WO2019077963A1 - 無人機及びその制御方法 - Google Patents

無人機及びその制御方法 Download PDF

Info

Publication number
WO2019077963A1
WO2019077963A1 PCT/JP2018/036034 JP2018036034W WO2019077963A1 WO 2019077963 A1 WO2019077963 A1 WO 2019077963A1 JP 2018036034 W JP2018036034 W JP 2018036034W WO 2019077963 A1 WO2019077963 A1 WO 2019077963A1
Authority
WO
WIPO (PCT)
Prior art keywords
air flow
drone
thrust
sensor
wind
Prior art date
Application number
PCT/JP2018/036034
Other languages
English (en)
French (fr)
Inventor
梅本 清貴
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2019077963A1 publication Critical patent/WO2019077963A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters

Definitions

  • the present embodiment relates to a drone having a function of flying in the air and a control method thereof.
  • unmanned aerial vehicles such as drones have been used for various applications.
  • an unmanned aerial vehicle equipped with a camera for capturing a photo or video from the air or an unmanned aerial vehicle equipped with a measuring instrument for surveying topography is used.
  • the surrounding wind affects the attitude and flight of the drone in the air.
  • the influence of the surrounding wind is large.
  • the present embodiment provides a drone capable of stably flying in the air and a control method thereof.
  • the thrust unit is controlled according to the air flow information, an air flow sensor that acquires air flow information on an air flow around the airframe frame, a thrust unit that generates a thrust for flying, A drone comprising a control device for adjusting flight conditions is provided.
  • the airflow sensor mounted on the airframe of the unmanned aerial vehicle obtains the air flow information on the ambient air flow, and the thrust generated by the airframe mounted on the airframe is generated. And controlling the thrust unit according to the airflow information to adjust the flight condition of the drone.
  • the unmanned vehicle includes an airframe frame 10, a thrust unit 20 for generating a thrust for flying, an air flow sensor 30 for acquiring air flow information on the surrounding air flow, and air flow information. Accordingly, the control unit 40 controls the thrust unit 20 to adjust the flight state.
  • the thrust unit 20, the air flow sensor 30, and the control device 40 are mounted on the machine frame 10.
  • the thrust generated by the thrust unit 20 allows the drone to float in the air or fly in a desired direction.
  • the thrust unit 20 is composed of four propellers 21A to 21D including a rotary wing 211 for generating lift by rotation and a motor 212 for rotating the rotary wing 211.
  • the lift generated by the rotation of the rotary wings 211 causes the drone to float.
  • the rotational speeds of the propellers 21A to 21D can be independently controlled.
  • the propellers 21A to 21D will be collectively referred to as "propeller 21".
  • FIG. 1 shows an example in which the thrust unit 20 has four propellers 21, it goes without saying that the number of propellers 21 is not limited to this.
  • the number of propellers 21 can be arbitrarily set to, for example, six or eight.
  • a battery 50 is mounted on the airframe frame 10.
  • the power supplied from the battery 50 drives the devices mounted on the airframe frame 10 including the thrust unit 20.
  • the air flow sensor 30 acquires the strength (hereinafter referred to as “wind force”) and the direction (hereinafter referred to as “wind direction”) of the surrounding air flow as air flow information.
  • the air flow sensor 30 shown in FIG. 1 is configured by wind force sensors 31A to 31D.
  • the wind sensors 31A to 31D are collectively referred to as "wind sensor 31".
  • the wind sensor 31 detects the wind power of the air flow received by the drone.
  • the plurality of wind sensors 31 constituting the air flow sensor 30 are arranged such that the wind detection units for detecting the wind are directed in different directions around the fuselage frame 10.
  • wind sensors 31 are respectively disposed on four side surfaces of the airframe 10.
  • an air pressure sensor that converts a pressure measured by a pressure-sensitive element via a gas into an electric signal and outputs the electric signal may be processed and applied to the wind sensor 31.
  • a semiconductor pressure sensor utilizing a piezoresistance effect is widely used as an atmospheric pressure sensor using a pressure sensitive element in an atmospheric pressure detection unit.
  • through holes for circulating air inside and outside the cover covering the air pressure detection unit are provided in the cover. By expanding the through hole, the air flow can be applied directly to the air pressure detection unit.
  • the air pressure detection unit of the air pressure sensor can be used as the wind force detection unit to accurately detect the wind force. That is, as shown in FIG. 2, an air pressure sensor in which the through hole 313 of the cover 312 is expanded so that the pressure sensitive element 311 is exposed can be used as the wind sensor 31.
  • FIG. 1 shows a side view of the drone shown in FIG.
  • the skid 11 provided in the lower part of the body frame 10 touches the ground when the drone lands.
  • the control device 40 independently controls the thrusts of the plurality of propellers 21 to control the flight direction and the flight speed of the drone.
  • the controller 40 refers to the air flow information obtained by the air flow sensor 30, and generates stronger thrust that flies in the direction opposite to the direction as the wind power of the air flow received from the specific direction is stronger.
  • Control the thrust unit 20 that is, in the unmanned aircraft shown in FIG. 1, the thrust unit 20 generates a thrust so as to cancel the influence of the air flow received by the surrounding environment such as wind. Thus, the influence of the surrounding environment is suppressed, and the drone can be stabilized in the air.
  • the drone When the drone moves in the air, the drone receives a wind pressure corresponding to the flight speed from the flight direction. Therefore, the air flow sensor 30 detects the wind power including the wind pressure generated by the flight. In order for the drone to fly at a predetermined speed and direction, it is necessary to control the thrust unit 20 with air flow information taking into consideration the wind pressure generated by the flight.
