WO2019077920A1 - 調光装置、画像表示装置及び表示装置、並びに、調光装置の製造方法 - Google Patents

調光装置、画像表示装置及び表示装置、並びに、調光装置の製造方法 Download PDF

Info

Publication number
WO2019077920A1
WO2019077920A1 PCT/JP2018/034209 JP2018034209W WO2019077920A1 WO 2019077920 A1 WO2019077920 A1 WO 2019077920A1 JP 2018034209 W JP2018034209 W JP 2018034209W WO 2019077920 A1 WO2019077920 A1 WO 2019077920A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light control
control device
electrode
substrate
Prior art date
Application number
PCT/JP2018/034209
Other languages
English (en)
French (fr)
Inventor
由威 石井
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201880066098.7A priority Critical patent/CN111201487B/zh
Priority to EP18867331.3A priority patent/EP3699682B1/en
Priority to US16/754,665 priority patent/US11378860B2/en
Publication of WO2019077920A1 publication Critical patent/WO2019077920A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/161Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • G02F2001/1536Constructional details structural features not otherwise provided for additional, e.g. protective, layer inside the cell

Definitions

  • the present disclosure relates to a light control apparatus, an image display apparatus including the light control apparatus, and a display apparatus including the image display apparatus. More specifically, for example, a head mounted display (HMD, Head Mounted)
  • HMD Head Mounted
  • the present invention relates to a display device used for Display) and a method of manufacturing a light control device.
  • AR technology Augmented Reality
  • a head-mounted display is considered as an apparatus for presenting visual information.
  • work support in a real environment is expected, and for example, provision of road guidance information, provision of technical information to an engineer who performs maintenance, and the like can be mentioned.
  • a head-mounted display is very convenient because the hand is not blocked.
  • smooth movement is possible.
  • a virtual image display apparatus for causing an observer to observe a two-dimensional image formed by an image forming apparatus as a magnified virtual image by a virtual image optical system is known. Then, by forming a virtual image based on a two-dimensional image in this display device, the observer can see the external image and the virtual image formed in a superimposed manner.
  • a virtual image display device display device
  • a light control device is known from, for example, Japanese Patent Application Laid-Open No. 2012-252091.
  • the light control layer constituting the light control device is made of an electrochromic material and the color change of the substance generated by the redox reaction of the electrochromic material is applied to change the light transmittance, the inside of the light control layer When the water content disappears, there is a phenomenon that no color change occurs in the light control layer.
  • a first transparent conductive film, a porous electron leak solid electrolyte film, an electron leak electrochromic film, and a second transparent conductive film are formed on a transparent substrate.
  • an electrochromic device in which a film is sequentially laminated and formed, and a transparent sealing substrate is bonded on a second transparent conductive film via a transparent sealing material to form a transmission type.
  • the sealing material is a sealing material having hygroscopicity
  • the film thickness of the sealing material is 50 ⁇ m or more, preferably 50 to 500 ⁇ m (refer to the same claim 6), sealing having hygroscopicity
  • the material is any of epoxy resin, PVA, and PVB (see claim 7).
  • the sealing material can hold H 2 O, H + , and OH ⁇ internally, and as a result, it is generated from the solid electrolyte film by coloring and decoloring of the electrochromic element.
  • Part of the O 2 gas or H 2 gas passes through the electrochromic film and the transparent conductive film or the reflective film / electrode film, and H in the sealing material internally retaining H 2 O, H + , OH ⁇ It is taken into 2 O.
  • the thickness of the sealing material 52 on the transparent electrode film 50 is constant, and the solid electrolyte film 46, the EC film 48, and the transparent electrode film Since the end of 50 is covered with the sealing material 52, the end (side surface) of the sealing material 52 is thick. Therefore, if moisture comes in and out through the sealing material 52, the moisture comes in and out large, and there is a problem that the reliability of the electrochromic device is lowered.
  • an object of the present disclosure is to control occurrence of a phenomenon that color change does not occur in the light control layer when water disappears inside the light control layer, and the light control device having high reliability and structure.
  • An object of the present invention is to provide an image display device including the light adjustment device, a display device including the image display device, and a method of manufacturing the light adjustment device.
  • a light control device for achieving the above object is: First substrate, A second substrate disposed opposite to the first substrate and receiving external light, A first electrode formed on a first substrate, A light control layer formed on the first electrode, A second electrode formed on at least the light control layer, and A moisture holding member covering at least the second electrode and facing the second substrate, Equipped with A first sealing member disposed on the edge of the first substrate, and A second sealing member disposed between the first sealing member and the second substrate, It is further equipped with
  • An image display device of the present disclosure for achieving the above object is: Image forming apparatus, An optical device having a virtual image forming area in which a virtual image is formed based on light emitted from the image forming apparatus; A light control device which is disposed to face at least a virtual image formation area and adjusts the amount of external light incident from the outside, Equipped with
  • the light control device comprises the light control device according to the first aspect of the present disclosure described above.
  • the light control device comprises the light control device according to the above-mentioned second aspect of the present disclosure.
  • the display device of the present disclosure for achieving the above object is A frame attached to the head of the observer, and Image display device attached to the frame, A display device provided with The image display device is Image forming apparatus, An optical device having a virtual image forming area in which a virtual image is formed based on light emitted from the image forming apparatus; A light control device which is disposed to face at least a virtual image formation area and adjusts the amount of external light incident from the outside, Equipped with The light control device comprises the light control device according to the first aspect of the present disclosure described above. Alternatively, the light control device comprises the light control device according to the above-mentioned second aspect of the present disclosure.
  • a method of manufacturing a light control device of the present disclosure for achieving the above object is: After the first electrode, the light control layer, and the second electrode are formed on the first substrate, and a sealing member is provided at the edge of the first substrate, A moisture retaining member is disposed on at least the second electrode, and a moisture retaining member extension extending from the moisture retaining member is disposed on the sealing member; Disposing a second substrate on the moisture holding member and the moisture holding member extension; It has each process. And the light control device concerning the 1st mode of this indication can be obtained by the manufacturing method of this light control device.
  • FIGS. 1A and 1B are schematic cross-sectional views of the light control device when the light control device of Example 1 is cut along arrows AA and arrows BB in FIG. 2A, respectively.
  • FIGS. 2A and 2B are a layout view of a first substrate etc. and a layout view of a second substrate etc. when the light control device of Example 1 is viewed from the light incident side (upper side), and FIG. It is a layout figure when the 1st board
  • FIG. 3A and 3B are schematic cross-sectional views of a part of the image display device of Example 1 cut along the XZ plane, and a schematic view of the light control device of Example 1 as viewed from the front.
  • FIG. 4A is a schematic cross-sectional view of a portion of the image display device of Example 1 taken along arrow BB in FIG. 3B (that is, cut along the YZ plane), and
  • FIG. 4B is a cross-sectional view. It is the model which looked at the display apparatus of Example 1 from the side.
  • FIG. 5 is a conceptual view of the image display device of the first embodiment.
  • FIG. 6 is a schematic cross-sectional view showing a part of the reflective volume hologram diffraction grating in an enlarged manner.
  • FIG. 7 is a schematic view of the display device of Example 1 as viewed from above.
  • FIG. 8 is a schematic view of the display device of Example 1 as viewed from the front.
  • 9A and 9B are schematic cross-sectional views similar to when the light control device of Example 2 is cut along the arrow AA of FIG. 2A, and FIG. 1 is a layout view of a substrate etc. as viewed from the light incident side (upper side).
  • FIGS. 10A and 10B are schematic cross-sectional views similar to when the light control device of Example 3 is cut along arrow AA in FIG. 2A, and FIGS. 1 is a layout view of a substrate etc. as viewed from the light incident side (upper side).
  • FIG. 11 is a schematic cross-sectional view similar to that when the light control device of Example 4 is cut along arrow AA of FIG. 2A.
  • 12A and 12B are schematic cross-sectional views similar to when the light control device of Example 5 is cut along arrow BB in FIG. 2A, and the second electrode and the like are on the light incident side. It is a layout when it sees from (above).
  • 13A and 13B are schematic cross-sectional views similar to those when the modified example of the light control device of Example 5 is cut along arrow BB in FIG. 2A, and the first electrode and the like, respectively. It is a layout when it sees from the opposite side (downward) to the light incidence side.
  • FIG. 14 is a schematic cross-sectional view similar to that when another modified example of the light control device of Example 5 is cut along arrow BB in FIG. 2A.
  • 15A and 15B are schematic cross-sectional views similar to when the light control device of Example 6 is cut along arrows AA and arrows BB in FIG. 2A, respectively.
  • 16A and 16B are schematic cross-sectional views similar to when the modified example of the light control device of Example 6 is cut along arrows AA and arrows BB in FIG. 2A, respectively.
  • FIG. 17 is a conceptual view of an image display device of the seventh embodiment.
  • FIG. 18 is a conceptual view of an image display device (modified example of the first embodiment) of the eighth embodiment.
  • FIG. 19 is a conceptual view of an image display device (modified example of the seventh embodiment) of the eighth embodiment.
  • FIG. 20 is a conceptual diagram of an image display device in a display device of a ninth embodiment.
  • 21A and 21B are a schematic view of the display device of Example 10 as viewed from above and a schematic view of a circuit for controlling an illuminance sensor, respectively.
  • 22A and 22B are a schematic view of the display device of Example 11 as viewed from above and a schematic view of a circuit for controlling an illuminance sensor, respectively.
  • FIG. 23 is a schematic view of the display device of Example 12 as viewed from above.
  • FIG. 24 is a schematic front view of an optical device and a light control device in the display device of Example 12 shown in FIG. FIG.
  • FIG. 25 is a schematic view of another display device of Example 12 as viewed from above.
  • FIG. 26 is a conceptual diagram of an image display device of a thirteenth embodiment.
  • FIG. 27 is a conceptual diagram of the image display device of the thirteenth embodiment.
  • FIG. 28 is a conceptual diagram for explaining an optical system in a modification of the image display device of the thirteenth embodiment.
  • 29A and 29B are schematic views of an optical device in a display device of Example 14 as viewed from above.
  • FIGS. 30A and 30B are a schematic view of an optical device in a modification of the display device of Example 14 as viewed from above and a schematic view of the optical device as viewed from the side.
  • FIG. 31 is a schematic cross-sectional view of the light control device of the fifteenth embodiment.
  • FIG. 32 is a schematic view showing a light control device having an elliptical outer shape.
  • FIGS. 33A and 33B are schematic cross-sectional views similar to when the modified example of the light control device of Example 1 is cut along arrow AA of FIG. 2A.
  • FIG. 34 is a schematic front view of a modified example of the light control device.
  • Example 1 A light control device according to a first aspect of the present disclosure, an image display device and a display device according to the present disclosure, an optical device having an 1-B structure / an image forming device having a first configuration, a light control device according to the present disclosure Manufacturing method) 3.
  • Example 2 Modification of Example 1
  • Example 3 another variation of Example 1 5.
  • Embodiment 4 (Modification of Embodiments 1 to 3) 6.
  • Example 5 (Modification of Examples 1 to 4) 7.
  • Example 6 (a light control device according to the second aspect of the present disclosure) 8.
  • Seventh Embodiment (Modifications of the First to Sixth Embodiments, Optical Device of 1-B Structure / Image Forming Device of Second Configuration) 9.
  • Embodiment 8 (Modifications of Embodiments 1 to 7, Optical Device of First-A Structure / First Configuration, Image Forming Device of Second Configuration) 10.
  • Embodiment 9 (Modifications of Embodiments 7 to 8, Optical Device of Second Structure / Image Forming Device of Second Structure) 11.
  • Example 10 (Modification of Examples 1 to 9) 12.
  • Example 11 (Modification of Examples 1 to 9) 13.
  • Example 12 (Modification of Examples 1 to 11) 14.
  • Example 13 (Modification of Example 7) 15.
  • Example 14 (Modification of Example 9) 16.
  • Example 15 (application to a light control device
  • a light control device according to a first aspect of the present disclosure, a light control device according to a first aspect of the present disclosure which constitutes the image display device of the present disclosure, a first aspect of the present disclosure which constitutes the display device of the present disclosure
  • a light control device according to claim 1 and a light control device according to a first aspect of the present disclosure obtained by the method of manufacturing a light control device according to the present disclosure It may be called "light control device etc.”
  • the light control device according to the second aspect of the present disclosure, the light control device according to the second aspect of the present disclosure which constitutes the image display device of the present disclosure, the second part of the present disclosure which constitutes the display device of the present disclosure.
  • the light control device may be collectively referred to as “the light control device according to the second aspect of
  • a light control apparatus or the like according to the first aspect of the present disclosure, or a light control apparatus or the like according to the second aspect of the present disclosure (these light control apparatuses or the like are generically referred to Sometimes referred to as
  • the second electrode is formed on the light control layer, on the first substrate, and at a distance from the first electrode.
  • the water holding member may be configured to cover at least the second electrode and the light control layer.
  • the sealing member functions as a moisture barrier layer, but a part of the sealing member can be configured of an auxiliary electrode,
  • the auxiliary electrode is configured to include a first auxiliary electrode formed on the first electrode, and a second auxiliary electrode formed on the second electrode so as to be separated from the first auxiliary electrode. be able to.
  • the auxiliary electrode it is possible to easily apply an appropriate voltage to the first electrode and the second electrode, and to suppress the occurrence of a voltage drop in the first electrode or the second electrode. Therefore, the occurrence of unevenness at the time of coloring of the light control device can be reduced.
  • the length of the entire auxiliary electrode is “1”
  • the length of the first auxiliary electrode is preferably less than 0.5
  • the length of the third auxiliary electrode is preferably less than 0.5. The same applies to the following.
  • the sealing member may be made of a resin, and in this case, Young of the resin constituting the sealing member The ratio may be 1 ⁇ 10 7 Pa or less.
  • an auxiliary electrode may be provided inside part of the sealing member.
  • the auxiliary electrode is configured to include a first auxiliary electrode formed on the first electrode, and a second auxiliary electrode formed on the second electrode so as to be separated from the first auxiliary electrode. be able to.
  • a resin constituting the sealing member for example, a UV curable resin (specifically, a resin composed of an acrylic resin, a urethane resin, a silicone resin, a fluorine resin, a polyimide resin, and an epoxy resin) Can be mentioned.
  • a UV curable resin specifically, a resin composed of an acrylic resin, a urethane resin, a silicone resin, a fluorine resin, a polyimide resin, and an epoxy resin
  • an inorganic filler such as silica or alumina may be added to the resin.
  • the sealing member may be configured as a convex portion provided on the edge of the first substrate
  • the auxiliary electrode can be provided inside a part of the sealing member.
  • the auxiliary electrode is configured to include a first auxiliary electrode formed on the first electrode, and a second auxiliary electrode formed on the second electrode so as to be separated from the first auxiliary electrode.
  • the convex portion at the edge of the first substrate can be formed, for example, by heat-pressing the edge of the first substrate using a heat press, or formed by various PVD methods, various CVDs, or various printing methods. You can also
  • an auxiliary electrode may be provided inside at least a portion of the first sealing member.
  • the auxiliary electrode is composed of a first auxiliary electrode formed on the first electrode, and a second auxiliary electrode formed on the second electrode so as to be separated from the first auxiliary electrode.
  • the first sealing member and the second sealing member can be made of resin, and in this case, the first sealing member and the second sealing member are configured.
  • the Young's modulus of the resin can be 1 ⁇ 10 7 Pa or less.
  • a part of the first sealing member may be configured to be an auxiliary electrode, in which case the auxiliary electrode is formed on the first electrode It can be set as the composition constituted from the 1st auxiliary electrode, and the 2nd auxiliary electrode formed apart from the 1st auxiliary electrode on the 2nd electrode.
  • a 2nd sealing member consists of resin.
  • a resin which comprises a 1st sealing member and a 2nd sealing member for example, ultraviolet curing resin (Specifically, acrylic resin, urethane resin, silicone resin, fluorine resin, polyimide resin, epoxy, etc. And the like) can be mentioned.
  • the first sealing member is made of a resin
  • an inorganic filler such as silica or alumina may be added to the resin
  • an inorganic filler such as silica or alumina may be added to the second sealing member.
  • Value VT 2 moisture permeability of the material constituting the second sealing member is lower than the value VT 0 moisture permeability of the material constituting the water retention member is preferred.
  • the first sealing member and the second sealing member are made of resin, and the thickness of the second sealing member is thinner than the thickness of the first sealing member, the moisture of the material constituting the first sealing member
  • the transmittance value VT 1 desirably satisfies the relationship of VT 1 ⁇ VT 2 ⁇ VT 0 .
  • the moisture permeability can be measured based on JIS K 7129: 2008, and for a 50 mm ⁇ 50 mm test piece, the test temperature is 25 ° C. ⁇ 0.5 ° C., and the relative humidity is 90 ⁇ 2%. Perform the test under The measurement is performed using a moisture sensor.
  • the first sealing member and the second sealing member may be made of the same resin, in which case the first sealing member and the second sealing member may be simultaneously formed integrally. It is preferable that the moisture permeability value VT 1 +2 of the material forming the first sealing member and the second sealing member is lower than the moisture permeability value VT 0 of the material forming the moisture retention member. .
  • the cross-sectional shape of the sealing member may be a shape that narrows toward the second substrate.
  • the cross-sectional shape of the sealing member By making the cross-sectional shape of the sealing member into such a shape, the water holding member is disposed on at least the second electrode, and the water holding member extension portion extending from the water holding member is disposed on the sealing member At the same time, it is possible to avoid the occurrence of the problem that air bubbles get mixed under the moisture holding member.
  • Such a cross-sectional shape of the sealing member can be formed based on various methods such as, for example, formation of the sealing member based on the printing method and formation of the sealing member based on the sputtering method using a metal mask.
  • an inorganic material film may be formed on the surface of the second substrate facing the water holding member.
  • the inorganic material film is made of, for example, an inorganic material such as aluminum oxide, silicon oxide, silicon nitride, niobium oxide or the like.
  • an inorganic material film By forming the inorganic material film, rigidity can be imparted to the second substrate, and as a result, distortion does not easily occur in the second substrate.
  • the formation of the inorganic material film can be performed based on, for example, a PVD method, a CVD method, a laser ablation method, or an atomic layer deposition method (ALD method).
  • the Young's modulus of the material (specifically, the resin) constituting the water holding member is 1 ⁇ 10 6 Pa or less. This makes it possible to absorb various steps generated in the interior of the light control device, and to make the thickness variation of the water holding member at the central portion of the light control device, the thickness of the water holding member extension portion As a result that the variation can be reduced (that is, as a result that the entire distance between the first substrate and the second substrate can be made uniform), it is possible to prevent the deterioration of the visibility. Specifically, when the outside world is viewed through the light control device, it is possible to suppress the distortion of the outside world image and the occurrence of the deviation of the outside world image.
  • the resin constituting the water holding member may be an acrylic resin, a silicone resin or a urethane resin. .
  • the water holding member may be in the form of an ultraviolet curable resin.
  • the water holding member may be made of a material called OCA (Optical Clear Adhesive).
  • OCA Optical Clear Adhesive
  • the "water holding member” may be replaced with a proton supply member, a transparent adhesive member capable of holding water, or a transparent sealing member capable of holding water.
  • the moisture holding member made of OCA can maintain an equilibrium moisture state, for example, by storing it at room temperature with a relative humidity of 50%.
  • the second substrate and the second electrode and the second substrate and the sealing member are bonded to each other through the water holding member.
  • a thermoplastic UV curable type moisture holding member it is also possible to use a thermoplastic UV curable type moisture holding member.
  • the second electrode is spread over the sealing member, the water holding member is applied, and if necessary, precured, the water holding of the second substrate is carried out while being pressurized if necessary. It is sufficient to superimpose on the member and to cure the moisture holding member by ultraviolet light.
  • the water retaining member can be pasted from the second electrode onto the sealing member based on a thermal lamination method or the like.
  • the light control device may be in a curved form, whereby the light display device or the display device Can be attached easily and reliably.
  • the thickness of the water holding member extension portion is thinner than the thickness of the water holding member at the central portion of the light control device, but the water holding member at the central portion of the light control device 1 ⁇ 10 ⁇ 4 m to 5 ⁇ 10 ⁇ 4 m can be illustrated as the thickness (t 1 ) of the film, and 1 ⁇ 10 ⁇ 7 as the thickness (t 2 ) of the water holding member extension portion m to 1 ⁇ 10 -4 m can be exemplified. Alternatively, it is preferable to satisfy 5 ⁇ 10 ⁇ 4 ⁇ t 2 / t 1 ⁇ 1.
  • the water holding member is disposed on at least the second electrode, and the water holding member extension portion extending from the water holding member is disposed on the sealing member.
  • the water holding member may be bonded or bonded to the second electrode, and the water holding member extending portion may be bonded to the sealing member or bonded.
  • the second substrate is disposed on the moisture holding member and the moisture holding member extension portion, specifically, for example, the second substrate is adhered to the moisture holding member and the moisture holding member extension portion, or You may paste it together.
  • the second substrate also has a function as a protective substrate, for example.
  • the first substrate faces the optical device with a gap, or faces the optical device without a gap, or a member that constitutes the optical device (for example, optical It also serves as a protective member provided on the device.
  • a hard coat layer composed of an organic / inorganic mixed layer or an antireflective film composed of a fluorine-based resin may be formed.
  • the light control layer may be provided with an electrochromic material layer.
  • a light control layer electrochromic material layer
  • a light control layer electrochromic material layer
  • the light control device can be in the form of a light shutter to which the color change of the substance generated by the redox reaction of the electrochromic material layer made of an inorganic or organic electrochromic material is applied.
  • the light control layer can be in a form containing an inorganic or organic electrochromic material, and as described above, can be composed of a reduction coloring layer, an electrolyte layer, and an oxidation coloring layer.
  • the reduced coloring layer examples include inorganic materials such as tungsten oxide, molybdenum oxide and vanadium oxide, and organic materials such as viologen derivatives, polythiophene derivatives and Prussian blue derivatives, and as the electrolyte layer, tantalum oxide, propylene carbonate, ionic liquid And ionic polymers, etc., and as an oxide coloring layer, iridium oxide materials, nickel oxide, zirconium oxide, zirconium phosphate, nickel hydroxide, chromium oxide, inorganic materials such as copper chloride, amine derivatives, phenazine, Examples thereof include organic materials such as viologen derivatives, and further, polymers, organic / metal mixtures and the like.
  • the light control layer has, for example, a laminated structure of inorganic electrochromic material layers such as WO 3 layer / Ta 2 O 5 layer / Ir X Sn 1-X O layer from the second electrode side, or it can be configured to have a laminated structure of inorganic electrochromic material layer such WO 3 layer / Ta 2 O 5 layer / IrO x layer.
  • the WO 3 layer as described above, the MoO 3 layer or the V 2 O 5 layer can be used.
  • a ZrO 2 layer instead of the IrO x layer, as described above, a ZrO 2 layer, a zirconium phosphate layer can be used, or alternatively, a Prussian blue complex / a nickel-substituted Prussian blue complex or the like can be used.
  • a material constituting the organic electrochromic material layer for example, electrochromic materials disclosed in Japanese Patent Application Laid-Open Nos. 2014-111710 and 2014-159385 can also be used.
  • the control of the light blocking ratio can be performed based on, for example, a simple matrix method. That is, The first electrode comprises a plurality of strip-like first electrode segments extending in a first direction, The second electrode comprises a plurality of strip-like second electrode segments extending in a second direction different from the first direction,
  • the control of the light blocking ratio of the portion of the light control device corresponding to the overlapping region of the first electrode segment and the second electrode segment (the minimum unit region where the light blocking ratio of the light control device changes) is the first electrode segment and the second electrode segment It may be in the form of being performed based on the control of the voltage applied to the The form which is orthogonal to a 1st direction and a 2nd direction can be illustrated.
  • a thin film transistor may be provided in each of the minimum unit areas in order to control the light blocking ratio of the minimum unit area in which the light blocking ratio of the light control device changes. That is, the control of the light blocking ratio may be performed based on the active matrix method.
  • at least one of the first electrode and the second electrode may be a so-called solid electrode (an electrode not patterned).
  • the first electrode may or may not be patterned.
  • the second electrode may or may not be patterned.
  • a transparent conductive material more specifically, indium-tin complex oxide (ITO, Indium Tin Oxide, Sn-doped In 2 O 3 , crystalline ITO and amorphous ITO) as a material constituting the first electrode and the second electrode
  • ITO indium-tin complex oxide
  • IFO F-doped In 2 O 3
  • indium -IZ Indium Zinc Oxide
  • spinel type oxides oxides having a YbFe 2 O 4 structure, and conductive polymers such as polyaniline, polypyrrole and polythiophene, etc.
  • the thin wire-shaped first and second electrodes can be made of a metal such as gold, silver, copper, aluminum, nickel, titanium or an alloy.
  • the auxiliary electrode can be made of, for example, a metal such as gold, silver, copper, aluminum, nickel, titanium, or an alloy thereof, or alternatively, the auxiliary electrode is formed using silver paste or copper paste. You can also The auxiliary electrodes (first auxiliary electrode and second auxiliary electrode) are required to have lower electrical resistance than the first electrode and the second electrode.
  • the first electrode and the second electrode, the auxiliary electrode can be formed by physical vapor deposition (PVD) such as vacuum evaporation or sputtering, or various chemical vapor deposition ( It can form based on various printing methods, such as CVD method) and various application
  • PVD physical vapor deposition
  • the patterning of the electrode can be performed by any method such as an etching method, a lift-off method, and a method using various masks.
  • the first substrate and the second substrate are made of a transparent glass substrate such as soda lime glass or white sheet glass, a plastic substrate, a plastic sheet, or a plastic film Form.
  • a transparent glass substrate such as soda lime glass or white sheet glass
  • plastic substrate such as soda lime glass or white sheet glass
  • plastic substrate such as soda lime glass or white sheet glass
  • plastic substrate such as soda lime glass or white sheet glass
  • plastic substrate such as soda lime glass or white sheet glass
  • plastic substrate such as soda lime glass or white sheet glass
  • plastic substrate a plastic substrate, a plastic sheet, or a plastic film Form
  • a plastic a cellulose ester such as polyethylene terephthalate, polyethylene naphthalate, polycarbonate, cellulose acetate, etc.
  • fluorine polymer such as polyvinylidene fluoride or a copolymer of polytetrafluoroethylene and hexafluoropropylene, a polyoxyethylene, etc.
  • Ether polyacetal, polystyrene, polyethylene, polypropylene, polyolefin such as methyl pentene polymer, polyimide such as polyamide imide or polyether imide, polyamide, polyether sulfone, polyphenylene sulfide, polyvinylidene fluoride, tetraacetyl cellulose, brominated phenoxy, poly Alilate, polysulfone and the like can be mentioned.
  • the inorganic material film may be provided on the second substrate, whereby the second substrate can be provided with rigidity, and when assembling the light control device, the second substrate may be provided. Distortion is less likely to occur.
  • the optical device includes: (B-1) A light guide plate emitted toward a viewer after light incident from the image forming apparatus propagates through the inside by total reflection, (B-2) first deflection means for deflecting light incident on the light guide plate so that light incident on the light guide plate is totally reflected inside the light guide plate; (B-3) second deflection means for deflecting the light propagated by total reflection inside the light guide plate and emitting the light from the light guide plate; Equipped with The second deflection means may be configured to form a virtual image forming area of the optical device.
  • optical device of first structure Such an optical device is referred to as “optical device of first structure” for convenience.
  • total reflection means total internal reflection or total internal reflection inside the light guide plate.
  • the second deflection means (virtual image formation area) is located in the projection image of the light adjustment device, and in some cases, the light adjustment device is located in the projection image of the second deflection means (virtual image formation area).
  • region which makes the value of the light shielding rate high in a light control apparatus may be all the area
  • the virtual image projection area of the light control apparatus includes the projected image of the virtual image on the light control apparatus.
  • the light control device may control so that the light blocking ratio of the region of the light controlling device corresponding to the virtual image forming region is higher than the light blocking ratio of the other regions of the light controlling device.
  • the position of the virtual image projection area is not fixed but varies depending on the formation position of the virtual image, and the number of virtual image projection areas is also the number of virtual images (or the number of series of virtual image groups) It can also be in a form that changes depending on the number of blocked virtual image groups, etc.).
  • the light blocking ratio of the other area of the light control device is, for example, “1” when the light blocking ratio of the virtual image projected area of the light control device including the projected image of the virtual image on the light control device is , 0.95 or less.
  • the light blocking ratio of the other area of the light control device can be, for example, 30% or less.
  • the light blocking ratio of the virtual image projection area of the light control device can be 35% to 99%, for example, 80%.
  • the blocking ratio of the virtual image projection area may be constant or may be changed depending on the illuminance of the environment in which the display device is placed.
  • the frame is disposed in front of the observer A front portion, two temple portions rotatably attached to both ends of the front portion via hinges, and a nose pad, and the light control device may be disposed at the front portion
  • the optical device may be attached to the light control device.
  • the optical device may be in the form of being attached to the front part, in which case the light control device may be in the form of being attached to the optical device.
  • the front portion may have a rim portion
  • the light control device may be configured to be fitted to the rim portion
  • the optical device may be configured to be fitted to the rim portion. be able to.
  • the optical device and the light control device may be arranged in this order from the viewer side, or the light control device and the optical device may be arranged in the order.
  • the light blocking ratio may change gradually (that is, may change continuously), or changes stepwise depending on the arrangement state and shape of the electrodes. It may be configured, or may be configured to change continuously or stepwise from a fixed value. That is, the light control device may be in a state in which the color gradation is attached, or may be in a state in which the color changes stepwise, or from a state in which a certain color is attached Can be changed.
  • the light blocking ratio can be controlled by the voltage applied to the first electrode and the second electrode.
  • the potential difference between the first electrode and the second electrode may be controlled, or the voltage applied to the first electrode and the voltage applied to the second electrode may be controlled independently.
  • a test pattern may be displayed on the optical device.
  • the display device or the like of the present disclosure further includes an environmental illuminance measurement sensor that measures the illuminance of the environment in which the display device is placed, and controls the light blocking ratio of the light adjustment device based on the measurement result of the environmental illuminance measurement sensor. It can be done.
  • the apparatus further comprises an environmental illuminance measurement sensor for measuring the illuminance of the environment in which the display device is placed, and controlling the luminance of the image formed by the image forming apparatus based on the measurement result of the environmental illuminance measurement sensor. can do. These forms may be combined.
  • it further comprises a transmitted light illuminance measurement sensor that measures the illuminance based on light transmitted from the external environment from the external environment, and controls the light blocking ratio of the light modulation device based on the measurement result of the transmitted light illuminance measurement sensor can do.
  • it further comprises a transmitted light illuminance measurement sensor that measures the illuminance based on the light transmitted from the external environment through the light control device, and based on the measurement result of the transmitted light illuminance measurement sensor, the brightness of the image formed by the image forming device It can be in a controlled form. It is desirable that the transmitted light illuminance measurement sensor be disposed closer to the observer than the optical device.
  • At least two of the transmitted light illuminance measurement sensors may be arranged to measure the illuminance based on the light passing through the high light blocking part and to measure the illuminance based on the light passing through the low light blocking part. These forms may be combined. Furthermore, you may combine these forms and the form which performs control based on the measurement result of said environmental illumination intensity measurement sensor.
  • the illuminance sensor (environment illuminance measuring sensor, transmitted light illuminance measuring sensor) may be configured by a known illuminance sensor, and the control of the illuminance sensor may be performed based on a known control circuit.
  • the maximum light transmittance of the light control device may be 50% or more, and the minimum light transmittance of the light control device may be 30% or less.
  • An upper limit value of the maximum light transmittance of the light control device can be 99%, and a lower limit value of the minimum light transmittance of the light control device can be 1%.
  • a control circuit for example, included in a control device for controlling an image forming apparatus for attaching a connector to a light control device and controlling a light blocking ratio (light transmittance) of the light control device
  • the light control device may be electrically connected via
  • light passing through the light control device can be configured to be colored to a desired color by the light control device.
  • the color to be colored by the light control device may be variable, or alternatively, the color to be colored by the light control device may be fixed.
  • a light control device colored in red, a light control device colored in green, and a light control device colored in blue may be stacked.
  • the color to be colored by the light control device can be exemplified by, but not limited to, brown.
  • the light control device may be detachably disposed.
  • the light control device is attached to, for example, a frame using a screw made of transparent plastic, or a groove is cut in the frame, and
  • the dimmer may be attached to the frame by engaging the dimmer or attaching a magnet to the frame, or the slide may be provided on the frame and the dimmer may be fitted in the slide.
  • the optical device is semi-transmissive (see-through). Specifically, at least the part of the optical device facing the viewer's eye (pupil) can be made translucent (see through) and the outside scene can be viewed through this part of the optical device and the dimming device.
  • the observer observes the brightness of light passing through the light control device and the optical device, and the observer manually controls and adjusts the light blocking ratio by operating the switches, buttons, dials, sliders, knobs, etc.
  • the light blocking ratio can be controlled and adjusted based on the measurement result of the transmitted light illuminance measurement sensor that measures the illuminance based on the light transmitted from the external environment described above through the light control device.
  • the control and adjustment of the light blocking ratio may be performed by controlling the voltage applied to the first electrode and the second electrode.
  • At least two of the transmitted light illuminance measurement sensors may be arranged to measure the illuminance based on the light passing through the high light blocking part and to measure the illuminance based on the light passing through the low light blocking part.
  • the display device may include one image display device (one-eye type) or two (binary type). When two image display devices are provided, light shielding in one light adjusting device is performed by adjusting the voltage applied to the first electrode and the second electrode in each of the light adjusting device on one side and the light adjusting device on the other side. It is possible to equalize the rate and the light blocking rate in the other light control device.
  • the light blocking ratio in one light control device and the light blocking ratio in the other light control device are controlled, for example, based on the measurement result of the transmitted light illuminance measurement sensor that measures the illuminance based on the light transmitted from the external environment described above.
  • the observer can observe the brightness of the light passing through one of the light control devices and the optical device and the brightness of the light passing through the other light control device and the optical device, However, it is also possible to control and adjust manually by operating switches, buttons, dials, sliders, knobs and the like. When adjusting the light blocking rate, a test pattern may be displayed on the optical device.
  • the term "semi-transmissive" may be used, but it does not mean to transmit or reflect half (50%) of incident light, but a part of incident light Is used in the sense of transmitting the remaining part.
  • the first deflection means reflects the light incident on the light guide plate, and the second deflection means propagates the light propagated by total reflection in the light guide plate (a plurality of It can be configured to transmit and reflect around.
  • the first deflection means can function as a reflecting mirror, and the second deflection means can function as a semitransparent mirror.
  • optical device of the first-A structure Such an optical device of the first structure is referred to as “optical device of the first-A structure” for convenience.
  • the first deflection means is made of, for example, a metal containing an alloy, and a light reflection film (a type of mirror) for reflecting light incident on the light guide plate, It can comprise from the diffraction grating (for example, hologram diffraction grating film
  • the first deflection means can be composed of, for example, a multilayer laminated structure in which a large number of dielectric laminated films are laminated, a half mirror, and a polarization beam splitter.
  • the second deflection means can be composed of a multilayer laminated structure in which a large number of dielectric laminated films are laminated, a half mirror, a polarization beam splitter, and a hologram diffraction grating film.
  • the first deflection means and the second deflection means are disposed inside the light guide plate (incorporated inside the light guide plate)
  • the parallel incident to the light guide plate The parallel light incident on the light guide plate is reflected or diffracted so that the light is totally reflected inside the light guide plate.
  • the parallel light propagated by total reflection in the light guide plate is reflected or diffracted (a plurality of times) and emitted from the light guide plate in the state of parallel light.
  • the first deflection means may diffract and reflect light incident on the light guide plate
  • the second deflection means may diffract and reflect light propagated by total reflection inside the light guide plate.
  • the first deflection means and the second deflection means may be formed of diffraction grating elements, and further, the diffraction grating elements may be formed of reflection type diffraction grating elements, or alternatively, transmission type diffraction gratings.
  • one of the diffraction grating elements may be a reflection grating element
  • the other diffraction grating element may be a transmission grating element.
  • a reflection type volume hologram diffraction grating can be mentioned as a reflection type diffraction grating element.
  • the reflective volume hologram diffraction grating means a hologram diffraction grating that diffracts and reflects only + 1st order diffracted light.
  • the first deflection means composed of a hologram diffraction grating may be called a "first diffraction grating member”
  • the second deflection means composed of a hologram diffraction grating may be called a "second diffraction grating member” for convenience.
  • such an optical device of the first structure is referred to as “optical device of the 1-B structure” for convenience.
  • a single-color (for example, green) image display can be performed by the image display device in the display device or the like of the present disclosure. Then, in this case, for example, the angle of view is divided into two (more specifically, for example, into two equal parts), and the first deflecting means is divided into two diffraction gratings corresponding to the respective groups of the divided angle of view.
  • the members can be stacked.
  • P 3 types of red, green, and blue
  • P in order to correspond to the diffraction reflection of P types of light having different P types of wavelength bands (or wavelengths), it is possible to use P as a first diffraction grating member or a second diffraction grating member consisting of one diffraction grating layer. It is also possible to adopt a configuration in which interference fringes of a kind are formed.
  • the first light guide plate is provided with a diffraction grating member constituted of a diffraction grating layer formed of a hologram diffraction grating that diffracts and reflects light having a red wavelength band (or wavelength), and the second light guide plate And a diffraction grating member composed of a diffraction grating layer formed of a hologram diffraction grating that diffracts and reflects light having a green wavelength band (or wavelength), and a blue light wavelength band (or A diffraction grating member composed of a diffraction grating layer consisting of a hologram diffraction grating that diffracts and reflects light having a wavelength) is disposed, and these first light guide plate, second light guide plate and third light guide plate are laminated with a gap May be adopted.
  • the angle of view may be divided into, for example, three equal parts, and the first diffraction grating member or the second diffraction grating member may be configured by laminating diffraction grating layers corresponding to each angle of view. Then, by adopting these configurations, the diffraction efficiency increases when light having each wavelength band (or wavelength) is diffracted and reflected by the first diffraction grating member or the second diffraction grating member, and the diffraction acceptance angle The increase and the optimization of the diffraction angle can be achieved. It is preferable to arrange a protective member so that the observer does not touch the hologram diffraction grating.
  • a photopolymer material can be mentioned as a material which comprises a 1st diffraction grating member and a 2nd diffraction grating member.
  • the constituent materials and the basic structure of the first diffraction grating member and the second diffraction grating member formed of the hologram diffraction grating may be the same as the constituent material and the structure of the conventional hologram diffraction grating.
  • the interference fringes are formed on the surface of the diffraction grating member from the inside to the surface, the method of forming the interference fringes per se may be the same as the conventional forming method.
  • the reference light may be irradiated from a second predetermined direction on the other side, and interference fringes formed by the object light and the reference light may be recorded inside the member constituting the diffraction grating member.
  • the desired inclination angle of the interference fringes means the angle between the surface of the diffraction grating member (or the diffraction grating layer) and the interference fringes.
  • the first diffraction grating member and the second diffraction grating member are formed of a laminated structure of diffraction grating layers of P layers composed of hologram diffraction gratings, lamination of such diffraction grating layers is different from the diffraction grating layers of P layers.
  • the grating layer of the P layer may be laminated (adhered) using, for example, a UV curable adhesive.
  • a photopolymer material having tackiness is sequentially attached thereon to fabricate a diffraction grating layer, whereby A grating layer may be made.
  • the prepared diffraction grating layer is irradiated with energy rays as needed to polymerize the monomers in the photopolymer material remaining without being polymerized at the time of irradiation of the object light and reference light of the diffraction grating layer, thereby fixing the light. You may Further, if necessary, heat treatment may be performed to stabilize.
  • the optical device includes a semi-transmissive mirror that receives light emitted from the image forming device and emits the light toward the pupil of the observer. It can be in the form of a polarization beam splitter (PBS).
  • PBS polarization beam splitter
  • the semitransparent mirror or polarizing beam splitter constitutes a virtual image forming area of the optical device.
  • the light emitted from the image forming apparatus may propagate in the air and be incident on the semitransparent mirror or the polarizing beam splitter.
  • a transparent member such as a glass plate or a plastic plate
  • the light may be propagated through the inside of a member made of the same material as the material of the light guide plate described later and may be incident on the semitransparent mirror or the polarization beam splitter.
  • a semitransparent mirror or polarizing beam splitter may be attached to the image forming apparatus through the transparent member, or the semitransparent mirror or polarizing beam splitter may be attached to the image forming device through a member other than the transparent member. It may be attached to Such an optical device is called “optical device of the second structure” for convenience.
  • a first deflection means in an optical device of the 1-A structure for example, a light reflection film (a kind of mirror) made of metal containing an alloy and reflecting light, a diffraction grating (for example, hologram diffraction Lattice film).
  • the optical device may be in the form of a prism into which light emitted from the image forming apparatus is incident and emitted toward the pupil of the observer.
  • the image forming apparatus can be configured to have a plurality of pixels arranged in a two-dimensional matrix.
  • the configuration of such an image forming apparatus is referred to as “image forming apparatus of the first configuration” for convenience.
  • an image forming apparatus comprising a reflective spatial light modulator and a light source; an image forming apparatus comprising a transmissive spatial light modulator and a light source; organic EL (Electro Luminescence),
  • the image forming apparatus include light emitting elements such as inorganic EL, light emitting diode (LED) and semiconductor laser elements, among which an image forming apparatus (organic EL display apparatus) including organic EL light emitting elements, It is preferable to set it as the image forming apparatus comprised from a reflection type spatial light modulator and a light source.
  • the spatial light modulation device examples include light valves, for example, transmissive or reflective liquid crystal displays such as LCOS (Liquid Crystal On Silicon), and digital micro mirror devices (DMD), and a light emitting element is given as a light source. be able to.
  • the reflection type spatial light modulation device reflects the liquid crystal display device and part of the light from the light source and guides it to the liquid crystal display device, and passes part of the light reflected by the liquid crystal display device. It can be made up of a polarizing beam splitter that leads to an optical device (e.g. a light guide plate).
  • a light emitting element which comprises a light source
  • a red light emitting element a green light emitting element, a blue light emitting element, and a white light emitting element
  • white light may be obtained by mixing the red light, green light and blue light emitted from the red light emitting element, the green light emitting element and the blue light emitting element using a light pipe and equalizing the luminance.
  • a light emitting element a semiconductor laser element, a solid state laser, and LED can be illustrated, for example.
  • the number of pixels may be determined based on the specifications required for the image display device, and specific values of the number of pixels are 320 ⁇ 240, 432 ⁇ 240, 640 ⁇ 480, 1024 ⁇ 768, 1920 ⁇ 1080, etc. Can be illustrated.
  • the stop may be disposed at the position of the front focal point (focus on the side of the image forming apparatus) of the lens system (described later). This corresponds to an image output unit from which an image is output from the forming apparatus.
  • the image forming apparatus scans the light source and light emitted from the light source to form an image.
