WO2019076275A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2019076275A1
WO2019076275A1 PCT/CN2018/110288 CN2018110288W WO2019076275A1 WO 2019076275 A1 WO2019076275 A1 WO 2019076275A1 CN 2018110288 W CN2018110288 W CN 2018110288W WO 2019076275 A1 WO2019076275 A1 WO 2019076275A1
Authority
WO
WIPO (PCT)
Prior art keywords
session
network element
access type
terminal
access
Prior art date
Application number
PCT/CN2018/110288
Other languages
English (en)
French (fr)
Inventor
应江威
杨艳梅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019076275A1 publication Critical patent/WO2019076275A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints

Definitions

  • the present application relates to the field of mobile communications technologies, and in particular, to a communication method and apparatus.
  • the access types of the session include the 3rd Generation Partnership Project (3GPP) access and non-3GPP (also known as non-3GPP, or Access for N3GPP).
  • 3GPP 3rd Generation Partnership Project
  • non-3GPP also known as non-3GPP, or Access for N3GPP.
  • the network side triggers a service request procedure to activate the session, so that the terminal can receive downlink data through the session.
  • the non-3GPP is used as an example.
  • the network side triggering service request procedure is: when the session is in the deactivated state, and the access type of the session is non-3GPP access, the network side may determine that the terminal is in an idle state in the non-3GPP network. Then, the network side notifies the terminal of the downlink data of the session through the 3GPP access, and after receiving the response message of the terminal, the network side determines, according to the response message, whether the session can activate the session through the 3GPP access.
  • the present application provides a communication method and apparatus for improving the efficiency of a service request process on a network side in a process of triggering a service request on a network side.
  • the present application provides a communication method, which may be performed by a core network element, a system on a chip, or a chip, where the core network element may be an AMF network element, an SMF network element, or a UPF network element.
  • the method includes: determining, by the core network element, downlink data of the session, where the downlink data is downlink data to be sent to the terminal.
  • the session When the session is in a deactivated state, the session is a session of the first access type, and if the core network element determines that the access type allowed by the session does not include the second access type, the session is not activated; or, the current The session corresponding to the line data is in a deactivated state, and the session is a session of the first access type, and when the terminal is in an idle state in the network of the first access type, the core network element determines the access type allowed by the session. If the second access type is not included, the session is not activated.
  • the network element of the core network locally stores the access type allowed by the session, so that the core network element can directly determine whether the session of the first access type in the deactivated state can be activated by the second access type, thereby improving The efficiency of the service request process. Further, when the core network element determines that the access type allowed by the session does not include the second access type, it may be determined that the session cannot be activated by the second access type, and the subsequent process of activating the session may be directly ended, that is, When the core network element determines that the session cannot be activated by the second access type, the subsequent steps of sending the indication information to the terminal and the response message sent by the terminal are not performed, thereby saving resources and signaling overhead.
  • the method further includes: the core network element receiving the access type allowed by the session from the terminal or from the PCF network element. That is, the access type allowed in the session stored by the network element of the core network may be obtained from the terminal or obtained from the PCF network element.
  • the core network element when the core network element is an AMF network element, the core network element receives the access type allowed by the session of the terminal, and specifically includes: the core network element receives the NAS message from the terminal, and the NAS The message includes the type of access allowed by the session.
  • the core network element when the core network element is an SMF network element, receives the access type allowed by the session of the terminal, and specifically includes: the core network element receives the session allowed from the AMF network element.
  • Access type the access type allowed by the session is sent by the terminal to the AMF network element through a mobility management message or a session management message. That is, the terminal sends the access type allowed by the session to the AMF network element, and then the AMF network element sends the access type allowed by the session to the SMF network element.
  • the core network element when the core network element is a UPF network element, the core network element receives the access type allowed by the session of the terminal, including: the core network element receives the session allowed from the SMF network element.
  • Incoming type the access type allowed by the session is sent by the terminal to the SMF network element. That is, the terminal sends the access type allowed by the session to the SMF network element, and then the SMF network element sends the access type allowed by the session to the UPF network element.
  • the core network element when the core network element is an AMF network element, receives the access type allowed by the session of the PCF network element, and specifically includes: the core network element receives the source from the SMF network element. The access type allowed by the session, where the SMF network element obtains the access type allowed by the session from the PCF network element.
  • the core network element when the core network element is an SMF network element, the core network element receives the access type allowed by the session of the PCF network element, and specifically includes: the core network element receives the network element from the PCF network element. The type of access allowed for the session.
  • the core network element when the core network element is a UPF network element, receives the access type allowed by the session of the PCF network element, and specifically includes: the core network element receives the source from the SMF network element. The type of access allowed by the session, the SMF obtaining the access type allowed by the session from the PCF.
  • the core network element when the core network element is an AMF network element, the core network element does not activate the session, and specifically includes: when the terminal is in the connected state in the network of the second access type, the core network element The terminal does not notify the downlink data to arrive; or, when the terminal is in the idle state in the network of the second access type, the core network element does not send a paging message to the terminal.
  • the core network element when the core network element is an SMF network element, the core network element does not activate the session, and the core network element does not notify the AMF network element to activate the session.
  • the SMF network element when the SMF network element determines that the session needs to be activated, the SMF network element sends a notification message to the AMF network element, where the notification message is an N11 interface message, and the notification message may be sent to the wireless interface.
  • N2 interface session management information N2 SM information
  • the N2 interface session management information includes quality of service (QoS) parameter information (QoS profile), and N3 interface tunnel information (CN) N3 Tunnel Info
  • QoS quality of service
  • CN N3 interface tunnel information
  • the SMF network element does not notify the AMF network element to activate the session, that is, the SMF network element does not send the foregoing notification message to the AMF network element.
  • the core network element when the core network element is a UPF network element, the core network element does not activate the session, and the core network element does not indicate to the SMF network element that the downlink data of the session arrives.
  • the UPF network element determines that the session needs to be activated
  • the UPF indicates, by using a data notification message, that the SMF network element arrives at the downlink data of the session, including a session identifier (Session ID).
  • the session can be a Protocol Data Unit (PDU) session.
  • PDU Protocol Data Unit
  • the SMF network element receives the data notification message, it can be determined that the session needs to be activated. Therefore, on the basis of the implementation manner, the UPF network element does not indicate to the SMF network element that the downlink data of the session arrives, and the UPF network element does not send the data notification message to the SMF network element.
  • the method further includes: the core network element receives the subscription notification message from the AMF network element, where the subscription notification message is used to indicate that the terminal is in the first access type.
  • the network is in an idle state; or the core network element receives the data notification message from the UPF network element, and determines, according to the data notification message, that the terminal is in an idle state in the network of the first access type, and the data notification message is used for Indicates the downstream data of the session.
  • the first access type in the application is non-3GPP access, and the second access type is 3GPP access; or the first access type is 3GPP access, and the second access is The type is non-3GPP access.
  • the present application provides a communication method that can be performed by a terminal, a system on a chip, or a chip.
  • the method includes: the terminal obtains an access type allowed by the session, and the terminal sends the access type allowed by the session to the core network element.
  • the core network element may be an AMF network element, an SMF network element, or a UPF network element.
  • the access type allowed by the session includes at least one of non-3GPP access and 3GPP access. That is, the access types allowed by the session include 3GPP access. Alternatively, the access types allowed by the session include non-3GPP. Alternatively, the access types allowed by the session include 3GPP access and non-3GPP access.
  • the present application provides an apparatus, which may be a core network element or a system on chip or a chip in a core network element.
  • the device has the functionality to implement the various embodiments of the first aspect described above. This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal when the device is a core network element, the terminal includes: a processing unit and a communication unit, and the processing unit may be, for example, a processor, and the communication unit may be, for example, a transceiver, and the transceiver
  • the device includes a radio frequency circuit.
  • the core network element further includes a storage unit, which may be, for example, a memory.
  • the storage unit stores a computer execution instruction
  • the processing unit is connected to the storage unit, and the processing unit executes a computer execution instruction stored by the storage unit, so that the core network element performs the above The communication method of any of the first aspects.
  • the system on chip or chip when the device is a system on chip or a chip in a core network element, the system on chip or chip includes: a processing unit and a communication unit, and the processing unit may be, for example, a processor,
  • the communication unit can be, for example, an input/output interface, a pin or a circuit, or the like.
  • the processing unit may execute computer execution instructions stored by the storage unit to cause the communication method of any of the above aspects to be performed.
  • the storage unit is a storage unit in the system on chip or a chip, such as a register, a cache, etc., and the storage unit may also be located outside the system on the chip or the chip in the core network element.
  • a storage unit such as a read-only memory (ROM), other types of static storage devices that can store static information and instructions, a random access memory (RAM), and the like.
  • the processor mentioned in any of the above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more An integrated circuit for controlling program execution of the communication method of the above first aspect.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the present application provides an apparatus, which may be a terminal or a system on chip or a chip in a terminal.
  • the device has the functionality to implement the various embodiments of the second aspect described above. This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal when the device is a terminal, the terminal comprises: a processing unit and a communication unit, the processing unit may be, for example, a processor, the communication unit may be, for example, a transceiver, the transceiver including a radio frequency Circuitry, optionally, the terminal further includes a storage unit, which may be, for example, a memory.
  • the terminal when the terminal includes a storage unit, the storage unit stores a computer execution instruction, and the processing unit is connected to the storage unit, and the processing unit executes a computer execution instruction stored by the storage unit, so that the terminal performs any one of the foregoing second aspects. Communication method.
  • the system on chip or chip comprises: a processing unit and a communication unit, which may be, for example, a processor, for example, the communication unit It can be an input/output interface, a pin or a circuit.
  • the processing unit may execute computer execution instructions stored by the storage unit to cause the communication method of any of the above second aspects to be performed.
  • the storage unit is a storage unit in the system on chip or a chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located in the terminal or external to the chip in the terminal.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more An integrated circuit for controlling program execution of the communication method of the second aspect described above.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the application provides a communication method, including: receiving, by an SMF network element, a data notification message from a UPF network element, where the data notification message indicates that downlink data of the session arrives; and the SMF network element is notified according to the data
  • the message sends the access type allowed by the session to the AMF network element.
  • the access type allowed by the session may be carried in an N11 message, and the N11 message may be used to activate the session.
  • the method before the SMF network element receives the data notification message from the UPF network element, the method further includes: the SMF network element receiving the session from the session The access type allowed by the corresponding terminal or the session from the PCF network element of the policy control function.
  • the SMF network element receives the access type allowed by the session from the terminal, including:
  • the SMF network element receives a non-access stratum NAS message from the terminal, the NAS message including an access type allowed by the session.
  • the sending, by the AMF network element, the access type allowed by the session include:
  • the SMF network element allows the access type of the session to the AMF network element.
  • the application provides an apparatus, which may be an SMF network element, or a system on chip or a chip in an SMF network element.
  • the device has the functions or steps to achieve the fifth aspect described above and its various possible embodiments.
  • it can be implemented by hardware or by software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the present application further provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • the present application also provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • Figure 1 is a possible system architecture provided by the present application
  • FIG. 2 is a schematic diagram of a process of initiating a service request by a network side in the prior art
  • FIG. 3(a) is a flowchart of a communication method provided by the present application.
  • FIG. 3(b) is a flowchart of another communication method provided by the present application.
  • FIG. 4 is a schematic diagram of a PDU session establishment process provided by the present application.
  • FIG. 5(a) is a schematic diagram of another PDU session establishment process provided by the present application.
  • FIG. 5(b) is a schematic diagram of another PDU session establishment process provided by the present application.
  • FIG. 6 is a schematic diagram of another PDU session establishment process provided by the present application.
  • FIG. 7 is a schematic diagram of another PDU session establishment process provided by the present application.
  • Figure 8 is a schematic structural view of a device provided by the present application.
  • Figure 9 is a schematic structural view of another device provided by the present application.
  • Figure 10 is a schematic structural view of another device provided by the present application.
  • Figure 11 is a schematic structural view of another device provided by the present application.
  • FIG. 12 is a flowchart of still another communication method provided by the present application.
  • FIG. 13 is a flowchart of still another communication method provided by the present application.
  • FIG. 14 is a flow chart of still another communication method provided by the present application.
  • the communication method of the present application can be performed by a device.
  • the device may be a core network element or terminal, or may be a system on chip or chip within the core network element, or a system on chip or chip within the terminal.
  • the core network element may be an access and Mobility Management Function (AMF) network element, a session management function (SMF) network element, or a user plane function (UPF) network.
  • AMF access and Mobility Management Function
  • SMF session management function
  • UPF user plane function
  • the present application uses a device as a core network element or a terminal as an example to describe a communication method.
  • a device as a core network element or a terminal
  • the implementation of the on-chip system or chip in the core network element, or the implementation of the on-chip system or chip in the terminal refer to the specific description of the communication method of the core network element or the terminal, and the description is not repeated.
  • the network architecture is a non-3GPP network architecture in 5G.
  • the network element in the 5G architecture includes a terminal.
  • the terminal uses the user equipment (User Equipment, UE) as an example.
  • the network architecture also includes 3GPP access, non-3GPP access, non-3GPP access gateway (for example, N3IWF network element), AMF network element, SMF network element, UPF network element, and Unified Data Management (UDM) network element. And data network (DN), etc.
  • a terminal may access the core network through 3GPP and/or non-3GPP.
  • the session may be a PDU session or the like.
  • the types of access allowed for the session include 3GPP access, and/or non-3GPP access, for example, the session is allowed to be activated from 3GPP access and/or non-3GPP access. That is, the session of the terminal can transmit and receive data through 3GPP, and can also transmit and receive data through non-3GPP.
  • the access type allowed by the session may also be expressed as the access type supported by the session.
  • 3GPP access can be implemented through a Radio Access Network (RAN) device.
  • the main function of the RAN device is to control the user's wireless access to the mobile communication network.
  • the RAN device is part of a mobile communication system. It implements a wireless access technology. Conceptually, it resides between devices (such as mobile phones, a computer, or any remote controller) and provides connectivity to its core network.
  • the RAN device includes, but is not limited to, (g nodeB, gNB), evolved node B (eNB), radio network controller (RNC), node B (node B, NB) in 5G, Base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved node B, or home node B, HNB), baseband unit (BBU), transmission point (transmitting and receiving point, TRP), a transmitting point (TP), a mobile switching center, etc., and may also include a wireless fidelity (wifi) access point (AP) or the like.
  • BSC Base station controller
  • BTS base transceiver station
  • TRP transmission point
  • TRP transmitting and receiving point
  • TP transmitting point
  • AP wireless fidelity
  • Non-3GPP access may be implemented by wireless local area networks (WLAN).
  • WLAN wireless local area networks
  • the N3IWF network element is similar to the evolved packet data gateway (ePDG) in the long term evolution (LTE), and is used in the 5G to establish the Internet protocol security with the UE when the UE accesses through the non-3GPP. (internet protocol security, IPsec) tunnel.
  • ePDG evolved packet data gateway
  • LTE long term evolution
  • IPsec Internet protocol security
  • the name of the N3IWF may be changed. This application only exemplifies the N3IWF as an access gateway of a non-3GPP network.
  • the AMF network element is responsible for the access management and mobility management of the terminal. In practical applications, it includes the mobility management function in the mobility management entity (MME) in the network framework of LTE, and joins the access management.
  • MME mobility management entity
  • the SMF network element is responsible for session management, such as user session establishment, and the like, and may include a session management function in a Mobility Management Entity (MME), or a serving gateway (SGW) and a public in LTE. Control plane function of the public data network (PDN) gateway (PDN-GW).
  • MME Mobility Management Entity
  • SGW serving gateway
  • PDN-GW public data network gateway
  • the UPF network element is a functional network element of the user plane. It is mainly responsible for connecting to the external network. It includes the Long Term Evolution (LTE) service gateway (SGW) and the public data network gateway (PDN). -GW) related functions.
  • LTE Long Term Evolution
  • SGW service gateway
  • PDN public data network gateway
  • the DN is responsible for providing services to the terminal. For example, some DNs provide Internet access for terminals, and other DNs provide SMS functions for terminals.
  • the UDM network element can store the subscription information of the user, and implements a backend similar to the Home Subscriber Server (HSS) in the fourth generation mobile communication (4th generation, 4G).
  • HSS Home Subscriber Server
  • the terminal in the present application is a device with wireless transceiving function, which can be deployed on land, indoors or outdoors, hand-held or on-board; it can also be deployed on the water surface (such as a ship, etc.); it can also be deployed in the air (for example) Aircraft, balloons and satellites, etc.)
  • the terminal may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, industrial control (industrial control) Wireless terminal, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transport safety, A wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • the UE in FIG. 1 is a specific example of the terminal.
  • the network element used to perform the communication method of the present application may be a UE, an AMF network element, an SMF network element, or a UPF network element.
  • AMF AMF
  • SMF SMF
  • UPF UPF
  • the first access type is 3GPP access
  • the second access type is non-3GPP access
  • the first access type is non-3GPP access
  • the second access type is 3GPP access.
  • the terminal when establishing a session, may establish through 3GPP access or through non-3GPP access. If the session is established through the 3GPP access, the access type adopted by the session is 3GPP access. The session may be referred to as a session using the 3GPP access technology, or a session established through 3GPP access, and is not limited. If the session is established through non-3GPP access, the access type adopted by the session is non-3GPP access. The session may be referred to as a session using non-3GPP access technology, or a session established through non-3GPP access. Limited.
  • the access type allowed by the session further includes 3GPP access, in other words, the session allows the use of the 3GPP access technology, when the session is in the deactivated state, it can pass through the non-active
  • the 3GPP access activates the session and can also activate the session through 3GPP access.
  • the session can be activated either through 3GPP access or through non-3GPP access.
  • the session of the terminal adopting the 3GPP access technology when the terminal is in an idle state in the 3GPP network, the session of the terminal adopting the 3GPP access technology is in a deactivated state.
  • the session in which the part or all of the terminal adopts the 3GPP access technology may be in an active state, for example, the session in which all 3GPP access technologies of the terminal are in an active state may be used;
  • the session of the terminal adopting the 3GPP access technology is in an active state, and the session of the other part adopting the 3GPP access technology is in a deactivated state; or the session of the terminal adopting the 3GPP access technology is in a deactivated state.
  • the session of the terminal adopting the non-3GPP access technology when the terminal is in an idle state in the non-3GPP network, the session of the terminal adopting the non-3GPP access technology is in a deactivated state.
  • the session of the terminal adopting the non-3GPP access technology is in an active state. Therefore, if it can be determined that one or more sessions using the non-3GPP access technology of the terminal are in a deactivated state, it can be determined that the terminal is in an idle state in the non-3GPP network. If it can be determined that one or more sessions of the terminal using the non-3GPP access technology are in an active state, it can be determined that the terminal is in a connected state in the non-3GPP network.
  • the UPF determines that the downlink data of a certain session arrives, if the session is in an active state, the UPF sends the downlink data to the terminal through the session.
  • the network side initiates a service request process for activating the session, so that the terminal can perform data service of the session.
  • the session may be a session using a 3GPP access technology or a session using a non-3GPP access technology.
  • the downlink data is associated with a certain session, that is, the downlink data is sent to the terminal through a certain session. Therefore, the downlink data may also be referred to as downlink data of the session, or as downlink data corresponding to the session.
  • the session may also be referred to as a session corresponding to downlink data, or a session called downlink data.
  • FIG. 2 a schematic diagram of a service request process initiated by a network side in the prior art is shown. The process includes the following steps:
  • Step 1 The UPF receives the downlink data of the session, and the session is in a deactivated state.
  • the session may be a session using a 3GPP access technology or a session using a non-3GPP access technology.
  • the session refers to a PDU session.
  • Step 2a The UPF sends a Data Notification message to the SMF.
  • the notification message includes an identifier of the session, and the notification message is used to notify the SMF that the downlink data of the session arrives. It can also be understood that the UPF notifies the SMF that the downlink data of the session reaches the UPF.
  • Step 2b The SMF sends a Data Notification Ack message to the UPF.
  • the notification response message is used to notify the UPF that the data notification message in step 2a is received.
  • step 3a the SMF sends an N11 message (N11message) to the AMF.
  • the N11 message includes an identifier of the session and N2 SM session information.
  • the N2 interface session management information includes QoS profile information (CN N3 Tunnel Info), and the N2 interface session management information is used for the RAN activation session.
  • the N11 message is used to inform the AMF that the downlink data of the session arrives. It can also be understood that the SMF notifies the AMF that the downlink data of the session needs to be sent to the terminal.
  • Step 3b The AMF sends an N11 response message to the SMF.
  • step 3b is an optional step.
  • step 3b is executed.
  • the N11 response message is used to notify the SMF that the terminal is unreachable.
  • Step 3c The SMF sends a failure indication to the UPF.
  • the step 3c is an optional step.
  • the step 3b is performed, the step 3c is executed, and the failure indication is used to indicate to the UPF that the user plane establishment fails.
  • the AMF is based on the access type of the session (eg, the session is a session using a 3GPP access technology or a session using a non-3GPP access technology) and the state of the terminal in the 3GPP network (eg, the terminal is in a 3GPP network) For the idle state or the connected state, it is determined to perform step 4a, or step 4b, or step 5. The following are explained separately.