  • control device 40 sets the thrust for flying in a predetermined direction and speed while canceling the influence exerted by the air flow generated around the vehicle regardless of the flight condition of the drone. Then, the control device 40 controls the thrust unit 20 so as to generate the set thrust.
  • the wind pressure received from the flight direction according to the flight speed is previously acquired as data.
  • the control device 40 detects the wind pressure that the drone should receive when the thrust unit 20 generates a predetermined thrust so that the set flight speed can be obtained in a windless state, in the flight direction detected by the air flow sensor 30. Excluded from wind power.
  • airflow information caused by the surrounding environment, in which the wind pressure generated by the flight is canceled is calculated.
  • the controller 40 controls the thrust unit 20 according to the calculated new air flow information.
  • data of the wind pressure W with respect to the flight speed S in a windless state as illustrated in FIG. 4 is acquired. Then, from the difference between the wind force and the wind pressure W detected by the air flow sensor 30, the wind force of the air flow due to the surrounding environment not related to the flight state can be obtained. Also, even when the flight speed of the drone is changed, the air flow information resulting from the surrounding environment can be calculated immediately using the wind pressure W corresponding to the speed. Therefore, the flight of the drone can be stabilized in real time.
  • the thrust unit 20 generates a thrust so as to cancel the influence of the air flow caused by the surrounding environment. That is, in addition to the thrust for causing the drone to fly at a predetermined flight speed and flight direction, the thrust unit 20 generates a thrust that cancels out the influence of the air flow due to the surrounding environment. Thereby, stable flight of the drone can be realized.
  • the thrust unit 20 can be controlled so that the unmanned aerial vehicle can stably stand still in the air. That is, by offsetting the influence of the surrounding air flow by the thrust generated by the thrust unit 20, the drone can be stably maintained in the hovering state relatively stationary with respect to the ground.
  • FIG. 5 shows a functional block diagram of the drone according to the embodiment.
  • the flying state of the drone is detected by the acceleration sensor 32 and the angular velocity sensor 34.
  • the acceleration sensor 32 a three-axis acceleration sensor that detects acceleration in three axial directions is used.
  • the angular velocity sensor 34 uses a three-axis acceleration sensor that detects angular velocities in three axial directions.
  • the altitude sensor 36 detects the flight altitude of the drone.
  • an ultrasonic sensor, a barometric pressure sensor or the like can be used.
  • obstacles in the vicinity may be detected by an ultrasonic sensor.
  • Airflow information I from the air flow sensor 30, acceleration information G from the acceleration sensor 32, angular velocity information J from the angular velocity sensor 34, and altitude information H from the altitude sensor 36 are transmitted to the control device 40.
  • the controller 40 controls the flight state of the drone based on the information.
  • the control method of the drone shown in the functional block diagram of FIG. 5 will be described below with reference to the flowchart shown in FIG.
  • step S1 of FIG. 6 the drone is floated in the air by the wind pressure generated by the thrust unit 20 downward.
  • step S2 the air flow sensor 30 detects the wind power and the wind direction of the surrounding air flow, and acquires the air flow information I.
  • the airflow information I is transmitted from the airflow sensor 30 to the control device 40.
  • step S3 the controller 40 determines whether the drone is controlled to move in a specific direction. If the drone is controlled to move, the process proceeds to step S4. On the other hand, in the case of hovering without moving in the specific direction, the process proceeds to step S5.
  • step S4 the control device 40 calculates new air flow information I in which the wind pressure generated by the flight of the drone is canceled. Thereafter, the process proceeds to step S5.
  • step S5 the control device 40 controls the thrust unit 20 according to the airflow information I to adjust the flight state of the airframe frame 10. That is, the controller 40 sets the magnitude and direction of the thrust generated by the thrust unit 20 with reference to the air flow information I, and transmits a control signal C for setting the thrust to the thrust unit 20.
  • the thrust unit 20 generates a thrust set in accordance with the control signal C.
  • the control device 40 causes the thrust unit 20 to generate a thrust that cancels out the influence of the air flow caused by the surrounding environment. This allows the drone to fly stably in the air. Furthermore, when the drone is moving, the thrust for the drone to fly in a specific direction and speed is set while canceling the influence exerted by the air flow occurring independently of the flight. This makes it possible to stabilize the moving drone.
  • the machine frame 10 may be equipped with a receiving unit (not shown) that receives a signal transmitted by wireless communication.
  • the control device 40 controls the thrust unit 20 in accordance with the content of an external wireless signal transmitted through the receiving unit.
  • the operator of the drone can control the flight direction and flight speed of the drone by wireless communication, and can adjust the hovering position.
  • the control device 40 causes the thrust unit 20 to generate thrust so as to cancel out the influence of the air flow caused by the surrounding environment.
  • the unmanned aerial vehicle included in the embodiment is not limited to the one in which the flight direction or the flight speed is controlled in accordance with the wireless signal from the outside.
  • the unmanned aerial vehicle included in the embodiment is not limited to the one in which the flight direction or the flight speed is controlled in accordance with the wireless signal from the outside.
  • stable flight can be realized according to the airflow information.
  • FIG. 7 shows an example of the circuit configuration of the unmanned vehicle according to the embodiment.
  • the sub controller 120, the distance meter 130, and the sensor hub 140 are connected to the main controller 110 that controls the drone, and the control unit 100 is configured.