  • Such an image forming apparatus is referred to as “image forming apparatus of the second configuration” for convenience.
  • a light emitting element can be mentioned as a light source in the image forming apparatus of the second configuration, and specifically, a red light emitting element, a green light emitting element, a blue light emitting element, a white light emitting element can be mentioned.
  • the white light may be obtained by mixing the red light, green light and blue light emitted from the element, the green light emitting element and the blue light emitting element using a light pipe, and making the luminance uniform.
  • a light emitting element a semiconductor laser element, a solid state laser, and LED can be illustrated, for example.
  • the number of pixels (virtual pixels) in the image forming apparatus of the second configuration may also be determined based on the specifications required of the image display apparatus, and 320 ⁇ as a specific value of the number of pixels (virtual pixels) 240, 432x240, 640x480, 1024x768, 1920x1080, etc. can be illustrated.
  • the light source includes a red light emitting element, a green light emitting element, and a blue light emitting element, it is preferable to perform color synthesis using, for example, a cross prism.
  • the scanning means may include, for example, a micro electro mechanical systems (MEMS) mirror or a galvano mirror having a two-dimensionally rotatable micro mirror that horizontally and vertically scans light emitted from a light source.
  • MEMS micro electro mechanical systems
  • the MEMS mirror or the galvano mirror can be disposed at the position of the front focal point (focal point on the image forming apparatus side) of the lens system (described later).
  • the MEMS mirror and the galvano mirror correspond to an image output unit from which an image is output from the image forming apparatus.
  • a plurality of parallel beams are formed by a lens system (optical system that converts outgoing beams into parallel beams)
  • the incident light is made incident on the optical device (for example, the light guide plate).
  • the requirement for such parallel light is that the light wavefront information when such light is incident on the optical device is the first deflection means
  • the second deflecting means must be stored after being emitted from the optical device.
  • the light emitting portion of the image forming apparatus may be located at the focal length (position) of the lens system in order to generate a plurality of parallel lights.
  • the lens system has a function of converting pixel position information into angle information in the optical device.
  • a convex lens, a concave lens, a free-form surface prism, and a hologram lens can be illustrated alone or in combination, an optical system having an overall positive optical power.
  • a light shielding portion having an opening may be disposed between the lens system and the optical device so that undesired light is not emitted from the lens system and enters the optical device.
  • the light guide plate has two parallel surfaces (a first surface and a second surface) extending in parallel with the axis (longitudinal direction, horizontal direction, corresponding to the X direction) of the light guide plate.
  • the width direction (height direction, vertical direction) of the light guide plate corresponds to the Y direction.
  • the first deflection means is disposed on the first surface or the second surface of the light guide plate
  • the second deflection means is disposed on the first surface or the second surface of the light guide plate.
  • the interference fringes of the diffraction grating member extend generally parallel to the Y direction.
  • Materials constituting the light guide plate include quartz glass, optical glass such as BK7, soda lime glass, glass including white plate glass, and plastic materials (for example, laminated structure of PMMA, polycarbonate resin, polycarbonate resin and acrylic resin, acrylic resin) And resins, cycloolefin polymers, amorphous polypropylene resins, and styrene resins including AS resins).
  • the shape of the light guide plate is not limited to a flat plate, and may have a curved shape.
  • the light control device may be curved.
  • a light blocking member for blocking the incidence of external light to the optical device is disposed in the region of the optical device where the light emitted from the image forming apparatus is incident. it can.
  • a light blocking member for blocking the incidence of external light to the optical device in the area of the optical device where the light emitted from the image forming apparatus is incident, the light quantity of the external light is changed by the operation of the light control device.
  • the projection image of the light blocking member onto the optical device preferably includes a region of the optical device into which light emitted from the image forming device is incident.
  • a light blocking member that blocks the incidence of external light on the first deflection means is disposed in the area of the first deflection means where the light emitted from the image forming apparatus is incident.
  • a light blocking member for blocking the incidence of external light to the light guide plate is disposed in a region of the light guide plate where the light emitted from the image forming device is incident, thereby guiding the light emitted from the image forming device Since external light does not enter the area of the light plate, undesired stray light or the like is generated, and the image display quality in the display device is not degraded. It is preferable that an area of the light guide plate to which light emitted from the image forming apparatus is incident is included in an orthogonal projection image of the light blocking member to the light guide plate.
  • the light blocking member can be configured to be disposed apart from the optical device (light guide plate) on the opposite side of the optical device (light guide plate) to the side on which the image forming device is disposed.
  • the light shielding member may be made of, for example, an opaque plastic material, and such light shielding member integrally extends from the housing of the image forming apparatus, or the image may be formed. It may be attached to the casing of the forming device, or alternatively may extend integrally from the frame or be attached to the frame.
  • the light blocking member may be disposed in the portion of the optical device (light guide plate) opposite to the side on which the image forming apparatus is disposed, and the light blocking member may be disposed in the light control device.
  • the light shielding member made of an opaque material may be formed on the surface of the optical device (light guide plate) by physical vapor deposition (PVD) or chemical vapor deposition (CVD). Or a film, sheet, or foil made of an opaque material (a plastic material, a metal material, an alloy material, etc.). It is preferable that the projection image of the end of the light control device onto the optical device (light guide plate) is included in the projection image of the light shielding member on the optical device (light guide plate).
  • the frame includes the front portion disposed in front of the observer and two temple portions rotatably attached to both ends of the front portion via hinges. It can be configured. A modern part is attached to the tip of each temple part.
  • the image display device is attached to the frame, specifically, for example, the image forming device may be attached to the temple portion.
  • the front portion and the two temple portions may be integrated. That is, when the entire display device or the like according to the present disclosure is viewed, the frame has substantially the same structure as ordinary glasses.
  • frame containing a pad part can be comprised from the same material as the materials which comprise normal spectacles, such as a metal, an alloy, a plastics, and these combination.
  • a nose pad may be attached to the front portion. That is, when viewing the entire display device and the like of the present disclosure, the assembly of the frame (including the rim portion) and the nose pad has substantially the same structure as ordinary glasses.
  • the nose pad may also be of known construction.
  • each image forming apparatus includes a headphone unit, and the headphone unit wiring from each image forming apparatus is connected from the tip of the modern unit to the headphone unit via the inside of the temple unit and the modern unit. It can also be in the form of extending.
  • a headphone part an inner ear type headphone part and a canal type headphone part can be mentioned, for example.
  • the headphone part wiring preferably extends from the tip of the modern part to the headphone part so as to go around the back side of the auricle (ear shell).
  • a camera imaging device
  • the camera is composed of, for example, a solid-state imaging device including a CCD or a CMOS sensor and a lens.
  • the wiring from the camera may be connected to one of the image display devices (or the image forming device) through the front part, for example, and further, if included in the wiring extending from the image display device (or the image forming device) Good.
  • a signal for displaying an image in the image display device (a signal for forming a virtual image in an optical device (for example, a light guide plate)) can be received from the outside.
  • information and data related to an image displayed on the image display device are recorded, stored, and stored in, for example, a so-called cloud computer or server, and the display device is a communication means, such as a mobile phone or the like.
  • the display device is a communication means, such as a mobile phone or the like.
  • a signal for displaying an image in an image display device (a signal for forming a virtual image in an optical device) can be received.
  • a signal for displaying an image in the image display device (a signal for forming a virtual image in the optical device) may be stored in the display device.
  • the image displayed on the image display device includes various information and various data.
  • the display device is provided with a camera (imaging device), sends an image captured by the camera to the cloud computer or server via the communication means, and corresponds to the image captured by the camera in the cloud computer or server
  • Various information and data may be searched, and the searched various information and data may be sent to the display device via the communication means, and the searched various information and data may be displayed on the image display device.
  • the image captured by the camera is displayed on an image display device and confirmed by an optical device (for example, a light guide plate) May be Specifically, the outer edge of the space area captured by the camera can be displayed in a frame shape in the light control device.
  • the light blocking ratio of the area of the light control apparatus corresponding to the space area captured by the camera is set higher than the light blocking ratio of the area of the light control apparatus corresponding to the outside of the space area captured by the camera. be able to. In such a configuration, to the observer, the space area imaged by the camera appears darker than the outside of the space area imaged by the camera.
  • the light blocking ratio of the area of the light control apparatus corresponding to the space area captured by the camera is lower than the light blocking ratio of the area of the light control apparatus corresponding to the outside of the space area captured by the camera. It can also be done. In such a configuration, to the observer, the space area imaged by the camera appears brighter than the outside of the space area imaged by the camera. Then, the observer can easily and surely recognize where in the outside the camera captures an image.
  • the position of the region of the light control device corresponding to the space region imaged by the camera can be calibrated.
  • the display device includes, for example, a mobile phone and a smartphone, or by combining the display device with a mobile phone, a smartphone, and a personal computer, the camera is used in the mobile phone, the smartphone, and the personal computer.
  • the imaged space area can be displayed.
  • the light blocking ratio of the light control device (light Moving and rotating the area of the light control device corresponding to the space area captured by the camera using a control circuit (which can be substituted by a mobile phone, a smartphone, or a personal computer) for controlling the transmittance);
  • a control circuit which can be substituted by a mobile phone, a smartphone, or a personal computer
  • enlargement / reduction may be performed to eliminate the difference between the space area displayed on the mobile phone, the smartphone, or the personal computer and the area of the light control device corresponding to the space area captured by the camera.
  • the display device of the present disclosure includes, for example, reception and display of electronic mail, display of various information and the like at various sites on the Internet, and operation and operation of observation objects such as various devices.
  • To kill it can be used for the display of closed captioning.
  • the theatre kabuki, Noh, Kyogen, opera, concert, valley, various theaters, amusement park (amusement park), art museum, sightseeing spot, sightseeing spot, sightseeing guide, etc.
  • Characters as related images may be displayed on the display device. Specifically, for example, according to the progress of a movie or the like, or according to the progress of a play, etc., based on a predetermined schedule or time allocation, by the operation of a worker or under the control of a computer etc. And an image control signal is sent to the display device, and the image is displayed on the display device.
  • the image signal to the image forming apparatus includes not only the image signal (for example, character data) but also, for example, luminance data (luminance information) on the image to be displayed, or chromaticity data (chromaticity information), or luminance Data and chromaticity data can be included.
  • image signal for example, character data
  • luminance data luminance information
  • chromaticity data chromaticity information
  • luminance Data and chromaticity data can be included.
  • the luminance data may be luminance data corresponding to the luminance of a predetermined area including an observation object viewed through an optical device (for example, a light guide plate), and the chromaticity data may be an observation object viewed through the optical device And chromaticity data corresponding to the chromaticity of a predetermined region including
  • the luminance (brightness) of the displayed image can be controlled by including the luminance data of the image
  • the chromaticity of the displayed image can be controlled by including the chromaticity data of the image.
  • the color (color) can be controlled, and the luminance (brightness) and the chromaticity (color) of the displayed image can be controlled by including the luminance data and the chromaticity data related to the image.
  • the value of the luminance of the image increases as the luminance value of the predetermined area including an observation object viewed through the optical device increases.
  • the value of the luminance data may be set so as to be high (ie, the image is displayed brighter).
  • the chromaticity data corresponds to the chromaticity of the predetermined area including the observation object viewed through the optical device
  • the value of the chromaticity data may be set so that the color of the color of the color is approximately complementary.
  • Complementary color refers to the combination of the colors of the relationship located diametrically opposite in the color circle. It also refers to complementary colors such as green for red, purple for yellow, and orange for blue. It is also about the color which causes desaturation, such as white for light and black for objects, by mixing another color in a certain ratio in an appropriate ratio, but the visual effect of the parallel effect Complementarity when mixed with complementarity is different. Also referred to as overcolor, contrast color, and opposite color. However, while the opposite color directly indicates the opposite color, the range indicated by the complementary color is somewhat wide.
  • the combination of complementary colors has a synergetic effect that complements each other's color, which is referred to as complementary color harmony.
  • a head mounted display can be configured by the display device and the like of the present disclosure. And thereby, the weight reduction and size reduction of a display apparatus can be achieved, it becomes possible to reduce discomfort at the time of display apparatus mounting significantly, and also it becomes possible to aim at manufacturing cost reduction.
  • the display device or the like of the present disclosure can be applied to a head-up display (HUD) provided in a cockpit or the like of a vehicle or aircraft.
  • HUD head-up display
  • a virtual image forming area in which a virtual image is formed based on light emitted from the image forming apparatus is emitted from the image forming apparatus or in a HUD disposed on a windshield such as a cockpit of a vehicle or an aircraft
  • the virtual image forming area or combiner may be overlapped with at least a part of the light control device .
  • the display device and the like of the present disclosure can also be used as a stereoscopic display device.
  • a polarizing plate or a polarizing film may be detachably attached to an optical device (for example, a light guide plate) or a polarizing plate or a polarizing film may be attached to the optical device, as needed.
  • sunglasses can be configured by the light control device according to the first aspect to the second aspect of the present disclosure, and the light control device according to the first aspect to the second aspect of the present disclosure As well as for vehicles, it may be attached to windows in any field.
  • Example 1 relates to the light control device according to the first aspect of the present disclosure, the image display device of the present disclosure, and the display device of the present disclosure (specifically, a head-mounted display, HMD).
  • the present invention relates to a display device provided with an optical device of a first structure (more specifically, an optical device of a 1-B structure) and an image forming device of a first configuration.
  • a schematic cross-sectional view of the light control device of Example 1 is shown in FIGS. 1A and 1B
  • a layout view of the first substrate etc. as viewed from the light incident side (upper side) is shown in FIG. 2B shows a layout view of the image display apparatus as viewed from the light incident side (upper side)
  • FIG. 1A and 1B shows a layout view of the image display apparatus as viewed from the light incident side (upper side)
  • FIG. 3A shows a schematic cross-sectional view of a part of the image display apparatus of Example 1 taken along the XZ plane.
  • the schematic diagram which looked at the apparatus from the front is shown to FIG. 3B, and a schematic diagram when a part of image display apparatus of Example 1 is cut along arrow BB of FIG. 3B (namely, it cut at YZ plane)
  • FIG. 4A A schematic cross-sectional view is shown in FIG. 4A, and a schematic view of the display device as viewed from the side is shown in FIG. 4B.
  • FIG. 5 shows a conceptual diagram of the image display device of Example 1
  • FIG. 6 shows a schematic cross-sectional view showing an enlarged part of a reflective volume hologram diffraction grating, and the display device of Example 1.
  • FIGS. 1A and 1B are schematic cross-sectional views of the light control device when the light control device is cut along arrows AA and arrows BB in FIG. 2A, respectively.
  • the layouts shown in FIGS. 2A, 2B, 2C, 9B, 10B, 12B and 13B are not only components of the light control device at the same level but also light control devices at different levels. Components may also be illustrated.
  • the image display devices 100, 200, 300, 400, 500 of the first embodiment or the second to thirteenth embodiments described later are (A) Image forming apparatus 110, 210, (B) Optical devices 120, 320, 520 having a virtual image forming area in which a virtual image is formed based on the light emitted from the image forming apparatus 110, 210, and (C) A light control device 700 which is disposed to face at least a virtual image formation region and adjusts the amount of external light incident from the outside, Is equipped.
  • the optical devices 120, 320, 520 are see-through type (semi-transmissive).
  • the image forming apparatuses 110 and 210 also display an image (virtual image) of a single color (for example, green).
  • the dimmer 700 is (C-1) first substrate 711, (C-2) A second substrate 712 disposed opposite to the first substrate 711 and receiving external light, (C-3) a first electrode 731 formed on the first substrate 711; (C-4) A light control layer 720 formed on the first electrode 731; (C-5) A second electrode 732 formed on at least the light control layer 720, (C-6) A moisture holding member 741 covering at least the second electrode 732 and facing the second substrate 712, and (C-7) Sealing members 733, 734, 735, 736 provided at the edge of the first substrate 711 Is equipped.
  • the display device of Example 1 or Examples 2 to 9 described later is a head mounted display (HMD), (A) A frame 10 mounted on the head of the observer 20 (for example, a spectacles-type frame 10), and (B) an image display device attached to the frame 10;
  • the image display apparatus includes the image display apparatuses 100, 200, 300, and 400 of the first embodiment or the second to ninth embodiments described later.
  • the display device of the embodiment is a binocular type provided with two image display devices, it may be a single eye type provided with one.
  • the display device is a direct drawing type display device that draws an image directly on the pupil 21 of the observer 20.
  • a water holding member extending portion 743 extending from the water holding member 741 is disposed between the sealing members 733 and 734 and the second substrate, and the thickness of the water holding member extending portion 743 is (T 2 ) is thinner than the thickness (t 1 ) of the water holding member 742 at the central portion of the light control device.
  • T 2 the thickness of the water holding member extending portion 743 is (T 2 ) is thinner than the thickness (t 1 ) of the water holding member 742 at the central portion of the light control device.
  • the edge of the light control device 700 is fixed (bonded) to the frame 10 (specifically, for example, the rim portion 11 ') using an adhesive 737.
  • the edge of the light guide plates 121 and 321 described later is also fixed (bonded) to the frame 10 (specifically, the rim portion 11 ′) using an adhesive 738.
  • the optical devices 120, 320 and 520 overlap at least a part of the light control device 700, which is a kind of light shutter. Specifically, in the example illustrated in FIGS. 3A and 3B, the optical devices 120, 320, and 520 overlap the light control device 700. That is, the light guide plates 121 and 321 and the first substrate 711 and the second substrate 712 have the same (or substantially the same) outer shape. The light control device 700 overlaps most of the light guide plates 121 and 321.
  • the present invention is not limited to this, and the optical devices 120, 320, 520 may overlap with a part of the light control device 700, and the light control device 700 overlaps with a part of the optical devices 120, 320, 520. It may be Further, although the optical devices 120, 320, 520 and the light control device 700 are arranged in order from the observer side, they may be arranged in the order of the light control device 700 and the optical devices 120, 320, 520. In order to simplify the drawings, the outer shapes of the first and second substrates in FIGS. 2A and 2B and the outer shape of the light control device shown in FIG. 3B are displayed as different shapes. The light control device has, for example, the outer shape shown in FIG. 3B.
  • the second electrode 732 is formed on the light control layer 720, over the first substrate 711, and at a distance from the first electrode 731. 741 covers at least the second electrode 732 and the dimming layer 720. Furthermore, portions 733 and 734 of the sealing members 733, 734, 735 and 736 are formed of auxiliary electrodes made of copper (Cu). The remaining portions 735 and 736 of the sealing members 733, 734, 735 and 736 are made of a resin, specifically, an acrylic adhesive.
  • the auxiliary electrode includes a first auxiliary electrode 733 formed on the first electrode 731 and a second auxiliary electrode 734 formed on the second electrode 732 so as to be separated from the first auxiliary electrode 733.
  • the sealing members 733, 734, 735, 736 and the water holding member extending portion 743 constitute a side wall of the light control device 700.
  • the sealing members 733, 734, 735, 736 are provided without a gap.
  • the first electrode 731 and the second electrode 732 made of ITO are not patterned and are so-called solid electrodes. As shown in FIGS. 2A and 2B, connectors (not shown) are attached to portions 733A and 734A of the auxiliary electrodes 733 and 734 of the light control device 700, and the first electrode 731 and the second electrode 732 are It is electrically connected to a control circuit (specifically, a control device 18 described later) for controlling the light blocking ratio of the light control device 700.
  • a control circuit specifically, a control device 18 described later
  • the first substrate 711 and the second substrate 712 are made of, for example, polycarbonate resin having a thickness of 0.3 mm.
  • a hard coat layer (not shown) composed of acrylic modified colloidal silica particles, organic substances of phenyl ketone type and acrylate type and methyl ethyl ketone is formed.
  • the light control device 700 includes a light shutter to which a color change of a substance generated by a redox reaction of an electrochromic material is applied.
  • the light control layer 720 includes an electrochromic material. That is, the light control layer 720 constituting the light control device 700 includes an electrochromic material layer.
  • the light control layer (electrochromic material layer) 720 has a laminated structure of the reduction coloring layer 721, the electrolyte layer 722, and the oxidation coloring layer 723.
  • the first electrode 731 and the second electrode 732 are made of a transparent conductive material such as ITO or IZO
  • the reduction coloring layer 721 is made of a WO 3 layer
  • the electrolyte layer 722 is made of a Ta 2 O 5 layer
  • the oxidized colored layer 723 is composed of an Ir x Sn 1 -x O layer.
  • the WO 3 layer is reduced in color.
  • the Ir x Sn 1 -x O layer is oxidized and colored.
  • Ir and H 2 O react with each other and exist as iridium hydroxide Ir (OH) n .
  • Ir (OH) n iridium hydroxide
  • a negative potential is applied to the first electrode 731 and a positive potential is applied to the second electrode 732, the movement of proton H + from the Ir x Sn 1 -xO layer to the Ta 2 O 5 layer, to the second electrode 732 Electron emission occurs and the next oxidation reaction proceeds to color the Ir x Sn 1 -xO layer.
  • the reduction reaction proceeds in the opposite direction to the above, and the decoloring occurs.
  • the oxidation reaction proceeds in the opposite direction to the above, and the color disappears.
  • the Ta 2 O 5 layer contains H 2 O and is ionized by applying a voltage to the first electrode and the second electrode, and contains proton H + and OH ⁇ ions, which causes coloring reaction and extinction. It contributes to the color response.
  • the Young's modulus of the material (specifically, the resin) constituting the water holding member 741 and the water holding member extension portion 743 is preferably 1 ⁇ 10 6 Pa or less.
  • the resin constituting the water holding member 741 and the water holding member extending portion 743 which can also be called a proton supply member, a transparent adhesive member capable of holding water, or a transparent sealing member capable of holding water, is an acrylic resin
  • a silicone resin or a urethane resin may be appropriately selected, and in Example 1 or Examples 2 to 15 described later, it is specifically made of an acrylic resin.
  • the moisture holding member 741 and the moisture holding member extending portion 743 are made of a material having a Young's modulus of 1 ⁇ 10 6 Pa or less, thereby absorbing various steps generated in the inside of the light control device. It is possible to reduce variations in the thickness of the water holding member 742 at the central portion of the light control device and variations in the thickness of the water holding member extending portion 743. That is, the entire distance between the first substrate and the second substrate can be made uniform. And, as a result, it is possible to prevent the deterioration of the visibility. Specifically, when the outside world is viewed through the light control device 700, it is possible to suppress distortion of the outside world image and displacement of the outside world image.
  • a light control device provided with a water holding member and a water holding member extending portion (Young's modulus: about 3 GPa) obtained by applying and heat curing a two-component epoxy resin was made on a trial basis.
  • the light control device prototype (the light control device of Comparative Example 1) has the same configuration and structure as the light control device 700 of Example 1 except for the constituent materials of the water holding member and the water holding member extension portion.
  • Such distortion of the angle of view has occurred as a result of distortion of the member, or distortion of the second substrate, or thinning of the water holding member at the central portion of the light control device.
  • the thickest portion and the thinnest portion The difference in thickness between and was 0.106 mm.
  • the difference in thickness between the thickest portion and the thinnest portion was 0.01 mm.
  • thermosetting resin when used as the water holding member, flexibility (flexibility) is lost, cracks occur in the light control layer, and dripping occurs when the light control device is manufactured.
  • flexibility flexibility
  • dripping occurs when the light control device is manufactured.
  • the light control device of Example 1 it is possible to have high flexibility (flexibility), to cause distortion in the water holding member, or to generate distortion in the second substrate.
  • the thickness of the light control device is uniform, and no deviation of the angle of view occurs.
  • a high yield can be achieved without the occurrence of cracks in the light control layer or liquid dripping during the manufacture of the light control device.
  • the optical devices 120 and 320 in Embodiment 1 or Embodiments 2 to 9 described later have the first structure, (B-1) Light guiding plates 121 and 321 which are emitted toward the observer 20 after light incident from the image forming apparatuses 110 and 210 propagates through the inside by total reflection. (B-2) a first deflection unit 130 for deflecting the light incident on the light guide plates 121 and 321 so that the light incident on the light guide plates 121 and 321 is totally reflected inside the light guide plates 121 and 321; 330, and (B-3) Second deflecting means 140, 340 for deflecting the light propagated by total reflection inside the light guide plates 121, 321 and emitting the light from the light guide plates 121, 321, Is equipped.
  • the second deflection means 140 and 340 constitute a virtual image forming area of the optical device.
  • the second deflection means (virtual image forming area) 140 and 340 are located in the projection image of the light control device 700.
  • the light guide plates 121 and 321 made of optical glass or plastic material extend in parallel with the light propagation direction (X direction) by the internal total reflection of the light guide plates 121 and 321. It has two parallel surfaces (the 1st surface 122, 322 and the 2nd surface 123, 323). The first surfaces 122 and 322 and the second surfaces 123 and 323 face each other. Then, parallel light is incident from the first surfaces 122 and 322 corresponding to the light incident surface, propagates through the inside by total reflection, and is then emitted from the first surfaces 122 and 322 corresponding to the light emitting surfaces.
  • the light incident surface may be configured by the second surfaces 123 and 323, and the light emitting surface may be configured by the first surfaces 122 and 322.
  • the optical device is an optical device of the 1-B structure
  • the image display device is an image forming device of the first configuration.
  • the first deflection means and the second deflection means are disposed on the surface of the light guide plate 121 (specifically, the second surface 123 of the light guide plate 121) (specifically, they are bonded to each other). ing).
  • the first deflection means diffracts and reflects the light incident on the light guide plate 121
  • the second deflection means diffracts and reflects the light propagated through the inside of the light guide plate 121 by total reflection.
  • the first deflection means and the second deflection means are composed of a diffraction grating element, specifically a reflection type diffraction grating element, more specifically a reflection type volume hologram diffraction grating.
  • the first deflection means consisting of a hologram diffraction grating is referred to as “first diffraction grating member 130” for convenience
  • the second deflection means consisting of a hologram diffraction grating is referred to as “second diffraction grating member 140” for convenience.
  • the 1st diffraction grating member 130 and the 2nd diffraction grating member 140 are set as the structure comprised from the diffraction grating layer of one layer.
  • each diffraction grating layer made of a photopolymer material interference fringes corresponding to one type of wavelength band (or wavelength) are formed, and they are manufactured by a conventional method.
  • the pitch of the interference fringes formed in the diffraction grating layer (diffractive optical element) is constant, and the interference fringes are linear and parallel to the Y direction.
  • the axes of the first diffraction grating member 130 and the second diffraction grating member 140 are parallel to the X direction, and the normal lines are parallel to the Z direction.
  • FIG. 6 shows an enlarged schematic partial sectional view of a reflective volume hologram diffraction grating.
  • interference fringes having a tilt angle (slant angle) ⁇ are formed.
  • the tilt angle ⁇ refers to the angle between the surface of the reflective volume hologram diffraction grating and the interference fringes.
  • the interference fringes are formed from the inside to the surface of the reflective volume hologram diffraction grating.
  • the interference fringes satisfy the Bragg condition.
  • the Bragg condition refers to a condition satisfying the following formula (A).
  • m is a positive integer
  • is a wavelength
  • d is a pitch of a lattice plane (a distance in a direction normal to a virtual plane including interference fringes)
  • Do the relationship between ⁇ , the inclination angle ⁇ , and the incident angle ⁇ when light penetrates the diffraction grating member at the incident angle ⁇ is as shown in Formula (B).
  • the first diffraction grating member 130 is disposed (adhered) on the second surface 123 of the light guide plate 121, and this parallel light incident on the light guide plate 121 from the first surface 122 is of the light guide plate 121.
  • the parallel light incident on the light guide plate 121 is diffracted and reflected so as to be totally internally reflected.
  • the second diffraction grating member 140 is disposed (adhered) on the second surface 123 of the light guide plate 121, and this parallel light propagated by total reflection in the light guide plate 121 is diffracted and reflected.
  • the light from the light guide plate 121 is emitted from the first surface 122 as parallel light.
  • the parallel light is emitted after being propagated inside by total reflection.
  • the number of total reflections up to the second diffraction grating member 140 is different depending on each angle of view. More specifically, among the parallel light incident on the light guide plate 121, the number of reflections of the parallel light incident at an angle in a direction approaching the second diffraction grating member 140 is an angle in a direction away from the second diffraction grating member 140 It is smaller than the number of reflections of parallel light incident on the light guide plate 121.
  • the angle between the light propagating inside the light guide plate 121 and the normal to the light guide plate 121 when colliding with the inner surface of the light guide plate 121 is smaller than that of parallel light incident on the light guide plate 121.
  • the shape of the interference fringes formed inside the second diffraction grating member 140 and the shape of the interference fringes formed inside the first diffraction grating member 130 are in a virtual plane perpendicular to the axis of the light guide plate 121. It is in a symmetrical relationship.
  • the surfaces of the first diffraction grating member 130 and the second diffraction grating member 140 not facing the light guide plate 121 are covered with a transparent resin plate or a transparent resin film, and the first diffraction grating member 130 and the second diffraction grating member 140 are covered.
  • the structure may be designed to prevent damage to the A transparent protective film may be attached to the first surface 122 to protect the light guide plate 121.
  • the light guide plate 121 in the seventh embodiment described later also basically has the same configuration and structure as the configuration and structure of the light guide plate 121 described above.
  • the image forming apparatus 110 is an image forming apparatus of the first configuration, and has a plurality of pixels arranged in a two-dimensional matrix.
  • the image forming apparatus 110 includes an organic EL display device 111.
  • the image emitted from the organic EL display device 111 passes through the first convex lens 113A constituting the lens system, and further passes through the second convex lens 113B constituting the lens system to be collimated light, and the light guide plate 121 Head to The rear focal point f 1B of the first convex lens 113A, front focal f 2F of the second convex lens 113B is located.
  • the stop 114 is disposed at the position of the back focal point f 1B of the first convex lens 113A (the front focal point f 2F of the second convex lens 113B).
  • the aperture 114 corresponds to an image emitting unit.
  • the entire image forming apparatus 110 is housed in a housing 115.
  • the organic EL display device 111 includes a plurality of (for example, 640 ⁇ 480) pixels (organic EL elements) arranged in a two-dimensional matrix.
  • the frame 10 includes a front portion 11 disposed in front of the viewer 20, two temple portions 13 rotatably attached to both ends of the front portion 11 via hinges 12, and a tip portion of each temple portion 13 And a modern part (a front cell, an ear pad, also called an ear pad) 14 attached. Also, a nose pad 10 '(see FIG. 8) is attached. That is, the assembly of the frame 10 and the nose pad 10 'basically has substantially the same structure as ordinary glasses. Furthermore, each housing 115 is attached to the temple portion 13 by an attachment member 19.
  • the frame 10 is made of metal or plastic. Each housing 115 may be detachably attached to the temple portion 13 by the attachment member 19.
  • each housing 115 may be detachably attached to the temple portion 13 of the frame 10 of the glasses owned by the observer by the attachment member 19.
  • Each housing 115 may be attached to the outside of the temple portion 13 or may be attached to the inside of the temple portion 13.
  • the light guide plate 121 may be fitted into the rim portion 11 ′ provided on the front portion 11.
  • wires (signal lines, power lines, etc.) 15 extending from one of the image forming apparatuses 110 and 210 extend from the tip of the modern portion 14 to the outside through the inside of the temple portion 13 and the modern portion 14.
  • Control device (control circuit, control means) 18 is connected.
  • Each of the image forming apparatuses 110 and 210 includes a headphone unit 16, and a headphone unit wiring 16 ′ extending from each of the image forming apparatuses 110 and 210 passes through the temple unit 13 and the inside of the modern unit 14 to form a modern unit It extends from the tip end of the head 14 to the headphone section 16.
  • the headphone unit wiring 16 ′ extends from the tip of the modern unit 14 to the headphone unit 16 so as to wrap around the back side of the auricle (ear shell). With such a configuration, it is possible to provide a clear display device without giving an impression that the headphone unit 16 and the headphone unit wiring 16 ′ are randomly arranged.
  • the wiring (signal line, power supply line, etc.) 15 is connected to the control device (control circuit) 18 as described above, and the control device 18 performs processing for image display.
  • the controller 18 can be comprised of known circuits.
  • a camera 17 composed of a solid-state image sensor consisting of a CCD or CMOS sensor and a lens (not shown) is provided by a suitable mounting member (not shown) in the central part of the front part 11, if necessary. It is attached. A signal from the camera 17 is sent to the control device (control circuit) 18 via a wire (not shown) extending from the camera 17.
  • the light control device 700 can be manufactured, for example, by the following method.
  • Step-100 That is, first, the first electrode 731, the light control layer 720, and the second electrode 732 are formed on the first substrate 711, and the sealing member is formed on the edge of the first substrate 711.
  • a first electrode 731 made of ITO having a thickness of 0.30 ⁇ m is formed on a desired region of the first substrate 711.
  • an oxidized colored layer 723 consisting of an Ir x Sn 1-x O layer (iridium tin oxide layer) with a thickness of 0.15 ⁇ m based on reactive sputtering.
  • An electrolyte layer 722 consisting of a 0.45 ⁇ m Ta 2 O 5 layer (tantalum oxide) is formed.
  • a reduced coloring layer 721 made of a WO 3 layer (tungsten oxide) with a thickness of 0.48 ⁇ m is formed based on reactive sputtering.
  • the oxidation coloring layer 723, the electrolyte layer 722, and the reduction coloring layer 721 can also be formed by a magnetron sputtering method, an anodic oxidation method, a plasma CVD method, a sol-gel method, or the like.
  • the oxide coloring layer 723, the electrolyte layer 722, and the reduction coloring layer 721 may be formed using a metal mask.
  • a second electrode 732 made of ITO and having a thickness of 0.30 ⁇ m is formed on the reduced coloring layer 721.
  • the first electrode 731 and the second electrode 732 can be formed based on a PVD method such as an ion plating method or a vacuum evaporation method, a sol-gel method, or a CVD method. At the time of film formation, the first electrode 731 and the second electrode 732 may be formed using a metal mask.
  • a PVD method such as an ion plating method or a vacuum evaporation method, a sol-gel method, or a CVD method.
  • the first electrode 731 and the second electrode 732 may be formed using a metal mask.
  • sealing members 733, 734, 735 and 736 are formed on the edge of the first substrate 711. Specifically, sealing members 733 and 734 (first auxiliary electrode 733 and second auxiliary electrode 734) made of copper (Cu) are formed on the edge of the first substrate 711 based on the printing method. Further, the sealing members 735 and 736 are formed on the edge of the first substrate 711 by a printing method. The sealing members 733, 734, 735, 736 are formed such that there is no gap between the sealing members 733, 734, 735, 736 (see FIG. 2A).
  • the moisture holding member 741 is disposed on at least the second electrode 732, and the moisture holding member extension portion 743 extending from the moisture holding member 741 is disposed on the sealing member.
  • the acrylic resin since the acrylic resin is used, the water holding member 741 is bonded to at least the second electrode 732, and the water holding member extending portion 743 is bonded to the sealing members 733, 734, 735, 736.
  • the moisture holding member 741 can maintain an equilibrium water content state, for example, by storing it at room temperature with a relative humidity of 50%.
  • the liquid moisture holding member 741 can also be coated on the second electrode 732 or the like using a flow coater, a spin coater, screen printing, a gravure coater, or the like.
  • the second substrate 712 is disposed on the moisture holding member 741 and the moisture holding member extension portion 743. That is, the second substrate 712 having a hard coat layer formed on the outer surface is prepared. Then, the second substrate 712 is placed on the water holding member 741 and the water holding member extending portion 743 so that the water holding member 741 and the water holding member extending portion 743 and the inner surface of the second substrate 712 are in contact with each other. By uniformly applying pressure to the second substrate 712, the water holding member 741, the water holding member extension portion 743, and the second substrate 712 are attached to each other. Thus, the light control device 700 of the first embodiment can be obtained.
  • the total light transmittance in the visible light region is 76% to 4%. It decreased to%. Subsequently, when the application of the voltage to the first electrode 731 and the second electrode 732 was stopped, the total light transmittance was maintained at 8% even after one hour. In this state, when a voltage was applied to the color erasing side, the color was erased. Specifically, by applying a DC voltage of 1.5 V for 4 seconds, the total light transmittance in the visible light region returned to 76%.
  • a cycle test was conducted such that a constant voltage of 1.5 volts and -1.5 volts was continuously applied between the first electrode 731 and the second electrode 732 in a cycle of 60 seconds. As a result, deterioration of the light control device was not observed even after 30,000 cycles, and coloring and decoloring were repeated.
  • a DC voltage of 1.5 volts is applied between the first electrode 731 and the second electrode 732 for 30 seconds.
  • the total light transmittance in the visible light range decreased to 7%.
  • the display device is stored for 10 hours in a normal temperature / normal humidity environment, and then a direct current voltage of 1.5 volts is applied between the first electrode 731 and the second electrode 732 for 30 seconds. Area total light transmittance dropped to 4%. That is, it recovered to the initial state.
  • the light control device As described above, in the light control device, the image display device, and the display device according to the first embodiment, since the water holding member (water holding layer) is provided, the light control is performed when the water in the light control device is lost. It is possible to suppress the occurrence of a phenomenon in which no color change occurs in the device. Therefore, it is possible to provide a light control device, an image display device, and a display device having high long-term reliability. Moreover, since the thickness of the water holding member extending portion is thinner than the thickness of the water holding member at the central portion of the light control device, the water is not absorbed through the end surface (side wall, side surface of the light control device) of the water holding member extended portion.
  • the auxiliary electrode is provided, an appropriate voltage can be easily applied to the first electrode and the second electrode, and the occurrence of voltage drop in the first electrode or the second electrode can be suppressed. As a result, the occurrence of unevenness at the time of coloring of the light control device can be reduced.
  • a part of the sealing member 736 is a first auxiliary electrode. 733 and the second auxiliary electrode 734 may be substituted.
  • Information and data relating to an image to be displayed on the image display apparatus 100, 200, 300, 400, 500, and / or a signal to be received by the receiving apparatus are, for example, recorded, stored and stored in a so-called cloud computer or server.
  • the apparatus includes communication means (transmission / reception device), for example, a cellular phone or a smart phone, or alternatively, by incorporating communication means (reception device) in the control device (control circuit, control means) 18, via the communication means
  • a variety of information, data, and signals can be exchanged between the cloud computer or server and the display device, and signals based on the various information or data, that is, the image display devices 100, 200, 300, 400,
  • the receiver can receive the signal for displaying the image at 500 and the receiver It is possible to take only.
  • the control device 18 receives a signal for displaying an image in the image display device 100, 200, 300, 400, 500.
  • the control device 18 performs known image processing based on this signal, and displays “information” as an image on the image forming apparatus 110.
  • This “information” image is displayed as a virtual image at a predetermined position controlled by the control device 18 on the light guide plates 121 and 321 based on the light emitted from the image forming devices 110 and 210. That is, a virtual image is formed in a part of the virtual image formation area (the second deflection means 140, 340, etc.).
  • a signal for displaying an image in the image display device 100, 200, 300, 400, 500 may be stored in the display device (specifically, the control device 18).
  • an image captured by the camera 17 provided in the display device is sent to the cloud computer or server via the communication means, and various information and data corresponding to the image captured by the camera in the cloud computer or server are transmitted.
  • the retrieved various information and data may be sent to the display device through the communication means, and the retrieved various information and data may be displayed on the image display device 100, 200, 300, 400, 500 .
  • “Information” can be displayed on the image forming apparatuses 110 and 210.
  • the light control device 700 may be always in the operating state, or the operating / non-operating (on / off) state may be defined by the instruction (operation) of the observer, or the light control device 700 is usually in the non-operating state.
  • the operation may be started based on a signal for displaying an image in the image display device 100, 200, 300, 400, 500.
  • the display device In order to define the operation / inactivation state according to the instruction (operation) of the observer, for example, the display device further includes a microphone, and controls the operation of the light control device 700 by audio input through the microphone. It is good. Specifically, switching of the operation / non-operation of the light control device 700 may be controlled by an instruction based on the viewer's voice.
  • the information to be obtained may be input by voice input.
  • the display device may further include an infrared light input / output device, and the infrared light input / output device may control the operation of the light control device 700.
  • the switching between the operation / non-operation of the light control device 700 may be controlled by detecting the blink of the observer with the infrared light incidence / emission device.
  • the light control device may be configured to have a configuration in which the light blocking ratio is controlled for each area of the light control device. And in such a light control device, the light blocking ratio of the virtual image projection area of the light control device including the projected image of the virtual image to the light control device is higher than the light blocking rate of the other regions of the light control device.
  • the controller 18 controls the voltage applied to the first electrode 731 and the second electrode 732. Based on the signal for displaying the image in the image forming apparatus 110, the size and position of the virtual image projection area of the light control device are determined.
  • the light blocking ratio of the virtual image projection area of the light control device may be increased before the virtual images are formed on the light guide plates 121 and 321 based on the light emitted from the image forming apparatuses 110 and 210.
  • the time from 0.5 sec to 30 sec can be exemplified as the time from the increase of the light blocking ratio of the virtual image projection area of the light control device to the formation of the virtual image, but it is not limited to this value.
  • the light blocking ratio of the virtual image projection area of the light control device can be configured to increase sequentially as time passes.
  • the light blocking rate of the entire light control apparatus may be set to the same value as the light blocking rate of the other area of the light control apparatus.
  • the light blocking ratio of the virtual image projected area of the light control apparatus, which contained the projected image of the virtual image to the light control apparatus is immediately blocked by the other areas of the light control apparatus.
  • the value may be the same as the rate, but may be controlled to be the same as the light blocking rate of the other regions of the light control device over time (for example, in 3 seconds). That is, it can be in a so-called fade-out state.
  • Example 2 is a modification of Example 1.
  • FIG. 9A shows a schematic cross-sectional view of a light control device 700A of Example 2 similar to that along arrow AA in FIG. 2A, and is a layout view when the first substrate and the like are viewed from the light incident side (upper side). Is shown in FIG. 9B.
  • the sealing member 751 is made of resin.
  • the Young's modulus of the resin forming the sealing member 751 is 1 ⁇ 10 7 Pa or less.
  • An auxiliary electrode is provided inside a part of the sealing member 751.
  • the auxiliary electrode includes a first auxiliary electrode 733 formed on the first electrode 731 and a second auxiliary electrode 734 formed on the second electrode 732 so as to be separated from the first auxiliary electrode 733.
  • a UV curable resin specifically, a resin composed of an acrylic resin, a urethane resin, a silicone resin, a fluorine resin, a polyimide resin, and an epoxy resin
  • a UV curable resin (specifically, a resin composed of an acrylic resin, a urethane resin, a silicone resin, a fluorine resin, a polyimide resin, and an epoxy resin) as a resin constituting the sealing member 751 Can be mentioned.
  • the sealing member 751 corresponding to a part of the outer wall of the light control device 700A has no gap except a region corresponding to a part 733A, 734A of the auxiliary electrodes 733, 734 to which a connector is to be attached. Is formed. Except for the above points, the configuration and structure of the image display apparatus and the display apparatus using the light control device 700A of the second embodiment and the light control device 700A of the second embodiment are the same as those of the light control device 700 described in the first embodiment. The structure and the structure of the display device and the display device can be similar to those of the display device, and thus detailed description will be omitted.
