WO2019077731A1 - Double glazing and method for manufacturing same - Google Patents

Double glazing and method for manufacturing same Download PDF

Info

Publication number
WO2019077731A1
WO2019077731A1 PCT/JP2017/037967 JP2017037967W WO2019077731A1 WO 2019077731 A1 WO2019077731 A1 WO 2019077731A1 JP 2017037967 W JP2017037967 W JP 2017037967W WO 2019077731 A1 WO2019077731 A1 WO 2019077731A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium carbonate
pair
sealing material
glass plates
alkali metal
Prior art date
Application number
PCT/JP2017/037967
Other languages
French (fr)
Japanese (ja)
Inventor
周浩 筬部
美果 森山
雅秀 佐藤
Original Assignee
白石工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 白石工業株式会社 filed Critical 白石工業株式会社
Priority to PCT/JP2017/037967 priority Critical patent/WO2019077731A1/en
Publication of WO2019077731A1 publication Critical patent/WO2019077731A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/667Connectors therefor

Definitions

  • the present invention relates to a multilayer glass and a method of manufacturing the same.
  • a sealing material is formed on the outer periphery of the spacer It manufactures by apply
  • a room temperature curing resin such as a polysulfide resin, a silicone resin, and a polyurethane resin is generally used.
  • the sealing with the conventional sealing material is required for a long time, and in order to improve the productivity, it is necessary to cure the sealing material in a short time.
  • An object of the present invention is to provide a multilayer glass capable of sealing between glass plates in a short time without lowering the strength, elongation and the like of a sealing material, and a method of manufacturing the same. It is to do.
  • the multi-layer glass of the present invention is a pair of glass plates provided at a predetermined distance, and a pair of glass plates to maintain a space at the periphery of the pair of glass plates and to form an internal space inside A spacer disposed between the plates, and a sealing material provided along the outside of the spacer and sealing between a pair of glass plates, the sealing material containing an inorganic filler, in the range of 100 to 2000 ⁇ g / g And a polyurethane resin composition containing an alkali metal.
  • the inorganic filler is preferably calcium carbonate.
  • the alkali metal is preferably contained as sodium hydroxide.
  • the method for producing a multilayer glass according to the present invention is a method capable of producing the multilayer glass according to the present invention, wherein an interval is held at the peripheral portion of a pair of glass plates and an inner space is formed inside.
  • the method comprises the steps of disposing a spacer between a pair of glass plates, and applying a sealing material along the outside of the spacer to seal between the pair of glass plates.
  • FIG. 1 is a schematic cross-sectional view for explaining a multilayer glass according to an embodiment of the present invention.
  • FIG. 2 is a view showing time-dependent changes in Shore A hardness in Examples and Comparative Examples of the present invention.
  • FIG. 3 is a view showing time-dependent changes in Shore A hardness in Examples and Comparative Examples of the present invention.
  • FIG. 4 is a view showing time-dependent changes in Shore A hardness in Examples and Comparative Examples of the present invention.
  • FIG. 1 is a schematic cross-sectional view for explaining a multilayer glass according to an embodiment of the present invention.
  • the double glazing 1 of this embodiment includes a pair of glass plates 2 and 3, a spacer 4 disposed between the pair of glass plates 2 and 3, and an outer side of the spacer 4. And a sealant 7 provided along the same.
  • the spacer 4 holds the pair of glass plates 2 and 3 at a predetermined distance at the periphery of the pair of glass plates 2 and 3 and forms the inner space 6 inside the pair of glass plates It is arranged between 2 and 3.
  • the spacers 4 are attached to the pair of glass plates 2 and 3 by an adhesive 5 such as butyl rubber, for example.
  • the spacer 4 may contain a desiccant for drying the internal space 6.
  • the sealing material 7 is provided along the outside of the spacer 4 to seal between the pair of glass plates 2 and 3.
  • the sealing material 7 in the present embodiment is made of a polyurethane resin composition containing an inorganic filler and containing an alkali metal in the range of 100 to 2000 ⁇ g / g.
  • inorganic filler for example, calcium carbonate, talc, calcium magnesium carbonate, basic magnesium carbonate, quartz powder, silica powder, finely powdered silica, finely powdered calcium silicate, finely powdered aluminum silicate, kaolin clay, piophyrite clay, Seri Sites, mica, bentonite, nepheline sainite, aluminum hydroxide, magnesium hydroxide, barium sulfate and the like.
  • calcium carbonate is particularly preferred.
  • Specific examples of calcium carbonate include synthetic calcium carbonate, natural calcium carbonate (heavy calcium carbonate) and the like.
  • the calcium carbonate may be surface-treated calcium carbonate which has been surface-treated with at least one of fatty acids, resin acids and derivatives thereof.
  • the content of the inorganic filler in the polyurethane resin composition is preferably 10 to 80% by mass, and more preferably 15 to 70% by mass. If the content is too low, the viscosity of the sealing material is low and the workability is poor, and dripping or stringing may occur, which may cause problems in the coating operation. If the content is too high, the viscosity of the sealing material becomes high. It may be too mixed at the time of preparation.
  • the alkali metal content in the polyurethane resin composition is in the range of 100 to 2000 ⁇ g / g, preferably in the range of 150 to 1500 ⁇ g / g, and more preferably in the range of 180 to 1200 ⁇ g / g. If the alkali metal content is too small, the effect of the present invention that the glass plates can be sealed in a short time without lowering the strength, elongation and the like of the sealing material may not be sufficiently obtained. . If the alkali metal content is too high, an effect proportional to the content may not be obtained.
  • the alkali metal is preferably at least one of sodium and potassium.
  • the alkali metal is preferably contained in the polyurethane resin composition by containing an alkali metal compound in the polyurethane resin composition.
  • the alkali metal compound include hydroxides and carbonates of sodium or potassium. Among these, sodium hydroxide and sodium carbonate are preferable as the alkali metal compound. In particular, it is preferable to contain as sodium hydroxide. Only one type of alkali metal compound may be used, or a plurality of types may be used.
  • the alkali metal compound may be added directly to the polyurethane resin, but in the present invention, it is preferable to add it to the polyurethane resin together with the inorganic filler.
  • the polyurethane resin mainly consists of polyisocyanate and polyol.
  • tolylene diisocyanate (TDI), 4,4-diphenylmethane diisocyanate (MDI), 1,5-naphthalene diisocyanate, tolidine diisocyanate (TODI), xylene diisocyanate, hexamethylene diisocyanate and modified products thereof, dicyclohexylmethane diisocyanate (water And MDI), isophorone diisocyanate (IPDI) and the like.
  • TDI tolylene diisocyanate
  • MDI 4,4-diphenylmethane diisocyanate
  • TODI 1,5-naphthalene diisocyanate
  • TODI tolidine diisocyanate
  • xylene diisocyanate hexamethylene diisocyanate and modified products thereof, dicyclohexylmethane diisocyanate (water And MDI), isophorone diisocyanate (IPDI) and the like.
  • the polyol is not particularly limited as long as it has two or more hydroxy groups.
  • polyether polyols polyester polyols, other polyols, mixed polyols thereof and the like can be mentioned.
  • polyether polyols include ethylene oxide, butylene oxide, and poly at least one selected from glycols such as ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, 1,3-butanediol, hexanetriol, trimethylolpropane and the like.
  • the polyol etc. which are obtained by adding at least 1 sort (s) selected from the group which consists of oxy tetramethylene oxide, etc. are mentioned.
  • polypropylene ether diol and polypropylene ether triol are exemplified.
  • a castor oil type polyol and a polybutadiene type polyol are mentioned.
  • a castor oil-based polyol is a fatty acid ester-based polyol using a glycerin ester of ricinoleic acid as a raw material, and examples thereof include "URIC” manufactured by Ito Oil Co., Ltd.
  • the polybutadiene-based polyol is a polybutadiene type liquid polymer having a hydroxyl group at the molecular terminal, and examples thereof include “poly bd R-15 HT” and “poly bd R 45-HT” manufactured by Idemitsu Kosan Co., Ltd.
  • the polyurethane resin composition may further contain a plasticizer, a filler and an additive.
  • dimethyl phthalate DMP
  • DEP diethyl phthalate
  • DBP di-n-butyl phthalate
  • DHP diheptyl phthalate
  • DOP dioctyl phthalate
  • DINP diisononyl phthalate
  • DIDP Diisonodecyl phthalate
  • DTDP ditridecyl phthalate
  • BBP butyl benzyl phthalate
  • DCHP dicyclohexyl phthalate
  • tetrahydrophthalic acid ester tetrahydrophthalic acid ester
  • dioctyl adipate DOA
  • DINA diisononyl adipate
  • DIDA di-n-alkyl adipate
  • BXA bis (2-ethylhexyl) azelate
  • fillers include inorganic and organic fillers.
  • examples of the inorganic type include the above-mentioned inorganic fillers, carbon black (furness, thermal, acetylene), graphite, needle-like and fibrous, sepiolite, wollastonite, sonotolite, potassium titanate, carbon fiber, mineral
  • fibers, glass fibers and balun beads include silas balun, fly ash balun, glass balun, silica beads, alumina beads and glass beads.