  • the control unit 100 is configured.
  • a microprocessor or the like is used for the main controller 110 and the sub controller 120.
  • the range finder 130 is a laser range finder configured of, for example, a laser diode and a photodiode.
  • the sensor unit 141 and the sensor group 142 are connected to the sensor hub 140.
  • the sensor unit 141 includes a wind force sensor, an acceleration sensor, an angular velocity sensor, a magnetic sensor for detecting the altitude and angle of the drone, and the like.
  • the sensor group 142 includes an air pressure sensor, a temperature sensor that detects the ambient temperature of the drone, a Hall sensor that detects a magnetic field, an ultrasonic sensor, and the like.
  • the speed controller 121 includes an MCU for motor control, an operational amplifier for signal amplification, a transistor element for driving the motor, a drive circuit for the transistor element, a shunt resistor, a brushless motor, an accelerometer, and the like.
  • the communication block 150 connected to the main controller 110 includes a wireless modem 151 and an RC receiver 152.
  • the wireless modem 151 includes a wireless communication system such as an aviation controller, Wi-Fi (Wi-Fi), Bluetooth (registered trademark), or the like.
  • an optional external device 160 connected to the main controller 110 is a camera or the like that captures a still image or a moving image.
  • the power supply block 170 is a battery monitor that monitors the status of the battery or the battery, a USB port used for charging according to the USB-PD standard, a wireless charger, various DC / DC converters for internal circuits, and battery charging It is made up of
  • the battery is, for example, a lithium ion (Li-ion) battery.
  • the top view of the example which laid out the components which comprise a drone in FIG. 8 is shown.
  • the main controller 110 is disposed near the center of the first main surface 101A of the rectangular substrate 101, and the memory 111 is disposed in the vicinity of the main controller 110.
  • the memory 111 stores information acquired by various sensors, a program for controlling the drone, and the like.
  • the wind sensor 31 disposed on the side surface of the substrate 101 is electrically connected to the main controller 110 via the wind sensor connector 310.
  • a driver 200 for driving the thrust unit 20 is disposed.
  • the driver 200 is controlled by the main controller 110.
  • a communication module connector or the like is disposed in the connector disposition area 102 surrounded by a broken line.
  • FIG. 9 shows a bottom view of the substrate 101 shown in FIG.
  • a battery 50 is disposed near the center of the second major surface 101B of the substrate 101.
  • sensors are disposed in a sensor disposition area 103 set in the vicinity of the center of the second main surface 101B around the battery 50.
  • FIG. 10 shows a side view of the drone shown in FIGS. 8 and 9.
  • the main controller 110 and the battery 50 are arranged to substantially overlap in a plan view.
  • the wind sensor connector 310 is electrically connected to the main controller 110 by a substrate wiring 320 disposed on the surface of the substrate 101.
  • the information acquired by the wind sensor 31 is transmitted to the main controller 110 via the substrate wiring 320.
  • an antenna module 300 including the antenna 153 shown in FIG. 7 may be mounted on the top of the main controller 110.
  • a GPS antenna for acquiring position information of a drone by a global positioning system may be mounted on the airframe 10.
  • FIG. 12 shows an example in which the GPS antenna 60 is disposed at the upper part of the airframe 10.
  • the wind sensor 31 is disposed around the GPS antenna 60.
  • the wind force received by the unmanned aerial vehicle is detected at the floating point. Therefore, the moving speed can be accurately detected immediately after the floating.
  • the thrust generated by the thrust unit 20 is controlled according to the airflow information obtained by the airflow sensor 30.
  • the influence of the air flow received by the ambient environment such as wind blowing to the drone is suppressed, and the drone can be stabilized in the air.
  • the drone can fly stably at a predetermined speed and direction.
  • the drone according to the modification of the embodiment shown in FIG. 13 further includes a wind sensor 31 arranged in the vertical direction. That is, in addition to the wind force sensor 31 disposed on the side surface of the airframe frame 10, the wind force sensor 31E is disposed on the upper surface of the airframe frame 10, and the wind force sensor 31F is disposed on the lower surface of the airframe frame 10.
  • the wind sensors 31 By arranging the wind sensors 31 on the upper surface and the lower surface of the airframe frame 10, it is possible to acquire air flow information on the air flowing in the vertical direction. For this reason, according to the unmanned aerial vehicle shown in FIG. 13, the unmanned aerial vehicle can be stabilized by canceling out the influence exerted by the air flow flowing in the vertical direction.
  • the wind sensor 31 may be disposed on either the upper surface or the lower surface of the airframe frame 10.
  • the case where the propeller 21 is used for the thrust unit 20 is exemplarily shown, but as long as it is possible to generate thrust that causes the drone to fly in the air, what kind of system It may be a thrust unit 20.
  • a system in which the airframe is injected to fly the airframe 10 by reaction can also be used for the thrust unit 20.
  • the direction in which the wind sensor 31 is disposed is not limited to four. As the number of wind sensors 31 increases and the number of directions in which the wind force can be detected is increased, the drone position, flight direction, and flight speed can be more finely adjusted to stabilize the drone flight.
  • the wind force and the wind direction of the air flow may be detected by a measuring device other than the wind force sensor 31.
  • a wind direction anemometer integrated with a wind sensor and a wind direction sensor may be mounted on the airframe frame 10.
  • the present embodiment includes various embodiments that are not described herein.
  • the drone of the present embodiment is applicable to all drone flying in the air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

