WO2019076091A1 - 一种接触器节电器 - Google Patents

一种接触器节电器 Download PDF

Info

Publication number
WO2019076091A1
WO2019076091A1 PCT/CN2018/094944 CN2018094944W WO2019076091A1 WO 2019076091 A1 WO2019076091 A1 WO 2019076091A1 CN 2018094944 W CN2018094944 W CN 2018094944W WO 2019076091 A1 WO2019076091 A1 WO 2019076091A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switch
voltage signal
current sampling
capacitor
Prior art date
Application number
PCT/CN2018/094944
Other languages
English (en)
French (fr)
Inventor
尹向阳
苏俊熙
Original Assignee
广州金升阳科技有限公司
深圳南云微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州金升阳科技有限公司, 深圳南云微电子有限公司 filed Critical 广州金升阳科技有限公司
Publication of WO2019076091A1 publication Critical patent/WO2019076091A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay

Definitions

  • the invention relates to the field of AC contactors, in particular to a contactor power saver with power factor correction function.
  • the traditional contactor operating system consists of a coil, a static iron core, an armature and a reaction spring.
  • a suction force is generated between the static iron core and the armature.
  • the suction force is greater than the spring reaction force, the armature is attracted to the static iron core until it contacts the static iron core, and the main contact is closed. This process is called suction. Process.
  • the process of continuously energizing the coil, keeping the armature in contact with the static iron core, and maintaining the main contact in a closed state is called a holding process.
  • the static iron core reduces the suction force of the armature.
  • the armature returns to the open position and the main contacts are separated. This process is called a release process.
  • the contactor coil can be equivalent to an inductor with a certain internal resistance.
  • the contactor is used for low-voltage electrical appliances that frequently turn on and off the AC and DC circuits and can be remotely controlled. Its main control object is the electric motor, and it can also be used to control electric loads such as electric heaters, electric welders and lighting lamps. At present, the use of contactors in the country is huge. When the medium and large capacity contactors are in the holding state, the average active power consumed by each unit is about 60W, and the power factor is only about 0.3. Reducing the energy consumption of contactors has a significant contribution to energy conservation and emission reduction.
  • the contactor power saver adopts AC to DC, large current absorption, and small current retention, which greatly reduces the loss of iron loss, copper loss and short circuit of the electromagnetic coil, and can reduce the active power consumption by more than 90%.
  • the main power circuit of the power saver consists of a diode and a MOS tube, as shown in Figure 1.
  • the chip controls the on-duty of the MOS transistor to achieve high current pull-in and small current hold control.
  • these technologies have certain defects, only solve the problem of active power consumption, but there is nothing to do with the improvement of power factor, and some power-saving technologies will also reduce the power factor.
  • some power-saving technologies will also reduce the power factor.
  • the electromagnetic coil is powered by a pulse form, so that the electromagnetic coil operates with a constant small current; working in this manner not only generates a large amount of harmonics, but also the effective value of the input current does not follow the input voltage.
  • the power factor is very low, and the prototype is made according to this technology, and the actual PF value is less than 0.3.
  • the technology of the patents No. 201210196762.4 and 201010040019.9 excites the electromagnetic coil in the vicinity of the input AC voltage zero-crossing, so that the input current and the output voltage are in a similar inverted state, and the power factor is less than 0.1 according to the technique.
  • the technical problem to be solved by the present invention is that, in view of the above-mentioned drawbacks existing in the prior art, the active power consumption of the contactor coil can be reduced while the power factor can be improved. And the coil current average is constant over a wide input voltage range.
  • the present invention provides a contactor power saver including a main power circuit, a current sampling circuit, an error amplifying circuit, and a PWM control circuit.
  • the current sampling circuit samples a voltage signal of the main power circuit, and outputs a current sampling signal;
  • the error amplifying circuit compares the current sampling signal with a reference voltage signal REF, and outputs an error voltage signal;
  • the PWM control circuit detects The error voltage signal, the output signal GATE1 whose output frequency is constant and whose duty ratio is proportional to the error voltage signal, controls the turn-on and turn-off of the switch tube in the main power circuit.
  • the drive signal GATE1 has a constant frequency and the duty cycle is proportional to the error voltage signal.
  • the source of the switch tube in the main power circuit is connected to the ground through a resistor R1, and the connection point of the resistor R1 and the switch tube in the main power circuit is used as a current sampling output end.
  • the current sampling circuit is composed of a switch K1, a switch K2, a capacitor C3 and a capacitor C4; one end of the switch K1 is connected to the current sampling output end, and the other end is grounded through a capacitor C3; one end of the switch K2 is connected with the switch K1 and The connection point of the capacitor C3 is connected, and the other end of the switch K2 is grounded through the capacitor C4.
