WO2019076380A1 - 物品防丢失方法、装置及终端设备 - Google Patents

物品防丢失方法、装置及终端设备 Download PDF

Info

Publication number
WO2019076380A1
WO2019076380A1 PCT/CN2018/111046 CN2018111046W WO2019076380A1 WO 2019076380 A1 WO2019076380 A1 WO 2019076380A1 CN 2018111046 W CN2018111046 W CN 2018111046W WO 2019076380 A1 WO2019076380 A1 WO 2019076380A1
Authority
WO
WIPO (PCT)
Prior art keywords
dynamic
rssi value
rssi
value
threshold
Prior art date
Application number
PCT/CN2018/111046
Other languages
English (en)
French (fr)
Inventor
郭玮强
Original Assignee
前海随身宝(深圳)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 前海随身宝(深圳)科技有限公司 filed Critical 前海随身宝(深圳)科技有限公司
Publication of WO2019076380A1 publication Critical patent/WO2019076380A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/24Reminder alarms, e.g. anti-loss alarms

Definitions

  • the invention belongs to the technical field of communications, and in particular relates to a method, device and terminal device for preventing item loss.
  • the embodiments of the present invention provide a method, an apparatus, and a terminal device for preventing loss of an item, so as to solve the problem that the user is difficult to detect the loss of the item carried by the user in the prior art.
  • a first aspect of the embodiments of the present invention provides an item loss prevention method, including:
  • the filtered RSSI value is less than the dynamic RSSI threshold, the RSSI value in the acquired preset time period is continuously attenuated, and an alarm prompt is issued when the continuous attenuation analysis result meets the alarm condition.
  • a second aspect of the embodiments of the present invention provides an item loss prevention device, including:
  • An RSSI value obtaining unit configured to acquire a signal strength indication RSSI value currently received by the anti-lost master device
  • a filtering processing unit configured to filter the acquired RSSI value
  • a dynamic RSSI threshold generating unit configured to generate a dynamic RSSI threshold according to the filtered RSSI value
  • An RSSI value comparison unit configured to compare the filtered RSSI value with the dynamic RSSI threshold
  • the continuous attenuation analysis and analysis unit is configured to perform continuous attenuation analysis on the RSSI value in the acquired preset time period if the RSSI value after the filtering process is smaller than the dynamic RSSI threshold, and when the continuous attenuation analysis result meets the alarm condition An alarm prompt is issued.
  • a third aspect of an embodiment of the present invention provides a terminal device including a memory, a processor, and a computer program stored in the memory and operable on the processor, when the processor executes the computer program A method of implementing the method of any of the methods of preventing item loss.
  • a fourth aspect of the embodiments of the present invention provides a computer readable storage medium storing a computer program, wherein the computer program is executed by a processor, such as an item loss prevention method. A step of the method described.
  • the fluctuation of the waveform corresponding to the RSS value can be effectively reduced, thereby reducing the influence of signal noise on the RSSI value, and by generating the dynamic RSSI threshold, the sudden burst can be further cancelled.
  • the signal interference of the rise and sudden collapse makes the comparison result of the RSSI value after the filtering process and the dynamic RSSI threshold more accurate, and further, by performing continuous attenuation analysis on the RSSI value in the acquired preset time period, further The alarms issued by the comparison result are also more accurate.
  • FIG. 1 is a flow chart of a method for preventing loss of articles according to a first embodiment of the present invention
  • FIG. 2 is a waveform diagram of an RSSI value acquired by an anti-lost master device according to a first embodiment of the present invention
  • FIG. 3 is a schematic diagram of waveforms obtained by performing median filtering and Gaussian filtering on sampled RSSI values according to the first embodiment of the present invention
  • FIG. 4 is a schematic diagram of a waveform obtained by performing a Gaussian filtering process and performing linear regression processing on the processed data according to the first embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an article loss prevention device according to a second embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a terminal device according to a third embodiment of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the method for preventing loss of articles according to an embodiment of the present invention includes an anti-lost master device and an anti-lost slave device, and the anti-lost slave device can be fabricated.
  • a Bluetooth module (such as a Bluetooth module made of Bluetooth Low Energy (BLE) chips (such as TI CC2541)) is attached to items that the user does not want to lose, through the anti-lost master device and the anti-lost slave device.
  • BLE technology refers to ultra-low power, short distance, low transmission rate wireless technology. Details are as follows:
  • Step S11 Acquire a signal strength indication RSSI value currently received by the anti-lost master device.
  • the anti-lost main device is usually a mobile device carried by the user, such as a mobile phone, a wearable device, etc., and the anti-lost main device can support the BLE communication protocol, for example, when the anti-lost main device is an Android mobile phone, the Android system thereof At least version 4.3 or higher, when the anti-lost main device is a mobile phone of the IOS system, the IOS system is at least 7.0 or higher.
  • the method includes: the anti-lost master device establishes a communication connection with the anti-lost slave device.
  • the anti-lost device sends a broadcast signal, and the broadcast signal includes the media access control (MAC) address, name, and the like of the anti-lost slave device, and the anti-lost master device turns on the Bluetooth function, and scans the Bluetooth device in the vicinity thereof.
  • MAC media access control
  • the anti-lost master device turns on the Bluetooth function, and scans the Bluetooth device in the vicinity thereof.
  • issuing a connection request to the anti-lost slave device issuing a connection request to the anti-lost slave device, and establishing a communication connection with the anti-lost master device after the anti-lost slave device accepts the connection request.
  • the anti-lost master device sends a data packet including a Received Signal Strength Indication (RSSI) value to the anti-lost master device, and the anti-lost master device parses the received data packet to obtain a corresponding packet.
  • RSSI value Received Signal Strength Indication
  • step S12 the acquired RSSI value is filtered.
  • the acquired RSSI value is filtered to reduce the signal interference of sudden bursting and sudden plunging, and to reduce the signal interference of self-fluctuation, wherein the signal interference of sudden bursting and sudden plunging is mainly manifested in: short time , usually within 1 second; the waveform appears as a transient rise after a transient drop, or the waveform appears as a transient drop after a transient rise.
  • the signal interference of self-fluctuation is mainly manifested in: the time performance is long-term existence, and the waveform is slightly up and down.
  • step S12 includes:
  • A1 Perform Gaussian filtering on the acquired RSSI value. Since there are many kinds of filtering processes, in order to determine the most suitable filtering method, the following describes the determination process of the filtering method by a specific example:
  • the RSSI value obtained by the anti-lost master device is as shown in Figure 2 (specifically, the change of the Bluetooth signal strength when the static distance is 6 meters through the Iphone6 mobile phone and the anti-lost slave device), and multiple acquired times in a fixed period of time.
  • the RSSI value is filtered, and the window is any singular value such as 7 or 9.
  • the window is 7, it means that the latest 7 RSSI values are recorded in the window, and the sampling frequency is 1 Hz, or more than 0.5 Hz and less than 10 Hz.
  • FIG. 3 shows a waveform diagram obtained by performing median filtering and Gaussian filtering on the sampled RSSI values. It can be seen from Fig.
  • the filtering performance of Gaussian filtering is more suitable for the requirements of the embodiments of the present invention.
  • the Gaussian filter has higher data fluctuation than the median filter output, and the RSSI signal strength is weaker at a relatively long distance between the anti-lost master device and the anti-lost slave device, and the signal-to-noise ratio is weak. Smaller, therefore, the RSSI value after Gaussian filtering is filtered by linear regression to obtain all ideal RSSI values instead of the RSSI value of a single point, thereby obtaining the ideal RSSI value closest to the current time.
  • linear regression filtering since only past data is used instead of future data, there is no need to wait for new data, thereby reducing the delay time.
  • the processed data is subjected to linear regression processing to obtain a comparison diagram as shown in FIG. 4 .
  • the fluctuation after the Gaussian filtering and the linear regression processing is less than the fluctuation after only the Gaussian filtering processing.
  • Step S13 generating a dynamic RSSI threshold according to the filtered RSSI value.
  • the step S13 specifically includes B1 and B2:
  • B1 Perform differential processing on the filtered RSSI value, and estimate the current speed of the anti-lost master device according to the result of the differential processing.
  • the step B1 includes:
  • B11 Perform differential processing on the filtered RSSI value according to the following formula: Specifically, if the RSSI value after the Gaussian filter processing is subjected to linear regression filtering processing, the slope (RegressionResult.slope()) in the result of the linear regression may be replaced by the slope.
  • n the path loss value.
  • A is the RSSI value of the distance between the main device and the anti-lost slave device within 1 meter.
  • the maximum speed of the preset (human motion) is assumed to be: V max .
  • V max the maximum speed of the preset (human motion)