  • Step 4a When the terminal is in the connected state in the 3GPP network and the session is a session adopting the 3GPP access technology, the AMF restores the user plane.
  • step 4a is an optional step. Step 4a is performed when the terminal is in the connected state and the session is a session using the 3GPP access technology. When the session is a session using a non-3GPP access technology, step 4a is not performed.
  • step 4a The specific content of the step 4a can be referred to the prior art, and details are not described herein again.
  • Step 4b When the terminal is in an idle state in the 3GPP network, the AMF pages the terminal.
  • step 4b is an optional step. When the terminal is in an idle state in the 3GPP network, step 4b is performed.
  • the AMF sends a paging message to the terminal by using the RAN, where the paging message includes indication information, where the indication information is used to indicate that the terminal downlink data arrives.
  • the terminal when the session adopts a session other than the 3GPP access technology, the terminal returns an N1 message (for example, a service request message) to the AMF after receiving the paging message, where the N1 message carries the identification information of the specific session, the specific session.
  • N1 message for example, a service request message
  • the terminal allows the adoption of a 3GPP access technology, which can be understood as a session that allows the access technology to be switched from non-3GPP to 3GPP, so that the session can transmit data through the 3GPP access technology.
  • the ID of the specific session may be carried in the N1 message, and at least one specific session may be indicated by the bit information.
  • the session corresponding to the bit is indicated as the specific session.
  • the indication information "1001000000101101” indicates that the first, third, fourth, sixth, thirteenth, and thirteenth sessions are non-3GPP access technologies. Session, which allows the adoption of 3GPP access technology. For example, when the session is numbered from 1, the indication information "1001000000101101” indicates that session 1, session 3, session 4, session 6, session 13, and session 16 are sessions using non-3GPP access technologies, and the session allows for adoption. 3GPP access technology. For another example, when the session is numbered from 0, the indication information "1001000000101101” indicates that session 0, session 2, session 3, session 5, session 12, and session 15 are sessions using non-3GPP access technologies, and the session allows Adopt 3GPP access technology.
  • the AMF determines that the identity of the session in step 1 is in the identity of the particular session reported by the terminal, then the AMF determines that the session in step 1 can be activated by the 3GPP access, and thus the AMF continues to perform the subsequent session activation step.
  • the AMF determines that the identity of the session in step 1 is not in the identity of the particular session reported by the terminal, it indicates that the session cannot be activated through the 3GPP access, and thus the AMF does not perform the subsequent session activation step.
  • Step 5 If the terminal is in the connected state in the 3GPP network and the access type of the session is non-3GPP access, the AMF sends an N1 message to the UE.
  • the identifier of the session is included in the N1 message to notify the terminal that there is downlink data of the session.
  • the terminal replies to the AMF with the N1 message (for example, the N1 message is a service request message), and the N1 message carries indication information for indicating the AMF, whether the session using the non-3GPP access technology can be activated through the 3GPP access. If activated by 3GPP access, the AMF performs a subsequent session activation step. If activation is not possible through 3GPP access, the AMF does not perform subsequent session activation steps.
  • the N1 message includes indication information, where the indication information is used to explicitly notify the terminal that there is downlink data of the session, for example, the indication information may be a non-3GPP access type.
  • the terminal replies to the AMF with the N1 message (for example, the service request message), where the N1 message carries the identification information of the specific session, and the specific session is a session using the non-3GPP access technology, and the session allows the adoption of the 3GPP access technology, which can be understood as Allows the access technology to be switched from non-3GPP to 3GPP session so that the session can transmit data through the 3GPP access technology.
  • the AMF determines that the identity of the session in step 1 is in the identity of the particular session reported by the terminal, then the AMF determines that the session in step 1 can be activated by the 3GPP access, and thus the AMF continues to perform the subsequent session activation step. If the AMF determines that the identity of the session in step 1 is not in the identity of the particular session reported by the terminal, it indicates that the session cannot be activated through the 3GPP access, and thus the AMF does not perform the subsequent session activation step.
  • Step 6 The subsequent session activation process.
  • Step 7 The UPF sends downlink data to the terminal.
  • the access type of the session is switched from non-3GPP access to 3GPP access.
  • the UPF then sends downlink data to the terminal through the activated session.
  • the AMF may It is determined that the session using the non-3GPP access technology does not support activation through the 3GPP access, and thus the network side stops the process of activating the session, that is, the subsequent activation process of step 6 is not performed.
  • the network side stops the subsequent activation process, it still causes step 4b or step 5, and the unnecessary signaling overhead of the UE replying to the N1 message.
  • the N1 message or the paging message sent by the AMF to the terminal in the above step 4b or step 5, and the N1 message replied by the terminal to the AMF are unnecessary waste of resources. From another perspective, it can be seen that in the flow shown in FIG. 2, more signaling is required, so the efficiency is lower.
  • the present application provides the communication method shown in FIGS. 3(a) and 3(b).
  • the communication methods shown in FIGS. 3(a) and 3(b) can be performed by AMF, SMF or UPF. The following are explained separately.
  • Step 1 The core network element determines the downlink data arrival of the session.
  • the session may refer to a session for transmitting the downlink data, and different downlink data may be transmitted by using different sessions, which is a prior art and will not be described again.
  • the downlink data is downlink data to be sent to the terminal.
  • Step 1 is also understood to be that the core network element determines that the downlink data of the session reaches the UPF, or the core network element determines that the session has downlink data to be sent to the terminal, or the core network element determines that the UPF receives the to-be-sent to the terminal.
  • Downstream data is not restricted.
  • step 1 may receive downlink data of the session for the UPF.
  • step 1 may receive an indication message from the UPF for the SMF, where the indication message is used to indicate that the downlink data of the session arrives.
  • the indication message may be used to indicate that the downlink data of the session reaches the UPF, or the session has downlink data to be sent to the terminal, or the UPF receives the downlink data of the session.
  • the UPF sends a data notification message to the SMF, which is used to indicate the arrival of downlink data for the session.
  • step 1 may receive an indication from the SMF for the AMF, which is used to indicate that the downlink data of the session arrives.
  • the indication may be used to indicate that the downlink data of the session reaches the UPF, or the session has downlink data to be sent to the terminal, or the UPF receives downlink data of the session.
  • the SMF sends an N11 message to the AMF, the N11 message including an identifier of the session, indicating that the downlink data of the session arrives.
  • the N11 message further includes an access type allowed by the session.
  • Step 2 When the session is in a deactivated state and the session is a session of the first access type, the core network element determines that the access type allowed by the session does not include the second access type, and the session is not activated.
  • the session may be a session using a 3GPP access technology, or a session using a non-3GPP access technology.
  • the first access type may be a 3GPP access
  • the second access type may be a non- 3GPP access
  • the first access type may be a non-3GPP access
  • the second access type may be a 3GPP access.
  • the network of the first access type is a non-3GPP network
  • the network of the second access type is a 3GPP network
  • the network of the first access type is a 3GPP network
  • the network of the second access type is a non-3GPP network
  • the identifier of the session for transmitting the downlink data may be obtained according to the packet filtering set information, which is not described in the prior art; when the core network element is SMF
  • the indication message in the step 1 may carry the identifier of the session corresponding to the downlink data.
  • the AMF may receive the identifier of the session corresponding to the downlink data from the SMF, for example, step 1 above. N11 message in.
  • the terminal may be in an idle state in the non-3GPP network, and then the terminal may not be able to use the non-3GPP network normally.
  • the terminal activates the session by using the 3GPP access technology, thereby ensuring normal reception of downlink data.
  • the non-3GPP access technology is preferentially used to activate the session. To ensure the transmission rate of downlink data, save wireless resources.
  • the core network element in step 2 determines that the access type allowed by the session includes the second access type, indicating that the session can be activated by using the second access type, and the core network element is activated by the second access type. If the core network element determines that the access type allowed by the session does not include the second access type, it indicates that the session cannot be activated by the second access type, and the core network element stops the activation session.
  • the core network element itself can determine whether the session can be activated by the second access type.
  • the core network element determines that the access type allowed by the session does not include the second access type, it may be determined that the session cannot be activated by the second access type, and thus the subsequent process of activating the session may be directly ended. That is, there is no need to send the indication information to the terminal and the subsequent steps such as the response message sent by the receiving terminal, thereby saving resources and signaling overhead.
  • the core network element may obtain a session supported access type from a terminal or a policy control function (PCF). That is, the core network element also receives access types allowed by the terminal or from the session of the PCF.
  • PCF policy control function
  • the core network element is an AMF
  • the core network element receives the access type allowed by the session of the terminal, and specifically includes: the AMF receives the NAS message from the terminal, where the NAS message includes the session allowed. Access type.
  • the NAS message is an N1 interface mobility management message, and the N1 interface mobility management message carries an access type allowed by the session.
  • the core network element is an AMF network element
  • the core network element receives the access type allowed by the session of the terminal, which may include: the AMF network element receives the SMF network element from the session management function.
  • the access type allowed by the session, and the access type allowed by the session is received by the SMF network element from the terminal.
  • the AMF network element receives the access type allowed by the session from the SMF network element, and may include the following two methods:
  • the AMF network element receives an access type allowed by the session from the SMF network element.
  • the terminal sends the access type allowed by the session to the SMF network element, for example, the terminal sends the access type allowed by the session to the SMF network element in the PDU session establishment request message, where The PDU session establishment request message is used to request to establish the session; the SMF network element sends the access type allowed by the session to the AMF network element.
  • the AMF network element receives an access type allowed by the session from the SMF network element.
  • the terminal sends the access type allowed by the session to the SMF network element.
  • the terminal includes the access type allowed by the session in the NAS (which may be a PDU session establishment request message) message.
  • the SMF network element stores the type of access allowed for the session.
  • the AMF network element receives the access type allowed by the session from the SMF network element, for example, the UPF network element receives the downlink data of the session, and the session
  • the data is sent to the SMF network element, and the data notification message is used to indicate the downlink of the session of the SMF network element.
  • the data arrives; after the SMF network element receives the data notification from the UPF network element, the SMF network element sends the stored access type allowed by the session to the AMF network element.
  • the core network element is an SMF
  • the core network element receives the access type allowed by the session of the terminal, and specifically includes: the SMF receives the access type allowed by the session from the AMF.
  • the terminal carries the access type allowed by the session in the N1 interface mobility management message and sends it to the AMF.
  • the AMF obtains the access type allowed by the session from the N1 interface mobility management message, and then sends the access type to the SMF.
  • the terminal sends the access type allowed by the session to the AMF in the N1 interface session management message, and the AMF forwards the N1 interface session management message to the SMF, and the SMF obtains the session-supported access from the N1 interface session management message.
  • the core network element is a UPF
  • the core network element receives the access type allowed by the session of the terminal, including: the access type allowed by the UPF to receive the session from the SMF, and the access allowed by the session.
  • the type is sent by the terminal to the SMF. That is, the terminal sends the access type allowed by the session to the SMF, and then the SMF sends the access type allowed by the session to the UPF network element.
  • the core network element is an AMF
  • the core network element receives the access type allowed by the session from the PCF, and specifically includes: the AMF receives the access type allowed by the session from the SMF, and may adopt the foregoing manner.
  • One or two methods are implemented, wherein the SMF network element is an access type obtained from the PCF to the session.
  • the core network element is an SMF
  • the core network element receives the access type allowed by the session from the PCF, and specifically includes: the SMF receives the access type allowed by the session from the PCF.
  • the core network element is a UPF
  • the core network element receives the access type allowed by the session from the PCF, and specifically includes: the UPF receives the access type allowed by the session from the SMF, where the SMF is Obtain the access type allowed by the session from the PCF.
  • the core network element may obtain the access type supported by the session from the terminal, or obtain the access type supported by the session from the PCF, so that the core network element can locally save the obtained access type supported by the session.
  • the access type supported by the locally stored session can be used to determine whether the session of the first access type can be activated by the second access type, or whether the session of the second access type can be activated by the first access type.
  • the specific implementation method of the core network element inactive session in the step 2 of the embodiment shown in FIG. 3(a) is described below, wherein the session is a session of the first access type.
  • the core network element is AMF, and the core network element does not activate the session, including:
  • the AMF When the terminal is in the connected state in the network of the second access type, the AMF does not notify the terminal that the downlink data arrives; or, when the terminal is in the idle state in the network of the second access type, the AMF does not send the paging message to the terminal. .
  • the AMF does not notify the terminal that the downlink data arrives, and the AMF does not notify the terminal that the downlink data reaches the UPF, or the AMF does not notify the terminal that there is downlink data to be sent to the terminal, or the AMF does not notify the terminal UPF to receive the downlink data to be sent to the terminal. .
  • the core network element is an SMF
  • the core network element does not activate the session
  • the SMF does not notify the AMF to activate the session.
  • the SMF does not notify the AMF to activate the session. For example, the SMF may not send an N11 message to the AMF, where the N11 message includes an identifier of the session, indicating that the downlink data of the session arrives.
  • the core network element is a UPF
  • the core network element does not activate the session
  • the method includes: the UPF does not indicate to the SMF that the downlink data of the session arrives.
  • the UPF does not indicate to the SMF that there is downlink data in the session, and the UPF does not send a data notification message to the SMF, where the data notification message is used to indicate that the downlink data of the session arrives.
  • the core network element does not activate the session, that is, the step of performing the subsequent activation session is stopped, thereby reducing the signaling overhead, thereby improving the efficiency of the service request process.
  • Step 1 The core network element determines that the downlink data of the session arrives, and the downlink data is the downlink data to be sent to the terminal.
  • This step is the same as step 1 shown in FIG. 3(a), and can be referred to the foregoing description.
  • Step 2 When the session corresponding to the downlink data is in the deactivated state, the session is the session of the first access type, and the terminal is in the idle state in the network of the first access type, if the core network element determines that the session is allowed to be connected If the incoming type does not include the second access type, the session is not activated.
  • step 2 in FIG. 3(b) needs to determine the state of the terminal in the network of the first access type.
  • the core network element itself can determine whether the session can be activated by the second access type.
  • the core network element determines that the access type allowed by the session does not include the second access type, it may be determined that the session cannot be activated by the second access type, and thus the subsequent process of activating the session may be directly ended. That is, there is no need to send the indication information to the terminal and the subsequent steps such as the response message sent by the receiving terminal, thereby saving resources and signaling overhead.
  • the SMF may determine the status of the terminal in the network of the first access type by the following method.
  • the SMF may receive a subscription notification message from the AMF, where the subscription notification message is used to indicate the status of the terminal in the network of the first access type, for example, indicating that the status of the terminal in the network of the first access type is idle. Or for the connected state.
  • the subscription notification message is only a name. In a specific implementation, it may also be represented by other names, such as a notification message called a subscription service.
  • the SMF receives the data notification message from the UPF, and determines the status of the terminal in the network of the first access type according to the data notification message. For example, if the SMF receives the data notification message from the UPF, the data notification message is used to indicate If there is downlink data of the session, the SMF determines that the state of the terminal in the network of the first access type is an idle state.
  • the SMF determines the state of the terminal in the network of the first access type
  • the state of the terminal in the network of the first access type is sent to the UPF, so that the UPF may determine that the terminal is in the first access type.
  • the state in the network is sent to the UPF, so that the UPF may determine that the terminal is in the first access type.
  • the state of the terminal in the network of the first access type can be directly determined.
  • the method for determining the state of the terminal in the network of the first access type is the prior art, and details are not described herein.
  • the embodiment shown in FIG. 3(a) or 3(b) is exemplified by taking the core network element as AMF, SMF or UPF as an example.
  • the first access type is non-3GPP access
  • the second access type is 3GPP access as an example.
  • the core network element is AMF
  • the AMF when the AMF receives the N11 message sent by the SMF through step 3a, it can determine the downlink data arrival of the session, and the N11 message includes the identifier of the session.
  • the session is a session using a non-3GPP access technology and is in a deactivated state. Further, it can also be determined that the terminal is in an idle state on a non-3GPP network.
  • the AMF determines, according to the locally allowed access type of the session, whether the access type allowed by the session includes 3GPP access.
  • the session is activated through 3GPP access.
  • the specific process can refer to the prior art method.
  • the AMF determines that the access type allowed for the session does not include 3GPP access, then it is determined that the session may not be activated by the 3GPP access and thus the session is not activated.
  • the session may not be activated.
  • the AMF does not notify the terminal that the downlink data arrives, that is, step 5 is not performed.
  • the AMF does not send a paging message to the terminal, that is, step 4b is not performed.
  • step 5 is not performed or step 4b is not performed, and subsequent steps after step 5 or 4b are not performed, thereby reducing unnecessary signaling.
  • step 5 is not performed or step 4b is not performed, and subsequent steps after step 5 or 4b are not performed, thereby reducing unnecessary signaling.
  • Overhead saving resources.
  • the core network element is SMF
  • the SMF when the SMF receives the data notification message sent by the UPF through the step 2a, it can determine the downlink data arrival of the session, and the data notification message is used to indicate that the downlink data of the session reaches the UPF.
  • the data notification message includes an identifier of the session.
  • the session is in a deactivated state. Further, it can also be determined that the terminal is in an idle state on a non-3GPP network.
  • the SMF may also determine that the terminal is in an idle state in the non-3GPP network according to any of the following methods.
  • the SMF receives a subscription notification message from the AMF, where the subscription notification message is used to indicate that the terminal is in an idle state in a non-3GPP network.
  • the SMF subscribes to the AMF to subscribe to the status of the terminal in the non-3GPP network. Therefore, as long as the status of the terminal changes in the non-3GPP network, the AMF sends a subscription notification message to the SMF, to notify the SMF terminal that the current terminal is in the non-3GPP network. The state in .
  • the SMF can determine that the terminal is in an idle state in the non-3GPP network.
  • Method 2 The SMF receives the data notification message from the UPF, and determines, according to the data notification message, that the terminal is in an idle state in the non-3GPP network.
  • the terminal may determine that the terminal is in an idle state in the non-3GPP network. .
  • the SMF determines whether the access type allowed by the session includes 3GPP according to the locally stored access type allowed by the session. Among them, the terminal is in an idle state in the non-3GPP network.
  • the session is activated by 3GPP.
  • the specific process can refer to the prior art method.
  • the SMF determines that the access type allowed for the session does not include 3GPP access, then it is determined that the session cannot be activated through 3GPP access and thus the session is not activated.
  • the session may not be activated.
  • the SMF does not notify the AMF to activate the session, that is, does not perform step 3a in FIG. 2, and thus does not perform all subsequent steps for activating the session in step 3a.
  • step 3a and subsequent steps are not performed, thereby reducing unnecessary signaling overhead and saving resources.
  • the core network element is UPF
  • the UPF when the UPF receives the downlink data, it can determine the downlink data arrival of the session. The session is in a deactivated state. Further, the UPF also determines that the terminal is in an idle state on the non-3GPP network.
  • the UPF determines whether the access type allowed by the session includes 3GPP according to the access type allowed by the session stored locally.
  • the session is activated through 3GPP access.
  • the specific process can refer to the prior art method.
  • the UPF determines that the access type allowed for the session does not include 3GPP access, then it is determined that the session may not be activated through 3GPP access and thus the session is not activated.
  • the session may not be activated.
  • the UPF does not indicate to the SMF that the downlink data of the session arrives, that is, does not perform step 2a in FIG. 2, and thus does not perform all steps for activating the session after step 2a.
  • step 2a and subsequent steps are not performed, thereby reducing unnecessary signaling overhead and saving resources.
  • the access type allowed by the session stored locally in the core network element may be from the terminal or from the PCF.
  • the specific implementation method is as follows:
  • the AMF receives the access type allowed by the session from the terminal, and specifically includes: the AMF receives the NAS message from the terminal, and the NAS message includes the access type allowed by the session.
  • the SMF receives the access type allowed by the session of the terminal, and specifically includes: the terminal sends a mobility management message to the AMF, where the mobility management message includes an access type allowed by the session, and the AMF receives the mobile After the message is managed, the access type allowed by the session is obtained and sent to the SMF.
  • the terminal sends a session management message to the AMF, where the session management message includes an access type allowed by the session, and after receiving the session management message, the AMF forwards the session management message to the SMF, so that the SMF can obtain the session management message.
  • the type of access allowed to the session is an SMF
  • the SMF receives the access type allowed by the session of the terminal, and specifically includes: the terminal sends a mobility management message to the AMF, where the mobility management message includes an access type allowed by the session, and the AMF receives the mobile After the message is managed, the access type allowed by the session is obtained and sent to the SMF.
  • the terminal sends a session management message to the AMF, where the
  • the UPF receives the access type allowed by the session from the terminal, including: the terminal sends the access type allowed by the session to the SMF.
  • the SMF After receiving the access type allowed by the session of the terminal, the SMF sends the access type allowed by the session to the UPF.
  • the SMF also sends the current access type of the session to the UPF.
  • the method for obtaining the access type allowed by the session by the core network will be specifically described below with reference to FIG. 4 to FIG. 7.
  • the description is made by taking a session as a PDU session and a terminal as a UE.