  • wood flour wood flour, walnut powder, cork powder, flour, starch, ebonite powder, rubber powder, lignin, phenol resin, high styrene resin, polyethylene resin, silicone resin, urea resin, cellulose powder in fibrous form, Pulp powder, synthetic fiber powder and the like can be mentioned.
  • the additives include waxes such as amide wax and castor oil wax.
  • a 10% by mass aqueous solution of mixed fatty acid sodium salt (manufactured by NOF Corp .; Marcel Soap) was prepared and used as a surface treatment agent solution.
  • This surface treatment agent solution was added to the above-mentioned calcium carbonate slurry to surface treat calcium carbonate.
  • the addition amount of the mixed fatty acid sodium salt is 3.0 parts by mass with respect to 100 parts by mass of calcium carbonate.
  • the BET specific surface area of the obtained calcium carbonate A was 20.8 m 2 / g.
  • the pH of the obtained calcium carbonate A was 9.2.
  • the pH was measured by adding and dispersing the powder to be measured in distilled water so that the powder to be measured was 5% by mass, and measuring the pH value of the obtained slurry. The following pH was also determined in the same manner.
  • a 10% by mass aqueous solution of mixed fatty acid sodium salt (manufactured by NOF Corp .; Marcel Soap) was prepared and used as a surface treatment agent solution.
  • This surface treatment agent solution was added to the above-mentioned calcium carbonate slurry to surface treat calcium carbonate.
  • the addition amount of the mixed fatty acid sodium salt is 3.0 parts by mass with respect to 100 parts by mass of calcium carbonate.
  • the BET specific surface area of the obtained mixture of surface-treated calcium carbonate and sodium hydroxide (hereinafter referred to as “calcium carbonate B”) was 21.0 m 2 / g.
  • the pH of calcium carbonate B was 9.8.
  • the BET specific surface area of the obtained mixture of surface-treated calcium carbonate and sodium hydroxide (hereinafter referred to as “calcium carbonate C”) was 21.1 m 2 / g.
  • the pH of calcium carbonate C was 10.3.
  • the BET specific surface area of the obtained mixture of surface-treated calcium carbonate and sodium hydroxide (hereinafter referred to as “calcium carbonate D”) was 21.1 m 2 / g.
  • the pH of calcium carbonate D was 10.6.
  • the BET specific surface area of the obtained mixture of surface-treated calcium carbonate and sodium hydroxide (hereinafter referred to as “calcium carbonate E”) was 20.7 m 2 / g.
  • the pH of calcium carbonate E was 11.3.
  • the BET specific surface area of the obtained mixture of calcium carbonate and sodium hydroxide (hereinafter referred to as “calcium carbonate G”) was 2.6 m 2 / g.
  • the pH of calcium carbonate G was 10.3.
  • Calcium carbonate H Calcium carbonate was obtained in the same manner as calcium carbonate G, except that an aqueous sodium hydroxide solution was added so that the alkali metal content contained in the mixture of calcium carbonate and sodium hydroxide was 1000 ⁇ g / g.
  • the BET specific surface area of the obtained mixture of calcium carbonate and sodium hydroxide (hereinafter referred to as “calcium carbonate H”) was 2.6 m 2 / g.
  • the pH of calcium carbonate H was 10.5.
  • the BET specific surface area of the obtained mixture of calcium carbonate and sodium hydroxide (hereinafter referred to as “calcium carbonate I”) was 2.5 m 2 / g.
  • the pH of calcium carbonate I was 10.8.
  • the BET specific surface area of the obtained mixture of calcium carbonate and sodium hydroxide (hereinafter referred to as “calcium carbonate J”) was 2.6 m 2 / g.
  • the pH of calcium carbonate J was 11.2.
  • the BET specific surface area, alkali metal content and pH value of each of the obtained calcium carbonates are shown in Table 1.
  • talc L The BET specific surface area of the resulting mixture of talc and sodium hydroxide (hereinafter referred to as “talc L”) was 7.0 m 2 / g.
  • the pH of talc L was 10.6.
  • Examples 1 to 8 and Comparative Examples 1 to 2 Using calcium carbonate shown in Table 1, polyurethane resin compositions of Examples 1 to 8 and Comparative Examples 1 to 2 were produced. Specifically, 222 parts by mass of calcium carbonate, 100 parts by mass of hydroxyl-terminated liquid polybutadiene (Poly-BD (R-45HT) manufactured by Idemitsu Kosan Co., Ltd.), 48 parts by mass of diisononyl phthalate (DINP), heavy calcium carbonate 132 parts by weight of Whiteton P30 manufactured by Shiroishi Kogyo Co., Ltd., 1.6 parts by weight of an ultraviolet absorber (SEESORB 703 manufactured by Shipro Kasei Co., Ltd.), amine catalyst (1,4-Diazabicycle [2,2,2] octane) 0 .021 parts by mass and 0.006 parts by mass of tin catalyst (Neostann U-100 manufactured by Nitto Kasei
  • Example 9 and Comparative Example 3 Using talc shown in Table 1, polyurethane resin compositions of Example 9 and Comparative Example 3 were produced. Specifically, 100 parts by mass of talc, 100 parts by mass of hydroxyl-terminated liquid polybutadiene (Poly-BD (R-45 HT) manufactured by Idemitsu Kosan Co., Ltd.), 48 parts by mass of diisononyl phthalate (DINP), heavy calcium carbonate 253 parts by mass of Whiteton P30 manufactured by Kogyo Co., Ltd., 1.6 parts by mass of ultraviolet absorber (SEESORB 703 manufactured by Cipro Chemical Co., Ltd.), amine catalyst (1,4-Diazabicycle [2,2,2] octane) 0. A paste of a precursor of a polyurethane resin composition was obtained by mixing 021 parts by mass and 0.006 parts by mass of tin catalyst (Neostann U-100 manufactured by Nitto Kasei Co., Ltd.).
  • the tensile strength and elongation of the cured product of the resulting polyurethane resin composition were measured as follows. Polyurethane resin composition obtained by using a 50 ⁇ 50 ⁇ 5 mm glass plate specified in JIS A 1439 and combining spacers to make a space of 12 ⁇ 12 ⁇ 50 mm and preventing air bubbles from entering in the space The product paste was filled and aged at 23 ° C. for 14 days and then at 30 ° C. for 14 days to obtain a test piece consisting of a cured product of the polyurethane resin composition. After leaving the obtained test piece to stand at 23 ° C. for one day or more, a tensile test was performed by an autograph at a tensile speed of 50 mm / min to measure the tensile strength and the elongation.
  • the adhesion was visually confirmed with respect to the degree of peeling of the sealing material after the tensile test was performed on the test piece.
  • Table 2 shows the results of measurement of the change with time in Shore A hardness, tensile strength, elongation, and adhesion in Examples 1 to 8 and Comparative Examples 1 and 2.
  • FIG. 2 shows time-dependent changes in Shore A hardness in Examples 1 to 4 and Comparative Example 1
  • FIG. 3 shows time-based changes in Shore A hardness in Examples 5 to 8 and Comparative Example 2.
  • Table 3 shows the measurement results of the change with time of the Shore A hardness, the tensile strength, the elongation, and the adhesiveness in Example 9 and Comparative Example 3.
  • Example 9 the time-dependent change of the Shore A hardness in Example 9 and Comparative Example 3 is shown in FIG.
  • the polyurethane resin compositions of Examples 1 to 9 having an alkali metal content within the scope of the present invention have lower alkali metal contents than those within the scope of the present invention. It can be seen that the curing rate is faster than the polyurethane resin composition of Comparative Example 1, 2 or 3 which has. Further, it is found that the tensile strength, the elongation and the adhesion of the cured products of the polyurethane resin compositions of Examples 1 to 9 are comparable to those of the polyurethane resin compositions of Comparative Examples 1, 2 or 3.
  • the glass plates can be sealed in a short time without decreasing the strength, elongation, etc. of the sealing material. It can be seen that the laminated glass can be produced efficiently.
  • the alkali metal content is adjusted by adding an aqueous solution of sodium hydroxide to a slurry of calcium carbonate or talc, but the present invention is not limited to this. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are double glazing and a method for manufacturing the same with which glass sheets can be sealed within a short time without a reduction in strength, coefficient of extension, etc. of a sealing material, and with which efficient production is possible. The double glazing includes: a pair of glass sheets 2, 3 that are provided spaced apart by a predetermined gap therebetween, a spacer 4 that is disposed between the pair of glass sheets 2, 3 at peripheral edges of the pair of glass sheets 2, 3 to maintain the gap and to form an inner space 6 internally; and a sealing material 7 that is provided along an outer side of the spacer 4 and seals between the pair of glass sheets 2, 3. The sealing material 7 comprises a polyurethane resin composition that contains an inorganic filler and contains an alkali metal in a range of 100 to 2000 μg/g.