機体フレーム(10)と、飛行するための推力を発生する推力ユニット(20)と、周囲の気流に関する気流情報を取得する気流センサ(30)と、気流情報に応じて推力ユニット(20)を制御し、飛行状態を調整する制御装置(40)とを備える。

Description

無人機及びその制御方法
 本実施形態は、空中を飛行する機能を有する無人機及びその制御方法に関する。
 近年、ドローンなどの空中を飛行する無人機が様々な用途に用いられている。例えば、カメラを搭載して空中から写真や動画を撮影する無人機や、計測器を搭載して地形を測量する無人機などが使用されている。
 また、無線式遠隔操作装置による操縦操作を必要としない自律型無人機なども提案されている。
特開2017-65467号公報
 周囲の風を受けることにより、無人機の空中での姿勢や飛行に影響が及ぶ。特に、空中で無人機を静止させる場合に周囲の風の影響が大きい。
 上記問題点に鑑み、本実施形態は、空中で安定して飛行できる無人機及びその制御方法を提供する。
 本実施形態の一態様によれば、機体フレームと、飛行するための推力を発生する推力ユニットと、周囲の気流に関する気流情報を取得する気流センサと、気流情報に応じて推力ユニットを制御し、飛行状態を調整する制御装置とを備える無人機が提供される。
 本実施形態の他の態様によれば、無人機の機体フレームに搭載された気流センサによって、周囲の気流に関する気流情報を取得するステップと、機体フレームに搭載され無人機を飛行させる推力を発生する推力ユニットを気流情報に応じて制御し、無人機の飛行状態を調整するステップとを含む無人機の制御方法が提供される。
 本実施形態によれば、空中で安定して飛行できる無人機及びその制御方法を提供できる。
実施形態に係る無人機の構成を示す模式的な平面図である。 実施形態に係る無人機の風力センサの例を示す模式的な上面図である。 実施形態に係る無人機の構成を示す模式的な側面図である。 飛行速度と風圧の関係の例を示すグラフである。 実施形態に係る無人機の機能ブロック図である。 実施形態に係る無人機の制御方法を説明するためのフローチャートである。 実施形態に係る無人機の回路構成の例を示す模式図である。 実施形態に係る無人機を構成する部品のレイアウトの例を示す模式的な平面図である。 実施形態に係る無人機を構成する部品のレイアウトの例を示す模式的な底面図である。 実施形態に係る無人機を構成する部品のレイアウトの例を示す模式的な側面図である。 実施形態に係る無人機を構成する部品のレイアウトの例を示す模式的な側面図である。 実施形態に係る無人機の他の構成を示す模式的な側面図である。 実施形態の変形例に係る無人機の構成を示す模式的な側面図である。
 次に、図面を参照して、実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各部の厚みの比率などは現実のものとは異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
 また、以下に示す実施形態は、技術的思想を具体化するための装置や方法を例示するものであって、構成部品の形状、構造、配置などを下記のものに特定するものでない。この実施形態は、請求の範囲において、種々の変更を加えることができる。
 実施形態に係る無人機は、図1に示すように、機体フレーム10と、飛行するための推力を発生する推力ユニット20と、周囲の気流に関する気流情報を取得する気流センサ30と、気流情報に応じて推力ユニット20を制御し、飛行状態を調整する制御装置40とを備える。
 推力ユニット20、気流センサ30、制御装置40は、機体フレーム10に搭載されている。推力ユニット20の発生する推力によって、無人機を空中に浮揚させたり所望の方向に飛行させたりすることができる。
 図1に示した無人機では、推力ユニット20が、回転によって揚力を発生させる回転翼211と回転翼211を回転させるモータ212からなる4個のプロペラ21A~21Dによって構成されている。回転翼211の回転により生じる揚力によって、無人機が浮揚する。また、プロペラ21A~21Dの回転数はそれぞれ独立して制御することができる。プロペラ21A~21Dのそれぞれの推力を独立して制御することにより、無人機の飛行方向や飛行速度を自在に設定することができる。なお、以下においてプロペラ21A~21Dを総称して「プロペラ21」という。
 図1では推力ユニット20の有するプロペラ21が4個である例を示したが、プロペラ21の個数がこれに限られないことはもちろんである。プロペラ21の個数は、例えば6個或いは8個のように任意に設定可能である。
 機体フレーム10には、バッテリー50が搭載されている。バッテリー50から供給される電力によって、推力ユニット20を含めた機体フレーム10に搭載された機器が駆動される。
 気流センサ30は、周囲の気流の強さ(以下において「風力」という。)と向き(以下において「風向」という。)を気流情報として取得する。図1に示した気流センサ30は、風力センサ31A~31Dにより構成されている。以下において、風力センサ31A~31Dを総称して「風力センサ31」という。風力センサ31は、無人機が受ける気流の風力を検出する。
 気流センサ30を構成する複数の風力センサ31は、風力を検出するそれぞれの風力検出部が機体フレーム10の周囲の異なる方向に向けて配置される。図1に示した無人機では、風力センサ31が機体フレーム10の4つの側面にそれぞれ配置されている。
 例えば、気体を介して感圧素子で計測した圧力を電気信号に変換して出力する気圧センサを加工して風力センサ31に適用してもよい。このように感圧素子を気圧検出部に用いた気圧センサには、ピエゾ抵抗効果を利用した半導体圧力センサが広く使用されている。これらの気圧センサには、気圧検出部を覆うカバーの内部と外部で空気を流通させるための貫通穴がカバーに設けられている。この貫通穴を広げることにより、気圧検出部に気流を直接あてることができる。そのようにして、気圧センサの気圧検出部を風力検出部として風力を正確に検出することができる。即ち、図2に示すように、感圧素子311が露出するようにカバー312の貫通穴313を広げた気圧センサを風力センサ31として使用できる。
 図1に示すように複数の風力センサ31の風力検出部を周囲の異なる方向にそれぞれ向けて配置した気流センサ30によれば、様々な方向から無人機が受ける気流の風力を検出し、気流情報を取得することができる。なお、図1では、4個の風力センサ31が、無人機の上下方向の飛行軸と垂直な平面において風力検出部の向く方向が90度ずつずれるように配置されている。図3に、図1に示した無人機の側面図を示す。なお、機体フレーム10の下部に設けられているスキッド11が、無人機が着地したときに地面に接する。
 制御装置40が複数のプロペラ21のそれぞれの推力を独立して制御することにより、無人機の飛行方向や飛行速度が制御される。このとき、制御装置40は、気流センサ30によって得られた気流情報を参照して、特定の方向から受ける気流の風力が強いほどその方向とは逆の方向に飛行する推力を強く発生するように、推力ユニット20を制御する。つまり、図1に示した無人機では、風などの周囲環境により受ける気流の影響を打ち消すように推力ユニット20が推力を発生する。これにより、周囲環境から受ける影響が抑制されて、無人機を空中で安定させることができる。
 なお、無人機が空中を移動する場合には、無人機は飛行速度に応じた風圧を飛行方向から受ける。そのため、飛行によって生じる風圧も含めた風力を気流センサ30は検出する。無人機を所定の速度と方向で飛行させるためには、飛行によって生じる風圧を考慮した気流情報によって推力ユニット20を制御する必要がある。
 このため、制御装置40は、無人機の飛行状態とは無関係で周囲に発生している気流によって及ぼされる影響を打ち消しながら所定の方向及び速度で飛行するための推力を設定する。そして、設定された推力を発生するように、制御装置40が推力ユニット20を制御する。
 例えば、飛行速度に応じて飛行方向から受ける風圧を予めデータとして取得しておく。そして、制御装置40が、設定された飛行速度が無風状態で得られるように推力ユニット20が所定の推力を発生したときに無人機が受けるはずの風圧を、気流センサ30が検出した飛行方向の風力から除外する。これにより、飛行によって生じる風圧をキャンセルした、周囲環境に起因する気流情報が算出される。算出された新たな気流情報に応じて、制御装置40が推力ユニット20を制御する。
 例えば、図4に例示するような無風状態における飛行速度Sに対する風圧Wのデータを取得しておく。そして気流センサ30が検出した風力と風圧Wとの差分から、飛行状態とは関係のない周囲環境に起因する気流の風力が得られる。また、無人機の飛行速度を変更させた場合にも、その速度に応じた風圧Wを用いて、周囲環境に起因する気流情報を即時に算出することができる。このため、リアルタイムで無人機の飛行を安定させることができる。
 上記のように、実施形態に係る無人機では、無人機に向かって吹く風などの、無人機の飛行状態と無関係な周囲環境に起因する気流の風力や風向を検出する。そして、周囲環境に起因する気流の影響を打ち消すように、推力ユニット20に推力を発生させる。即ち、所定の飛行速度及び飛行方向で無人機を飛行させるための推力に加えて、周囲環境に起因する気流の影響を打ち消す推力を推力ユニット20から発生させる。これにより、無人機の安定した飛行を実現できる。
 また、図1に示した無人機では、無人機を空中で安定して静止させるように推力ユニット20を制御することができる。即ち、推力ユニット20の発生する推力によって周囲の気流の影響を相殺することにより、無人機を大地に対して相対的に静止したホバリング状態に安定して維持することができる。
 図5に、実施形態に係る無人機の機能ブロック図を示す。加速度センサ32や角速度センサ34により無人機の飛行状態が検出される。例えば、加速度センサ32に、3次元の3つの軸方向における加速度を検出する3軸加速度センサを使用する。角速度センサ34に、3次元の3つの軸方向における角速度を検出する3軸加速度センサを使用する。高度センサ36は、無人機の飛行高度を検出する。高度センサ36には、超音波センサや気圧センサなどを使用可能である。また、超音波センサによって周囲の障害物を検知するようにしてもよい。気流センサ30から気流情報I、加速度センサ32から加速度情報G、角速度センサ34から角速度情報J、高度センサ36から高度情報Hが、制御装置40に送信される。制御装置40は、これらの情報に基づき、無人機の飛行状態を制御する。以下に、図6に示したフローチャートを参照して、図5の機能ブロック図に示した無人機の制御方法を説明する。
 図6のステップS1において、推力ユニット20が下方に向けて起こした風圧によって、無人機を空中に浮揚させる。
 ステップS2において、気流センサ30によって周囲の気流の風力及び風向を検出し、気流情報Iを取得する。例えば、4個の風力センサ31によって4方向からの風力を検出する。気流情報Iは、気流センサ30から制御装置40に送信される。
 ステップS3において、制御装置40は、無人機が特定の方向に移動するように制御されているか否かを判断する。無人機が移動するように制御されている場合には、ステップS4に処理が進む。一方、特定の方向に移動せずにホバリング状態である場合には、ステップS5に処理が進む。
 ステップS4において、制御装置40は、無人機の飛行によって生じる風圧をキャンセルした新たな気流情報Iを算出する。その後、ステップS5に処理が進む。
 ステップS5において、制御装置40が気流情報Iに応じて推力ユニット20を制御し、機体フレーム10の飛行状態を調整する。即ち、制御装置40は気流情報Iを参照して推力ユニット20の発生する推力の大きさや向きを設定し、推力ユニット20に推力を設定させる制御信号Cを送信する。推力ユニット20は、制御信号Cに従って設定された推力を発生する。
 以上に説明した無人機の制御方法によれば、制御装置40が、周囲環境に起因する気流の影響を打ち消す推力を推力ユニット20に発生させる。これにより、無人機を空中で安定して飛行させることができる。更に、無人機が移動している場合には、飛行とは無関係に発生している気流によって及ぼされる影響を打ち消しながら特定の方向及び速度で無人機が飛行するための推力が設定される。これにより、移動中の無人機を安定させることができる。
 なお、機体フレーム10には、無線通信によって伝送される信号を受信する受信ユニット(図示略)を搭載してもよい。この場合、制御装置40は、受信ユニットを介して伝送された外部からの無線信号の内容に応じて推力ユニット20を制御する。これにより、無人機の操作者は、無線通信によって無人機の飛行方向や飛行速度を制御したり、ホバリングする位置を調整したりすることができる。このとき、制御装置40は、周囲環境に起因する気流の影響を打ち消すように推力ユニット20に推力を発生させる。
 ただし、実施形態に含まれる無人機は、外部からの無線信号に応じて飛行方向や飛行速度が制御されるものに限られない。例えば、プログラムされた内容に従って自動飛行する場合にも、気流情報に応じて安定した飛行を実現できる。
 図7に、実施形態に係る無人機の回路構成の例を示す。無人機を制御するメインコントローラ110にサブコントローラ120、距離計130、センサハブ140が接続されて、コントロールユニット100が構成される。メインコントローラ110やサブコントローラ120には、例えばマイクロプロセッサなどが用いられる。