  • the error amplifying circuit is composed of a resistor R2, an operational amplifier U1, a capacitor C5 and a reference voltage signal REF; one end of the resistor R2 is connected with a connection point of the switch K2 and the capacitor C4, and the other end of the resistor R2 is connected with the operational amplifier U1.
  • the negative input terminal is connected, the positive input terminal of the operational amplifier U1 is connected to the reference voltage signal REF, and the capacitor C5 is connected between the output terminal and the negative input terminal of the operational amplifier U1.
  • the error amplifying circuit has a crossing frequency less than ten times the power frequency period.
  • the PWM control circuit is composed of a comparator U2, a sawtooth generator, an RS flip-flop U3 and a clock generator; a negative input of the comparator U2 is connected to an output of the operational amplifier U1, and a positive input of the comparator U2 The end is connected to the sawtooth generator, and the output of the comparator U2 is respectively connected to the control end of the switch K2 and the R end of the RS flip-flop U3; the S end of the RS flip-flop U3 is connected to the clock signal generator, and the RS is triggered.
  • the Q terminal of the U3 is connected to the gate of the switching transistor and the control terminal of the switch K1 in the main power circuit, respectively.
  • the N-MOS transistor Q1 is a switching transistor in the main power circuit, and Q1 operates in a high frequency switching state.
  • the current sampling circuit is characterized in that the current of the contactor coil L1 is indirectly sampled by sampling and preserving the voltage signal of the resistor R1 at the off-time of the N-MOS transistor Q1, and then the current sampling signal is output.
  • the contactor coil L1 continues to flow through the diode D1.
  • the diode voltage drop is only 0.7V, and the demagnetization speed is very slow.
  • the inductance of the contactor coil is generally large, the contactor coil L1 is in a deep continuous state, and the ripple of the current of the contactor coil L1 is small.
  • the error amplifying circuit is characterized in that the current sampling signal is compared with a reference voltage signal REF, and the error voltage signal is output.
  • the PWM control circuit is characterized in that the error voltage signal is detected, and a drive signal GATE1 having a constant frequency and a duty ratio proportional to the error voltage signal is output.
  • the current of the contactor coil L1 increases, the current sampling signal voltage increases, and after the comparison with the reference voltage signal REF, the error voltage signal decreases, and the duty ratio of the driving signal GATE1 is also proportional. Lowering eventually causes the current of the contactor coil L1 to decrease.
  • the current average of the contactor coil L1 is always followed by the reference voltage signal REF. Assuming that the average current of the contactor coil L1 is I coil_avr and the reference voltage signal REF is V ref , the average current formula of the contactor coil is:
  • the error amplifier In order to increase the PF value (ie, the power factor value), the error amplifier also needs to have the following characteristics: the error amplifier cross-over frequency should be less than ten times the power frequency period, and have a phase difference of about 90 degrees. This allows the error voltage signal to follow the bus voltage variation and the voltage slew rate is not excessive, ultimately causing the input current to also follow the bus voltage variation.
  • the beneficial effects obtained by the present invention are that the PF value can be increased to about 0.9 and the contactor coil current is constant over a wide range of input voltages.
  • the various modules of the control circuit can be integrated, the circuit is simple, and the cost is low.
  • Figure 1 shows the main power circuit of the common contactor power saver.
  • FIG. 2 is a block diagram of the control principle of the present invention.
  • Figure 3 is a schematic diagram of a first embodiment of the present invention.
  • FIG. 4 is a waveform timing diagram of key nodes of a current sampling circuit in the first embodiment of the present invention.
  • FIG. 5 is a waveform timing diagram of a key node of the current sampling circuit in a half power frequency cycle in the first embodiment.
  • FIG. 6 is a waveform diagram of a key node of a control circuit according to a first embodiment of the present invention.
  • Figure 7 is a current waveform of the contactor coil L1 at different input voltages according to the first embodiment of the present invention.
  • Figure 8 is a waveform diagram of input current at different input voltages according to the first embodiment of the present invention.
  • a contactor power saver includes a main power circuit, a current sampling circuit, an error amplifying circuit, and a PWM control circuit.
  • the current sampling circuit samples a voltage signal of the main power circuit, and outputs a current sampling signal;
  • the error amplifying circuit compares the current sampling signal with a reference voltage signal REF, and outputs an error voltage signal;
  • the PWM control circuit detects The error voltage signal, the output signal GATE1 whose output frequency is constant and whose duty ratio is proportional to the error voltage signal, drives the turn-on and turn-off of the switch tube in the main power circuit.