  • FIG. 4 it is a schematic diagram of a PDU session establishment process provided by the present application.
  • the communication method of the present application is performed by the AMF, and thus the AMF obtains the allowed access type of the session in the session activation process, and the AMF also establishes the access type allowed by the session, the identifier of the SMF, and the PDU session identifier. Mapping relationship.
  • the AMF is an access type that is obtained from the PCF to the session.
  • Step 1 The UE sends a PDU session establishment request message to the AMF.
  • the UE initiates establishment of a PDU session, and sends a Mobile Management (MM) message to the AMF, and the MM message may be referred to as Non-Access-Stratified (NAS) signaling. It can be called an N1 interface message.
  • the MM message includes session management (SM) signaling.
  • the MM message further includes session management-Network Slice Selection Assistance Information (S-NSSAI), and the data network name. (Data Network Name, DNN), PDU session identifier (Session Idenfication, Session ID).
  • S-NSSAI session management-Network Slice Selection Assistance Information
  • the SM signaling is a PDU session setup request message, which may carry a PDU Type, a service and session continuity mode (SSC mode).
  • PDU session setup request message which may carry a PDU Type, a service and session continuity mode (SSC mode).
  • SSC mode service and session continuity mode
  • the PDU Type indicates whether the PDU session is IPv4 or IPv6.
  • the SSC mode indicates the service and session continuity mode of the PDU session, which may be mode 1, mode 2 or mode 3.
  • Mode1 indicates that the anchor point (UPF) of the IP address does not change and supports service continuity.
  • Mode2 indicates that the anchor point (UPF) of the IP address is variable, and the network may release the current PDU session first, and then notify the UE to establish a new PDU session.
  • Mode3 indicates that the old network connection is released after establishing a new network connection for the UE.
  • Step 2 The AMF selects a suitable SMF.
  • the AMF may select the SMF according to the S-NSSAI, DNN.
  • Step 3 The AMF sends a PDU session establishment request message to the selected SMF.
  • the AMF may send a PDU session establishment request message to the SMF through the service “Namf_PDUSession_CreateSMContext”.
  • Step 4 The SMF obtains session management (SM) related subscription information of the UE from the UDM.
  • SM session management
  • This step 4 is an optional step. When there is no SM-related subscription information of the UE on the SMF, it is obtained from the UDM.
  • the SM-related subscription information includes an authorized PDU type(s), an authorized SSC mode(s), and a default Quality of Service (QoS) attribute.
  • QoS Quality of Service
  • Step 5 The SMF initiates a third-party authentication and authorization process for the PDU session.
  • the step 5 is an optional step.
  • the SMF may be caused to determine, according to the result of the authentication and authorization, whether the PDU session establishment process needs to be continued for the PDU session of the UE.
  • Step 6a the SMF selects the PCF.
  • Step 6b The SMF obtains the access type allowed by the PDU session from the PCF.
  • the SMF initiates a Npcf_SMPolicyControl_Get (Policy Control for the Session Management) service provided by the PCF to obtain the Policy and Charging Control Rules (PCC rules) of the PDU session.
  • PCC rules Policy and Charging Control Rules
  • an access type (s) allowed by the PDU session may also be acquired.
  • the PCC rules may further include a preferred access type.
  • Step 6c The PCF sends the contracted event to the SMF.
  • the PCF sends the signed event to the SMF through the service "Nsmf_EventExposure_Subscribe”.
  • Step 7 The SMF selects a suitable UPF.
  • the SMF may select an appropriate UPF for the PDU session according to one or more factors of the UE location, the UPF load, the UPF capacity, the DNN, the PDU type, the SSC mode of the PDU session, and the UE subscription information (subscription). Assign an IP address to the PDU session.
  • step 8a the SMF notifies the PCF of the event.
  • This step 8a is an optional step, and the SMF notifies the PCF of the event when the event signed by the PCF occurs.
  • the SMF notifies the PCF of the event via the service "Nsmf_EventExposure_Notify”.
  • step 8b the PCF sends the updated policy to the SMF.
  • the PCF sends the updated policy to the SMF.
  • the PCF sends the updated policy to the SMF via the service "Npcf_SMPolicyControl_UpdateNotify”.
  • Step 9a The SMF sends an N4 Session Establishment/Modification Request message to the UPF.
  • Step 9b The UPF sends an N4 Session Establishment/Modification Respone message to the SMF.
  • Steps 9a to 9b above are performed for the N4 session establishment/modification process between the SMF and the UPF, and the packet detection (packet detection), the enforcement (the execution rule of the PDU session on the UPF), and the reporting rules (reporting rules) can be implemented.
  • the CN tunnel info core tunnel information is configured on the UPF.
  • Step 10a The SMF sends parameter information of the PDU session to the AMF.
  • the transmitted parameter information includes the access type allowed by the PDU session, and may also include N1SM information sent to the UE and an N2SM message sent to the RAN.
  • the access type allowed by the PDU session includes one or all of 3GPP access and N3GPP access.
  • the N1SM information includes a PDU Session Establishment Accept message, and the PDU session establishment accept message includes an Authorized QoS Rule, an SSC mode, an S-NSSAI, and an allocated IPv4 address. Session-Aggregate Maximum Bit Rate (Session-AMBR).
  • Session-AMBR Session-Aggregate Maximum Bit Rate
  • the N2 SM message includes a PDU session identifier, a QoS policy (Profile(s)), a CN Tunnel Info, an S-NSSAI, and a Session-AMBR.
  • Profile(s) QoS policy
  • CN Tunnel Info CN Tunnel Info
  • S-NSSAI Session-AMBR
  • the SMF may send parameter information of the PDU session to the AMF through the service “Nsmf_PDUSession_CreateSMContext Response”.
  • Step 10b The AMF establishes and saves a mapping relationship between the SMF identifier, the PDU session identifier, and the access types allowed by the PDU session.
  • the AMF after receiving the access type allowed by the PDU session, the AMF establishes a mapping relationship between the SMF identity, the PDU session identifier, and the access type allowed by the PDU session.
  • mapping relationship is only an implementation manner. In specific use, it is also possible to store only the access types allowed by the PDU session, and only need to be obtained when needed.
  • Step 11 The AMF sends an N2 PDU session request message to the RAN.
  • the N2PDU session request message includes an N1SM message and N2SM information received by the AMF from the SMF.
  • Step 12 The RAN sends an N1SM message to the UE.
  • the RAN and the UE perform RRC signaling interaction to establish necessary air interface resources for the PDU session.
  • the N1SM information is sent to the UE, for example, the N1SM message is carried in the PDU session establishment accept message and sent to the UE.
  • Step 13 The RAN sends an N2PDU session response message to the AMF.
  • the PDU session response message may include a PDU session identifier, N2SM information (including a PDU session identifier), (R) AN tunnel information (Tunnel Info), and a received/rejected QoS profile (List of accepted/rejected QoS profile(s). ))).
  • Step 14 The AMF sends the N2SM message received from the RAN to the SMF.
  • the N2SM message received from the RAN may be sent to the SMF through the service "Nsmf_PDUSession_UpdateSMContextRequest”.
  • Step 15a The SMF sends an N4 Session Modification Request message (N4 Session Modification Request) to the UPF.
  • N4 Session Modification Request N4 Session Modification Request
  • the N4 session modification request message includes (R)AN tunnel information in the N2SM message.
  • Step 15b The UPF sends an N4 session modification response message to the SMF.
  • Step 16 The SMF sends a response message for step 14 to the AMF.
  • the response message may be sent to the AMF through the service "Nsmf_PDUSession_UpdateSMContextResponse”.
  • Step 17 The SMF configures the IPv6 address to the UE through the data plane (UPF).
  • UPF data plane
  • Step 18 Release network resources of the PDU session on the source access side.
  • step 18 an optional step is performed only when the PDU session establishment procedure is for PDU session switching between N3GPP and 3GPP.
  • Step 19 The SMF sends the SMF address, the DNN and the PDU session identifier to the UDM.
  • This step is an optional step.
  • the SMF sends the SMF address to the UDM, the DNN and the PDU session identifier
  • the UDM stores the information and stores the mapping relationship between the information.
  • the SMF may send the SMF address, the DNN and the PDU session identifier to the UDM through the service "Nudm_UEContextManagement_Update”.
  • the SMF obtains the access type allowed by the PDU session from the PCF through step 6b, and sends the access type allowed by the PDU session to the AMF through step 10a, and then the AMF passes the steps. 10b.
  • the mapping relationship between the SMF identity, the PDU session identifier, and the access types allowed by the PDU session is established and saved.
  • the AMF locally stores the access types allowed by the PDU session.
  • the AMF may determine whether the session supports the second access type using the access type allowed by the session.
  • FIG. 5( a ) a schematic diagram of a PDU session establishment process provided by the present application is provided.
  • the communication method of the present application is performed by the AMF, and thus the AMF obtains the allowed access type of the session in the session activation process, and the AMF also establishes the access type allowed by the session, the identifier of the SMF, and the PDU session identifier. Mapping relationship.
  • the AMF is an access type that is obtained from the terminal to the session.
  • Step 1 The UE sends a PDU session establishment request message to the AMF.
  • the content carried in the PDU session establishment request message includes the content carried in the PDU session establishment request message in step 1 shown in FIG.
  • the PDU session establishment request message in the step 1 shown in FIG. 5(a) further includes: an access type allowed by the UE for the session.
  • the UE determines the access type allowed by the session according to the following method: determining the access type allowed by the PDU session according to the UE Routing Selection Policy (URSP) sent by the PCF to the UE.
  • URSP UE Routing Selection Policy
  • Step 2 is the same as step 2 in FIG.
  • Step 3 The AMF sends a PDU session establishment request message to the selected SMF.
  • the PDU session establishment request message includes an access type allowed by the session.
  • Step 4 - Step 6a is the same as Step 4 - Step 6a in Figure 4.
  • Step 6b The SMF initiates Npcf_SMPolicyControl_Get to the PCF.
  • the SMF initiates a Npcf_SMPolicyControl_Get (Policy Control for the Session Management) service provided by the PCF to obtain the Policy and Charging Control Rules (PCC rules) of the PDU session.
  • Npcf_SMPolicyControl_Get Policy Control for the Session Management
  • step 6b shown in FIG. 5(a) the access type allowed by the session is not acquired from the PCF.
  • Steps 6c to 19 are the same as steps 6c to 19 shown in FIG.
  • the main difference between the embodiment shown in FIG. 5(a) and the embodiment shown in FIG. 4 is that in the flow shown in FIG. 5(a), the UE allows the access type allowed by the session to be carried in the PDU session establishment request.
  • the message is sent to the AMF, which then forwards the PDU Session Establishment Request message to the SMF, and then the SMF sends the access type allowed by the session to the AMF.
  • the SMF obtains the access type allowed by the session from the PCF, and then the SMF sends the access type allowed by the session to the AMF.
  • the SMF obtains the access type allowed by the PDU session from the UE through Step 1 and Step 3, and sends the access type allowed by the PDU session to the AMF through Step 10a, and then The AMF establishes and saves the mapping relationship between the SMF identity, the PDU session identifier, and the access types allowed by the PDU session through step 10b.
  • the AMF locally stores the access types allowed by the PDU session.
  • the AMF may determine whether the session supports the second access type using the access type allowed by the session.
  • FIG. 5(b) a schematic diagram of a PDU session establishment process provided by the present application is provided.
  • the communication method of the present application is performed by the AMF, and thus the AMF obtains the allowed access type of the session in the session activation process, and the AMF also establishes the access type allowed by the session, the identifier of the SMF, and the PDU session identifier. Mapping relationship.
  • the AMF is an access type that is obtained from the terminal to the session.
  • the main difference between the embodiment shown in FIG. 5(b) and the embodiment shown in FIG. 5(a) is that in step 1 of the embodiment shown in FIG. 5(b), the UE sends a mobility management message to the AMF.
  • the mobility management message includes a PDU session establishment request message that needs to be forwarded by the AMF to the SMF and an access type supported by the session. That is, in the embodiment shown in FIG. 5(a), the access type supported by the session is within the PDU session establishment request message, and in the embodiment shown in FIG. 5(b), the access type supported by the session. Not in the PDU Session Establishment Request message, but in the mobility management message. Therefore, in the embodiment shown in FIG. 5(b), the AMF can directly obtain the access type supported by the session from the mobility management message sent by the UE. In the embodiment shown in FIG. 5(a), the AMF obtains the access type supported by the session through step 10a.
  • the difference between the embodiment shown in FIG. 5(b) and the embodiment shown in FIG. 5(a) further includes: in the embodiment shown in FIG. 5(a), in step 10a, the SMF sends the message to the AMF.
  • the parameter information of the PDU session includes the access type supported by the session.
  • the parameter information of the PDU session sent by the SMF to the AMF does not include the access type supported by the session.
  • the AMF obtains the access type supported by the session from the mobility management message sent by the UE, and the AMF establishes and saves the SMF identity and the PDU session through step 10b.
  • the AMF locally stores the access types allowed by the PDU session.
  • the AMF may determine whether the session supports the second access type using the access type allowed by the session.
  • FIG. 6 a schematic diagram of a PDU session establishment process provided by the present application is provided.
  • the communication method of the present application is performed by the SMF, and thus the SMF obtains the allowed access type of the session in the session activation process, and the SMF also establishes the access type allowed by the session, the identifier of the SMF, and the PDU session identifier. Mapping relationship.
  • the SMF is an access type that is obtained from the PCF to the session.
  • Step 1 - Step 6c is the same as Step 1 - Step 6c in Figure 4.
  • step 7a the SMF establishes and saves a mapping relationship between the SMF identity, the PDU session identifier, and the access types allowed by the PDU session.
  • the mapping relationship between the SMF identity, the PDU session identifier, and the access type allowed by the PDU session is established.
  • mapping relationship is only an implementation manner. In specific use, it is also possible to store only the access types allowed by the PDU session, and only need to be obtained when needed.
  • Step 7b is the same as step 7 in FIG.
  • Steps 8a to 9b are the same as steps 8a to 9b in FIG.
  • Step 10 The SMF sends parameter information of the PDU session to the AMF.
  • the parameter information differs from the parameter information in step 10b of FIG. 4 in that the parameter information in step 10a of FIG. 6 does not include the access type allowed by the session.
  • Step 11 - Step 19 is the same as Step 11 - Step 19 of FIG.
  • the SMF in the process of establishing a PDU session, the SMF obtains the access type allowed by the PDU session from the PCF in step 6b, and then the SMF establishes and saves the SMF identifier and the PDU session identifier through step 7a.
  • the SMF locally stores the access types allowed by the PDU session.
  • the SMF can determine whether the session supports the second access type using the access type allowed by the session.
  • FIG. 7 a schematic diagram of a PDU session establishment process provided by the present application is provided.
  • the communication method of the present application is performed by the SMF, and thus the SMF obtains the allowed access type of the session in the session activation process, and the SMF also establishes the access type allowed by the session, the identifier of the SMF, and the PDU session identifier. Mapping relationship.
  • the SMF is an access type that is obtained from the terminal to the session.
  • Step 1 - Step 6c is the same as Step 1 - Step 6c in Figure 5 (a).
  • step 7a the SMF establishes and saves a mapping relationship between the SMF identity, the PDU session identifier, and the access types allowed by the PDU session.
  • the mapping relationship between the SMF identity, the PDU session identifier, and the access type allowed by the PDU session is established.
  • Step 7b is the same as step 7 in Fig. 5(a).
  • Steps 8a to 9b are the same as steps 8a to 9b in Fig. 5(a).
  • Step 10 The SMF sends parameter information of the PDU session to the AMF.
  • the parameter information differs from the parameter information in step 10b of FIG. 5(a) in that the parameter information in step 10a of FIG. 7 does not include the access type allowed by the session.
  • Step 11 - Step 19 is the same as Step 11 - Step 19 of Figure 5 (a).
  • the SMF in the process of establishing a PDU session, the SMF obtains the access type allowed by the PDU session from the terminal through Step 1 and Step 3. Then, the SMF establishes and saves the SMF identifier and the PDU through Step 7a.
  • the SMF locally stores the access types allowed by the PDU session.
  • the SMF may determine whether the session supports the second access type using the access type allowed by the session.
  • the device 800 may be a core network element, or may be a system on chip or a chip, and may execute the core network in each method embodiment.
  • the core network element may be an AMF, an SMF, or an UPF.
  • the apparatus 800 includes at least one processor 81, a transceiver 82, and optionally a memory 83.
  • the processor 81, the transceiver 82, and the memory 83 are connected by a communication bus.
  • the processor 81 can be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present invention.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication bus can include a path for communicating information between the above units.
  • the transceiver 82 is configured to communicate with other devices or communication networks, and the transceiver may be a communication interface, such as a wired interface or a wireless interface, or the transceiver includes a radio frequency circuit.
  • the memory 83 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device may also be an electrically erasable programmabler-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, or a disc storage ( Including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • EEPROM electrically erasable programmabler-only memory
  • CD-ROM compact disc read-only memory
  • CD-ROM compact disc read-only memory
  • disc storage Including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • the memory 83 can be independently present and connected to the processor 81 via a communication bus.
  • the memory 83 can also be integrated with the processor.
  • the memory 83 is used to store application code for executing the solution of the present invention, and is controlled by the processor 81 for execution.
  • the processor 81 is configured to execute application code stored in the memory 83.
  • processor 81 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • apparatus 800 can include multiple processors, such as processor 81 and processor 88 of FIG. Each of these processors may be a single-CPU processor or a multi-core processor, where the processor may refer to one or more devices, circuits, and/or A processing core for processing data, such as computer program instructions.
  • the device may be used to implement the steps performed by the core network element in the communication method of the embodiment of the present invention.
  • the device may be used to implement the steps performed by the core network element in the communication method of the embodiment of the present invention.
  • the present application may divide a functional module into a device according to the above method example.
  • each functional module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the division of modules in the present application is schematic, and is only a logical function division, and may be further divided in actual implementation.
  • FIG. 9 shows a schematic diagram of a device, which may be a core network element or a system on chip or a chip involved in the above embodiment, and the device includes processing.
  • the communication unit 902 is configured to implement communication between the device shown in FIG. 9 and other devices;
  • the processing unit 901 is configured to determine that downlink data of the session arrives, and the downlink data is downlink data to be sent to the terminal.
  • the processing unit 901 is further configured to: when the session corresponding to the downlink data is in a deactivated state, and the session is a session of the first access type, if it is determined that the access type allowed by the session does not include the second access type, the session is not activated. Or, when the session corresponding to the downlink data is in a deactivated state, the session is a session of the first access type, and the terminal is in an idle state in the network of the first access type, if it is determined that the access type allowed by the session does not include the first The second access type does not activate the session.
  • the communication unit 902 is configured to receive an access type permitted by a session from a terminal or a PCF network element from a policy control function.
  • the device shown in FIG. 9 is an AMF network element, and the processing unit 901 is specifically configured to: when the terminal is in the connected state in the network of the second access type, does not notify the terminal that the downlink data to be arrived. Or, when the terminal is in an idle state in the network of the second access type, the paging message is not sent to the terminal.
  • the device shown in FIG. 9 is an SMF network element, and the processing unit 901 is specifically configured to: not notify the AMF network element to activate the session.
  • the device shown in FIG. 9 is a UPF network element, and the processing unit 901 is specifically configured to: not indicate to the SMF network element that the downlink data of the session arrives.
  • the device shown in FIG. 9 is an SMF network element, and the communication unit 902 is further configured to: receive a subscription notification message from the AMF network element, where the subscription notification message is used to indicate that the terminal is in the network of the first access type. In the idle state; or,
  • the communication unit 902 is further configured to: receive a data notification message from the UPF network element, and determine, according to the data notification message, that the terminal is in an idle state in the network of the first access type, and the data notification message is used to indicate the downlink data of the session. .
  • the first access type is non-3GPP access
  • the second access type is 3GPP access
  • the first access type is 3GPP access
  • the second access type is non-3GPP access.
  • the device is presented in the form of dividing each functional module corresponding to each function, or the service control entity is presented in a form that divides each functional module in an integrated manner.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above. Device.
  • ASIC application-specific integrated circuit
  • the device may be used to implement the steps performed by the core network element in the communication method of the embodiment of the present invention.
  • the device may be used to implement the steps performed by the core network element in the communication method of the embodiment of the present invention.
  • FIG. 10 a schematic diagram of a device provided by the present application, which may be, for example, a terminal, or a system on chip or a chip, may be executed by a terminal in any of the above embodiments. method.
  • Apparatus 1000 includes at least one processor 101, a transceiver 102, and optionally a memory 103.
  • the processor 101, the transceiver 102, and the memory 103 are connected by a communication bus.
  • the processor 101 can be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present invention.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication bus can include a path for communicating information between the above units.
  • the transceiver 102 is configured to communicate with other devices or communication networks, and the transceiver can be a communication interface, such as a wired interface or a wireless interface, or the transceiver includes a radio frequency circuit.