  • the change in RSSI is abnormal, which may be caused by factors such as interference or the presence of an obstacle.
  • RSSI measured -RSSI max.speed min (erroofRSSI ), wherein, RSSI measured RSSI value acquired in step S11, RSSI max.speed RSSI value for the maximum speed.
  • the RSSI threshold is adjusted according to the RSSI error minimum value, that is, the step B2 generates a dynamic RSSI threshold by:
  • Threshold new threshold old +min(errorofRSSI),
  • threshold new is the generated new dynamic RSSI threshold
  • threshold old is the previous dynamic RSSI threshold
  • V max is the preset maximum speed
  • the fluctuations caused by various self-fluctuations can be effectively removed.
  • the dynamic adjustment of the RSSI threshold that is, the dynamic RSSI threshold is generated
  • the interference of sudden sudden rise and sudden collapse can be offset. Therefore, the accuracy of the distance determined by the RSSI is greatly improved, and the influence of the interference on the RSSI determining distance is reduced.
  • Step S14 comparing the filtered RSSI value with the dynamic RSSI threshold.
  • Step S15 If the RSSI value after the filtering process is smaller than the dynamic RSSI threshold, perform continuous attenuation analysis on the acquired RSSI value in the preset time period, and issue an alarm prompt when the continuous attenuation analysis result meets the alarm condition.
  • step S11 when the filtered RSSI value is greater than or equal to the dynamic RSSI threshold, no alarm prompt is issued, and step S11 is continued.
  • the step S15 includes:
  • the preset time period can be set to 30 seconds.
  • the system algorithm will always maintain a dynamic window, and the dynamic window start size can be set to 0.
  • the dynamic window will always expand, and the number of dynamic windows will be expanded by one, and the dynamic window is larger. The higher the continuity of the attenuation, the dynamic window will stop expanding and return to 0 when the window expansion condition is not satisfied.
  • the condition for satisfying the window expansion may be specifically set as: the attenuation amplitude is less than a preset maximum threshold (such as any value of 2.5 to 3.5 dB) and is greater than a preset minimum threshold (eg, -0.2 dB), because it is experimentally known When a person leaves the item, that is, the main device is prevented from being lost from the lost device, the signal will remain attenuated, but the attenuation will be less than the preset maximum threshold and greater than the preset minimum threshold.
  • a preset maximum threshold such as any value of 2.5 to 3.5 dB
  • a preset minimum threshold eg, -0.2 dB
  • the attenuation amplitude When the attenuation amplitude is greater than the preset maximum threshold, it indicates that this is not due to the signal attenuation caused by the person leaving the article, but most likely due to the presence of a very large obstacle hindering the transmission of the signal or being greatly disturbed by the environment. Therefore, when the attenuation amplitude is greater than the preset maximum threshold, it indicates that the current condition does not satisfy the window expansion condition, and at this time, the dynamic window stops expanding. Setting the attenuation amplitude to be greater than the preset minimum threshold is to allow a small amount of rise space between the data. When the preset minimum threshold is -0.2 dB, it indicates that the allowable data has a rising space of 0.2 dB.
  • the C3 specifically includes:
  • step C31 When the number of dynamic windows in the preset time period is greater than or equal to a threshold number of preset dynamic windows and the attenuation range of the RSSI value in the dynamic window is greater than or equal to a preset signal attenuation threshold, determining The initial effective value of the RSSI value in the dynamic window.
  • the preset threshold number of dynamic windows which may be set to 7 to 10
  • the preset signal attenuation threshold (which can be set to 5dB to 8dB) indicates that the combination is “effective continuous attenuation combination”.
  • the RSSI value in the dynamic window is determined to be a preset initial effective value (can be set to 3).
  • the attenuation range of the RSSI value in the dynamic window can be set to increase by 1 dB
  • the effective value of the RSSI value in the dynamic window will increase by 0.7 on the current basis, so that when After the number of dynamic windows stops increasing and the attenuation range of the RSSI value in the dynamic window stops increasing, the total effective value of the RSSI value in the dynamic window can be determined by accumulating.
  • the dynamic window is determined by accumulating the effective values of the multiple effective continuous attenuation combinations. The total rms value of the RSSI value within.
  • the RSSI value of the signal strength indication currently received by the anti-lost master device is obtained, and the acquired RSSI value is filtered, and the dynamic RSSI threshold is generated according to the filtered RSSI value, and the filtered RSSI value is obtained. Comparing with the dynamic RSSI threshold, if the filtered RSSI value is less than the dynamic RSSI threshold, performing continuous attenuation analysis on the acquired RSSI value in the preset time period, and when the continuous attenuation analysis result meets the alarm condition An alarm prompt is issued.
  • the fluctuation of the waveform corresponding to the RSSI value can be effectively reduced, thereby reducing the influence of signal noise on the RSSI value, and by generating the dynamic RSSI threshold, the sudden burst can be further cancelled.
  • the signal interference of the rise and sudden collapse makes the comparison result of the RSSI value after the filtering process and the dynamic RSSI threshold more accurate, and further, by performing continuous attenuation analysis on the RSSI value in the acquired preset time period, further The alarms issued by the comparison result are also more accurate.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 5 is a schematic structural diagram of an article loss prevention device according to a second embodiment of the present invention.
  • the object loss prevention device can be applied to an anti-lost master device.
  • FIG. 5 For convenience of explanation, only parts related to the embodiment of the present invention are shown.
  • the item loss prevention device includes an RSSI value acquisition unit 51, a filter processing unit 52, a dynamic RSSI value generation unit 53, an RSSI value comparison unit 54, and a continuous attenuation analysis analysis unit 55. among them:
  • the RSSI value obtaining unit 51 is configured to obtain a signal strength indication RSSI value currently received by the anti-lost master device.
  • the anti-lost main device is usually a mobile device carried by the user, such as a mobile phone, a wearable device, etc., and the anti-lost main device can support the BLE communication protocol, for example, when the anti-lost main device is an Android mobile phone, the Android system thereof At least version 4.3 or higher, when the anti-lost main device is a mobile phone of the IOS system, the IOS system is at least 7.0 or higher.
  • the item loss prevention device further includes:
  • the communication connection establishing unit is configured to prevent the lost master device from establishing a communication connection with the anti-lost slave device.
  • the filter processing unit 52 is configured to perform filtering processing on the acquired RSSI value.
  • the filtering processing unit 52 includes:
  • a Gaussian filter processing module is configured to perform Gaussian filtering on the acquired RSSI values.
  • the linear regression filter processing module is configured to perform linear regression filtering processing on the RSSI value after the Gaussian filter processing.
  • the dynamic RSSI threshold generating unit 53 is configured to generate a dynamic RSSI threshold according to the filtered RSSI value.
  • the dynamic RSSI threshold generating unit 53 includes: a current speed estimation module of the anti-lost master device.
  • the current speed estimation module of the anti-lost master device is configured to perform differential processing on the filtered RSSI value, and estimate the current speed of the anti-lost master device according to the result of the differential processing.
  • the current speed estimation module specifically includes:
  • the filtered RSSI value is differentiated according to the following formula:
  • the current speed of the anti-lost master device is estimated according to the following formula: Specifically, if the RSSI value after the Gaussian filter processing is subjected to linear regression filtering processing, the slope (RegressionResult.slope()) in the result of the linear regression may be replaced by the slope.
  • n is the path loss value.
  • A is the RSSI value of the distance between the main device and the anti-lost slave device within 1 meter.
  • the dynamic RSSI threshold determining module is configured to generate a dynamic RSSI threshold according to the estimated current speed of the anti-lost master device and a preset maximum speed.
  • the maximum speed of the preset (human motion) is assumed to be: V max .
  • V max the maximum speed of the preset (human motion)
  • the change in RSSI is abnormal, which may be caused by factors such as interference or the presence of an obstacle.
  • RSSI measured -RSSI max.speed min (erroofRSSI ), wherein, RSSI measured RSSI value acquired in step S11, RSSI max.speed RSSI value for the maximum speed.
  • the RSSI threshold is adjusted according to the RSSI error minimum value, that is, the step B2 generates a dynamic RSSI threshold by:
  • Threshold new threshold old +min(errorofRSSI),
  • threshold new is the generated new dynamic RSSI threshold
  • threshold old is the previous dynamic RSSI threshold
  • V max is the preset maximum speed
  • the RSSI value comparison unit 54 is configured to compare the filtered RSSI value with the dynamic RSSI threshold.
  • the continuous attenuation analysis and analysis unit 55 is configured to perform continuous attenuation analysis on the RSSI value in the acquired preset time period if the RSSI value after the filtering process is smaller than the dynamic RSSI threshold, and meet the alarm condition in the continuous attenuation analysis result. An alarm prompt is issued.