  • the main power circuit is composed of a rectifier bridge DB1, an inductor L2, a capacitor C1, a contactor coil L1, a diode D1, an N-MOS transistor Q1, and a resistor R1.
  • the two AC input terminals of DB1 are respectively connected to AC power, the rectified positive output terminal of DB1 is connected to one end of L2, the rectified negative output end of DB1 is grounded; the other end of L2 is simultaneously connected to one end of C1, one end of L1, and the cathode of D1; C1 The other end is grounded; the anode of D1 is connected to the other end of L1, and the connection point is connected to the drain of Q1; the resistor R1 is connected between the source and the ground of the N-MOS transistor Q1 for sampling the current of the N-MOS transistor Q1, The connection point of the resistor R1 and the N-MOS transistor Q1 serves as a current sampling output terminal.
  • the current sampling circuit is composed of a switch K1, a switch K2, a capacitor C3, and a capacitor C4.
  • One end of the switch K1 is connected to the current sampling output end, and the other end is grounded through a capacitor C3.
  • One end of the switch K2 is connected to the connection point of the switch K1 and the capacitor C3, and the other end of the switch K2 is grounded through the capacitor C4.
  • the error amplifying circuit is composed of a resistor R2, an operational amplifier U1, a capacitor C5, and a reference voltage signal REF.
  • One end of the resistor R2 is connected to the connection point of the switch K2 and the capacitor C4, and the other end is connected to the negative input end of the operational amplifier U1.
  • the positive input terminal of the operational amplifier U1 is connected to the reference voltage signal REF, and the capacitor C5 is connected to the output of the operational amplifier U1. Between the end and the negative input.
  • the PWM control circuit is composed of a comparator U2, a sawtooth generator, an RS flip-flop U3, and a clock generator.
  • the negative input of the comparator U2 is connected to the output of the operational amplifier U1, the positive input of the comparator U2 is connected to the sawtooth generator, and the output of the comparator U2 is respectively connected to the control terminal of the switch K2 and the RS flip-flop U3.
  • the R ends are connected.
  • the S terminal of the RS flip-flop U3 is connected to the clock signal generator, and the Q terminal of the RS flip-flop U3 is connected to the gate of the N-MOS transistor Q1 and the control terminal of the switch K1, respectively.
  • the key power saving operation waveform of the current sampling circuit is as shown in FIG. 4 . Due to the delay of the input and output of the RS flip-flop U3, the drive signal GATE1 will go low after the drive signal GATE2 is high, so the switch K2 is turned on for a short time before the switch K1 is turned off, and the capacitor C3 is turned on. The voltage is stored in C4. Generally, the capacitance of the capacitor C3 is more than ten times that of the capacitor C4, so as to prevent the capacitor C4 from having a large influence on the voltage on the capacitor C3. As can be seen from the waveform of FIG. 5, the output signal of the current sampling circuit can well reflect the current waveform of the contactor coil L1.
  • f is twice the power frequency period of 100 Hz.
  • the inductance L coil of the contactor coil L1 has a large internal resistance R coil , and the phase difference is usually about 75°. This will cause a certain phase shift component of the input current and the input voltage, which will lower the PF value.
  • the transfer function of the error amplifying circuit is:
  • the error amplifying circuit has a phase that is advanced by 90° and can substantially cancel out the phase of ⁇ 1 described above. Finally, the phase of the error voltage signal output by the error amplifying circuit is made to coincide with the input bus voltage. It can be seen from the waveform of Fig. 6 that the current of the contactor coil L1 has a phase difference close to 90° with the input current, and the phase of the error voltage circuit is compensated by the phase compensation of the error voltage signal. Consistent.
  • the PWM control circuit functions to output a drive signal GATE1 having a fixed frequency and a duty ratio proportional to the error voltage signal.
  • the sawtooth generator outputs a sawtooth signal having a fixed frequency and a fixed slope
  • the clock signal generator outputs a narrow pulse clock signal having a fixed frequency.
  • the sawtooth wave signal and the clock signal have the same frequency and the same phase.
  • the sawtooth wave signal and the error voltage signal pass through the comparator U2, and the output drives the turn-off signal.
  • the clock signal controls the RS flip-flop U3 to output a high level
  • the driving off signal controls the RS flip-flop U3 to output a low level, and finally obtains a driving signal GATE1 whose frequency is fixed and whose duty ratio follows the error voltage signal.
  • the current of the contactor coil L1 is as shown in Fig. 7. As can be seen from the figure, the current of the contactor coil L1 is relatively close at different input voltages, and the constant current effect is good.
  • the waveform of the input current at different input voltages is shown in Figure 8. It can be seen that the waveform of the input current follows the input voltage.
  • the PF values at different voltages are calculated by software as shown in Table 1.

Landscapes

  • Relay Circuits (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提供了一种接触器节电器,包括主功率电路、电流采样电路、误差放大电路、PWM控制电路。所述电流采样电路采样所述主功率电路的电压信号,输出电流采样信号;所述误差放大电路将电流采样信号与基准电压做比较,输出误差电压信号;所述PWM控制电路检测所述误差电压信号,输出频率恒定、占空比与所述误差电压信号成比例的驱动信号,控制所述主功率电路中开关管的开通和关断。本发明能够把功率因数值提高到0.9左右,并且在宽范围输入电压下接触器线圈电流恒定。控制电路各个模块可集成化,电路简单,成本低。

Description

一种接触器节电器 技术领域
本发明涉及交流接触器领域,具体是涉及一种带功率因数矫正功能的接触器节电器。
背景技术
传统接触器操作系统由线圈、静铁心、衔铁和反力弹簧组成。当接触器线圈通电后,静铁心和衔铁之间产生吸力,当吸力大于弹簧反作用力时,衔铁被吸向静铁心,直到与静铁心接触为止,这时主触头闭合,这个过程称为吸合过程。线圈持续通电,衔铁与静铁心保持接触,主触头保持闭合状态的过程,称为吸持过程。当线圈中电流减少或中断时,静铁心对衔铁的吸力减小,当吸力小于弹簧反作用里时,衔铁返回打开位置,主触头分开,这个过程称为释放过程。从电气的角度来看,接触器线圈可以等效为一个有一定内阻的电感。
接触器用于频繁地接通和分断交、直流电路,且可以远距离控制的低压电器。其主要控制对象是电动机,也可以用于控制电热器、电焊机和照明灯等电力负载。目前全国接触器的使用量巨大,中大容量的接触器在吸持状态时,每台消耗的有功功率平均约为60W,功率因数只有0.3左右。降低接触器的能耗对节能减排有重大贡献。
目前已有的接触器节电器采用交流转直流,大电流吸合,小电流保持的方式,大大降低了电磁线圈铁损、铜损和短路环的损耗,可以减小90%以上的有功功耗。通常节电器的主功率电路由二极管和MOS管组成,如图1所示。通过芯片控制MOS管的导通占空比来实现大电流吸合,小电流吸持的控制。但这些技术还有一定的缺陷,只解决了有功功耗的问题,对于功率因数的提高却无能为力,某些节电技术还会使得功率因数降低。如申请号为200510029373.2的专利中,采用脉冲形式给电磁线圈供电,使电磁线圈以恒定的小电流工作;采用该方式工作,不仅会产生大量的谐波,而且输入电流的有效值不跟随输入电压,导致功率因素很低,按照该技术制作样机,实际PF值小于0.3。申请号201210196762.4和201010040019.9的专利的技术,在输入交流电压过零附近给电磁线圈励磁,使得输入电流与输出电压处于一种类似反相的状态,按照该技术制作样机,功率因数小于0.1。
发明内容
本发明所解决的技术问题是,针对现有技术所存在的上述的缺陷,在主功率电路器件不变的情况下,可以降低接触器线圈有功功耗的同时可以提高功率因数。并且在宽输入电压范围内,线圈电流平均值恒定不变。
为了实现上述的发明目的,本发明提供一种接触器节电器,包括主功率电路、电流采样电路、误差放大电路、PWM控制电路。所述电流采样电路采样所述主功率电路的电压信号,输出电流采样信号;所述误差放大电路将所述电流采样信号与基准电压信号REF做比较,输出误差电压信号;所述PWM控制电路检测所述误差电压信号,输出频率恒定、占空比与所述误差电压信号成比例的驱动信号GATE1,控制所述主功率电路中开关管的开通和关断。
优选的,驱动信号GATE1频率恒定、占空比与所述误差电压信号成比例。
优选的,所述主功率电路中开关管的的源极通过电阻R1连接到地,电阻R1与所述主功率电路中开关管的连接点作为电流采样输出端。
优选的,所述电流采样电路由开关K1、开关K2、电容C3和电容C4构成;开关K1的一端与所述电流采样输出端相连,另一端通过电容C3接地;开关K2的一端与开关K1和电容C3的连接点相连,开关K2的另一端通过电容C4接地。