  • the memory 103 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device may also be an electrically erasable programmabler-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, or a disc storage ( Including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • EEPROM electrically erasable programmabler-only memory
  • CD-ROM compact disc read-only memory
  • CD-ROM compact disc read-only memory
  • disc storage Including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • the memory 93 can exist independently and is coupled to the processor 101 via a communication bus.
  • the memory 103 can also be integrated with the processor.
  • the memory 103 is used to store application code for executing the solution of the present invention, and is controlled by the processor 101 for execution.
  • the processor 101 is configured to execute application code stored in the memory 103.
  • processor 101 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • apparatus 1000 can include multiple processors, such as processor 101 and processor 108 in FIG. Each of these processors may be a single-CPU processor or a multi-core processor, where the processor may refer to one or more devices, circuits, and/or A processing core for processing data, such as computer program instructions.
  • processors such as processor 101 and processor 108 in FIG.
  • processors may be a single-CPU processor or a multi-core processor, where the processor may refer to one or more devices, circuits, and/or A processing core for processing data, such as computer program instructions.
  • the device may be used to implement the steps performed by the terminal in the communication method of the embodiments of the present invention.
  • the device may be used to implement the steps performed by the terminal in the communication method of the embodiments of the present invention.
  • the present application may divide a functional module into a device according to the above method example.
  • each functional module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the division of modules in the present application is schematic, and is only a logical function division, and may be further divided in actual implementation.
  • FIG. 11 shows a schematic diagram of a device, which may be the terminal or chip or system on chip involved in the above embodiment, the device including the processing unit 1101 and Communication unit 1102.
  • the processing unit 1101 is configured to obtain an access type allowed by the session.
  • the communication unit 1102 is configured to send, to the core network element, an access type allowed by the session.
  • the core network element is an AMF network element, an SMF network element, or a UPF network element.
  • the access type allowed by the session includes at least one of non-3GPP access and 3GPP access.
  • the communication unit 1102 is specifically configured to: send an N1 interface mobility management message to the core network element, where the N1 interface mobility management message includes an access type allowed by the session; or
  • the N1 interface session management message is sent to the core network element, and the N1 interface session management message includes the access type allowed by the session.
  • the device is presented in the form of dividing each functional module corresponding to each function, or the service control entity is presented in a form that divides each functional module in an integrated manner.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above. Device.
  • ASIC application-specific integrated circuit
  • the device may be used to implement the steps performed by the terminal in the communication method of the embodiment of the present invention.
  • the device may be used to implement the steps performed by the terminal in the communication method of the embodiment of the present invention.
  • FIG. 12 it is a schematic flowchart of another communication method provided by the present application.
  • the method is described by taking a service request process initiated by a network side as an example.
  • the process includes the following steps:
  • Step 1 The UPF network element receives the downlink data of the session.
  • the session is in a deactivated state.
  • the session may be a 3GPP access type, that is, the session is a 3GPP access type session, or may be a non-3GPP access technology, that is, the session is a non-3GPP access type session.
  • the downlink data is downlink data to be sent to the terminal.
  • Step 2a The UPF network element sends a data notification message to the SMF network element.
  • step 2a when the session is in the deactivated state, or the access network tunnel information (AN tunnelinfo) of the session is not stored on the UPF network element, step 2a is performed.
  • the data notification message may be used to notify the SMF network element of the downlink data of the session.
  • SMF network element For reference, refer to the related description in the foregoing embodiments, and details are not described herein.
  • Step 2b The SMF network element sends a Data Notification Ack message to the UPF network element.
  • the data notification response message can be used to respond to the data notification message in step 2a.
  • Step 3a The SMF network element sends an N11 message (N11 message) to the AMF network element.
  • the N11 message includes the type of the access allowed by the session.
  • For the access type allowed in the session refer to the related description in the foregoing embodiments, and details are not described herein.
  • the terminal may send the access type allowed by the session to the SMF network element during the session establishment process.
  • the terminal includes the access type allowed in the session in the PDU session establishment request message, and the SMF network element stores The type of access allowed for this session.
  • the N11 message can be used to activate the session, that is, the N11 message can also be used to indicate that the session is in a deactivated state. Specifically, it can be used to notify the AMF network element of the downlink data arrival of the session. It can also be understood that the SMF network element notifies the AMF network element that the downlink data needs to be sent to the terminal through the N11 message, and can also be understood as the terminal.
  • the session needs to be activated.
  • the N11 message may be an N1N2 message transmission request (Namf_Communication_N1N2MessageTransfer request) message provided by the AMF network element, which is not limited.
  • the N11 message may further include N2 SM session information and an identifier of the session.
  • the N2 interface session management information may be used by the RAN to activate the session, or may be used by the RAN to establish an N3 tunnel or an N3 connection between the RAN and the UPF for the session.
  • the N2 interface session management information may include QoS parameter information (for example, QoS profile) and core network N3 Tunnel Info.
  • the step 3a may include: when the session is a session of the first access type, and the access type allowed by the session does not include the second access type, the SMF network element sends the session to the AMF network element N11 message of the allowed access type.
  • the N11 message may not carry the access type allowed by the session, and the method further includes: the SMF network element sends the access type allowed by the session to the AMF network element.
  • the SMF network element sends the access type allowed by the session to the AMF network element.
  • Step 3b The AMF network element sends an N11 response message to the SMF network element.
  • the N11 response message may be used to respond to the N11 message in step 3a.
  • the N11 response message may be a reject message or a response message.
  • the N11 response message may be an N1N2 message transmission response (Namf_Communication_N1N2MessageTransfer response) message.
  • the AMF network element when the terminal is in an idle state in the non-3GPP network, and the session is a non-3GPP access type, and the session is not allowed to be activated from the 3GPP access (not allowed to When re reactivated via 3GPP access), the AMF network element does not activate the session. For example, when the state of the terminal on the AMF network element is that the idle state is in the 3GPP network, the AMF network element does not page the terminal corresponding to the session, or the state of the terminal on the AMF network element is the 3GPP network. When the medium is in the connected state, the AMF network element does not send a NAS message for notifying the terminal corresponding to the session that the downlink data of the session is reached.
  • the session is not allowed to be activated from the 3GPP access, and may be determined based on the access type allowed by the session. For example, if the allowed access type does not include the 3GPP access, the session is not allowed to be activated from the 3GPP access. Or, if the access type allowed by the session is only a non-3GPP access type, it indicates that the session is not allowed to be activated from the 3GPP access. Obviously, the above session does not allow activation from 3GPP access to be replaced by: the access type allowed by the session includes only non-3GPP access, or the access type allowed by the session does not include the 3GPP access type.
  • the N11 response message is further used to notify the SMF network element that the terminal is unreachable; or, the N11 message in step 3a is rejected; or the terminal is in a non-3GPP network.
  • the user is in the idle state; or, the SMF network element is notified not to continue to send the N11 message in step 3a to the AMF network element.
  • the AMF network element notifies the SMF network element that the terminal is unreachable through the N11 response message in step 3b, or notifies the SMF network element to reject the N11 message in step 3a, or informs the terminal that it is in an idle state in the non-3GPP network.
  • the N11 response message carries the indication information, where the indication information is used to indicate that the terminal is unreachable, or the N11 message of step 3a is rejected, or the terminal is in an idle state in the non-3GPP network, or the SMF network element is not allowed to continue.
  • the indication information of the N11 message in step 3a is sent to the AMF network element.
  • the session allows activation from the 3GPP access (allowed to be reactivated via When the 3GPP access), the AMF network element activates the session, for example, when the state of the terminal on the AMF network element is that the idle state is in the 3GPP network, the AMF network element pages the terminal corresponding to the session, or when the terminal is in When the state on the AMF network element is in the connected state in the 3GPP network, the AMF network element sends a NAS message for notifying the terminal of the downlink data of the session to the terminal corresponding to the session.
  • the session is a 3GPP access type, and the session is not allowed to be activated from the non-3GPP access (not allowed to be reactivated)
  • the AMF network element does not activate the session.
  • the state of the terminal on the AMF network element is that the connection state is in the non-3GPP network
  • the AMF network element does not send the terminal corresponding to the session.
  • the NAS message used to notify the terminal of the arrival of downlink data of the session.
  • the AMF network element activates the session, for example, when the state of the terminal on the AMF network element is in the connected state in the non-3GPP network, the AMF network element sends a notification to the terminal corresponding to the session to notify the The NAS message that the terminal's downlink data arrives.
  • the terminal is in an idle state in the 3GPP network, which may be that the terminal is in the connection management idle state (CM-IDLE in 3GPP access), or the state of the terminal's 3GPP access is idle;
  • the idle state in the non-3GPP network may mean that the terminal is in the CM-IDLE in non-3GPP access, or the state of the non-3GPP access of the terminal is in the idle state.
  • the foregoing method may further include: the SMF sending the N4 message to the UPF.
  • the N4 message can be used to indicate that the user plane establishment fails to the UPF network element.
  • the AMF network element can If the session using the non-3GPP access technology does not support or is not allowed to be activated through the 3GPP access, the AMF network element does not activate the session, or the AMF network element stops the process of activating the session, that is, the subsequent session activation process is no longer performed.
  • the embodiment of the present application provides another communication method, including:
  • the SMF network element receives a data notification message from the UPF network element.
  • the data notification message may be used to indicate that the downlink data of the session arrives.
  • the SMF network element sends the access type allowed by the session to the AMF network element according to the data notification message.
  • the access type allowed by the session may be carried in an N11 message, and the N11 message may be used to activate the session.
  • the data notification message may be used as a trigger condition for sending an N11 message to the AMF network element.
  • the method further includes: the SMF network element receiving the access type allowed by the session corresponding to the terminal or the session from the PCF network element.
  • the SMF network element receives the access type allowed by the session from the terminal corresponding to the session, and may include:
  • the SMF network element receives a non-access stratum NAS message from the terminal, the NAS message including an access type allowed by the session.
  • the NAS message may be a request message for a PDU session establishment.
  • step 1302 when the session is a session of the first access type, and the access type allowed by the session does not include the second access type, the SMF network element is directed to the AMF network.
  • the element sends the access type allowed by the session.
  • the access type allowed by the session may be carried in the N11 message, and the SMF network element sends the N11 message to the AMF network element.
  • the embodiment of the present application provides another communication method, including:
  • the AMF network element receives the access type allowed by the session from the SMF network element.
  • the access type allowed by the session may be carried in the N11 message, and the N11 message may be used to activate the session, that is, the N11 message may also be used to indicate that the session is in a deactivated state.
  • the method further includes: the AMF network element receiving the foregoing N11 message from the SMF network element.
  • the session is a non-3GPP access type
  • the AMF network element determines, according to the access type allowed by the session, that the session is not allowed to be activated from the 3GPP access (not allowed to When re reactivated via 3GPP access), the AMF network element does not activate the session.
  • the AMF network element when the state of the terminal on the AMF network element is that the idle state is in the 3GPP network, the AMF network element does not page the terminal corresponding to the session, or when the state of the terminal on the AMF network element is the When the 3GPP network is in the connected state, the AMF network element does not send a NAS message for notifying the terminal corresponding to the downlink data of the session to the terminal corresponding to the session.
  • the AMF network element in step 1402 determines that the session is not allowed to be activated from the 3GPP access according to the access type allowed by the session, and may be replaced by: the access type allowed by the session includes only non-3GPP access, or the session.
  • the allowed access types do not include the 3GPP access type.
  • the determining, by the AMF network element, that the session is not allowed to be activated from the 3GPP access according to the access type allowed by the session may include: if the allowed access type does not include the 3GPP access, determining that the session is not allowed to be performed from the 3GPP access. Activated; or, if the access type allowed for the session is only a non-3GPP access type, then it is determined that the session is not allowed to be activated from the 3GPP access.
  • step 1402 may be replaced by: when the terminal is in an idle state in the non-3GPP network, the session is a non-3GPP access type, and the AMF network element determines that the session is allowed to be received from the 3GPP according to the access type allowed by the session.
  • the AMF network element activates the session when allowed to be reactivated via 3GPP access.
  • the AMF network element determines that the session is allowed to be activated from the 3GPP access according to the access type allowed by the session, and may be replaced by: the access type allowed by the session includes 3GPP access.
  • determining, by the AMF network element, that the session is allowed to activate from the 3GPP access according to the access type allowed by the session may include determining that the session allows activation from the 3GPP access if the allowed access type includes 3GPP access.
  • the foregoing N11 message may be used as a trigger condition executed in step 1402.
  • the AMF network element in step 1402 does not activate the session, and may determine that the AMF network element does not activate the session, and then, after the AMF network element receives the N11 message, perform an activation session or perform no activation according to the determined result. Conversation, no restrictions.
  • the session mentioned in the embodiments of the present application may also be referred to as a PDU session.
  • the inactive session may refer to stopping the activation of the session, or not paging the terminal corresponding to the session (for example, It can be applied to the scenario where the terminal is in the idle state on the AMF network element, or the NAS corresponding to the session is not sent to the terminal corresponding to the session to notify the terminal of the downlink data of the session (for example, It can be applied to the scenario where the terminal is on the AMF network element in the connected state in the 3GPP network.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a Solid State Disk (SSD)
  • embodiments of the present application can be provided as a method, apparatus (device), computer readable storage medium, or computer program product.
  • the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects, which are collectively referred to herein as "module” or "system.”
  • a general purpose processor may be a microprocessor.
  • the general purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium may be disposed in the ASIC, and the ASIC may be disposed in the terminal device. Alternatively, the processor and the storage medium may also be disposed in different components in the terminal device.
  • the above-described functions described in the embodiments of the present application may be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, these functions may be stored on a computer readable medium or transmitted as one or more instructions or code to a computer readable medium.
  • Computer readable media includes computer storage media and communication media that facilitates the transfer of computer programs from one place to another.
  • the storage medium can be any available media that any general purpose or special computer can access.
  • Such computer-readable media can include, but is not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage or other magnetic storage device, or any other device or data structure that can be used for carrying or storing Other media that can be read by a general purpose or special computer, or a general purpose or special processor.
  • any connection can be appropriately defined as a computer readable medium, for example, if the software is from a website site, server or other remote source through a coaxial cable, fiber optic computer, twisted pair, digital subscriber line (DSL) Or wirelessly transmitted in, for example, infrared, wireless, and microwave, is also included in the defined computer readable medium.
  • DSL digital subscriber line
  • the disks and discs include compact disks, laser disks, optical disks, DVDs, floppy disks, and Blu-ray disks. Disks typically replicate data magnetically, while disks typically optically replicate data with a laser. Combinations of the above may also be included in a computer readable medium.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置。该方法包括:核心网网元本地存储有会话允许的接入类型,因而核心网网元可直接确定处于去激活态的第一接入类型的会话是否可以通过第二接入类型激活,提高了服务请求流程的效率。进一步地,当核心网网元确定会话允许的接入类型不包括第二接入类型时,可确定该会话不可以通过第二接入类型激活,进而可直接结束激活该会话的后续流程,即核心网网元确定会话不可以通过第二接入类型激活时,则不再执行向终端发送指示信息以及接收终端发送的响应消息等后续步骤,因而还可以节约资源和信令开销。

Description

一种通信方法及装置 技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法及装置。
背景技术
目前第五代移动通信(5th generation,5G)通信中,会话的接入类型包括第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)接入和非3GPP(也称为non-3GPP,或称为N3GPP)接入。
现有技术中,当会话的下行数据到达时,如果该会话处于去激活态,则网络侧会触发服务请求流程以激活该会话,从而使得终端可以通过该会话接收下行数据。
以非3GPP为例,网络侧触发服务请求流程大致为:当会话为去激活态,且该会话的接入类型为非3GPP接入时,网络侧可确定终端在非3GPP网络中处于空闲态,然后网络侧通过3GPP接入通知终端该会话的下行数据到达,网络侧在接收到终端的响应消息后,根据该响应消息确定该会话是否可以通过3GPP接入激活该会话。
上述现有技术中,服务请求流程过于复杂,效率较低。
发明内容
本申请提供一种通信方法及装置,用以实现在网络侧会触发服务请求流程中提高网络侧的服务请求流程的效率。
第一方面,本申请提供一种通信方法,该方法可由核心网网元,片上系统,或芯片执行,其中核心网网元可以是AMF网元、SMF网元或UPF网元。该方法包括:核心网网元确定会话的下行数据到达,该下行数据为待发送给终端的下行数据。当该会话为去激活态,该会话为第一接入类型的会话时,核心网网元若确定该会话允许的接入类型不包括第二接入类型,则不激活该会话;或者,当下行数据对应的会话为去激活态,该会话为第一接入类型的会话,且终端在第一接入类型的网络中处于空闲态时,核心网网元若确定该会话允许的接入类型不包括第二接入类型,则不激活该会话。
本申请方法,核心网网元本地存储有会话允许的接入类型,因而核心网网元可直接确定处于去激活态的第一接入类型的会话是否可以通过第二接入类型激活,提高了服务请求流程的效率。进一步地,当核心网网元确定会话允许的接入类型不包括第二接入类型时,可确定该会话不可以通过第二接入类型激活,进而可直接结束激活该会话的后续流程,即核心网网元确定会话不可以通过第二接入类型激活时,则不再执行向终端发送指示信息以及接收终端发送的响应消息等后续步骤,因而还可以节约资源和信令开销。
在一种可能的实现方式中,该方法还包括:核心网网元接收来自终端或来自PCF网元的该会话允许的接入类型。即,核心网网元本地存储的该会话允许的接入类型,可以 是从终端获取,也可以是从PCF网元获取。
在一种可能的实现方式中,当核心网网元为AMF网元,核心网网元接收来自终端的会话允许的接入类型,具体包括:核心网网元接收来自终端的NAS消息,该NAS消息包括会话允许的接入类型。
在一种可能的实现方式中,当核心网网元为SMF网元,核心网网元接收来自终端的会话允许的接入类型,具体包括:核心网网元接收来自AMF网元的会话允许的接入类型,该会话允许的接入类型由终端通过移动性管理消息或会话管理消息发送至AMF网元。即,终端向AMF网元发送会话允许的接入类型,然后由AMF网元将会话允许的接入类型发送至SMF网元。
在一种可能的实现方式中,当核心网网元为UPF网元,核心网网元接收来自终端的会话允许的接入类型,包括:核心网网元接收来自SMF网元的会话允许的接入类型,会话允许的接入类型由所述终端发送至SMF网元。即,终端向SMF网元发送会话允许的接入类型,然后由SMF网元将会话允许的接入类型发送至UPF网元。
在一种可能的实现方式中,当核心网网元为AMF网元,核心网网元接收来自PCF网元的会话允许的接入类型,具体包括:核心网网元接收来自SMF网元的所述会话允许的接入类型,其中,所述SMF网元从PCF网元获取到所述会话允许的接入类型。
在一种可能的实现方式中,当核心网网元为SMF网元,核心网网元接收来自PCF网元的会话允许的接入类型,具体包括:核心网网元接收来自PCF网元的所述会话允许的接入类型。
在一种可能的实现方式中,当核心网网元为UPF网元,核心网网元接收来自PCF网元的会话允许的接入类型,具体包括:核心网网元接收来自SMF网元的所述会话允许的接入类型,所述SMF从PCF获取到所述会话允许的接入类型。
在一种可能的实现方式中,当核心网网元为AMF网元,核心网网元不激活会话,具体包括:当终端在第二接入类型的网络中处于连接态时,核心网网元不通知终端下行数据到达;或者,当终端在第二接入类型的网络中处于空闲态时,核心网网元不向终端发送寻呼消息。
在一种可能的实现方式中,当核心网网元为SMF网元,核心网网元不激活会话,包括:核心网网元不通知AMF网元激活该会话。
例如,在一种实现方式中,当SMF网元确定需要激活该会话时,SMF网元向AMF网元发送通知消息,所述通知消息为N11接口消息,所述通知消息可以包括发给无线接入网(Radio Access Network,RAN)设备的N2接口会话管理信息(N2 SM information),N2接口会话管理信息包括服务质量(Quality of Service,QoS)参数信息(QoS profile),N3接口隧道信息(CN N3 Tunnel Info),所述N2接口会话管理信息用于RAN激活会话。因此,在实现方式的基础上,SMF网元不通知AMF网元激活会话指的是,SMF网元不向AMF网元发送上述通知消息。
在一种可能的实现方式中,当核心网网元为UPF网元,核心网网元不激活会话,包括:核心网网元不向SMF网元指示该会话的下行数据到达。
例如,在一种实现方式中,当UPF网元确定需要激活该会话时,则UPF通过数据通知(data notification)消息指示SMF网元该会话的下行数据到达,其中包括会话标识(Session ID),该会话可以是协议数据单元(Protocol Data Unit,PDU)会话。 当SMF网元接收到该数据通知消息,即可确定需要激活会话。因此,在实现方式的基础上,UPF网元不向SMF网元指示该会话的下行数据到达指的是,UPF网元不向SMF网元发送上述数据通知消息。
在一种可能的实现方式中,当核心网网元为SMF网元,还包括:核心网网元接收来自AMF网元的订阅通知消息,该订阅通知消息用于指示终端在第一接入类型的网络中处于空闲态;或者,核心网网元接收到来自UPF网元的数据通知消息,并根据数据通知消息确定终端在第一接入类型的网络中处于空闲态,该数据通知消息用于指示有会话的下行数据。
在一种可能的实现方式中,本申请中的第一接入类型为非3GPP接入,第二接入类型为3GPP接入;或者,第一接入类型为3GPP接入,第二接入类型为非3GPP接入。
第二方面,本申请提供一种通信方法,该方法可由终端,片上系统,或芯片执行。该方法包括:终端获得会话允许的接入类型,终端向核心网网元发送该会话允许的接入类型。
在一种可能的实现方式中,核心网网元可以是AMF网元、SMF网元或UPF网元。
在一种可能的实现方式中,会话允许的接入类型包括非3GPP接入和3GPP接入中至少一种。即,会话允许的接入类型包括3GPP接入。或者,会话允许的接入类型包括非3GPP。或者,会话允许的接入类型包括3GPP接入和非3GPP接入。
第三方面,本申请提供一种装置,该装置可以是核心网网元,也可以是核心网网元内的片上系统或芯片。该装置具有实现上述第一方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,当该装置为核心网网元时,终端包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是收发器,所述收发器包括射频电路,可选地,所述核心网网元还包括存储单元,该存储单元例如可以是存储器。当核心网网元包括存储单元时,该存储单元存储有计算机执行指令,该处理单元与该存储单元连接,该处理单元执行该存储单元存储的计算机执行指令,以使该核心网网元执行上述第一方面任意一项的通信方法。
在另一种可能的设计中,当该装置为核心网网元内的片上系统或芯片时,该片上系统或芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使上述第一方面任意一项的通信方法被执行。可选地,所述存储单元为所述片上系统或芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述核心网网元内的位于所述片上系统或芯片外部的存储单元,如只读存储器(read-only memory,ROM)、可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用的中央处理器(Central Processing Unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面的通信方法的程序执行的集成电路。
第四方面,本申请提供一种装置,该装置可以是终端,也可以是终端内的片上系统 或芯片。该装置具有实现上述第二方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,当该装置为终端时,终端包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是收发器,所述收发器包括射频电路,可选地,所述终端还包括存储单元,该存储单元例如可以是存储器。当终端包括存储单元时,该存储单元存储有计算机执行指令,该处理单元与该存储单元连接,该处理单元执行该存储单元存储的计算机执行指令,以使该终端执行上述第二方面任意一项的通信方法。
在另一种可能的设计中,当该装置为终端内的片上系统或芯片时,该片上系统或芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使上述第二方面任意一项的通信方法被执行。可选地,所述存储单元为所述片上系统或芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述片上系统或芯片外部的存储单元,如只读存储器(read-only memory,ROM)、可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用的中央处理器(Central Processing Unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第二方面的通信方法的程序执行的集成电路。
第五方面,本申请提供一种通信方法,包括:SMF网元收到来自UPF网元的数据通知消息,所述数据通知消息指示会话的下行数据到达;所述SMF网元根据所述数据通知消息向AMF网元发送所述会话允许的接入类型。其中,所述会话允许的接入类型可以携带在N11消息中,所述N11消息可以用于激活所述会话。
结合第五方面,在第五方面的第一种可能的实现方式中,在所述SMF网元收到来自UPF网元的数据通知消息之前,还包括:所述SMF网元接收来自所述会话对应的终端或来自策略控制功能PCF网元的所述会话允许的接入类型。
结合第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,所述SMF网元接收来自所述终端的所述会话允许的接入类型,包括:
所述SMF网元接收来自所述终端的非接入层NAS消息,所述NAS消息包括所述会话允许的接入类型。
结合第五方面或第五方面的第一种或第二种可能的实现方式,在第五方面的第三种可能的实现方式中,所述向AMF网元发送所述会话允许的接入类型包括:
当所述会话为第一接入类型的会话时,且所述会话允许的接入类型不包括第二接入类型,所述SMF网元向所述AMF网元所述会话允许的接入类型。
第六方面,本申请提供一种装置,该装置可以是SMF网元,也可以是SMF网元内的片上系统或芯片。该装置具有实现上述第五方面及其各种可能的实施方式中的功能或步 骤。例如,可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第七方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第八方面,本申请还提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
另外,第二方面至第八方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请提供的一种可能的系统架构;
图2为现有技术中的网络侧会发起服务请求流程示意图;
图3(a)为本申请提供的一种通信方法流程图;
图3(b)为本申请提供的另一种通信方法流程图;
图4为本申请提供的一种PDU会话建立流程示意图;
图5(a)为本申请提供的另一种PDU会话建立流程示意图;
图5(b)为本申请提供的另一种PDU会话建立流程示意图;
图6为本申请提供的另一种PDU会话建立流程示意图;
图7为本申请提供的另一种PDU会话建立流程示意图;
图8为本申请提供的一种装置结构示意图;
图9为本申请提供的另一种装置结构示意图;
图10为本申请提供的另一种装置结构示意图;
图11为本申请提供的另一种装置结构示意图;
图12本申请提供的再一种通信方法流程图;
图13本申请提供的再一种通信方法流程图;
图14本申请提供的再一种通信方法流程图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
需要说明的的是,本申请的通信方法可由装置执行。该装置可以是核心网网元或终 端,或者还可以是核心网网元内的片上系统或芯片,或终端内的片上系统或芯片。其中,核心网网元可以是接入与移动管理功能(Access and Mobility Management Function,AMF)网元、会话管理功能(session management function,SMF)网元或用户面功能(user plane function,UPF)网元。
为方便说明,本申请以装置为核心网网元或终端为例,对通信方法进行说明。对于装置为核心网网元内的片上系统或芯片,或为终端内的片上系统或芯片的实现方法,可参考装置为核心网网元或终端的通信方法的具体说明,不再重复介绍。
如图1所示,为本申请适用的一种可能的系统架构。该网络架构为5G中的非3GPP网络架构。该5G架构中的网元包括终端,图中以终端为用户设备(User Equipment,UE)为例。网络架构还包括3GPP接入、非3GPP接入、非3GPP接入网关(例如:N3IWF网元)、AMF网元、SMF网元、UPF网元、统一数据管理(Unified Data Management,UDM)网元和数据网络(Data Network,DN)等。
终端(例如UE)可以通过3GPP和/或非3GPP接入核心网。在具体应用中,针对终端的某个会话,例如,该会话可以是PDU会话等。该会话允许的接入类型包括3GPP接入,和/或,非3GPP接入,例如,会话被允许从3GPP接入和/或非3GPP接入进行激活。即,终端的会话可以通过3GPP收发数据,也可以通过非3GPP收发数据。
需要说明的是,会话允许的接入类型,也可以表述为会话支持的接入类型。
图1所示的架构中,3GPP接入可以通过无线接入网(Radio Access Network,RAN)设备实现。RAN设备的主要功能是控制用户通过无线接入到移动通信网络。RAN设备是移动通信系统的一部分。它实现了一种无线接入技术。从概念上讲,它驻留某个设备之间(如移动电话、一台计算机,或任何远程控制机),并提供与其核心网的连接。RAN设备包括但不限于:5G中的(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(BaseBand Unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等,此外,还可以包括无线保真(wireless fidelity,wifi)接入点(access point,AP)等。
非3GPP接入,例如可以可以通过无线局域网(wireless local area networks,WLAN)实现。
N3IWF网元类似于长期演进(long term evolution,LTE)中的演进的分组数据网关(evolved packet data gateway,ePDG),在5G中用于UE通过非3GPP接入时,和UE建立互联网协议安全性(internet protocol security,IPsec)隧道。在未来5G定义中,N3IWF的名字可能会更改,本申请仅以非3GPP网络的接入网关为N3IWF进行举例说明。
AMF网元负责终端的接入管理和移动性管理,在实际应用中,其包括了LTE中网络框架中移动管理网元(mobility management entity,MME)里的移动性管理功能,并加入了接入管理功能。
SMF网元负责会话管理,如用户的会话建立等,可以是包括移动性管理实体(Mobility Management Entity,MME)里的会话管理功能,或者,包括LTE中的服务 网关(serving gateWay,SGW)和公用数据网(public data network,PDN)网关(PDN-GW)的控制面功能。
UPF网元是用户面的功能网元,主要负责连接外部网络,其包括了长期演进(Long Term Evolution,LTE)的服务网关(serving gateway,SGW)和公用数据网网关(public data network GateWay,PDN-GW)的相关功能。
DN负责为终端提供服务的网络,如一些DN为终端提供上网功能,另一些DN为终端提供短信功能等等。
UDM网元可存储用户的签约信息,实现类似于第四代移动通信(4th generation,4G)中的归属签约用户服务器(Home Subscriber Server,HSS)的后端。
本申请中的终端,是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。例如图1中的UE,为终端的一个具体示例。
其中,图1所示的架构中,用于执行本申请的通信方法的网元,可以是UE、AMF网元、SMF网元或UPF网元。
为方便说明,本申请后续将AMF网元简称为AMF,将SMF网元简称为SMF,将UPF网元简称为UPF。
在本申请实施例中,第一接入类型为3GPP接入,第二接入类型为非3GPP接入。或者,第一接入类型为非3GPP接入,第二接入类型为3GPP接入。
在目前现有技术中,终端在建立会话时,可以通过3GPP接入建立,也可以通过非3GPP接入建立。若通过3GPP接入建立,则该会话采用的接入类型为3GPP接入,该会话可以称之为采用3GPP接入技术的会话,或称为通过3GPP接入建立的会话,不予限制。若通过非3GPP接入建立,则该会话采用的接入类型为非3GPP接入,该会话可以称之为采用非3GPP接入技术的会话,或称为通过非3GPP接入建立的会话,不予限制。
针对一个采用非3GPP接入技术的会话,若该会话允许的接入类型还包括3GPP接入,换言之,该会话允许采用3GPP接入技术,则当该会话处于去激活态时,既可以通过非3GPP接入激活该会话,也可以通过3GPP接入激活该会话。
同样地,针对一个采用3GPP接入技术的会话,若该会话允许的接入类型还包括非3GPP接入,换言之,该会话允许采用非3GPP接入技术,则当该会话处于去激活态时,既可以通过3GPP接入激活该会话,也可以通过非3GPP接入激活该会话。
本申请实施例,在一种实现方式中,当终端在3GPP网络中处于空闲态时,该终端的采用3GPP接入技术的会话处于去激活态。当终端在3GPP网络中处于连接态时,该终端的部分或全部采用3GPP接入技术的会话可以处于激活态,例如可以是该终端的全部采用3GPP接入技术的会话处于激活态;也可以是该终端的部分采用3GPP接入技术的会话处于激活态,另一部分采用3GPP接入技术的会话处于去激活态;还可以是该终端的 全部采用3GPP接入技术的会话处于去激活态。
本申请实施例,在一种实现方式中,当终端在非3GPP网络中处于空闲态时,该终端的采用非3GPP接入技术的会话处于去激活态。当终端在非3GPP网络中处于连接态时,该终端的采用非3GPP接入技术的会话处于激活态。因此,若可以确定终端的一个或多个采用非3GPP接入技术的会话处于去激活态,则可以确定该终端在非3GPP网络中处于空闲态。如可以确定终端的一个或多个采用非3GPP接入技术的会话处于激活态,则可以确定该终端在非3GPP网络中处于连接态。
在目前现有技术中,当UPF确定某个会话的下行数据到达时,如果该会话处于激活态,则UPF通过该会话将下行数据发送给终端。当UPF确定某个会话的下行数据到达时,若UPF确定该会话处于去激活态,则网络侧会发起服务请求流程,用于激活该会话,从而使得终端可以进行该会话的数据业务。其中,会话可以是采用3GPP接入技术的会话,也可以是采用非3GPP接入技术的会话。
需要说明的是,下行数据是与某个会话有对应关系的,即下行数据通过某个会话发送至终端。因此,下行数据也可以称为会话的下行数据,或者称为,会话对应的下行数据。相应地,该会话也可以称为下行数据对应的会话,或称为传输下行数据的会话。
如图2所示,为现有技术中的网络侧会发起服务请求流程示意图。该流程包括以下步骤:
步骤1、UPF接收到会话的下行数据,该会话为去激活态。
其中,该会话是可以是采用3GPP接入技术的会话,也可以是采用非3GPP接入技术的会话。现有技术中,该会话指的是PDU会话。
步骤2a、UPF向SMF发送数据通知(Data Notification)消息。
其中,通知消息中包括会话的标识,该通知消息用于通知SMF该会话的下行数据到达。也可以理解为,UPF通知SMF该会话的下行数据到达UPF。
步骤2b、SMF向UPF发送数据通知应答(Data Notification Ack)消息。
该通知应答消息用于通知UPF,接收到步骤2a中的数据通知消息。
步骤3a、SMF向AMF发送N11消息(N11message)。
其中,N11消息包括会话的标识和N2接口会话管理信息(N2 SM information)。N2接口会话管理信息中包括QoS参数信息(QoS profile),N3接口隧道信息(CN N3 Tunnel Info),所述N2接口会话管理信息用于RAN激活会话。
该N11消息用于通知AMF该会话的下行数据到达。也可以理解为,SMF通知AMF存在该会话的下行数据需要发送给终端。
步骤3b、AMF向SMF发送N11应答消息。
该步骤3b为可选步骤,当AMF确定终端处于空闲态,且终端不可达时,执行步骤3b,该N11应答消息用于通知SMF该终端不可达。
步骤3c、SMF向UPF发送失败指示。
该步骤3c为可选步骤,当执行上述步骤3b时,执行该步骤3c,该失败指示用于向UPF指示用户面建立失败。
进一步地,AMF根据会话的接入类型(例如,该会话是采用3GPP接入技术的会话或者是采用非3GPP接入技术的会话)和终端在3GPP网络中的状态(例如,终端在3GPP 网络中为空闲态或者是连接态),来确定执行步骤4a,或者执行步骤4b,或者执行步骤5。下面分别说明。
步骤4a、当终端在3GPP网络中处于连接态且该会话为采用3GPP接入技术的会话时,AMF恢复用户面。
需要说明的是,该步骤4a为可选步骤。当终端在3GPP处于连接态且会话为采用3GPP接入技术的会话时,执行步骤4a。当该会话为采用非3GPP接入技术的会话时,不执行步骤4a。
该步骤4a的具体内容可参考现有技术,不再赘述。
步骤4b、当终端在3GPP网络中处于空闲态时,AMF寻呼终端。
需要说明的是,该步骤4b为可选步骤。当终端在3GPP网络中处于空闲态时,执行步骤4b。
具体地,AMF通过RAN向终端发送寻呼(paging)消息,该寻呼消息中包括指示信息,指示信息用以指示终端下行数据到达。
例如,当该会话采用非3GPP接入技术的会话时,终端在接收到寻呼消息后,向AMF回复N1消息(例如,服务请求消息),N1消息中携带特定会话的标识信息,该特定会话是采用非3GPP接入技术的会话,且该会话允许采用3GPP接入技术,可以理解为,允许将接入技术从非3GPP切换成3GPP的会话,从而会话可以通过3GPP接入技术传输数据。
具体地,可以在N1消息中携带上述特定会话的ID,还可以通过比特信息指示至少一个上述特定会话,例如,当相应比特位为“1”时,指示该比特位对应的会话为上述特定会话,例如指示信息“1001000000101101”(从右至左,每一位分别对应第1个会话至第16个会话)表示第1、3、4、6、13、16个会话为采用非3GPP接入技术的会话,该会话允许采用3GPP接入技术。例如,当会话是从1开始编号时,则指示信息“1001000000101101”指示了会话1、会话3、会话4、会话6、会话13、会话16为采用非3GPP接入技术的会话,该会话允许采用3GPP接入技术。再比如,当会话是从0开始编号时,则指示信息“1001000000101101”指示了会话0、会话2、会话3、会话5、会话12、会话15为采用非3GPP接入技术的会话,该会话允许采用3GPP接入技术。
如果AMF确定步骤1中的会话的标识在终端上报的特定会话的标识中,则AMF确定步骤1中的会话可以通过3GPP接入激活,因而AMF继续执行后续的会话激活步骤。
如果AMF确定步骤1中的会话的标识不在终端上报的特定会话的标识中,则表明该会话不可以通过3GPP接入激活,因而AMF不执行后续的会话激活步骤。
步骤5、若终端在3GPP网络中处于连接态且会话的接入类型为非3GPP接入,则AMF发送N1消息给UE。
在一种实现方式中,该N1消息中包括该会话的标识,以通知终端有该会话的下行数据。终端向AMF回复N1消息(例如,N1消息是服务请求消息),N1消息中携带指示信息,用于指示AMF,该采用非3GPP接入技术的会话是否可以通过3GPP接入激活。如果可以通过3GPP接入激活,则AMF执行后续的会话激活步骤。如果不可以通过3GPP接入激活,则AMF不执行后续的会话激活步骤。
在另一种实现方式中,该N1消息中包括指示信息,该指示信息用以显示地通知终端有该会话的下行数据,例如,该指示信息可以为非3GPP接入类型。终端向AMF回复 N1消息(例如,服务请求消息),N1消息中携带特定会话的标识信息,该特定会话是采用非3GPP接入技术的会话,且该会话允许采用3GPP接入技术,可以理解为,允许将接入技术从非3GPP切换成3GPP的会话,从而会话可以通过3GPP接入技术传输数据。如果AMF确定步骤1中的会话的标识在终端上报的特定会话的标识中,则AMF确定步骤1中的会话可以通过3GPP接入激活,因而AMF继续执行后续的会话激活步骤。如果AMF确定步骤1中的会话的标识不在终端上报的特定会话的标识中,则表明该会话不可以通过3GPP接入激活,因而AMF不执行后续的会话激活步骤。
步骤6、后续会话激活流程。
此处的后续会话激活流程可参考相关标准定义,不再赘述。
步骤7、UPF向终端发送下行数据。
在步骤1中的会话通过3GPP接入激活后,该会话的接入类型由非3GPP接入切换为3GPP接入。然后UPF通过该激活的会话向终端发送下行数据。
从上述网络侧会发起服务请求流程可以看出,若下行数据对应的会话允许的接入类型只包括非3GPP接入,不包括非3GPP接入,在上述步骤4b或上述步骤5之后,AMF可以确定该采用非3GPP接入技术的会话不支持通过3GPP接入激活,因而网络侧停止激活会话的流程,即不再执行步骤6的后续激活流程。
这里,网络侧虽然停止了后续激活流程,但是仍然造成了步骤4b或步骤5,以及UE回复N1消息的不必要信令开销。也可以理解为,上述步骤4b或步骤5中的AMF发送给终端的N1消息或寻呼消息,以及终端向AMF回复的N1消息,都是不必要的资源浪费。从另一个角度可以看出,图2所示的流程中,需要的信令较多,因此效率较低。
为解决上述问题,本申请提供图3(a)和图3(b)所示的通信方法。图3(a)和图3(b)所示的通信方法可以由AMF、SMF或UPF执行。下面分别说明。
针对图3(a)所示的通信方法,包括以下步骤:
步骤1、核心网网元确定会话的下行数据到达。
其中,该会话可以指用于传输该下行数据的会话,不同的下行数据可以采用不同的会话来传输,属于现有技术,不再赘述。
其中,该下行数据为待发送给终端的下行数据。步骤1也可以理解为核心网网元确定会话的下行数据到达UPF,或,核心网网元确定该会话存在待发送给终端的下行数据,或核心网网元确定UPF接收到待发送给终端的下行数据,不予限制。
具体地,当核心网网元为UPF时,步骤1可以为UPF接收到该会话的下行数据。
当核心网网元为SMF时,步骤1可以为SMF接收来自UPF的指示消息,该指示消息用于指示会话的下行数据到达。可替换地,该指示消息可以用于指示会话的下行数据到达UPF,或该会话存在待发送给终端的下行数据,或UPF接收到该会话的下行数据。例如,UPF向SMF发送数据通知消息,该数据通知消息用于指示该会话的下行数据到达。
当核心网网元为AMF时,步骤1可以为AMF接收来自SMF的指示,该指示用于指示该会话的下行数据到达。可替换地,该指示可以用于指示该会话的下行数据到达UPF,或该会话存在待发送给终端的下行数据,或UPF接收到该会话的下行数据。例如,SMF向AMF发送N11消息,该N11消息包括会话的标识,用于指示该会话的下行数据到达。可选的,N11消息还包括所述会话允许的接入类型。
步骤2、当所述会话为去激活态,该会话为第一接入类型的会话时,核心网网元确定该会话允许的接入类型不包括第二接入类型,则不激活该会话。
其中,该会话可以是采用3GPP接入技术的会话,也可以是采用非3GPP接入技术的会话,换言之,上述第一接入类型可以是3GPP接入,相应地,第二接入类型可以是非3GPP接入;或者,上述第一接入类型可以是非3GPP接入,相应地,第二接入类型可以是3GPP接入。
其中,当第一接入类型为非3GPP接入时,第一接入类型的网络为非3GPP网络,当第二接入类型为3GPP接入时,第二接入类型的网络为3GPP网络。
或者,当第一接入类型为3GPP接入时,第一接入类型的网络为3GPP网络,当第二接入类型为非3GPP接入时,第二接入类型的网络为非3GPP网络。
示例性地,当上述核心网网元为UPF时,可以根据数据包过滤集合信息获得用于传输该下行数据的会话的标识,属于现有技术,不再赘述;当上述核心网网元为SMF时,步骤1中的指示消息中可以携带该下行数据对应的会话的标识;当上述核心网网元为AMF时,AMF可以接收来自SMF的该下行数据对应的会话的标识,例如,上述步骤1中的N11消息。
可选地,在非3GPP网络中,若存在一个非3GPP接入类型的会话处于去激活态,则可以表明终端在非3GPP的网络中处于空闲态,进而可以确定终端无法正常使用该非3GPP网络。采用图3(a)所示的实施例中提供的方法,实现了在对于终端而言非3GPP网络不可用的场景下,终端使用3GPP接入技术激活会话,从而保证下行数据的正常接收。
在3GPP网络中,采用图3(a)所示的实施例中提供的方法,实现了当处于去激活态的会话允许采用非3GPP接入技术时,优先使用非3GPP接入技术激活该会话,以保证下行数据的传输速率,节省无线资源。
具体地,步骤2中核心网网元若确定该会话允许的接入类型包括第二接入类型,则表明可以通过第二接入类型激活该会话,核心网网元通过第二接入类型激活该会话;或者,核心网网元若确定该会话允许的接入类型不包括第二接入类型,则表明不可以通过第二接入类型激活该会话,核心网网元停止激活会话。
上述实施例,核心网网元自己可以确定会话是否可以通过第二接入类型激活。当核心网网元确定会话允许的接入类型不包括第二接入类型时,可以确定该会话不可以通过第二接入类型激活,因而可以直接结束激活该会话的后续流程。即无需向终端发送指示信息以及接收终端发送的响应消息等后续步骤,因而可以节约资源和信令开销。
作为一种实现方法,核心网网元可以从终端或策略控制功能(policy control function,PCF)获得会话支持的接入类型。即,核心网网元还接收来自终端或来自PCF的会话允许的接入类型。
在一种可能的实现方式中,核心网网元为AMF,核心网网元接收来自终端的会话允许的接入类型,具体可以包括:AMF接收来自终端的NAS消息,该NAS消息包括会话允许的接入类型。例如,该NAS消息为N1接口移动性管理消息,该N1接口移动性管理消息中携带会话允许的接入类型。
在一种可能的实现方式中,核心网网元为AMF网元,核心网网元接收来自终端的会话允许的接入类型,具体可以包括:所述AMF网元接收来自会话管理功能SMF网元的所述会话允许的接入类型,所述会话允许的接入类型为所述SMF网元从所述终端接收的。
其中,所述AMF网元接收来自SMF网元的所述会话允许的接入类型,可以包括如下两种方式:
方式一,在所述会话的建立过程中,所述AMF网元接收来自所述SMF网元的所述会话允许的接入类型。示例性地,在会话建立过程中,终端将会话允许的接入类型发给SMF网元,例如,终端将会话允许的接入类型包含在PDU会话建立请求消息中发给SMF网元,其中,该PDU会话建立请求消息用于请求建立该会话;SMF网元再将该会话允许的接入类型发送给AMF网元。
方式二,在网络侧发起的服务请求过程中,所述AMF网元接收来自所述SMF网元的所述会话允许的接入类型。示例性地,在会话建立过程中,终端将会话允许的接入类型发给SMF网元,例如,终端将该会话允许的接入类型包含在NAS(可以为PDU会话建立请求消息)消息中,SMF网元存储该会话允许的接入类型。然后,在网络侧发起的服务请求(Network Triggered Service Request)过程中,AMF网元从SMF网元接收该会话允许的接入类型,例如,UPF网元接收到该会话的下行数据,且该会话为去激活态;或者,UPF网元上没有存储该会话的AN tunnelinfo,UPF网元向SMF网元位于发送数据通知(Data Notification)消息,该数据通知消息用于指示SMF网元该会话的下行数据到达;当SMF网元接收到来自UPF网元的该数据通知后,SMF网元向AMF网元发送存储的该会话允许的接入类型。
在一种可能的实现方式中,核心网网元为SMF,核心网网元接收来自终端的会话允许的接入类型,具体包括:SMF接收来自AMF的会话允许的接入类型。例如,终端将会话允许的接入类型携带于N1接口移动性管理消息中发送至AMF,AMF从N1接口移动性管理消息中获取到该会话允许的接入类型,然后由AMF发送给SMF。再比如,终端将会话允许的接入类型携带于N1接口会话管理消息中发送至AMF,AMF将该N1接口会话管理消息转发给SMF,SMF从N1接口会话管理消息中获取到会话支持的接入类型。
在一种可能的实现方式中,核心网网元为UPF,核心网网元接收来自终端的会话允许的接入类型,包括:UPF接收来自SMF的会话允许的接入类型,会话允许的接入类型由终端发送至SMF。即,终端向SMF发送会话允许的接入类型,然后由SMF将会话允许的接入类型发送至UPF网元。终端向SMF发送会话支持的接入类型的具体方法可参考上述描述,这里不再赘述。
在一种可能的实现方式中,核心网网元为AMF,核心网网元接收来自PCF的会话允许的接入类型,具体包括:AMF接收来自SMF的会话允许的接入类型,可以采用上述方式一或方式二来实现,其中,SMF网元是从PCF获取到会话允许的接入类型。
在一种可能的实现方式中,核心网网元为SMF,核心网网元接收来自PCF的会话允许的接入类型,具体包括:SMF接收来自PCF的会话允许的接入类型。
在一种可能的实现方式中,核心网网元为UPF,核心网网元接收来自PCF的会话允许的接入类型,具体包括:UPF接收来自SMF的会话允许的接入类型,其中,SMF是从PCF获取到会话允许的接入类型。
上述实施例,核心网网元可以从终端获取会话支持的接入类型,也可以从PCF获取到会话支持的接入类型,从而核心网网元可以将获取到的会话支持的接入类型本地保存,便于后续使用。例如本地存储的会话支持的接入类型可用于判断第一接入类型的会话是否可以通过第二接入类型激活,或者判断第二接入类型的会话是否可以通过第一接 入类型激活。
下面对图3(a)所示的实施例的步骤2中核心网网元不激活会话的具体实现方法做说明,其中,该会话为第一接入类型的会话。
作为一种实现方法,核心网网元为AMF,核心网网元不激活会话,包括:
当终端在第二接入类型的网络中处于连接态时,AMF不通知终端下行数据到达;或者,当终端在第二接入类型的网络中处于空闲态时,AMF不向终端发送寻呼消息。
其中,AMF不通知终端下行数据到达,可以是AMF不通知终端下行数据到达UPF,或AMF不通知终端存在待发送给终端的下行数据,或AMF不通知终端UPF接收到待发送给终端的下行数据。
作为一种实现方法,核心网网元为SMF,核心网网元不激活会话,包括:SMF不通知AMF激活会话。
SMF不通知AMF激活会话,例如可以是SMF不向AMF发送N11消息,该N11消息包括会话的标识,用于指示该会话的下行数据到达。
作为一种实现方法,核心网网元为UPF,核心网网元不激活会话,包括:UPF不向SMF指示该会话的下行数据到达。
其中,UPF不向SMF指示该会话上存在下行数据,可以是UPF不向SMF发送数据通知消息,该数据通知消息用于指示该会话的下行数据到达。
核心网网元不激活会话,即停止了执行后续的激活会话的步骤,因而可以减少信令的开销,从而可以提高服务请求流程的效率。
下面结合附图3(b),介绍另外一种通信方法,针对图3(b)所示的通信方法,包括以下步骤:
步骤1、核心网网元确定会话的下行数据到达,该下行数据为待发送给终端的下行数据。
该步骤与图3(a)所示的步骤1相同,可参考前述描述。
步骤2、当下行数据对应的会话为去激活态,会话为第一接入类型的会话,且终端在第一接入类型的网络中处于空闲态时,核心网网元若确定会话允许的接入类型不包括第二接入类型,则不激活会话。
该图3(b)中的步骤2与图3(a)中的步骤2的主要区别在于:图3(b)中的步骤2需要判断终端在第一接入类型的网络中的状态。
图3(b)所示的实施例的其它方面的实现方法,可参考上述图3(a)所示的实施例中的相关描述,这里不再赘述。
图3(b)所示的实施例,核心网网元自己可以确定会话是否可以通过第二接入类型激活。当核心网网元确定会话允许的接入类型不包括第二接入类型时,可以确定该会话不可以通过第二接入类型激活,因而可以直接结束激活该会话的后续流程。即无需向终端发送指示信息以及接收终端发送的响应消息等后续步骤,因而可以节约资源和信令开销。
进一步地,当核心网网元为SMF时,SMF可以通过下述方法确定终端在第一接入类型的网络中的状态。
例如,SMF可以接收来自AMF的订阅通知消息,该订阅通知消息用于指示终端在第一接入类型的网络中的状态,例如指示终端在第一接入类型的网络中的状态为空闲态, 或为连接态。其中,订阅通知消息仅为一种名称,在具体实现中,也可以用其它名称表示,例如称为订阅服务的通知消息等。
再比如,SMF接收到来自UPF的数据通知消息,并根据数据通知消息确定终端在第一接入类型的网络中的状态,例如若SMF接收到来自UPF的数据通知消息,数据通知消息用于指示有会话的下行数据,则SMF确定终端在第一接入类型的网络中的状态为空闲态。
可选地,当SMF确定终端在第一接入类型的网络中的状态后,向UPF发送该终端在第一接入类型的网络中的状态,从而UPF可确定终端在第一接入类型的网络中的状态。
对于AMF,可以直接确定终端在第一接入类型的网络中的状态,AMF确定终端在第一接入类型的网络中的状态的方法为现有技术,不再赘述。
下面结合附图2,分别以核心网网元分别为AMF、SMF或UPF为例,对上述图3(a)或3(b)所示实施例做举例说明。此外,为方便说明,以第一接入类型为非3GPP接入,第二接入类型为3GPP接入为例进行说明。
实现方法一、核心网网元为AMF
参考图2,AMF接收来自SMF通过步骤3a发送的N11消息时,即可以确定会话的下行数据到达,该N11消息中包括会话的标识。该会话为采用非3GPP接入技术的会话,处于去激活态。进一步地,还可以确定该终端在非3GPP网络处于空闲态。
AMF在接收到该N11消息后,根据本地存储的该会话允许的接入类型,确定该会话允许的接入类型是否包括3GPP接入。
如果AMF确定该会话允许的接入类型包括3GPP接入,则通过3GPP接入激活该会话。具体过程可参考现有技术方法。
如果AMF确定该会话允许的接入类型不包括3GPP接入,则确定不可以通过3GPP接入激活该会话,因而不激活该会话。
参照图2,不激活该会话可以是,当终端在3GPP网络中处于连接态时,AMF不通知终端该下行数据到达,即不执行步骤5。或者,当终端在3GPP网络中处于空闲态时,AMF不向终端发送寻呼消息,即不执行步骤4b。