  • FIG. 10A shows a schematic cross-sectional view of a light control device 700B of Example 3 similar to that along arrow AA of FIG. 2A, and is a layout view when the first substrate etc. are viewed from the light incident side (upper side). Is shown in FIG. 10B.
  • the sealing member includes a convex portion 713 provided on the edge of the first substrate 711.
  • the convex portion at the edge of the first substrate 711 can be formed, for example, by heat-pressing the edge of the first substrate 711 using a heat press.
  • An auxiliary electrode is provided inside a part of the convex portion 713 which is a sealing member.
  • the auxiliary electrode includes a first auxiliary electrode 733 formed on the first electrode 731 and a second auxiliary electrode 734 formed on the second electrode 732 so as to be separated from the first auxiliary electrode 733.
  • the configuration and structure of the image display device and the display device using the light control device 700B of the third embodiment and the light control device 700B of the third embodiment are the same as those of the light control device 700 described in the first embodiment.
  • the structure and the structure of the display device and the display device can be similar to those of the display device, and thus detailed description will be omitted.
  • the fourth embodiment is a modification of the first to third embodiments.
  • FIG. 11 of a schematic cross-sectional view of a light control device 700C of the fourth embodiment which is similar to the arrow AA of FIG. 2A the surface (inner surface) of the second substrate 712 facing the water holding member 741.
  • an inorganic material film 714 made of aluminum oxide (Al 2 O 3 ) is formed.
  • the formation of the inorganic material film 714 can be performed, for example, based on the PVD method.
  • the configurations and structures of the image display apparatus and the display apparatus using the light control device 700C of the fourth embodiment and the light control device 700C of the fourth embodiment are the same as those of the light control devices described in the first to third embodiments
  • the configuration and structure of the devices 700, 700A and 700B, the image display device, and the display device may be the same as those of the devices 700, 700A, and 700B, and thus detailed description will be omitted.
  • the fifth embodiment is a modification of the first to fourth embodiments.
  • the fifth embodiment by providing the branch auxiliary electrode extending from the auxiliary electrode, it is possible to easily apply a uniform voltage to the first electrode or the second electrode.
  • FIG. 12A shows a schematic cross-sectional view of a light control device 700D of Example 5 similar to the arrow BB in FIG. 2A, and the second electrode etc. of the light control device 700D of Example 5 is on the light incident side 12B, a second branch auxiliary electrode 734 ′ extending in the Y direction from the second auxiliary electrode 734 extending in the X direction is formed on the second electrode 732.
  • FIG. 13A is a schematic cross-sectional view of a modification of the light control device 700D according to the fifth embodiment, which is similar to the arrow BB in FIG. 2A, and the first electrode etc. is opposite to the light incident side.
  • FIG. 13B shows a layout view as viewed from below (the lower side) of the first branch auxiliary electrode 733 ′ extending in the Y direction from the first auxiliary electrode 733 extending in the X direction. It is formed on the electrode side).
  • a first branch auxiliary electrode 733 ′ is provided between the first substrate 711 and the first electrode 731 in contact with the first electrode 731.
  • a layer 744 made of the same material as the water holding member is formed between the first branch auxiliary electrode 733 'and the first branch auxiliary electrode 733'.
  • the end face of the light control device 700D is also composed of the layer 744.
  • FIG. 14 a schematic cross-sectional view of a modified example of the light control device 700D of the fifth embodiment similar to the arrow BB in FIG. 2A is shown in FIG. 14, but from the second auxiliary electrode 734 extending in the X direction.
  • a second branch auxiliary electrode 734 ′ extending in a direction is formed on the second electrode 732.
  • a first branch auxiliary electrode 733 ′ extending in the Y direction from the first auxiliary electrode 733 extending in the X direction is formed on the first electrode 731 (on the second electrode side).
  • the width of the branch auxiliary electrode is preferably narrow from the viewpoint of visibility.
  • the configurations and structures of the image display apparatus and the display apparatus using the light control device 700D of the fifth embodiment and the light control device 700D of the fifth embodiment are the same as those of the light control devices described in the first to fourth embodiments.
  • the configuration and structure of the devices 700, 700A, 700B, and 700C, the image display device, and the display device may be the same as those of the devices 700, 700A, 700B, and 700C, and thus detailed description will be omitted.
  • Example 6 relates to the light control device according to the second aspect of the present disclosure.
  • 15A and 15B, and FIGS. 16A and 16B are schematic cross-sectional views similar to when light control device 700E of Example 6 is cut along arrows AA and arrows BB in FIG. 2A. It is shown in 16B.
  • the light control apparatus 700E of the sixth embodiment is First substrate 711, A second substrate 712 disposed opposite to the first substrate 711 to receive external light; A first electrode 731 formed on the first substrate 711; A light control layer 720 formed on the first electrode 731; A second electrode 732 formed on at least the dimming layer 720, and A moisture holding member 741 covering at least the second electrode 732 and facing the second substrate 712, Equipped with A first sealing member 761 disposed on the edge of the first substrate 711; A second sealing member 762 disposed between the first sealing member 761 and the second substrate 712, It is further equipped with
  • a part of the first sealing member 761 corresponds to the first auxiliary electrode 733 and the second auxiliary electrode 734 as in the first embodiment.
  • the remaining parts 735 and 736 are made of resin as in the first embodiment.
  • the second sealing member 762 is made of a resin different from the water holding member 741.
  • resin which comprises the 2nd sealing member 762, resin comprised from acrylic resin, urethane resin, silicone resin, fluorine resin, polyimide resin, and epoxy resin can be mentioned.
  • the layouts of the first substrate and the like and the layouts of the second substrate and the like when the light control device of the sixth embodiment is viewed from the light incident side (upper side) are the same as FIGS. 2A and 2B.
  • the same step as [Step-100] of the first embodiment is performed.
  • the same step as [Step-110] in Example 1 is performed.
  • the moisture holding member 741 is disposed on at least the second electrode 732, moisture is held on the top surfaces of the first auxiliary electrode 733 and the second auxiliary electrode 734, and the remaining portions 735 and 736 of the first sealing member 761.
  • the member 741 is not arranged.
  • the second substrate 712 is disposed on the moisture holding member 741.
  • a second sealing member 762 is formed between the first sealing member 761 and the second substrate 712.
  • the liquid second sealing member is caused to enter between the first sealing member 761 and the second substrate 712 based on the capillary phenomenon. This can suppress the generation of stress caused by the second sealing member. Then, the second sealing member is cured by irradiating the ultraviolet light, and the water holding member 741 and the second sealing member 762 and the second substrate 712 are attached to each other. Thus, the light control device 700E of the sixth embodiment can be obtained.
  • the first sealing member 763 is made of resin.
  • the layout of the first substrate and the like when the light control device is viewed from the light incident side (upper side) is substantially the same as FIG. 9B.
  • the Young's modulus of resin which comprises the 1st sealing member 763 is 1 * 10 ⁇ 7 > Pa or less.
  • auxiliary electrodes 733 and 734 are provided inside part of the first sealing member 763. The auxiliary electrodes 733 734 may extend to the inside of a part of the second sealing member 762.
  • the auxiliary electrode includes a first auxiliary electrode 733 formed on the first electrode 731 and a second auxiliary electrode 734 formed on the second electrode 732 so as to be separated from the first auxiliary electrode 733.
  • the resin constituting the first sealing member 763 is made of an ultraviolet curable resin (specifically, an acrylic resin, a urethane resin, a silicone resin, a fluorine resin, a polyimide resin and an epoxy resin) Resin) can be mentioned.
  • the second sealing member 762 can also be made of resin, and in this case, acrylic resin, urethane resin, silicone resin, fluorine resin, and the like as the resin constituting the second sealing member 762
  • the resin comprised from a polyimide-type resin and an epoxy-type resin can be mentioned.
  • the same step as [Step-100A] of the first embodiment is performed.
  • the same step as [Step-100 B] in Example 1 is performed.
  • the first sealing member 763 made of resin is formed on the edge of the first substrate 711 based on the printing method and the ultraviolet curing.
  • a first auxiliary electrode 733 and a second auxiliary electrode 734 are formed.
  • the same step as [Step-110] in Example 1 is performed.
  • the moisture holding member 741 is disposed on at least the second electrode 732, the moisture holding member 741 is not disposed on the top surface of the first sealing member 763.
  • a second sealing member 762 is formed between the first sealing member 763 and the second substrate 712. Specifically, the liquid second sealing member is caused to enter between the first sealing member 763 and the second substrate 712 based on the capillary phenomenon. This can suppress the generation of stress caused by the second sealing member. Then, the second sealing member is cured by irradiating the ultraviolet light, and the water holding member 741 and the second sealing member 762 and the second substrate 712 are attached to each other.
  • the modified example 700E of the light control device of the sixth embodiment can be obtained.
  • the configurations and structures of the image display apparatus and the display apparatus using the light control apparatus 700E of the sixth embodiment and the light control apparatus 700E of the sixth embodiment are the same as those of the first embodiment, the fourth embodiment, and the fifth embodiment except the above points.
  • the configuration and the structure of the light control devices 700, 700C, and 700D, the image display device, and the display device described above can be the same as those of the light control devices 700, 700C, and 700D.
  • the first sealing member and the second sealing member are provided between the edge of the first substrate and the edge of the second substrate. Is provided. Therefore, since it is possible to suppress the movement of water into and out of the water holding member, it is possible to avoid the problem that the reliability of the light control device, the image display device, and the display device is lowered.
  • a seventh embodiment is a modification of the first to sixth embodiments, and relates to an optical device having a 1-B structure and an image forming apparatus having a second configuration.
  • the image forming apparatus 210 is configured of the image forming apparatus of the second configuration. ing. That is, it comprises a light source 211, a scanning means 212 for scanning parallel light emitted from the light source 211, and a lens system 213 for converting light emitted from the light source 211 into parallel light.
  • the entire image forming apparatus 210 is housed in a housing 215, and the housing 215 is provided with an opening (not shown), and light is emitted from the lens system 213 through the opening.
  • Each housing 215 is removably attached to the temple portion 13 by the attachment member 19. Further, in FIGS. 17, 18, 19, 26, 27, 29, 29A, 29B, 30A, and 30B, the light control device is not shown.
  • the light source 211 is composed of, for example, a semiconductor laser device.
  • the light emitted from the light source 211 is converted into parallel light by a lens (not shown), and the micro mirror is rotatable in a two-dimensional direction, and a scan comprising a MEMS mirror capable of scanning the incident parallel light two-dimensionally Horizontal scanning and vertical scanning are performed by means 212, and a kind of two-dimensional imaging is performed to generate virtual pixels (the number of pixels may be the same as, for example, the first embodiment).
  • light from a virtual pixel scanning means 212 corresponding to an image output unit
  • passes through a lens system 213 having positive optical power and a light beam converted into parallel light enters a light guide plate 121.
  • the optical device 120 has the same configuration and structure as the optical device described in the first embodiment, so the detailed description will be omitted. Further, as described above, the display device of the seventh embodiment also has substantially the same configuration and structure as the display device of the first embodiment except that the image forming apparatus 210 is different, so detailed description will be omitted.
  • An eighth embodiment is a modification of the first to seventh embodiments, and relates to an optical device having a first-A structure and an image forming apparatus having a first configuration or a second configuration.
  • the first deflection means 330 and the second deflection means 340 are the light guide plate 321. It is disposed inside. Then, the first deflection means 330 reflects the light incident on the light guide plate 321, and the second deflection means 340 passes the light propagated by total reflection inside the light guide plate 321 a plurality of times, and transmits and reflects it. Do. That is, the first deflection means 330 functions as a reflecting mirror, and the second deflection means 340 functions as a semitransparent mirror.
  • the first deflection means 330 provided inside the light guide plate 321 is made of aluminum (Al), and is configured of a light reflection film (a kind of mirror) that reflects the light incident on the light guide plate 321. It is done.
  • the second deflection means 340 provided inside the light guide plate 321 is composed of a multilayer laminated structure in which a large number of dielectric laminated films are laminated.
  • the dielectric laminated film is made of, for example, a TiO 2 film as a high dielectric constant material and an SiO 2 film as a low dielectric constant material.
  • Japanese Patent Application Publication No. 2005-521099 discloses a multilayer laminated structure in which a large number of dielectric laminated films are laminated.
  • the present invention is not limited to this.
  • a thin piece made of the same material as the material forming the light guide plate 321 is sandwiched.
  • the first deflection means 330 the parallel light incident on the light guide plate 321 is reflected such that the parallel light incident on the light guide plate 321 is totally reflected inside the light guide plate 321.
  • the second deflection means 340 the parallel light propagated by total internal reflection in the light guide plate 321 is reflected a plurality of times, and from the light guide plate 321 to the pupil 21 of the observer 20 in the parallel light state. It is emitted.
  • the first deflection means 330 cuts out a portion 324 of the light guide plate 321 on which the first deflection means 330 is provided, thereby providing the light guide plate 321 with an inclined surface on which the first deflection means 330 is to be formed. After vapor deposition, the cut out portion 324 of the light guide plate 321 may be adhered to the first deflection means 330.
  • the second deflection means 340 a large number of the same material (for example, glass) as the material constituting the light guide plate 321 and a dielectric laminated film (for example, which can be formed into a film by a vacuum evaporation method) A multilayer laminated structure is produced, a portion 325 provided with the second deflection means 340 of the light guide plate 321 is cut out to form an inclined surface, the multilayer laminated structure is adhered to the inclined surface, polishing etc. Just do it.
  • the optical device 320 in which the first deflection means 330 and the second deflection means 340 are provided inside the light guide plate 321 can be obtained.
  • FIG. 19 a conceptual view of an image display apparatus 400 in a display apparatus (head mounted display) of Example 8 is shown in FIG.
  • the image forming apparatus 210 is configured of the image forming apparatus of the second configuration, as in the seventh embodiment.
  • the display device of the eighth embodiment has substantially the same configuration and structure as the display devices of the first to seventh embodiments except for the above differences, and thus the detailed description will be omitted.
  • a ninth embodiment is a modification of the image display device in the seventh to eighth embodiments, and relates to an optical device having a second structure and an image forming device having a second configuration.
  • the schematic diagram which looked at the display apparatus of Example 9 from upper direction is shown in FIG.
  • the optical device 520 constituting the image display device 500 includes semi-transmissive mirrors 530A and 530B into which light emitted from the light source is incident and emitted toward the pupil 21 of the observer 20. .
  • the light emitted from the respective light sources 211A and 211B disposed in the respective housings 215A and 215B propagates inside the optical fiber (not shown) and, for example, the rim portion 11 near the nose pad
  • the light incident on the scanning means 212A, 212B attached to the part of the 'and scanned by the scanning means 212A, 212B is incident on the semitransparent mirrors 530A, 530B.
  • the light emitted from each of the light sources 211A and 211B disposed in each of the housings 215A and 215B propagates in an optical fiber (not shown), and for example, a rim portion corresponding to each of the eyes
  • the light scanned by the scanning means 212A, 212B enters the scanning means 212A, 212B attached above the portion of 11 'and the semitransparent mirrors 530A, 530B.
  • the light is emitted from the respective light sources 211A and 211B disposed in the respective casings 215A and 215B, and enters the scanning means 212A and 212B disposed in the casings 215A and 215B, and is scanned by the scanning means 212A and 212B.
  • the scanned light is directly incident on the semitransparent mirrors 530A and 530B.
  • the light reflected by the semitransparent mirrors 530A and 530B is incident on the pupil 21 of the observer 20.
  • the image forming apparatuses 210A and 210B may be substantially the image forming apparatus 210 described in the seventh embodiment.
  • the display device of the ninth embodiment has substantially the same configuration and structure as the display devices of the seventh to eighth embodiments except for the above differences, and thus the detailed description will be omitted.
  • the tenth embodiment is a modification of the first to ninth embodiments.
  • the schematic diagram which looked at the display apparatus of Example 10 from upper direction is shown to FIG. 21A. Further, a schematic view of a circuit for controlling the illuminance sensor is shown in FIG. 21B.
  • the display device of Example 10 further includes an environmental illuminance measurement sensor 801 that measures the illuminance of the environment in which the display device is placed, and based on the measurement result of the environmental illuminance measurement sensor 801, the light blocking ratio of the light control device 700 is measured. Control. At the same time or independently, the brightness of the image formed by the image forming apparatuses 110 and 210 is controlled based on the measurement result of the environment illuminance measurement sensor 801.
  • the environmental illuminance measurement sensor 801 having a known configuration and structure may be disposed at the outer end of the light control device 700, for example.
  • the environmental illuminance measurement sensor 801 is connected to the control device 18 via a connector and a wire (not shown).
  • the control device 18 includes a circuit that controls the environmental illuminance measurement sensor 801.
  • the circuit for controlling the environmental illuminance measurement sensor 801 receives a measured value from the environmental illuminance measurement sensor 801, and calculates an illuminance calculation circuit for obtaining the illuminance, and a comparison calculation circuit for comparing the values of the illuminance calculated by the illuminance calculation circuit with standard values.
  • an ambient illuminance measurement sensor control circuit that controls the light control device 700 and / or the image forming apparatus 110, 210 based on the value obtained by the comparison operation circuit, but these circuits consist of known circuits. can do.
  • control of the light blocking ratio of the light control device 700 is performed, and in the control of the image forming devices 110, 210, of the image formed by the image forming devices 110, 210. Control the brightness.
  • the control of the light blocking ratio in the light control device 700 and the control of the brightness of the image in the image forming apparatuses 110 and 210 may be independently performed or may be correlated.
  • the light blocking ratio of the light control device 700 is equal to or more than a predetermined value (first light blocking ratio).
  • first light blocking ratio the light blocking ratio of the light control device 700 is equal to or less than a predetermined value (second light blocking ratio).
  • the second light blocking ratio may be any value of 49% to 1%.
  • the environmental illuminance measurement sensor 801 in the tenth embodiment can be applied to the display described in the seventh to ninth embodiments.
  • the environmental illuminance measurement sensor 801 can also be configured from a light receiving element for exposure measurement provided in the camera 17.
  • the light blocking ratio of the light control device is controlled based on the measurement result of the environmental illuminance measurement sensor, and based on the measurement result of the environmental illuminance measurement sensor,
  • the brightness of the image formed by the image forming apparatus is controlled, and the light blocking ratio of the light control device is controlled based on the measurement result of the transmitted light illuminance measurement sensor, and the image formation based on the measurement result of the transmitted light illuminance measurement sensor.
  • the eleventh embodiment is also a modification of the first to ninth embodiments.
  • the schematic diagram which looked at the display apparatus of Example 11 from upper direction is shown to FIG. 22A.
  • FIG. 22B shows a schematic view of a circuit that controls the second illuminance sensor.
  • the display device of Example 11 measures the illuminance based on the light transmitted from the external environment through the light control device, that is, determines whether ambient light is transmitted through the light control device and adjusted to a desired light intensity and is incident
  • the transmitted light illuminance measurement sensor 802 is further provided, and the light blocking ratio of the light control device 700 is controlled based on the measurement result of the transmitted light illuminance measurement sensor 802.
  • the brightness of the image formed by the image forming apparatus 110, 210 is controlled.
  • a transmitted light illuminance measurement sensor 802 having a known configuration and structure is disposed closer to the viewer than the optical devices 120 and 320.
  • the transmitted light illuminance measurement sensor 802 may be disposed, for example, on the inner side surface of the housings 115 and 215 or the surface of the light guide plates 121 and 321 on the viewer side.
  • the transmitted light illuminance measurement sensor 802 is connected to the control device 18 via a connector and a wire (not shown).
  • the control device 18 includes a circuit that controls the transmitted light illuminance measurement sensor 802.
  • a circuit for controlling the transmitted light illuminance measuring sensor 802 receives a measured value from the transmitted light illuminance measuring sensor 802, an illuminance calculating circuit for obtaining the illuminance, and a comparison calculating circuit for comparing the values of the illuminance calculated by the illuminance calculating circuit with standard values.
  • the transmitted light illuminance measurement sensor control circuit that controls the light control device 700 and / or the image forming apparatus 110, 210 based on the value obtained by the comparison operation circuit, but these circuits are formed of known circuits. can do.
  • the light blocking ratio of the light control device 700 is controlled
  • the brightness of the image formed by the image forming devices 110, 210 is controlled.
  • the control of the light blocking ratio in the light control device 700 and the control of the brightness of the image in the image forming apparatuses 110 and 210 may be independently performed or may be correlated.
  • the measurement result of the transmitted light illuminance measurement sensor 802 can not be controlled to a desired illuminance in view of the illuminance of the environmental illuminance measurement sensor 801, that is, when the measurement result of the transmitted light illuminance measurement sensor 802 is not a desired illuminance.
  • the light blocking ratio of the light control device may be adjusted while monitoring the value of the transmitted light illuminance measuring sensor 802. At least two of the transmitted light illuminance measurement sensors may be arranged to measure the illuminance based on the light passing through the high light blocking part and to measure the illuminance based on the light passing through the low light blocking part.
  • the transmitted light illuminance measurement sensor 802 in the eleventh embodiment can be applied to the display described in the seventh to ninth embodiments.
  • the transmitted light illuminance measurement sensor 802 in Example 11 and the environment illuminance measurement sensor 801 in Example 10 may be combined, and in this case, various tests are performed to control the light blocking ratio in the light control device 700 and form an image.
  • the control of the image brightness in the devices 110 and 210 may be performed independently or may be performed in correlation.
  • the light blocking ratio in the right-eye dimmer and the left-eye dimmer In each of the right-eye dimmer and the left-eye dimmer, by adjusting the voltage applied to the first electrode and the second electrode, the light blocking ratio in the right-eye dimmer and the left-eye dimmer In the light control device of the present invention, the light blocking ratio can be equalized.
  • the potential difference between the first electrode and the second electrode may be controlled, or the voltage applied to the first electrode and the voltage applied to the second electrode may be controlled independently.
  • the light blocking ratio in the right-eye dimmer and the light blocking ratio in the left-eye dimmer can be controlled, for example, based on the measurement result of the transmitted light illuminance measuring sensor 802, or the observer can Observe the brightness of the light passing through the right-eye dimmer and the optical device, and the brightness of the light passing through the left-eye dimmer and the optical device, and the observer uses a switch, button, dial, slider It is also possible to control and adjust manually by operating the knob, etc.
  • the twelfth embodiment is a modification of the first to eleventh embodiments.
  • a schematic view of the display device of Example 12 as viewed from above is shown in FIG. 23, and a schematic front view of the optical device and the light control device of Example 12 is shown in FIG.
  • the light leaks out of the light guide plates 121 and 321 to the outer surface of the light control device 700 facing the first deflection means 130 and 330, and the light utilization efficiency decreases.
  • a light blocking member 811 is formed to prevent this.
  • a light shielding member 812 is disposed outside the second surfaces 123 and 323 of the light guide plates 121 and 321 so as to cover the first deflection means 130 and 330, as shown in FIG.
  • the orthographic images of the first deflectors 130 and 330 on the light guide plates 121 and 321 are included in the orthographic images of the light blocking members 811 and 812 on the light guide plates 121 and 321.
  • Light blocking members 811 and 812 are disposed to block the incidence of external light on the light guide plates 121 and 321.
  • the orthogonal projection image of the light blocking members 811 and 812 onto the light guide plates 121 and 321 includes the area of the light guide plates 121 and 321 to which the light emitted from the image forming apparatus 110 or 210 is incident.
  • the light blocking members 811 and 812 are disposed apart from the light guide plates 121 and 321 on the side of the light guide plates 121 and 321 opposite to the side on which the image forming apparatus 110 or 210 is disposed.
  • the light blocking member 811 is disposed on a part of the second substrate 712.
  • the opaque member 811 can be formed by printing an opaque ink on the second substrate 712.
  • the light shielding member 812 is made of, for example, an opaque plastic material, and the light shielding member 812 integrally extends from the housings 115 and 215 of the image forming apparatuses 110 and 210, or alternatively, the housings of the image forming apparatuses 110 and 210.
  • the light blocking member 812 integrally extends from the housings 115 and 215 of the image forming apparatuses 110 and 210. As described above, in the regions of the light guide plates 121 and 321 where the light emitted from the image forming apparatuses 110 and 210 is incident, the light blocking members 811 and 812 for blocking the incident of the external light to the light guide plates 121 and 321 are disposed.
  • the external light is not incident on the regions of the light guide plates 121 and 321 to which the light emitted from the image forming apparatus 110 and 210 is incident, specifically, the first deflection means 130 and 330, Desired stray light or the like does not occur, and the image display quality in the display device does not deteriorate. It is also possible to combine the light shielding member 812 with the light shielding member 811.
  • the thirteenth embodiment is a modification of the seventh embodiment.
  • the optical member 151 may be disposed on the optical device 120 so as to face the second deflection means 140 as a conceptual view of the image display device of the thirteenth embodiment.
  • the light from the image forming apparatus 210 is deflected (or reflected) in the first deflection means 130, propagates inside the light guide plate 121 by total reflection, is deflected in the second deflection means 140, and is incident on the optical member 151.
  • the optical member 151 emits incident light toward the pupil 21 of the observer 20.
  • the optical member 151 is made of, for example, a hologram lens, and is disposed, for example, on the second surface side of the light guide plate 121.
  • the second deflecting means 140 is disposed on the second surface side of the light guide plate 121 (see FIG. 26) or alternatively, disposed on the first surface side (see FIG. 27).
  • the image forming apparatus 210 further includes a lens system 213 which receives light from the image forming apparatus 210 and emits the light toward the light guide plate 121; the image forming apparatus 210 and the pupil 21 of the observer 20 have a conjugate relationship.
  • the both-side telecentric system can be configured by the lens system 213 and the optical member 151.
  • an image emitting unit to which an image is emitted from the image forming apparatus 210 is located at the front focal point of the lens system 213 having positive optical power, and at the back focal point of the optical member 151 having positive optical power.
  • the pupil 21 (more specifically, the lens) of the observer 20 may be located, and the front focal point of the optical member 151 may be located at the rear focal point of the lens system 213.
  • the image forming apparatus 210 is placed at the position of the pupil 21 of the observer 20 when the image forming apparatus 210 and the pupil 21 of the observer 20 are in a conjugate relationship, the image is formed at the original position of the image forming apparatus 210. Is formed.
  • the both-side telecentric system is configured by the lens system 213 and the optical member 151, the entrance pupil of the lens system 213 is at infinity and the exit pupil of the optical member 151 is at infinity.
  • the lens system 213 it is possible to exemplify an optical system having a positive optical power as a whole in which a convex lens, a concave lens, a free curved surface prism, and a hologram lens are used alone or in combination.
  • the value of the positive optical power of the lens system 213 can be larger than the value of the positive optical power of the optical member 151. Since the optical power is the reciprocal of the focal length, in other words, the focal length of the optical member 151 can be longer than the focal length of the lens system 213.
  • a stop 114 is disposed at the position of the front focal point (the focal point on the image forming apparatus side) of the lens system 213.
  • the optical member 151 constitutes a kind of concave mirror, and the pupil 21 of the observer 20 (specifically, the lens of the observer) is positioned at the back focal position of the optical member 151.
  • a photopolymer material can be mentioned as a material which comprises a hologram lens.
  • the constituent material and basic structure of the hologram lens may be the same as the constituent material and structure of the conventional hologram lens.
  • the hologram lens is formed with interference fringes for causing it to function as a lens (more specifically, a concave mirror), but the method of forming such interference fringes themselves is the same as the conventional formation method. Just do it.
  • the object light is irradiated from a first predetermined direction on one side to a member (for example, photopolymer material) constituting the hologram lens, and at the same time, the member constituting the hologram lens is
  • the reference light may be irradiated from a second predetermined direction on the other side, and interference fringes formed by the object light and the reference light may be recorded inside the member constituting the hologram lens.
  • one of the object light and the reference light is a diverging beam, and the other is a focusing beam.
  • the image forming apparatus 210 (specifically, the image output unit) and the pupil 21 of the observer 20 (specifically, the lens) are as described above.
  • a structure in which a both-side telecentric system is configured by the lens system 213 and the optical member 151 in a conjugate relationship can be mentioned.
  • the focal length (f 2 B ) of the optical member 151 can be longer than the focal length (f 1 F ) of the lens system 213.
  • a scanning unit 212 corresponding to an image emitting unit is disposed at a position of a front focal point f 1F (a focal point on the image forming apparatus side) of the lens system 213, a scanning unit 212 corresponding to an image emitting unit is disposed.
  • the optical member 151 constitutes a kind of concave mirror (specifically, lens) pupil 21 of the observer 20 to the position of the rear focal point f 2B of the optical member 151 is located.
  • light emitted from the light source 211 at a certain moment is, as described above,
  • the collimated light is scanned by the scanning means 212 and enters the lens system 213 as collimated light.
  • the light emitted from the lens system 213 forms an image at a back focal point of the lens system 213 (which is also a front focal point of the optical member 151), and enters the optical member 151.
  • the light emitted from the optical member 151 is collimated light, and reaches the pupil 21 (specifically, the lens) of the observer 20 as collimated light.
  • the light passing through the lens finally forms an image in the retina of the pupil 21 of the observer 20.
  • a fourteenth embodiment is a modification of the optical device constituting the optical device of the second structure described in the ninth embodiment.
  • the schematic diagram which looked at the display apparatus of Example 14 from the top is shown to FIG. 29A and 29B.
  • the light from the light source 601 intrudes into the light guide member 602 and collides with the polarization beam splitter 603 provided in the light guide member 602.
  • the P polarization component passes through the polarization beam splitter 603
  • the S polarization component is reflected by the polarization beam splitter 603, and a liquid crystal display consisting of LCOS as a light valve Go to the device (LCD) 604.
  • a liquid crystal display (LCD) 604 forms an image.
  • the polarization component of the light reflected by the liquid crystal display (LCD) 604 Since the polarization component of the light reflected by the liquid crystal display (LCD) 604 is occupied by the P polarization component, the light reflected by the liquid crystal display (LCD) 604 passes through the polarization beam splitters 603 and 605, The light passes through the wave plate 606, strikes the reflection plate 607, is reflected, passes through the quarter wave plate 606, and travels to the polarization beam splitter 605. Since the polarization component of the light at this time is occupied by the S polarization component, it is reflected by the polarization beam splitter 605 and directed to the pupil 21 of the observer.
  • the image forming apparatus includes the light source 601 and the liquid crystal display (LCD) 604, and the optical device includes the light guiding member 602, the polarizing beam splitters 603 and 605, the quarter wavelength plate 606, and the reflecting plate 607.
  • the polarization beam splitter 605 corresponds to the virtual image forming area of the optical device.
  • the light from the image forming device 611 travels through the light guiding member 612 and collides with the semitransparent mirror 613, and a part of the light passes through the semitransparent mirror 613, and the reflecting plate 614 , And again collide with the semi-transmissive mirror 613, and a part of the light is reflected by the semi-transmissive mirror 613 toward the pupil 21 of the observer.
  • the optical device includes the light guide member 612, the semitransparent mirror 613, and the reflection plate 614.
  • the semitransparent mirror 613 corresponds to a virtual image forming area of the optical device.
  • FIGS. 30A and 30B show a schematic view of a modification of the display device of Example 14 as viewed from above and a schematic view as viewed from the side.
  • This optical device comprises a hexahedral prism 622 and a convex lens 625.
  • the light emitted from the image forming device 621 enters the prism 622, collides with the prism surface 623 and is reflected, travels through the prism 622, collides with the prism surface 624, is reflected, and the observer via the convex lens 625 Reaches the pupil 21 of the
  • the prism surface 623 and the prism surface 624 are inclined in opposite directions, and the planar shape of the prism 622 is a trapezoid, specifically, an isosceles trapezoid.
  • the prism surfaces 623 and 624 have a mirror coating. If the thickness (height) of the portion of the prism 622 opposed to the pupil 21 is made thinner than 4 mm, which is an average human pupil diameter, the observer superimposes the external image and the virtual image from the prism 622 Can be seen.
  • the light control apparatus incorporated into the image display apparatus has been described.
  • the light control apparatus of the present disclosure may be used independently without being incorporated into the image display apparatus. That is, such a light control device 700F of the present disclosure can be applied to, for example, a window, and a schematic cross-sectional view is shown in FIG.
  • a moisture holding member (not shown) covering at least the second electrode and facing the second substrate, Is equipped.
  • the dimmer 700 F has substantially the same configuration and structure as the dimmers 700, 700 A, 700 B, 700 C, 700 D, and 700 E described in the first to sixth embodiments.
  • the light control device 700F is attached to the window frame 900.
  • Such a light control device 700F of the present disclosure can be applied to, for example, windows, mirrors, reflectors, various display devices, and screens.
  • the window glass 901 is also attached to the window frame 900.
  • the present disclosure has been described above based on the preferred embodiments, the present disclosure is not limited to these embodiments.
  • the configurations and structures of the display device (head-mounted display), the image display device, and the image forming device described in the embodiments are merely examples, and can be changed as appropriate.
  • the outer shape of the light control device can be essentially any shape.
  • FIG. 32 shows a light control device having an elliptical outer shape. The first embodiment and the second embodiment may be combined.
  • FIG. 33A or FIG. 33B which is a schematic cross-sectional view similar to that when cut along arrow AA of FIG. 2A, for example, in the modification of the light control device of the first embodiment
  • the cross-sectional shapes of the stoppers 733, 734, 735, 736 can be configured to be narrower as they approach the second substrate 712.
  • the top surfaces of the sealing members 733, 734, 735, 736 are flat, and in the example shown in FIG. 33A, the top surfaces of the sealing members 733, 734, 735, 736 are It is rounded.
  • the moisture retaining member 741 is disposed on at least the second electrode 732 and extends from the moisture retaining member 741.
  • the in-area portion 743 is disposed on the sealing member, the occurrence of a problem that air bubbles are mixed under the moisture holding member 741 can be avoided. Such a problem is likely to occur in the area indicated by the area A in FIGS. 33A and 33B.
  • Such cross-sectional shapes of the sealing members 733, 734, 735, 736 are various, for example, the formation of the sealing member based on the printing method, and the formation of the sealing member based on the sputtering method that causes wraparound using a metal mask. It can be formed based on the method of
  • the light control device can be in a curved form, which makes it possible to easily and reliably attach the light control device to the image display device or the display device.
  • the coloring and decoloring characteristics in the flat dimmer of the first embodiment are 100%, the coloring and decoloring characteristics when the dimmer is bent are as shown in Table 1 below, and the curvature radius is up to 30 mm. Even when the light control device was bent, no change was observed in the coloring and decoloring characteristics.
  • a surface relief hologram may be disposed on the light guide plate.
  • the diffraction grating element can be composed of a transmission type diffraction grating element, or alternatively, either one of the first deflection means and the second deflection means can be composed of a reflection type diffraction grating element
  • the other may be configured as a transmission type diffraction grating element.
  • the diffraction grating element may be a reflective blazed diffraction grating element.
  • the display device of the present disclosure can also be used as a stereoscopic display device. In this case, if necessary, a polarizing plate or a polarizing film may be detachably attached to the optical device, or a polarizing plate or a polarizing film may be attached to the optical device.
  • the image forming apparatus 110, 210 is described as displaying a single color (for example, green) image, but the image forming apparatus 110, 210 can also display a color image, in which case the light source
  • the light source may be configured to emit each of red, green and blue.
  • red light, green light, and blue light emitted from each of a red light emitting element, a green light emitting element, and a blue light emitting element are mixed using a light pipe to perform white light by performing luminance uniformity. You should get it.
  • the light passing through the light control device can be colored to a desired color by the light control device.
  • the color to be colored by the light control device can be variable. Specifically, for example, a light control device colored in red, a light control device colored in green, and a light control device colored in blue may be stacked.
  • the first light guide plate is provided with a diffraction grating member (red diffraction grating member) formed of a diffraction grating layer formed of a hologram diffraction grating that diffracts and reflects light having a red wavelength band (or wavelength)
  • the second light guide plate is provided with a diffraction grating member (green diffraction grating member) formed of a diffraction grating layer formed of a hologram diffraction grating that diffracts and reflects light having a green wavelength band (or wavelength)
  • the third A diffraction grating member blue diffraction grating member
  • a structure may be adopted in which the second light guide plate and the third light guide plate are
  • the first light guide plate is provided with one of the red diffraction grating member, the green diffraction grating member and the blue diffraction grating member, and the surface of the first light guide plate on which the diffraction grating member is provided.
  • one of the remaining two of the red diffraction grating member, the green diffraction grating member, and the blue diffraction grating member is disposed on a surface different from the surface of the second light guide plate, and the red diffraction grating member
  • a structure may be adopted in which the remaining one kind of diffraction grating members in the green diffraction grating member and the blue diffraction grating member are disposed, and the first light guide plate and the second light guide plate are laminated with a gap.
  • Control of the light blocking ratio in the light control device can be performed based on, for example, a simple matrix method. That is, as a schematic plan view is shown in FIG.
  • the first electrode 731 is composed of a plurality of strip-like first electrode segments 731A extending in the first direction
  • the second electrode 732 is composed of a plurality of strip-like second electrode segments 732A extending in a second direction different from the first direction
  • the control of the light blocking ratio of the portion of the light control device corresponding to the overlapping region of the first electrode segment 731A and the second electrode segment 732A (the minimum unit region 730A in which the light blocking ratio of the light control device changes) This is performed based on control of the voltage applied to the second electrode segment 732A.
  • the first direction and the second direction are orthogonal to each other. Specifically, the first direction extends in the lateral direction (X direction), and the second direction extends in the vertical direction (Y direction). In such a configuration, the auxiliary electrode is unnecessary, and the light control devices described in the second to sixth embodiments can be appropriately applied.
  • the present disclosure can also be configured as follows. [A01] ⁇ Light control device: First aspect >> First substrate, A second substrate disposed opposite to the first substrate and receiving external light, A first electrode formed on a first substrate, A light control layer formed on the first electrode, A second electrode formed on at least the light control layer, A moisture holding member covering at least the second electrode and facing the second substrate; A sealing member provided at the edge of the first substrate, A light control device provided with A moisture holding member extending portion extending from the moisture holding member is disposed between the sealing member and the second substrate, The light control device wherein the thickness of the water holding member extension portion is thinner than the thickness of the water holding member at the central portion of the light control device.
  • the second electrode is formed on the light control layer, on the first substrate, and at a distance from the first electrode, The light control device according to [A01], wherein the water holding member covers at least the second electrode and the light control layer.
  • the auxiliary electrode includes a first auxiliary electrode formed on the first electrode, and a second auxiliary electrode formed on the second electrode so as to be separated from the first auxiliary electrode
  • [A05] The light control device according to [A01] or [A02], wherein the sealing member is made of resin.
  • the light control device according to [A09], wherein an auxiliary electrode is provided inside a part of the sealing member.
  • the auxiliary electrode includes a first auxiliary electrode formed on the first electrode, and a second auxiliary electrode formed on the second electrode so as to be separated from the first auxiliary electrode
  • the light control device as described in.
  • the light control device according to any one of [A01] to [A11], in which the cross-sectional shape of the sealing member is a shape that narrows toward the second substrate.
  • the light control device according to any one of [A01] to [A12], wherein an inorganic material film is formed on the surface of the second substrate facing the moisture holding member.
  • [A14] The light control device according to any one of [A01] to [A13], in which the Young's modulus of the material forming the water holding member is 1 ⁇ 10 6 Pa or less.
  • a resin constituting the water holding member is an acrylic resin, a silicone resin or a urethane resin.
  • [A16] The light control device according to any one of [A01] to [A16] which is curved.
  • [A17] The image display device according to any one of [A01] to [A16], wherein the light control layer includes an electrochromic material layer.
  • [B03] The light control device according to [B01] or [B02], wherein an auxiliary electrode is provided inside at least a part of the first sealing member.
  • the auxiliary electrode includes a first auxiliary electrode formed on the first electrode, and a second auxiliary electrode formed apart from the first auxiliary electrode on the second electrode [B03] Or The light control apparatus as described in [B04].
  • [B05] The light control device according to any one of [B01] to [B04], wherein the first sealing member and the second sealing member are made of resin.
  • [B06] The light control device according to [B05], in which the Young's modulus of the resin forming the first sealing member and the second sealing member is 1 ⁇ 10 7 Pa or less.
  • [B07] The light control device according to [B01] or [B02], wherein a part of the first sealing member is formed of an auxiliary electrode.
  • the auxiliary electrode includes a first auxiliary electrode formed on the first electrode, and a second auxiliary electrode formed on the second electrode so as to be separated from the first auxiliary electrode
  • the light control device as described in.
  • image display device >> Image forming apparatus, An optical device having a virtual image forming area in which a virtual image is formed based on light emitted from the image forming apparatus; A light control device which is disposed to face at least a virtual image formation area and adjusts the amount of external light incident from the outside, Equipped with The dimmer is First substrate, A second substrate disposed opposite to the first substrate and receiving external light, A first electrode formed on a first substrate, A light control layer formed on the first electrode, A second electrode formed on at least the light control layer, A moisture holding member covering at least the second electrode and facing the second substrate; A sealing member provided at the edge of the first substrate, Equipped with A moisture holding member extending portion extending from the moisture holding member is disposed between the sealing member and the second substrate, An image display apparatus wherein the thickness of the water holding member extension portion is thinner than the thickness of the water holding member at the central portion of the light control device.
  • image display device >> Image forming apparatus, An optical device having a virtual image forming area in which a virtual image is formed based on light emitted from the image forming apparatus; A light control device which is disposed to face at least a virtual image formation area and adjusts the amount of external light incident from the outside, Equipped with An image display apparatus comprising the light control device according to any one of [A01] to [B16].
  • a display device is Image forming apparatus, An optical device having a virtual image forming area in which a virtual image is formed based on light emitted from the image forming apparatus; A light control device which is disposed to face at least a virtual image formation area and adjusts the amount of external light incident from the outside, Equipped with The dimmer is First substrate, A second substrate disposed opposite to the first substrate and receiving external light, A first electrode formed on a first substrate, A light control layer formed on the first electrode, A second electrode formed on at least the light control layer, A moisture holding member covering at least the second electrode and facing the second substrate; A sealing member provided at the edge of the first substrate, Equipped with A moisture holding member extending portion extending from the moisture holding member is disposed between the sealing member and the second substrate, The display device wherein the thickness of the water holding member extension portion is thinner than the thickness of the water holding member at the central portion of the light control
  • [D04] The display device according to any one of [D01] to [D03], in which light passing through the light control device is colored in a desired color by the light control device.
  • [D05] The display device according to [D04], in which the color to be colored by the light control device is variable.
  • [D06] The display device according to [D04], in which the color to be colored by the light control device is fixed.
  • Control devices control circuits, control means
  • 19 mounting member
  • 20 observer
  • 21 pupil
  • 500 image display device 110
  • 210 image forming device
  • 111 111
  • Organic EL display device 211, 211A, 211B light source
  • 212 scanning means 113A, 113B
  • 213 lens system
  • 114 aperture stop 115, 215: case 120, 320, 520 ⁇
  • Optical device 121, 32 ... light guide plate, 122, 322 ... first surface of light guide plate, 123, 323 ... second surface of light guide plate, 324, 325 ... part of light guide plate, 130 ...
  • first deflection Means first diffraction grating member
  • second deflection means second diffraction grating member, virtual image forming area
  • first deflection means 340 second deflection means (virtual image forming area 151, optical members (hologram lenses), 530A, 530B, semi-transparent mirrors, 601, light sources, 602, light guiding members, 603, 605, polarization beam splitters, 604.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