  • the continuous attenuation analysis and analysis unit 55 includes: a dynamic window expansion selection module, an attenuation range determination module, a final total effective value determination module, and an alarm prompt issuing module. among them:
  • the dynamic window enlarges the selection module, when the RSSI value after the filtering process is smaller than the dynamic RSSI threshold, sets a dynamic window for the RSSI value in the preset time period, and determines whether the RSSI value in the dynamic window is set according to the RSSI value in the dynamic window.
  • the window expansion condition is satisfied, and whether or not to expand the dynamic window is selected according to whether or not the window expansion condition is satisfied.
  • the preset time period can be set to 30 seconds.
  • the window expansion condition can be set to be: the attenuation amplitude is less than a preset maximum threshold (such as any value of 2.5 to 3.5 dB) and is greater than a preset minimum threshold (eg, -0.2 dB).
  • the attenuation range determining module is configured to determine whether the number of dynamic windows in the preset time period is greater than or equal to a threshold number of preset dynamic windows, and determine whether the attenuation range of the RSSI value in the dynamic window is greater than or equal to a preset Signal attenuation threshold.
  • a final total RMS determining module configured to: when the number of dynamic windows in the preset time period is greater than or equal to a threshold number of preset dynamic windows, and an attenuation range of the RSSI value in the dynamic window is greater than or equal to a preset
  • the final total effective value of the RSSI value within the dynamic window is determined when the signal decays the threshold.
  • the alarm prompt issuing module is configured to determine whether the total effective value of the final effective value of the RSSI value in the dynamic window is greater than a preset effective value threshold, and if so, issue an alarm prompt.
  • the final total effective value determining module includes:
  • the initial effective value determining module is configured to: when the number of dynamic windows in the preset time period is greater than or equal to a threshold number of preset dynamic windows, and an attenuation range of the RSSI value in the dynamic window is greater than or equal to a preset signal
  • a threshold When the threshold is decayed, an initial effective value of the RSSI value within the dynamic window is determined. Specifically, if the number of dynamic windows in the preset time period is greater than or equal to the preset threshold number of dynamic windows (which may be set to 7 to 10), and the attenuation range of the RSSI value in the dynamic window is greater than or equal to the preset.
  • the signal attenuation threshold (which can be set to 5dB to 8dB) indicates that the combination is "effective continuous attenuation combination". At this time, it is determined that the RSSI value in the dynamic window is a preset initial effective value (can be set to 3). .
  • a new valid value determining module configured to: according to the RSSI value in the dynamic window, after the number of dynamic windows in the preset time period stops increasing and the attenuation range of the RSSI value in the dynamic window stops increasing
  • the attenuation range determines the new valid value. Specifically, for every 1 dB increase in the attenuation range of the RSSI value in the dynamic window, the effective value of the RSSI value in the dynamic window is increased by 0.7 on the current basis, so that when the number of dynamic windows stops increasing and the dynamic window After the attenuation range of the RSSI value stops increasing, the total effective value of the RSSI value in the dynamic window can be determined by accumulating.
  • the dynamic window is determined by accumulating the effective values of the multiple effective continuous attenuation combinations.
  • a final total RMS generating module configured to determine a final total effective value of the RSSI value in the dynamic window according to an initial valid value of the RSSI value in the dynamic window and the newly added valid value.
  • the fluctuation of the waveform corresponding to the RSSI value can be effectively reduced, thereby reducing the influence of signal noise on the RSSI value, and by generating dynamic
  • the RSSI threshold can further offset the signal interference of the sudden burst and the sudden collapse, so that the comparison result between the filtered RSSI value and the dynamic RSSI threshold is more accurate, and further, the RSSI value in the preset time period obtained by the acquisition Continuous decay analysis is performed to further make the alarm prompts issued based on the comparison results more precise.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 6 is a schematic diagram of a terminal device according to a third embodiment of the present invention.
  • the terminal device 6 of this embodiment includes a processor 60, a memory 61, and a computer program 62 stored in the memory 61 and operable on the processor 60.
  • the processor 60 executes the computer program 62 to implement the steps in the various data communication method embodiments described above, such as steps S11 through S15 shown in FIG.
  • the processor 60 when executing the computer program 62, implements the functions of the various modules/units in the various apparatus embodiments described above, such as the functions of the units 51-55 shown in FIG.
  • the computer program 62 can be partitioned into one or more modules/units that are stored in the memory 61 and executed by the processor 60 to complete this invention.
  • the one or more modules/units may be a series of computer program instruction segments capable of performing a particular function, the instruction segments being used to describe the execution of the computer program 62 in the terminal device 6.
  • the computer program 62 can be divided into an RSSI value acquisition unit, a filter processing unit, a dynamic RSSI value generation unit, an RSSI value comparison unit, and a continuous attenuation analysis analysis unit. The specific functions of each unit are as follows:
  • An RSSI value obtaining unit configured to acquire a signal strength indication RSSI value currently received by the anti-lost master device
  • a filtering processing unit configured to filter the acquired RSSI value
  • a dynamic RSSI threshold generating unit configured to generate a dynamic RSSI threshold according to the filtered RSSI value
  • An RSSI value comparison unit configured to compare the filtered RSSI value with the dynamic RSSI threshold
  • the continuous attenuation analysis and analysis unit is configured to perform continuous attenuation analysis on the RSSI value in the acquired preset time period if the RSSI value after the filtering process is smaller than the dynamic RSSI threshold, and when the continuous attenuation analysis result meets the alarm condition An alarm prompt is issued.
  • the terminal device 6 may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the terminal device may include, but is not limited to, a processor 60 and a memory 61. It will be understood by those skilled in the art that FIG. 6 is only an example of the terminal device 6, and does not constitute a limitation of the terminal device 6, and may include more or less components than those illustrated, or combine some components or different components.
  • the terminal device may further include an input/output device, a network access device, a bus, and the like.
  • the processor 60 may be a central processing unit (CPU), or may be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 61 may be an internal storage unit of the terminal device 6, such as a hard disk or a memory of the terminal device 6.
  • the memory 61 may also be an external storage device of the terminal device 6, for example, a plug-in hard disk equipped on the terminal device 6, a smart memory card (SMC), and a secure digital (SD). Card, flash card, etc. Further, the memory 61 may also include both an internal storage unit of the terminal device 6 and an external storage device.
  • the memory 61 is used to store the computer program and other programs and data required by the terminal device.
  • the memory 61 can also be used to temporarily store data that has been output or is about to be output.
  • each functional unit and module in the foregoing system may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit, and the integrated unit may be implemented by hardware.
  • Formal implementation can also be implemented in the form of software functional units.
  • the specific names of the respective functional units and modules are only for the purpose of facilitating mutual differentiation, and are not intended to limit the scope of protection of the present application.
  • the disclosed apparatus/terminal device and method may be implemented in other manners.
  • the device/terminal device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units.
  • components may be combined or integrated into another system, or some features may be omitted or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated modules/units if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium. Based on such understanding, the present invention implements all or part of the processes in the foregoing embodiments, and may also be completed by a computer program to instruct related hardware.
  • the computer program may be stored in a computer readable storage medium. The steps of the various method embodiments described above may be implemented when the program is executed by the processor.
  • the computer program comprises computer program code, which may be in the form of source code, object code form, executable file or some intermediate form.
  • the computer readable medium may include any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM). , random access memory (RAM, Random Access Memory), electrical carrier signals, telecommunications signals, and software distribution media. It should be noted that the content contained in the computer readable medium may be appropriately increased or decreased according to the requirements of legislation and patent practice in a jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, computer readable media Does not include electrical carrier signals and telecommunication signals.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Telephone Function (AREA)