优选的,所述误差放大电路由电阻R2、运放U1、电容C5和基准电压信号REF构成;电阻R2的一端与开关K2和电容C4的连接点相连,电阻R2的另一端与运放U1的负输入端相连,运放U1的正输入端与基准电压信号REF相连,电容C5连接于运放U1的输出端与负输入端之间。
优选的,所述误差放大电路的穿越频率小于工频周期的十倍。
优选的,所述PWM控制电路由比较器U2、锯齿波发生器、RS触发器U3和时钟发生器构成;比较器U2的负输入端与运放U1的输出端相连,比较器U2的正输入端与所述锯齿波发生器相连,比较器U2的输出分别与开关K2的控制端和RS触发器U3的R端相连;RS触发器U3的S端与所述时钟信号发生器相连,RS触发器U3的Q端分别与所述主功率电路中开关管的栅极和开关K1的控制端相连。
结合图3对本发明的工作原理解释说明:
N-MOS管Q1为所述主功率电路中的开关管,Q1工作在高频开关状态。所述电流采样电路的特征在于:通过采样与保存N-MOS管Q1每次在关断时刻电阻R1上的电压信 号,间接采样接触器线圈L1的电流,然后输出电流采样信号。当N-MOS管Q1关断时,接触器线圈L1通过二极管D1续流,一般二极管压降只有0.7V,去磁速度很慢。并且接触器线圈的感量一般都很大,接触器线圈L1处于深度连续状态,接触器线圈L1电流的纹波很小。所以可以用N-MOS管Q1关断时刻的电流来代表接触器线圈L1的平均电流。所述误差放大电路的特征在于:把所述电流采样信号与基准电压信号REF做比较,输出所述误差电压信号。所述PWM控制电路的特征在于,检测所述误差电压信号,输出频率恒定、占空比与所述误差电压信号成比例的驱动信号GATE1。
当输入电压上升时,接触器线圈L1的电流增大,所述电流采样信号电压增大,与基准电压信号REF比较后,所述误差电压信号降低,驱动信号GATE1的占空比也等比例的降低,最终使得接触器线圈L1的电流降低。通过这样的环路调节,使得接触器线圈L1的电流平均值始终跟随着基准电压信号REF。假设接触器线圈L1的平均电流为I coil_avr,基准电压信号REF为V ref,那么接触器线圈的平均电流公式为:
Figure PCTCN2018094944-appb-000001
为了能够提高PF值(即功率因数值),误差放大器还需具有以下的特征:误差放大器的穿越频率应小于工频周期的十倍,并且有90°左右的相位差。这样可以使得所述误差电压信号能够跟随母线电压变化并且电压摆率不会过大,最终使得输入电流也跟随母线电压变化。
采用本发明可得到的有益效果为,能够把PF值提高到0.9左右,并且在宽范围输入电压下接触器线圈电流恒定。控制电路各个模块可集成化,电路简单,成本低。
附图说明
图1为常用接触器节电器主功率电路。
图2为本发明控制原理框图。
图3为本发明第一实施例的原理图。
图4为本发明第一实施例中电流采样电路关键节点的波形时序图。
图5为第一实施例中电流采样电路关键节点在半个工频周期内的波形时序图。
图6为本发明第一实施例控制电路关键节点波形。
图7为本发明第一实施例在不同输入电压下接触器线圈L1的电流波形。
图8为本发明第一实施例在不同输入电压下输入电流的波形。
具体实施方式
第一实施例
一种接触器节电器,包括主功率电路、电流采样电路、误差放大电路、PWM控制电路。所述电流采样电路采样所述主功率电路的电压信号,输出电流采样信号;所述误差放大电路将所述电流采样信号与基准电压信号REF做比较,输出误差电压信号;所述PWM控制电路检测所述误差电压信号,输出频率恒定、占空比与所述误差电压信号成比例的驱动信号GATE1,驱动所述主功率电路中开关管的开通和关断。
所述主功率电路由整流桥DB1、电感L2、电容C1、接触器线圈L1、二极管D1、N-MOS管Q1和电阻R1组成。DB1的两个交流输入端分别连接交流电,DB1的整流正极输出端连接L2的一端,DB1的整流负极输出端接地;L2的另一端同时连接C1的一端、L1的一端、D1的阴极;C1的另一端接地;D1的阳极连接L1的另一端,并且连接点连接Q1的漏极;电阻R1连接与N-MOS管Q1的源极与地之间,用于采样N-MOS管Q1的电流,电阻R1与N-MOS管Q1的连接点作为电流采样输出端。
所述电流采样电路由开关K1、开关K2、电容C3和电容C4构成。开关K1的一端与所述电流采样输出端相连,另一端通过电容C3接地。开关K2的一端与开关K1和电容C3的连接点相连,开关K2的另一端通过电容C4接地。
所述误差放大电路由电阻R2、运放U1、电容C5和基准电压信号REF构成。电阻R2的一端与开关K2和电容C4的连接点相连,另一端与运放U1的负输入端相连,运放U1的正输入端与基准电压信号REF相连,电容C5连接于运放U1的输出端与负输入端之间。
所述PWM控制电路由比较器U2、锯齿波发生器、RS触发器U3和时钟发生器构成。比较器U2的负输入端与运放U1的输出端相连,比较器U2的正输入端与所述锯齿波发生器相连,比较器U2的输出分别与开关K2的控制端和RS触发器U3的R端相连。RS触发器U3的S端与所述时钟信号发生器相连,RS触发器U3的Q端分别与N-MOS管Q1的栅极和开关K1的控制端相连。
所述电流采样电路的关键节电工作波形如图4所示。由于RS触发器U3输入输出的延时作用,驱动信号GATE2为高电平后驱动信号GATE1才会变为低电平,因此开关 K2在开关K1关断前导通一小段时间,把电容C3的电压保存在C4中。一般电容C3的容值为电容C4的十倍以上,以防止电容C4对电容C3上的电压造成较大的影响。从图5的波形可以看出,所述电流采样电路的输出信号能够很好地反映接触器线圈L1的电流波形。
假设接触器线圈L1的电感为L coil,内阻为R coil,接触器线圈L1电流纹波会滞后与输入电压θ 1的相位,其中相位差θ 1为:
Figure PCTCN2018094944-appb-000002
其中f为工频周期的两倍100Hz。
一般接触器线圈L1的感量L coil较大内阻R coil较小,通常相位差为75°左右。这样会导致输入电流与输入电压有一定的相移分量,会降低PF值。所述误差放大电路的传递函数为:
Figure PCTCN2018094944-appb-000003
所述误差放大电路会有一个超前90°的相位,基本可以与上述θ 1的相位抵消。最终使得所述误差放大电路输出的所述误差电压信号相位与输入母线电压一致。从图6的波形就可以看到,接触器线圈L1的电流跟输入电流是有一个接近90°的相位差,通过所述误差放大电路的相位补偿,使得所述误差电压信号的相位与输入电压一致。
所述PWM控制电路的作用是输出频率固定、占空比与所述误差电压信号成正比的驱动信号GATE1。所述锯齿波发生器输出频率固定和斜率固定的锯齿波信号,所述时钟信号发生器输出频率固定的窄脉冲时钟信号。所述锯齿波信号和所述时钟信号的频率相同,相位相同。所述锯齿波信号与所述误差电压信号通过比较器U2,输出驱动关断信号。所述时钟信号控制RS触发器U3输出高电平,所述驱动关断信号控制RS触发器U3输出低电平,最终得到频率固定,占空比跟随所述误差电压信号的驱动信号GATE1。
通过实际的仿真数据来说明本发明的效果。在164Vac~264Vac的范围内,接触器线圈L1的电流如图7所示,从图中可以看到,在不同输入电压下,接触器线圈L1的电流比较接近,恒流效果很好。不同输入电压下,输入电流的波形如图8所示,可以 看到,输入电流的波形是跟随输入电压的。通过软件计算,不同电压下的PF值如表1所示。
表1 不同输入电压下的PF值
输入电压 PF值
164Vac 0.953
220Vac 0.942
264Vac 0.931
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

  1. 一种接触器节电器,其特征在于:包括主功率电路、电流采样电路、误差放大电路、PWM控制电路;所述电流采样电路采样所述主功率电路的电压信号,输出电流采样信号;所述误差放大电路将所述电流采样信号与基准电压信号REF做比较,输出误差电压信号;所述PWM控制电路检测所述误差电压信号,输出驱动信号GATE1控制所述主功率电路中开关管的开通和关断。
  2. 根据权利要求1所述的接触器节电器,其特征在于:驱动信号GATE1频率恒定、占空比与所述误差电压信号成比例。
  3. 根据权利要求2所述的接触器节电器,其特征在于:所述主功率电路中的N-MOS管Q1的源极通过电阻R1连接到地,电阻R1与N-MOS管Q1的连接点作为电流采样输出端。
  4. 根据权利要求2所述的接触器节电器,其特征在于:所述电流采样电路由开关K1、开关K2、电容C3和电容C4构成;开关K1的一端与所述电流采样输出端相连,另一端通过电容C3接地;开关K2的一端与开关K1和电容C3的连接点相连,开关K2的另一端通过电容C4接地。
  5. 根据权利要求2所述的接触器节电器,其特征在于:所述误差放大电路由电阻R2、运放U1、电容C5和基准电压信号REF构成;电阻R2的一端与开关K2和电容C4的连接点相连,电阻R2的另一端与运放U1的负输入端相连,运放U1的正输入端与基准电压信号REF相连,电容C5连接于运放U1的输出端与负输入端之间。
  6. 根据权利要求5所述的接触器节电器,其特征在于:所述误差放大电路的穿越频率小于工频周期的十倍。
  7. 根据权利要求2所述的接触器节电器,其特征在于:所述PWM控制电路由比较器U2、锯齿波发生器、RS触发器U3和时钟发生器构成;比较器U2的负输入端与运放U1的输出端相连,比较器U2的正输入端与所述锯齿波发生器相连,比较器U2的输出分别与开关K2的控制端和RS触发器U3的R端相连;RS触发器U3的S端与所述时钟信号发生器相连,RS触发器U3的Q端分别与N-MOS管Q1的栅极和开关K1的控制端相连。
PCT/CN2018/094944 2017-10-19 2018-07-09 一种接触器节电器 WO2019076091A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710974702.3A CN107658181B (zh) 2017-10-19 2017-10-19 一种接触器节电器
CN201710974702.3 2017-10-19

Publications (1)

Publication Number Publication Date
WO2019076091A1 true WO2019076091A1 (zh) 2019-04-25

Family

ID=61119014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094944 WO2019076091A1 (zh) 2017-10-19 2018-07-09 一种接触器节电器

Country Status (2)

Country Link
CN (1) CN107658181B (zh)
WO (1) WO2019076091A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107658181B (zh) * 2017-10-19 2019-06-21 深圳南云微电子有限公司 一种接触器节电器
CN108387810B (zh) * 2018-02-11 2024-02-20 广州金升阳科技有限公司 一种接触器节电器检测电路
CN109617432B (zh) * 2018-12-12 2021-06-29 陕西瑞康新能源科技有限公司 一种智能动力节电器
CN109728711B (zh) * 2018-12-24 2020-09-15 广州金升阳科技有限公司 一种接触器节电器电路及其控制方法
CN110323099A (zh) * 2019-06-27 2019-10-11 德力西电气有限公司 接触器控制器电路结构
CN110931312B (zh) * 2019-11-26 2022-05-20 广州金升阳科技有限公司 一种接触器节电控制方法及应用该方法的控制电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH664232A5 (de) * 1984-05-23 1988-02-15 Sodeco Compteurs De Geneve Verfahren und schaltungsanordnung zur steuerung eines elektromagneten.
CN103021735A (zh) * 2012-12-11 2013-04-03 福州大学 具有高速脉宽调制功能的交流接触器智能控制模块
CN105162415A (zh) * 2015-07-22 2015-12-16 中山大学 一种光伏阵列的电流电压测试仪
CN105470046A (zh) * 2015-12-31 2016-04-06 广州金升阳科技有限公司 接触器的线圈驱动电路及线圈驱动电流的控制方法
CN107658181A (zh) * 2017-10-19 2018-02-02 深圳南云微电子有限公司 一种接触器节电器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201732731U (zh) * 2009-12-17 2011-02-02 韩燕� 一种继电器小电流控制装置
DE102011052810A1 (de) * 2011-08-18 2013-02-21 Phoenix Contact Gmbh & Co. Kg Sicherheitsschalteinrichtung
CN205724840U (zh) * 2016-02-17 2016-11-23 深圳市赢新光电发展有限公司 一种次级过功率保护电路及开关电源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH664232A5 (de) * 1984-05-23 1988-02-15 Sodeco Compteurs De Geneve Verfahren und schaltungsanordnung zur steuerung eines elektromagneten.
CN103021735A (zh) * 2012-12-11 2013-04-03 福州大学 具有高速脉宽调制功能的交流接触器智能控制模块
CN105162415A (zh) * 2015-07-22 2015-12-16 中山大学 一种光伏阵列的电流电压测试仪
CN105470046A (zh) * 2015-12-31 2016-04-06 广州金升阳科技有限公司 接触器的线圈驱动电路及线圈驱动电流的控制方法
CN107658181A (zh) * 2017-10-19 2018-02-02 深圳南云微电子有限公司 一种接触器节电器

Also Published As

Publication number Publication date
CN107658181A (zh) 2018-02-02
CN107658181B (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
WO2019076091A1 (zh) 一种接触器节电器
EP3401941B1 (en) Contactor coil control circuit
CN101777770B (zh) 降压型功率因数校正器的控制电路
CN105470046B (zh) 接触器的线圈驱动电路及线圈驱动电流的控制方法
CN105551885B (zh) 接触器的节电电路
CN105337485B (zh) 功率因数校正电路、发光二极管驱动电路和照明设备
CN107666243B (zh) 一种自激同步整流电源电路
CN107834839B (zh) 一种接触器节电器
CN205406395U (zh) 接触器的节电电路
CN103796389B (zh) 最大亮度提升模块、可控硅调光led驱动电路及系统
CN109585223B (zh) 一种接触器控制电路
CN105338693A (zh) 一种驱动芯片及单级高功率因素led驱动装置
CN205335171U (zh) 接触器的线圈驱动电路
CN106602861B (zh) 提高功率因素校正转换效率的控制电路
CN104767408A (zh) 交直流转换开关电源
CN201967198U (zh) Led灯驱动电源电路
CN205377665U (zh) 自供电控制电路及开关电路
CN110112037B (zh) 一种接触器节电电路
CN201091060Y (zh) 单级功率因子校正电路
CN111130374B (zh) 一种低直流链电压尖峰的t源逆变器
Xiao et al. Primary-side controlled flyback converter with current compensation in micro-power applications
CN112003457A (zh) 一种buck电路上mos管零电压开关的装置及实现方法
CN208174543U (zh) 一种高增益零电压转换器电路
CN207603450U (zh) 开关电源的控制电路及开关电路
CN102055324A (zh) 采用积分电路的电源控制装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868407

Country of ref document: EP

Kind code of ref document: A1