調光装置700は、第1基板711及び第2基板712、第1基板711上に形成された第1電極731、第1電極731上に形成された調光層720、少なくとも調光層720上に形成された第2電極732、少なくとも第2電極732を覆い、第2基板712と対向した水分保持部材741、及び、第1基板711の縁部に設けられた封止部材733,734,735,736を備えており、封止部材と第2基板712との間には、水分保持部材741から延在する水分保持部材延在部743が配設されており、水分保持部材延在部743の厚さは、調光装置中央部における水分保持部材742の厚さよりも薄い。

Description

調光装置、画像表示装置及び表示装置、並びに、調光装置の製造方法
 本開示は、調光装置、係る調光装置を備えた画像表示装置、及び、係る画像表示装置を備えた表示装置に関し、より具体的には、例えば、頭部装着型ディスプレイ(HMD,Head Mounted Display)に用いられる表示装置に関し、また、調光装置の製造方法に関する。
 近年、現実の環境(あるいはその一部)に付加情報としてバーチャルな物体や各種情報を電子情報として合成・提示する拡張現実技術(AR技術:Augmented Reality)が、注目を浴びている。この拡張現実技術を実現するために、視覚情報を提示する装置として、例えば、頭部装着型ディスプレイが検討されている。そして、応用分野として、現実の環境における作業支援が期待されており、例えば、道路案内情報の提供、メンテナンス等を行う技術者に対する技術情報提供等を挙げることができる。特に、頭部装着型ディスプレイは、手がふさがられることがないため、非常に便利である。また、屋外を移動しながら映像や画像を楽しみたい場合にも、視界に映像や画像と外部環境とを同時に捉えることができるため、スムーズな移動が可能となる。
 画像形成装置によって形成された2次元画像を虚像光学系により拡大虚像として観察者に観察させるための虚像表示装置(表示装置)が周知である。そして、この表示装置において2次元画像に基づく虚像を形成することで、観察者は、外界の像と形成された虚像とを重畳して見ることができる。ところで、表示装置の置かれた周囲の環境が非常に明るい場合や、形成された虚像の内容に依っては、観察者が観察する虚像に十分なコントラストを与えることができないといった問題が生じ得る。そこで、このような問題を解決する手段、即ち、調光装置を備えた虚像表示装置(表示装置)が、例えば、特開2012-252091号公報から周知である。
 然るに、調光装置を構成する調光層をエレクトロクロミック材料から構成し、エレクトロクロミック材料の酸化還元反応によって発生する物質の色変化を応用して光の透過率を変化させる場合、調光層内部において水分が無くなってしまうと調光層に色変化が生じなくなるといった現象が生じる。
 特開2007-101947号公報の請求項1には、透明基板の上に、第一透明導電膜、多孔質状で電子リーク性の固体電解質膜、電子リーク性のエレクトロクロミック膜、第二透明導電膜を順次積層成膜し、第二透明導電膜の上に透明の封止材を介して透明封止基板を貼り合わせて透過型に構成して成るエレクトロクロミック素子が開示されている。ここで、封止材は吸湿性を有する封止材であり、封止材の膜厚は、50μm以上、好ましくは50~500μmであるし(同請求項6参照)、吸湿性を有する封止材は、エポキシ樹脂、PVA、PVBのいずれかである(同請求項7参照)。
特開2012-252091号公報 特開2007-101947号公報
 特開2007-101947号公報に開示された技術において、封止材はH2O,H+,OH-を内部保留することができる結果、エレクトロクロミック素子の着色・消色により固体電解質膜から発生するO2ガス又はH2ガスの一部は、エレクトロクロミック膜及び透明導電膜又は反射膜兼電極膜を透過して、H2O,H+,OH-を内部保留する封止材内のH2Oに取り込まれる。それ故、固体電解質膜から発生するO2ガス又はH2ガスが、固体電解質膜とエレクトロクロミック膜の界面で蓄積され難くなり、固体電解質膜とエレクトロクロミック膜との界面での膜剥離が起こり難くなるとされている。しかしながら、特開2007-101947号公報に開示された封止材は、あくまでも、エレクトロクロミック素子の内部において発生するO2ガス又はH2ガスの一部を取り込むものである。特開2007-101947号公報には、エレクトロクロミック素子内部において水分が無くなってしまうとエレクトロクロミック素子に色変化が生じなくなるといった現象の発生抑制のための手段に関して、何ら、言及されていない。しかも、特開2007-101947号公報に開示された技術にあっては、透明電極膜50の上の封止材52の厚さが一定であり、固体電解質膜46、EC膜48及び透明電極膜50の端部を封止材52で覆っているため、封止材52の端部(側面)が厚い。従って、もしも、封止材52を介して水分の出入りが生じた場合、水分の出入りが大きくなるため、エレクトロクロミック素子の信頼性が低下するといった問題がある。
 従って、本開示の目的は、調光層内部において水分が無くなると調光層に色変化が生じなくなるといった現象の発生抑制を可能とし、しかも、高い信頼性を有する構成、構造の調光装置、係る調光装置を備えた画像表示装置、及び、係る画像表示装置を備えた表示装置、並びに、係る調光装置の製造方法を提供することにある。
 上記の目的を達成するための本開示の第1の態様に係る調光装置は、
 第1基板、
 第1基板と対向して配設され、外光が入光する第2基板、
 第1基板上に形成された第1電極、
 第1電極上に形成された調光層、
 少なくとも調光層上に形成された第2電極、
 少なくとも第2電極を覆い、第2基板と対向した水分保持部材、及び、
 第1基板の縁部に設けられた封止部材、
を備えた調光装置であって、
 封止部材と第2基板との間には、水分保持部材から延在する水分保持部材延在部が配設されており、
 水分保持部材延在部の厚さは、調光装置中央部における水分保持部材の厚さよりも薄い。
 上記の目的を達成するための本開示の第2の態様に係る調光装置は、
 第1基板、
 第1基板と対向して配設され、外光が入光する第2基板、
 第1基板上に形成された第1電極、
 第1電極上に形成された調光層、
 少なくとも調光層上に形成された第2電極、及び、
 少なくとも第2電極を覆い、第2基板と対向した水分保持部材、
を備えており、
 第1基板の縁部上に配設された第1封止部材、及び、
 第1封止部材と第2基板との間に配設された第2封止部材、
を更に備えている。
 上記の目的を達成するための本開示の画像表示装置は、
 画像形成装置、
 画像形成装置から出射された光に基づき虚像が形成される虚像形成領域を有する光学装置、及び、
 少なくとも虚像形成領域に対向して配置され、外部から入射する外光の光量を調整する調光装置、
を備えており、
 調光装置は、上記の本開示の第1の態様に係る調光装置から成る。あるいは又、調光装置は、上記の本開示の第2の態様に係る調光装置から成る。
 上記の目的を達成するための本開示の表示装置は、
 観察者の頭部に装着されるフレーム、及び、
 フレームに取り付けられた画像表示装置、
を備えた表示装置であって、
 画像表示装置は、
 画像形成装置、
 画像形成装置から出射された光に基づき虚像が形成される虚像形成領域を有する光学装置、及び、
 少なくとも虚像形成領域に対向して配置され、外部から入射する外光の光量を調整する調光装置、
を備えており、
 調光装置は、上記の本開示の第1の態様に係る調光装置から成る。あるいは又、調光装置は、上記の本開示の第2の態様に係る調光装置から成る。
 上記の目的を達成するための本開示の調光装置の製造方法は、
 第1基板の上に、第1電極、調光層、第2電極を形成し、第1基板の縁部に封止部材を設けた後、
 水分保持部材を少なくとも第2電極上に配置し、水分保持部材から延在する水分保持部材延在部を封止部材上に配置し、
 水分保持部材及び水分保持部材延在部の上に第2基板を配置する、
各工程を有する。そして、この調光装置の製造方法によって、本開示の第1の態様に係る調光装置を得ることができる。
図1A及び図1Bは、それぞれ、実施例1の調光装置を図2Aの矢印A-A及び矢印B-Bに沿って切断したときの調光装置の模式的な断面図である。 図2A及び図2Bは、実施例1の調光装置を光入射側(上方)から眺めたときの第1基板等の配置図及び第2基板等の配置図であり、図2Cは、実施例1の調光装置の変形例における第1基板等を光入射側(上方)から眺めたときの配置図である。 図3A及び図3Bは、実施例1の画像表示装置の一部分をXZ平面で切断したときの模式的な断面図、及び、実施例1の調光装置を正面から眺めた模式図である。 図4Aは、実施例1の画像表示装置の一部分を図3Bの矢印B-Bに沿って切断したときの(即ち、YZ平面で切断したときの)模式的な断面図であり、図4Bは、実施例1の表示装置を側面から眺めた模式図である。 図5は、実施例1の画像表示装置の概念図である。 図6は、反射型体積ホログラム回折格子の一部を拡大して示す模式的な断面図である。 図7は、実施例1の表示装置を上方から眺めた模式図である。 図8は、実施例1の表示装置を正面から眺めた模式図である。 図9A及び図9Bは、それぞれ、実施例2の調光装置を図2Aの矢印A-Aに沿って切断したときと同様の模式的な断面図、及び、実施例2の調光装置の第1基板等を光入射側(上方)から眺めたときの配置図である。 図10A及び図10Bは、それぞれ、実施例3の調光装置を図2Aの矢印A-Aに沿って切断したときと同様の模式的な断面図、及び、実施例3の調光装置の第1基板等を光入射側(上方)から眺めたときの配置図である。 図11は、実施例4の調光装置を図2Aの矢印A-Aに沿って切断したときと同様の模式的な断面図である。 図12A及び図12Bは、それぞれ、実施例5の調光装置を、図2Aの矢印B-Bに沿って切断したときと同様の模式的な断面図、及び、第2電極等を光入射側(上方)から眺めたときの配置図である。 図13A及び図13Bは、それぞれ、実施例5の調光装置の変形例を、図2Aの矢印B-Bに沿って切断したときと同様の模式的な断面図、及び、第1電極等を光入射側とは反対側(下方)から眺めたときの配置図である。 図14は、実施例5の調光装置の別の変形例を、図2Aの矢印B-Bに沿って切断したときと同様の模式的な断面図である。 図15A及び図15Bは、それぞれ、実施例6の調光装置を、図2Aの矢印A-A及び矢印B-Bに沿って切断したときと同様の模式的な断面図である。 図16A及び図16Bは、それぞれ、実施例6の調光装置の変形例を、図2Aの矢印A-A及び矢印B-Bに沿って切断したときと同様の模式的な断面図である。 図17は、実施例7の画像表示装置の概念図である。 図18は、実施例8の画像表示装置(実施例1の変形例)の概念図である。 図19は、実施例8の画像表示装置(実施例7の変形例)の概念図である。 図20は実施例9の表示装置における画像表示装置の概念図である。 図21A及び図21Bは、それぞれ、実施例10の表示装置を上方から眺めた模式図、及び、照度センサを制御する回路の模式図である。 図22A及び図22Bは、それぞれ、実施例11の表示装置を上方から眺めた模式図、及び、照度センサを制御する回路の模式図である。 図23は、実施例12の表示装置を上方から眺めた模式図である。 図24は、図23に示した実施例12の表示装置における光学装置及び調光装置の模式的な正面図である。 図25は、実施例12の別の表示装置を上方から眺めた模式図である。 図26は、実施例13の画像表示装置の概念図である。 図27は、実施例13の画像表示装置の概念図である。 図28は、実施例13の画像表示装置の変形例における光学系を説明する概念図である。 図29A及び図29Bは、実施例14の表示装置における光学装置を上から眺めた模式図である。 図30A及び図30Bは、それぞれ、実施例14の表示装置の変形例における光学装置を上から眺めた模式図、及び、横から眺めた模式図である。 図31は、実施例15の調光装置の模式的な断面図である。 図32は、楕円形状の外形形状を有する調光装置を示す模式図である。 図33A及び図33Bは、実施例1の調光装置の変形例を図2Aの矢印A-Aに沿って切断したときと同様の模式的な断面図である。 図34は、調光装置の変形例の模式的な正面図である。
 以下、図面を参照して、実施例に基づき本開示を説明するが、本開示は実施例に限定されるものではなく、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本開示の第1の態様~第2の態様に係る調光装置、本開示の画像表示装置、本開示の表示装置、及び、本開示の調光装置の製造方法、全般に関する説明
2.実施例1(本開示の第1の態様に係る調光装置、本開示の画像表示装置及び表示装置、第1-B構造の光学装置/第1構成の画像形成装置、本開示の調光装置の製造方法)
3.実施例2(実施例1の変形)
4.実施例3(実施例1の別の変形)
5.実施例4(実施例1~実施例3の変形)
6.実施例5(実施例1~実施例4の変形)
7.実施例6(本開示の第2の態様に係る調光装置)
8.実施例7(実施例1~実施例6の変形、第1-B構造の光学装置/第2構成の画像形成装置)
9.実施例8(実施例1~実施例7の変形、第1-A構造の光学装置/第1構成・第2構成の画像形成装置)
10.実施例9(実施例7~実施例8の変形、第2構造の光学装置/第2構成の画像形成装置)
11.実施例10(実施例1~実施例9の変形)
12.実施例11(実施例1~実施例9の変形)
13.実施例12(実施例1~実施例11の変形)
14.実施例13(実施例7の変形)
15.実施例14(実施例9の変形)
16.実施例15(調光装置の窓への適用)
17.その他
〈本開示の第1の態様~第2の態様に係る調光装置、本開示の画像表示装置、本開示の表示装置、及び、本開示の調光装置の製造方法、全般に関する説明〉
 本開示の第1の態様に係る調光装置、本開示の画像表示装置を構成する本開示の第1の態様に係る調光装置、本開示の表示装置を構成する本開示の第1の態様に係る調光装置、本開示の調光装置の製造方法によって得られる本開示の第1の態様に係る調光装置を、以下、総称して、便宜上、『本開示の第1の態様に係る調光装置等』と呼ぶ場合がある。また、本開示の第2の態様に係る調光装置、本開示の画像表示装置を構成する本開示の第2の態様に係る調光装置、本開示の表示装置を構成する本開示の第2の態様に係る調光装置を、以下、総称して、便宜上、『本開示の第2の態様に係る調光装置等』と呼ぶ場合がある。
 本開示の第1の態様に係る調光装置等あるいは本開示の第2の態様に係る調光装置等(これらの調光装置等を、総称して、便宜上、『本開示の調光装置等』と呼ぶ場合がある)において、
 第2電極は、調光層上から第1基板上に亙り、且つ、第1電極と離間して形成されており、
 水分保持部材は、少なくとも第2電極及び調光層を覆う形態とすることができる。
 上記の好ましい形態を含む本開示の第1の態様に係る調光装置等において、封止部材は水分バリア層として機能するが、封止部材の一部は補助電極から成る構成することができ、この場合、補助電極は、第1電極上に形成された第1補助電極、及び、第2電極上に第1補助電極と離間して形成された第2補助電極から構成されている構成とすることができる。このように、補助電極を設けることで、第1電極及び第2電極へ適切な電圧を容易に印加することができるし、第1電極あるいは第2電極における電圧降下の発生を抑制することができるので、調光装置の着色時のムラ発生を低減することができる。以下においても同様である。補助電極全体の長さを「1」としたとき、第1補助電極の長さは0.5未満であり、第3補助電極の長さは0.5未満であることが好ましい。以下においても同様である。
 あるいは又、上記の好ましい形態を含む本開示の第1の態様に係る調光装置等において、封止部材は樹脂から成る構成とすることができ、この場合、封止部材を構成する樹脂のヤング率は1×107Pa以下である構成とすることができ、更には、これらの場合、封止部材の一部の内側に補助電極が設けられている構成とすることができる。ここで、補助電極は、第1電極上に形成された第1補助電極、及び、第2電極上に第1補助電極と離間して形成された第2補助電極から構成されている構成とすることができる。封止部材を構成する樹脂として、例えば、紫外線硬化型樹脂(具体的には、アクリル系樹脂、ウレタン系樹脂、シリコーン系樹脂、フッ素系樹脂、ポリイミド系樹脂及びエポキシ系樹脂から構成されている樹脂)を挙げることができる。封止部材を樹脂から構成する場合、樹脂にシリカやアルミナ等の無機フィラーを添加してもよい。
 あるいは又、上記の好ましい形態を含む本開示の第1の態様に係る調光装置等において、封止部材は、第1基板の縁部に設けられた凸部から成る構成とすることができ、この場合、封止部材の一部の内側に補助電極が設けられている構成とすることができる。ここで、補助電極は、第1電極上に形成された第1補助電極、及び、第2電極上に第1補助電極と離間して形成された第2補助電極から構成されている構成とすることができる。第1基板の縁部における凸部は、例えば、熱プレス装置を用いて第1基板の縁部を熱プレスすることで形成することができるし、各種PVD法や各種CVD、各種印刷法によって形成することもできる。
 本開示の第2の態様に係る調光装置において、少なくとも第1封止部材の一部の内側に補助電極が設けられている構成とすることができる。そして、この場合、補助電極は、第1電極上に形成された第1補助電極、及び、第2電極上に第1補助電極と離間して形成された第2補助電極から構成されていることが好ましい。更には、これらの構成にあっては、第1封止部材及び第2封止部材は樹脂から成る構成とすることができ、この場合、第1封止部材及び第2封止部材を構成する樹脂のヤング率は1×107Pa以下である構成とすることができる。あるいは又、本開示の第2の態様に係る調光装置において、第1封止部材の一部は補助電極から成る構成することができ、この場合、補助電極は、第1電極上に形成された第1補助電極、及び、第2電極上に第1補助電極と離間して形成された第2補助電極から構成されている構成とすることができる。そして、この場合、第2封止部材は樹脂から成ることが好ましい。第1封止部材や第2封止部材を構成する樹脂として、例えば、紫外線硬化型樹脂(具体的には、アクリル系樹脂、ウレタン系樹脂、シリコーン系樹脂、フッ素系樹脂、ポリイミド系樹脂及びエポキシ系樹脂から構成されている樹脂)を挙げることができる。第1封止部材を樹脂から構成する場合、樹脂にシリカやアルミナ等の無機フィラーを添加してもよいし、第2封止部材にシリカやアルミナ等の無機フィラーを添加してもよい。第2封止部材を構成する材料の水分透過率の値VT2は、水分保持部材を構成する材料の水分透過率の値VT0よりも低いことが好ましい。第1封止部材及び第2封止部材を樹脂から構成し、第2封止部材の厚さを第1封止部材の厚さよりも薄くする場合、第1封止部材を構成する材料の水分透過率の値VT1は、VT1<VT2<VT0の関係を満足することが望ましい。ここで、水分透過率の測定は、JIS K7129:2008に基づいて行うことができ、50mm×50mmの試験片に対して、試験温度25゜C±0.5゜C、相対湿度90±2%の条件下、試験を実施する。測定は乾湿センサを用いて行う。場合によっては、第1封止部材及び第2封止部材を樹脂を同じ樹脂から構成することもでき、この場合、第1封止部材及び第2封止部材を、同時に、一体に形成すればよく、第1封止部材及び第2封止部材を構成する材料の水分透過率の値VT1+2は、水分保持部材を構成する材料の水分透過率の値VT0よりも低いことが好ましい。
 更には、以上に説明した好ましい形態、構成を含む本開示の調光装置等において、封止部材の断面形状は、第2基板に近づくに従い狭くなる形状である形態とすることができる。封止部材の断面形状をこのような形状とすることで、水分保持部材を少なくとも第2電極上に配置し、水分保持部材から延在する水分保持部材延在部を封止部材上に配置するとき、水分保持部材の下に気泡が混入するといった問題の発生を回避することができる。封止部材のこのような断面形状は、例えば、印刷法に基づく封止部材の形成、メタルマスクを用いたスパッタリング法に基づく封止部材の形成といった種々の方法に基づき形成することができる。
 更には、以上に説明した好ましい形態、構成を含む本開示の調光装置等において、水分保持部材と対向する第2基板の面には無機材料膜が形成されている形態とすることができる。ここで、無機材料膜は、例えば、酸化アルミニウム、酸化ケイ素、窒化ケイ素、酸化ニオブ等の無機材料から成る。無機材料膜を形成することで、第2基板に剛性を付与することができる結果、第2基板に歪みが生じ難くなる。無機材料膜の形成は、例えば、PVD法やCVD法、レーザーアブレーション法、原子層堆積法(ALD法)に基づき行うことができる。
 更には、以上に説明した好ましい形態、構成を含む本開示の調光装置等において、水分保持部材を構成する材料(具体的には、樹脂)のヤング率は1×106Pa以下であることが望ましく、これによって、調光装置の内部において生じた各種の段差を吸収することができるし、調光装置中央部における水分保持部材の厚さのバラツキ、水分保持部材延在部の厚さのバラツキを小さくすることができる結果(即ち、第1基板と第2基板との間の距離全体の均一化を図ることができる結果)、視認性の劣化発生を防ぐことができる。具体的には、調光装置を通して外界を見たとき、外界の像に歪みが生じたり、外界の像にズレが生じることを抑制することができる。
 更には、以上に説明した好ましい形態、構成を含む本開示の調光装置等において、水分保持部材を構成する樹脂は、アクリル系樹脂、シリコーン系樹脂又はウレタン系樹脂である形態とすることができる。あるいは又、水分保持部材は、紫外線硬化型樹脂から成る形態とすることができる。あるいは又、水分保持部材は、OCA(Optical Clear Adhesive)と呼ばれる材料から構成することもできる。尚、『水分保持部材』は、プロトン供給部材、水分を保持し得る透明粘着部材、あるいは、水分を保持し得る透明封止部材と云い換えることもできる。OCAから成る水分保持部材は、例えば、相対湿度50%の室温で保管しておけば、平衡含水状態を保持することができる。水分保持部材の形態に依存するが、例えば、水分保持部材がシート状の場合、水分保持部材を介して第2基板と第2電極とを、また、第2基板と封止部材とを貼り合わせることができるし、熱可塑性紫外線硬化型の水分保持部材を用いることもできる。あるいは又、水分保持部材が液状の場合、第2電極から封止部材の上に亙り水分保持部材を塗布し、必要に応じてプレキュアした後、必要に応じて加圧しながら第2基板を水分保持部材に重ね合わせ、紫外線によって水分保持部材を硬化させればよい。あるいは又、使用する材料に依るが、熱ラミネート法等に基づき、第2電極から封止部材の上に亙り水分保持部材を貼り合わせることもできる。
 更には、以上に説明した好ましい形態、構成を含む本開示の調光装置等において、調光装置は湾曲している形態とすることができ、これによって、画像表示装置あるいは表示装置へ調光装置を容易に、且つ、確実に装着させることができる。
 本開示の第1の態様に係る調光装置において、水分保持部材延在部の厚さは、調光装置中央部における水分保持部材の厚さよりも薄いが、調光装置中央部における水分保持部材の厚さ(t1)として、1×10-4m乃至5×10-4mを例示することができるし、水分保持部材延在部の厚さ(t2)として、1×10-7m乃至1×10-4mを例示することができる。あるいは又、5×10-4≦t2/t1≦1を満足することが好ましい。
 本開示の調光装置の製造方法において、水分保持部材を少なくとも第2電極上に配置し、水分保持部材から延在する水分保持部材延在部を封止部材上に配置するが、具体的には、例えば、水分保持部材を第2電極に接着し、あるいは、貼り合わせ、水分保持部材延在部を封止部材に接着し、あるいは、貼り合わせればよい。また、水分保持部材及び水分保持部材延在部の上に第2基板を配置するが、具体的には、例えば、第2基板を水分保持部材及び水分保持部材延在部に接着し、あるいは、貼り合わせればよい。
 第2基板は、例えば、保護基板としての機能も有する。第1基板は、隙間を開けた状態で、光学装置に対向しており、あるいは又、隙間の無い状態で、光学装置に対向しており、あるいは又、光学装置を構成する部材(例えば、光学装置に備えられた保護部材)を兼用している。第2基板の外面には、有機/無機混合層から成るハードコート層や、フッ素系樹脂から成る反射防止膜を形成してもよい。
 更には、以上に説明した好ましい形態を含む本開示の調光装置等において、調光層は、エレクトロクロミック材料層を備えている形態とすることができる。そして、この場合、調光層(エレクトロクロミック材料層)は、還元着色層、電解質層及び酸化着色層の積層構造を有する形態とすることができる。
 調光装置は、上述したとおり、無機又は有機のエレクトロクロミック材料から成るエレクトロクロミック材料層の酸化還元反応によって発生する物質の色変化を応用した光シャッタから成る形態とすることができる。具体的には、調光層は無機又は有機のエレクトロクロミック材料を含む形態とすることができ、上記のとおり、還元着色層、電解質層及び酸化着色層から構成することができる。還元着色層として、酸化タングステン、酸化モリブデン、酸化バナジウム等の無機材料、ビオロゲン誘導体、ポリチオフェン誘導体、プルシアンブルー誘導体等の有機材料を挙げることができるし、電解質層として、酸化タンタル、炭酸プロピレン、イオン液体、イオンポリマー等を挙げることができるし、酸化着色層として、酸化イリジウム系材料、酸化ニッケル、酸化ジルコニウム、リン酸ジルコニウム、水酸化ニッケル、酸化クロム、塩化銅等の無機材料、アミン誘導体、フェナジン、ビオロゲン誘導体等の有機材料、更には、高分子や有機・金属混合物等を挙げることができる。より具体的には、調光層は、例えば、第2電極側から、WO3層/Ta25層/IrXSn1-XO層といった無機エレクトロクロミック材料層の積層構造、あるいは又、WO3層/Ta25層/IrOx層といった無機エレクトロクロミック材料層の積層構造を有する形態とすることができる。WO3層の代わりに、上述したとおり、MoO3層やV25層を用いることができる。また、IrOx層の代わりに、上述したとおり、ZrO2層、リン酸ジルコニウム層を用いることができるし、あるいは又、プルシアンブルー錯体/ニッケル置換プルシアンブルー錯体等を用いることもできる。有機のエレクトロクロミック材料層を構成する材料として、例えば、特開2014-111710号公報や特開2014-159385号公報に開示されたエレクトロクロミック材料を用いることもできる。
 遮光率の制御は、例えば、単純マトリクス方式に基づき行うことができる。即ち、
 第1電極は、第1の方向に延びる複数の帯状の第1電極セグメントから構成されており、
 第2電極は、第1の方向とは異なる第2の方向に延びる複数の帯状の第2電極セグメントから構成されており、
 第1電極セグメントと第2電極セグメントの重複領域(調光装置の遮光率が変化する最小単位領域)に対応する調光装置の部分の遮光率の制御は、第1電極セグメント及び第2電極セグメントに印加する電圧の制御に基づき行われる形態とすることができる。第1の方向と第2の方向とは直交している形態を例示することができる。あるいは又、調光装置の遮光率が変化する最小単位領域の遮光率の制御のために、最小単位領域のそれぞれに薄膜トランジスタ(TFT)を設けてもよい。即ち、遮光率の制御をアクティブマトリクス方式に基づき行ってもよい。あるいは又、第1電極及び第2電極の少なくとも一方を所謂ベタ電極(パターニングされていない電極)とすることもできる。
 第1電極は、パターニングされていてもよいし、パターニングされていなくともよい。第2電極も、パターニングされていてもよいし、パターニングされていなくともよい。第1電極及び第2電極を構成する材料として、透明導電材料、より具体的には、インジウム-スズ複合酸化物(ITO,Indium Tin Oxide,SnドープのIn23、結晶性ITO及びアモルファスITOを含む)、フッ素ドープSnO2(FTO)、IFO(FドープのIn23)、アンチモンドープSnO2(ATO)、SnO2、ZnO(AlドープのZnOやBドープのZnOを含む)、インジウム-亜鉛複合酸化物(IZO,Indium Zinc Oxide)、スピネル型酸化物、YbFe24構造を有する酸化物、ポリアニリン、ポリピロール、ポリチオフェン等の導電性高分子等を挙げることができるが、これらに限定されるものではなく、また、これらを2種類以上組み合わせて用いることもできる。あるいは又、細線状の第1電極及び第2電極を、金、銀、銅、アルミニウム、ニッケル、チタン等の金属、あるいは、合金から構成することができる。補助電極は、例えば、金、銀、銅、アルミニウム、ニッケル、チタン等の金属、あるいは、これらの合金から構成することができるし、あるいは又、補助電極は、銀ペーストや銅ペーストを用いて形成することもできる。補助電極(第1補助電極及び第2補助電極)は、第1電極及び第2電極よりも電気抵抗が低いことが要求される。第1電極及び第2電極、補助電極(第1補助電極及び第2補助電極)は、真空蒸着法やスパッタリング法等の物理的気相成長法(PVD法)、各種化学的気相成長法(CVD法)、各種塗布等、各種印刷法に基づき形成することができる。電極のパターニングは、エッチング法、リフトオフ法、各種マスクを用いる方法等、任意の方法で行うことができる。
 以上に説明した好ましい形態を含む本開示の画像表示装置等において、第1基板及び第2基板は、ソーダライムガラス、白板ガラス等の透明なガラス基板、プラスチック基板、プラスチック・シート、プラスチック・フィルムから成る形態とすることができる。ここで、プラスチックとして、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、酢酸セルロース等のセルロースエステル、ポリフッ化ビニリデンあるいはポリテトラフルオロエチレンとヘキサフルオロプロピレンとの共重合体等のフッ素ポリマー、ポリオキシメチレン等のポリエーテル、ポリアセタール、ポリスチレン、ポリエチレン、ポリプロピレン、メチルペンテンポリマー等のポリオレフィン、ポリアミドイミドあるいはポリエーテルイミド等のポリイミド、ポリアミド、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリフッ化ビニリデン、テトラアセチルセルロース、ブロム化フェノキシ、ポリアリレート、ポリスルフォン等を挙げることができる。尚、必要に応じて、前述したとおり、第2基板に無機材料膜を設ければよく、これによって、第2基板に剛性を付与することができ、調光装置の組立時、第2基板に歪みが生じ難くなる。
 更には、以上に説明した好ましい形態を含む本開示の画像表示装置、以上に説明した好ましい形態を含む本開示の表示装置において、光学装置は、
 (b-1)画像形成装置から入射された光が内部を全反射により伝播した後、観察者に向けて出射される導光板、
 (b-2)導光板に入射された光が導光板の内部で全反射されるように、導光板に入射された光を偏向する第1偏向手段、及び、
 (b-3)導光板の内部を全反射により伝播した光を偏向して導光板から出射させる第2偏向手段、
を備えており、
 第2偏向手段によって光学装置の虚像形成領域が構成される形態とすることができる。このような光学装置を、便宜上、『第1構造の光学装置』と呼ぶ。尚、「全反射」という用語は、内部全反射、あるいは、導光板内部における全反射を意味する。調光装置の射影像内に第2偏向手段(虚像形成領域)が位置する場合もあるし、第2偏向手段(虚像形成領域)の射影像内に調光装置が位置する場合もある。
 調光装置において遮光率の値を高くする領域は、調光装置の全部の領域であってもよいし、調光装置の一部の領域であってもよい。即ち、実際に虚像が形成される第2偏向手段の領域(例えば、第2偏向手段の一部の領域)に対向した調光装置の領域の遮光率を制御してもよい。云い換えれば、画像形成装置から出射される光に基づき虚像形成領域の一部分において虚像が形成されるとき、調光装置への虚像の投影像が含まれる調光装置の虚像投影領域(光学装置における虚像形成領域に対応した調光装置の領域)の遮光率が、調光装置の他の領域の遮光率よりも高くなるように、調光装置が制御してもよい。尚、調光装置において虚像投影領域の位置は固定されたものでなく、虚像の形成位置に依存して変化し、また、虚像投影領域の数も、虚像の数(あるいは一連の虚像群の数、ブロック化された虚像群の数等)に依存して変化する形態とすることもできる。
 調光装置の動作時、調光装置の他の領域の遮光率は、調光装置への虚像の投影像が含まれる調光装置の虚像投影領域の遮光率を「1」としたとき、例えば、0.95以下とすることができる。あるいは又、調光装置の他の領域の遮光率は、例えば、30%以下とすることができる。一方、調光装置の動作時、調光装置の虚像投影領域の遮光率は、35%乃至99%、例えば、80%とすることができる。このように、虚像投影領域の遮光率は、一定であってもよいし、表示装置の置かれた環境の照度に依存して変化させてもよい。
 以上に説明した各種好ましい形態を含む本開示の表示装置(以下、これらを総称して、『本開示の表示装置等』と呼ぶ場合がある)において、フレームは、観察者の正面に配置されるフロント部、フロント部の両端に蝶番を介して回動自在に取り付けられた2つのテンプル部、及び、ノーズパッドを備えており、調光装置はフロント部に配設されている形態とすることができ、この場合、光学装置は、調光装置に取り付けられている形態とすることができる。あるいは又、光学装置は、フロント部に取り付けられている形態とすることができ、この場合、調光装置は、光学装置に取り付けられている形態とすることができる。更には、これらの場合、フロント部はリム部を有し、調光装置はリム部に嵌め込まれている形態とすることができ、あるいは又、光学装置はリム部に嵌め込まれている形態とすることができる。本開示の表示装置等において、観察者側から、光学装置、調光装置の順に配してもよいし、調光装置、光学装置の順に配してもよい。
 本開示の表示装置等において、遮光率は、徐々に変化してもよいし(即ち、連続的に変化してもよいし)、電極の配置状態、形状に依っては、階段状に変化する構成とすることもできるし、一定の値から連続的にあるいは階段状に変化する構成とすることもできる。即ち、調光装置を、色のグラデーションが付いた状態としてもよいし、段階的に色が変化する状態とすることもできるし、一定の色が付いた状態から連続的にあるいは段階的に色が変化する状態とすることもできる。遮光率は、第1電極及び第2電極に印加する電圧によって制御することができる。第1電極と第2電極との間の電位差を制御してもよいし、第1電極に印加する電圧と第2電極に印加する電圧とを独立に制御してもよい。遮光率の調整を行う場合、光学装置にテストパターンを表示してもよい。
 本開示の表示装置等において、表示装置の置かれた環境の照度を測定する環境照度測定センサを更に備えており、環境照度測定センサの測定結果に基づき、調光装置の遮光率を制御する形態とすることができる。あるいは又、表示装置の置かれた環境の照度を測定する環境照度測定センサを更に備えており、環境照度測定センサの測定結果に基づき、画像形成装置によって形成される画像の輝度を制御する形態とすることができる。これらの形態を組み合わせてもよい。
 あるいは又、外部環境から調光装置を透過した光に基づく照度を測定する透過光照度測定センサを更に備えており、透過光照度測定センサの測定結果に基づき、調光装置の遮光率を制御する形態とすることができる。あるいは又、外部環境から調光装置を透過した光に基づく照度を測定する透過光照度測定センサを更に備えており、透過光照度測定センサの測定結果に基づき、画像形成装置によって形成される画像の輝度を制御する形態とすることができる。透過光照度測定センサは、光学装置よりも観察者側に配置されている形態とすることが望ましい。透過光照度測定センサを、少なくとも2つ、配置し、高遮光率の部分を通過した光に基づく照度の測定、低遮光率の部分を通過した光に基づく照度の測定を行ってもよい。これらの形態を組み合わせてもよい。更には、これらの形態と、上記の環境照度測定センサの測定結果に基づき制御を行う形態とを組み合わせてもよい。
 照度センサ(環境照度測定センサ、透過光照度測定センサ)は、周知の照度センサから構成すればよいし、照度センサの制御は周知の制御回路に基づき行えばよい。
 調光装置の最高光透過率は50%以上であり、調光装置の最低光透過率は30%以下である構成とすることができる。調光装置の最高光透過率の上限値として99%を挙げることができるし、調光装置の最低光透過率の下限値として1%を挙げることができる。ここで、
(光透過率)=1-(遮光率)
の関係にある。
 調光装置にコネクタを取り付け、調光装置の遮光率(光透過率)を制御するための制御回路(例えば、画像形成装置を制御するための制御装置に含まれている)にこのコネクタ及び配線を介して調光装置を電気的に接続すればよい。
 場合によっては、調光装置を通過する光は、調光装置によって所望の色に着色される構成とすることができる。そして、この場合、調光装置によって着色される色は可変である形態とすることができるし、あるいは又、調光装置によって着色される色は固定である形態とすることができる。前者の場合、例えば、赤色に着色される調光装置と、緑色に着色される調光装置と、青色に着色される調光装置とを積層する形態とすればよい。また、後者の場合、調光装置によって着色される色として、限定するものではないが、茶色を例示することができる。
 更には、場合によっては、調光装置が着脱自在に配設されている形態とすることができる。調光装置を着脱自在に配設するためには、例えば、透明なプラスチックから作製されたビスを用いて調光装置を例えばフレームに取り付け、あるいは又、フレームに溝を切っておき、この溝に調光装置を係合させ、あるいは又、フレームに磁石を取り付けることで調光装置をフレームに取り付けることができるし、フレームにスライド部を設け、このスライド部に調光装置を嵌め込んでもよい。
 光学装置は半透過型(シースルー型)である。具体的には、少なくとも観察者の眼球(瞳)に対向する光学装置の部分を半透過(シースルー)とし、光学装置のこの部分及び調光装置を通して外景を眺めることができる。観察者が、調光装置及び光学装置を通過した光の明るさを観察し、観察者が、スイッチやボタン、ダイアル、スライダ、ノブ等を操作することで手動にて遮光率を制御、調整することができるし、あるいは又、前述した外部環境から調光装置を透過した光に基づく照度を測定する透過光照度測定センサの測定結果に基づき、遮光率を制御、調整することができる。遮光率の制御、調整は、具体的には、第1電極及び第2電極に印加する電圧を制御すればよい。透過光照度測定センサを、少なくとも2つ、配置し、高遮光率の部分を通過した光に基づく照度の測定、低遮光率の部分を通過した光に基づく照度の測定を行ってもよい。表示装置は、画像表示装置を1つ備えていてもよいし(片眼型)、2つ備えていてもよい(両眼型)。画像表示装置を2つ備えている場合、一方の調光装置と他方の調光装置のそれぞれにおいて、第1電極及び第2電極に印加する電圧を調整することで、一方の調光装置における遮光率及び他方の調光装置における遮光率の均等化を図ることができる。一方の調光装置における遮光率及び他方の調光装置における遮光率は、例えば、前述した外部環境から調光装置を透過した光に基づく照度を測定する透過光照度測定センサの測定結果に基づき、制御することができるし、あるいは又、観察者が、一方の調光装置及び光学装置を通過した光の明るさ及び他方の調光装置及び光学装置を通過した光の明るさを観察し、観察者が、スイッチやボタン、ダイアル、スライダ、ノブ等を操作することで手動にて制御、調整することもできる。遮光率の調整を行う場合、光学装置にテストパターンを表示してもよい。
 本明細書において、「半透過」という用語を用いる場合があるが、入射する光の1/2(50%)を透過し、あるいは反射することを意味するのではなく、入射する光の一部を透過し、残部を反射するといった意味で用いている。
 第1構造の光学装置において、前述したとおり、第1偏向手段は、導光板に入射された光を反射し、第2偏向手段は、導光板の内部を全反射により伝播した光を、(複数回に亙り)透過、反射する構成とすることができる。そして、この場合、第1偏向手段は反射鏡として機能し、第2偏向手段は半透過鏡として機能する構成とすることができる。このような第1構造の光学装置を、便宜上、『第1-A構造の光学装置』と呼ぶ。
 このような第1-A構造の光学装置において、第1偏向手段は、例えば、合金を含む金属から構成され、導光板に入射された光を反射させる光反射膜(一種のミラー)や、導光板に入射された光を回折させる回折格子(例えば、ホログラム回折格子膜)から構成することができる。あるいは又、第1偏向手段は、例えば、誘電体積層膜が多数積層された多層積層構造体、ハーフミラー、偏光ビームスプリッターから構成することができる。また、第2偏向手段は、誘電体積層膜が多数積層された多層積層構造体や、ハーフミラー、偏光ビームスプリッター、ホログラム回折格子膜から構成することができる。そして、第1偏向手段や第2偏向手段は、導光板の内部に配設されている(導光板の内部に組み込まれている)が、第1偏向手段においては、導光板に入射された平行光が導光板の内部で全反射されるように、導光板に入射された平行光が反射又は回折される。一方、第2偏向手段においては、導光板の内部を全反射により伝播した平行光が、(複数回に亙り)反射又は回折され、導光板から平行光の状態で出射される。
 あるいは又、第1偏向手段は、導光板に入射された光を回折反射し、第2偏向手段は、導光板の内部を全反射により伝播した光を回折反射する構成とすることができる。そして、この場合、第1偏向手段及び第2偏向手段は回折格子素子から成る形態とすることができ、更には、回折格子素子は、反射型回折格子素子から成り、あるいは又、透過型回折格子素子から成り、あるいは又、一方の回折格子素子は反射型回折格子素子から成り、他方の回折格子素子は透過型回折格子素子から成る構成とすることができる。反射型回折格子素子として、反射型体積ホログラム回折格子を挙げることができる。反射型体積ホログラム回折格子とは、+1次の回折光のみを回折反射するホログラム回折格子を意味する。ホログラム回折格子から成る第1偏向手段を、便宜上、『第1回折格子部材』と呼び、ホログラム回折格子から成る第2偏向手段を、便宜上、『第2回折格子部材』と呼ぶ場合がある。また、このような第1構造の光学装置を、便宜上、『第1-B構造の光学装置』と呼ぶ。
 本開示の表示装置等における画像表示装置によって、単色(例えば、緑色)の画像表示を行うことができる。そして、この場合、例えば、画角を例えば二分割(より具体的には、例えば二等分割)して、第1偏向手段は、二分割された画角群のそれぞれに対応する2つの回折格子部材が積層されて成る構成とすることができる。あるいは又、カラーの画像表示を行う場合、第1回折格子部材あるいは第2回折格子部材を、異なるP種類(例えば、P=3であり、赤色、緑色、青色の3種類)の波長帯域(あるいは、波長)を有するP種類の光の回折反射に対応させるために、ホログラム回折格子から成るP層の回折格子層が積層されて成る構成とすることができる。各回折格子層には1種類の波長帯域(あるいは、波長)に対応する干渉縞が形成されている。あるいは又、異なるP種類の波長帯域(あるいは、波長)を有するP種類の光の回折反射に対応するために、1層の回折格子層から成る第1回折格子部材あるいは第2回折格子部材にP種類の干渉縞が形成されている構成とすることもできる。あるいは又、例えば、第1導光板に、赤色の波長帯域(あるいは、波長)を有する光を回折反射させるホログラム回折格子から成る回折格子層から構成された回折格子部材を配し、第2導光板に、緑色の波長帯域(あるいは、波長)を有する光を回折反射させるホログラム回折格子から成る回折格子層から構成された回折格子部材を配し、第3導光板に、青色の波長帯域(あるいは、波長)を有する光を回折反射させるホログラム回折格子から成る回折格子層から構成された回折格子部材を配し、これらの第1導光板、第2導光板及び第3導光板を隙間を開けて積層する構造を採用してもよい。あるいは又、画角を例えば三等分して、第1回折格子部材あるいは第2回折格子部材を、各画角に対応する回折格子層が積層されて成る構成とすることができる。そして、これらの構成を採用することで、各波長帯域(あるいは、波長)を有する光が第1回折格子部材あるいは第2回折格子部材において回折反射されるときの回折効率の増加、回折受容角の増加、回折角の最適化を図ることができる。観察者がホログラム回折格子に触れないように、保護部材を配することが好ましい。
 第1回折格子部材及び第2回折格子部材を構成する材料として、フォトポリマー材料を挙げることができる。ホログラム回折格子から成る第1回折格子部材及び第2回折格子部材の構成材料や基本的な構造は、従来のホログラム回折格子の構成材料や構造と同じとすればよい。回折格子部材には、その内部から表面に亙り干渉縞が形成されているが、係る干渉縞それ自体の形成方法は、従来の形成方法と同じとすればよい。具体的には、例えば、回折格子部材を構成する部材(例えば、フォトポリマー材料)に対して一方の側の第1の所定の方向から物体光を照射し、同時に、回折格子部材を構成する部材に対して他方の側の第2の所定の方向から参照光を照射し、物体光と参照光とによって形成される干渉縞を回折格子部材を構成する部材の内部に記録すればよい。第1の所定の方向、第2の所定の方向、物体光及び参照光の波長を適切に選択することで、回折格子部材の表面における干渉縞の所望のピッチ、干渉縞の所望の傾斜角(スラント角)を得ることができる。干渉縞の傾斜角とは、回折格子部材(あるいは回折格子層)の表面と干渉縞の成す角度を意味する。第1回折格子部材及び第2回折格子部材を、ホログラム回折格子から成るP層の回折格子層の積層構造から構成する場合、このような回折格子層の積層は、P層の回折格子層をそれぞれ別個に作製した後、P層の回折格子層を、例えば、紫外線硬化型接着剤を使用して積層(接着)すればよい。また、粘着性を有するフォトポリマー材料を用いて1層の回折格子層を作製した後、その上に順次粘着性を有するフォトポリマー材料を貼り付けて回折格子層を作製することで、P層の回折格子層を作製してもよい。作製された回折格子層に、必要に応じてエネルギー線を照射することで、回折格子層の物体光及び参照光の照射時に重合せずに残ったフォトポリマー材料中のモノマーを重合させて、定着させてもよい。また、必要に応じて、熱処理を行い、安定化させてもよい。
 あるいは又、本開示の表示装置等における画像表示装置において、光学装置は、画像形成装置から出射された光が入射され、観察者の瞳に向かって出射する半透過ミラーから構成されている形態とすることができるし、偏光ビームスプリッター(PBS)から構成されている形態とすることができる。半透過ミラーあるいは偏光ビームスプリッターによって光学装置の虚像形成領域が構成される。画像形成装置から出射された光は、空気中を伝播して半透過ミラーあるいは偏光ビームスプリッターに入射する構造としてもよいし、例えば、ガラス板やプラスチック板等の透明な部材(具体的には、後述する導光板を構成する材料と同様の材料から成る部材)の内部を伝播して半透過ミラーあるいは偏光ビームスプリッターに入射する構造としてもよい。半透過ミラーあるいは偏光ビームスプリッターを、この透明な部材を介して画像形成装置に取り付けてもよいし、半透過ミラーあるいは偏光ビームスプリッターを、この透明な部材とは別の部材を介して画像形成装置に取り付けてもよい。このような光学装置を、便宜上、『第2構造の光学装置』と呼ぶ。半透過ミラーとして、第1-A構造の光学装置における第1偏向手段、例えば、合金を含む金属から構成され、光を反射させる光反射膜(一種のミラー)や、回折格子(例えば、ホログラム回折格子膜)から構成することができる。あるいは又、光学装置は、画像形成装置から出射された光が入射され、観察者の瞳に向かって出射されるプリズムから構成されている形態とすることができる。
 以上に説明した各種好ましい形態、構成を含む本開示の表示装置等における画像表示装置において、画像形成装置は、2次元マトリクス状に配列された複数の画素を有する形態とすることができる。このような画像形成装置の構成を、便宜上、『第1構成の画像形成装置』と呼ぶ。
 第1構成の画像形成装置として、例えば、反射型空間光変調装置及び光源から構成された画像形成装置;透過型空間光変調装置及び光源から構成された画像形成装置;有機EL(Electro Luminescence)、無機EL、発光ダイオード(LED)、半導体レーザ素子等の発光素子から構成された画像形成装置を挙げることができるが、中でも、有機EL発光素子から構成された画像形成装置(有機EL表示装置)、反射型空間光変調装置及び光源から構成された画像形成装置とすることが好ましい。空間光変調装置として、ライト・バルブ、例えば、LCOS(Liquid Crystal On Silicon)等の透過型あるいは反射型の液晶表示装置、デジタルマイクロミラーデバイス(DMD)を挙げることができ、光源として発光素子を挙げることができる。更には、反射型空間光変調装置は、液晶表示装置、及び、光源からの光の一部を反射して液晶表示装置へと導き、且つ、液晶表示装置によって反射された光の一部を通過させて光学装置(例えば、導光板)へと導く偏光ビームスプリッターから成る構成とすることができる。光源を構成する発光素子として、赤色発光素子、緑色発光素子、青色発光素子、白色発光素子を挙げることができる。あるいは又、赤色発光素子、緑色発光素子及び青色発光素子から出射された赤色光、緑色光及び青色光をライトパイプを用いて混色、輝度均一化を行うことで白色光を得てもよい。発光素子として、例えば、半導体レーザ素子や固体レーザ、LEDを例示することができる。画素の数は、画像表示装置に要求される仕様に基づき決定すればよく、画素の数の具体的な値として、320×240、432×240、640×480、1024×768、1920×1080等を例示することができる。第1構成の画像形成装置にあっては、レンズ系(後述する)の前方焦点(画像形成装置側の焦点)の位置に絞りが配置されている形態とすることができ、この絞りが、画像形成装置から画像が出射される画像出射部に該当する。
 あるいは又、以上に説明した好ましい形態、構成を含む本開示の表示装置等における画像表示装置において、画像形成装置は、光源、及び、光源から出射された光を走査して画像を形成する走査手段を備えている形態とすることができる。このような画像形成装置を、便宜上、『第2構成の画像形成装置』と呼ぶ。
 第2構成の画像形成装置における光源として発光素子を挙げることができ、具体的には、赤色発光素子、緑色発光素子、青色発光素子、白色発光素子を挙げることができるし、あるいは又、赤色発光素子、緑色発光素子及び青色発光素子から出射された赤色光、緑色光及び青色光をライトパイプを用いて混色、輝度均一化を行うことで白色光を得てもよい。発光素子として、例えば、半導体レーザ素子や固体レーザ、LEDを例示することができる。第2構成の画像形成装置における画素(仮想の画素)の数も、画像表示装置に要求される仕様に基づき決定すればよく、画素(仮想の画素)の数の具体的な値として、320×240、432×240、640×480、1024×768、1920×1080等を例示することができる。また、カラーの画像表示を行う場合であって、光源を赤色発光素子、緑色発光素子、青色発光素子から構成する場合、例えば、クロスプリズムを用いて色合成を行うことが好ましい。走査手段として、光源から出射された光を水平走査及び垂直走査する、例えば、二次元方向に回転可能なマイクロミラーを有するMEMS(Micro Electro Mechanical Systems)ミラーやガルバノ・ミラーを挙げることができる。第2構成の画像形成装置にあっては、レンズ系(後述する)の前方焦点(画像形成装置側の焦点)の位置にMEMSミラーやガルバノ・ミラーが配置されている形態とすることができ、これらのMEMSミラーやガルバノ・ミラーが、画像形成装置から画像が出射される画像出射部に該当する。
 第1構造の光学装置を備えた画像表示装置における第1構成の画像形成装置あるいは第2構成の画像形成装置において、レンズ系(出射光を平行光とする光学系)にて複数の平行光とされた光を光学装置(例えば、導光板)に入射させるが、このような、平行光であることの要請は、これらの光が光学装置へ入射したときの光波面情報が、第1偏向手段と第2偏向手段を介して光学装置から出射された後も保存される必要があることに基づく。複数の平行光を生成させるためには、具体的には、上述したとおり、例えば、レンズ系における焦点距離の所(位置)に画像形成装置の光出射部を位置させればよい。レンズ系は、画素の位置情報を光学装置における角度情報に変換する機能を有する。レンズ系として、凸レンズ、凹レンズ、自由曲面プリズム、ホログラムレンズを、単独、若しくは、組み合わせた、全体として正の光学的パワーを持つ光学系を例示することができる。レンズ系と光学装置との間には、レンズ系から不所望の光が出射されて光学装置に入射しないように、開口部を有する遮光部を配置してもよい。
 導光板は、導光板の軸線(長手方向、水平方向であり、X方向に該当する)と平行に延びる2つの平行面(第1面及び第2面)を有している。導光板の幅方向(高さ方向、垂直方向)はY方向に該当する。光が入射する導光板の面を導光板入射面、光が出射する導光板の面を導光板出射面としたとき、第1面によって導光板入射面及び導光板出射面が構成されていてもよいし、第1面によって導光板入射面が構成され、第2面によって導光板出射面が構成されていてもよい。第1偏向手段は、導光板の第1面又は第2面上に配置されており、第2偏向手段は、導光板の第1面又は第2面上に配置されている。回折格子部材の干渉縞は、概ねY方向と平行に延びる。導光板を構成する材料として、石英ガラスやBK7等の光学ガラス、ソーダライムガラス、白板ガラスを含むガラスや、プラスチック材料(例えば、PMMA、ポリカーボネート樹脂、ポリカーボネート樹脂とアクリル系樹脂の積層構造、アクリル系樹脂、シクロオレフィンポリマー、非晶性のポリプロピレン系樹脂、AS樹脂を含むスチレン系樹脂)を挙げることができる。導光板の形状は、平板に限定するものではなく、湾曲した形状を有していてもよい。調光装置を湾曲させてもよい。
 本開示の表示装置等において、画像形成装置から出射された光が入射される光学装置の領域には、光学装置への外光の入射を遮光する遮光部材が配されている構成とすることができる。画像形成装置から出射された光が入射される光学装置の領域に、光学装置への外光の入射を遮光する遮光部材を配することで、調光装置の作動によって外光の入射光量に変化が生じても、そもそも、画像形成装置から出射された光が入射される光学装置の領域には外光が入射しないので、不所望の迷光等が発生し、表示装置における画像表示品質が低下するといったことが無い。遮光部材の光学装置への射影像内に、画像形成装置から出射された光が入射される光学装置の領域が含まれる形態とすることが好ましい。
 あるいは又、本開示の表示装置等において、画像形成装置から出射された光が入射される第1偏向手段の領域には、第1偏向手段への外光の入射を遮光する遮光部材が配置されている構成とすることができる。画像形成装置から出射された光が入射される導光板の領域に、導光板への外光の入射を遮光する遮光部材を配置することで、画像形成装置から出射された光が入射される導光板の領域には外光が入射しないので、不所望の迷光等が発生し、表示装置における画像表示品質が低下するといったことが無い。遮光部材の導光板への正射影像内に、画像形成装置から出射された光が入射される導光板の領域が含まれる形態とすることが好ましい。
 遮光部材は、光学装置(導光板)の画像形成装置が配された側とは反対側に、光学装置(導光板)と離間して配されている構成とすることができる。このような構成の表示装置にあっては、遮光部材を、例えば、不透明なプラスチック材料から作製すればよく、このような遮光部材は、画像形成装置の筐体から一体に延び、あるいは又、画像形成装置の筐体に取り付けられ、あるいは又、フレームから一体に延び、あるいは又、フレームに取り付けられている形態とすることができる。あるいは又、遮光部材は、画像形成装置が配された側とは反対側の光学装置(導光板)の部分に配されている構成とすることができるし、遮光部材は、調光装置に配されている構成とすることもできる。不透明な材料から成る遮光部材を、例えば、光学装置(導光板)の面上に物理的気相成長法(PVD法)や化学的気相成長法(CVD法)に基づき形成してもよいし、印刷法等によって形成してもよいし、不透明な材料(プラスチック材料や金属材料、合金材料等)から成るフィルムやシート、箔を貼り合わせてもよい。遮光部材の光学装置(導光板)への射影像内に、調光装置の端部の光学装置(導光板)への射影像が含まれる構成とすることが好ましい。
 本開示の表示装置等において、フレームは、前述したとおり、観察者の正面に配置されるフロント部と、フロント部の両端に蝶番を介して回動自在に取り付けられた2つのテンプル部とから成る構成とすることができる。各テンプル部の先端部にはモダン部が取り付けられている。画像表示装置はフレームに取り付けられているが、具体的には、例えば、画像形成装置をテンプル部に取り付ければよい。また、フロント部と2つのテンプル部とが一体となった構成とすることもできる。即ち、本開示の表示装置等の全体を眺めたとき、フレームは、概ね通常の眼鏡と略同じ構造を有する。パッド部を含むフレームを構成する材料は、金属や合金、プラスチック、これらの組合せといった、通常の眼鏡を構成する材料と同じ材料から構成することができる。更には、フロント部にノーズパッドが取り付けられている構成とすることができる。即ち、本開示の表示装置等の全体を眺めたとき、フレーム(リム部を含む)及びノーズパッドの組立体は、通常の眼鏡と略同じ構造を有する。ノーズパッドも周知の構成、構造とすることができる。
 また、本開示の表示装置等にあっては、デザイン上、あるいは、装着の容易性といった観点から、1つあるいは2つの画像形成装置からの配線(信号線や電源線等)が、テンプル部、及び、モダン部の内部を介して、モダン部の先端部から外部に延び、制御装置(制御回路あるいは制御手段)に接続されている形態とすることが望ましい。更には、各画像形成装置はヘッドホン部を備えており、各画像形成装置からのヘッドホン部用配線が、テンプル部、及び、モダン部の内部を介して、モダン部の先端部からヘッドホン部へと延びている形態とすることもできる。ヘッドホン部として、例えば、インナーイヤー型のヘッドホン部、カナル型のヘッドホン部を挙げることができる。ヘッドホン部用配線は、より具体的には、モダン部の先端部から、耳介(耳殻)の後ろ側を回り込むようにしてヘッドホン部へと延びている形態とすることが好ましい。また、フロント部の中央部分にカメラ(撮像装置)が取り付けられている形態とすることもできる。カメラは、具体的には、例えば、CCDあるいはCMOSセンサから成る固体撮像素子とレンズから構成されている。カメラからの配線は、例えば、フロント部を介して、一方の画像表示装置(あるいは画像形成装置)に接続すればよく、更には、画像表示装置(あるいは画像形成装置)から延びる配線に含ませればよい。
 本開示の表示装置にあっては、画像表示装置において画像を表示するための信号(光学装置(例えば、導光板)において虚像を形成するための信号)を外部から受け取る形態とすることができる。このような形態にあっては、画像表示装置において表示する画像に関する情報やデータは、例えば、所謂クラウドコンピュータやサーバーに記録、保管、保存されており、表示装置が通信手段、例えば、携帯電話機やスマートフォンを備えることによって、あるいは又、表示装置と通信手段とを組み合わせることによって、クラウドコンピュータやサーバーと表示装置との間での各種情報やデータの授受、交換を行うことができるし、各種情報やデータに基づく信号、即ち、画像表示装置において画像を表示するための信号(光学装置において虚像を形成するための信号)を受け取ることができる。あるいは又、画像表示装置において画像を表示するための信号(光学装置において虚像を形成するための信号)は表示装置に記憶されている形態とすることができる。画像表示装置において表示される画像には、各種情報や各種データが含まれる。あるいは又、表示装置はカメラ(撮像装置)を備えており、カメラによって撮像された画像を通信手段を介してクラウドコンピュータやサーバーに送出し、クラウドコンピュータやサーバーにおいてカメラによって撮像された画像に該当する各種情報やデータを検索し、検索された各種情報やデータを通信手段を介して表示装置に送出し、検索された各種情報やデータを画像表示装置において画像を表示してもよい。
 カメラ(撮像装置)によって撮像された画像を通信手段を介してクラウドコンピュータやサーバーに送出する際、カメラによって撮像される画像を画像表示装置において表示し、光学装置(例えば、導光板)において確認してもよい。具体的には、カメラによって撮像される空間領域の外縁を調光装置において枠状に表示する形態とすることができる。あるいは又、カメラによって撮像される空間領域に対応する調光装置の領域の遮光率を、カメラによって撮像される空間領域の外側に対応する調光装置の領域の遮光率よりも高くする形態とすることができる。このような形態にあっては、観察者には、カメラによって撮像される空間領域は、カメラによって撮像される空間領域の外側よりも暗く見える。あるいは又、カメラによって撮像される空間領域に対応する調光装置の領域の遮光率を、カメラによって撮像される空間領域の外側に対応する調光装置の領域の遮光率よりも低くする形態とすることもできる。このような形態にあっては、観察者には、カメラによって撮像される空間領域は、カメラによって撮像される空間領域の外側よりも明るく見える。そして、これによって、カメラが外部のどこを撮像するかを観察者は、容易に、且つ、確実に認識することができる。
 カメラ(撮像装置)によって撮像される空間領域に対応する調光装置の領域の位置を校正することができる。具体的には、表示装置が、例えば、携帯電話機やスマートフォンを備えることによって、あるいは又、表示装置と携帯電話機やスマートフォン、パーソナルコンピュータとを組み合わせることによって、携帯電話機やスマートフォン、パーソナルコンピュータにおいて、カメラによって撮像された空間領域を表示することができる。そして、携帯電話機やスマートフォン、パーソナルコンピュータにおいて表示された空間領域と、カメラによって撮像される空間領域に対応する調光装置の領域との間に差異が存在する場合、調光装置の遮光率(光透過率)を制御するための制御回路(携帯電話機やスマートフォン、パーソナルコンピュータによって代用することもできる)を用いて、カメラによって撮像される空間領域に対応する調光装置の領域を移動・回転させ、あるいは、拡大/縮小することで、携帯電話機やスマートフォン、パーソナルコンピュータにおいて表示された空間領域と、カメラによって撮像される空間領域に対応する調光装置の領域との間の差異を無くせばよい。
 以上に説明した種々の変形例を含む本開示の表示装置は、例えば、電子メールの受信・表示、インターネット上の種々のサイトにおける各種情報等の表示、各種装置等の観察対象物の運転、操作、保守、分解時等における各種説明や、記号、符号、印、標章、図案等の表示;人物や物品等の観察対象物に関する各種説明や、記号、符号、印、標章、図案等の表示;動画や静止画の表示;映画等の字幕の表示;映像に同期した映像に関する説明文やクローズド・キャプションの表示;芝居や歌舞伎、能、狂言、オペラ、音楽会、バレー、各種演劇、遊園地(アミューズメントパーク)、美術館、観光地、行楽地、観光案内等における観察対象物に関する各種説明、その内容や進行状況、背景等を説明するための説明文等の表示に用いることができるし、クローズド・キャプションの表示に用いることができる。芝居や歌舞伎、能、狂言、オペラ、音楽会、バレー、各種演劇、遊園地(アミューズメントパーク)、美術館、観光地、行楽地、観光案内等にあっては、適切なタイミングで観察対象物に関連した画像としての文字を表示装置において表示すればよい。具体的には、例えば、映画等の進行状況に応じて、あるいは又、芝居等の進行状況に応じて、所定のスケジュール、時間配分に基づき、作業者の操作によって、あるいは、コンピュータ等の制御下、画像制御信号が表示装置に送出され、画像が表示装置にて表示される。また、各種装置、人物や物品等の観察対象物に関する各種説明の表示を行うが、カメラによって各種装置、人物や物品等の観察対象物を撮影(撮像)し、表示装置において撮影(撮像)内容を解析することで、予め作成しておいた各種装置、人物や物品等の観察対象物に関する各種説明の表示を表示装置にて行うことができる。
 画像形成装置への画像信号には、画像信号(例えば、文字データ)だけでなく、例えば、表示すべき画像に関する輝度データ(輝度情報)、又は、色度データ(色度情報)、又は、輝度データ及び色度データを含めることができる。輝度データは、光学装置(例えば、導光板)を通して眺めた観察対象物を含む所定の領域の輝度に対応した輝度データとすることができるし、色度データは、光学装置を通して眺めた観察対象物を含む所定の領域の色度に対応した色度データとすることができる。このように、画像に関する輝度データを含めることで、表示される画像の輝度(明るさ)の制御を行うことができるし、画像に関する色度データを含めることで、表示される画像の色度(色)の制御を行うことができるし、画像に関する輝度データ及び色度データを含めることで、表示される画像の輝度(明るさ)及び色度(色)の制御を行うことができる。光学装置を通して眺めた観察対象物を含む所定の領域の輝度に対応した輝度データとする場合、光学装置を通して眺めた観察対象物を含む所定の領域の輝度の値が高くなるほど、画像の輝度の値が高くなるように(即ち、画像がより明るく表示されるように)、輝度データの値を設定すればよい。また、光学装置を通して眺めた観察対象物を含む所定の領域の色度に対応した色度データとする場合、光学装置を通して眺めた観察対象物を含む所定の領域の色度と、表示すべき画像の色度とが、おおよそ補色関係となるように色度データの値を設定すればよい。補色とは、色相環(color circle)で正反対に位置する関係の色の組み合わせ指す。赤色に対しての緑色、黄色に対しての紫色、青色に対しての橙色など、相補的な色のことでもある。或る色に別の色を適宜の割合で混合して、光の場合は白、物体の場合は黒というように、彩度低下を引き起こす色についても云うが、並列した際の視覚的効果の相補性と混合した際の相補性は異なる。余色、対照色、反対色ともいう。但し、反対色は補色が相対する色を直接に指示するのに対し、補色の指示する範囲はやや広い。補色同士の色の組み合わせは互いの色を引き立て合う相乗効果があり、これは補色調和といわれる。
 本開示の表示装置等によって、例えば、頭部装着型ディスプレイ(HMD)を構成することができる。そして、これによって、表示装置の軽量化、小型化を図ることができるし、表示装置装着時の不快感を大幅に軽減させることが可能となり、更には、製造コストダウンを図ることも可能となる。あるいは又、車両や航空機のコックピット等に備えられるヘッドアップディスプレイ(HUD)に本開示の表示装置等を適用することができる。具体的には、画像形成装置から出射された光に基づき虚像が形成される虚像形成領域が車両や航空機のコックピット等のフロントガラスに配されたHUDにおいて、あるいは又、画像形成装置から出射された光に基づき虚像が形成される虚像形成領域を有するコンバイナが車両や航空機のコックピット等のフロントガラスに配されたHUDにおいて、係る虚像形成領域やコンバイナを調光装置の少なくとも一部分と重ならせればよい。本開示の表示装置等は、立体視ディスプレイ装置として用いることもできる。この場合、必要に応じて、光学装置(例えば、導光板)に偏光板や偏光フィルムを着脱自在に取り付け、あるいは、光学装置に偏光板や偏光フィルムを貼り合わせればよい。
 また、本開示の第1の態様~第2の態様に係る調光装置によってサングラスを構成することができるし、本開示の第1の態様~第2の態様に係る調光装置を窓(住宅用だけでなく、車両用等、如何なる分野における窓をも含む)に取り付けてもよい。
 実施例1は、本開示の第1の態様に係る調光装置、本開示の画像表示装置及び本開示の表示装置(具体的には、頭部装着型ディスプレイ,HMD)に関し、具体的には、第1構造の光学装置(より具体的には、第1-B構造の光学装置)及び第1構成の画像形成装置を備えた表示装置に関する。実施例1の調光装置の模式的な断面図を図1A及び図1Bに示し、第1基板等を光入射側(上方)から眺めたときの配置図を図2Aに示し、第2基板等を光入射側(上方)から眺めたときの配置図を図2Bに示し、実施例1の画像表示装置の一部分をXZ平面で切断したときの模式的な断面図を図3Aに示し、調光装置を正面から眺めた模式図を図3Bに示し、実施例1の画像表示装置の一部分を図3Bの矢印B-Bに沿って切断したときの(即ち、YZ平面で切断したときの)模式的な断面図を図4Aに示し、表示装置を側面から眺めた模式図を図4Bに示す。更には、実施例1の画像表示装置の概念図を図5に示し、反射型体積ホログラム回折格子の一部を拡大して示す模式的な断面図を図6に示し、実施例1の表示装置を上方から眺めた模式図を図7に示し、実施例1の表示装置を正面から眺めた模式図を図8に示す。ここで、図1A及び図1Bは、それぞれ、図2Aの矢印A-A、及び、矢印B-Bに沿って調光装置を切断したときの調光装置の模式的な断面図である。また、図2A、図2B、図2C、図9B、図10B、図12B及び図13Bに示す配置図は、同じレベルにある調光装置の構成要素だけでなく、異なるレベルにある調光装置の構成要素も図示している場合がある。
 実施例1あるいは後述する実施例2~実施例13の画像表示装置100,200,300,400,500は、
 (a)画像形成装置110,210、
 (b)画像形成装置110,210から出射された光に基づき虚像が形成される虚像形成領域を有する光学装置120,320,520、及び、
 (c)少なくとも虚像形成領域に対向して配置され、外部から入射する外光の光量を調整する調光装置700、
を備えている。光学装置120,320,520は、シースルー型(半透過型)である。また、画像形成装置110,210は、単色(例えば、緑色)の画像(虚像)を表示する。
 調光装置700は、
 (c-1)第1基板711、
 (c-2)第1基板711と対向して配設され、外光が入光する第2基板712、
 (c-3)第1基板711上に形成された第1電極731、
 (c-4)第1電極731上に形成された調光層720、
 (c-5)少なくとも調光層720上に形成された第2電極732、
 (c-6)少なくとも第2電極732を覆い、第2基板712と対向した水分保持部材741、及び、
 (c-7)第1基板711の縁部に設けられた封止部材733,734,735,736、
を備えている。
 また、実施例1あるいは後述する実施例2~実施例9の表示装置は、より具体的には、頭部装着型ディスプレイ(HMD)であり、
 (A)観察者20の頭部に装着されるフレーム10(例えば、眼鏡型のフレーム10)、及び、
 (B)フレーム10に取り付けられた画像表示装置、
を備えており、画像表示装置は、実施例1あるいは後述する実施例2~実施例9の画像表示装置100,200,300,400から成る。実施例の表示装置を、具体的には、2つの画像表示装置を備えた両眼型としたが、1つ備えた片眼型としてもよい。表示装置は、観察者20の瞳21に、直接、画像を描画する直描タイプの表示装置である。
 そして、封止部材733,734と第2基板との間には、水分保持部材741から延在する水分保持部材延在部743が配設されており、水分保持部材延在部743の厚さ(t2)は、調光装置中央部における水分保持部材742の厚さ(t1)よりも薄い。具体的には、
1の平均値=0.175mm
2の平均値=0.110mm
とした。
 図3Aに示すように、例えば、調光装置700の縁部はフレーム10(具体的には、例えば、リム部11’)に接着剤737を用いて固定(接着)されている。後述する導光板121,321の縁部も、フレーム10(具体的には、リム部11’)に接着剤738を用いて固定(接着)されている。
 実施例1あるいは後述する実施例2~実施例14において、光学装置120,320,520は、一種の光シャッタである調光装置700の少なくとも一部分と重なっている。具体的には、図3A及び図3Bに示す例では、光学装置120,320,520は、調光装置700と重なっている。即ち、導光板121,321と第1基板711及び第2基板712とは、同形(あるいは、略同形)の外形形状を有する。調光装置700は、導光板121,321の大部分と重なっている。但し、これに限定するものではなく、光学装置120,320,520は、調光装置700の一部分と重なっていてもよいし、調光装置700は、光学装置120,320,520の一部分と重なっていてもよい。また、観察者側から、光学装置120,320,520、調光装置700の順に配されているが、調光装置700、光学装置120,320,520の順に配してもよい。尚、図面を簡素化するため、図2A及び図2Bにおける第1基板や第2基板の外形形状と、図3Bに示した調光装置の外形形状とを異なった形状として表示したが、実際には、調光装置は、例えば、図3Bに示した外形形状を有する。
 また、実施例1の調光装置700において、第2電極732は、調光層720上から第1基板711上に亙り、且つ、第1電極731と離間して形成されており、水分保持部材741は、少なくとも第2電極732及び調光層720を覆っている。更には、封止部材733,734,735,736の一部733,734は銅(Cu)から成る補助電極から構成されている。また、封止部材733,734,735,736の残部735,736は、樹脂、具体的には、アクリル系接着剤から成る。補助電極は、第1電極731上に形成された第1補助電極733、及び、第2電極732上に第1補助電極733と離間して形成された第2補助電極734から構成されている。封止部材733、734、735,736及び水分保持部材延在部743によって、調光装置700の側壁が構成される。また、封止部材733,734,735,736は、隙間無く設けられている。
 ITOから成る第1電極731及び第2電極732は、パターニングされておらず、所謂ベタ電極である。図2A及び図2Bに示すように、調光装置700の補助電極733,734の一部733A,734Aにコネクタ(図示せず)が取り付けられており、第1電極731及び第2電極732は、調光装置700の遮光率を制御するための制御回路(具体的には、後述する制御装置18)に電気的に接続されている。
 第1基板711及び第2基板712は、例えば、厚さ0.3mmのポリカーボネート樹脂から成る。第2基板712の外面には、アクリル変性コロイダルシリカ粒子とフェニルケトン系及びアクリレート系の有機物及びメチルエチルケトンから成るハードコート層(図示せず)が形成されている。
 調光装置700は、エレクトロクロミック材料の酸化還元反応によって発生する物質の色変化を応用した光シャッタから成る。具体的には、調光層720はエレクトロクロミック材料を含む。即ち、調光装置700を構成する調光層720は、エレクトロクロミック材料層を備えている。具体的には、調光層(エレクトロクロミック材料層)720は、還元着色層721、電解質層722及び酸化着色層723の積層構造を有する。より具体的には、第1電極731及び第2電極732は、ITOあるいはIZOといった透明導電材料から成り、還元着色層721はWO3層から成り、電解質層722はTa25層から成り、酸化着色層723はIrXSn1-XO層から成る。WO3層は還元発色する。また、IrXSn1-XO層は酸化発色する。
 IrXSn1-XO層中では、IrとH2Oとが反応して、水酸化イリジウムIr(OH)nとして存在する。第1電極731に負の電位を、第2電極732に正の電位を加えると、IrXSn1-XO層からTa25層へのプロトンH+の移動、第2電極732への電子放出が生じ、次の酸化反応が進んで、IrXSn1-XO層は着色する。
Ir(OH)n → IrOX(OH)n-X(着色) + X・H+ + X・e-
 一方、Ta25層中のプロトンH+がWO3層中へ移動し、第1電極731から電子がWO3層に注入され、WO3層では、次の還元反応が進んでWO3層は着色する。
WO3 + X・H+ + X・e- → HXWO3(着色)
 これとは逆に、第1電極731に正の電位を、第2電極732に負の電位を加えると、IrXSn1-XO層では、上記と逆向きに還元反応が進み、消色し、WO3層では、上記と逆向きに酸化反応が進み、消色する。Ta25層にはH2Oが含まれており、第1電極、第2電極に電圧を印加することで電離し、プロトンH+、OH-イオンの状態が含まれ、着色反応及び消色反応に寄与している。
 水分保持部材741及び水分保持部材延在部743を構成する材料(具体的には、樹脂)のヤング率は1×106Pa以下であることが望ましい。プロトン供給部材、水分を保持し得る透明粘着部材、あるいは、水分を保持し得る透明封止部材と呼ぶこともできる水分保持部材741及び水分保持部材延在部743を構成する樹脂は、アクリル系樹脂、シリコーン系樹脂又はウレタン系樹脂から、適宜、選択すればよく、実施例1あるいは後述する実施例2~実施例15にあっては、具体的には、アクリル系樹脂から構成されている。
 このように、ヤング率が1×106Pa以下である材料から水分保持部材741及び水分保持部材延在部743を構成することで、調光装置の内部において生じた各種の段差を吸収することができるし、調光装置中央部における水分保持部材742の厚さのバラツキ、水分保持部材延在部743の厚さのバラツキを小さくすることができる。即ち、第1基板と第2基板との間の距離全体の均一化を図ることができる。そして、その結果、視認性の劣化発生を防ぐことができる。具体的には、調光装置700を通して外界を見たとき、外界の像に歪みが生じたり、外界の像にズレが生じることを抑制することができる。
 比較のために、2液性エポキシ樹脂を塗布、熱硬化させて得られた水分保持部材及び水分保持部材延在部(ヤング率:約3GPa)を備えた調光装置を試作した。この調光装置試作品(比較例1の調光装置)は、水分保持部材及び水分保持部材延在部の構成材料を除き、実施例1の調光装置700と同じ構成、構造を有する。
 そして、実施例1の調光装置700及び比較例1の調光装置の真下に方眼紙を置き、実施例1の調光装置700及び比較例1の調光装置を通して方眼紙を撮像した。その結果、比較例1の調光装置にあっては、撮影された方眼紙の像と実際の方眼紙との間に、最大8.3分の画角ズレが生じていた。一方、実施例1の調光装置700にあっては、画角ズレは0度であった。以上の結果から、2液性エポキシ樹脂を塗布、熱硬化させて得られた水分保持部材及び水分保持部材延在部にあっては、2液性エポキシ樹脂の硬化収縮に起因して、水分保持部材に歪みが発生し、あるいは又、第2基板に歪みが発生し、あるいは又、調光装置中央部における水分保持部材の厚さが薄くなる結果、このような画角ズレが生じてしまった。比較例1の調光装置において、調光装置中央部、調光装置の四隅近傍、調光装置各辺の中央部近傍の9箇所で厚さを測定したところ、最も厚い部分と最も薄い部分との間の厚さの差は0.106mmであった。一方、実施例1の調光装置において、同様の厚さの測定を行ったところ、最も厚い部分と最も薄い部分との間の厚さの差は0.01mmであった。また、水分保持部材として熱硬化性樹脂を使用すると、可撓性(柔軟性)に欠けるし、調光層にクラックが発生したり、調光装置の製造時に液垂れが生じたりする。一方、実施例1の調光装置にあっては、高い可撓性(柔軟性)を有し、水分保持部材に歪みが発生し、あるいは又、第2基板に歪みが発生したりすることがないし、あるいは又、調光装置の厚さが均一であり、画角ズレが生じることもない。また、調光層にクラックが発生したり、調光装置の製造時に液垂れが生じたりすることもなく、高い歩留りを達成することができる。
 実施例1あるいは後述する実施例2~実施例9における光学装置120,320は、第1構造を有し、
 (b-1)画像形成装置110,210から入射された光が内部を全反射により伝播した後、観察者20に向けて出射される導光板121,321、
 (b-2)導光板121,321に入射された光が導光板121,321の内部で全反射されるように、導光板121,321に入射された光を偏向する第1偏向手段130,330、及び、
 (b-3)導光板121,321の内部を全反射により伝播した光を偏向して導光板121,321から出射させる第2偏向手段140,340、
を備えている。そして、第2偏向手段140,340によって光学装置の虚像形成領域が構成される。また、調光装置700の射影像内に第2偏向手段(虚像形成領域)140,340が位置する。
 実施例1あるいは後述する実施例2~実施例13において、光学ガラスやプラスチック材料から成る導光板121,321は、導光板121,321の内部全反射による光伝播方向(X方向)と平行に延びる2つの平行面(第1面122,322及び第2面123,323)を有している。第1面122,322と第2面123,323とは対向している。そして、光入射面に相当する第1面122,322から平行光が入射され、内部を全反射により伝播した後、光出射面に相当する第1面122,322から出射される。但し、これに限定するものではなく、第2面123,323によって光入射面が構成され、第1面122,322によって光出射面が構成されていてもよい。
 実施例1において、光学装置は第1-B構造の光学装置であり、画像表示装置は第1構成の画像形成装置である。具体的には、第1偏向手段及び第2偏向手段は、導光板121の表面(具体的には、導光板121の第2面123)に配設されている(具体的には、貼り合わされている)。そして、第1偏向手段は、導光板121に入射された光を回折反射し、第2偏向手段は、導光板121の内部を全反射により伝播した光を回折反射する。第1偏向手段及び第2偏向手段は、回折格子素子、具体的には反射型回折格子素子、より具体的には反射型体積ホログラム回折格子から成る。以下の説明において、ホログラム回折格子から成る第1偏向手段を、便宜上、『第1回折格子部材130』と呼び、ホログラム回折格子から成る第2偏向手段を、便宜上、『第2回折格子部材140』と呼ぶ。
 そして、実施例1あるいは後述する実施例7において、第1回折格子部材130及び第2回折格子部材140は、1層の回折格子層から成る構成とされている。フォトポリマー材料から成る各回折格子層には、1種類の波長帯域(あるいは、波長)に対応する干渉縞が形成されており、従来の方法で作製されている。回折格子層(回折光学素子)に形成された干渉縞のピッチは一定であり、干渉縞は直線状であり、Y方向に平行である。第1回折格子部材130及び第2回折格子部材140の軸線はX方向と平行であり、法線はZ方向と平行である。
 図6に反射型体積ホログラム回折格子の拡大した模式的な一部断面図を示す。反射型体積ホログラム回折格子には、傾斜角(スラント角)φを有する干渉縞が形成されている。傾斜角φとは、反射型体積ホログラム回折格子の表面と干渉縞の成す角度を指す。干渉縞は、反射型体積ホログラム回折格子の内部から表面に亙り、形成されている。干渉縞は、ブラッグ条件を満たしている。ブラッグ条件とは、以下の式(A)を満足する条件を指す。式(A)中、mは正の整数、λは波長、dは格子面のピッチ(干渉縞を含む仮想平面の法線方向の間隔)、Θは干渉縞へ入射する角度の余角を意味する。また、入射角ψにて回折格子部材に光が侵入した場合の、Θ、傾斜角φ、入射角ψの関係は、式(B)のとおりである。
m・λ=2・d・sin(Θ)  (A)
Θ=90°-(φ+ψ)     (B)
 第1回折格子部材130は、上述したとおり、導光板121の第2面123に配設(接着)されており、第1面122から導光板121に入射されたこの平行光が導光板121の内部で全反射されるように、導光板121に入射されたこの平行光を回折反射する。更には、第2回折格子部材140は、上述したとおり、導光板121の第2面123に配設(接着)されており、導光板121の内部を全反射により伝播したこの平行光を回折反射し、導光板121から平行光のまま第1面122から出射する。
 そして、導光板121において、平行光が内部を全反射により伝播した後、出射される。このとき、導光板121が薄く導光板121の内部を進行する光路が長いため、各画角によって第2回折格子部材140に至るまでの全反射回数は異なっている。より詳細に述べれば、導光板121に入射する平行光のうち、第2回折格子部材140に近づく方向の角度をもって入射する平行光の反射回数は、第2回折格子部材140から離れる方向の角度をもって導光板121に入射する平行光の反射回数よりも少ない。これは、第1回折格子部材130において回折反射される平行光であって、第2回折格子部材140に近づく方向の角度をもって導光板121に入射する平行光の方が、これと逆方向の角度をもって導光板121に入射する平行光よりも、導光板121の内部を伝播していく光が導光板121の内面と衝突するときの導光板121の法線と成す角度が小さくなるからである。また、第2回折格子部材140の内部に形成された干渉縞の形状と、第1回折格子部材130の内部に形成された干渉縞の形状とは、導光板121の軸線に垂直な仮想平面に対して対称な関係にある。第1回折格子部材130及び第2回折格子部材140の導光板121とは対向していない面を、透明樹脂板あるいは透明樹脂フィルムで被覆し、第1回折格子部材130及び第2回折格子部材140に損傷が生じることを防止する構造としてもよい。また、第1面122に透明な保護フィルムを貼り合わせ、導光板121を保護してもよい。
 後述する実施例7における導光板121も、基本的には、以上に説明した導光板121の構成、構造と同じ構成、構造を有する。
 実施例1あるいは後述する実施例8において、画像形成装置110は、第1構成の画像形成装置であり、2次元マトリクス状に配列された複数の画素を有する。具体的には、画像形成装置110は、有機EL表示装置111から成る。有機EL表示装置111から出射され画像は、レンズ系を構成する第1の凸レンズ113Aを通過し、更に、レンズ系を構成する第2の凸レンズ113Bを通過し、平行光となって、導光板121へと向かう。第1の凸レンズ113Aの後方焦点f1Bに、第2の凸レンズ113Bの前方焦点f2Fが位置する。また、第1の凸レンズ113Aの後方焦点f1B(第2の凸レンズ113Bの前方焦点f2F)の位置に、絞り114が配置されている。絞り114は画像出射部に該当する。画像形成装置110の全体は、筐体115内に納められている。有機EL表示装置111は、2次元マトリクス状に配列された複数(例えば、640×480個)の画素(有機EL素子)を備えている。
 フレーム10は、観察者20の正面に配置されるフロント部11と、フロント部11の両端に蝶番12を介して回動自在に取り付けられた2つのテンプル部13と、各テンプル部13の先端部に取り付けられたモダン部(先セル、耳あて、イヤーパッドとも呼ばれる)14から成る。また、ノーズパッド10’(図8参照)が取り付けられている。即ち、フレーム10及びノーズパッド10’の組立体は、基本的には、通常の眼鏡と略同じ構造を有する。更には、各筐体115が、取付け部材19によってテンプル部13に取り付けられている。フレーム10は、金属又はプラスチックから作製されている。各筐体115は、取付け部材19によってテンプル部13に着脱自在に取り付けられていてもよい。また、眼鏡を所有し、装着している観察者に対しては、観察者の所有する眼鏡のフレーム10のテンプル部13に、各筐体115を取付け部材19によって着脱自在に取り付けてもよい。各筐体115を、テンプル部13の外側に取り付けてもよいし、テンプル部13の内側に取り付けてもよい。あるいは又、フロント部11に備えられたリム部11’に、導光板121を嵌め込んでもよい。
 更には、一方の画像形成装置110,210から延びる配線(信号線や電源線等)15が、テンプル部13、及び、モダン部14の内部を介して、モダン部14の先端部から外部に延び、制御装置(制御回路、制御手段)18に接続されている。各画像形成装置110,210はヘッドホン部16を備えており、各画像形成装置110,210から延びるヘッドホン部用配線16’が、テンプル部13、及び、モダン部14の内部を介して、モダン部14の先端部からヘッドホン部16へと延びている。ヘッドホン部用配線16’は、より具体的には、モダン部14の先端部から、耳介(耳殻)の後ろ側を回り込むようにしてヘッドホン部16へと延びている。このような構成にすることで、ヘッドホン部16やヘッドホン部用配線16’が乱雑に配置されているといった印象を与えることがなく、すっきりとした表示装置とすることができる。配線(信号線や電源線等)15は、上述したとおり、制御装置(制御回路)18に接続されており、制御装置18において画像表示のための処理がなされる。制御装置18は周知の回路から構成することができる。
 フロント部11の中央部分に、必要に応じて、CCDあるいはCMOSセンサから成る固体撮像素子とレンズ(これらは図示せず)とから構成されたカメラ17が、適切な取付部材(図示せず)によって取り付けられている。カメラ17からの信号は、カメラ17から延びる配線(図示せず)を介して制御装置(制御回路)18に送出される。
 調光装置700は、例えば、以下の方法で作製することができる。
  [工程-100]
 即ち、先ず、第1基板711の上に、第1電極731、調光層720、第2電極732を形成し、第1基板711の縁部に封止部材を形成する。
  [工程-100A]
 具体的には、第1基板711の所望の領域の上に厚さ0.30μmのITOから成る第1電極731を形成する。次いで、第1電極731上に、反応性スパッタリング法に基づき、厚さ0.15μmのIrXSn1-XO層(酸化イリジウムスズ層)から成る酸化着色層723を形成し、更に、厚さ0.45μmのTa25層(酸化タンタル)から成る電解質層722を形成する。次いで、反応性スパッタリング法に基づき、厚さ0.48μmのWO3層(酸化タングステン)から成る還元着色層721を形成する。酸化着色層723、電解質層722及び還元着色層721の形成は、マグネトロンスパッタリング法、陽極酸化法、プラズマCVD法、ゾルゲル法等によっても形成することができる。成膜時、メタルマスクを用いて酸化着色層723、電解質層722及び還元着色層721を形成してもよい。その後、還元着色層721上に、厚さ0.30μmのITOから成る第2電極732を形成する。第1電極731や第2電極732の形成は、イオンプレーティング法や真空蒸着法といったPVD法、ゾルゲル法、CVD法に基づき行うことができる。成膜時、メタルマスクを用いて第1電極731や第2電極732を形成してもよい。
  [工程-100B]
 その後、第1基板711の縁部に封止部材733,734,735,736を形成する。具体的には、印刷法に基づき、銅(Cu)から成る封止部材733,734(第1補助電極733及び第2補助電極734)を第1基板711の縁部に形成する。また、印刷法によって、封止部材735,736を第1基板711の縁部に形成する。封止部材733,734,735,736の間に隙間が無いように(図2A参照)、封止部材733,734,735,736を形成する。
  [工程-110]
 次いで、水分保持部材741を少なくとも第2電極732上に配置し、水分保持部材741から延在する水分保持部材延在部743を封止部材上に配置する。ここで、アクリル系樹脂を用いたので、水分保持部材741を少なくとも第2電極732に貼り合わせ、水分保持部材延在部743を封止部材733,734,735,736に貼り合わせる。尚、水分保持部材741は、例えば、相対湿度50%の室温で保管しておけば、平衡含水状態を保持することができる。液状の水分保持部材741を、フローコーター、スピンコーター、スクリーン印刷、グラビアコーター等を用いて第2電極732等の上に塗布することもできる。
  [工程-120]
 そして、水分保持部材741及び水分保持部材延在部743の上に第2基板712を配置する。即ち、外面にハードコート層が形成された第2基板712を準備する。そして、水分保持部材741及び水分保持部材延在部743と第2基板712の内面とが接するように、水分保持部材741及び水分保持部材延在部743の上に第2基板712を載置し、第2基板712に均等に圧力を加えることで、水分保持部材741及び水分保持部材延在部743と第2基板712とを貼り合わせる。こうして、実施例1の調光装置700を得ることができる。
 実施例1の表示装置において、第1電極731と第2電極732との間に1.5ボルトの直流電圧を30秒間、印加することで、可視光域の全光線透過率が76%から4%に低下した。次いで、第1電極731及び第2電極732への電圧の印加を中止したところ、1時間経過後でも全光線透過率は8%に維持された。この状態で、消色側に電圧を印加すると消色された。具体的には、1.5ボルトとの直流電圧を4秒間、印加することで、可視光域の全光線透過率が76%へと戻った。
 60秒周期で、第1電極731と第2電極732との間に1.5ボルト及び-1.5ボルトの一定電圧を加え続けるといったサイクル試験を実施した。その結果、3万サイクル後でも、調光装置の劣化は認められず、着色・消色を繰り返した。
 更には、露点が-25゜Cの乾燥環境をグローブボックス内に形成し、表示装置を30日、グローブボックス内に保管した後、グローブボックス内で駆動させたところ、可視光域の全光線透過率は5%以下になることが確認された。
 また、表示装置を60゜C以上、10%RH以下の環境で32時間保管した後、第1電極731と第2電極732との間に1.5ボルトとの直流電圧を30秒間、印加すると、可視光域の全光線透過率が7%に低下した。その後、表示装置を常温・常湿環境下で10時間、保管した後に、第1電極731と第2電極732との間に1.5ボルトとの直流電圧を30秒間、印加したところ、可視光域の全光線透過率が4%に低下した。即ち、初期の状態に回復した。
 以上のとおり実施例1の調光装置、画像表示装置、表示装置にあっては、水分保持部材(水分保持層)が備えられているので、調光装置内において水分が無くなってしまうと調光装置に色変化が生じなくなるといった現象の発生を抑制することができる。それ故、高い長期信頼性を有する調光装置、画像表示装置、表示装置を提供することができる。しかも、水分保持部材延在部の厚さは、調光装置中央部における水分保持部材の厚さよりも薄いので、水分保持部材延在部の端面(調光装置の側壁、側面)を介して水分の出入りが生じる場合であっても、水分の出入りを抑制することができるため、過度の水分の出入りによって調光装置あるいは画像表示装置、表示装置の信頼性が低下するといった問題の発生を回避することができる。しかも、補助電極が設けられているので、第1電極及び第2電極へ適切な電圧を容易に印加することができるし、第1電極あるいは第2電極における電圧降下の発生を抑制することができる結果、調光装置の着色時のムラ発生を低減することができる。
 図2Cに、実施例1の調光装置の変形例における第1基板等を光入射側(上方)から眺めたときの配置図を示すように、封止部材736の一部を第1補助電極733及び第2補助電極734で置き換えてもよい。
 画像表示装置100,200,300,400,500において表示する画像に関する情報やデータ、あるいは又、受信装置が受け取るべき信号は、例えば、所謂クラウドコンピュータやサーバーに記録、保管、保存されており、表示装置が通信手段(送受信装置)、例えば、携帯電話機やスマートフォンを備えることによって、あるいは又、制御装置(制御回路、制御手段)18に通信手段(受信装置)を組み込むことで、通信手段を介してクラウドコンピュータやサーバーと表示装置との間での各種情報やデータ、信号の授受、交換を行うことができるし、各種情報やデータに基づく信号、即ち、画像表示装置100,200,300,400,500において画像を表示するための信号を受け取ることができるし、受信装置は信号を受け取ることができる。
 具体的には、観察者が、携帯電話機やスマートフォンに、入手すべき「情報」を要求する旨の入力を行うと、携帯電話機やスマートフォンは、クラウドコンピュータやサーバーにアクセスし、「情報」をクラウドコンピュータやサーバーから入手する。こうして、制御装置18は、画像表示装置100,200,300,400,500において画像を表示するための信号を受け取る。制御装置18にあっては、この信号に基づいて周知の画像処理を行い、画像形成装置110に「情報」を画像として表示する。この「情報」を画像は、導光板121,321において、画像形成装置110,210から出射される光に基づき、制御装置18によって制御された所定の位置に虚像として表示される。即ち、虚像形成領域(第2偏向手段140,340等)の一部分において虚像が形成される。
 場合によっては、画像表示装置100,200,300,400,500において画像を表示するための信号が、表示装置(具体的には、制御装置18)に記憶されていてもよい。
 あるいは又、表示装置に備えられたカメラ17によって撮像された画像を通信手段を介してクラウドコンピュータやサーバーに送出し、クラウドコンピュータやサーバーにおいてカメラ17によって撮像された画像に該当する各種情報やデータを検索し、検索された各種情報やデータを通信手段を介して表示装置に送出し、検索された各種情報やデータを画像表示装置100,200,300,400,500において画像を表示してもよい。また、このような形態と「情報」の入力を併用すれば、例えば、観察者のいる場所等や観察者がどの方向を向いているか等の情報を加重することができるので、一層高い精度で、「情報」を画像形成装置110,210において表示することができる。
 調光装置700は、常時、動作状態にあってもよいし、観察者の指示(操作)によって動作/不動作(オン/オフ)状態が規定されてもよいし、通常は不動作状態にあり、画像表示装置100,200,300,400,500において画像を表示するための信号に基づき、動作を開始してもよい。観察者の指示(操作)によって動作/不動作状態を規定するためには、例えば、表示装置はマイクロフォンを更に備えており、マイクロフォンを介した音声入力によって、調光装置700の動作の制御を行えばよい。具体的には、観察者の肉声に基づく指示によって、調光装置700の動作/不動作の切替えを制御すればよい。あるいは又、入手すべき情報を音声入力によって入力してもよい。あるいは又、表示装置は、赤外線入出射装置を更に備えており、赤外線入出射装置によって、調光装置700の動作の制御を行えばよい。具体的には、赤外線入出射装置によって、観察者の瞬きを検出することで、調光装置700の動作/不動作の切替えを制御すればよい。
 尚、図34を参照して、後に説明するように、調光装置の領域毎に遮光率を制御する構成を有する調光装置とすることもできる。そして、このような調光装置にあっては、調光装置への虚像の投影像が含まれる調光装置の虚像投影領域の遮光率が、調光装置の他の領域の遮光率よりも高くなるように、調光装置を制御することができる。具体的には、制御装置18によって、第1電極731及び第2電極732に印加される電圧を制御する。画像形成装置110において画像を表示するための信号に基づき、調光装置の虚像投影領域の大きさ及び位置が決定される。あるいは又、画像形成装置110,210から出射された光に基づき導光板121,321に虚像が形成される前に、調光装置の虚像投影領域の遮光率が増加される形態を採用してもよい。調光装置の虚像投影領域の遮光率が増加されてから虚像が形成されるまでの時間として、0.5秒乃至30秒を例示することができるが、この値に限定するものではない。このように、予め、虚像が導光板のどの位置に、いつ、形成されるかを観察者は知ることができるので、観察者の虚像視認性の向上を図ることができる。調光装置の虚像投影領域の遮光率は、時間の経過に従い、順次、増加する形態とすることができる。即ち、所謂フェードイン状態とすることができる。あるいは又、虚像が形成されていない場合、調光装置全体の遮光率を、調光装置の他の領域の遮光率と同じ値とすればよい。虚像の形成が終了し、虚像が消滅したとき、調光装置への虚像の投影像が含まれていた調光装置の虚像投影領域の遮光率を、直ちに、調光装置の他の領域の遮光率と同じ値としてもよいが、経時的に(例えば、3秒間で)調光装置の他の領域の遮光率と同じ値となるように制御してもよい。即ち、所謂フェードアウト状態とすることができる。
 実施例2は、実施例1の変形である。図2Aの矢印A-Aに沿ったと同様の実施例2の調光装置700Aの模式的な断面図を図9Aに示し、第1基板等を光入射側(上方)から眺めたときの配置図を図9Bに示す。
 実施例2の調光装置700Aにおいて、封止部材751は樹脂から成る。封止部材751を構成する樹脂のヤング率は1×107Pa以下である。そして、封止部材751の一部の内側には補助電極が設けられている。補助電極は、第1電極731上に形成された第1補助電極733、及び、第2電極732上に第1補助電極733と離間して形成された第2補助電極734から構成されている。封止部材751を構成する樹脂として、紫外線硬化型樹脂(具体的には、アクリル系樹脂、ウレタン系樹脂、シリコーン系樹脂、フッ素系樹脂、ポリイミド系樹脂及びエポキシ系樹脂から構成されている樹脂)を挙げることができる。
 調光装置700Aにおいて、調光装置700Aの外壁の一部に相当する封止部材751は、コネクタを取り付けるべき補助電極733,734の一部733A,734Aに該当する領域を除き、隙間が無いように形成されている。以上の点を除き、実施例2の調光装置700A、実施例2の調光装置700Aを用いた画像表示装置及び表示装置の構成、構造は、実施例1において説明した調光装置700、画像表示装置及び表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。
 実施例3も、実施例1の変形である。図2Aの矢印A-Aに沿ったと同様の実施例3の調光装置700Bの模式的な断面図を図10Aに示し、第1基板等を光入射側(上方)から眺めたときの配置図を図10Bに示す。
 実施例3の調光装置700Bにおいて、封止部材は、第1基板711の縁部に設けられた凸部713から成る。第1基板711の縁部における凸部は、例えば、熱プレス装置を用いて第1基板711の縁部を熱プレスすることで形成することができる。封止部材である凸部713の一部の内側には補助電極が設けられている。補助電極は、第1電極731上に形成された第1補助電極733、及び、第2電極732上に第1補助電極733と離間して形成された第2補助電極734から構成されている。
 調光装置700Bにおいて、調光装置700Bの外壁の一部に相当する封止部材(凸部713)は、コネクタを取り付けるべき補助電極733,734の一部733A,734Aに該当する領域を除き、隙間が無いように形成されている。以上の点を除き、実施例3の調光装置700B、実施例3の調光装置700Bを用いた画像表示装置及び表示装置の構成、構造は、実施例1において説明した調光装置700、画像表示装置及び表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。
 実施例4は、実施例1~実施例3の変形である。図2Aの矢印A-Aに沿ったと同様の実施例4の調光装置700Cの模式的な断面図を図11に示すように、水分保持部材741と対向する第2基板712の面(内面)には、酸化アルミニウム(Al23)から成る無機材料膜714が形成されている。このように、無機材料膜714を形成することで、第2基板712に剛性を付与することができる結果、第2基板712に歪みが生じ難くなる。無機材料膜714の形成は、例えば、PVD法に基づき行うことができる。以上の点を除き、実施例4の調光装置700C、実施例4の調光装置700Cを用いた画像表示装置及び表示装置の構成、構造は、実施例1~実施例3において説明した調光装置700,700A,700B、画像表示装置及び表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。
 実施例5は、実施例1~実施例4の変形である。実施例5にあっては、補助電極から延びる枝補助電極を設けることで、第1電極あるいは及び第2電極へ均一な電圧印加を容易に行うことができる。図2Aの矢印B-Bに沿ったと同様の実施例5の調光装置700Dの模式的な断面図を図12Aに示し、実施例5の調光装置700Dの第2電極等を光入射側(上方)から眺めたときの配置図を図12Bに示すが、X方向に延びる第2補助電極734からY方向に延びる第2枝補助電極734’が、第2電極732上に形成されている。
 あるいは又、図2Aの矢印B-Bに沿ったと同様の実施例5の調光装置700Dの変形例の模式的な断面図を図13Aに示し、第1電極等を光入射側とは反対側(下方)から眺めたときの配置図を図13Bに示すが、X方向に延びる第1補助電極733からY方向に延びる第1枝補助電極733’が、第1電極731の下側(第1電極側)に形成されている。具体的には、第1枝補助電極733’が、第1基板711と第1電極731との間に、第1電極731と接して設けられている。第1枝補助電極733’と第1枝補助電極733’との間には、水分保持部材と同じ材料から成る層744が形成されている。調光装置700Dの端面は、層744からも構成されている。
 あるいは又、図2Aの矢印B-Bに沿ったと同様の実施例5の調光装置700Dの変形例の模式的な断面図を図14に示すが、X方向に延びる第2補助電極734からY方向に延びる第2枝補助電極734’が、第2電極732上に形成されている。また、X方向に延びる第1補助電極733からY方向に延びる第1枝補助電極733’が、第1電極731の上(第2電極側)に形成されている。
 このように枝補助電極を設けることによって、第1電極あるいは第2電極における過度の電圧降下の発生を抑制することができるので、調光装置の着色時のムラ発生を低減することができる。尚、枝補助電極の幅は、視認性の観点からは細いことが好ましい。
 以上の点を除き、実施例5の調光装置700D、実施例5の調光装置700Dを用いた画像表示装置及び表示装置の構成、構造は、実施例1~実施例4において説明した調光装置700,700A,700B,700C、画像表示装置及び表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。
 実施例6は、本開示の第2の態様に係る調光装置に関する。実施例6の調光装置700Eを、図2Aの矢印A-A及び矢印B-Bに沿って切断したときと同様の模式的な断面図を、図15A及び図15B、並びに、図16A及び図16Bに示す。
 実施例6の調光装置700Eは、
 第1基板711、
 第1基板711と対向して配設され、外光が入光する第2基板712、
 第1基板711上に形成された第1電極731、
 第1電極731上に形成された調光層720、
 少なくとも調光層720上に形成された第2電極732、及び、
 少なくとも第2電極732を覆い、第2基板712と対向した水分保持部材741、
を備えており、
 第1基板711の縁部上に配設された第1封止部材761、及び、
 第1封止部材761と第2基板712との間に配設された第2封止部材762、
を更に備えている。
 ここで、図15A及び図15Bに示す実施例6の調光装置700Eにおいて、第1封止部材761の一部は、実施例1と同様に、第1補助電極733及び第2補助電極734から成り、残部735,736は、実施例1と同様に、樹脂から成る。第2封止部材762は、水分保持部材741とは異なる樹脂から成る。第2封止部材762を構成する樹脂として、アクリル系樹脂、ウレタン系樹脂、シリコーン系樹脂、フッ素系樹脂、ポリイミド系樹脂及びエポキシ系樹脂から構成されている樹脂を挙げることができる。尚、実施例6の調光装置を光入射側(上方)から眺めたときの第1基板等の配置図及び第2基板等の配置図は、図2A及び図2Bと同じである。
 実施例6の調光装置700Eの製造にあっては、先ず、実施例1の[工程-100]と同様の工程を実行する。次いで、実施例1の[工程-110]と同様の工程を実行する。但し、水分保持部材741を少なくとも第2電極732上に配置するが、第1補助電極733及び第2補助電極734、並びに、第1封止部材761の残部735,736の頂面には水分保持部材741が配置されないようにする。その後、水分保持部材741の上に第2基板712を配置する。次いで、第1封止部材761と第2基板712との間に、第2封止部材762を形成する。具体的には、液状の第2封止部材を、毛細管現象に基づき、第1封止部材761と第2基板712との間に浸入させる。これによって、第2封止部材に起因した応力の発生を抑制することができる。そして、紫外線を照射することで、第2封止部材を硬化させ、水分保持部材741及び第2封止部材762と第2基板712とを貼り合わせる。こうして、実施例6の調光装置700Eを得ることができる。
 あるいは又、図16A及び図16Bに示す実施例6の調光装置の変形例700Eにおいて、第1封止部材763は樹脂から成る。尚、この変形例にあっては、調光装置を光入射側(上方)から眺めたときの第1基板等の配置図は、図9Bと実質的に同じである。そして、この場合、第1封止部材763を構成する樹脂のヤング率は1×107Pa以下であることが好ましい。更には、第1封止部材763の一部の内側に補助電極733,734が設けられている。補助電極733,734は、第2封止部材762の一部の内側にまで延びていてもよい。ここで、補助電極は、第1電極731上に形成された第1補助電極733、及び、第2電極732上に第1補助電極733と離間して形成された第2補助電極734から構成されている。第1封止部材763を構成する樹脂として、紫外線硬化型樹脂(具体的には、アクリル系樹脂、ウレタン系樹脂、シリコーン系樹脂、フッ素系樹脂、ポリイミド系樹脂及びエポキシ系樹脂から構成されている樹脂)を挙げることができる。また、第2封止部材762も樹脂から成る構成とすることができ、この場合、第2封止部材762を構成する樹脂として、アクリル系樹脂、ウレタン系樹脂、シリコーン系樹脂、フッ素系樹脂、ポリイミド系樹脂及びエポキシ系樹脂から構成されている樹脂を挙げることができる。
 実施例6の調光装置700Eの変形例の製造にあっては、先ず、実施例1の[工程-100A]と同様の工程を実行する。次いで、実施例1の[工程-100B]と同様の工程を実行する。但し、樹脂製の第1封止部材763を、印刷法及び紫外線硬化に基づき、第1基板711の縁部に形成する。更には、第1補助電極733、第2補助電極734を形成する。その後、実施例1の[工程-110]と同様の工程を実行する。但し、水分保持部材741を少なくとも第2電極732上に配置するが、第1封止部材763の頂面には水分保持部材741が配置されないようにする。次いで、第1封止部材763と第2基板712との間に、第2封止部材762を形成する。具体的には、液状の第2封止部材を、毛細管現象に基づき、第1封止部材763と第2基板712との間に浸入させる。これによって、第2封止部材に起因した応力の発生を抑制することができる。そして、紫外線を照射することで、第2封止部材を硬化させ、水分保持部材741及び第2封止部材762と第2基板712とを貼り合わせる。こうして、実施例6の調光装置の変形例700Eを得ることができる。
 以上の点を除き、実施例6の調光装置700E、実施例6の調光装置700Eを用いた画像表示装置及び表示装置の構成、構造は、実施例1あるいは実施例4、実施例5において説明した調光装置700,700C,700D、画像表示装置及び表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。
 以上のとおり実施例6の調光装置、画像表示装置、表示装置にあっては、第1基板の縁部と第2基板の縁部との間に第1封止部材及び第2封止部材が配設されている。それ故、水分保持部材への水分の出入りを抑制することができるため、調光装置あるいは画像表示装置、表示装置の信頼性が低下するといった問題の発生を回避することができる。
 実施例7は、実施例1~実施例6の変形であり、第1-B構造の光学装置及び第2構成の画像形成装置に関する。実施例7の表示装置(頭部装着型ディスプレイ)における画像表示装置200の概念図を図17に示すように、実施例7において、画像形成装置210は、第2構成の画像形成装置から構成されている。即ち、光源211、光源211から出射された平行光を走査する走査手段212、及び、光源211から出射された光を平行光とするレンズ系213から構成されている。画像形成装置210全体が筐体215内に納められており、係る筐体215には開口部(図示せず)が設けられており、開口部を介してレンズ系213から光が出射される。そして、各筐体215が、取付け部材19によって、着脱自在に、テンプル部13に取り付けられている。また、図17、図18、図19、図26、図27、図29A、図29B、図30A、図30Bにおいては、調光装置の図示を省略した。
 光源211は、例えば、半導体レーザ素子から構成されている。そして、光源211から出射された光は、図示しないレンズによって平行光とされ、マイクロミラーを二次元方向に回転自在とし、入射した平行光を2次元的に走査することができるMEMSミラーから成る走査手段212によって水平走査及び垂直走査が行われ、一種の2次元画像化され、仮想の画素(画素数は、例えば、実施例1と同じとすることができる)が生成される。そして、そして、仮想の画素(画像出射部に該当する走査手段212)からの光は、正の光学的パワーを持つレンズ系213を通過し、平行光とされた光束が導光板121に入射する。
 光学装置120は、実施例1にて説明した光学装置と同じ構成、構造を有するので、詳細な説明は省略する。また、実施例7の表示装置も、上述したとおり、画像形成装置210が異なる点を除き、実質的に、実施例1の表示装置と同じ構成、構造を有するので、詳細な説明は省略する。
 実施例8は、実施例1~実施例7の変形であるが、第1-A構造の光学装置及び第1構成又は第2構成の画像形成装置に関する。
 実施例8の表示装置(頭部装着型ディスプレイ)における画像表示装置300の概念図を図18に示すように、実施例8において、第1偏向手段330及び第2偏向手段340は導光板321の内部に配設されている。そして、第1偏向手段330は、導光板321に入射された光を反射し、第2偏向手段340は、導光板321の内部を全反射により伝播した光を、複数回に亙り、透過、反射する。即ち、第1偏向手段330は反射鏡として機能し、第2偏向手段340は半透過鏡として機能する。より具体的には、導光板321の内部に設けられた第1偏向手段330は、アルミニウム(Al)から成り、導光板321に入射された光を反射させる光反射膜(一種のミラー)から構成されている。一方、導光板321の内部に設けられた第2偏向手段340は、誘電体積層膜が多数積層された多層積層構造体から構成されている。誘電体積層膜は、例えば、高誘電率材料としてのTiO2膜、及び、低誘電率材料としてのSiO2膜から構成されている。誘電体積層膜が多数積層された多層積層構造体に関しては、特表2005-521099に開示されている。図面においては6層の誘電体積層膜を図示しているが、これに限定するものではない。誘電体積層膜と誘電体積層膜との間には、導光板321を構成する材料と同じ材料から成る薄片が挟まれている。第1偏向手段330においては、導光板321に入射された平行光が導光板321の内部で全反射されるように、導光板321に入射された平行光が反射される。一方、第2偏向手段340においては、導光板321の内部を全反射により伝播した平行光が複数回に亙り反射され、導光板321から平行光の状態で、観察者20の瞳21に向かって出射される。
 第1偏向手段330は、導光板321の第1偏向手段330を設ける部分324を切り出すことで、導光板321に第1偏向手段330を形成すべき斜面を設け、係る斜面に光反射膜を真空蒸着した後、導光板321の切り出した部分324を第1偏向手段330に接着すればよい。また、第2偏向手段340は、導光板321を構成する材料と同じ材料(例えば、ガラス)と誘電体積層膜(例えば、真空蒸着法にて成膜することができる)とが多数積層された多層積層構造体を作製し、導光板321の第2偏向手段340を設ける部分325を切り出して斜面を形成し、係る斜面に多層積層構造体を接着し、研磨等を行って、外形を整えればよい。こうして、導光板321の内部に第1偏向手段330及び第2偏向手段340が設けられた光学装置320を得ることができる。
 あるいは又、実施例8の表示装置(頭部装着型ディスプレイ)における画像表示装置400の概念図を図19に示す。図19に示した例では、画像形成装置210は、実施例7と同様に、第2構成の画像形成装置から構成されている。
 実施例8の表示装置は、以上の相違点を除き、実質的に、実施例1~実施例7の表示装置と同じ構成、構造を有するので、詳細な説明は省略する。
 実施例9は、実施例7~実施例8における画像表示装置の変形であるが、第2構造の光学装置、第2構成の画像形成装置に関する。実施例9の表示装置を上方から眺めた模式図を図20に示す。
 実施例9において、画像表示装置500を構成する光学装置520は、光源から出射された光が入射され、観察者20の瞳21に向かって出射される半透過ミラー530A,530Bから構成されている。実施例9において、それぞれの筐体215A,215B内に配置されたそれぞれの光源211A,211Bから出射された光は、図示しない光ファイバの内部を伝播して、例えば、ノーズパッド近傍のリム部11’の部分に取り付けられた走査手段212A,212Bに入射し、走査手段212A,212Bによって走査された光は半透過ミラー530A,530Bに入射する。あるいは又、それぞれの筐体215A,215B内に配置されたそれぞれの光源211A,211Bから出射された光は、図示しない光ファイバの内部を伝播して、例えば、両眼のそれぞれに対応するリム部11’の部分の上方に取り付けられた走査手段212A,212Bに入射し、走査手段212A,212Bによって走査された光は半透過ミラー530A,530Bに入射する。あるいは又、それぞれの筐体215A,215B内に配置されたそれぞれの光源211A,211Bから出射され、筐体215A,215B内に配置された走査手段212A,212Bに入射し、走査手段212A,212Bによって走査された光は、半透過ミラー530A,530Bに、直接、入射する。そして、半透過ミラー530A,530Bによって反射された光が観察者20の瞳21に入射する。画像形成装置210A,210Bは、実質的に、実施例7において説明した画像形成装置210とすることができる。実施例9の表示装置は、以上の相違点を除き、実質的に、実施例7~実施例8の表示装置と同じ構成、構造を有するので、詳細な説明は省略する。
 実施例10は、実施例1~実施例9の変形である。実施例10の表示装置を上方から眺めた模式図を図21Aに示す。また、照度センサを制御する回路の模式図を図21Bに示す。
 実施例10の表示装置は、表示装置の置かれた環境の照度を測定する環境照度測定センサ801を更に備えており、環境照度測定センサ801の測定結果に基づき、調光装置700の遮光率を制御する。併せて、あるいは、独立して、環境照度測定センサ801の測定結果に基づき、画像形成装置110,210によって形成される画像の輝度を制御する。周知の構成、構造を有する環境照度測定センサ801は、例えば、調光装置700の外側端部に配置すればよい。環境照度測定センサ801は、図示しないコネクタ及び配線を介して制御装置18に接続されている。制御装置18には、環境照度測定センサ801を制御する回路が含まれる。この環境照度測定センサ801を制御する回路は、環境照度測定センサ801からの測定値を受け取り、照度を求める照度演算回路、照度演算回路によって求められた照度の値を標準値の比較する比較演算回路、比較演算回路によって求められた値に基づき、調光装置700及び/又は画像形成装置110,210を制御する環境照度測定センサ制御回路から構成されているが、これらの回路は周知の回路から構成することができる。調光装置700の制御にあっては、調光装置700の遮光率の制御を行い、一方、画像形成装置110,210の制御にあっては、画像形成装置110,210によって形成される画像の輝度の制御を行う。調光装置700における遮光率の制御と画像形成装置110,210における画像の輝度の制御は、それぞれ、独立して行ってもよいし、相関を付けて行ってもよい。
 例えば、環境照度測定センサ801の測定結果が所定値(第1の照度測定値)以上になったとき、調光装置700の遮光率を所定の値(第1の遮光率)以上とする。一方、環境照度測定センサ801の測定結果が所定値(第2の照度測定値)以下になったとき、調光装置700の遮光率を所定の値(第2の遮光率)以下とする。第1の照度測定値として10ルクスを挙げることができるし、第1の遮光率として99%乃至70%のいずれかの値を挙げることができるし、第2の照度測定値として0.01ルクスを挙げることができるし、第2の遮光率として49%乃至1%のいずれかの値を挙げることができる。
 実施例10における環境照度測定センサ801を、実施例7~実施例9において説明した表示装置に適用することができる。また、表示装置がカメラ17を備えている場合、カメラ17に備えられた露出測定用の受光素子から環境照度測定センサ801を構成することもできる。
 実施例10あるいは次に述べる実施例11の表示装置にあっては、環境照度測定センサの測定結果に基づき、調光装置の遮光率を制御し、また、環境照度測定センサの測定結果に基づき、画像形成装置によって形成される画像の輝度を制御し、また、透過光照度測定センサの測定結果に基づき、調光装置の遮光率を制御し、また、透過光照度測定センサの測定結果に基づき、画像形成装置によって形成される画像の輝度を制御するので、観察者が観察する虚像に高いコントラストを与えることができるだけでなく、表示装置の置かれた周囲の環境の照度に依存して虚像の観察状態の最適化を図ることができる。
 実施例11も、実施例1~実施例9の変形である。実施例11の表示装置を上方から眺めた模式図を図22Aに示す。また、第2の照度センサを制御する回路の模式図を図22Bに示す。
 実施例11の表示装置は、外部環境から調光装置を透過した光に基づく照度を測定する、即ち、環境光が調光装置を透過して所望の照度まで調整されて入射しているかを測定する透過光照度測定センサ802を更に備えており、透過光照度測定センサ802の測定結果に基づき、調光装置700の遮光率を制御する。併せて、あるいは、独立して、また、透過光照度測定センサ802の測定結果に基づき、画像形成装置110,210によって形成される画像の輝度を制御する。周知の構成、構造を有する透過光照度測定センサ802は、光学装置120,320よりも観察者側に配置されている。具体的には、透過光照度測定センサ802は、例えば、筐体115,215の内側面や、導光板121,321の観察者側の面に配置すればよい。透過光照度測定センサ802は、図示しないコネクタ及び配線を介して制御装置18に接続されている。制御装置18には、透過光照度測定センサ802を制御する回路が含まれる。この透過光照度測定センサ802を制御する回路は、透過光照度測定センサ802からの測定値を受け取り、照度を求める照度演算回路、照度演算回路によって求められた照度の値を標準値の比較する比較演算回路、比較演算回路によって求められた値に基づき、調光装置700及び/又は画像形成装置110,210を制御する透過光照度測定センサ制御回路から構成されているが、これらの回路は周知の回路から構成することができる。調光装置700の制御において、調光装置700の遮光率の制御を行い、一方、画像形成装置110,210の制御において、画像形成装置110,210によって形成される画像の輝度の制御を行う。調光装置700における遮光率の制御と画像形成装置110,210における画像の輝度の制御は、それぞれ、独立して行ってもよいし、相関を付けて行ってもよい。更に、透過光照度測定センサ802の測定結果が環境照度測定センサ801の照度から鑑みて所望の照度まで制御できていない場合、即ち、透過光照度測定センサ802の測定結果が所望の照度になっていない場合、若しくは、更に一層の微妙な照度調整が望まれる場合には、透過光照度測定センサ802の値をモニターしながら調光装置の遮光率を調整すればよい。透過光照度測定センサを、少なくとも2つ、配置し、高遮光率の部分を通過した光に基づく照度の測定、低遮光率の部分を通過した光に基づく照度の測定を行ってもよい。
 実施例11における透過光照度測定センサ802を、実施例7~実施例9において説明した表示装置に適用することができる。あるいは又、実施例11における透過光照度測定センサ802と実施例10における環境照度測定センサ801とを組み合わせてもよく、この場合、種々の試験を行い、調光装置700における遮光率の制御と画像形成装置110,210における画像の輝度の制御を、それぞれ、独立して行ってもよいし、相関を付けて行ってもよい。右眼用の調光装置と左眼用の調光装置のそれぞれにおいて、第1電極及び第2電極に印加する電圧を調整することで、右眼用の調光装置における遮光率及び左眼用の調光装置における遮光率の均等化を図ることができる。第1電極と第2電極との間の電位差を制御してもよいし、第1電極に印加する電圧と第2電極に印加する電圧とを独立に制御してもよい。右眼用の調光装置における遮光率及び左眼用の調光装置における遮光率は、例えば、透過光照度測定センサ802の測定結果に基づき、制御することができるし、あるいは又、観察者が、右眼用の調光装置及び光学装置を通過した光の明るさ及び左眼用の調光装置及び光学装置を通過した光の明るさを観察し、観察者が、スイッチやボタン、ダイアル、スライダ、ノブ等を操作することで手動にて制御、調整することもできる。
 実施例12は、実施例1~実施例11の変形である。実施例12の表示装置を上方から眺めた模式図を図23に示し、実施例12の光学装置及び調光装置の模式的な正面図を図24に示す。実施例12の表示装置にあっては、第1偏向手段130,330と対向する調光装置700の外面に、導光板121,321の外へ光が漏れ出し、光利用効率が低下することを防止するための遮光部材811が形成されている。あるいは又、上方から眺めた模式図を図25に示すように、第1偏向手段130,330を覆うように、導光板121,321の第2面123,323の外側に遮光部材812が配置されており、あるいは又、設けられている。導光板121,321への第1偏向手段130,330の正射影像は、導光板121,321への遮光部材811,812の正射影像に含まれる。具体的には、例えば、画像形成装置110,210から出射された光が入射される導光板121,321の領域、より具体的には、第1偏向手段130,330が設けられた領域に、導光板121,321への外光の入射を遮光する遮光部材811,812が配されている。遮光部材811,812の導光板121,321への正射影像内に、画像形成装置110,210から出射された光が入射される導光板121,321の領域が含まれる。
 遮光部材811,812は、導光板121,321の画像形成装置110,210が配された側とは反対側に、導光板121,321と離間して配されている。遮光部材811は、第2基板712の一部に配されている。具体的には、不透明なインクを第2基板712に印刷することで、遮光部材811を形成することができる。遮光部材812は、例えば、不透明なプラスチック材料から作製されており、遮光部材812は、画像形成装置110,210の筐体115,215から一体に延び、あるいは又、画像形成装置110,210の筐体115,215に取り付けられ、あるいは又、フレーム10から一体に延び、あるいは又、フレーム10に取り付けられ、あるいは又、導光板121,321に取り付けられている。図示した例では、遮光部材812は、画像形成装置110,210の筐体115、215から一体に延びている。このように、画像形成装置110,210から出射された光が入射される導光板121,321の領域には、導光板121,321への外光の入射を遮光する遮光部材811,812が配されているので、画像形成装置110,210から出射された光が入射される導光板121,321の領域、具体的には、第1偏向手段130,330には外光が入射しないので、不所望の迷光等が発生し、表示装置における画像表示品質の低下を招くことが無い。遮光部材811との遮光部材812とを組み合わせることもできる。
 実施例13は、実施例7の変形である。実施例13の画像表示装置の概念図を図26あるいは図27に示すように、第2偏向手段140と対向して光学装置120に光学部材151を配設してもよい。画像形成装置210からの光は、第1偏向手段130において偏向され(あるいは反射され)、導光板121の内部を全反射により伝播し、第2偏向手段140において偏向され、光学部材151に入射し、光学部材151は、入射した光を観察者20の瞳21に向けて出射する。第2偏向手段140を通過する際の光の相当の部分は、第2偏向手段140における回折条件を満たしていないので、第2偏向手段140において回折反射されることなく、観察者20の瞳21に入射する。光学部材151は、例えば、ホログラムレンズから成り、例えば、導光板121の第2面側に配置されている。第2偏向手段140は、導光板121の第2面側に配置されており(図26参照)、あるいは又、第1面側(図27参照)に配置されている。
 そして、この場合、画像形成装置210からの光が入射され、導光板121へ向けて出射するレンズ系213を更に備えており;画像形成装置210と観察者20の瞳21とは共役の関係にあり;レンズ系213及び光学部材151によって両側テレセントリック系が構成される形態とすることができる。あるいは又、正の光学的パワーを有するレンズ系213の前方焦点に、画像形成装置210から画像が出射される画像出射部が位置し、正の光学的パワーを有する光学部材151の後方焦点に、観察者20の瞳21(より具体的には、水晶体)が位置し、レンズ系213の後方焦点に光学部材151の前方焦点が位置する形態とすることができる。ここで、画像形成装置210と観察者20の瞳21とが共役の関係にあるとき、観察者20の瞳21の位置に画像形成装置210を置くと、元の画像形成装置210の位置に像が形成される。また、レンズ系213及び光学部材151によって両側テレセントリック系が構成されるとき、レンズ系213の入射瞳は無限遠にあるし、光学部材151の射出瞳は無限遠にある。
 レンズ系213として、前述したとおり、凸レンズ、凹レンズ、自由曲面プリズム、ホログラムレンズを、単独、若しくは、組み合わせた、全体として正の光学的パワーを持つ光学系を例示することができる。レンズ系213の有する正の光学的パワーの値は、光学部材151の有する正の光学的パワーの値よりも大きい形態とすることができる。光学的パワーは焦点距離の逆数であるが故に、云い換えれば、光学部材151の焦点距離は、レンズ系213の焦点距離よりも長い形態とすることができる。レンズ系213の前方焦点(画像形成装置側の焦点)の位置に、場合によっては、絞り114が配置されている。光学部材151は、場合によっては、一種の凹面鏡を構成し、光学部材151の後方焦点の位置に観察者20の瞳21(具体的には、観察者の水晶体)が位置する。
 ホログラムレンズを構成する材料として、フォトポリマー材料を挙げることができる。ホログラムレンズの構成材料や基本的な構造は、従来のホログラムレンズの構成材料や構造と同じとすればよい。ホログラムレンズには、レンズ(より具体的には、凹面鏡)としての機能を発揮させるための干渉縞が形成されているが、係る干渉縞それ自体の形成方法は、従来の形成方法と同じとすればよい。具体的には、例えば、ホログラムレンズを構成する部材(例えば、フォトポリマー材料)に対して一方の側の第1の所定の方向から物体光を照射し、同時に、ホログラムレンズを構成する部材に対して他方の側の第2の所定の方向から参照光を照射し、物体光と参照光とによって形成される干渉縞をホログラムレンズを構成する部材の内部に記録すればよい。例えば、物体光、参照光の一方を発散ビームとし、他方を集束ビームとする。第1の所定の方向、第2の所定の方向、物体光及び参照光の波長を適切に選択することで、ホログラムレンズに適切な干渉縞を形成することができ、これによって、所望の正の光学的パワーを付与することができる。
 光学系を説明する概念図を図28に示すように、上述したとおり、画像形成装置210(具体的には、画像出射部)と観察者20の瞳21(具体的には、水晶体)とは共役の関係にあり、レンズ系213及び光学部材151によって両側テレセントリック系が構成される構造を挙げることができる。あるいは又、正の光学的パワーを有するレンズ系213の前方焦点f1Fに、画像形成装置210から画像が出射される画像出射部(具体的には走査手段212)が位置し、正の光学的パワーを有する光学部材151の後方焦点f2Bに、観察者20の瞳21(より具体的には、水晶体)が位置し、レンズ系213の後方焦点f1Bに光学部材151の前方焦点f2Fが位置する構成とすることもできる。また、前述したとおり、レンズ系213及び光学部材151は正の光学的パワーを有する。そして、この場合、レンズ系213の有する正の光学的パワーの値は、光学部材151の有する正の光学的パワーの値よりも大きい構成とすることができる。即ち、光学部材151の焦点距離(f2B)は、レンズ系213の焦点距離(f1F)よりも長い構成とすることができる。ここで、レンズ系213の前方焦点f1F(画像形成装置側の焦点)の位置には、画像出射部に該当する走査手段212が配置されている。一方、光学部材151は一種の凹面鏡を構成し、光学部材151の後方焦点f2Bの位置に観察者20の瞳21(具体的には、水晶体)が位置する。
 このような構造、構成の画像表示装置にあっては、或る瞬間に光源211から出射された光(例えば、1画素分あるいは1副画素分の大きさに相当する)は、上述したとおり、平行光とされ、この平行光は走査手段212によって走査され、平行光のまま、レンズ系213に入射する。レンズ系213から出射した光は、レンズ系213の後方焦点(光学部材151の前方焦点でもある)において、一旦、結像し、光学部材151に入射する。光学部材151から出射した光は、平行光となり、観察者20の瞳21(具体的には、水晶体)に、平行光のまま、到達する。そして、水晶体を通過した光は、最終的に、観察者20の瞳21の網膜において結像する。
 以上に説明した実施例13の画像表示装置の構成、構造を、実施例1~実施例12に適用することができることは云うまでもない。
 実施例14は実施例9において説明した第2構造の光学装置を構成する光学装置の変形である。実施例14の表示装置を上から眺めた模式図を、図29A及び図29Bに示す。
 図29Aに示す例にあっては、光源601からの光が導光部材602に侵入し、導光部材602内に設けられた偏光ビームスプリッター603に衝突する。偏光ビームスプリッター603に衝突した光源601からの光の内、P偏光成分は偏光ビームスプリッター603を通過し、S偏光成分は、偏光ビームスプリッター603によって反射され、ライト・バルブとしてのLCOSから成る液晶表示装置(LCD)604に向かう。液晶表示装置(LCD)604によって画像が形成される。液晶表示装置(LCD)604によって反射された光の偏光成分はP偏光成分が占めるので、液晶表示装置(LCD)604によって反射された光は、偏光ビームスプリッター603,605を通過し、1/4波長板606を通過し、反射板607に衝突して反射され、1/4波長板606を通過し、偏光ビームスプリッター605に向かう。このときの光の偏光成分はS偏光成分が占めるので、偏光ビームスプリッター605によって反射され、観察者の瞳21へと向かう。以上のとおり、画像形成装置は、光源601及び液晶表示装置(LCD)604から構成され、光学装置は、導光部材602、偏光ビームスプリッター603,605、1/4波長板606及び反射板607から構成され、偏光ビームスプリッター605が光学装置の虚像形成領域に相当する。
 図29Bに示す例にあっては、画像形成装置611からの光が導光部材612を進行し、半透過ミラー613に衝突し、一部の光が半透過ミラー613を通過し、反射板614に衝突して反射され、半透過ミラー613に再び衝突し、一部の光が半透過ミラー613によって反射され、観察者の瞳21へと向かう。光学装置は、以上のとおり、導光部材612、半透過ミラー613及び反射板614から構成されており、半透過ミラー613が光学装置の虚像形成領域に相当する。
 あるいは又、実施例14の表示装置の変形例を上から眺めた模式図及び横から眺めた模式図を、図30A及び図30Bに示す。この光学装置は、6面体のプリズム622及び凸レンズ625から構成されている。画像形成装置621から出射された光は、プリズム622に入射し、プリズム面623に衝突して反射され、プリズム622を進行し、プリズム面624に衝突して反射され、凸レンズ625を介して観察者の瞳21に到達する。プリズム面623とプリズム面624とは、向かい合う方向に傾斜が付けられており、プリズム622の平面形状は、台形、具体的には、等脚台形である。プリズム面623,624にはミラーコーティングが施されている。瞳21と対向するプリズム622の部分の厚さ(高さ)を、人間の平均的な瞳孔径である4mmより薄くすれば、観察者は、外界の像とプリズム622からの虚像とを重畳して見ることができる。
 実施例1においては、画像表示装置に組み込まれた調光装置を説明したが、本開示の調光装置は、画像表示装置に組み込まず、独立して使用することもできる。即ち、このような本開示の調光装置700Fは、例えば、窓に適用することができ、模式的な断面図を図31に示すように、
 第1基板711、
 第1基板711と対向して配設され、外光が入光する第2基板712、
 第1基板上に形成された第1電極(図示せず)、
 第1電極上に形成された調光層720、
 少なくとも調光層上に形成された第2電極(図示せず)、及び、
 少なくとも第2電極を覆い、第2基板と対向した水分保持部材(図示せず)、
を備えている。尚、調光装置700Fは、実質的に、実施例1~実施例6において説明した調光装置700,700A,700B,700C,700D,700Eと同様の構成、構造を有する。ここで、図示した例では、調光装置700Fは、窓枠900に取り付けられている。このような本開示の調光装置700Fは、例えば、窓や、鏡、反射鏡、各種表示装置、スクリーンに適用することができる。尚、窓ガラス901も窓枠900に取り付けられている。
 以上、本開示を好ましい実施例に基づき説明したが、本開示はこれらの実施例に限定するものではない。実施例において説明した表示装置(頭部装着型ディスプレイ)、画像表示装置、画像形成装置の構成、構造は例示であり、適宜変更することができる。調光装置の外形形状は、本質的に任意の形状とすることができる。図32には、楕円形状の外形形状を有する調光装置を示す。また、実施例1と実施例2とを組み合わせてもよい。
 図2Aの矢印A-Aに沿って切断したときと同様の模式的な断面図である図33Aあるいは図33Bに示すように、例えば実施例1の調光装置の変形例にあっては、封止部材733,734,735,736の断面形状は、第2基板712に近づくに従い狭くなる形状である形態とすることができる。尚、図33Aに図示した例では、封止部材733,734,735,736の頂面は平坦であり、図33Aに図示した例では、封止部材733,734,735,736の頂面は丸みを帯びている。封止部材の断面形状733,734,735,736をこのような形状とすることで、水分保持部材741を少なくとも第2電極732上に配置し、水分保持部材741から延在する水分保持部材延在部743を封止部材上に配置するとき、水分保持部材741の下に気泡が混入するといった問題の発生を回避することができる。尚、このような問題は、図33A及び図33Bに領域Aで示す領域において発生し易い。封止部材733,734,735,736のこのような断面形状は、例えば、印刷法に基づく封止部材の形成、メタルマスクを用いて回り込みを生じさせるスパッタリング法に基づく封止部材の形成といった種々の方法に基づき形成することができる。
 実施例の調光装置において、調光装置は湾曲している形態とすることができ、これによって、画像表示装置あるいは表示装置へ調光装置を容易に、且つ、確実に装着させることができる。平坦な実施例1の調光装置における着色、消色特性を100%としたとき、調光装置を曲げたときの着色、消色特性は、以下の表1のとおりであり、曲率半径30mmまで調光装置を湾曲させても、着色、消色特性に何ら、変化が認められなかった。
〈表1〉
曲率半径     着色特性     消色特性
100mm    98.1%     98.1%
 50mm    97.5%    102.7%
 30mm    99.0%    103.9%
 例えば、導光板に表面レリーフ型ホログラム(米国特許第20040062505A1参照)を配置してもよい。光学装置にあっては、回折格子素子を透過型回折格子素子から構成することもできるし、あるいは又、第1偏向手段及び第2偏向手段の内のいずれか一方を反射型回折格子素子から構成し、他方を透過型回折格子素子から構成する形態とすることもできる。あるいは又、回折格子素子を、反射型ブレーズド回折格子素子とすることもできる。本開示の表示装置は、立体視ディスプレイ装置として用いることもできる。この場合、必要に応じて、光学装置に偏光板や偏光フィルムを着脱自在に取り付け、あるいは、光学装置に偏光板や偏光フィルムを貼り合わせればよい。
 実施例においては、画像形成装置110,210は、単色(例えば、緑色)の画像を表示するとして説明したが、画像形成装置110,210はカラー画像を表示することもでき、この場合、光源を、例えば、赤色、緑色、青色のそれぞれを出射する光源から構成すればよい。具体的には、例えば、赤色発光素子、緑色発光素子、青色発光素子のそれぞれから出射された赤色光、緑色光及び青色光をライトパイプを用いて混色、輝度均一化を行うことで白色光を得ればよい。場合によっては、調光装置を通過する光を、調光装置によって所望の色に着色する構成とすることができ、この場合、調光装置によって着色される色を可変とすることができる。具体的には、例えば、赤色に着色される調光装置と、緑色に着色される調光装置と、青色に着色される調光装置とを積層すればよい。
 あるいは又、第1導光板に、赤色の波長帯域(あるいは、波長)を有する光を回折反射させるホログラム回折格子から成る回折格子層から構成された回折格子部材(赤色回折格子部材)を配し、第2導光板に、緑色の波長帯域(あるいは、波長)を有する光を回折反射させるホログラム回折格子から成る回折格子層から構成された回折格子部材(緑色回折格子部材)を配し、第3導光板に、青色の波長帯域(あるいは、波長)を有する光を回折反射させるホログラム回折格子から成る回折格子層から構成された回折格子部材(青色回折格子部材)を配し、これらの第1導光板、第2導光板及び第3導光板を隙間を開けて積層する構造を採用してもよい。あるいは又、第1導光板に、赤色回折格子部材、緑色回折格子部材及び青色回折格子部材の内の1種類の回折格子部材を配し、この回折格子部材が配された第1導光板の面とは異なる面に、赤色回折格子部材、緑色回折格子部材及び青色回折格子部材の内の残り2種類の内の1種類の回折格子部材を配し、第2導光板に、赤色回折格子部材、緑色回折格子部材及び青色回折格子部材の内の残りの1種類の回折格子部材を配し、これらの第1導光板及び第2導光板を隙間を開けて積層する構造を採用してもよい。
 調光装置における遮光率の制御は、例えば、単純マトリクス方式に基づき行うことができる。即ち、模式的な平面図を図34に示すように、
 第1電極731は、第1の方向に延びる複数の帯状の第1電極セグメント731Aから構成されており、
 第2電極732は、第1の方向とは異なる第2の方向に延びる複数の帯状の第2電極セグメント732Aから構成されており、
 第1電極セグメント731Aと第2電極セグメント732Aの重複領域(調光装置の遮光率が変化する最小単位領域730A)に対応する調光装置の部分の遮光率の制御は、第1電極セグメント731A及び第2電極セグメント732Aに印加する電圧の制御に基づき行われる。第1の方向と第2の方向とは直交しており、具体的には、第1の方向は横方向(X方向)に延び、第2の方向は縦方向(Y方向)に延びる。尚、このような構成にあっては、補助電極は不要であり、実施例2~実施例6において説明した調光装置を、適宜、適用することができる。
 尚、本開示は、以下のような構成を取ることもできる。
[A01]《調光装置:第1の態様》
 第1基板、
 第1基板と対向して配設され、外光が入光する第2基板、
 第1基板上に形成された第1電極、
 第1電極上に形成された調光層、
 少なくとも調光層上に形成された第2電極、
 少なくとも第2電極を覆い、第2基板と対向した水分保持部材、及び、
 第1基板の縁部に設けられた封止部材、
を備えた調光装置であって、
 封止部材と第2基板との間には、水分保持部材から延在する水分保持部材延在部が配設されており、
 水分保持部材延在部の厚さは、調光装置中央部における水分保持部材の厚さよりも薄い調光装置。
[A02]第2電極は、調光層上から第1基板上に亙り、且つ、第1電極と離間して形成されており、
 水分保持部材は、少なくとも第2電極及び調光層を覆う[A01]に記載の調光装置。
[A03]封止部材の一部は補助電極から成る[A01]又は[A02]に記載の調光装置。
[A04]補助電極は、第1電極上に形成された第1補助電極、及び、第2電極上に第1補助電極と離間して形成された第2補助電極から構成されている[A03]に記載の調光装置。
[A05]封止部材は樹脂から成る[A01]又は[A02]に記載の調光装置。
[A06]封止部材を構成する樹脂のヤング率は1×107Pa以下である[A05]に記載の調光装置。
[A07]封止部材の一部の内側に補助電極が設けられている[A05]又は[A06]に記載の調光装置。
[A08]補助電極は、第1電極上に形成された第1補助電極、及び、第2電極上に第1補助電極と離間して形成された第2補助電極から構成されている[A07]に記載の調光装置。
[A09]封止部材は、第1基板の縁部に設けられた凸部から成る[A01]又は[A02]に記載の調光装置。
[A10]封止部材の一部の内側に補助電極が設けられている[A09]に記載の調光装置。
[A11]補助電極は、第1電極上に形成された第1補助電極、及び、第2電極上に第1補助電極と離間して形成された第2補助電極から構成されている[A10]に記載の調光装置。
[A12]封止部材の断面形状は、第2基板に近づくに従い狭くなる形状である[A01]乃至[A11]のいずれか1項に記載の調光装置。
[A13]水分保持部材と対向する第2基板の面には無機材料膜が形成されている[A01]乃至[A12]のいずれか1項に記載の調光装置。
[A14]水分保持部材を構成する材料のヤング率は1×106Pa以下である[A01]乃至[A13]のいずれか1項に記載の調光装置。
[A15]水分保持部材を構成する樹脂は、アクリル系樹脂、シリコーン系樹脂又はウレタン系樹脂である[A14]に記載の調光装置。
[A16]湾曲している[A01]乃至[A16]のいずれか1項に記載の調光装置。
[A17]調光層は、エレクトロクロミック材料層を備えている[A01]乃至[A16]のいずれか1項に記載の画像表示装置。
[A18]エレクトロクロミック材料層は、酸化着色層、電解質層及び還元着色層の積層構造を有する[A17]に記載の画像表示装置。
[B01]《調光装置:第2の態様》
 第1基板、
 第1基板と対向して配設され、外光が入光する第2基板、
 第1基板上に形成された第1電極、
 第1電極上に形成された調光層、
 少なくとも調光層上に形成された第2電極、及び、
 少なくとも第2電極を覆い、第2基板と対向した水分保持部材、
を備えており、
 第1基板の縁部上に配設された第1封止部材、及び、
 第1封止部材と第2基板との間に配設された第2封止部材、
を更に備えている調光装置。
[B02]第2電極は、調光層上から第1基板上に亙り、且つ、第1電極と離間して形成されており、
 水分保持部材は、少なくとも第2電極及び調光層を覆う[B01]に記載の調光装置。
[B03]少なくとも第1封止部材の一部の内側に補助電極が設けられている[B01]又は[B02]に記載の調光装置。
[B04]補助電極は、第1電極上に形成された第1補助電極、及び、第2電極上に第1補助電極と離間して形成された第2補助電極から構成されている[B03]又は[B04]に記載の調光装置。
[B05]第1封止部材及び第2封止部材は樹脂から成る[B01]乃至[B04]のいずれか1項に記載の調光装置。
[B06]第1封止部材及び第2封止部材を構成する樹脂のヤング率は1×107Pa以下である[B05]に記載の調光装置。
[B07]第1封止部材の一部は補助電極から成る[B01]又は[B02]に記載の調光装置。
[B08]補助電極は、第1電極上に形成された第1補助電極、及び、第2電極上に第1補助電極と離間して形成された第2補助電極から構成されている[B07]に記載の調光装置。
[B09]第2封止部材は樹脂から成る[B07]又は[B08]に記載の調光装置。
[B10]第1封止部材及び第2封止部材の断面形状は、第2基板に近づくに従い狭くなる形状である[B01]乃至[B09]のいずれか1項に記載の調光装置。
[B11]水分保持部材と対向する第2基板の面には無機材料膜が形成されている[B01]乃至[B10]のいずれか1項に記載の調光装置。
[B12]水分保持部材を構成する材料のヤング率は1×106Pa以下である[B01]乃至[B12]のいずれか1項に記載の調光装置。
[B13]水分保持部材を構成する樹脂は、アクリル系樹脂、シリコーン系樹脂又はウレタン系樹脂である[B12]に記載の調光装置。
[B14]湾曲している[B01]乃至[B13]のいずれか1項に記載の調光装置。
[B15]調光層は、エレクトロクロミック材料層を備えている[B01]乃至[B14]のいずれか1項に記載の画像表示装置。
[B16]エレクトロクロミック材料層は、酸化着色層、電解質層及び還元着色層の積層構造を有する[B15]に記載の画像表示装置。
[C01]《画像表示装置》
 画像形成装置、
 画像形成装置から出射された光に基づき虚像が形成される虚像形成領域を有する光学装置、及び、
 少なくとも虚像形成領域に対向して配置され、外部から入射する外光の光量を調整する調光装置、
を備えており、
 調光装置は、
 第1基板、
 第1基板と対向して配設され、外光が入光する第2基板、
 第1基板上に形成された第1電極、
 第1電極上に形成された調光層、
 少なくとも調光層上に形成された第2電極、
 少なくとも第2電極を覆い、第2基板と対向した水分保持部材、及び、
 第1基板の縁部に設けられた封止部材、
を備えており、
 封止部材と第2基板との間には、水分保持部材から延在する水分保持部材延在部が配設されており、
 水分保持部材延在部の厚さは、調光装置中央部における水分保持部材の厚さよりも薄い画像表示装置。
[C02]《画像表示装置》
 画像形成装置、
 画像形成装置から出射された光に基づき虚像が形成される虚像形成領域を有する光学装置、及び、
 少なくとも虚像形成領域に対向して配置され、外部から入射する外光の光量を調整する調光装置、
を備えており、
 調光装置は、[A01]乃至[B16]のいずれか1項に記載の調光装置から成る画像表示装置。
[D01]《表示装置》
 観察者の頭部に装着されるフレーム、及び、
 フレームに取り付けられた画像表示装置、
を備えた表示装置であって、
 画像表示装置は、
 画像形成装置、
 画像形成装置から出射された光に基づき虚像が形成される虚像形成領域を有する光学装置、及び、
 少なくとも虚像形成領域に対向して配置され、外部から入射する外光の光量を調整する調光装置、
を備えており、
 調光装置は、
 第1基板、
 第1基板と対向して配設され、外光が入光する第2基板、
 第1基板上に形成された第1電極、
 第1電極上に形成された調光層、
 少なくとも調光層上に形成された第2電極、
 少なくとも第2電極を覆い、第2基板と対向した水分保持部材、及び、
 第1基板の縁部に設けられた封止部材、
を備えており、
 封止部材と第2基板との間には、水分保持部材から延在する水分保持部材延在部が配設されており、
 水分保持部材延在部の厚さは、調光装置中央部における水分保持部材の厚さよりも薄い表示装置。
[D02]《表示装置》
 観察者の頭部に装着されるフレーム、及び、
 フレームに取り付けられた画像表示装置、
を備えた表示装置であって、
 画像表示装置は、
 画像形成装置、
 画像形成装置から出射された光に基づき虚像が形成される虚像形成領域を有する光学装置、及び、
 少なくとも虚像形成領域に対向して配置され、外部から入射する外光の光量を調整する調光装置、
を備えており、
 調光装置は、[A01]乃至[B16]のいずれか1項に記載の調光装置から成る表示装置。
[D03]少なくとも第2基板の縁部はフレームに固定されている[D01]又は[D02]に記載の表示装置。
[D04]調光装置を通過する光は、調光装置によって所望の色に着色される[D01]乃至[D03]のいずれか1項に記載の表示装置。
[D05]調光装置によって着色される色は可変である[D04]に記載の表示装置。
[D06]調光装置によって着色される色は固定である[D04]に記載の表示装置。
[E01]《調光装置の製造方法》
 第1基板の上に、第1電極、調光層、第2電極を形成し、第1基板の縁部に封止部材を設けた後、
 水分保持部材を少なくとも第2電極上に配置し、水分保持部材から延在する水分保持部材延在部を封止部材上に配置し、
 水分保持部材及び水分保持部材延在部の上に第2基板を配置する、
各工程を有する調光装置の製造方法。
10・・・フレーム、10’・・・ノーズパッド、11・・・フロント部、11’・・・リム部、12・・・蝶番、13・・・テンプル部、14・・・モダン部、15・・・配線(信号線や電源線等)、16・・・ヘッドホン部、16’・・・ヘッドホン部用配線、17・・・カメラ、18・・・制御装置(制御回路、制御手段)、19・・・取付け部材、20・・・観察者、21・・・瞳、100,200,300,400,500・・・画像表示装置、110,210・・・画像形成装置、111・・・有機EL表示装置、211,211A,211B・・・光源、212・・・走査手段、113A,113B,213・・・レンズ系、114・・・絞り、115,215・・・筐体、120,320,520・・・光学装置、121,321・・・導光板、122,322・・・導光板の第1面、123,323・・・導光板の第2面、324,325・・・導光板の一部分、130・・・第1偏向手段(第1回折格子部材)、140・・・第2偏向手段(第2回折格子部材、虚像形成領域)、330・・・第1偏向手段、340・・・第2偏向手段(虚像形成領域)、151・・・光学部材(ホログラムレンズ)、530A,530B・・・半透過ミラー、601・・・光源、602・・・導光部材、603,605・・・偏光ビームスプリッター、604・・・液晶表示装置、606・・・1/4波長板、607・・・反射板、611・・・画像形成装置、612・・・導光部材、613・・・半透過ミラー、614・・・反射板、621・・・画像形成装置、622・・・プリズム、623,624・・・プリズム面、625・・・凸レンズ、700,700A・・・調光装置、710・・・調光層、711・・・第1基板、712・・・第2基板、713・・・第1基板の縁部に設けられた凸部、714・・・無機材料膜、720・・・調光層(エレクトロクロミック材料層)、721・・・還元着色層(WO3層)、722・・・電解質層(Ta25層)、723・・・酸化着色層(IrXSn1-XO層)、731・・・第1電極、732・・・第2電極、733,734,735,736,751・・・封止部材、733・・・第1補助電極、733’・・・第1枝補助電極、734・・・第2補助電極、734’・・・第2枝補助電極、737,738・・・接着剤、741・・・水分保持部材、742・・・調光装置中央部における水分保持部材(の領域)、743・・・水分保持部材延在部、744・・・水分保持部材と同じ材料から成る層、761,763・・・第1封止部材、762・・・第2封止部材、801・・・環境照度測定センサ、802・・・透過光照度測定センサ、811,812・・・遮光部材、900・・・窓枠、901・・・窓ガラス

Claims (20)

  1.  第1基板、
     第1基板と対向して配設され、外光が入光する第2基板、
     第1基板上に形成された第1電極、
     第1電極上に形成された調光層、
     少なくとも調光層上に形成された第2電極、
     少なくとも第2電極を覆い、第2基板と対向した水分保持部材、及び、
     第1基板の縁部に設けられた封止部材、
    を備えた調光装置であって、
     封止部材と第2基板との間には、水分保持部材から延在する水分保持部材延在部が配設されており、
     水分保持部材延在部の厚さは、調光装置中央部における水分保持部材の厚さよりも薄い調光装置。
  2.  第2電極は、調光層上から第1基板上に亙り、且つ、第1電極と離間して形成されており、
     水分保持部材は、少なくとも第2電極及び調光層を覆う請求項1に記載の調光装置。
  3.  封止部材の一部は補助電極から成る請求項1に記載の調光装置。
  4.  補助電極は、第1電極上に形成された第1補助電極、及び、第2電極上に第1補助電極と離間して形成された第2補助電極から構成されている請求項3に記載の調光装置。
  5.  封止部材は樹脂から成る請求項1に記載の調光装置。
  6.  封止部材を構成する樹脂のヤング率は1×107Pa以下である請求項5に記載の調光装置。
  7.  封止部材の一部の内側に補助電極が設けられている請求項5に記載の調光装置。
  8.  補助電極は、第1電極上に形成された第1補助電極、及び、第2電極上に第1補助電極と離間して形成された第2補助電極から構成されている請求項7に記載の調光装置。
  9.  封止部材は、第1基板の縁部に設けられた凸部から成る請求項1に記載の調光装置。
  10.  封止部材の一部の内側に補助電極が設けられている請求項9に記載の調光装置。
  11.  補助電極は、第1電極上に形成された第1補助電極、及び、第2電極上に第1補助電極と離間して形成された第2補助電極から構成されている請求項10に記載の調光装置。
  12.  封止部材の断面形状は、第2基板に近づくに従い狭くなる形状である請求項1に記載の調光装置。
  13.  水分保持部材と対向する第2基板の面には無機材料膜が形成されている請求項1に記載の調光装置。
  14.  水分保持部材を構成する材料のヤング率は1×106Pa以下である請求項1に記載の調光装置。
  15.  水分保持部材を構成する樹脂は、アクリル系樹脂、シリコーン系樹脂又はウレタン系樹脂である請求項14に記載の調光装置。
  16.  湾曲している請求項1に記載の調光装置。
  17.  第1基板、
     第1基板と対向して配設され、外光が入光する第2基板、
     第1基板上に形成された第1電極、
     第1電極上に形成された調光層、
     少なくとも調光層上に形成された第2電極、及び、
     少なくとも第2電極を覆い、第2基板と対向した水分保持部材、
    を備えており、
     第1基板の縁部上に配設された第1封止部材、及び、
     第1封止部材と第2基板との間に配設された第2封止部材、
    を更に備えている調光装置。
  18.  画像形成装置、
     画像形成装置から出射された光に基づき虚像が形成される虚像形成領域を有する光学装置、及び、
     少なくとも虚像形成領域に対向して配置され、外部から入射する外光の光量を調整する調光装置、
    を備えており、
     調光装置は、
     第1基板、
     第1基板と対向して配設され、外光が入光する第2基板、
     第1基板上に形成された第1電極、
     第1電極上に形成された調光層、
     少なくとも調光層上に形成された第2電極、
     少なくとも第2電極を覆い、第2基板と対向した水分保持部材、及び、
     第1基板の縁部に設けられた封止部材、
    を備えており、
     封止部材と第2基板との間には、水分保持部材から延在する水分保持部材延在部が配設されており、
     水分保持部材延在部の厚さは、調光装置中央部における水分保持部材の厚さよりも薄い画像表示装置。
  19.  観察者の頭部に装着されるフレーム、及び、
     フレームに取り付けられた画像表示装置、
    を備えた表示装置であって、
     画像表示装置は、
     画像形成装置、
     画像形成装置から出射された光に基づき虚像が形成される虚像形成領域を有する光学装置、及び、
     少なくとも虚像形成領域に対向して配置され、外部から入射する外光の光量を調整する調光装置、
    を備えており、
     調光装置は、
     第1基板、
     第1基板と対向して配設され、外光が入光する第2基板、
     第1基板上に形成された第1電極、
     第1電極上に形成された調光層、
     少なくとも調光層上に形成された第2電極、
     少なくとも第2電極を覆い、第2基板と対向した水分保持部材、及び、
     第1基板の縁部に設けられた封止部材、
    を備えており、
     封止部材と第2基板との間には、水分保持部材から延在する水分保持部材延在部が配設されており、
     水分保持部材延在部の厚さは、調光装置中央部における水分保持部材の厚さよりも薄い表示装置。
  20.  第1基板の上に、第1電極、調光層、第2電極を形成し、第1基板の縁部に封止部材を設けた後、
     水分保持部材を少なくとも第2電極上に配置し、水分保持部材から延在する水分保持部材延在部を封止部材上に配置し、
     水分保持部材及び水分保持部材延在部の上に第2基板を配置する、
    各工程を有する調光装置の製造方法。
PCT/JP2018/034209 2017-10-17 2018-09-14 調光装置、画像表示装置及び表示装置、並びに、調光装置の製造方法 WO2019077920A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880066098.7A CN111201487B (zh) 2017-10-17 2018-09-14 调光设备、图像显示设备、显示设备以及调光设备制造方法
EP18867331.3A EP3699682B1 (en) 2017-10-17 2018-09-14 Dimming device and method for producing a dimming device
US16/754,665 US11378860B2 (en) 2017-10-17 2018-09-14 Dimming device, image display device, and display device, and dimming device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-201028 2017-10-17
JP2017201028 2017-10-17

Publications (1)

Publication Number Publication Date
WO2019077920A1 true WO2019077920A1 (ja) 2019-04-25

Family

ID=66173259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034209 WO2019077920A1 (ja) 2017-10-17 2018-09-14 調光装置、画像表示装置及び表示装置、並びに、調光装置の製造方法

Country Status (4)

Country Link
US (1) US11378860B2 (ja)
EP (1) EP3699682B1 (ja)
CN (1) CN111201487B (ja)
WO (1) WO2019077920A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200264486A1 (en) * 2017-11-14 2020-08-20 Sony Corporation Dimming device, image display device, and display device
JP7207406B2 (ja) * 2018-05-15 2023-01-18 ソニーグループ株式会社 表示装置
JP2024511742A (ja) * 2021-03-12 2024-03-15 マジック リープ, インコーポレイテッド 拡張現実または複合現実デバイスにおいて使用されるポリマーアイピースのためのアサーマル化コンセプト
GB2607672B (en) * 2022-03-29 2023-06-28 Envisics Ltd Display system and light control film therefor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216536A (en) * 1991-11-26 1993-06-01 Donnelly Corporation Encapsulated electrochromic device and method for making same
JPH09304796A (ja) * 1996-05-15 1997-11-28 Toyota Central Res & Dev Lab Inc 全固体エレクトロクロミックセル
WO2003034139A1 (fr) * 2001-10-10 2003-04-24 Murakami Corporation Miroir anti-eblouissement electrochromique de type solide
US20040062505A1 (en) 2002-09-26 2004-04-01 Mitsubishi Denki Kabushiki Kaisha Optical active device
JP2007101947A (ja) 2005-10-05 2007-04-19 Murakami Corp エレクトロクロミック素子およびその駆動方法
JP2012252091A (ja) 2011-06-01 2012-12-20 Sony Corp 表示装置
JP2014111710A (ja) 2012-11-01 2014-06-19 Ricoh Co Ltd エレクトロクロミック化合物、エレクトロクロミック組成物及び表示素子
JP2014160169A (ja) * 2013-02-20 2014-09-04 Sony Corp 表示装置
JP2014159385A (ja) 2013-02-19 2014-09-04 Ricoh Co Ltd エレクトロクロミック化合物、エレクトロクロミック組成物、表示素子
WO2018012108A1 (ja) * 2016-07-12 2018-01-18 ソニー株式会社 調光装置、画像表示装置及び表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211123A (ja) 1982-06-01 1983-12-08 Nippon Kogaku Kk <Nikon> 封止構造を有するエレクトロクロミツク素子
CA2568052C (en) * 1998-09-21 2011-11-15 Gentex Corporation Improved seal for electrochromic devices
US7649674B2 (en) * 2002-06-10 2010-01-19 E Ink Corporation Electro-optic display with edge seal
MXPA05011704A (es) * 2003-05-06 2006-01-23 Gentex Corp Elementos y montajes de espejo retrovisor vehicular que incorporan estos elementos.
JP5790187B2 (ja) * 2011-06-16 2015-10-07 ソニー株式会社 表示装置
JP6798098B2 (ja) * 2014-11-19 2020-12-09 株式会社リコー エレクトロクロミック装置及びその製造方法
KR102449918B1 (ko) * 2015-10-27 2022-09-30 엘지디스플레이 주식회사 거울-디스플레이 겸용 장치

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216536A (en) * 1991-11-26 1993-06-01 Donnelly Corporation Encapsulated electrochromic device and method for making same
JPH09304796A (ja) * 1996-05-15 1997-11-28 Toyota Central Res & Dev Lab Inc 全固体エレクトロクロミックセル
WO2003034139A1 (fr) * 2001-10-10 2003-04-24 Murakami Corporation Miroir anti-eblouissement electrochromique de type solide
US20040062505A1 (en) 2002-09-26 2004-04-01 Mitsubishi Denki Kabushiki Kaisha Optical active device
JP2007101947A (ja) 2005-10-05 2007-04-19 Murakami Corp エレクトロクロミック素子およびその駆動方法
JP2012252091A (ja) 2011-06-01 2012-12-20 Sony Corp 表示装置
JP2014111710A (ja) 2012-11-01 2014-06-19 Ricoh Co Ltd エレクトロクロミック化合物、エレクトロクロミック組成物及び表示素子
JP2014159385A (ja) 2013-02-19 2014-09-04 Ricoh Co Ltd エレクトロクロミック化合物、エレクトロクロミック組成物、表示素子
JP2014160169A (ja) * 2013-02-20 2014-09-04 Sony Corp 表示装置
WO2018012108A1 (ja) * 2016-07-12 2018-01-18 ソニー株式会社 調光装置、画像表示装置及び表示装置

Also Published As

Publication number Publication date
EP3699682A1 (en) 2020-08-26
EP3699682A4 (en) 2020-10-21
EP3699682B1 (en) 2022-03-09
CN111201487B (zh) 2023-10-10
US20200355976A1 (en) 2020-11-12
CN111201487A (zh) 2020-05-26
US11378860B2 (en) 2022-07-05

Similar Documents

Publication Publication Date Title
JP6988803B2 (ja) 調光装置、画像表示装置及び表示装置
KR102660379B1 (ko) 조광 장치, 화상 표시 장치 및 표시 장치
JP6391952B2 (ja) 表示装置及び光学装置
US9933621B2 (en) Light guide unit for an image display
WO2017038350A1 (ja) 光学装置及びその製造方法並びに表示装置
JP6145966B2 (ja) 表示装置
JP6848865B2 (ja) 光学装置、画像表示装置及び表示装置
WO2018135193A1 (ja) 光学装置及び表示装置
WO2016084831A1 (ja) 光学装置及び表示装置
JP7207406B2 (ja) 表示装置
JPWO2015001839A1 (ja) 表示装置
WO2019077920A1 (ja) 調光装置、画像表示装置及び表示装置、並びに、調光装置の製造方法
WO2020241103A1 (ja) 画像表示装置及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018867331

Country of ref document: EP

Effective date: 20200518

NENP Non-entry into the national phase

Ref country code: JP