Abstract

一种物品防丢失方法、装置及终端设备,该方法包括:获取防丢失主设备当前接收的信号强度指示RSSI值(S11);对获取的RSSI值进行滤波处理(S12);根据滤波处理后的RSSI值生成动态RSSI阈值(S13);将滤波处理后的RSSI值与动态RSSI阈值比较(S14);若滤波处理后的RSSI值小于动态RSSI阈值,对获取的预设时间段内的RSSI值进行连续衰减分析,并在连续衰减分析结果符合报警条件时发出报警提示(S15)。该方法能够提高发出的报警提示的精确性。

Description

物品防丢失方法、装置及终端设备 技术领域
本发明属于通信技术领域,尤其涉及物品防丢失方法、装置及终端设备。
背景技术
目前,人们生活节奏越来越快,而过快的生活节奏则更容易发生物品丢失事件。如发生钱包、手机、U盘、手提包等丢失事件。但无论丢失的是什么物品,由于物品本身具有一定的价值,并且,物品本身还可能保存有重要的资料,因此,物品丢失或被盗后往往给物品的主人带来极大的烦恼。比如,对于保险、地产、律师等行业的业务员,其手机、U盘、手提包等通常存储有大量的客户资料,因此,若存储有客户资料的物品丢失,极可能打乱物品的主人的工作进度,并且,也极可能直接就失去了客户资料对应的客户,从而给物品的主人带来极大的损失。
综上,需要提供一种新的方法,以解决上述技术问题。
发明内容
有鉴于此,本发明实施例提供了物品防丢失方法、装置及终端设备,以解决现有技术中用户难以察觉其携带的物品丢失的问题。
本发明实施例的第一方面提供了一种物品防丢失方法,包括:
获取防丢失主设备当前接收的信号强度指示RSSI值;
对获取的RSSI值进行滤波处理;
根据滤波处理后的RSSI值生成动态RSSI阈值;
将滤波处理后的RSSI值与所述动态RSSI阈值比较;
若所述滤波处理后的RSSI值小于所述动态RSSI阈值,对获取的预设时间段内的RSSI值进行连续衰减分析,并在连续衰减分析结果符合报警条件时发出报警提示。
本发明实施例的第二方面提供了一种物品防丢失装置,包括:
RSSI值获取单元,用于获取防丢失主设备当前接收的信号强度指示RSSI值;
滤波处理单元,用于对获取的RSSI值进行滤波处理;
动态RSSI阈值生成单元,用于根据滤波处理后的RSSI值生成动态RSSI阈值;
RSSI值比较单元,用于将滤波处理后的RSSI值与所述动态RSSI阈值比较;
连续衰减分析分析单元,用于若所述滤波处理后的RSSI值小于所述动态RSSI阈值,对获取的预设时间段内的RSSI值进行连续衰减分析,并在连续衰减分析结果符合报警条件时发出报警提示。
本发明实施例的第三方面提供了一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如物品防丢失方法任一项所述方法的步骤。
本发明实施例的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如物品防丢失方法任一项所述方法的步骤。
本发明实施例与现有技术相比存在的有益效果是:
由于对获取的RSSI值进行滤波处理,因此,能够有效减少所述RSS值对应的波形的波动,进而减少信号噪声对所述RSSI值的影响,并且,通过生成动态RSSI阈值,能够进一步抵消突然爆升和突然暴跌的信号干扰,使得根据滤波处理后的RSSI值与所述动态RSSI阈值的比较结果更精确,此外,通过对获取的预设时间段内的RSSI值进行连续衰减分析以进一步使得根据比较结果发出的报警提示也更精确。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一实施例提供的一种物品防丢失方法的流程图;
图2是本发明第一实施例提供的一种防丢失主设备获取的RSSI值的波形示 意图;
图3是本发明第一实施例提供的对取样的RSSI值进行中值滤波以及高斯滤波后得到的波形示意图;
图4是本发明第一实施例提供的进行高斯滤波处理,再对处理后的数据进行线性回归处理得到的波形示意图;
图5是本发明第二实施例提供的一种物品防丢失装置的结构示意图;
图6是本发明第三实施例提供的终端设备的示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
实施例一:
图1示出了本发明第一实施例提供的一种物品防丢失方法的流程图,本发明实施例的物品防丢失方法包括防丢失主设备和防丢失从设备,该防丢失从设备可制作成蓝牙模块(如以蓝牙低功耗(Bluetooth Low Energy,BLE)晶片(如TI CC2541)制作成的蓝牙模块,)附加在用户不希望丢失的物品上,通过防丢失主设备与防丢失从设备的通讯功能实现物品的防丢失。其中,BLE技术是指超低功耗、短距离、低传输速率的无线技术。详述如下:
步骤S11,获取防丢失主设备当前接收的信号强度指示RSSI值。
其中,防丢失主设备通常为用户随身携带的移动设备,如手机、穿戴设备等,该防丢失主设备能够支持BLE通讯协议,如,在防丢失主设备为安卓系统的手机时,其安卓系统至少为4.3以上版本,在防丢失主设备为IOS系统的手机时,其IOS系统至少为7.0以上版本。
在步骤S11之前,包括:防丢失主设备与防丢失从设备建立通信连接。具体地,防丢失从设备发出广播信号,该广播信号包括该防丢失从设备的媒体访问控制(Media AccessControl,MAC)地址,名称等信息,防丢失主设备开启蓝 牙功能,扫描其附近的蓝牙设备,并在搜索到防丢失从设备的信息后,向所述防丢失从设备发出连接请求,在所述防丢失从设备接受该连接请求后,与该防丢失主设备建立通信连接。之后,所述防丢失从设备定时向所述防丢失主设备发送包含接收的信号强度指示(Received Signal Strength Indication,RSSI)值的数据包,所述防丢失主设备解析接收的数据包获取对应的RSSI值。
步骤S12,对获取的RSSI值进行滤波处理。
该步骤中,对获取的RSSI值进行滤波处理,以降低突然爆升和突然暴跌的信号干扰,以及降低自我波动的信号干扰,其中,突然爆升和突然暴跌的信号干扰主要表现在:时间短暂,通常在1秒之内;波形表现为瞬降后瞬升,或者,波形表现为瞬升后瞬降。其中,自我波动的信号干扰主要表现在:时间表现为长期存在,波形表现为轻微上下跳动。
可选地,所述步骤S12包括:
A1、对获取的RSSI值进行高斯滤波处理。由于滤波处理有多种,因此,为了确定出最适合的滤波方法,以下以具体例子进行说明滤波方法的确定过程:
假设防丢失主设备获取的RSSI值如图2(具体为通过Iphone6手机与防丢失从设备在静态距离为6米时的蓝牙信号强度变化)所示,在一段固定的时间内对获取的多个RSSI值进行滤波,窗口为7或9等任意单数的数值,在窗口为7时,代表在窗口中会记录最新获取的7个RSSI值,取样频率为1Hz,或大于0.5Hz及小于10Hz任意数值。图3示出了对取样的RSSI值进行中值滤波以及高斯滤波后得到的波形图。在图3可以看出,中值滤波及高斯滤波后的波动明显比未滤波之前的少,表明滤波方法有过滤数据波动的效果,且高斯滤波比中值滤波更能反映RSSI的变化,因为中值滤波的准确度受到原数据的数据类型的限制,在图3中,原数据的数据类型是整数,所以中值滤波后的结果只可以是整数,而高斯滤波则不受此限制,
因为在利用RSSI量度长距离时,RSSI随距离的变化很少(可以每米少于1dBm),根据上述比较可知,高斯滤波在滤波上的性能更适合本发明实施例的需求。
A2、对高斯滤波处理后的RSSI值再进行线性回归滤波处理。
通过对图3进一步分析可知,高斯滤波比中值滤波器输出的数据波动较高,而在防丢失主设备和防丢失从设备之间的相对长距离处,RSSI信号强度较弱, 信噪比较小,因此,对高斯滤波处理后的RSSI值再以线性回归进行滤波,以获得全部理想的RSSI值而不是单个点的RSSI值,进而获取与当前时间最接近的理想的RSSI值。在进行线性回归滤波处理的时候,由于只使用过去的数据而不使用将来的数据,因此,不需要等待新的数据,从而减少了延迟的时间。
可选地,为了更进一步地减少波动,则在进行高斯滤波(即正态分布进行卷积处理)处理后,最后再对处理后的数据进行线性回归处理,得到如图4所示的对比图,在图4中可知,通过高斯滤波以及线性回归处理后的波动比仅经过高斯滤波处理后的波动更少。