通过上述方法,当AMF确定会话允许的接入类型不包括3GPP接入时,不执行步骤5或不执行步骤4b,也不执行步骤5或4b之后的后续步骤,从而减少了不必要的信令开销,节约了资源。
实现方法二、核心网网元为SMF
参考图2,当SMF接收到来自UPF通过步骤2a发送的数据通知消息时,即可以确定会话的下行数据到达,该数据通知消息用于指示会话的下行数据到达UPF。该数据通知消息中包括会话的标识。该会话处于去激活态。进一步地,还可以确定该终端在非3GPP网络处于空闲态。
SMF还可以根据下列任一方法,确定终端在非3GPP网络中处于空闲态。
方法一、SMF接收来自AMF的订阅通知消息,该订阅通知消息用于指示终端在非3GPP网络中处于空闲态
可选的,SMF通过向AMF订阅终端在非3GPP网络的状态,因此,只要终端在非3GPP网络中的状态发生变化,则AMF向SMF发送订阅通知消息,用于通知SMF终端当前在非3GPP网络中的状态。
当AMF向SMF发送的订阅通知消息指示终端在非3GPP网络中处于空闲态时,SMF即可以确定终端在非3GPP网络中处于空闲态。
方法二、SMF接收到来自UPF的数据通知消息,并根据数据通知消息确定终端在非3GPP网络中处于空闲态
该方法中,SMF只要接收到来自UPF的数据通知消息,且确定数据通知消息中包含的会话标识对应的会话为采用非3GPP接入技术的会话,则可确定终端在非3GPP网络中处于空闲态。
当SMF确定会话的下行数据到达,且确定该会话为去激活态,则SMF根据本地存储的该会话允许的接入类型,确定该会话允许的接入类型是否包括3GPP。其中,终端在非3GPP网络是处于空闲态。
若SMF确定该会话允许的接入类型包括3GPP接入,则通过3GPP激活该会话。具体过程可参考现有技术方法。
若SMF确定该会话允许的接入类型不包括3GPP接入,则确定不可以通过3GPP接入激活该会话,因而不激活该会话。
参照图2,不激活该会话可以是,SMF不通知AMF激活会话,即不执行图2中的步骤3a,进而也不执行步骤3a后续的所有用于激活会话的步骤。
通过上述方法,当SMF确定会话允许的接入类型不包括3GPP接入时,则不执行步骤3a及后续步骤,从而减少了不必要的信令开销,节约了资源。
实现方法三、核心网网元为UPF
参考图2,当UPF接收到下行数据时,即可以确定会话的下行数据到达。该会话处于去激活态。进一步地,UPF还确定终端在非3GPP网络处于空闲态。
接着,UPF根据本地存储的该会话允许的接入类型,确定该会话允许的接入类型是否包括3GPP。
如果UPF确定该会话允许的接入类型包括3GPP接入,则通过3GPP接入激活该会话。具体过程可参考现有技术方法。
如果UPF确定该会话允许的接入类型不包括3GPP接入,则确定不可以通过3GPP接入激活该会话,因而不激活该会话。
参照图2,不激活该会话可以是,UPF不向SMF指示会话的下行数据到达,即不执行图2中的步骤2a,进而也不执行步骤2a之后的所有用于激活会话的步骤。
通过上述方法,当UPF确定会话允许的接入类型不包括3GPP接入时,则不执行步骤2a及后续步骤,从而减少了不必要的信令开销,节约了资源。
上述通信方法中,核心网网元中本地存储的会话允许的接入类型,可以是来自终端,也可以是来自PCF。
其中,若核心网网元中本地存储的会话允许的接入类型来自终端,则具体实现方法如下:
当核心网网元为AMF时,AMF接收来自终端的会话允许的接入类型,具体包括:AMF接收来自终端的NAS消息,该NAS消息包括会话允许的接入类型。
当核心网网元为SMF,SMF接收来自终端的会话允许的接入类型,具体包括:终端向AMF发送移动性管理消息,该移动性管理消息包括会话允许的接入类型,AMF接收到该移动性管理消息后,获取其中的会话允许的接入类型,并发送给SMF。或者,终端向 AMF发送会话管理消息,该会话管理消息中包括会话允许的接入类型,AMF接收到该会话管理消息后,将该会话管理消息转发给SMF,从而SMF可以从会话管理消息中获取到会话允许的接入类型。
当核心网网元为UPF,UPF接收来自终端的会话允许的接入类型,包括:终端向SMF发送会话允许的接入类型,具体方法可参考上述描述。SMF接收到来自终端的会话允许的接入类型后,将会话允许的接入类型发送给UPF。可选的,SMF还将会话当前的接入类型发送给UPF。
下面结合附图4-附图7,对核心网获取到会话允许的接入类型的方法做具体说明。在附图4-附图7中,以会话为PDU会话,终端为UE为例进行说明。
参考图4,为本申请提供的PDU会话建立流程示意图。该实施例中,本申请的通信方法由AMF执行,因而AMF在该会话激活流程中获取会话的允许的接入类型,AMF还建立会话允许的接入类型、SMF的标识与PDU会话标识之间的映射关系。并且,AMF是从PCF获取到会话允许的接入类型。
该实施例包括以下步骤:
步骤1、UE向AMF发送PDU会话建立请求(PDU session establishment request)消息。
具体实现中,例如,UE发起PDU会话的建立,向AMF发送移动性管理(Mobile Management,MM)消息,该MM消息可以称为非接入层(Non-Access-Stratum,NAS)信令,也可以称为N1接口消息。该MM消息包括会话管理(Session Management,SM)信令,可选地,MM消息中还包括会话管理-网络切片选择辅助信息(session management-Network Slice Selection Assistance Information,S-NSSAI),数据网络名称(Data Network Name,DNN),PDU会话标识(Session Idenfication,Session ID)。
SM信令即为PDU会话建立请求消息,其中可以携带PDU类型(PDU Type),业务和会话连续性模式(service and session continuity mode,SSC mode)。
PDU Type指示PDU会话是IPv4还是IPv6。
SSC mode指示PDU会话的业务和会话连续性模式,可以是mode1、mode2或mode3。其中,mode1表示IP地址的锚点(UPF)不变,支持业务连续性。mode2表示IP地址的锚点(UPF)可变,网络可以先释放当前PDU会话,然后通知UE建立一个新的PDU会话。mode3表示为UE建立一个新的网络连接之后,才将旧的网络连接释放。
步骤2、AMF选择一个合适的SMF。
示例性地,若步骤1中MM NAS信令包括S-NSSAI、DNN,则AMF可以根据S-NSSAI、DNN选择SMF。
步骤3、AMF将PDU会话建立请求消息发送给选择的SMF。
具体实现中,AMF可以通过服务“Namf_PDUSession_CreateSMContext”实现向SMF发送PDU会话建立请求消息。
步骤4、SMF从UDM获取UE的会话管理(SM)相关的签约信息。
该步骤4为可选步骤,当SMF上没有UE的SM相关的签约信息,才从UDM获取。
SM相关的签约信息包括授权的PDU类型(authorized PDU type(s)),授权的SSC 模式(authorized SSC mode(s)),默认的服务质量(Quality of Service,QoS)属性(Default QoS profile)。
步骤5、SMF为PDU会话发起第三方认证授权流程。
该步骤5为可选步骤,当执行步骤5时,可以使得SMF根据认证授权结果确定是否需要为该UE的PDU会话继续执行PDU会话建立流程。
步骤6a、SMF选择PCF。
步骤6b、SMF从PCF获取该PDU会话允许的接入类型。
作为一个实现方式,SMF向PCF发起Npcf_SMPolicyControl_Get(PCF提供的获取会话管理的策略控制)服务,从而获取该PDU会话的策略和计费控制规则(Policy and Charging Control rules,PCC rules)。进一步地,还可以获取该PDU会话允许的接入类型(access type(s))。可选的,如果该PDU会话同时支持3GPP接入和N3GPP接入,则PCC rules中还可以包括优选接入类型(preferred access type)。
步骤6c、PCF向SMF发送签约的事件。
可选地,PCF通过服务“Nsmf_EventExposure_Subscribe”向SMF发送签约的事件。
步骤7、SMF选择一个合适的UPF。
例如,SMF可以根据UE位置、UPF负载、UPF容量、DNN、PDU类型、PDU会话的SSC mode、UE签约信息(subscription)中的一个或多个因素,为该PDU会话选择一个合适的UPF,同时为该PDU会话分配IP地址。
步骤8a、SMF将事件通知给PCF。
该步骤8a为可选步骤,当PCF签约的事件发生时,SMF才将事件通知PCF。可选地,SMF通过服务“Nsmf_EventExposure_Notify”向PCF通知事件。
步骤8b、PCF将更新后的策略发给SMF。
当UE的PCC发生更新,则PCF将更新后的策略发送给SMF。可选地,PCF通过服务“Npcf_SMPolicyControl_UpdateNotify”向SMF发送更新的策略。
步骤9a、SMF向UPF发送N4会话建立/修改请求(N4 Session Establishment/modification Request)消息。
步骤9b、UPF向SMF发送N4会话建立/修改响应(N4 Session Establishment/modification Respone)消息。
上述步骤9a-步骤9b,为SMF与UPF之间进行N4会话建立/修改流程,可实现将packet detection(数据包检测)、enforcement(PDU会话在UPF上的执行规则)、reporting rules(报告规则)、CN tunnel info(核心网隧道信息)配置到UPF上。
步骤10a、SMF将PDU会话的参数信息发送给AMF。
发送的参数信息包括PDU会话允许的接入类型,以及,还可以包括发送给UE的N1SM信息、发送给RAN的N2SM消息。
其中,PDU会话允许的接入类型包括3GPP接入和N3GPP接入中的一个或全部。
N1SM信息包括PDU会话建立接受(PDU Session Establishment Accept)消息,该PDU会话建立接受消息中包括授权的QoS规则(Authorized QoS Rule),SSC mode,S-NSSAI,分配的IP4地址(allocated IPv4 address),会话-聚合的最大比特率(Session-Aggregate Maximum Bit Rate,Session-AMBR)。
N2 SM消息包括PDU会话标识,QoS策略(Profile(s)),CN Tunnel Info,S-NSSAI, Session-AMBR。
作为一种实现方式,SMF可以通过服务“Nsmf_PDUSession_CreateSMContext Response”向AMF发送PDU会话的参数信息。
步骤10b、AMF建立并保存SMF标识,PDU会话标识,PDU会话允许的接入类型之间的映射关系。
即,AMF接收到PDU会话允许的接入类型之后,建立SMF标识,PDU会话标识,PDU会话允许的接入类型之间的映射关系。
当然,建立该映射关系只是一种实现方式,具体使用中,还可以是只是存储该PDU会话允许的接入类型,在需要用到时只要可以获取到即可。
步骤11、AMF向RAN发送N2PDU会话请求消息。
该N2PDU会话请求消息包括AMF从SMF收到的N1SM消息和N2SM信息。
步骤12、RAN向UE发送N1SM消息。
RAN和UE进行RRC信令交互,为PDU会话建立必要的空口资源。同时,将N1SM信息发给UE,例如,将N1SM消息携带于PDU会话建立接受消息中发送至UE。
步骤13、RAN向AMF发送N2PDU会话响应消息。
该PDU会话响应消息中可包括PDU会话标识,N2SM信息(其中包括PDU会话标识),(R)AN隧道信息(Tunnel Info),接收/拒绝的QoS策略表(List of accepted/rejected QoS profile(s)))。
步骤14、AMF将从RAN收到的N2SM消息发送给SMF。
作为一种实现方式,可以通过服务“Nsmf_PDUSession_UpdateSMContextRequest”实现将从RAN收到的N2SM消息发送给SMF。
步骤15a、SMF向UPF发送N4会话修改请求消息(N4Session Modification Request)。
该N4会话修改请求消息包括N2SM消息中的(R)AN隧道信息。
步骤15b、UPF向SMF发送N4会话修改响应消息。
步骤16、SMF向AMF发送针对步骤14的响应消息。
作为一种实现方式,可以通过服务“Nsmf_PDUSession_UpdateSMContextResponse”实现向AMF发送响应消息。
步骤17、SMF将IPv6地址通过数据面(UPF)配置给UE。
步骤18、释放该PDU会话在源接入侧的网络资源。
在步骤18为可选步骤,只有当该PDU会话建立流程是用于N3GPP和3GPP之间的PDU会话切换,才执行步骤18。
步骤19、SMF向UDM发送SMF地址,DNN和PDU会话标识。
该步骤为可选步骤,当SMF向UDM发送SMF地址,DNN和PDU会话标识后,则UDM存储这些信息,并存储这些信息之间的映射关系。
可选地,SMF可以通过服务“Nudm_UEContextManagement_Update”实现向UDM发送SMF地址,DNN和PDU会话标识。
上述实施例,在PDU会话的建立过程中,通过步骤6b,SMF从PCF获取到PDU会话允许的接入类型,并通过步骤10a,将PDU会话允许的接入类型发送至AMF,然后AMF通过步骤10b,建立并保存了SMF标识、PDU会话标识、PDU会话允许的接入类型之间的 映射关系。从而,AMF本地存储了PDU会话允许的接入类型。进而,在图3(a)或图3(b)所示的步骤2中,AMF可以使用会话允许的接入类型,确定会话是否支持第二接入类型。
参考图5(a),为本申请提供的PDU会话建立流程示意图。该实施例中,本申请的通信方法由AMF执行,因而AMF在该会话激活流程中获取会话的允许的接入类型,AMF还建立会话允许的接入类型、SMF的标识与PDU会话标识之间的映射关系。并且,AMF是从终端获取到会话允许的接入类型。
该实施例包括以下步骤:
步骤1、UE向AMF发送PDU会话建立请求消息。
该PDU会话建立请求消息中携带的内容包括图4所示步骤1中的PDU会话建立请求消息中携带的内容。
进一步地,图5(a)所示的步骤1中的PDU会话建立请求消息中还包括:UE确定的会话允许的接入类型。具体地,UE根据以下方法确定会话允许的接入类型:根据PCF发送给UE的用户设备路由选择策略(UE Routing Selection Policy,URSP),确定该PDU会话允许的接入类型。
步骤2,与图4中的步骤2相同。
步骤3、AMF将PDU会话建立请求消息发送给选择的SMF。
该PDU会话建立请求消息中包括会话允许的接入类型。
步骤4-步骤6a,与图4中的步骤4-步骤6a相同。
步骤6b、SMF向PCF发起Npcf_SMPolicyControl_Get。
作为一个实现方式,SMF向PCF发起Npcf_SMPolicyControl_Get(PCF提供的获取会话管理的策略控制)服务,从而获取该PDU会话的策略和计费控制规则(Policy and Charging Control rules,PCC rules)。
需要说明的是,图5(a)所示的步骤6b中,没有从PCF获取会话允许的接入类型。
步骤6c-步骤19,与图4所示的步骤6c-步骤19相同。
图5(a)所示的实施例与图4所示的实施例的主要区别在于:图5(a)所示的流程中,是由UE将会话允许的接入类型携带于PDU会话建立请求消息发送至AMF,然后由AMF将PDU会话建立请求消息转发给SMF,接着由SMF将会话允许的接入类型发送给AMF。而图4所示的流程中,是由SMF从PCF获取会话允许的接入类型,然后由SMF将会话允许的接入类型发送给AMF。
上述实施例,在PDU会话的建立过程中,通过步骤1、步骤3,SMF从UE获取到PDU会话允许的接入类型,并通过步骤10a,将PDU会话允许的接入类型发送至AMF,然后AMF通过步骤10b,建立并保存了SMF标识、PDU会话标识、PDU会话允许的接入类型之间的映射关系。从而,AMF本地存储了PDU会话允许的接入类型。进而,在图3(a)或图3(b)所示的步骤2中,AMF可以使用会话允许的接入类型,确定会话是否支持第二接入类型。
参考图5(b),为本申请提供的PDU会话建立流程示意图。该实施例中,本申请的通信方法由AMF执行,因而AMF在该会话激活流程中获取会话的允许的接入类型,AMF还建立会话允许的接入类型、SMF的标识与PDU会话标识之间的映射关系。并且,AMF是 从终端获取到会话允许的接入类型。
图5(b)所示的实施例与图5(a)所示的实施例的主要区别在于:图5(b)所示的实施例的步骤1中,UE向AMF发送移动性管理消息,该移动性管理消息中包括需要由AMF转发给SMF的PDU会话建立请求消息和会话支持的接入类型。即,在图5(a)所示的实施例中,会话支持的接入类型是在PDU会话建立请求消息内,而在图5(b)所示的实施例中,会话支持的接入类型不在PDU会话建立请求消息内,而是在移动性管理消息内。因此,图5(b)所示的实施例中,AMF可以直接从UE发送的移动性管理消息中获取到会话支持的接入类型。而在图5(a)所示的实施例中,AMF是通过步骤10a获取到会话支持的接入类型。
进一步地,图5(b)所示的实施例与图5(a)所示的实施例的区别还包括:图5(a)所示的实施例中,步骤10a中,SMF向AMF发送的PDU会话的参数信息中包括会话支持的接入类型。图5(b)所示的实施例中,步骤10a中,SMF向AMF发送的PDU会话的参数信息中不包括会话支持的接入类型。
上述实施例,在PDU会话的建立过程中,通过步骤1,AMF从UE发送的移动性管理消息中获取会话支持的接入类型,以及,AMF通过步骤10b,建立并保存了SMF标识、PDU会话标识、PDU会话允许的接入类型之间的映射关系。从而,AMF本地存储了PDU会话允许的接入类型。进而,在图3(a)或图3(b)所示的步骤2中,AMF可以使用会话允许的接入类型,确定会话是否支持第二接入类型。
参考图6,为本申请提供的PDU会话建立流程示意图。该实施例中,本申请的通信方法由SMF执行,因而SMF在该会话激活流程中获取会话的允许的接入类型,SMF还建立会话允许的接入类型、SMF的标识与PDU会话标识之间的映射关系。并且,SMF是从PCF获取到会话允许的接入类型。
该实施例包括以下步骤:
步骤1-步骤6c,与图4中的步骤1-步骤6c相同。
步骤7a,SMF建立并保存SMF标识,PDU会话标识,PDU会话允许的接入类型之间的映射关系。
即,SMF获取到PDU会话允许的接入类型之后,建立SMF标识,PDU会话标识,PDU会话允许的接入类型之间的映射关系。
当然,建立该映射关系只是一种实现方式,具体使用中,还可以是只是存储该PDU会话允许的接入类型,在需要用到时只要可以获取到即可。
步骤7b,与图4中的步骤7相同。
步骤8a-步骤9b,与图4中的步骤8a-步骤9b相同。
步骤10、SMF向AMF发送PDU会话的参数信息。
该参数信息与图4的步骤10b中的参数信息的区别在于,图6的步骤10a中的参数信息不包括会话允许的接入类型。
步骤11-步骤19,与图4的步骤11-步骤19相同。
图6所示的实施例,在PDU会话的建立过程中,通过步骤6b,SMF从PCF获取到PDU会话允许的接入类型,然后SMF通过步骤7a,建立并保存了SMF标识、PDU会话标识、PDU会话允许的接入类型之间的映射关系。从而,SMF本地存储了PDU会话允许的接入 类型。进而,在图3(a)所示的步骤2中,SMF可以使用会话允许的接入类型,确定会话是否支持第二接入类型。
参考图7,为本申请提供的PDU会话建立流程示意图。该实施例中,本申请的通信方法由SMF执行,因而SMF在该会话激活流程中获取会话的允许的接入类型,SMF还建立会话允许的接入类型、SMF的标识与PDU会话标识之间的映射关系。并且,SMF是从终端获取到会话允许的接入类型。
该实施例包括以下步骤:
步骤1-步骤6c,与图5(a)中的步骤1-步骤6c相同。
步骤7a,SMF建立并保存SMF标识,PDU会话标识,PDU会话允许的接入类型之间的映射关系。
即,SMF获取到PDU会话允许的接入类型之后,建立SMF标识,PDU会话标识,PDU会话允许的接入类型之间的映射关系。
步骤7b,与图5(a)中的步骤7相同。
步骤8a-步骤9b,与图5(a)中的步骤8a-步骤9b相同。
步骤10、SMF向AMF发送PDU会话的参数信息。
该参数信息与图5(a)的步骤10b中的参数信息的区别在于,图7的步骤10a中的参数信息不包括会话允许的接入类型。
步骤11-步骤19,与图5(a)的步骤11-步骤19相同。
图7所示的实施例,在PDU会话的建立过程中,通过步骤1、步骤3,SMF从终端获取到PDU会话允许的接入类型,然后SMF通过步骤7a,建立并保存了SMF标识、PDU会话标识、PDU会话允许的接入类型之间的映射关系。从而,SMF本地存储了PDU会话允许的接入类型。进而,在图3(a)或图3(b)所示的步骤2中,SMF可以使用会话允许的接入类型,确定会话是否支持第二接入类型。
基于相同的发明构思,如图8所示,为本申请提供的一种装置示意图,该装置800可以是核心网网元,也可以是片上系统或芯片,可执行各方法实施例中由核心网网元或AMF网元或SMF网元或UPF网元执行的方法。其中,核心网网元可以是AMF、SMF或UPF。
该装置800包括至少一个处理器81,收发器82,可选地,还包括存储器83。所述处理器81、收发器82、存储器83通过通信总线连接。
处理器81可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。
通信总线可包括一通路,在上述单元之间传送信息。
所述收发器82,用于与其他设备或通信网络通信,该收发器可以是一种通信接口,例如,有线接口或无线接口,或该收发器包括射频电路。
存储器83可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)、只读光盘(compact  disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器83可以是独立存在,通过通信总线与处理器81相连接。存储器83也可以和处理器集成在一起。其中,所述存储器83用于存储执行本发明方案的应用程序代码,并由处理器81来控制执行。所述处理器81用于执行所述存储器83中存储的应用程序代码。
在具体实现中,作为一种实施例,处理器81可以包括一个或多个CPU,例如图8中的CPU0和CPU1。
在具体实现中,作为一种实施例,装置800可以包括多个处理器,例如图8中的处理器81和处理器88。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器,这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
应理解,该装置可以用于实现本发明实施例的通信方法中由核心网网元执行的步骤,相关特征可以参照上文,此处不再赘述。
本申请可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。比如,在采用对应各个功能划分各个功能模块的情况下,图9示出了一种装置示意图,该装置可以是上述实施例中所涉及的核心网网元或片上系统或芯片,该装置包括处理单元901和通信单元902。
通信单元902,用于实现图9所示的装置与其它装置之间的通信;
处理单元901,用于确定会话的下行数据到达,所述下行数据为待发送给终端的下行数据。
处理单元901,还用于当下行数据对应的会话为去激活态,会话为第一接入类型的会话时,若确定会话允许的接入类型不包括第二接入类型,则不激活会话。或者,当下行数据对应的会话为去激活态,会话为第一接入类型的会话,且终端在第一接入类型的网络中处于空闲态时,若确定会话允许的接入类型不包括第二接入类型,则不激活会话。
在一种实现方式中,通信单元902,用于接收来自终端或来自策略控制功能PCF网元的会话允许的接入类型。
在一种实现方式中,图9所示装置为AMF网元,处理单元901,具体用于:当终端在第二接入类型的网络中处于连接态时,不通知终端下行待数据到达。或者,当终端在第二接入类型的网络中处于空闲态时,不向终端发送寻呼消息。
在一种实现方式中,图9所示装置为SMF网元,处理单元901,具体用于:不通知AMF网元激活会话。
在一种实现方式中,图9所示装置为UPF网元,处理单元901,具体用于:不向SMF网元指示会话的下行数据到达。
在一种实现方式中,图9所示装置为SMF网元,通信单元902,还用于:接收来自AMF网元的订阅通知消息,订阅通知消息用于指示终端在第一接入类型的网络中处于空 闲态;或者,
通信单元902,还用于:接收到来自UPF网元的数据通知消息,并根据数据通知消息确定终端在第一接入类型的网络中处于空闲态,数据通知消息用于指示有会话的下行数据。
在一种实现方式中,第一接入类型为非3GPP接入,第二接入类型为3GPP接入;或者,第一接入类型为3GPP接入,第二接入类型为非3GPP接入。
在本实施例中,该装置以对应各个功能划分各个功能模块的形式来呈现,或者,该业务控制实体以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
应理解,该装置可以用于实现本发明实施例的通信方法中由核心网网元执行的步骤,相关特征可以参照上文,此处不再赘述。
基于相同的发明构思,如图10所示,为本申请提供的一种装置示意图,该装置1000例如可以是终端,也可以是片上系统或芯片,可执行上述任一实施例中由终端执行的方法。
装置1000包括至少一个处理器101,收发器102,可选地,还包括存储器103。处理器101、收发器102、存储器103通过通信总线连接。
处理器101可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。
通信总线可包括一通路,在上述单元之间传送信息。
收发器102,用于与其他设备或通信网络通信,该收发器可以是一种通信接口,例如,有线接口或无线接口,或该收发器包括射频电路。
存储器103可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器93可以是独立存在,通过通信总线与处理器101相连接。存储器103也可以和处理器集成在一起。其中,存储器103用于存储执行本发明方案的应用程序代码,并由处理器101来控制执行。处理器101用于执行存储器103中存储的应用程序代码。
在具体实现中,作为一种实施例,处理器101可以包括一个或多个CPU,例如图10中的CPU0和CPU1。
在具体实现中,作为一种实施例,装置1000可以包括多个处理器,例如图10中的处理器101和处理器108。这些处理器中的每一个可以是一个单核(single-CPU)处理 器,也可以是一个多核(multi-CPU)处理器,这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
应理解,该装置可以用于实现本发明各实施例的通信方法中由终端执行的步骤,相关特征可以参照上文,此处不再赘述。
本申请可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。比如,在采用对应各个功能划分各个功能模块的情况下,图11示出了一种装置示意图,该装置可以是上述实施例中所涉及的终端或芯片或片上系统,该装置包括处理单元1101和通信单元1102。
处理单元1101,用于获得会话允许的接入类型。
通信单元1102,用于向核心网网元发送会话允许的接入类型。
在一种实现方式中,核心网网元为AMF网元、SMF网元或UPF网元。
在一种实现方式中,会话允许的接入类型包括非3GPP接入和3GPP接入中至少一种。
在一种实现方式中,通信单元1102,具体用于:向核心网网元发送N1接口移动性管理消息,N1接口移动性管理消息包括会话允许的接入类型;或者,
向核心网网元发送N1接口会话管理消息,N1接口会话管理消息包括会话允许的接入类型。
在本实施例中,该装置以对应各个功能划分各个功能模块的形式来呈现,或者,该业务控制实体以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
应理解,该装置可以用于实现本发明实施例的通信方法中由终端执行的步骤,相关特征可以参照上文,此处不再赘述。
如图12所示,为本申请提供的再一种通信方法的流程示意图,该方法以网络侧发起的服务请求流程为例进行描述。该流程包括以下步骤:
步骤1、UPF网元接收到会话的下行数据。
其中,该会话为去激活态。
其中,该会话可以采用3GPP接入技术,即该会话为3GPP接入类型的会话,也可以是采用非3GPP接入技术,即该会话为非3GPP接入类型的会话。
其中,该下行数据是待发送给终端的下行数据。
步骤2a、UPF网元向SMF网元发送数据通知消息。
示例性地,当该会话为去激活态,或者,UPF网元上未存储该会话的接入网隧道信息(AN tunnelinfo)时,执行步骤2a。
其中,该数据通知消息可以用于通知SMF网元该会话的下行数据到达,可以参见上述各实施例中的相关描述,不再赘述。
步骤2b、SMF网元向UPF网元发送数据通知应答(Data Notification Ack)消息。
其中,该数据通知应答消息可以用于对步骤2a中的数据通知消息进行应答。
步骤3a、SMF网元向AMF网元发送N11消息(N11 message)。
其中,N11消息包括该会话允许的接入类型,该会话允许的接入类型可以参见上述各实施例中的相关描述,不再赘述。
需要指出的是,终端可以在会话建立过程中将该会话允许的接入类型发给SMF网元,例如,终端将该会话允许的接入类型包含在PDU会话建立请求消息中,SMF网元存储该会话允许的接入类型。
其中,该N11消息可以用于激活该会话,也就是说,该N11消息还可以用于指示该会话处于去激活态。具体地,可以用于通知AMF网元该会话的下行数据到达,也可以理解为,SMF网元通过该N11消息通知AMF网元该会话存在下行数据需要发送给终端,还可以理解为,该终端的会话需要被激活。
具体地,该N11消息可以为AMF网元提供的N1N2消息传输请求(Namf_Communication_N1N2MessageTransfer request)消息,不予限制。
此外,该N11消息还可以包括N2接口会话管理信息(N2 SM information)和该会话的标识。其中,N2接口会话管理信息可以用于RAN激活该会话,或者说,可以用于RAN为该会话建立RAN和UPF之间的N3通道(N3 tunnel)或N3连接(N3 connection)。具体地,该N2接口会话管理信息中可以包括QoS参数信息(例如,QoS profile),核心网N3接口隧道信息(CN N3 Tunnel Info)。
示例性地,步骤3a可以包括:当该会话为第一接入类型的会话,且该会话允许的接入类型不包括第二接入类型时,SMF网元向AMF网元发送携带有该会话允许的接入类型的N11消息。
可替换地,N11消息可以不携带该会话允许的接入类型,上述方法还包括:SMF网元向AMF网元发送该会话允许的接入类型。示例性地,当该会话为第一接入类型的会话,且该会话允许的接入类型不包括第二接入类型时,SMF网元向AMF网元发送该会话允许的接入类型。
步骤3b、AMF网元向SMF网元发送N11应答消息。
其中,该N11应答消息可以用于对步骤3a中的N11消息进行应答,例如,该N11应答消息可以为拒绝消息或响应消息。需要说明的是,当步骤3a中的N11消息为N1N2消息传输请求时,该该N11应答消息可以为N1N2消息传输响应(Namf_Communication_N1N2MessageTransfer response)消息。
在上述实施例的第一种可能的实施场景下,当终端在非3GPP网络中处于空闲态,且该会话为非3GPP接入类型,且该会话不允许从3GPP接入进行激活(not allowed to be reactivated via 3GPP access)时,AMF网元不激活该会话。例如,当终端在AMF网元上的状态为该在3GPP网络中处于空闲态时,AMF网元不寻呼该会话对应的终端,或,当终端在AMF网元上的状态为该在3GPP网络中处于连接态时,AMF网元不向该会话对应的终端发送用于通知该终端该会话的下行数据到达的NAS消息。
其中,该会话不允许从3GPP接入进行激活可以基于该会话允许的接入类型来确定,例如,若允许的接入类型不包括3GPP接入,则表明该会话不允许从3GPP接入进行激活;或者,若该会话允许的接入类型只有非3GPP接入类型,则表明该会话不允许从3GPP接入进行激活。显然,上述会话不允许从3GPP接入进行激活可以替换为:会话允许的接 入类型仅包括非3GPP接入,或者,该会话允许的接入类型不包括3GPP接入类型。
可选地,在上述第一种可能的实施例场景下,该N11应答消息还用于通知SMF网元该终端不可达;或者,拒绝步骤3a中的N11消息;或者,该终端在非3GPP网络中处于空闲态;或者,通知SMF网元不要继续向AMF网元发送步骤3a中的N11消息。示例性地,AMF网元通过步骤3b中的N11应答消息通知SMF网元该终端不可达,或通知SMF网元拒绝步骤3a中的N11消息,或通知该终端在非3GPP网络中处于空闲态,或通知SMF网元不要继续向AMF网元发送步骤3a中的N11消息。具体地,在N11应答消息中携带指示信息,该指示信息用于指示该终端不可达,或步骤3a的N11消息被拒绝,或终端在非3GPP网络中处于空闲态,或指示SMF网元不要继续向AMF网元发送步骤3a中的N11消息的指示信息。
在上述实施例的第二种可能的实施场景下,当终端在非3GPP网络中处于空闲态,且该会话为非3GPP接入类型,该会话允许从3GPP接入进行激活(allowed to be reactivated via 3GPP access)时,AMF网元激活该会话,例如,当终端在AMF网元上的状态为该在3GPP网络中处于空闲态时,AMF网元寻呼该会话对应的终端,或,当终端在AMF网元上的状态为该在3GPP网络中处于连接态时,AMF网元向该会话对应的终端发送用于通知该终端该会话的下行数据到达的NAS消息。
在上述实施例的第三种可能的实施场景下,当终端在3GPP网络中处于空闲态,该会话为3GPP接入类型,且该会话不允许从非3GPP接入进行激活(not allowed to be reactivated via non-3GPP access)时,AMF网元不激活该会话,例如,当终端在AMF网元上的状态为该在非3GPP网络中处于连接态时,AMF网元不向该会话对应的终端发送用于通知该终端该会话的下行数据到达的NAS消息。
在上述实施例的第四种可能的实施场景下,当终端在3GPP网络中处于空闲态,该会话为3GPP接入类型,且该会话允许从非3GPP接入进行激活(allowed to be reactivated via non-3GPP access)时,AMF网元激活该会话,例如,当终端在AMF网元上的状态为该在非3GPP网络中处于连接态时,AMF网元向该会话对应的终端发送用于通知该终端该会话的下行数据到达的NAS消息。
需要说明的是,终端在3GPP网络中处于空闲态可以指的是终端在3GPP接入处于连接管理空闲态(CM-IDLE in 3GPP access),或者,终端的3GPP接入的状态为空闲态;终端在非3GPP网络中处于空闲态可以指的是终端在非3GPP接入处于连接管理空闲态(CM-IDLE in non-3GPP access),或者,终端的非3GPP接入的状态为空闲态。
需要说明的是,在上述实施例的第一种可能的实施场景下,上述方法还可以包括:SMF向UPF发送N4消息。
其中,N4消息可以用于向UPF网元指示用户面建立失败。
从上述网络侧会发起服务请求流程可以看出,若终端的非3GPP接入的状态为空闲态,会话允许的接入类型只包括非3GPP接入,不包括3GPP接入,则AMF网元可以确定采用非3GPP接入技术的会话不支持或不允许通过3GPP接入进行激活,那么AMF网元不激活该会话,或AMF网元停止激活会话的流程,即不再执行后续会话激活流程。
如图13所示,本申请实施例提供再一种通信方法,包括:
1301、SMF网元收到来自UPF网元的数据通知消息。
其中,数据通知消息可以用于指示会话的下行数据到达。
1302、SMF网元根据所述数据通知消息向AMF网元发送所述会话允许的接入类型。
其中,所述会话允许的接入类型可以携带在N11消息中,该N11消息可以用于激活所述会话。
其中,数据通知消息可以作为向AMF网元发送N11消息的触发条件。
可选地,在步骤1301之前,还包括:SMF网元接收来自所述会话对应的终端或来自PCF网元的所述会话允许的接入类型。
其中,SMF网元接收来自所述会话对应的终端的所述会话允许的接入类型,可以包括:
SMF网元接收来自所述终端的非接入层NAS消息,所述NAS消息包括所述会话允许的接入类型。其中,该NAS消息可以为PDU会话建立请求消息。
需要指出的是,在步骤1302可以包括:当所述会话为第一接入类型的会话时,且所述会话允许的接入类型不包括第二接入类型,所述SMF网元向AMF网元发送所述会话允许的接入类型。具体地,会话允许的接入类型可以携带在N11消息中,SMF网元将N11消息发送给AMF网元。
此外,图13中的相关步骤可以参见图12中的相关描述,不再赘述。
如图14所示,本申请实施例提供再一种通信方法,包括:
1401、AMF网元接收来自SMF网元的会话允许的接入类型。
其中,会话允许的接入类型可以携带在N11消息中,该N11消息可以用于激活该会话,也就是说,该N11消息还可以用于指示该会话处于去激活态。
可选地,假设N11消息不携带该会话允许的接入类型,上述方法还包括:AMF网元接收来自SMF网元的上述N11消息。
1402、当终端在非3GPP网络中处于空闲态,该会话为非3GPP接入类型,且AMF网元根据所述会话允许的接入类型确定该会话不允许从3GPP接入进行激活(not allowed to be reactivated via 3GPP access)时,AMF网元不激活该会话。
示例性地,当终端在AMF网元上的状态为该在3GPP网络中处于空闲态时,AMF网元不寻呼该会话对应的终端,或,当终端在AMF网元上的状态为该在3GPP网络中处于连接态时,AMF网元不向该会话对应的终端发送用于通知该终端该会话的下行数据到达的NAS消息。
其中,步骤1402中的AMF网元根据所述会话允许的接入类型确定该会话不允许从3GPP接入进行激活可以替换为:会话允许的接入类型仅包括非3GPP接入,或者,该会话允许的接入类型不包括3GPP接入类型。
其中,AMF网元根据该会话允许的接入类型确定该会话不允许从3GPP接入进行激活可以包括:若允许的接入类型不包括3GPP接入,则确定该会话不允许从3GPP接入进行激活;或者,若该会话允许的接入类型只有非3GPP接入类型,则确定该会话不允许从3GPP接入进行激活。
可替换地,步骤1402可以替换为:当终端在非3GPP网络中处于空闲态,该会话为非3GPP接入类型,且AMF网元根据所述会话允许的接入类型确定该会话允许从3GPP接入进行激活(allowed to be reactivated via 3GPP access)时,AMF网元激活该会话。其中,AMF网元根据所述会话允许的接入类型确定该会话允许从3GPP接入进行激活可以替换为:会话允许的接入类型包括3GPP接入。此外,AMF网元根据所述会话允许的接入 类型确定该会话允许从3GPP接入进行激活可以包括:若允许的接入类型包括3GPP接入,则确定该会话允许从3GPP接入进行激活。
其中,上述N11消息可以作为步骤1402执行的触发条件。
可选地,步骤1402中的AMF网元不激活该会话可以为AMF网元确定不激活该会话,然后,在AMF网元接收到该N11消息之后,根据确定的结果执行激活会话或不执行激活会话,不予限制。
需要说明的是,图14所示实施例中名词或步骤的细化可以参见图13所示实施例中的相关描述,不再赘述。
需要指出的是,本申请各实施例中提及的会话也可以称之为PDU会话,此外,不激活会话可以指的是停止激活该会话,或,不寻呼该会话对应的终端(例如,可以应用于终端在AMF网元上的状态为该在3GPP网络中处于空闲态的场景),或,不向该会话对应的终端发送用于通知该终端该会话的下行数据到达的NAS消息(例如,可以应用于终端在AMF网元上的状态为该在3GPP网络中处于连接态的场景)。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
尽管在此结合各实施例对本发明进行了描述,然而,在实施所要求保护的本发明过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
本领域技术人员应明白,本申请的实施例可提供为方法、装置(设备)、计算机可读存储介质或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式,这里将它们都统称为“模块”或“系统”。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字 信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
在一个或多个示例性的设计中,本申请实施例所描述的上述功能可以在硬件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理器读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、DVD、软盘和蓝光光盘,磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
本申请是参照本申请的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本发明进行了描述,显而易见的,在不脱离本发明的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本发明的示例性说明,且视为已覆盖本发明范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (27)

  1. 一种通信方法,其特征在于,包括:
    核心网网元确定会话的下行数据到达,所述下行数据为待发送给终端的下行数据;
    当所述会话为去激活态,所述会话为第一接入类型的会话时,所述核心网网元若确定所述会话允许的接入类型不包括第二接入类型,则不激活所述会话;或者,
    当所述会话为去激活态,所述会话为第一接入类型的会话,且所述终端在所述第一接入类型的网络中处于空闲态时,所述核心网网元若确定所述会话允许的接入类型不包括第二接入类型,则不激活所述会话。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述核心网网元接收来自所述终端或来自策略控制功能PCF网元的所述会话允许的接入类型。
  3. 根据权利要求2所述的方法,其特征在于,所述核心网网元为接入与移动性管理功能AMF网元,所述核心网网元接收来自所述终端的所述会话允许的接入类型,包括:
    所述AMF网元接收来自所述终端的所述会话允许的接入类型;
    或者,所述AMF网元接收来自会话管理功能SMF网元的所述会话允许的接入类型,所述会话允许的接入类型为所述SMF网元从所述终端接收的。
  4. 权利要求2所述的方法,其特征在于,所述核心网网元为AMF网元,所述核心网网元接收来自PCF网元的所述会话允许的接入类型,包括
    所述AMF网元接收来自SMF网元的所述会话允许的接入类型,所述会话允许的接入类型为所述SMF网元从所述PCF网元接收的。
  5. 根据权利要求3或4所述方法,所述AMF网元接收来自SMF网元的所述会话允许的接入类型,包括:
    在所述会话的建立过程中,所述AMF网元接收来自所述SMF网元的所述会话允许的接入类型;
    或者,在网络侧发起的服务请求过程中,所述AMF网元接收来自所述SMF网元的所述会话允许的接入类型。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述核心网网元为AMF网元;
    所述核心网网元不激活所述会话,包括:
    当所述终端在所述第二接入类型的网络中处于连接态时,所述核心网网元不通知所述终端下行数据到达;或者,
    当所述终端在所述第二接入类型的网络中处于空闲态时,所述核心网网元不向所述终端发送寻呼消息。
  7. 根据权利要求1或2所述的方法,其特征在于,所述核心网网元为SMF网元;
    所述核心网网元不激活所述会话,包括:
    所述核心网网元不通知AMF网元激活所述会话。
  8. 根据权利要求1或2所述的方法,其特征在于,所述核心网网元为用户面功能UPF网元;
    所述核心网网元不激活所述会话,包括:
    所述核心网网元不向SMF网元指示所述会话的下行数据到达。
  9. 根据权利要求1、2或7所述的方法,其特征在于,所述核心网网元为SMF网元;所述方法还包括:
    所述核心网网元接收来自AMF网元的订阅通知消息,所述订阅通知消息用于指示所述终端在所述第一接入类型的网络中处于空闲态;或者,
    所述核心网网元接收到来自UPF网元的数据通知消息,并根据所述数据通知消息确定所述终端在所述第一接入类型的网络中处于空闲态,所述数据通知消息用于指示所述会话的下行数据到达。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述第一接入类型为非第三代合作伙伴计划3GPP接入,所述第二接入类型为3GPP接入;或者,
    所述第一接入类型为3GPP接入,所述第二接入类型为非3GPP接入。
  11. 一种通信方法,其特征在于,包括:
    终端获得会话允许的接入类型;
    所述终端向核心网网元发送所述会话允许的接入类型。
  12. 根据权利要求11所述的方法,其特征在于,所述终端向核心网网元发送所述会话允许的接入类型,包括:
    所述终端向所述核心网网元发送N1接口移动性管理消息,所述N1接口移动性管理消息包括所述会话允许的接入类型;或者,
    所述终端向所述核心网网元发送N1接口会话管理消息,所述N1接口会话管理消息包括所述会话允许的接入类型。
  13. 根据权利要求11或12所述的方法,其特征在于,所述核心网网元为接入与移动性管理功能AMF网元,会话管理功能SMF网元或用户面功能UPF网元。
  14. 根据权利要求11-13中任一项所述的方法,其特征在于,所述会话允许的接入类型包括非第三代合作伙伴计划3GPP接入和3GPP接入中至少一种。
  15. 一种装置,其特征在于,包括:处理单元和通信单元;所述通信单元用于实现所述装置与其它装置之间的通信;
    所述处理单元,用于确定会话的下行数据到达,所述下行数据为待发送给终端的下行数据;
    所述处理单元,还用于当所述下行数据对应的会话为去激活态,所述会话为第一接入类型的会话时,若确定所述会话允许的接入类型不包括第二接入类型,则不激活所述会话;或者,当所述下行数据对应的会话为去激活态,所述会话为第一接入类型的会话,且所述终端在所述第一接入类型的网络中处于空闲态时,若确定所述会话允许的接入类型不包括第二接入类型,则不激活所述会话。
  16. 根据权利要求15所述的装置,其特征在于,所述通信单元,用于:
    接收来自所述终端或来自策略控制功能PCF网元的所述会话允许的接入类型。
  17. 根据权利要求16所述的装置,其特征在于,所述装置为接入与移动性管理功能AMF网元,所述通信单元还用于:
    接收来自所述终端的所述会话允许的接入类型;
    或者,接收来自会话管理功能SMF网元的所述会话允许的接入类型,所述会话允许 的接入类型为所述SMF网元从所述终端或从所述PCF网元接收的。
  18. 根据权利要求17所述装置,所述装置为AMF网元,所述通信单元还用于:
    在所述会话的建立过程中,接收来自所述SMF网元的所述会话允许的接入类型;
    或者,在网络侧发起的服务请求过程中,接收来自所述SMF网元的所述会话允许的接入类型。
  19. 根据权利要求15-18任一项所述的装置,其特征在于,所述装置为AMF网元;
    所述处理单元,具体用于:当所述终端在所述第二接入类型的网络中处于连接态时,不通知所述终端下行数据到达;或者,
    当所述终端在所述第二接入类型的网络中处于空闲态时,不向所述终端发送寻呼消息。
  20. 根据权利要求15或16所述的装置,其特征在于,所述装置为SMF网元;
    所述处理单元,具体用于:不通知AMF网元激活所述会话。
  21. 根据权利要求15或16所述的装置,其特征在于,所述核心网网元为用户面功能UPF网元;
    所述处理单元,具体用于:不向SMF网元指示所述会话的下行数据到达。
  22. 根据权利要求15、16或20所述的装置,其特征在于,所述装置为SMF网元;
    所述通信单元,还用于接收来自AMF网元的订阅通知消息,所述订阅通知消息用于指示所述终端在所述第一接入类型的网络中处于空闲态;或者,
    所述通信单元,还用于接收到来自UPF网元的数据通知消息,并根据所述数据通知消息确定所述终端在所述第一接入类型的网络中处于空闲态,所述数据通知消息用于指示所述会话的下行数据到达。
  23. 根据权利要求15-22中任一项所述的装置,其特征在于,所述第一接入类型为非3GPP接入,所述第二接入类型为3GPP接入;或者,
    所述第一接入类型为3GPP接入,所述第二接入类型为非3GPP接入。
  24. 一种装置,其特征在于,包括:处理单元和通信单元;
    所述处理单元,用于获得会话允许的接入类型;
    所述通信单元,用于向核心网网元发送所述会话允许的接入类型。
  25. 根据权利要求24所述的装置,其特征在于,所述通信单元,具体用于:
    向所述核心网网元发送N1接口移动性管理消息,所述N1接口移动性管理消息包括所述会话允许的接入类型;或者,
    向所述核心网网元发送N1接口会话管理消息,所述N1接口会话管理消息包括所述会话允许的接入类型。
  26. 根据权利要求24或25所述的装置,其特征在于,所述核心网网元为AMF网元,SMF网元或UPF网元。
  27. 根据权利要求24-26中任一项所述的装置,其特征在于,所述会话允许的接入类型包括非3GPP接入和3GPP接入中至少一种。
PCT/CN2018/110288 2017-10-17 2018-10-15 一种通信方法及装置 WO2019076275A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710965650 2017-10-17
CN201710965650.3 2017-10-17
CN201810157675.5A CN109673060B (zh) 2017-10-17 2018-02-24 一种通信方法及装置
CN201810157675.5 2018-02-24

Publications (1)

Publication Number Publication Date
WO2019076275A1 true WO2019076275A1 (zh) 2019-04-25

Family

ID=66142696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110288 WO2019076275A1 (zh) 2017-10-17 2018-10-15 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN109673060B (zh)
WO (1) WO2019076275A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3952596A4 (en) * 2019-05-07 2022-04-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND APPARATUS FOR TRANSMITTING INFORMATION, AND NETWORK DEVICE

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918357B (zh) * 2019-05-07 2022-12-09 Oppo广东移动通信有限公司 一种信息传输方法及装置、网络设备
CN112312461B (zh) * 2019-07-29 2024-05-17 中兴通讯股份有限公司 下行数据通知失败检测方法、amf、smf及存储介质
CN112398891B (zh) * 2019-08-16 2023-04-18 华为技术有限公司 一种通信方法和装置
CN115426677A (zh) * 2019-08-21 2022-12-02 华为技术有限公司 一种用户面信息上报方法及装置
CN110621032B (zh) * 2019-09-27 2021-06-15 腾讯科技(深圳)有限公司 一种通信的方法、相关装置及设备
EP4054245A4 (en) 2019-10-31 2022-11-02 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND ASSOCIATED DEVICE
WO2021179182A1 (zh) * 2020-03-10 2021-09-16 Oppo广东移动通信有限公司 数据关闭方法、装置、设备及存储介质
CN114071376B (zh) * 2020-08-03 2023-04-04 华为技术有限公司 一种通信方法、装置以及系统
CN114071799A (zh) * 2020-08-10 2022-02-18 华为技术有限公司 管理会话连接的方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070213051A1 (en) * 2005-12-29 2007-09-13 Alcatel Lucent Method of location in an ims type network
CN103024876A (zh) * 2011-09-27 2013-04-03 华为技术有限公司 接入控制方法、网关及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070213051A1 (en) * 2005-12-29 2007-09-13 Alcatel Lucent Method of location in an ims type network
CN103024876A (zh) * 2011-09-27 2013-04-03 华为技术有限公司 接入控制方法、网关及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "OI#24: TS 23.501: Optimization of Paging on N3GPP Access", SA WG2 MEETING #123 S2-177519, 27 October 2017 (2017-10-27), XP051347464 *
HUAWEI ET AL.: "Update of NW-Triggered Service Request for N3GPP-Only PDU Session", 3GPP TSG-SA2 MEETING #126 S2-181929, 2 March 2018 (2018-03-02), XP051408481 *
SAMSUNG: "p-CR for SR Procedure Corrections and Collision Case Handling", 3GPP TSG-CT WG1 MEETING #106 C1-174210, 16 October 2017 (2017-10-16), XP051349972 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3952596A4 (en) * 2019-05-07 2022-04-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND APPARATUS FOR TRANSMITTING INFORMATION, AND NETWORK DEVICE

Also Published As

Publication number Publication date
CN109673060B (zh) 2021-08-20
CN109673060A (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
WO2019076275A1 (zh) 一种通信方法及装置
JP7483835B2 (ja) セッション管理の方法、装置、およびシステム
EP3952449B1 (en) Method and apparatus for moving between communications systems
WO2018202094A1 (zh) 一种参数的确定方法及通信实体
EP3675531A1 (en) Communication method, apparatus and system
JP6423003B2 (ja) マシンタイプ通信のためのモビリティマネジメントエンティティ、ユーザ機器及び方法
JP5876166B2 (ja) 無線通信ネットワークにおけるデュアルプライオリティコンフィギュレーションの処理
WO2019184651A1 (zh) 一种通信方法及装置
WO2018202138A1 (zh) 通信方法及相关设备
US11553546B2 (en) Methods and systems for radio access network aggregation and uniform control of multi-RAT networks
WO2020135850A1 (zh) 通信方法和装置
US11259242B2 (en) User equipment
BR112018012185B1 (pt) Terminal de rádio, método em um terminal de rádio, meio legível por computador não transitório e estação de rádio
US11284320B2 (en) User equipment
US20210274340A1 (en) Method For Obtaining Capability Information Of Terminal, Apparatus, And System
WO2020221223A1 (zh) 通信方法、装置和系统
WO2019223702A1 (zh) 管理pdu会话的方法、装置和系统
KR102476193B1 (ko) 레이트 제어 방법, 장치, 및 시스템
JP2018521562A (ja) 無線ローカルエリアネットワークの並行処理能力を高めるための方法、装置、およびシステム
WO2017173584A1 (zh) 传输方案的确定方法、装置和设备
WO2019029568A1 (zh) 通信方法、终端设备和网络设备
WO2019196680A1 (zh) 通信方法和通信装置
CN111586892A (zh) 一种传输方法及装置
US11991516B2 (en) Session migration method and apparatus
WO2021189496A1 (zh) 用于网络切片的数据传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869131

Country of ref document: EP

Kind code of ref document: A1