 距離計130は、例えばレーザダイオードとフォトダイオードなどによって構成されるレーザ距離計である。センサハブ140に、センサユニット141及びセンサ群142が接続されている。センサユニット141には、風力センサ、加速度センサ、角速度センサ、無人機の高度や角度を検知する磁気センサなどが含まれる。センサ群142には、気圧センサ、無人機の周囲温度を検知する温度センサ、磁界を検出するホールセンサ、超音波センサなどが含まれる。
 サブコントローラ120に、無人機の飛行速度を制御する速度コントローラ121と、アンテナ153に接続されたRC受信装置152が接続されている。速度コントローラ121は、モータ制御用のMCU、信号増幅用のオペアンプ、モータ駆動用のトランジスタ素子、トランジスタ素子の駆動回路、シャント抵抗器、ブラシレスモータ、加速度計などにより構成される。
 メインコントローラ110に接続される通信ブロック150は、無線モデム151、RC受信装置152を含む。無線モデム151は、航空用コントローラ、Wi-Fi(ワイファイ)やブルートゥース(登録商標)などの無線通信システムを含む。また、メインコントローラ110に接続されるオプションの外部デバイス160は、静止画像や動画を撮影するカメラなどである。
 また、電源ブロック170は、バッテリーやバッテリーの状態を監視するバッテリーモニタ、USB-PD規格に準拠した充電時に使用されるUSBポート、ワイヤレス充電器、内部回路用の各種のDC/DCコンバータ、バッテリー充電器などにより構成される。バッテリーは、例えばリチウムイオン(Li-ion)バッテリーである。
 図8に、無人機を構成する部品をレイアウトした例の平面図を示す。矩形状の基板101の第1主面101Aの中央付近にメインコントローラ110が配置され、メインコントローラ110に近接してメモリ111が配置されている。メモリ111には、各種センサにより取得された情報や、無人機を制御するプログラムなどが記憶されている。基板101の側面に配置された風力センサ31は、風力センサコネクタ310を介して、メインコントローラ110と電気的に接続されている。
 第1主面101Aの角部には、推力ユニット20を駆動するドライバ200が配置されている。ドライバ200は、メインコントローラ110によって制御される。
 破線で囲んで示したコネクタ配置領域102には、例えば通信モジュールコネクタなどが配置される。
 図9に、図8に示した基板101の底面図を示す。基板101の第2主面101Bの中央付近にバッテリー50が配置されている。バッテリー50周囲の第2主面101Bの中央付近に設定されたセンサ配置領域103には、例えばセンサ類が配置される。基板101の中央付近にバッテリー50などの重量の重い部品を配置することにより、無人機の姿勢のバランスを取りやすくできる。
 図10に、図8及び図9に示した無人機の側面図を示す。メインコントローラ110とバッテリー50は平面視で略重なるように配置されている。風力センサコネクタ310は、基板101の表面に配置された基板配線320によって、メインコントローラ110と電気的に接続されている。風力センサ31によって取得された情報は、基板配線320を経由してメインコントローラ110に送信される。
 なお、図11に示すように、メインコントローラ110の上部に、図7に示したアンテナ153を含むアンテナモジュール300を装着してもよい。
 また、全地球測位システム(global positioning system:GPS)によって無人機の位置情報を取得するためのGPSアンテナを機体フレーム10に搭載してもよい。図12に、GPSアンテナ60を機体フレーム10の上部に配置した例を示す。図12に示した無人機では、GPSアンテナ60の周囲に風力センサ31が配置されている。
 風力センサ31を有さない無人機の場合、無人機の飛行状態とは無関係で周囲に発生している気流が及ぼす飛行速度への影響が不明である。このため、飛行速度を検知するためには、例えば、GPSにより取得される複数の位置情報とその間の経過時間を用いる必要がある。したがって、無人機が飛行を開始してから一定の時間が経過した後でないと、飛行速度を検知できない。
 これに対し、実施形態に係る無人機では、浮揚した地点において無人機の受ける風力を検出している。このため、浮揚した直後から移動速度を正確に検知することができる。
 以上に説明したように、実施形態に係る無人機では、気流センサ30によって得られる気流情報に応じて推力ユニット20の発生する推力が制御される。これにより、無人機に吹く風などの周囲環境により受ける気流の影響が抑制され、無人機を空中で安定させることができる。また、気流の影響を打ち消す推力を所定の飛行を行うために必要な推力に合わせて発生させることができる。その結果、無人機を所定の速度及び方向に安定して飛行させることができる。
 <変形例>
 図13に示した実施形態の変形例に係る無人機は、上下方向に向けて配置した風力センサ31を更に備える。即ち、機体フレーム10の側面に配置された風力センサ31に加えて、機体フレーム10の上面に風力センサ31Eが配置され、機体フレーム10の下面に風力センサ31Fが配置されている。機体フレーム10の上面や下面に風力センサ31を配置することにより、上下方向に流れる気流に関する気流情報を取得できる。このため、図13に示した無人機によれば、上下方向に流れる気流によって及ぼされる影響も打ち消して、無人機を安定させることができる。なお、機体フレーム10の上面及び下面のいずれかに風力センサ31を配置するようにしてもよい。
 (その他の実施形態)
 上記のように、本実施形態によって記載したが、この開示の一部をなす論述及び図面は本実施形態を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 例えば、既に述べた実施形態の説明においては、推力ユニット20にプロペラ21を使用する場合を例示的に示したが、無人機を空中で飛行させる推力を発生させることができれば、どのようなシステムの推力ユニット20であってもよい。例えば、気流を噴射してその反動で機体フレーム10を飛行させるシステムなども、推力ユニット20に使用可能である。
 また、風力センサ31が機体フレーム10の4つの側面に配置されている例を示したが、風力センサ31の配置される方向は4方向に限られない。風力センサ31の個数を増やして風力を検出できる方向の数を多くするほど、より綿密に無人機の位置や飛行方向、飛行速度を調整し、無人機の飛行を安定させることができる。
 また、風力センサ31以外の測定器によって気流の風力や風向を検出してもよい。例えば、風力センサと風向センサを一体化した風向風速計を機体フレーム10に搭載してもよい。
 このように、本実施形態はここでは記載していない様々な実施形態などを含む。
 本実施形態の無人機は、空中を飛行する無人機全般に利用可能である。
 10…機体フレーム
 20…推力ユニット
 21…プロペラ
 30…気流センサ
 31…風力センサ
 40…制御装置
 50…バッテリー
 60…GPSアンテナ

Claims (14)

  1.  機体フレームと、
     飛行するための推力を発生する推力ユニットと、
     周囲の気流に関する気流情報を取得する気流センサと、
     前記気流情報に応じて前記推力ユニットを制御し、飛行状態を調整する制御装置と
     を備えることを特徴とする無人機。
  2.  前記気流センサが、気流の強さと向きを前記気流情報として取得することを特徴とする請求項1に記載の無人機。
  3.  前記気流センサが、前記機体フレームの異なる側面にそれぞれ配置された複数の風力センサを有し、
     前記複数の風力センサのそれぞれの風力検出部が、前記機体フレームの周囲の異なる方向に向けて配置されている
     ことを特徴とする請求項2に記載の無人機。
  4.  前記気流センサが、前記機体フレームの上面及び下面の少なくともいずれかに配置されていることを特徴とする請求項3に記載の無人機。
  5.  前記制御装置が、前記気流情報を参照して、特定の方向から受ける気流が強いほど前記特定の方向とは逆の方向に飛行する推力を強く発生するように、前記推力ユニットを制御することを特徴とする請求項1乃至4のいずれか1項に記載の無人機。
  6.  前記制御装置が、無人機が空中で静止するように前記推力ユニットを制御することを特徴とする請求項5に記載の無人機。
  7.  前記制御装置が、飛行状態とは無関係で周囲に発生している気流によって及ぼされる影響を打ち消しながら飛行するための前記推力を設定し、設定された前記推力を発生するように前記推力ユニットを制御することを特徴とする請求項1乃至6のいずれか1項に記載の無人機。
  8.  無人機の機体フレームに搭載された気流センサによって、周囲の気流に関する気流情報を取得するステップと、
     前記機体フレームに搭載され前記無人機を飛行させる推力を発生する推力ユニットを前記気流情報に応じて制御し、前記無人機の飛行状態を調整するステップと
     を含むことを特徴とする無人機の制御方法。
  9.  気流の強さと向きを前記気流情報として取得することを特徴とする請求項8に記載の無人機の制御方法。
  10.  前記機体フレームの異なる側面にそれぞれ配置された複数の風力センサによって前記気流情報を取得することを特徴とする請求項9に記載の無人機の制御方法。
  11.  前記機体フレームの上面及び下面の少なくともいずれかに配置された風力センサによって前記気流情報を取得することを特徴とする請求項10に記載の無人機の制御方法。
  12.  前記気流情報を参照して、特定の方向から受ける気流が強いほど前記特定の方向とは逆の方向に飛行する推力を強く発生するように、前記推力ユニットを制御することを特徴とする請求項8乃至11のいずれか1項に記載の無人機の制御方法。
  13.  前記無人機が空中で静止するように前記推力ユニットを制御することを特徴とする請求項12に記載の無人機の制御方法。
  14.  前記無人機の飛行状態とは無関係で前記無人機の周囲に発生している気流によって及ぼされる影響を打ち消しながら飛行するための前記推力を設定し、設定された前記推力を発生するように前記推力ユニットを制御することを特徴とする請求項8乃至13のいずれか1項に記載の無人機の制御方法。
PCT/JP2018/036034 2017-10-16 2018-09-27 無人機及びその制御方法 WO2019077963A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017200221 2017-10-16
JP2017-200221 2017-10-16