步骤S13,根据滤波处理后的RSSI值生成动态RSSI阈值。
其中,所述步骤S13具体包括B1和B2:
B1、对滤波处理后的RSSI值进行微分处理,根据微分处理的结果估算所述防丢失主设备的当前速度。
由于无法通过直接计算距离知道所获取的RSSI值是否异常,但能够通过对RSSI值进行微分估算的防丢失主设备的当前速度判断获取的RSSI值是否异常,此时,所述步骤B1包括:
B11、根据下式对滤波处理后的RSSI值进行微分处理:
Figure PCTCN2018111046-appb-000001
具体地,若对高斯滤波处理后的RSSI值再进行线性回归滤波处理,则可通过线性回归的结果中的斜率(RegressionResult.slope())来代替所述
Figure PCTCN2018111046-appb-000002
B12、根据下式估算所述防丢失主设备的当前速度:
Figure PCTCN2018111046-appb-000003
其中,n为路径损耗值。A为防丢失主设备与防丢失从设备的距离在1米内的RSSI值。可选地,A设置为-62.3dBm,n=1.47。
B2、根据估算的所述防丢失主设备的当前速度和预设的最大速度生成动态RSSI阈值。
其中,预设(人类运动)的最大速度假设为:V max。在正常情况下,当估算的防丢失主设备的当前速度V>V max时,RSSI的变化是异常的,这可能是由于干扰或障碍物的存在等因素引起的。
假设RSSI的变化只能改变A而不能改变n,则RSSI的误差可采用下式表 示:
RSSI measured-RSSI max.speed=min(erroofRSSI),其中,RSSI measured为步骤S11获取的RSSI值,RSSI max.speed为最大速度的RSSI值。
Figure PCTCN2018111046-appb-000004
Figure PCTCN2018111046-appb-000005
最后,根据RSSI误差最小值调整RSSI阈值,即所述步骤B2通过以下方式生成动态RSSI阈值:
threshold new=threshold old+min(errorofRSSI),
其中,threshold new为生成的新的动态RSSI阈值,threshold old为上一个的动态RSSI阈值,
Figure PCTCN2018111046-appb-000006
V max为预设的最大速度。
当然,也可以根据RSSI误差最小值调整A的值:
A new=A old+min(errorofRSSI)。
通过对RSSI原数据进行高斯滤波及线性回归处理,可以有效地把各种自我波动所引起的波动去掉,结合动态调整RSSI阈值(即生成动态RSSI阈值),可以将突然爆升突然暴跌的干扰抵消,从而大大提高了根据RSSI确定的距离的精度,减少干扰对RSSI确定距离时的影响。
步骤S14,将滤波处理后的RSSI值与所述动态RSSI阈值比较。
步骤S15,若所述滤波处理后的RSSI值小于所述动态RSSI阈值,对获取的预设时间段内的RSSI值进行连续衰减分析,并在连续衰减分析结果符合报警条件时发出报警提示。
可选地,在所述滤波处理后的RSSI值大于或等于所述动态RSSI阈值时,不发出报警提示,并继续执行步骤S11。
可选地,由于在存在下列情况时:(1)连续一段时间干扰,且干扰的数值非常大;(2)存在影响非常大的障碍物;(3)防丢失从设备与防丢失主设备的人体干扰。即使使用者的防丢失主设备并没有远离防丢失从设备,且也进行了高斯滤波及线性回归滤波,但仍使得滤波处理后的RSSI值小于所述动态RSSI阈值, 因此造成误报警提示,此时,为了进一步提高防丢失主设备是否远离防丢失从设备的判断的准确性,所述步骤S15包括:
C1、在所述滤波处理后的RSSI值小于所述动态RSSI阈值时,对预设时间段内的RSSI值设置动态窗口,根据设置的动态窗口内的RSSI值判断是否满足窗口扩大条件,根据是否满足窗口扩大条件的判断结果选择是否扩大所述动态窗口。
C2、判断预设时间段内的动态窗口的数量是否大于或等于预设的动态窗口的数量阈值以及判断所述动态窗口内的RSSI值的衰减范围是否大于或等于预设的信号衰减阈值。
上述C1和C2中,预设时间段可设置为30秒。具体地,系统算法会一直保持一个动态窗口,动态窗口起始大小可设置为0,在满足窗口扩大条件时,该动态窗口会一直扩大,每一次动态窗口的数量会扩大1,动态窗口越大,衰减的连续性就越高,当不满足窗口扩大条件时,动态窗口就会停止扩大,并重新归0。其中,满足窗口扩大条件具体可设置为:衰减幅度小于预设的最大阈值(如2.5至3.5dB的任一个数值)且大于预设的最小阈值(如-0.2dB),这是因为通过实验可知,当人离开物品,即防丢失主设备远离防丢失从设备时,信号会一直保持衰减,但衰减幅度会小于预设的最大阈值且大于预设的最小阈值。当衰减幅度大于预设的最大阈值时,表明这不是由于人离开物品所造成的信号衰减,而极可能是由于存在非常大的障碍物妨碍了信号的传输,或者,受到很大的环境干扰。因此,当衰减幅度大于预设的最大阈值时,表明当前条件不满足窗口扩大条件,此时,动态窗口停止扩大。而设置衰减幅度大于预设的最小阈值是容许数据之间有少量的上升空间,在预设的最小阈值为-0.2dB时,表明容许数据的上升空间在0.2dB内。
C3、在预设时间段内的动态窗口的数量大于或等于预设的动态窗口的数量阈值以及在所述动态窗口内的RSSI值的衰减范围大于或等于预设的信号衰减阈值时,确定所述动态窗口内的RSSI值的最终总有效值。
可选地,所述C3具体包括:
C31、在预设时间段内的动态窗口的数量大于或等于预设的动态窗口的数量阈值以及在所述动态窗口内的RSSI值的衰减范围大于或等于预设的信号衰减阈值时,确定所述动态窗口内的RSSI值的初始有效值。在步骤C31中,若预设 时间段内的动态窗口的数量大于或等于预设的动态窗口的数量阈值(可设置为7至10个),且动态窗口内的RSSI值的衰减范围大于或等于预设的信号衰减阈值(可设置为5dB至8dB),则表明该组合为“有效连续衰减组合”,此时,确定所述动态窗口内的RSSI值为预设的初始有效值(可设置为3)。
C32、在所述预设时间段内的动态窗口的数量停止增加以及所述动态窗口内的RSSI值的衰减范围停止增加后,根据所述动态窗口内的RSSI值的衰减范围确定新增的有效值。
C33、根据所述动态窗口内的RSSI值的初始有效值以及所述新增的有效值确定所述动态窗口内的RSSI值的最终总有效值。
上述C31~C33中,在组合为“有效连续衰减组合”,且衰减幅度继续满足窗口扩大条件时,动态窗口的数量和动态窗口内的RSSI值的衰减范围仍会继续扩大,对应地,动态窗口内的RSSI值的有效值也会不断增加,例如,可设置动态窗口内的RSSI值的衰减范围每增加1dB,动态窗口内的RSSI值的有效值在当前基础上就会增加0.7,这样,当动态窗口的数量停止增加以及动态窗口内的RSSI值的衰减范围停止增加后,可通过累加确定出所述动态窗口内的RSSI值的总有效值。具体地,若预设时间段内存在多个有效连续衰减组合,且该多个有效连续衰减组合之间存在无效的衰减组合,则通过累加该多个有效连续衰减组合的有效值确定该动态窗口内的RSSI值的总有效值。
C4、判断所述动态窗口内的RSSI值的总有效值是否大于预设的有效值阈值,若是,发出报警提示。
通过上述C1~C4的处理,能够有效排除出RSSI值的能量衰减是由于防丢失主设备远离防丢失从设备而导致的衰减,还是由于存在非常大的障碍物等而导致的衰减,从而提高发出报警提示的精确性。
本发明第一实施例中,获取防丢失主设备当前接收的信号强度指示RSSI值,对获取的RSSI值进行滤波处理,根据滤波处理后的RSSI值生成动态RSSI阈值,将滤波处理后的RSSI值与所述动态RSSI阈值比较,若所述滤波处理后的RSSI值小于所述动态RSSI阈值,对获取的预设时间段内的RSSI值进行连续衰减分析,并在连续衰减分析结果符合报警条件时发出报警提示。由于对获取的RSSI值进行滤波处理,因此,能够有效减少所述RSSI值对应的波形的波动,进而减少信号噪声对所述RSSI值的影响,并且,通过生成动态RSSI阈值,能 够进一步抵消突然爆升和突然暴跌的信号干扰,使得根据滤波处理后的RSSI值与所述动态RSSI阈值的比较结果更精确,此外,通过对获取的预设时间段内的RSSI值进行连续衰减分析以进一步使得根据比较结果发出的报警提示也更精确。
实施例二:
与实施例一提供的一种物品防丢失方法对应,图5示出了本发明第二实施例提供的物品防丢失装置的结构示意图,该物品防丢失装置可应用于防丢失主设备中,为了便于说明,仅示出了与本发明实施例相关的部分。
该物品防丢失装置包括:RSSI值获取单元51、滤波处理单元52、动态RSSI值生成单元53、RSSI值比较单元54、连续衰减分析分析单元55。其中:
RSSI值获取单元51,用于获取防丢失主设备当前接收的信号强度指示RSSI值。
其中,防丢失主设备通常为用户随身携带的移动设备,如手机、穿戴设备等,该防丢失主设备能够支持BLE通讯协议,如,在防丢失主设备为安卓系统的手机时,其安卓系统至少为4.3以上版本,在防丢失主设备为IOS系统的手机时,其IOS系统至少为7.0以上版本。
可选地,该物品防丢失装置还包括:
通信连接建立单元,用于防丢失主设备与防丢失从设备建立通信连接。
滤波处理单元52,用于对获取的RSSI值进行滤波处理。
可选地,所述滤波处理单元52包括:
高斯滤波处理模块,用于对获取的RSSI值进行高斯滤波处理。
线性回归滤波处理模块,用于对高斯滤波处理后的RSSI值再进行线性回归滤波处理。
动态RSSI阈值生成单元53,用于根据滤波处理后的RSSI值生成动态RSSI阈值。
可选地,所述动态RSSI阈值生成单元53包括:防丢失主设备的当前速度估算模块
和动态RSSI阈值确定模块。
其中:防丢失主设备的当前速度估算模块,用于对滤波处理后的RSSI值进行微分处理,根据微分处理的结果估算所述防丢失主设备的当前速度。
由于无法通过直接计算距离知道所获取的RSSI值是否异常,但能够通过对RSSI值进行微分估算的防丢失主设备的当前速度判断获取的RSSI值是否异常,此时,所述防丢失主设备的当前速度估算模块具体包括:
首先根据下式对滤波处理后的RSSI值进行微分处理:
Figure PCTCN2018111046-appb-000007
再根据下式估算所述防丢失主设备的当前速度:
Figure PCTCN2018111046-appb-000008
具体地,若对高斯滤波处理后的RSSI值再进行线性回归滤波处理,则可通过线性回归的结果中的斜率(RegressionResult.slope())来代替所述
Figure PCTCN2018111046-appb-000009
上述公式中,n为路径损耗值。A为防丢失主设备与防丢失从设备的距离在1米内的RSSI值。可选地,A设置为-62.3dBm,n=1.47。
其中:动态RSSI阈值确定模块,用于根据估算的所述防丢失主设备的当前速度和预设的最大速度生成动态RSSI阈值。
预设(人类运动)的最大速度假设为:V max。在正常情况下,当估算的防丢失主设备的当前速度V>V max时,RSSI的变化是异常的,这可能是由于干扰或障碍物的存在等因素引起的。
假设RSSI的变化只能改变A而不能改变n,则RSSI的误差可采用下式表示:
RSSI measured-RSSI max.speed=min(erroofRSSI),其中,RSSI measured为步骤S11获取的RSSI值,RSSI max.speed为最大速度的RSSI值。
Figure PCTCN2018111046-appb-000010
Figure PCTCN2018111046-appb-000011
最后,根据RSSI误差最小值调整RSSI阈值,即所述步骤B2通过以下方式生成动态RSSI阈值:
threshold new=threshold old+min(errorofRSSI),
其中,threshold new为生成的新的动态RSSI阈值,threshold old为上一个的动态RSSI阈值,V max为预设的最大速度。
当然,也可以根据RSSI误差最小值调整A的值:
A new=A old+min(errorofRSSI)。
RSSI值比较单元54,用于将滤波处理后的RSSI值与所述动态RSSI阈值比较。
连续衰减分析分析单元55,用于若所述滤波处理后的RSSI值小于所述动态RSSI阈值,对获取的预设时间段内的RSSI值进行连续衰减分析,并在连续衰减分析结果符合报警条件时发出报警提示。
可选地,所述连续衰减分析分析单元55包括:动态窗口是否扩大选择模块、衰减范围判断模块、最终总有效值确定模块、报警提示发出模块。其中:
动态窗口是否扩大选择模块,用于在所述滤波处理后的RSSI值小于所述动态RSSI阈值时,对预设时间段内的RSSI值设置动态窗口,根据设置的动态窗口内的RSSI值判断是否满足窗口扩大条件,根据是否满足窗口扩大条件的判断结果选择是否扩大所述动态窗口。其中,预设时间段可设置为30秒。满足窗口扩大条件具体可设置为:衰减幅度小于预设的最大阈值(如2.5至3.5dB的任一个数值)且大于预设的最小阈值(如-0.2dB)。
衰减范围判断模块,用于判断预设时间段内的动态窗口的数量是否大于或等于预设的动态窗口的数量阈值以及判断所述动态窗口内的RSSI值的衰减范围是否大于或等于预设的信号衰减阈值。
最终总有效值确定模块,用于在预设时间段内的动态窗口的数量大于或等于预设的动态窗口的数量阈值以及在所述动态窗口内的RSSI值的衰减范围大于或等于预设的信号衰减阈值时,确定所述动态窗口内的RSSI值的最终总有效值。
报警提示发出模块,用于判断所述动态窗口内的RSSI值的最终有效值总有效值是否大于预设的有效值阈值,若是,发出报警提示。
可选地,所述最终总有效值确定模块包括:
初始有效值确定模块,用于在预设时间段内的动态窗口的数量大于或等于预设的动态窗口的数量阈值以及在所述动态窗口内的RSSI值的衰减范围大于或等于预设的信号衰减阈值时,确定所述动态窗口内的RSSI值的初始有效值。具体地,若预设时间段内的动态窗口的数量大于或等于预设的动态窗口的数量阈值(可设置为7至10个),且动态窗口内的RSSI值的衰减范围大于或等于预 设的信号衰减阈值(可设置为5dB至8dB),则表明该组合为“有效连续衰减组合”,此时,确定所述动态窗口内的RSSI值为预设的初始有效值(可设置为3)。
新增的有效值确定模块,用于在所述预设时间段内的动态窗口的数量停止增加以及所述动态窗口内的RSSI值的衰减范围停止增加后,根据所述动态窗口内的RSSI值的衰减范围确定新增的有效值。具体地,可设置动态窗口内的RSSI值的衰减范围每增加1dB,动态窗口内的RSSI值的有效值在当前基础上就会增加0.7,这样,当动态窗口的数量停止增加以及动态窗口内的RSSI值的衰减范围停止增加后,可通过累加确定出所述动态窗口内的RSSI值的总有效值。具体地,若预设时间段内存在多个有效连续衰减组合,且该多个有效连续衰减组合之间存在无效的衰减组合,则通过累加该多个有效连续衰减组合的有效值确定该动态窗口内的RSSI值的总有效值。
最终总有效值生成模块,用于根据所述动态窗口内的RSSI值的初始有效值以及所述新增的有效值确定所述动态窗口内的RSSI值的最终总有效值。
本发明第二实施例中,由于对获取的RSSI值进行滤波处理,因此,能够有效减少所述RSSI值对应的波形的波动,进而减少信号噪声对所述RSSI值的影响,并且,通过生成动态RSSI阈值,能够进一步抵消突然爆升和突然暴跌的信号干扰,使得根据滤波处理后的RSSI值与所述动态RSSI阈值的比较结果更精确,此外,通过对获取的预设时间段内的RSSI值进行连续衰减分析以进一步使得根据比较结果发出的报警提示也更精确。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
实施例三:
图6是本发明第三实施例提供的终端设备的示意图。如图6所示,该实施例的终端设备6包括:处理器60、存储器61以及存储在所述存储器61中并可在所述处理器60上运行的计算机程序62。所述处理器60执行所述计算机程序62时实现上述各个数据通信方法实施例中的步骤,例如图1所示的步骤S11至S15。或者,所述处理器60执行所述计算机程序62时实现上述各装置实施例中各模块/单元的功能,例如图5所示单元51至55的功能。
示例性的,所述计算机程序62可以被分割成一个或多个模块/单元,所述 一个或者多个模块/单元被存储在所述存储器61中,并由所述处理器60执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序62在所述终端设备6中的执行过程。例如,所述计算机程序62可以被分割成RSSI值获取单元、滤波处理单元、动态RSSI值生成单元、RSSI值比较单元、连续衰减分析分析单元,各单元具体功能如下:
RSSI值获取单元,用于获取防丢失主设备当前接收的信号强度指示RSSI值;
滤波处理单元,用于对获取的RSSI值进行滤波处理;
动态RSSI阈值生成单元,用于根据滤波处理后的RSSI值生成动态RSSI阈值;
RSSI值比较单元,用于将滤波处理后的RSSI值与所述动态RSSI阈值比较;
连续衰减分析分析单元,用于若所述滤波处理后的RSSI值小于所述动态RSSI阈值,对获取的预设时间段内的RSSI值进行连续衰减分析,并在连续衰减分析结果符合报警条件时发出报警提示。
所述终端设备6可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述终端设备可包括,但不仅限于,处理器60、存储器61。本领域技术人员可以理解,图6仅仅是终端设备6的示例,并不构成对终端设备6的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述终端设备还可以包括输入输出设备、网络接入设备、总线等。
所称处理器60可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器61可以是所述终端设备6的内部存储单元,例如终端设备6的硬盘或内存。所述存储器61也可以是所述终端设备6的外部存储设备,例如所述终端设备6上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存 储器61还可以既包括所述终端设备6的内部存储单元也包括外部存储设备。所述存储器61用于存储所述计算机程序以及所述终端设备所需的其他程序和数据。所述存储器61还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本发明所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部 单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种物品防丢失方法,其特征在于,包括:
    获取防丢失主设备当前接收的信号强度指示RSSI值;
    对获取的RSSI值进行滤波处理;
    根据滤波处理后的RSSI值生成动态RSSI阈值;
    将滤波处理后的RSSI值与所述动态RSSI阈值比较;
    若所述滤波处理后的RSSI值小于所述动态RSSI阈值,对获取的预设时间段内的RSSI值进行连续衰减分析,并在连续衰减分析结果符合报警条件时发出报警提示。
  2. 如权利要求1所述的物品防丢失方法,其特征在于,所述对获取的RSSI值进行滤波处理,包括:
    对获取的RSSI值进行高斯滤波处理;
    对高斯滤波处理后的RSSI值再进行线性回归滤波处理。
  3. 如权利要求1所述的物品防丢失方法,其特征在于,所述根据滤波处理后的RSSI值生成动态RSSI阈值,包括:
    对滤波处理后的RSSI值进行微分处理,根据微分处理的结果估算所述防丢失主设备的当前速度;
    根据估算的所述防丢失主设备的当前速度和预设的最大速度生成动态RSSI阈值。
  4. 如权利要求1至3任一项所述的物品防丢失方法,其特征在于,所述若所述滤波处理后的RSSI值小于所述动态RSSI阈值,对获取的预设时间段内的RSSI值进行连续衰减分析,并在连续衰减分析结果符合报警条件时发出报警提示,包括:
    在所述滤波处理后的RSSI值小于所述动态RSSI阈值时,对预设时间段内的RSSI值设置动态窗口,根据设置的动态窗口内的RSSI值判断是否满足窗口扩大条件,根据是否满足窗口扩大条件的判断结果选择是否扩大所述动态窗口;
    判断预设时间段内的动态窗口的数量是否大于或等于预设的动态窗口的数量阈值以及判断所述动态窗口内的RSSI值的衰减范围是否大于或等于预设 的信号衰减阈值;
    在预设时间段内的动态窗口的数量大于或等于预设的动态窗口的数量阈值以及在所述动态窗口内的RSSI值的衰减范围大于或等于预设的信号衰减阈值时,确定所述动态窗口内的RSSI值的最终总有效值;
    判断所述动态窗口内的RSSI值的最终有效值总有效值是否大于预设的有效值阈值,若是,发出报警提示。
  5. 如权利要求4所述的物品防丢失方法,其特征在于,所述在预设时间段内的动态窗口的数量大于或等于预设的动态窗口的数量阈值以及在所述动态窗口内的RSSI值的衰减范围大于或等于预设的信号衰减阈值时,确定所述动态窗口内的RSSI值的最终总有效值,包括:
    在预设时间段内的动态窗口的数量大于或等于预设的动态窗口的数量阈值以及在所述动态窗口内的RSSI值的衰减范围大于或等于预设的信号衰减阈值时,确定所述动态窗口内的RSSI值的初始有效值;
    在所述预设时间段内的动态窗口的数量停止增加以及所述动态窗口内的RSSI值的衰减范围停止增加后,根据所述动态窗口内的RSSI值的衰减范围确定新增的有效值;
    根据所述动态窗口内的RSSI值的初始有效值以及所述新增的有效值确定所述动态窗口内的RSSI值的最终总有效值。
  6. 一种物品防丢失装置,其特征在于,包括:
    RSSI值获取单元,用于获取防丢失主设备当前接收的信号强度指示RSSI值;
    滤波处理单元,用于对获取的RSSI值进行滤波处理;
    动态RSSI阈值生成单元,用于根据滤波处理后的RSSI值生成动态RSSI阈值;
    RSSI值比较单元,用于将滤波处理后的RSSI值与所述动态RSSI阈值比较;
    连续衰减分析分析单元,用于若所述滤波处理后的RSSI值小于所述动态RSSI阈值,对获取的预设时间段内的RSSI值进行连续衰减分析,并在连续衰减分析结果符合报警条件时发出报警提示。
  7. 如权利要求6所述的物品防丢失装置,其特征在于,所述滤波处理单 元包括:
    高斯滤波处理模块,用于对获取的RSSI值进行高斯滤波处理;
    线性回归滤波处理模块,用于对高斯滤波处理后的RSSI值再进行线性回归滤波处理。
  8. 如权利要求6所述的物品防丢失装置,其特征在于,所述连续衰减分析分析单元包括:
    动态窗口是否扩大选择模块,用于在所述滤波处理后的RSSI值小于所述动态RSSI阈值时,对预设时间段内的RSSI值设置动态窗口,根据设置的动态窗口内的RSSI值判断是否满足窗口扩大条件,根据是否满足窗口扩大条件的判断结果选择是否扩大所述动态窗口;
    衰减范围判断模块,用于判断预设时间段内的动态窗口的数量是否大于或等于预设的动态窗口的数量阈值以及判断所述动态窗口内的RSSI值的衰减范围是否大于或等于预设的信号衰减阈值;
    最终总有效值确定模块,用于在预设时间段内的动态窗口的数量大于或等于预设的动态窗口的数量阈值以及在所述动态窗口内的RSSI值的衰减范围大于或等于预设的信号衰减阈值时,确定所述动态窗口内的RSSI值的最终总有效值;
    报警提示发出模块,用于判断所述动态窗口内的RSSI值的最终有效值总有效值是否大于预设的有效值阈值,若是,发出报警提示。
  9. 一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至5任一项所述方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至5任一项所述方法的步骤。
PCT/CN2018/111046 2017-10-20 2018-10-19 物品防丢失方法、装置及终端设备 WO2019076380A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710986643.1A CN107730845B (zh) 2017-10-20 2017-10-20 物品防丢失方法、装置及终端设备
CN201710986643.1 2017-10-20

Publications (1)

Publication Number Publication Date
WO2019076380A1 true WO2019076380A1 (zh) 2019-04-25

Family

ID=61213173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111046 WO2019076380A1 (zh) 2017-10-20 2018-10-19 物品防丢失方法、装置及终端设备

Country Status (2)

Country Link
CN (1) CN107730845B (zh)
WO (1) WO2019076380A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210026973A1 (en) * 2019-07-23 2021-01-28 International Business Machines Corporation Automatic and customized data deletion actions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107730845B (zh) * 2017-10-20 2018-12-11 前海随身宝(深圳)科技有限公司 物品防丢失方法、装置及终端设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2387469A (en) * 2002-04-11 2003-10-15 Andrew Nicholas Out of range alarm
CN105050029A (zh) * 2015-06-02 2015-11-11 深圳市文鼎创数据科技有限公司 终端设备配对连接的方法及系统
CN106530641A (zh) * 2016-12-22 2017-03-22 武汉道森媒体股份有限公司 智能防丢装置及其工作方法、智能防丢系统
CN106657587A (zh) * 2016-09-30 2017-05-10 上海斐讯数据通信技术有限公司 一种基于可穿戴设备的防止手机丢失方法及系统
WO2017086613A1 (ko) * 2015-11-17 2017-05-26 주식회사 아이디어스튜디오 스마트 기기의 도난 방지 장치
CN206564018U (zh) * 2016-12-22 2017-10-17 武汉道森媒体股份有限公司 智能防丢装置和智能防丢系统
CN107730845A (zh) * 2017-10-20 2018-02-23 前海随身宝(深圳)科技有限公司 物品防丢失方法、装置及终端设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2387469A (en) * 2002-04-11 2003-10-15 Andrew Nicholas Out of range alarm
CN105050029A (zh) * 2015-06-02 2015-11-11 深圳市文鼎创数据科技有限公司 终端设备配对连接的方法及系统
WO2017086613A1 (ko) * 2015-11-17 2017-05-26 주식회사 아이디어스튜디오 스마트 기기의 도난 방지 장치
CN106657587A (zh) * 2016-09-30 2017-05-10 上海斐讯数据通信技术有限公司 一种基于可穿戴设备的防止手机丢失方法及系统
CN106530641A (zh) * 2016-12-22 2017-03-22 武汉道森媒体股份有限公司 智能防丢装置及其工作方法、智能防丢系统
CN206564018U (zh) * 2016-12-22 2017-10-17 武汉道森媒体股份有限公司 智能防丢装置和智能防丢系统
CN107730845A (zh) * 2017-10-20 2018-02-23 前海随身宝(深圳)科技有限公司 物品防丢失方法、装置及终端设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210026973A1 (en) * 2019-07-23 2021-01-28 International Business Machines Corporation Automatic and customized data deletion actions
US11681814B2 (en) * 2019-07-23 2023-06-20 International Business Machines Corporation Automatic and customized data deletion actions

Also Published As

Publication number Publication date
CN107730845B (zh) 2018-12-11
CN107730845A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
WO2019114655A1 (zh) 数据压缩方法、电子设备及计算机可读存储介质
WO2016180100A1 (zh) 一种音频处理的性能提升方法及装置
US9590828B2 (en) Blind spectrum sensing method and device based on fast fourier transform
US9668126B2 (en) Preventing location tracking via smartphone MAC address
US20160091604A1 (en) Apparatus, system and method for space status detection based on acoustic signal
US11224008B2 (en) Uplink carrier access
CN112703781B (zh) 一种无线信号发送方法、无线信号发送装置及终端设备
US20160117046A1 (en) Data Reporting Method and Apparatus, and Terminal Device
US9250314B2 (en) Enhanced radar detection for communication networks
KR20150103586A (ko) 음성 입력을 처리하는 방법 및 이를 수행하는 전자 장치
WO2019076380A1 (zh) 物品防丢失方法、装置及终端设备
WO2015023464A1 (en) Detecting earliest channel path in location tracking systems
KR20160043394A (ko) 방사 전력을 제어하는 전자 장치 및 방사 전력 제어 방법
KR20170108617A (ko) 무선 통신을 제공하는 전자 장치 및 이의 무선 통신 제공 방법
US11330578B2 (en) Uplink carrier configuration
CN103813444B (zh) 选择用于定位的接入点的装置和方法
CN112448732A (zh) 无线设备的射频暴露控制方法、装置及无线设备
WO2024041512A1 (zh) 音频降噪方法、装置、电子设备及可读存储介质
CN115941084A (zh) 基于时频图模板匹配的水声通信前导信号检测方法及装置
WO2021253235A1 (zh) 语音活动检测方法和装置
CN114900854A (zh) 输出功率确定方法、无线模组、设备及存储介质
CN103995267A (zh) 基于改进的唐检测器卫星导航抗干扰阈值判定方法
US9860365B2 (en) Providing setting adjustments to a communication device
US8719426B1 (en) Efficient proximity detection
WO2020102986A1 (zh) 干扰处理方法、装置、存储介质及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18868881

Country of ref document: EP

Kind code of ref document: A1