Description

複層ガラス及びその製造方法Double layer glass and method of manufacturing the same
 本発明は、複層ガラス及びその製造方法に関する。 The present invention relates to a multilayer glass and a method of manufacturing the same.
 複層ガラスは、一般に、少なくとも2枚のガラス板をスペーサーを介して対向させ、それらのガラス板とスペーサーとの間を接着剤で密着させて内部空間を形成した後、スペーサーの外周にシーリング材を塗布してガラス板間を封着することにより製造されている(特許文献1等)。シーリング材としては、ポリスルフィド系樹脂、シリコーン系樹脂、ポリウレタン系樹脂などの常温硬化型の樹脂が、一般に用いられている。 In general, in a double-glazed glass, at least two glass plates are made to face each other via a spacer, and the glass plate and the spacer are closely adhered with an adhesive to form an internal space, and then a sealing material is formed on the outer periphery of the spacer It manufactures by apply | coating and sealing between glass plates (patent document 1 grade | etc.,). As a sealing material, a room temperature curing resin such as a polysulfide resin, a silicone resin, and a polyurethane resin is generally used.
特開2000-17958号公報JP 2000-17958 A
 従来のシーリング材による封着は、長時間必要であり、生産性を高めるためには短時間でシーリング材を硬化させることが必要である。しかしながら、従来、シーリング材を短時間で硬化させると、硬化後のシーリング材の強度、伸び率等が低下するという問題があった。 The sealing with the conventional sealing material is required for a long time, and in order to improve the productivity, it is necessary to cure the sealing material in a short time. However, conventionally, when the sealing material is cured in a short time, there has been a problem that the strength, the elongation and the like of the sealing material after curing decrease.
 本発明の目的は、シーリング材の強度、伸び率等を低下させることなく、短時間でガラス板間を封着させることができ、効率良く製造することができる複層ガラス及びその製造方法を提供することにある。 An object of the present invention is to provide a multilayer glass capable of sealing between glass plates in a short time without lowering the strength, elongation and the like of a sealing material, and a method of manufacturing the same. It is to do.
 本発明の複層ガラスは、所定の間隔を隔てて設けられる1対のガラス板と、1対のガラス板の周縁部において、間隔を保持し、内側に内部空間を形成するため1対のガラス板間に配置されるスペーサーと、スペーサーの外側に沿って設けられ、1対のガラス板間を封着するシーリング材とを備え、シーリング材は、無機フィラーを含み、100~2000μg/gの範囲でアルカリ金属を含むポリウレタン樹脂組成物からなることを特徴としている。 The multi-layer glass of the present invention is a pair of glass plates provided at a predetermined distance, and a pair of glass plates to maintain a space at the periphery of the pair of glass plates and to form an internal space inside A spacer disposed between the plates, and a sealing material provided along the outside of the spacer and sealing between a pair of glass plates, the sealing material containing an inorganic filler, in the range of 100 to 2000 μg / g And a polyurethane resin composition containing an alkali metal.
 無機フィラーは、炭酸カルシウムであることが好ましい。 The inorganic filler is preferably calcium carbonate.
 アルカリ金属は、水酸化ナトリウムとして含まれていることが好ましい。 The alkali metal is preferably contained as sodium hydroxide.
 本発明の複層ガラスの製造方法は、上記本発明の複層ガラスを製造することができる方法であって、1対のガラス板の周縁部において、間隔を保持し、内側に内部空間を形成するため1対のガラス板間にスペーサーを配置する工程と、シーリング材をスペーサーの外側に沿って塗布し、1対のガラス板間を封着する工程とを備えることを特徴としている。 The method for producing a multilayer glass according to the present invention is a method capable of producing the multilayer glass according to the present invention, wherein an interval is held at the peripheral portion of a pair of glass plates and an inner space is formed inside. For this purpose, the method comprises the steps of disposing a spacer between a pair of glass plates, and applying a sealing material along the outside of the spacer to seal between the pair of glass plates.
 本発明によれば、シーリング材の強度、伸び率等を低下させることなく、短時間でガラス板間を封着させることができ、効率良く製造することができる。 ADVANTAGE OF THE INVENTION According to this invention, between the glass plates can be sealed in a short time, without reducing the intensity | strength of a sealing material, elongation rate, etc., and it can manufacture efficiently.
図1は、本発明の一実施形態の複層ガラスを説明するための模式的断面図である。FIG. 1 is a schematic cross-sectional view for explaining a multilayer glass according to an embodiment of the present invention. 図2は、本発明の実施例及び比較例におけるショアーA硬度の経時変化を示す図である。FIG. 2 is a view showing time-dependent changes in Shore A hardness in Examples and Comparative Examples of the present invention. 図3は、本発明の実施例及び比較例におけるショアーA硬度の経時変化を示す図である。FIG. 3 is a view showing time-dependent changes in Shore A hardness in Examples and Comparative Examples of the present invention. 図4は、本発明の実施例及び比較例におけるショアーA硬度の経時変化を示す図である。FIG. 4 is a view showing time-dependent changes in Shore A hardness in Examples and Comparative Examples of the present invention.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments will be described. However, the following embodiments are merely illustrative, and the present invention is not limited to the following embodiments.
 図1は、本発明の一実施形態の複層ガラスを説明するための模式的断面図である。図1に示すように、本実施形態の複層ガラス1は、1対のガラス板2及び3と、1対のガラス板2及び3の間に配置されるスペーサー4と、スペーサー4の外側に沿って設けられるシーリング材7とを備えている。スペーサー4は、1対のガラス板2及び3の周縁部において、1対のガラス板2及び3を所定の間隔隔てて保持し、かつその内側に内部空間6を形成するため1対のガラス板2及び3の間に配置されている。スペーサー4は、例えば、ブチルゴムなどの接着剤5により1対のガラス板2及び3に取り付けられている。スペーサー4内には、内部空間6を乾燥させるための乾燥剤が含まれていてもよい。 FIG. 1 is a schematic cross-sectional view for explaining a multilayer glass according to an embodiment of the present invention. As shown in FIG. 1, the double glazing 1 of this embodiment includes a pair of glass plates 2 and 3, a spacer 4 disposed between the pair of glass plates 2 and 3, and an outer side of the spacer 4. And a sealant 7 provided along the same. The spacer 4 holds the pair of glass plates 2 and 3 at a predetermined distance at the periphery of the pair of glass plates 2 and 3 and forms the inner space 6 inside the pair of glass plates It is arranged between 2 and 3. The spacers 4 are attached to the pair of glass plates 2 and 3 by an adhesive 5 such as butyl rubber, for example. The spacer 4 may contain a desiccant for drying the internal space 6.
 シーリング材7は、スペーサー4の外側に沿って設けられおり、これによって1対のガラス板2及び3の間が封着されている。本実施形態におけるシーリング材7は、無機フィラーを含み、100~2000μg/gの範囲でアルカリ金属を含むポリウレタン樹脂組成物からなる。 The sealing material 7 is provided along the outside of the spacer 4 to seal between the pair of glass plates 2 and 3. The sealing material 7 in the present embodiment is made of a polyurethane resin composition containing an inorganic filler and containing an alkali metal in the range of 100 to 2000 μg / g.
 (無機フィラー)
 無機フィラーとしては、例えば、炭酸カルシウム、タルク、カルシウム・マグネシウム炭酸塩、塩基性炭酸マグネシウム、石英粉、珪石粉、微粉珪酸、微粉末珪酸カルシウム、微粉珪酸アルミニウム、カオリンクレー、パイオフィライトクレー、セリサイト、雲母、ベントナイト、ネフェリンサイナイト、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウムなどが挙げられる。これらの中でも、特に炭酸カルシウムが好ましい。炭酸カルシウムの具体例としては、合成炭酸カルシウム、天然炭酸カルシウム(重質炭酸カルシウム)などが挙げられる。炭酸カルシウムは、脂肪酸、樹脂酸及びこれらの誘導体の少なくとも1種などで表面処理された表面処理炭酸カルシウムであってもよい。
(Inorganic filler)
As the inorganic filler, for example, calcium carbonate, talc, calcium magnesium carbonate, basic magnesium carbonate, quartz powder, silica powder, finely powdered silica, finely powdered calcium silicate, finely powdered aluminum silicate, kaolin clay, piophyrite clay, Seri Sites, mica, bentonite, nepheline sainite, aluminum hydroxide, magnesium hydroxide, barium sulfate and the like. Among these, calcium carbonate is particularly preferred. Specific examples of calcium carbonate include synthetic calcium carbonate, natural calcium carbonate (heavy calcium carbonate) and the like. The calcium carbonate may be surface-treated calcium carbonate which has been surface-treated with at least one of fatty acids, resin acids and derivatives thereof.