Publications (1)

Publication Number Publication Date
WO2019077963A1 true WO2019077963A1 (ja) 2019-04-25

Family

ID=66174335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036034 WO2019077963A1 (ja) 2017-10-16 2018-09-27 無人機及びその制御方法

Country Status (1)

Country Link
WO (1) WO2019077963A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021059232A (ja) * 2019-10-07 2021-04-15 株式会社Liberaware 回転翼機

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082018A (ja) * 2003-09-09 2005-03-31 National Aerospace Laboratory Of Japan 長期間滞空機とその飛行制御システムならびにその通信および観測システム
JP2015048025A (ja) * 2013-09-04 2015-03-16 佐古 曜一郎 防御装置及び防御システム
WO2016204180A1 (ja) * 2015-06-17 2016-12-22 浩平 中村 浮揚型飛行体
CN106275406A (zh) * 2016-09-05 2017-01-04 广州市婵昕生物科技有限责任公司 一种安全可靠的节能型无人机
WO2017073241A1 (ja) * 2015-10-28 2017-05-04 オムロン株式会社 対気速度計測システム
JP2017518217A (ja) * 2014-06-03 2017-07-06 サイファイ ワークス、インコーポレイテッド 固定ロータ推力ベクタリング
JP2017175366A (ja) * 2016-03-23 2017-09-28 オリンパス株式会社 撮影機器、撮影用移動体及び移動体用撮影制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082018A (ja) * 2003-09-09 2005-03-31 National Aerospace Laboratory Of Japan 長期間滞空機とその飛行制御システムならびにその通信および観測システム
JP2015048025A (ja) * 2013-09-04 2015-03-16 佐古 曜一郎 防御装置及び防御システム
JP2017518217A (ja) * 2014-06-03 2017-07-06 サイファイ ワークス、インコーポレイテッド 固定ロータ推力ベクタリング
WO2016204180A1 (ja) * 2015-06-17 2016-12-22 浩平 中村 浮揚型飛行体
WO2017073241A1 (ja) * 2015-10-28 2017-05-04 オムロン株式会社 対気速度計測システム
JP2017175366A (ja) * 2016-03-23 2017-09-28 オリンパス株式会社 撮影機器、撮影用移動体及び移動体用撮影制御装置
CN106275406A (zh) * 2016-09-05 2017-01-04 广州市婵昕生物科技有限责任公司 一种安全可靠的节能型无人机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021059232A (ja) * 2019-10-07 2021-04-15 株式会社Liberaware 回転翼機

Similar Documents

Publication Publication Date Title
AU2017387019B2 (en) Electrical system for unmanned aerial vehicles
US11214356B2 (en) Fiber sheet stacked rotor design
AU2022203944B2 (en) Safe unmanned aircraft
AU2024203331A1 (en) Systems and methods for autonomous airworthiness pre-flight checks for UAVs
US10933971B2 (en) Injection molded wing structure for aerial vehicles
WO2019077963A1 (ja) 無人機及びその制御方法
US20230192449A1 (en) Package Coupling Apparatus with Attachment Plate for Securing a Package to a UAV and Method of Securing a Package for Delivery
US10518892B2 (en) Motor mounting for an unmanned aerial system
US11661177B2 (en) Fold-out propeller tip extensions
JP2019043394A (ja) 回転翼航空機
US20240019876A1 (en) Tether-Based Wind Estimation
US20240019246A1 (en) Using Unwound Tether Length to Measure Altitude
US20230394814A1 (en) Stereo Abort of Unmanned Aerial Vehicle Deliveries
US20230316740A1 (en) Method for Controlling an Unmanned Aerial Vehicle to Avoid Obstacles
JP2019014317A (ja) 飛行制御装置およびこれを備える無人航空機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP