層20の延伸方向は直交している。
As described above, when the first film material 101 and the second film material 201 are woven and folded, the first film material 101 of the stretched resin film 401 in the first film material 101 is folded back, and thus the second film The piezoelectric layer 10 is produced from the portion overlapping the material 201. In addition, the piezoelectric layer 20 is produced from the portion of the stretched resin film 402 in the second film material 201 which is overlapped with the first film material 101 by folding back the second film material 201. Further, the conductive layer 30 is manufactured from the conductive film 301. In the first embodiment, the first conductive layer 31 is produced from the first separation film 311, and the second conductive layer 32 is produced from the second separation film 312. Each first conductive layer 31 is composed of one first separation film 311, and each second conductive layer 32 is composed of one second separation film 312. In this case, the extension directions of the piezoelectric layers 10 are all the same, and the extension directions of the piezoelectric layers 20 are also the same. Furthermore, the extension direction of the piezoelectric layer 10 and the extension direction of the piezoelectric layer 20 are orthogonal to each other.
中間品6を作製するに当たって、延伸樹脂フィルムと延伸樹脂フィルムとが直接重なっている部分を、熱融着し、又は接着剤で接着してもよい。分離膜と延伸樹脂フィルムとを、熱融着し、又は分離膜と延伸樹脂フィルムとの間の電気的接続を阻害しない接着剤で接着してもよい。
When producing the intermediate product 6, the portion where the stretched resin film and the stretched resin film are directly overlapped may be heat-sealed or bonded with an adhesive. The separation membrane and the stretched resin film may be heat-sealed, or bonded with an adhesive that does not inhibit the electrical connection between the separation membrane and the stretched resin film.
中間品6から第一のフィルム材101の折り返し部分と、第二のフィルム材201の折り返し部分とを切り取ることも好ましい。この場合、第一のフィルム材101を複数の圧電層10に分離し、かつ第二のフィルム材201を複数の圧電層20に分離できる。例えば、中間品6を図4Eに示す矢印の位置で切り取ることで、図1に示す積層体5が得られる。さらに、第1の実施形態では、第一のフィルム材101及び第二のフィルム材201の折り返し部分を切り取ることで形成された切断面に、分離膜の突出部311b(312b)に由来する導電層の端子部30bを露出させることができる。
It is also preferable to cut off the folded portion of the first film material 101 from the intermediate product 6 and the folded portion of the second film material 201. In this case, the first film material 101 can be separated into a plurality of piezoelectric layers 10, and the second film material 201 can be separated into a plurality of piezoelectric layers 20. For example, by cutting off the intermediate product 6 at the position of the arrow shown in FIG. 4E, the laminate 5 shown in FIG. 1 is obtained. Furthermore, in the first embodiment, a conductive layer derived from the protrusion 311 b (312 b) of the separation membrane on the cut surface formed by cutting off the folded portions of the first film material 101 and the second film material 201. Can be exposed.
積層体5に、必要に応じて外部電極を設ける。外部電極は、溶射法などの公知の方法で作製できる。積層体5に外部電極を設けると、端子部30bに外部電極を電気的に接続することで、圧電デバイス1から電圧を効率よく取り出すことができる。
The laminated body 5 is provided with an external electrode as needed. The external electrode can be produced by a known method such as a thermal spraying method. When the laminated body 5 is provided with the external electrode, the voltage can be efficiently extracted from the piezoelectric device 1 by electrically connecting the external electrode to the terminal portion 30 b.
編み込み織りの方法は上記の説明に限られない。例えば、まず、第一のフィルム材101と第二のフィルム材201との端部以外の部分を重ねた状態から、折り返してもよい。また、第一のフィルム材101と第二のフィルム材201とは、長手方向を直交させていなくても、延伸方向が交差するように重ねられていればよい。
The method of weaving and weaving is not limited to the above description. For example, first, the first film material 101 and the second film material 201 may be folded from a state in which the portions other than the end portions are overlapped. In addition, even if the first film material 101 and the second film material 201 are not orthogonal to each other in the longitudinal direction, they may be overlapped so that the stretching directions intersect.
また、導電膜のパターンは上記の説明に限られない。例えば、圧電デバイス1における端子部30bの位置に応じて、突出部311b(312b)の位置が適宜設定される。例えば図11A~図11Gに一例として示すように、導電膜301の突出部311b(312b)から形成される端子の位置、形状に対応した種々のパターンを形成することができる。
Further, the pattern of the conductive film is not limited to the above description. For example, the position of the protrusion 311 b (312 b) is appropriately set in accordance with the position of the terminal portion 30 b in the piezoelectric device 1. For example, as shown in FIG. 11A to FIG. 11G as an example, various patterns corresponding to the positions and shapes of terminals formed from the projecting portions 311b (312b) of the conductive film 301 can be formed.
また、導電膜301が複数の分離膜に分離していなくてもよい。その場合でも、中間品から折り返し部分を切り取れば、導電膜を複数の導電層に分離できる。
In addition, the conductive film 301 may not be separated into a plurality of separation films. Even in such a case, the conductive film can be separated into a plurality of conductive layers by cutting the folded portion from the intermediate product.
[第2の実施形態]
第2の実施形態に係る圧電デバイス1では、第1の実施形態において、各々の導電層30は、第一層33と第二層34とを備える。さらに、各々の導電層30は二つの端子部を備える。それ以外は、第2の実施形態に係る圧電デバイス1の構成は、第1の実施形態に係る圧電デバイス1と同一である。以下では、第1の実施形態と同一の構成要素については、同じ符号を付し、重複説明を適宜省略する。 Second Embodiment
In the piezoelectric device 1 according to the second embodiment, eachconductive layer 30 includes the first layer 33 and the second layer 34 in the first embodiment. Furthermore, each conductive layer 30 comprises two terminal parts. Otherwise, the configuration of the piezoelectric device 1 according to the second embodiment is the same as that of the piezoelectric device 1 according to the first embodiment. Below, about the component same as 1st Embodiment, the same code | symbol is attached | subjected and duplication description is abbreviate | omitted suitably.
第2の実施形態に係る圧電デバイス1では、第1の実施形態において、各々の導電層30は、第一層33と第二層34とを備える。さらに、各々の導電層30は二つの端子部を備える。それ以外は、第2の実施形態に係る圧電デバイス1の構成は、第1の実施形態に係る圧電デバイス1と同一である。以下では、第1の実施形態と同一の構成要素については、同じ符号を付し、重複説明を適宜省略する。 Second Embodiment
In the piezoelectric device 1 according to the second embodiment, each
図5A、図5Bに示すように、第一層33と第二層34とは、上下方向に重なっている。第一層33は圧電層10に重なり、第二層34は圧電層20に重なっている。第一層33と第二層34とは、電気的に接続されている。第一層33と第二層34とは、直接接していてもよい。第一層33と第二層34とは、導電性を有する接着剤又は第一層33と第二層34との間の電気的な接続を阻害しない接着剤で、接着されていてもよい。各々の導電層30は第一層33が有する端子部33bと、第二層34が有する端子部34bとを備える。第一導電層31における二つの端子部は互いに直交する方向に突出し、第二導電層32における二つの端子部も互いに直交する方向に突出する。さらに、第一導電層31における二つの端子部及び第二導電層32における二つの端子部は、それぞれ互いに異なる四方向に突出している。
As shown in FIGS. 5A and 5B, the first layer 33 and the second layer 34 overlap in the vertical direction. The first layer 33 overlaps the piezoelectric layer 10, and the second layer 34 overlaps the piezoelectric layer 20. The first layer 33 and the second layer 34 are electrically connected. The first layer 33 and the second layer 34 may be in direct contact with each other. The first layer 33 and the second layer 34 may be bonded with an adhesive having conductivity or an adhesive that does not inhibit the electrical connection between the first layer 33 and the second layer 34. Each conductive layer 30 includes a terminal portion 33 b of the first layer 33 and a terminal portion 34 b of the second layer 34. The two terminal portions of the first conductive layer 31 project in directions orthogonal to each other, and the two terminal portions of the second conductive layer 32 also project in directions orthogonal to each other. Furthermore, the two terminal portions of the first conductive layer 31 and the two terminal portions of the second conductive layer 32 respectively project in four different directions.
第2の実施形態に係る圧電デバイス1の製造方法を、図6A、図6B及び図7A~図7Dを参照して説明する。
A method of manufacturing the piezoelectric device 1 according to the second embodiment will be described with reference to FIGS. 6A, 6B and 7A to 7D.
第一のフィルム材101及び第二のフィルム材201を用意する。第一のフィルム材101は、延伸樹脂フィルム401を備える。第二のフィルム材201は、延伸樹脂フィルム402を備える。第一のフィルム材101は、延伸樹脂フィルム401に重なる導電膜301を更に備える。第二のフィルム材201も、延伸樹脂フィルム401に重なる導電膜302を更に備える。
The first film material 101 and the second film material 201 are prepared. The first film material 101 comprises a stretched resin film 401. The second film material 201 comprises a stretched resin film 402. The first film material 101 further includes a conductive film 301 overlapping the stretched resin film 401. The second film material 201 also further includes a conductive film 302 overlapping the stretched resin film 401.
延伸樹脂フィルム401及び延伸樹脂フィルム402は、第1の実施形態の場合と同じ構成を有する。
The stretched resin film 401 and the stretched resin film 402 have the same configuration as in the case of the first embodiment.
第一のフィルム材101における、導電膜301は、厚みが第一層33の厚みに一致すること以外は、第1の実施形態における導電膜301と同じ構成を有する。
The conductive film 301 in the first film material 101 has the same configuration as the conductive film 301 in the first embodiment except that the thickness matches the thickness of the first layer 33.
第二のフィルム材201における、導電膜302は、厚みが第二層34の厚みに一致すること以外は、第1の実施形態の第一のフィルム材101における導電膜と同じ構成を有する。すなわち、第二のフィルム材201は、延伸樹脂フィルム402の上面と、延伸樹脂フィルム402の下面とにそれぞれ重なる導電膜302を備える。延伸樹脂フィルム402の上面の導電膜302は、複数の分離膜に分かれており、これらの分離膜は、第一導電層31に対応する第一分離膜311と、第二導電層32に対応する第二分離膜312とを含む。延伸樹脂フィルム402の下面の導電膜302も、複数の分離膜に分かれており、これらの分離膜も、第一導電層31に対応する第一分離膜311と、第二導電層32に対応する第二分離膜312とを含む。
The conductive film 302 in the second film material 201 has the same configuration as the conductive film in the first film material 101 of the first embodiment except that the thickness matches the thickness of the second layer 34. That is, the second film material 201 includes the conductive film 302 overlapping the upper surface of the stretched resin film 402 and the lower surface of the stretched resin film 402. The conductive film 302 on the upper surface of the stretched resin film 402 is divided into a plurality of separation films, and these separation films correspond to the first separation film 311 corresponding to the first conductive layer 31 and the second conductive layer 32. And a second separation membrane 312. The conductive film 302 on the lower surface of the stretched resin film 402 is also divided into a plurality of separation films, and these separation films also correspond to the first separation film 311 corresponding to the first conductive layer 31 and the second conductive layer 32. And a second separation membrane 312.
第2の実施形態でも、導電膜にマーキングをすることが好ましい。すなわち、導電膜にマークを設けることが好ましい。この場合、第1の実施形態と同様、圧電デバイス1の製造を円滑に行うことができる。例えば、図11Aに示すように、第一分離膜311と第二分離膜312とに、互いに異なる形のマークを設けると、第一分離膜311と第二分離膜312とが容易に識別されうる。また、延伸樹脂フィルム401の上面に重なる導電膜301と、延伸樹脂フィルム401の下面に重なる導電膜301に、互いに異なる形のマークを設けると、延伸樹脂フィルム401の上面と下面とが容易に識別されうる。また、延伸樹脂フィルム402の上面に重なる導電膜302と、延伸樹脂フィルム402の下面に重なる導電膜302に、互いに異なる形のマークを設けると、延伸樹脂フィルム402の上面と下面とが容易に識別されうる。
Also in the second embodiment, it is preferable to mark the conductive film. That is, it is preferable to provide a mark on the conductive film. In this case, as in the first embodiment, the piezoelectric device 1 can be manufactured smoothly. For example, as shown in FIG. 11A, when the first separation film 311 and the second separation film 312 are provided with marks of different shapes, the first separation film 311 and the second separation film 312 can be easily distinguished. . In addition, when the conductive film 301 overlapping the upper surface of the stretched resin film 401 and the conductive film 301 overlapping the lower surface of the stretched resin film 401 are provided with marks of different shapes, the upper surface and the lower surface of the stretched resin film 401 can be easily identified. It can be done. In addition, when the conductive film 302 overlapping the upper surface of the stretched resin film 402 and the conductive film 302 overlapping the lower surface of the stretched resin film 402 are provided with marks of different shapes, the upper surface and the lower surface of the stretched resin film 402 can be easily identified. It can be done.
第2の実施形態でも、第一のフィルム材101と第二のフィルム材201とを、第一のフィルム材101の延伸樹脂フィルム401の延伸方向と、第二のフィルム材201の延伸樹脂フィルム402の延伸方向とが、交差するように編み込み折りをすることで、圧電デバイス1を作製できる。
Also in the second embodiment, the first film material 101 and the second film material 201, the stretching direction of the stretched resin film 401 of the first film material 101, and the stretched resin film 402 of the second film material 201. The piezoelectric device 1 can be manufactured by braiding and folding so that the stretching direction of and cross each other.
より具体的には、第2の実施形態では、第一のフィルム材101と第二のフィルム材201とを編み込み折りは、例えば次のように行われる。
More specifically, in the second embodiment, the first film material 101 and the second film material 201 are woven and folded, for example, as follows.
図7Aに示すように、まず、第一のフィルム材101の延伸樹脂フィルム401の延伸方向と、第二のフィルム材201の延伸樹脂フィルム402の延伸方向とが、交差するように、第一のフィルム材101の端部と第二のフィルム材201の端部を重ねる。具体的には、例えば第一のフィルム材101を、延伸樹脂フィルム401の上面が上方を向くように配置する。この第一のフィルム材101の端部において、一つの第一分離膜311が上方を向いている。この第一のフィルム材101の端部に第二のフィルム材201の端部を、第一のフィルム材101の長手方向と第二のフィルム材201の長手方向とが直交する状態で重ねる。このとき、第二のフィルム材201の端部において、一つの第一分離膜311が下方を向いている。すなわち、第一のフィルム材101の第一分離膜311に第二のフィルム材201の第一分離膜311を重ねる。この場合、導電膜301にマーキングされていれば、製造に従事する者は、第一のフィルム材101と第二のフィルム材201との位置関係を正しく設定することが容易である。
As shown in FIG. 7A, first, the stretching direction of the stretched resin film 401 of the first film material 101 and the stretching direction of the stretched resin film 402 of the second film material 201 intersect each other. The end of the film material 101 and the end of the second film material 201 are overlapped. Specifically, for example, the first film material 101 is disposed such that the upper surface of the stretched resin film 401 is directed upward. At the end of the first film material 101, one first separation membrane 311 faces upward. The end of the second film material 201 is superimposed on the end of the first film material 101 in such a manner that the longitudinal direction of the first film material 101 and the longitudinal direction of the second film material 201 are orthogonal to each other. At this time, one first separation membrane 311 is directed downward at the end of the second film material 201. That is, the first separation film 311 of the second film material 201 is superimposed on the first separation film 311 of the first film material 101. In this case, if the conductive film 301 is marked, it is easy for a person engaged in manufacturing to correctly set the positional relationship between the first film material 101 and the second film material 201.
次に、図7Bに示すように、第一のフィルム材101を第二のフィルム材201の長辺に沿って折り返して第二のフィルム材201に重ねる。これにより、第一のフィルム材101における一つの第二分離膜312が第二のフィルム材201における一つの第二分離膜312に重ねられる。次に、図7Cに示すように、第二のフィルム材201を第一のフィルム材101の長辺に沿って折り返して第一のフィルム材101に重ねる。これにより、第一のフィルム材101における一つの第一分離膜311の上に第二のフィルム材201における一つの第一分離膜311が重ねられる。このように、第一のフィルム材101を折り返してから第二のフィルム材201を折り返すことを、繰り返し行う。これにより、第一のフィルム材101と第二のフィルム材201とを編み込み折りして作製された、図7Dに示すような物を、以下、中間品6という。
Next, as shown in FIG. 7B, the first film material 101 is folded back along the long side of the second film material 201 and overlaid on the second film material 201. Thereby, one second separation membrane 312 in the first film material 101 is superimposed on one second separation membrane 312 in the second film material 201. Next, as shown in FIG. 7C, the second film material 201 is folded along the long side of the first film material 101 and overlaid on the first film material 101. Thereby, one first separation membrane 311 in the second film material 201 is superimposed on one first separation membrane 311 in the first film material 101. As described above, the first film material 101 is folded back and then the second film material 201 is folded back repeatedly. An article as shown in FIG. 7D, which is produced by knitting and folding the first film material 101 and the second film material 201 in this manner, is hereinafter referred to as an intermediate product 6.
このように、第一のフィルム材101と第二のフィルム材201とを編み込み折りすると、第一のフィルム材101における延伸樹脂フィルムの401の、第一のフィルム材101を折り返すことで第二のフィルム材201に重なった部分から、圧電層10が作製される。また、第二のフィルム材201における延伸樹脂フィルム402の、第二のフィルム材201を折り返すことで第一のフィルム材101に重なった部分から、圧電層20が作製される。さらに、導電膜301から導電層30が作製される。第2の実施形態では、第一のフィルム材101の第一分離膜311から第一層33が作製され、第二のフィルム材201の第一分離膜311から第二層34が作製され、これらの第一層33と第二層34とから第一導電層31が作製される。また、第一のフィルム材101の第二分離膜312から第一層33が作製され、第二のフィルム材201の第二分離膜312から第二層34が作製され、これらの第一層33と第二層34とから第二導電層32が作製される。すなわち、各第一導電層31は二つの第一分離膜311で構成され、各第二導電層32は二つの第二分離膜312から構成される。この場合、圧電層10の延伸方向はいずれも同じ方向であり、圧電層20の延伸方向もいずれも同じ方向である。さらに、圧電層10の延伸方向と圧電層20の延伸方向は直交している。
As described above, when the first film material 101 and the second film material 201 are woven and folded, the first film material 101 of the stretched resin film 401 in the first film material 101 is folded back, and thus the second film The piezoelectric layer 10 is manufactured from the portion overlapping the film material 201. In addition, the piezoelectric layer 20 is produced from the portion of the stretched resin film 402 in the second film material 201 which is overlapped with the first film material 101 by folding back the second film material 201. Further, the conductive layer 30 is manufactured from the conductive film 301. In the second embodiment, the first separation film 311 is made of the first separation film 311 of the first film material 101, and the first separation film 311 is made of the first separation film 311 of the second film material 201. The first conductive layer 31 is produced from the first layer 33 and the second layer 34 of In addition, the first layer 33 is produced from the second separation membrane 312 of the first film material 101, and the second layer 34 is produced from the second separation membrane 312 for the second film material 201. And the second layer 34 produce the second conductive layer 32. That is, each first conductive layer 31 is composed of two first separation films 311, and each second conductive layer 32 is composed of two second separation films 312. In this case, the extension directions of the piezoelectric layers 10 are all the same, and the extension directions of the piezoelectric layers 20 are also the same. Furthermore, the extension direction of the piezoelectric layer 10 and the extension direction of the piezoelectric layer 20 are orthogonal to each other.
中間品6を作製するに当たって、第一のフィルム材の延伸樹脂フィルムと第二のフィルム材の延伸樹脂フィルムとが直接重なっている部分を、熱融着し、又は接着剤で接着してもよい。分離膜と延伸樹脂フィルムとを、分離膜と延伸樹脂フィルムとの間の電気的接続を阻害しない接着剤で接着してもよい。重なり合う分離膜同士を、導電性を有する接着剤又は分離膜同士の間の電気的な接続を阻害しない接着剤で、接着してもよい。
When producing the intermediate product 6, the portion where the stretched resin film of the first film material and the stretched resin film of the second film material are directly overlapped may be heat-sealed or bonded with an adhesive. . The separation membrane and the stretched resin film may be bonded with an adhesive that does not inhibit the electrical connection between the separation membrane and the stretched resin film. Overlapping separation membranes may be adhered with an adhesive having conductivity or an adhesive which does not inhibit the electrical connection between the separation membranes.
第1の実施形態と同様、中間品6から第一のフィルム材101の折り返し部分と、第二のフィルム材201の折り返し部分とを切り取ることも好ましい。この場合、第一のフィルム材101を複数の圧電層10に分離し、かつ第二のフィルム材201を複数の圧電層20に分離できる。これにより、図5Aに示す積層体5が得られる。さらに、第2の実施形態では、第一のフィルム材101の折り返し部分を切り取ることで形成された切断面に、分離膜の突出部に由来する導電層の端子部を露出させることができる。
As in the first embodiment, it is also preferable to cut the folded portion of the first film material 101 from the intermediate product 6 and the folded portion of the second film material 201. In this case, the first film material 101 can be separated into a plurality of piezoelectric layers 10, and the second film material 201 can be separated into a plurality of piezoelectric layers 20. Thereby, the laminated body 5 shown to FIG. 5A is obtained. Furthermore, in the second embodiment, the terminal portion of the conductive layer derived from the protruding portion of the separation membrane can be exposed on the cut surface formed by cutting off the folded portion of the first film material 101.
積層体に、必要に応じて外部電極を設ける。外部電極は、溶射法などの公知の方法で作製できる。積層体に外部電極を設けると、端子部に外部電極を電気的に接続することで、圧電デバイス1から電圧を効率よく取り出すことができる。
The laminated body is provided with an external electrode as needed. The external electrode can be produced by a known method such as a thermal spraying method. When an external electrode is provided in the laminate, a voltage can be efficiently extracted from the piezoelectric device 1 by electrically connecting the external electrode to the terminal portion.
第2の実施形態では、第一のフィルム材101における延伸樹脂フィルム401と第二のフィルム材201における延伸樹脂フィルム402とは同じ構成を有することができ、かつ第一のフィルム材101における導電膜301と第二のフィルム材201における導電膜302も同じ構成を有することができる。すなわち、第一のフィルム材101と第二のフィルム材201とは、同じ構成を有することができる。そのため、第一のフィルム材101と第二のフィルム材201として異なる材料を用意する必要がなく、同一のフィルム材から、圧電デバイス1を作製することができる。このため、製造上の手間を抑制することができる。
In the second embodiment, the stretched resin film 401 in the first film material 101 and the stretched resin film 402 in the second film material 201 can have the same configuration, and the conductive film in the first film material 101 The conductive films 302 in the film 301 and the second film material 201 can also have the same configuration. That is, the first film material 101 and the second film material 201 can have the same configuration. Therefore, it is not necessary to prepare different materials as the first film material 101 and the second film material 201, and the piezoelectric device 1 can be manufactured from the same film material. For this reason, it is possible to suppress the trouble of manufacturing.
[第3の実施形態]
第3の実施形態に係る圧電デバイス1では、図8A、図8Bに示すように、第一導電層31における端子部と、第二導電層32における端子部とが、互いに直交する方向に突出している。このこと以外は、第3の実施形態に係る圧電デバイス1は、第1の実施形態に係る圧電デバイスと、実質的に同一の構成要素を備える。以下では、第1の実施形態と同一の構成要素については、同じ符号を付することにより重複説明を省略して、説明する。 Third Embodiment
In the piezoelectric device 1 according to the third embodiment, as shown in FIGS. 8A and 8B, the terminal portion in the firstconductive layer 31 and the terminal portion in the second conductive layer 32 project in directions orthogonal to each other. There is. Except for this, the piezoelectric device 1 according to the third embodiment includes substantially the same components as the piezoelectric device according to the first embodiment. In the following, the same components as those of the first embodiment will be described by attaching the same reference numerals and omitting the redundant description.
第3の実施形態に係る圧電デバイス1では、図8A、図8Bに示すように、第一導電層31における端子部と、第二導電層32における端子部とが、互いに直交する方向に突出している。このこと以外は、第3の実施形態に係る圧電デバイス1は、第1の実施形態に係る圧電デバイスと、実質的に同一の構成要素を備える。以下では、第1の実施形態と同一の構成要素については、同じ符号を付することにより重複説明を省略して、説明する。 Third Embodiment
In the piezoelectric device 1 according to the third embodiment, as shown in FIGS. 8A and 8B, the terminal portion in the first
第3の実施形態に係る圧電デバイス1の製造方法を、図9A~図9D及び図10A~図10Dを参照して説明する。
A method of manufacturing the piezoelectric device 1 according to the third embodiment will be described with reference to FIGS. 9A to 9D and 10A to 10D.
第一のフィルム材103及び第二のフィルム材203を用意する。第一のフィルム材103は、延伸樹脂フィルム401を備える。第二のフィルム材203は、延伸樹脂フィルム402を備える。第一のフィルム材103は、延伸樹脂フィルム401に重なる導電膜303を更に備える。第二のフィルム材203も、延伸樹脂フィルム402に重なる導電膜304を更に備える。
The first film material 103 and the second film material 203 are prepared. The first film material 103 comprises a stretched resin film 401. The second film material 203 comprises a stretched resin film 402. The first film material 103 further includes a conductive film 303 overlapping the stretched resin film 401. The second film material 203 also further includes a conductive film 304 overlapping the stretched resin film 402.
延伸樹脂フィルム401及び延伸樹脂フィルム402は、第1の実施形態の場合と同じ構成を有する。
The stretched resin film 401 and the stretched resin film 402 have the same configuration as in the case of the first embodiment.
第一のフィルム材103は、延伸樹脂フィルム401の一つの面(以下、上面という)と、延伸樹脂フィルム402の上面とは反対側の面(以下、下面という)にそれぞれ重なる導電膜303を備える。延伸樹脂フィルム401の上面の導電膜303は、複数の分離膜に分かれている。分離膜は、間隔をあけて、延伸樹脂フィルム401の長手方向に並んでいる。延伸樹脂フィルム401の上面の、隣り合う分離膜の間には、分離膜が設けられていないブランク部501がある。すなわち、延伸樹脂フィルム401の上面には、分離膜とブランク部501とが交互に並んでいる。ブランク部501の寸法は、分離膜よりも僅かに大きい。例えばブランク部501の長さ(第一のフィルム材103の長手方向に沿った寸法)は、第一のフィルム材103の幅寸法と同じである。延伸樹脂フィルム401の下面の導電膜303も、複数の分離膜に分かれている。延伸樹脂フィルム401の下面にも、上面と同様のブランク部501がある。すなわち、延伸樹脂フィルム401の下面には、分離膜とブランク部501とが交互に並んでいる。延伸樹脂フィルム401の上面の第一分離膜331と、延伸樹脂フィルム401下面のブランク部501とは、それぞれ対を構成し、延伸樹脂フィルム401の上面のブランク部501と、延伸樹脂フィルム401下面の分離膜とも、それぞれ対を構成している。各対における分離膜とブランク部501とは、延伸樹脂フィルム401を介して対向している。第一のフィルム材103における分離膜331は、いずれも第一導電層31に対応する第一分離膜331である。
The first film material 103 includes a conductive film 303 overlapping on one surface (hereinafter referred to as the upper surface) of the stretched resin film 401 and the surface on the opposite side to the upper surface of the stretched resin film 402 (hereinafter referred to as the lower surface). . The conductive film 303 on the upper surface of the stretched resin film 401 is divided into a plurality of separation films. The separation membranes are arranged in the longitudinal direction of the stretched resin film 401 at intervals. Between adjacent separation membranes on the upper surface of the stretched resin film 401, there is a blank portion 501 in which no separation membrane is provided. That is, on the upper surface of the stretched resin film 401, the separation membrane and the blank portion 501 are alternately arranged. The dimensions of the blank portion 501 are slightly larger than the separation membrane. For example, the length of the blank portion 501 (the dimension along the longitudinal direction of the first film material 103) is the same as the width dimension of the first film material 103. The conductive film 303 on the lower surface of the stretched resin film 401 is also divided into a plurality of separation films. The lower surface of the stretched resin film 401 also has a blank portion 501 similar to the upper surface. That is, on the lower surface of the stretched resin film 401, the separation membrane and the blank portion 501 are alternately arranged. The first separation film 331 on the upper surface of the stretched resin film 401 and the blank portion 501 on the lower surface of the stretched resin film 401 constitute a pair, respectively, and the blank portion 501 on the upper surface of the stretched resin film 401 and the lower surface of the stretched resin film 401 The separation membranes also form pairs. The separation membrane in each pair and the blank portion 501 face each other via the stretched resin film 401. The separation membranes 331 in the first film material 103 are all the first separation membranes 331 corresponding to the first conductive layer 31.
第二のフィルム材203も、第一のフィルム材103と同様、延伸樹脂フィルム402の上面と、延伸樹脂フィルム402の下面とにそれぞれ重なる導電膜304を備える。さらに、各々の導電膜は、第一のフィルム材103と同様、複数の分離膜に分かれ、かつ、延伸樹脂フィルム402の上面と下面には、それぞれ第一のフィルム材103同様、ブランク部502がある。すなわち、第二のフィルム材203は、第一のフィルム材103と同じ構成を有する。第二のフィルム材203における分離膜は、いずれも第二導電層32に対応する第二分離膜332である。
Similarly to the first film material 103, the second film material 203 also includes a conductive film 304 overlapping the upper surface of the stretched resin film 402 and the lower surface of the stretched resin film 402. Furthermore, as in the case of the first film material 103, each conductive film is divided into a plurality of separation films, and on the upper surface and the lower surface of the stretched resin film 402, like the first film material 103, blank portions 502 are provided. is there. That is, the second film material 203 has the same configuration as the first film material 103. The separation membranes in the second film material 203 are all second separation membranes 332 corresponding to the second conductive layer 32.
第3の実施形態でも、導電膜303(304)にマーキングをすることが好ましい。すなわち、導電膜303(304)にマークを設けることが好ましい。この場合、第1の実施形態と同様、圧電デバイス1の製造を円滑に行うことができる。
Also in the third embodiment, it is preferable to mark the conductive film 303 (304). That is, it is preferable to provide a mark on the conductive film 303 (304). In this case, as in the first embodiment, the piezoelectric device 1 can be manufactured smoothly.
第3の実施形態でも、第一のフィルム材103と第二のフィルム材203とを、第一のフィルム材103の延伸樹脂フィルム401の延伸方向と、第二のフィルム材203の延伸樹脂フィルム402の延伸方向とが、交差するように編み込み折りをすることで、圧電デバイス1を作製できる。
Also in the third embodiment, the first film material 103 and the second film material 203, the stretching direction of the stretched resin film 401 of the first film material 103, and the stretched resin film 402 of the second film material 203. The piezoelectric device 1 can be manufactured by braiding and folding so that the stretching direction of and cross each other.
より具体的には、第3の実施形態では、第一のフィルム材103と第二のフィルム材203との編み込み折りは、例えば次のように行われる。
More specifically, in the third embodiment, the knitting and folding of the first film material 103 and the second film material 203 are performed, for example, as follows.
まず、図10Aに示すように、第一のフィルム材103の延伸樹脂フィルム401の延伸方向と、第二のフィルム材203の延伸樹脂フィルム402の延伸方向とが、交差するように、第一のフィルム材103の端部と第二のフィルム材203の端部を重ねる。具体的には、例えば第一のフィルム材103を、延伸樹脂フィルム401の上面が上方を向くように配置する。この第一のフィルム材103の端部において、一つの第一分離膜331が上方を向いている。この第一のフィルム材103の端部に第二のフィルム材203の端部を、第一のフィルム材103の長手方向と第二のフィルム材203の長手方向とが直交する状態で重ねる。このとき、第二のフィルム材203の端部において、一つのブランク部502が下方を向いている。すなわち、第一のフィルム材103の第一分離膜331に第二のフィルム材203のブランク部502を重ねる。この場合、導電膜303(304)にマーキングされていれば、製造に従事する者は、第一のフィルム材103と第二のフィルム材203との位置関係を正しく設定することが容易である。
First, as shown in FIG. 10A, the first extending direction of the stretched resin film 401 of the first film material 103 and the extending direction of the stretched resin film 402 of the second film material 203 intersect with each other. The end of the film material 103 and the end of the second film material 203 are overlapped. Specifically, for example, the first film material 103 is disposed such that the upper surface of the stretched resin film 401 is directed upward. At the end of the first film material 103, one first separation membrane 331 faces upward. The end of the second film material 203 is superimposed on the end of the first film material 103 such that the longitudinal direction of the first film material 103 and the longitudinal direction of the second film material 203 are orthogonal to each other. At this time, one blank portion 502 is directed downward at the end of the second film material 203. That is, the blank portion 502 of the second film material 203 is superimposed on the first separation film 331 of the first film material 103. In this case, if the conductive film 303 (304) is marked, it is easy for a person engaged in manufacturing to correctly set the positional relationship between the first film material 103 and the second film material 203.
次に、図10Bに示すように、第一のフィルム材103を第二のフィルム材203の長辺に沿って折り返して第二のフィルム材203に重ねる。これにより、第一のフィルム材103における一つのブランク部501が第二のフィルム材203における一つの第二分離膜332に重ねられる。次に、図10Cに示すように、第二のフィルム材203を第一のフィルム材103の長辺に沿って折り返して第一のフィルム材103に重ねる。これにより、第一のフィルム材103における一つの第一分離膜331の上に第二のフィルム材203における一つのブランク部502が重ねられる。このように第一のフィルム材103を折り返してから第二のフィルム材203を折り返すことを、繰り返し行う。これにより、第一のフィルム材103と第二のフィルム材203とを編み込み折りして作製された、図10Dに示すような物を、以下、中間品6という。
Next, as shown in FIG. 10B, the first film material 103 is folded along the long side of the second film material 203, and is superimposed on the second film material 203. Thereby, one blank portion 501 of the first film material 103 is superimposed on one second separation film 332 of the second film material 203. Next, as shown in FIG. 10C, the second film material 203 is folded along the long side of the first film material 103 and overlaid on the first film material 103. Thereby, one blank portion 502 in the second film material 203 is superimposed on one first separation film 331 in the first film material 103. After the first film material 103 is folded back in this manner, the second film material 203 is folded back repeatedly. Hereinafter, a product as shown in FIG. 10D, which is produced by knitting and folding the first film material 103 and the second film material 203, is referred to as an intermediate product 6.
このように第一のフィルム材103と第二のフィルム材203とを編み込み折りすると、第一のフィルム材103における延伸樹脂フィルム401の、第一のフィルム材103を折り返すことで第二のフィルム材203に重なった部分から、圧電層10が作製される。また、第二のフィルム材203における延伸樹脂フィルム402の、第二のフィルム材203を折り返すことで第一のフィルム材103に重なった部分から、圧電層20が作製される。さらに、導電膜303(304)から導電層30が作製される。第3の実施形態では、第一のフィルム材103の分離膜である第一分離膜331から第一導電層31が作製され、第二のフィルム材203の分離膜である第二分離膜332から第二導電層32が作製される。すなわち、各々の第一導電層31は一つの第一分離膜331で構成され、各々の第二導電層32は一つの第二分離膜332から構成される。この場合、圧電層10の延伸方向はいずれも同じ方向であり、圧電層20の延伸方向もいずれも同じ方向である。さらに、圧電層10の延伸方向と圧電層20の延伸方向は直交している。
As described above, when the first film material 103 and the second film material 203 are woven and folded, the first film material 103 of the stretched resin film 401 in the first film material 103 is folded back, and thus the second film material The piezoelectric layer 10 is manufactured from the portion overlapping with 203. In addition, the piezoelectric layer 20 is produced from the portion of the stretched resin film 402 in the second film material 203 which is overlapped with the first film material 103 by folding back the second film material 203. Furthermore, the conductive layer 30 is manufactured from the conductive film 303 (304). In the third embodiment, the first conductive layer 31 is produced from the first separation membrane 331 which is the separation membrane of the first film material 103, and the second separation membrane 332 which is the separation membrane of the second film material 203. The second conductive layer 32 is produced. That is, each first conductive layer 31 is formed of one first separation film 331, and each second conductive layer 32 is formed of one second separation film 332. In this case, the extension directions of the piezoelectric layers 10 are all the same, and the extension directions of the piezoelectric layers 20 are also the same. Furthermore, the extension direction of the piezoelectric layer 10 and the extension direction of the piezoelectric layer 20 are orthogonal to each other.
中間品6を作製するに当たって、延伸樹脂フィルムと延伸樹脂フィルムとが直接重なっている部分を、熱融着し、又は接着剤で接着してもよい。分離膜と延伸樹脂フィルムとを、熱融着し、又は分離膜と延伸樹脂フィルムとの間の電気的接続を阻害しない接着剤で接着してもよい。
When producing the intermediate product 6, the portion where the stretched resin film and the stretched resin film are directly overlapped may be heat-sealed or bonded with an adhesive. The separation membrane and the stretched resin film may be heat-sealed, or bonded with an adhesive that does not inhibit the electrical connection between the separation membrane and the stretched resin film.
第1の実施形態と同様、中間品6から第一のフィルム材103の折り返し部分と、第二のフィルム材203の折り返し部分とを切り取ることも好ましい。この場合、第一のフィルム材103を複数の圧電層10に分離し、かつ第二のフィルム材203を複数の圧電層20に分離できる。これにより、図8Aに示す積層体5が得られる。さらに、第3の実施形態では、第一のフィルム材103の折り返し部分を切り取ることで形成された切断面と、第二のフィルム材203の折り返し部分を切り取ることで形成された切断面とに、分離膜の突出部に由来する導電層の端子部30bを露出させることができる。
As in the first embodiment, it is also preferable to cut off the folded portion of the first film material 103 from the intermediate product 6 and the folded portion of the second film material 203. In this case, the first film material 103 can be separated into a plurality of piezoelectric layers 10, and the second film material 203 can be separated into a plurality of piezoelectric layers 20. Thereby, the laminated body 5 shown to FIG. 8A is obtained. Furthermore, in the third embodiment, the cut surface formed by cutting off the folded portion of the first film material 103 and the cut surface formed by cutting off the folded portion of the second film material 203, The terminal portion 30b of the conductive layer derived from the projection of the separation membrane can be exposed.
積層体5に、必要に応じて外部電極を設ける。外部電極は、溶射法などの公知の方法で作製できる。積層体5に外部電極を設けると、端子部に外部電極を電気的に接続することで、圧電デバイス1から電圧を効率よく取り出すことができる。
The laminated body 5 is provided with an external electrode as needed. The external electrode can be produced by a known method such as a thermal spraying method. When the laminated body 5 is provided with the external electrode, the voltage can be efficiently extracted from the piezoelectric device 1 by electrically connecting the external electrode to the terminal portion.
第3の実施形態では、第一のフィルム材103における延伸樹脂フィルム401と第二のフィルム材203における延伸樹脂フィルム402とは同じ構成を有することができ、かつ第一のフィルム材103における導電膜303と第二のフィルム材203における導電膜304も同じ構成を有することができる。すなわち、第一のフィルム材103と第二のフィルム材203とは、同じ構成を有することができる。そのため、第一のフィルム材103と第二のフィルム材203として異なる材料を用意する必要がなく、同一のフィルム材から、圧電デバイス1を作製することができる。このため、製造上の手間を抑制することができる。さらに、第3の実施形態では、各々の導電層は一つの分離膜から作製され、第2の実施形態の場合のような二層に分かれていないため、導電層内では層間の接触抵抗が生じない。
In the third embodiment, the stretched resin film 401 in the first film material 103 and the stretched resin film 402 in the second film material 203 can have the same configuration, and the conductive film in the first film material 103 The conductive films 304 in the film 303 and the second film material 203 can also have the same configuration. That is, the first film material 103 and the second film material 203 can have the same configuration. Therefore, it is not necessary to prepare different materials as the first film material 103 and the second film material 203, and the piezoelectric device 1 can be manufactured from the same film material. For this reason, it is possible to suppress the trouble of manufacturing. Furthermore, in the third embodiment, since each conductive layer is made of one separation film and is not divided into two layers as in the second embodiment, contact resistance between layers occurs in the conductive layer. Absent.
本開示の圧電デバイスおよびその製造方法によれば、同じ圧電特性を有する複数の圧電層が積層され、かつ隣り合う圧電層の対向し合う面の間が電気的に絶縁されていなくても、力が加えられた場合に力に応じた電圧を生じさせることができる圧電デバイスが得られ、産業上有用である。
According to the piezoelectric device of the present disclosure and a method of manufacturing the same, a force is obtained even if a plurality of piezoelectric layers having the same piezoelectric characteristic are stacked and electrical isolation is not made between facing surfaces of adjacent piezoelectric layers. It is industrially useful to obtain a piezoelectric device capable of generating a voltage according to a force when a force is applied.
1 圧電デバイス
10、20 圧電層
30 導電層
101、103 第一のフィルム材
201、203 第二のフィルム材
301、302、303、304 導電膜
400、401、402 延伸樹脂フィルム Reference Signs List 1 piezoelectric device 10, 20 piezoelectric layer 30 conductive layer 101, 103 first film material 201, 203 second film material 301, 302, 303, 304 conductive film 400, 401, 402 stretched resin film
10、20 圧電層
30 導電層
101、103 第一のフィルム材
201、203 第二のフィルム材
301、302、303、304 導電膜
400、401、402 延伸樹脂フィルム Reference Signs List 1
Claims (9)
- 第一の群に含まれる圧電層と、第二の群に含まれる圧電層と、導電層と、を有し、
前記第一の群に含まれる前記圧電層と前記第二の群に含まれる前記圧電層とが交互に積層し、前記積層する方向において隣り合う前記第一の群に含まれる前記圧電層と前記第二の群に含まれる前記圧電層との間に前記導電層が介在し、
前記第一の群に含まれる前記圧電層、及び前記第二の群に含まれる前記圧電層は、延伸樹脂フィルムであり、
前記第一の群に含まれる前記圧電層と前記第二の群に含まれる前記圧電層とは、引張力が加えられて延伸する場合の、延伸方向に対する前記引張力の方向と、前記引張力によって生じる前記圧電層の分極方向との関係が互いに同一である圧電特性を有し、
前記第一の群に含まれる前記圧電層の前記延伸方向は、いずれも同一方向であり、
前記第二の群に含まれる前記圧電層の前記延伸方向は、いずれも同一方向であり、
前記第一の群に含まれる前記圧電層の前記延伸方向と前記第二の群に含まれる前記圧電層の前記延伸方向とは交差する、
圧電デバイス。 A piezoelectric layer included in a first group, a piezoelectric layer included in a second group, and a conductive layer;
The piezoelectric layer included in the first group and the piezoelectric layer included in the second group are alternately stacked, and the piezoelectric layer and the piezoelectric layer included in the first group adjacent in the stacking direction are The conductive layer is interposed between the piezoelectric layer included in the second group and
The piezoelectric layer included in the first group and the piezoelectric layer included in the second group are stretched resin films,
The tensile force is applied to the piezoelectric layer included in the first group and the piezoelectric layer included in the second group, and the direction of the tensile force with respect to the stretching direction, and the tensile force Have the same piezoelectric property as that of the piezoelectric layer produced by
The stretching directions of the piezoelectric layers included in the first group are all the same.
The stretching directions of the piezoelectric layers included in the second group are all the same.
The extension direction of the piezoelectric layer included in the first group and the extension direction of the piezoelectric layer included in the second group intersect.
Piezoelectric device. - 前記第一の群に含まれる前記圧電層、及び前記第二の群に含まれる前記圧電層は、同一種の螺旋高分子を含む、
請求項1に記載の圧電デバイス。 The piezoelectric layer included in the first group and the piezoelectric layer included in the second group include the same kind of helical polymers.
The piezoelectric device according to claim 1. - 前記螺旋高分子は、L体ポリ乳酸又はD体ポリ乳酸である、
請求項2に記載の圧電デバイス。 The helical polymer is L-polylactic acid or D-polylactic acid.
The piezoelectric device according to claim 2. - 前記第一の群に含まれる前記圧電層から選択されるいかなる二つの前記圧電層の延伸方向のなす角は、30度以下であり、
前記第二の群に含まれる前記圧電層から選択されるいかなる二つの前記圧電層の延伸方向のなす角は、30度以下である、
請求項1から3のいずれか一項に記載の圧電デバイス。 The extension angle of any two of the piezoelectric layers selected from the piezoelectric layers included in the first group is not more than 30 degrees,
The extension angle of any two of the piezoelectric layers selected from the piezoelectric layers included in the second group is not more than 30 degrees.
The piezoelectric device according to any one of claims 1 to 3. - 前記第一の群に含まれる前記圧電層から選択されるいかなる一つの前記圧電層の延伸方向と、前記第二の群に含まれる前記圧電層から選択されるいかなる一つの前記圧電層の延伸方向とのなす角は、75度以上105度以下である、
請求項1から4のいずれか一項に記載の圧電デバイス。 Stretching direction of any one of the piezoelectric layers selected from the piezoelectric layers included in the first group, and stretching direction of any one of the piezoelectric layers selected from the piezoelectric layers included in the second group And the angle between them is 75 degrees or more and 105 degrees or less,
The piezoelectric device according to any one of claims 1 to 4. - 第一のフィルム材と第二のフィルム材とを用意し、
前記第一のフィルム材と前記第二のフィルム材の各々は、延伸樹脂フィルムを備え、
前記第一のフィルム材と前記第二のフィルム材とのうち少なくとも一方は、前記延伸樹脂フィルムに重なる導電膜を更に備え、
前記第一のフィルム材の延伸樹脂フィルムと、前記第二のフィルム材の延伸樹脂フィルムとは、引張力が加えられた場合の延伸方向に対する前記引張力の方向と、前記引張力によって生じる分極の方向との関係が、互いに同一である圧電特性を有し、
前記第一のフィルム材と前記第二のフィルム材とを、前記第一のフィルム材の延伸樹脂フィルムの延伸方向と、前記第二のフィルム材の延伸樹脂フィルムの延伸方向とが、交差するように編み込み折りすることを含む、
圧電デバイスの製造方法。 Prepare the first film material and the second film material,
Each of the first film material and the second film material comprises a stretched resin film,
At least one of the first film material and the second film material further includes a conductive film overlapping the stretched resin film,
The stretched resin film of the first film material and the stretched resin film of the second film material have the direction of the tensile force with respect to the stretching direction when the tensile force is applied, and the polarization caused by the tensile force. Have piezoelectric properties that are identical to each other with respect to the direction,
The stretching direction of the stretched resin film of the first film material and the stretching direction of the stretched resin film of the second film material intersect with the first film material and the second film material Including braiding and folding,
Method of manufacturing a piezoelectric device - 前記第一のフィルム材と前記第二のフィルム材とは、いずれも帯状であり、
前記第一のフィルム材と前記第二のフィルム材とを編み込み折りするにあたって、前記第一のフィルム材の延伸樹脂フィルムの延伸方向と、前記第二のフィルム材の延伸樹脂フィルムの延伸方向とが、交差するように、前記第一のフィルム材の端部と前記第二のフィルム材の端部を重ね、
前記第一のフィルム材を前記第二のフィルム材の長辺に沿って折り返して前記第二のフィルム材に重ねてから、前記第二のフィルム材を前記第一のフィルム材の長辺に沿って折り返して前記第一のフィルム材に重ねることを、繰り返す、
請求項6に記載の圧電デバイスの製造方法。 The first film material and the second film material are both in the form of a band,
In knitting and folding the first film material and the second film material, the stretching direction of the stretched resin film of the first film material and the stretching direction of the stretched resin film of the second film material are Overlapping the end of the first film material and the end of the second film material so as to cross each other;
The first film material is folded along the long side of the second film material and stacked on the second film material, and then the second film material is along the long side of the first film material. Repeating the folding on the first film material,
The manufacturing method of the piezoelectric device of Claim 6. - 前記第一のフィルム材の折り返し部分と、前記第二のフィルム材の折り返し部分とを切り取ることを含む、
請求項6又は7に記載の圧電デバイスの製造方法。 Cutting away the folded portion of the first film material and the folded portion of the second film material,
A method of manufacturing a piezoelectric device according to claim 6 or 7. - 前記導電膜にマーキングをする工程を含む、
請求項6から8のいずれか一項に記載の圧電デバイスの製造方法。 Including the step of marking the conductive film,
A method of manufacturing a piezoelectric device according to any one of claims 6 to 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019549216A JPWO2019078053A1 (en) | 2017-10-18 | 2018-10-10 | Piezoelectric device and its manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-202226 | 2017-10-18 | ||
JP2017202226 | 2017-10-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019078053A1 true WO2019078053A1 (en) | 2019-04-25 |
Family
ID=66172902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/037636 WO2019078053A1 (en) | 2017-10-18 | 2018-10-10 | Piezoelectric device and method of manufacturing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2019078053A1 (en) |
WO (1) | WO2019078053A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020095839A1 (en) * | 2018-11-05 | 2020-05-14 | 北川工業株式会社 | Dilatancy composition |
WO2020095812A1 (en) * | 2018-11-08 | 2020-05-14 | 富士フイルム株式会社 | Laminated piezoelectric element and electro-acoustic transducer |
WO2021187086A1 (en) * | 2020-03-19 | 2021-09-23 | 富士フイルム株式会社 | Layered piezoelectric element and electroacoustic transducer |
JPWO2021199800A1 (en) * | 2020-03-30 | 2021-10-07 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005175018A (en) * | 2003-12-08 | 2005-06-30 | Hokuriku Electric Ind Co Ltd | Multilayer piezoelectric body and piezoelectric oscillating element |
WO2009139237A1 (en) * | 2008-05-12 | 2009-11-19 | 学校法人関西大学 | Piezoelectric element and audio equipment |
DE102008002492A1 (en) * | 2008-06-18 | 2009-12-24 | Robert Bosch Gmbh | Folding actuator or folding sensor and manufacturing method for a folding actuator or folding sensor |
-
2018
- 2018-10-10 JP JP2019549216A patent/JPWO2019078053A1/en active Pending
- 2018-10-10 WO PCT/JP2018/037636 patent/WO2019078053A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005175018A (en) * | 2003-12-08 | 2005-06-30 | Hokuriku Electric Ind Co Ltd | Multilayer piezoelectric body and piezoelectric oscillating element |
WO2009139237A1 (en) * | 2008-05-12 | 2009-11-19 | 学校法人関西大学 | Piezoelectric element and audio equipment |
DE102008002492A1 (en) * | 2008-06-18 | 2009-12-24 | Robert Bosch Gmbh | Folding actuator or folding sensor and manufacturing method for a folding actuator or folding sensor |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020095839A1 (en) * | 2018-11-05 | 2020-05-14 | 北川工業株式会社 | Dilatancy composition |
WO2020095812A1 (en) * | 2018-11-08 | 2020-05-14 | 富士フイルム株式会社 | Laminated piezoelectric element and electro-acoustic transducer |
JPWO2020095812A1 (en) * | 2018-11-08 | 2021-09-09 | 富士フイルム株式会社 | Laminated piezoelectric elements and electroacoustic transducers |
JP7206294B2 (en) | 2018-11-08 | 2023-01-17 | 富士フイルム株式会社 | Laminated piezoelectric element and electroacoustic transducer |
WO2021187086A1 (en) * | 2020-03-19 | 2021-09-23 | 富士フイルム株式会社 | Layered piezoelectric element and electroacoustic transducer |
JPWO2021187086A1 (en) * | 2020-03-19 | 2021-09-23 | ||
EP4124066A4 (en) * | 2020-03-19 | 2023-09-06 | FUJIFILM Corporation | Layered piezoelectric element and electroacoustic transducer |
JP7457790B2 (en) | 2020-03-19 | 2024-03-28 | 富士フイルム株式会社 | Multilayer piezoelectric element and electroacoustic transducer |
US12075211B2 (en) | 2020-03-19 | 2024-08-27 | Fujifilm Corporation | Laminated piezoelectric element and electroacoustic transducer |
JPWO2021199800A1 (en) * | 2020-03-30 | 2021-10-07 | ||
WO2021199800A1 (en) * | 2020-03-30 | 2021-10-07 | 富士フイルム株式会社 | Multilayer piezoelectric element |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019078053A1 (en) | 2020-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019078053A1 (en) | Piezoelectric device and method of manufacturing same | |
EP3041059B1 (en) | Multilayer actuator and display device comprising the same | |
US20130002095A1 (en) | Bending transducer | |
EP4132007A1 (en) | Multilayer piezoelectric element | |
JP6201583B2 (en) | Piezoelectric device and method for manufacturing piezoelectric device | |
WO2016027613A1 (en) | Piezoelectric film laminate and bending detection sensor | |
JP2014168132A (en) | Polymer piezoelectric speaker | |
CN115244720A (en) | Laminated piezoelectric element and electroacoustic transducer | |
US9673372B2 (en) | Actuator device and manufacturing method for actuator device | |
JP2007252132A (en) | Actuator | |
US9390876B2 (en) | Laminate-type actuator | |
JPS6388875A (en) | Manufacture of laminated piezoelectric element | |
JP5790310B2 (en) | Actuator element manufacturing method | |
KR100807316B1 (en) | Structure of a multilayer piezoelectric element for generating current-voltage | |
JP2018133411A (en) | Piezoelectric device | |
JPS59178782A (en) | Polymer bimorph structure | |
JP2018133413A (en) | Piezoelectric device | |
JP5930533B2 (en) | Polymer actuator and manufacturing method thereof | |
JP2017158366A (en) | Actuator | |
JP2019009309A (en) | Piezoelectric generator | |
JP5742944B2 (en) | Actuator element and method of manufacturing the actuator element | |
JP2013078239A (en) | Actuator element | |
JP2018133412A (en) | Piezoelectric device | |
JPS62113487A (en) | Laminated piezoelectric body | |
US20210343928A1 (en) | Shear piezoelectric transducer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18868543 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019549216 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18868543 Country of ref document: EP Kind code of ref document: A1 |