 ポリウレタン樹脂組成物中の無機フィラーの含有量としては、10~80質量%であることが好ましく、15~70質量%であることがさらに好ましい。含有量が少なすぎると、シーリング材の粘度が低く作業性が悪くなり、タレや糸引きが起こり塗付作業に支障が出る場合があり、含有量は多すぎると、シーリング材の粘度が高くなりすぎ、作製時に上手く混ざり合わない場合がある。 The content of the inorganic filler in the polyurethane resin composition is preferably 10 to 80% by mass, and more preferably 15 to 70% by mass. If the content is too low, the viscosity of the sealing material is low and the workability is poor, and dripping or stringing may occur, which may cause problems in the coating operation. If the content is too high, the viscosity of the sealing material becomes high. It may be too mixed at the time of preparation.
 (アルカリ金属)
 ポリウレタン樹脂組成物中のアルカリ金属含有量は、100~2000μg/gの範囲であり、好ましくは150~1500μg/gの範囲であり、さらに好ましくは180~1200μg/gの範囲である。アルカリ金属含有量が少なすぎると、シーリング材の強度、伸び率等を低下させることなく、短時間でガラス板間を封着させることができるという本発明の効果が十分に得られない場合がある。アルカリ金属含有量が多すぎると、含有量に比例した効果が得られなくなる場合がある。
(Alkali metal)
The alkali metal content in the polyurethane resin composition is in the range of 100 to 2000 μg / g, preferably in the range of 150 to 1500 μg / g, and more preferably in the range of 180 to 1200 μg / g. If the alkali metal content is too small, the effect of the present invention that the glass plates can be sealed in a short time without lowering the strength, elongation and the like of the sealing material may not be sufficiently obtained. . If the alkali metal content is too high, an effect proportional to the content may not be obtained.
 アルカリ金属は、ナトリウム及びカリウムの少なくとも1種であることが好ましい。アルカリ金属は、アルカリ金属化合物をポリウレタン樹脂組成物中に含有させることにより、ポリウレタン樹脂組成物に含まれていることが好ましい。アルカリ金属化合物としては、ナトリウムまたはカリウムの水酸化物、炭酸塩などが挙げられる。アルカリ金属化合物としては、これらの中でも、水酸化ナトリウム、炭酸ナトリウムが好ましい。特に、水酸化ナトリウムとして含有されていることが好ましい。アルカリ金属化合物は、1種類のみを用いてもよいし、複数種類を用いてもよい。 The alkali metal is preferably at least one of sodium and potassium. The alkali metal is preferably contained in the polyurethane resin composition by containing an alkali metal compound in the polyurethane resin composition. Examples of the alkali metal compound include hydroxides and carbonates of sodium or potassium. Among these, sodium hydroxide and sodium carbonate are preferable as the alkali metal compound. In particular, it is preferable to contain as sodium hydroxide. Only one type of alkali metal compound may be used, or a plurality of types may be used.
 アルカリ金属化合物は、ポリウレタン樹脂に直接添加してもよいが、本発明においては、無機フィラーとともにポリウレタン樹脂に添加することが好ましい。例えば、水等の媒体にアルカリ金属化合物を溶解し、溶液の状態で無機フィラーと混合した後、乾燥させて媒体を除去し、その後の混合物を、ポリウレタン樹脂に添加することが好ましい。 The alkali metal compound may be added directly to the polyurethane resin, but in the present invention, it is preferable to add it to the polyurethane resin together with the inorganic filler. For example, it is preferable to dissolve the alkali metal compound in a medium such as water and mix it with the inorganic filler in the form of a solution, and then to dry it to remove the medium, and then add the mixture to the polyurethane resin.
 (ポリウレタン樹脂)
 ポリウレタン樹脂は、主にポリイソシアネート及びポリオールからなる。
(Polyurethane resin)
The polyurethane resin mainly consists of polyisocyanate and polyol.
 イソシアネートとしては、トリレンジイソシアネート(TDI)、4,4-ジフェニルメタンジイソシアネート(MDI)、1,5-ナフタレンジイソシアネート、トリジンジイソシアネート(TODI)、キシレンジイソシアネート、ヘキサメチレンジイソシアネート及びその変性品、ジシクロヘキシルメタンジイソシアネート(水添化MDI)、イソホロンジイソシアネート(IPDI)などが挙げられる。 As the isocyanate, tolylene diisocyanate (TDI), 4,4-diphenylmethane diisocyanate (MDI), 1,5-naphthalene diisocyanate, tolidine diisocyanate (TODI), xylene diisocyanate, hexamethylene diisocyanate and modified products thereof, dicyclohexylmethane diisocyanate (water And MDI), isophorone diisocyanate (IPDI) and the like.
 ポリオールとしては、ヒドロキシ基を2個以上有するものであれば特に限定されない。例えば、ポリエーテルポリオール、ポリエステルポリオール、その他のポリオール、これらの混合ポリオールなどが挙げられる。ポリエーテルポリオールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、1,3-ブタンジオール、ヘキサントリオール、トリメチロールプロパンなどのグリコールから選択される少なくとも1種に、エチレンオキシド、ブチレンオキシドおよびポリオキシテトラメチレンオキシドからなる群から選択される少なくとも1種を付加させて得られるポリオール等が挙げられる。具体的には、ポリプロピレンエーテルジオール、ポリプロピレンエーテルトリオールが例示される。また、その他のポリオールとしては、ひまし油系ポリオール、ポリブタジエン系ポリオールが挙げられる。ひまし油系ポリオールとはリシノレイン酸のグリセリンエステルを原料とした脂肪酸エステル系ポリオールで、例えば伊藤製油(株)製「URIC」等が挙げられる。ポリブタジエン系ポリオールは、分子末端に水酸基を有するポリブタジエンタイプの液状ポリマーで、例えば、出光興産(株)製の「poly bd R-15HT」、「poly bd R45-HT」等が挙げられる。 The polyol is not particularly limited as long as it has two or more hydroxy groups. For example, polyether polyols, polyester polyols, other polyols, mixed polyols thereof and the like can be mentioned. Examples of polyether polyols include ethylene oxide, butylene oxide, and poly at least one selected from glycols such as ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, 1,3-butanediol, hexanetriol, trimethylolpropane and the like. The polyol etc. which are obtained by adding at least 1 sort (s) selected from the group which consists of oxy tetramethylene oxide, etc. are mentioned. Specifically, polypropylene ether diol and polypropylene ether triol are exemplified. Moreover, as another polyol, a castor oil type polyol and a polybutadiene type polyol are mentioned. A castor oil-based polyol is a fatty acid ester-based polyol using a glycerin ester of ricinoleic acid as a raw material, and examples thereof include "URIC" manufactured by Ito Oil Co., Ltd. The polybutadiene-based polyol is a polybutadiene type liquid polymer having a hydroxyl group at the molecular terminal, and examples thereof include “poly bd R-15 HT” and “poly bd R 45-HT” manufactured by Idemitsu Kosan Co., Ltd.
 ポリウレタン樹脂組成物には、さらに、可塑剤、充填剤及び添加剤が含まれていてもよい。 The polyurethane resin composition may further contain a plasticizer, a filler and an additive.
 可塑剤としては、フタル酸ジメチル(DMP)、フタル酸ジエチル(DEP)、フタル酸ジ-n-ブチル(DBP)、フタル酸ジヘプチル(DHP)、フタル酸ジオクチル(DOP)、フタル酸ジイソノニル(DINP)、フタル酸ジイソノデシル(DIDP)、フタル酸ジトリデシル(DTDP)、フタル酸ブチルベンジル(BBP)、フタル酸ジシクロヘキシル(DCHP)、テトラヒドロフタル酸エステル、アジピン酸ジオクチル(DOA)、アジピン酸ジイソノニル(DINA)、アジピン酸ジイソデシル(DIDA)、アジピン酸ジ-n-アルキル、ジブチルジグリコールアジペート(BXA)、アゼライン酸ビス(2-エチルヘキシル)(DOZ)、セバシン酸ジブチル(DBS)、セバシン酸ジオクチル(DOS)、マレイン酸ジブチル(DBM)、マレイン酸ジ-2-エチルヘキシル(DOM)、フマル酸ジブチル(DBF)、リン酸トリクレシル(TCP)、トリエチルホスフェート(TEP)トリブチルホスフェート(TBP)、トリス・(2-エチルヘキシル)ホスフェート(TOP)、トリ(クロロエチル)ホスフェート(TCEP)、トリスジクロロプロピルホスフェート(CRP)、トリブトキシエチルホスフェート(TBXP)、トリス(β-クロロプロピル)ホスフェート(TMCPP)、トリフェニルホスフェート(TPP)、オクチルジフェニルホスフェート(CDP)、クエン酸アセチルトリエチル、アセチルクエン酸トリブチルなどがあり、その他にはトリメリット酸系可塑剤、ポリエステル系可塑剤、塩素化パラフィン、ステアリン酸系可塑剤など、さらにジメチルポリシロキサンなどが挙げられる。 As a plasticizer, dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), diheptyl phthalate (DHP), dioctyl phthalate (DOP), diisononyl phthalate (DINP) , Diisonodecyl phthalate (DIDP), ditridecyl phthalate (DTDP), butyl benzyl phthalate (BBP), dicyclohexyl phthalate (DCHP), tetrahydrophthalic acid ester, tetrahydrophthalic acid ester, dioctyl adipate (DOA), diisononyl adipate (DINA), adipine Diisodecyl acid (DIDA), di-n-alkyl adipate, dibutyl diglycol adipate (BXA), bis (2-ethylhexyl) azelate (DOZ), dibutyl sebacate (DBS), dioctyl sebacate (DOS), Murray Dibutyl acid (DBM), di-2-ethylhexyl maleate (DOM), dibutyl fumarate (DBF), tricresyl phosphate (TCP), triethyl phosphate (TEP), tributyl phosphate (TBP), tris · (2-ethylhexyl) phosphate (TOP), tri (chloroethyl) phosphate (TCEP), tris dichloropropyl phosphate (CRP), tributoxyethyl phosphate (TBXP), tris (β-chloropropyl) phosphate (TMCPP), triphenyl phosphate (TPP), octyl diphenyl Phosphate (CDP), acetyl triethyl citrate, tributyl acetyl citrate etc. Others include trimellitic acid plasticizer, polyester plasticizer, chlorinated paraffin, stearic acid Further, dimethylpolysiloxane and the like can be mentioned.
 充填剤(増粘剤を含む)としては、無機系のものと有機系のものが挙げられる。無機系のものとしては、上記無機フィラーが挙げられるとともに、カーボンブラック(ファーネス、サーマル、アセチレン)、グラファイト、針状・繊維状では、セピオライト、ワラストナイト、ゾノトライト、チタン酸カリウム、カーボン繊維、ミネラル繊維、ガラス繊維、バルン・ビーズ状では、シラスバルン、フライアッシュバルン、ガラスバルン、シリカビーズ、アルミナビーズ、ガラスビーズなどが挙げられる。有機系のものとしては、木粉、クルミ粉、コルク粉、小麦粉、澱粉、エボナイト粉末、ゴム粉末、リグニン、フェノール樹脂、ハイスチレン樹脂、ポリエチレン樹脂、シリコーン樹脂、尿素樹脂、繊維状ではセルロース粉末、パルプ粉末、合成繊維粉末などが挙げられる。 Examples of fillers (including thickeners) include inorganic and organic fillers. Examples of the inorganic type include the above-mentioned inorganic fillers, carbon black (furness, thermal, acetylene), graphite, needle-like and fibrous, sepiolite, wollastonite, sonotolite, potassium titanate, carbon fiber, mineral Examples of fibers, glass fibers and balun beads include silas balun, fly ash balun, glass balun, silica beads, alumina beads and glass beads. As organic type, wood flour, walnut powder, cork powder, flour, starch, ebonite powder, rubber powder, lignin, phenol resin, high styrene resin, polyethylene resin, silicone resin, urea resin, cellulose powder in fibrous form, Pulp powder, synthetic fiber powder and the like can be mentioned.
 添加剤としては、アマイドワックス、カストル油ワックスなどのワックスが挙げられる。 The additives include waxes such as amide wax and castor oil wax.
 以下、本発明を実施例によって、より具体的に説明する。本発明は、以下の実施例に限定されない。 Hereinafter, the present invention will be more specifically described by way of examples. The present invention is not limited to the following examples.
 <炭酸カルシウムA~Jの合成>
 (炭酸カルシウムA)
 BET比表面積が22m/gの合成炭酸カルシウム1000gに、固形分が10質量%となるように水を加え、40℃で撹拌して、炭酸カルシウムのスラリーを調製した。
<Synthesis of calcium carbonate A to J>
(Calcium carbonate A)
Water was added to 1000 g of synthetic calcium carbonate having a BET specific surface area of 22 m 2 / g so that the solid content was 10% by mass, and the mixture was stirred at 40 ° C. to prepare a calcium carbonate slurry.
 次に、混合脂肪酸ナトリウム塩(日本油脂製;マルセル石鹸)の10質量%水溶液を調製し、表面処理剤溶液とした。この表面処理剤溶液を上記の炭酸カルシウムスラリーに添加し、炭酸カルシウムを表面処理した。なお、炭酸カルシウム100質量部に対する混合脂肪酸ナトリウム塩の添加量は3.0質量部である。 Next, a 10% by mass aqueous solution of mixed fatty acid sodium salt (manufactured by NOF Corp .; Marcel Soap) was prepared and used as a surface treatment agent solution. This surface treatment agent solution was added to the above-mentioned calcium carbonate slurry to surface treat calcium carbonate. The addition amount of the mixed fatty acid sodium salt is 3.0 parts by mass with respect to 100 parts by mass of calcium carbonate.
 次に、この脂肪酸処理した炭酸カルシウムのスラリーを脱水して、固形分が60質量%のケーキを得た。得られたケーキを、乾燥機で乾燥して、表面処理した炭酸カルシウムAを得た。 Next, the slurry of calcium carbonate treated with fatty acid was dehydrated to obtain a cake having a solid content of 60% by mass. The obtained cake was dried by a drier to obtain surface-treated calcium carbonate A.
 得られた炭酸カルシウムAのBET比表面積は20.8m/gであった。また、得られた炭酸カルシウムAのpHは9.2であった。pHの測定は、蒸留水に測定対象の粉体が5質量%となるように添加して分散させ、得られたスラリーのpH値を測定して求めた。以下のpHも同様にして求めた。 The BET specific surface area of the obtained calcium carbonate A was 20.8 m 2 / g. In addition, the pH of the obtained calcium carbonate A was 9.2. The pH was measured by adding and dispersing the powder to be measured in distilled water so that the powder to be measured was 5% by mass, and measuring the pH value of the obtained slurry. The following pH was also determined in the same manner.
 (炭酸カルシウムB)
 BET比表面積が22m/gの合成炭酸カルシウム1000gに固形分が10質量%となるように水を加え、40℃で撹拌して、炭酸カルシウムのスラリーを調製した。
(Calcium carbonate B)
Water was added to 1000 g of synthetic calcium carbonate having a BET specific surface area of 22 m 2 / g so that the solid content was 10% by mass, and the mixture was stirred at 40 ° C. to prepare a calcium carbonate slurry.
 次に、混合脂肪酸ナトリウム塩(日本油脂製;マルセル石鹸)の10質量%水溶液を調製し、表面処理剤溶液とした。この表面処理剤溶液を上記の炭酸カルシウムスラリーに添加し、炭酸カルシウムを表面処理した。なお、炭酸カルシウム100質量部に対する混合脂肪酸ナトリウム塩の添加量は3.0質量部である。 Next, a 10% by mass aqueous solution of mixed fatty acid sodium salt (manufactured by NOF Corp .; Marcel Soap) was prepared and used as a surface treatment agent solution. This surface treatment agent solution was added to the above-mentioned calcium carbonate slurry to surface treat calcium carbonate. The addition amount of the mixed fatty acid sodium salt is 3.0 parts by mass with respect to 100 parts by mass of calcium carbonate.
 次に、この脂肪酸処理した炭酸カルシウムのスラリーに、濃度2.5mol/lの水酸化ナトリウム水溶液を加えて、撹拌した。次に、得られたスラリーを脱水して、固形分が60質量%のケーキを得た。得られたケーキを、乾燥機で乾燥して、表面処理炭酸カルシウムを得た。なお、水酸化ナトリウム水溶液の添加量は、脱水・乾燥後の表面処理炭酸カルシウムと水酸化ナトリウムの混合物中に含まれるアルカリ金属含有量が500μg/gとなるように調整した。 Next, to this slurry of calcium carbonate treated with fatty acid, an aqueous solution of sodium hydroxide having a concentration of 2.5 mol / l was added and stirred. Next, the obtained slurry was dewatered to obtain a cake with a solid content of 60% by mass. The obtained cake was dried in a drier to obtain surface-treated calcium carbonate. The addition amount of the sodium hydroxide aqueous solution was adjusted so that the alkali metal content contained in the mixture of surface-treated calcium carbonate and sodium hydroxide after dehydration and drying was 500 μg / g.
 得られた表面処理炭酸カルシウムと水酸化ナトリウムの混合物(以下、「炭酸カルシウムB」という)のBET比表面積は、21.0m/gであった。炭酸カルシウムBのpHは9.8であった。 The BET specific surface area of the obtained mixture of surface-treated calcium carbonate and sodium hydroxide (hereinafter referred to as “calcium carbonate B”) was 21.0 m 2 / g. The pH of calcium carbonate B was 9.8.
 (炭酸カルシウムC)
 表面処理炭酸カルシウムと水酸化ナトリウムの混合物中に含まれるアルカリ金属含有量が1000μg/gとなるように水酸化ナトリウム水溶液を添加する以外は、炭酸カルシウムBと同様にして表面処理炭酸カルシウムを得た。
(Calcium carbonate C)
Surface-treated calcium carbonate was obtained in the same manner as calcium carbonate B, except that an aqueous solution of sodium hydroxide was added so that the alkali metal content contained in the mixture of surface-treated calcium carbonate and sodium hydroxide would be 1000 μg / g. .
 得られた表面処理炭酸カルシウムと水酸化ナトリウムの混合物(以下、「炭酸カルシウムC」という)のBET比表面積は、21.1m/gであった。炭酸カルシウムCのpHは10.3であった。 The BET specific surface area of the obtained mixture of surface-treated calcium carbonate and sodium hydroxide (hereinafter referred to as “calcium carbonate C”) was 21.1 m 2 / g. The pH of calcium carbonate C was 10.3.
 (炭酸カルシウムD)
 表面処理炭酸カルシウムと水酸化ナトリウムの混合物中に含まれるアルカリ金属含有量が1500μg/gとなるように水酸化ナトリウム水溶液を添加する以外は、炭酸カルシウムBと同様にして表面処理炭酸カルシウムを得た。
(Calcium carbonate D)
Surface-treated calcium carbonate was obtained in the same manner as calcium carbonate B, except that an aqueous solution of sodium hydroxide was added so that the alkali metal content contained in the mixture of surface-treated calcium carbonate and sodium hydroxide would be 1,500 μg / g. .
 得られた表面処理炭酸カルシウムと水酸化ナトリウムの混合物(以下、「炭酸カルシウムD」という)のBET比表面積は、21.1m/gであった。炭酸カルシウムDのpHは10.6であった。 The BET specific surface area of the obtained mixture of surface-treated calcium carbonate and sodium hydroxide (hereinafter referred to as “calcium carbonate D”) was 21.1 m 2 / g. The pH of calcium carbonate D was 10.6.
 (炭酸カルシウムE)
 表面処理炭酸カルシウムと水酸化ナトリウムの混合物中に含まれるアルカリ金属含有量が2500μg/gとなるように水酸化ナトリウム水溶液を添加する以外は、炭酸カルシウムBと同様にして表面処理炭酸カルシウムを得た。
(Calcium carbonate E)
Surface-treated calcium carbonate was obtained in the same manner as calcium carbonate B, except that an aqueous solution of sodium hydroxide was added so that the alkali metal content contained in the mixture of surface-treated calcium carbonate and sodium hydroxide would be 2500 μg / g. .
 得られた表面処理炭酸カルシウムと水酸化ナトリウムの混合物(以下、「炭酸カルシウムE」という)のBET比表面積は、20.7m/gであった。炭酸カルシウムEのpHは11.3であった。 The BET specific surface area of the obtained mixture of surface-treated calcium carbonate and sodium hydroxide (hereinafter referred to as “calcium carbonate E”) was 20.7 m 2 / g. The pH of calcium carbonate E was 11.3.
 (炭酸カルシウムF)
 BET比表面積2.6m/gの重質炭酸カルシウムを炭酸カルシウムFとした。pHは9.1であった。
(Calcium carbonate F)
The ground calcium carbonate having a BET specific surface area of 2.6 m 2 / g was named calcium carbonate F. The pH was 9.1.
 (炭酸カルシウムG)
 BET比表面積2.6m/gの重質炭酸カルシウム1000gに固形分が10質量%となるように水を加え、炭酸カルシウムのスラリーを調製した。次に、この炭酸カルシウムのスラリーに、濃度2.5mol/lの水酸化ナトリウム水溶液を加えて、撹拌した。その後、得られたスラリーを脱水して、固形分が60質量%のケーキを得た。得られたケーキを、乾燥機で乾燥した。なお、水酸化ナトリウム水溶液の添加量は、脱水・乾燥後の炭酸カルシウムと水酸化ナトリウムの混合物中に含まれるアルカリ金属含有量が500μg/gとなるように調整した。
(Calcium carbonate G)
Water was added to 1000 g of ground calcium carbonate having a BET specific surface area of 2.6 m 2 / g so that the solid content was 10% by mass, and a calcium carbonate slurry was prepared. Next, to this slurry of calcium carbonate, an aqueous solution of sodium hydroxide having a concentration of 2.5 mol / l was added and stirred. Thereafter, the obtained slurry was dewatered to obtain a cake having a solid content of 60% by mass. The resulting cake was dried in a dryer. The addition amount of the sodium hydroxide aqueous solution was adjusted so that the alkali metal content in the mixture of calcium carbonate and sodium hydroxide after dehydration and drying was 500 μg / g.
 得られた炭酸カルシウムと水酸化ナトリウムの混合物(以下、「炭酸カルシウムG」という)のBET比表面積は、2.6m/gであった。炭酸カルシウムGのpHは10.3であった。 The BET specific surface area of the obtained mixture of calcium carbonate and sodium hydroxide (hereinafter referred to as “calcium carbonate G”) was 2.6 m 2 / g. The pH of calcium carbonate G was 10.3.
 (炭酸カルシウムH)
 炭酸カルシウムと水酸化ナトリウムの混合物中に含まれるアルカリ金属含有量が1000μg/gとなるように水酸化ナトリウム水溶液を添加する以外は、炭酸カルシウムGと同様にして炭酸カルシウムを得た。
(Calcium carbonate H)
Calcium carbonate was obtained in the same manner as calcium carbonate G, except that an aqueous sodium hydroxide solution was added so that the alkali metal content contained in the mixture of calcium carbonate and sodium hydroxide was 1000 μg / g.
 得られた炭酸カルシウムと水酸化ナトリウムの混合物(以下、「炭酸カルシウムH」という)のBET比表面積は、2.6m/gであった。炭酸カルシウムHのpHは10.5であった。 The BET specific surface area of the obtained mixture of calcium carbonate and sodium hydroxide (hereinafter referred to as “calcium carbonate H”) was 2.6 m 2 / g. The pH of calcium carbonate H was 10.5.
 (炭酸カルシウムI)
 炭酸カルシウムと水酸化ナトリウムの混合物中に含まれるアルカリ金属含有量が1500μg/gとなるように水酸化ナトリウム水溶液を添加する以外は、炭酸カルシウムGと同様にして炭酸カルシウムを得た。
(Calcium carbonate I)
Calcium carbonate was obtained in the same manner as calcium carbonate G, except that an aqueous sodium hydroxide solution was added so that the alkali metal content contained in the mixture of calcium carbonate and sodium hydroxide would be 1,500 μg / g.
 得られた炭酸カルシウムと水酸化ナトリウムの混合物(以下、「炭酸カルシウムI」という)のBET比表面積は、2.5m/gであった。炭酸カルシウムIのpHは10.8であった。 The BET specific surface area of the obtained mixture of calcium carbonate and sodium hydroxide (hereinafter referred to as “calcium carbonate I”) was 2.5 m 2 / g. The pH of calcium carbonate I was 10.8.
 (炭酸カルシウムJ)
 炭酸カルシウムと水酸化ナトリウムの混合物中に含まれるアルカリ金属含有量が2500μg/gとなるように水酸化ナトリウム水溶液を添加する以外は、炭酸カルシウムGと同様にして炭酸カルシウムを得た。
(Calcium carbonate J)
Calcium carbonate was obtained in the same manner as calcium carbonate G, except that an aqueous sodium hydroxide solution was added so that the alkali metal content contained in the mixture of calcium carbonate and sodium hydroxide would be 2500 μg / g.
 得られた炭酸カルシウムと水酸化ナトリウムの混合物(以下、「炭酸カルシウムJ」という)のBET比表面積は、2.6m/gであった。炭酸カルシウムJのpHは11.2であった。 The BET specific surface area of the obtained mixture of calcium carbonate and sodium hydroxide (hereinafter referred to as “calcium carbonate J”) was 2.6 m 2 / g. The pH of calcium carbonate J was 11.2.
 得られた各炭酸カルシウムのBET比表面積、アルカリ金属含有量及びpHの値を表1に示す。 The BET specific surface area, alkali metal content and pH value of each of the obtained calcium carbonates are shown in Table 1.
  <タルクK及びLの合成>
 (タルクK)
BET比表面積8.1m/gのタルクをタルクKとした。pHは9.7であった。
<Synthesis of Talc K and L>
(Talc K)
A talc K having a BET specific surface area of 8.1 m 2 / g was used. The pH was 9.7.
 (タルクL)
 BET比表面積8.1m/gのタルク1000gに固形分が10質量%となるように水を加え、タルクのスラリーを調製した。次に、このタルクのスラリーに、濃度2.5mol/lの水酸化ナトリウム水溶液を加えて、撹拌した。その後、得られたスラリーを脱水して、固形分が60質量%のケーキを得た。得られたケーキを、乾燥機で乾燥して、タルクを得た。なお、水酸化ナトリウム水溶液の添加量は、脱水・乾燥後のタルクと水酸化ナトリウムの混合物中に含まれるアルカリ金属含有量が2500μg/gとなるように調整した。
(Talc L)
Water was added to 1000 g of talc having a BET specific surface area of 8.1 m 2 / g so that the solid content was 10% by mass, to prepare a slurry of talc. Next, to this slurry of talc, an aqueous solution of sodium hydroxide having a concentration of 2.5 mol / l was added and stirred. Thereafter, the obtained slurry was dewatered to obtain a cake having a solid content of 60% by mass. The resulting cake was dried in a drier to obtain talc. The addition amount of the sodium hydroxide aqueous solution was adjusted so that the alkali metal content contained in the mixture of talc and sodium hydroxide after dehydration and drying was 2500 μg / g.
 得られたタルクと水酸化ナトリウムの混合物(以下、「タルクL」という)のBET比表面積は、7.0m/gであった。タルクLのpHは10.6であった。 The BET specific surface area of the resulting mixture of talc and sodium hydroxide (hereinafter referred to as “talc L”) was 7.0 m 2 / g. The pH of talc L was 10.6.
 得られた各タルクのBET比表面積、アルカリ金属含有量及びpHの値を表1に示す。 The BET specific surface area, alkali metal content and pH value of each of the obtained talcs are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
  <ポリウレタン樹脂組成物の製造>
 (実施例1~8及び比較例1~2)
 表1に示す炭酸カルシウムを用いて、実施例1~8及び比較例1~2のポリウレタン樹脂組成物を製造した。具体的には、炭酸カルシウム222質量部、水酸基末端液状ポリブタジエン(出光興産株式会社製のPoly-BD(R-45HT))100質量部、フタル酸ジイソノニル(DINP)48質量部、重質炭酸カルシウム(白石工業株式会社製のホワイトンP30)132質量部、紫外線吸収剤(シプロ化成株式会社製のSEESORB703)1.6質量部、アミン触媒(1,4-Diazabicycle[2,2,2]octane)0.021質量部、錫触媒(日東化成株式会社製のNeostann U-100)0.006質量部を混合して、ポリウレタン樹脂組成物の前駆体のペーストを得た。
<Production of polyurethane resin composition>
(Examples 1 to 8 and Comparative Examples 1 to 2)
Using calcium carbonate shown in Table 1, polyurethane resin compositions of Examples 1 to 8 and Comparative Examples 1 to 2 were produced. Specifically, 222 parts by mass of calcium carbonate, 100 parts by mass of hydroxyl-terminated liquid polybutadiene (Poly-BD (R-45HT) manufactured by Idemitsu Kosan Co., Ltd.), 48 parts by mass of diisononyl phthalate (DINP), heavy calcium carbonate 132 parts by weight of Whiteton P30 manufactured by Shiroishi Kogyo Co., Ltd., 1.6 parts by weight of an ultraviolet absorber (SEESORB 703 manufactured by Shipro Kasei Co., Ltd.), amine catalyst (1,4-Diazabicycle [2,2,2] octane) 0 .021 parts by mass and 0.006 parts by mass of tin catalyst (Neostann U-100 manufactured by Nitto Kasei Co., Ltd.) were mixed to obtain a paste of a precursor of a polyurethane resin composition.
 次に、MDI系イソシアネート(三井化学株式会社製のコスモネートM200)4.5質量部、フタル酸ジイソノニル(DINP)11.5質量部、カーボンブラック2質量部を混合してイソシアネート混合物を得た。 Next, 4.5 parts by mass of MDI based isocyanate (Cosmonate M200 manufactured by Mitsui Chemicals, Inc.), 11.5 parts by mass of diisononyl phthalate (DINP), and 2 parts by mass of carbon black were mixed to obtain an isocyanate mixture.
 次に、上記前駆体とイソシアネート混合物を、200対18の質量割合で混合してポリウレタン樹脂組成物を得た。 Next, the above precursor and an isocyanate mixture were mixed in a mass ratio of 200 to 18 to obtain a polyurethane resin composition.
 (実施例9及び比較例3)
 表1に示すタルクを用いて、実施例9及び比較例3のポリウレタン樹脂組成物を製造した。具体的には、タルク100質量部、水酸基末端液状ポリブタジエン(出光興産株式会社製のPoly-BD(R-45HT))100質量部、フタル酸ジイソノニル(DINP)48質量部、重質炭酸カルシウム(白石工業株式会社製のホワイトンP30)253質量部、紫外線吸収剤(シプロ化成株式会社製のSEESORB703)1.6質量部、アミン触媒(1,4-Diazabicycle[2,2,2]octane)0.021質量部、錫触媒(日東化成株式会社製のNeostann U-100)0.006質量部を混合して、ポリウレタン樹脂組成物の前駆体のペーストを得た。
(Example 9 and Comparative Example 3)
Using talc shown in Table 1, polyurethane resin compositions of Example 9 and Comparative Example 3 were produced. Specifically, 100 parts by mass of talc, 100 parts by mass of hydroxyl-terminated liquid polybutadiene (Poly-BD (R-45 HT) manufactured by Idemitsu Kosan Co., Ltd.), 48 parts by mass of diisononyl phthalate (DINP), heavy calcium carbonate 253 parts by mass of Whiteton P30 manufactured by Kogyo Co., Ltd., 1.6 parts by mass of ultraviolet absorber (SEESORB 703 manufactured by Cipro Chemical Co., Ltd.), amine catalyst (1,4-Diazabicycle [2,2,2] octane) 0. A paste of a precursor of a polyurethane resin composition was obtained by mixing 021 parts by mass and 0.006 parts by mass of tin catalyst (Neostann U-100 manufactured by Nitto Kasei Co., Ltd.).
 次に、MDI系イソシアネート(三井化学株式会社製のコスモネートM200)4.5質量部、フタル酸ジイソノニル(DINP)11.5質量部、カーボンブラック2質量部を混合してイソシアネート混合物を得た。 Next, 4.5 parts by mass of MDI based isocyanate (Cosmonate M200 manufactured by Mitsui Chemicals, Inc.), 11.5 parts by mass of diisononyl phthalate (DINP), and 2 parts by mass of carbon black were mixed to obtain an isocyanate mixture.
 次に、上記前駆体とイソシアネート混合物を、200対18の質量割合で混合してポリウレタン樹脂組成物を得た。 Next, the above precursor and an isocyanate mixture were mixed in a mass ratio of 200 to 18 to obtain a polyurethane resin composition.
 [硬化性の評価]
 得られたポリウレタン樹脂組成物について、二液を混合してから1時間毎に5時間まで、必要に応じて7時間まで、最後に24時間後に、ショアーA(ShoreA)硬度を測定して、硬化性を評価した。
[Evaluation of curability]
With respect to the obtained polyurethane resin composition, Shore A (Shore A) hardness is measured and cured after 1 hour after mixing the two solutions, up to 5 hours every hour, up to 7 hours if necessary, and finally 24 hours. The sex was evaluated.
 [引張強度、伸び率及び接着性の評価]
 得られたポリウレタン樹脂組成物の硬化物の引張強度、及び伸び率を以下のようにして測定した。JIS A 1439に規定された50×50×5mmのガラス板を使用し、スペーサーを組み合わせて、12×12×50mmのスペースを作り、その中に、気泡が入らないように得られたポリウレタン樹脂組成物のペーストを充填し、23℃で14日間、次いで、30℃で14日間養生してポリウレタン樹脂組成物の硬化物からなる試験片を得た。得られた試験片を23℃で1日以上放置した後、オートグラフで引張速度50mm/minで引張試験を行い、引張強度、及び伸び率を測定した。
[Evaluation of tensile strength, elongation and adhesion]
The tensile strength and elongation of the cured product of the resulting polyurethane resin composition were measured as follows. Polyurethane resin composition obtained by using a 50 × 50 × 5 mm glass plate specified in JIS A 1439 and combining spacers to make a space of 12 × 12 × 50 mm and preventing air bubbles from entering in the space The product paste was filled and aged at 23 ° C. for 14 days and then at 30 ° C. for 14 days to obtain a test piece consisting of a cured product of the polyurethane resin composition. After leaving the obtained test piece to stand at 23 ° C. for one day or more, a tensile test was performed by an autograph at a tensile speed of 50 mm / min to measure the tensile strength and the elongation.
 接着性は、上記試験片で引張試験を行った後のシーリング材の剥離の度合を目視で確認した。 The adhesion was visually confirmed with respect to the degree of peeling of the sealing material after the tensile test was performed on the test piece.
 ○:被着体とシーリング材が強固に接着しており、シーリング材が凝集破壊している。
 ×:被着体とシーリング材の間の界面で剥離している。(界面剥離)
○: The adherend and the sealing material are firmly bonded, and the sealing material is cohesively broken.
X: Peeling off at the interface between the adherend and the sealing material. (Interface peeling)
 表2に実施例1~8及び比較例1~2におけるショアーA硬度の経時変化、引張強度、伸び率、及び接着性の測定結果を示す。 Table 2 shows the results of measurement of the change with time in Shore A hardness, tensile strength, elongation, and adhesion in Examples 1 to 8 and Comparative Examples 1 and 2.
 また、図2に実施例1~4及び比較例1におけるショアーA硬度の経時変化、図3に実施例5~8及び比較例2におけるショアーA硬度の経時変化を示す。 Further, FIG. 2 shows time-dependent changes in Shore A hardness in Examples 1 to 4 and Comparative Example 1, and FIG. 3 shows time-based changes in Shore A hardness in Examples 5 to 8 and Comparative Example 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表3に実施例9及び比較例3におけるショアーA硬度の経時変化、引張強度、伸び率、及び接着性の測定結果を示す。 Table 3 shows the measurement results of the change with time of the Shore A hardness, the tensile strength, the elongation, and the adhesiveness in Example 9 and Comparative Example 3.
 また、図4に実施例9及び比較例3におけるショアーA硬度の経時変化を示す。 Moreover, the time-dependent change of the Shore A hardness in Example 9 and Comparative Example 3 is shown in FIG.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2及び表3並びに図2~4に示す結果から、本発明の範囲内のアルカリ金属含有量を有する実施例1~9のポリウレタン樹脂組成物は、本発明の範囲より低いアルカリ金属含有量を有する比較例1,2または3のポリウレタン樹脂組成物に比べ、硬化速度が速いことがわかる。また、実施例1~9のポリウレタン樹脂組成物の硬化物の引張強度、伸び率、及び接着性は、比較例1,2または3のポリウレタン樹脂組成物と同程度であることがわかる。したがって、本発明のポリウレタン樹脂組成物を複層ガラスのシーリング材として用いることにより、シーリング材の強度、伸び率等を低下させることなく、短時間でガラス板間を封着させることができ、複層ガラスを効率良く製造できることがわかる。 From the results shown in Table 2 and Table 3 and FIGS. 2 to 4, the polyurethane resin compositions of Examples 1 to 9 having an alkali metal content within the scope of the present invention have lower alkali metal contents than those within the scope of the present invention. It can be seen that the curing rate is faster than the polyurethane resin composition of Comparative Example 1, 2 or 3 which has. Further, it is found that the tensile strength, the elongation and the adhesion of the cured products of the polyurethane resin compositions of Examples 1 to 9 are comparable to those of the polyurethane resin compositions of Comparative Examples 1, 2 or 3. Therefore, by using the polyurethane resin composition of the present invention as a sealing material for double glazing, the glass plates can be sealed in a short time without decreasing the strength, elongation, etc. of the sealing material. It can be seen that the laminated glass can be produced efficiently.
 上記各実施例及び各比較例においては、炭酸カルシウムまたはタルクのスラリーに水酸化ナトリウム水溶液を添加することにより、アルカリ金属含有量を調整しているが、本発明をこれに限定されるものではない。 In each of the above Examples and Comparative Examples, the alkali metal content is adjusted by adding an aqueous solution of sodium hydroxide to a slurry of calcium carbonate or talc, but the present invention is not limited to this. .
 1…複層ガラス
 2,3…ガラス板
 4…スペーサー
 5…接着剤
 6…内部空間
 7…シーリング材
DESCRIPTION OF SYMBOLS 1 ... Double layer glass 2, 3 ... Glass plate 4 ... Spacer 5 ... Adhesive agent 6 ... Interior space 7 ... Sealing material

Claims (4)

  1.  所定の間隔を隔てて設けられる1対のガラス板と、
     前記1対のガラス板の周縁部において、前記間隔を保持し、内側に内部空間を形成するため前記1対のガラス板間に配置されるスペーサーと、
     前記スペーサーの外側に沿って設けられ、前記1対のガラス板間を封着するシーリング材とを備え、
     前記シーリング材は、無機フィラーを含み、100~2000μg/gの範囲でアルカリ金属を含むポリウレタン樹脂組成物からなることを特徴とする複層ガラス。
    A pair of glass plates provided at predetermined intervals;
    A spacer disposed between the pair of glass plates to maintain the spacing at the periphery of the pair of glass plates and to form an inner space inside;
    A sealing material provided along the outside of the spacer and sealing between the pair of glass plates;
    The sealing material comprises an inorganic filler and is composed of a polyurethane resin composition containing an alkali metal in the range of 100 to 2000 μg / g.
  2.  前記無機フィラーが炭酸カルシウムである、請求項1に記載の複層ガラス。 The multilayer glass according to claim 1, wherein the inorganic filler is calcium carbonate.
  3.  前記アルカリ金属が、水酸化ナトリウムとして含まれている、請求項1または2に記載の複層ガラス。 The double glazing according to claim 1 or 2, wherein the alkali metal is contained as sodium hydroxide.
  4.  請求項1~3のいずれか一項に記載の複層ガラスを製造する方法であって、
     前記1対のガラス板の周縁部において、前記間隔を保持し、内側に内部空間を形成するため前記1対のガラス板間に前記スペーサーを配置する工程と、
     前記シーリング材を前記スペーサーの外側に沿って塗布し、前記1対のガラス板間を封着する工程とを備える、複層ガラスの製造方法。
    A method of producing a multi-layer glass according to any one of claims 1 to 3, comprising:
    Disposing the spacer between the pair of glass plates to maintain the spacing at the periphery of the pair of glass plates and to form an inner space inside;
    Applying the sealing material along the outer side of the spacer, and sealing the pair of glass plates together.
PCT/JP2017/037967 2017-10-20 2017-10-20 Double glazing and method for manufacturing same WO2019077731A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/037967 WO2019077731A1 (en) 2017-10-20 2017-10-20 Double glazing and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/037967 WO2019077731A1 (en) 2017-10-20 2017-10-20 Double glazing and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2019077731A1 true WO2019077731A1 (en) 2019-04-25

Family

ID=66174510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037967 WO2019077731A1 (en) 2017-10-20 2017-10-20 Double glazing and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2019077731A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114685047A (en) * 2020-12-31 2022-07-01 Oppo广东移动通信有限公司 Inorganic glaze, shell preparation method and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252946A (en) * 1987-03-25 1988-10-20 ピーピージー・インダストリーズ・インコーポレイテッド Double layered glass sheet unit
JPH02150489A (en) * 1988-11-30 1990-06-08 Kanebo N S C Kk Two-pack polyurethane-based sealant
JPH11171603A (en) * 1997-09-30 1999-06-29 Central Glass Co Ltd Multilayer glass and its production
JP2000351954A (en) * 1999-04-15 2000-12-19 Rohm & Haas Co Sealing of insulating glass window
JP2016522132A (en) * 2013-03-28 2016-07-28 ダウ グローバル テクノロジーズ エルエルシー Poly (butylene oxide) polyol-based polyurethane sealant for glass sealing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252946A (en) * 1987-03-25 1988-10-20 ピーピージー・インダストリーズ・インコーポレイテッド Double layered glass sheet unit
JPH02150489A (en) * 1988-11-30 1990-06-08 Kanebo N S C Kk Two-pack polyurethane-based sealant
JPH11171603A (en) * 1997-09-30 1999-06-29 Central Glass Co Ltd Multilayer glass and its production
JP2000351954A (en) * 1999-04-15 2000-12-19 Rohm & Haas Co Sealing of insulating glass window
JP2016522132A (en) * 2013-03-28 2016-07-28 ダウ グローバル テクノロジーズ エルエルシー Poly (butylene oxide) polyol-based polyurethane sealant for glass sealing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114685047A (en) * 2020-12-31 2022-07-01 Oppo广东移动通信有限公司 Inorganic glaze, shell preparation method and electronic equipment

Similar Documents

Publication Publication Date Title
JP4759761B1 (en) Surface-treated calcium carbonate and paste-like resin composition containing the same
EP2640773B1 (en) Rapidly curing compound having good adhesive properties
TWI488874B (en) Sealant composition having reduced permeability to gas
EP2831192A1 (en) Crosslinkable compositions based on organyloxysilane-terminated polymers
CN101405235A (en) Insulated glass unit with sealant composition having reduced permeability to gas
CN102471663A (en) Adhesives and sealants containing cyclohexane polycarboxylic acid derivatives
EP3149095B1 (en) Cross-linkable masses based on organyloxysilane-terminated polymers
EP3224264B1 (en) Polymer containing silane groups
WO2012173114A1 (en) Impregnated calcium carbonate, method for producing same, polymer composition, and polymer precursor composition
EP2356180A1 (en) Polymer blends comprising alkoxysilane-terminated polymers
EP2848654A1 (en) Surface-treated calcium carbonate filler, and curable resin composition containing said filler
KR20150020863A (en) 2-part hybrid polyurethane composition
JP6670298B2 (en) Surface-treated calcium carbonate filler for curable resin composition, and curable resin composition containing the filler
WO2019077731A1 (en) Double glazing and method for manufacturing same
CN111647347B (en) Low free TDI single-component polyurethane waterproof coating and preparation method thereof
KR100937609B1 (en) The method of manufacturing painting polyuretane composite used in concrete floor type
CN103897651B (en) A kind of zero VOC one-component polyurethane sealant and preparation method thereof
CN107109073B (en) Terminal silyl resin composition and method for producing same
CN108484869B (en) Waterproof sealing polyurethane and preparation method and application thereof
EP3947528B1 (en) System for producing a sealing compound for insulating glass
JP2005042128A (en) Silane-terminated urethane-containing resin composition
JP4493980B2 (en) Urethane sealant composition for clean rooms
CN113930205B (en) Sealant for refrigerated container
RU2358993C1 (en) Polyvinyl chloride composition
CN114015399A (en) High-strength flame-retardant two-component silane modified polyether adhesive and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP