WO2019075981A1 - 一种基于标尺的多普勒频谱图的调整方法及设备 - Google Patents

一种基于标尺的多普勒频谱图的调整方法及设备 Download PDF

Info

Publication number
WO2019075981A1
WO2019075981A1 PCT/CN2018/077692 CN2018077692W WO2019075981A1 WO 2019075981 A1 WO2019075981 A1 WO 2019075981A1 CN 2018077692 W CN2018077692 W CN 2018077692W WO 2019075981 A1 WO2019075981 A1 WO 2019075981A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood flow
cerebral blood
scale
adjusting
doppler
Prior art date
Application number
PCT/CN2018/077692
Other languages
English (en)
French (fr)
Inventor
杨弋
郭珍妮
佘剑男
吴伟文
欧阳俊华
任冠清
邹文
梁志成
Original Assignee
深圳市德力凯医疗设备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市德力凯医疗设备股份有限公司 filed Critical 深圳市德力凯医疗设备股份有限公司
Publication of WO2019075981A1 publication Critical patent/WO2019075981A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/20Drawing from basic elements, e.g. lines or circles

Definitions

  • the invention relates to the field of IT and medical technology, in particular to a method and a device for adjusting a Doppler spectrum map based on a ruler.
  • Transcranial Doppler ultrasound analyzer is used to diagnose cerebrovascular disease and help to check for cerebral vascular narrowing, obstruction, poor blood flow or cerebral hemorrhage.
  • Doppler spectrum analysis technology it can provide blood flow waveform, blood flow velocity (maximum velocity, average velocity, etc.), blood flow disorder and frequency width under eddy current state, blood flow volume and other information for clinical diagnosis. Early detection of the disease is important.
  • the existing Doppler spectrogram is provided with a scale and a baseline, wherein the scale characterizes the velocity range exhibited by the Doppler spectrogram of the transcranial Doppler ultrasound analyzer; the baseline is the Doppler spectrum
  • the scale is preset, so when the spectral data collected by the Doppler ultrasound device (such as cerebral blood flow data) exceeds the range of the set scale, the Doppler spectrogram cannot be completely displayed. The entire spectrum data, while the spectrum data is too small and the set scale is too large, the spectrum data is squeezed together and cannot be clearly displayed.
  • the existing transcranial Doppler device requires a doctor to manually adjust the Doppler spectrum, which increases the specific workload of the doctor.
  • the technical problem to be solved by the present invention is that, in view of the deficiencies of the prior art, a method and a device for adjusting a Doppler spectrum map based on a scale are provided to solve the problem that the existing ultrasonic Doppler device needs to manually adjust the scale.
  • a method for adjusting a Doppler spectrum map based on a scale includes:
  • a Doppler spectrum map is generated based on the adjusted scale.
  • the method for adjusting a scale-based Doppler spectrogram wherein the obtaining a cerebral blood flow index based on the collected cerebral blood flow data and the current scale to generate a Doppler spectrogram further comprises:
  • the cardiac cycle of the collected cerebral blood flow data is analyzed, and the cerebral blood flow data is divided into corresponding periodic cerebral blood flow data according to a preset number of cardiac cycles.
  • the method for adjusting a Doppler spectrum map based on a scale specifically includes:
  • a cerebral blood flow index is generated according to the periodic cerebral blood flow data and the current scale to generate a Doppler spectrum.
  • the method for adjusting a Doppler spectrum map based on a scale wherein the acquiring a cerebral blood flow index according to the collected cerebral blood flow data and the current scale generating a Doppler spectrum map is specifically:
  • a Doppler spectrum map is generated according to the collected cerebral blood flow data and the current scale, and the cerebral blood flow index of the unilateral spectrum of the Doppler spectrum is obtained.
  • the method for adjusting a scale-based Doppler spectrogram wherein the comparing the cerebral blood flow index with a preset first threshold, and adjusting the current scale according to the comparison result specifically includes:
  • the current scale is increased.
  • the method for adjusting a scale-based Doppler spectrogram wherein the comparing the cerebral blood flow index with a first threshold and a second threshold respectively, and adjusting the current scale according to the comparison result further includes:
  • the cerebral blood flow index is less than a first threshold, comparing the cerebral blood flow index with a second threshold;
  • the current scale is reduced.
  • the method for adjusting a Doppler spectrum according to a scale wherein the adjusting the current scale according to the comparison result is: adjusting the current scale according to a preset ratio according to the comparison result.
  • the method for adjusting a scale-based Doppler spectrogram wherein the first threshold is two-thirds of a one-sided scale of a current scale, and the second threshold is one-third of a one-sided scale of the current scale.
  • a storage medium storing a plurality of instructions adapted to be loaded by a processor and to perform a method of adjusting a scale-based Doppler spectrogram as described above.
  • An adjustment device for a Doppler spectrum based on a scale comprising:
  • a storage device adapted to store a plurality of instructions adapted to be loaded by the processor and to perform the adjustment method of the scale-based Doppler spectrogram as described above.
  • the present invention provides a method and apparatus for adjusting a Doppler spectrum based on a scale, the method comprising: acquiring a Dopp based on collected cerebral blood flow data and a current scale The cerebral blood flow index of the Le spectrogram; comparing the obtained cerebral blood flow index with a preset first threshold value, and adjusting the current scale according to the comparison result; generating a Doppler spectrum map based on the adjusted scale.
  • the invention compares the cerebral blood flow index of the Doppler spectrum with the first threshold and automatically adjusts the scale according to the comparison result, so that the entire spectrum data is presented in the Doppler map region without the need for the doctor to manually adjust the scale size. Improve the efficiency of doctors' work and reduce the time for patients to visit.
  • FIG. 1 is a flow chart of a preferred embodiment of a method for adjusting a Doppler spectrum based on a scale provided by the present invention.
  • FIG. 2 is an exemplary diagram of a Doppler spectrum map generated from a current scale.
  • FIG. 3 is a diagram showing an example of a Doppler spectrum map generated by adjusting a scale according to the present invention.
  • FIG. 4 is a schematic structural diagram of a preferred embodiment of an apparatus for adjusting a Doppler spectrum based on a scale provided by the present invention.
  • the present invention provides a method and an apparatus for adjusting a Doppler spectrum based on a scale.
  • the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • FIG. 1 is a flow chart of a preferred embodiment of a method for adjusting a Doppler spectrum based on a scale provided by the present invention. The method includes:
  • the adjustment method of the scale-based Doppler spectrogram obtained by the embodiment obtains a cerebral blood flow peak according to the collected cerebral blood flow data and the current scale generating Doppler spectrum map as a cerebral blood flow index, and the brain
  • the blood flow index is compared with a preset first threshold, and the scale is automatically adjusted according to the comparison result, so that the Doppler spectrogram can clearly and completely present the spectrum data, and the doctor does not need to manually adjust the scale size to improve the working efficiency of the doctor. It also reduces the patient's visit time.
  • the cerebral blood flow data is a cerebral blood flow velocity
  • the cerebral blood flow index is a peak value of the collected cerebral blood flow velocity of the same cerebral blood vessel, which is recorded as a Peak value.
  • the Peak value is the peak of the unilateral cerebral blood flow velocity, such as a peak value of the forward cerebral blood flow velocity or a peak of the negative cerebral blood flow velocity.
  • the Peak value is a peak value of the forward cerebral blood flow velocity.
  • the Doppler spectrum is a one-sided Doppler spectrum, that is, a Doppler spectrum is generated on one side of the baseline based on the collected cerebral blood flow data and the current scale, and a single-sided Doppler is acquired.
  • the cerebral blood flow index of the spectrogram can eliminate the direction of cerebral blood flow and improve the efficiency of automatic adjustment.
  • the speed of blood flow in the human body is generally changed according to the cardiac cycle.
  • the heart is ejected outward, and the blood flow velocity in the blood vessels is accelerated; during the diastolic phase, the blood flow velocity in the blood vessels is slowed down. Therefore, in order to improve the timeliness and accuracy of the scale adjustment, the cerebral blood flow velocity of the continuous preset number of cardiac cycles can be accumulated to form a spectral period, and the Peak value of the spectral period can be acquired.
  • the step S10 before acquiring the cerebral blood flow index according to the collected cerebral blood flow data and the current scale to generate a Doppler spectrum map, may further include:
  • the preset number is preset, such as 3, 4, and 5, and the like.
  • the preset number is preferably 3, so that the Doppler spectrum state of the blood vessel corresponding to the cerebral blood flow data can be determined, and the scale adjustment can be performed quickly and timely to make the Doppler
  • the spectrogram can present complete Doppler data.
  • the step S10 obtaining a cerebral blood flow index according to the collected cerebral blood flow data and the current scale to generate a Doppler spectrum map specifically includes:
  • the validity of the cerebral blood flow data for determining all cardiac cycles included in the cerebral blood flow data refers to the validity of each cardiac cycle cerebral blood flow data included in the periodic cerebral blood flow data.
  • the process of judging the validity of each cerebral blood flow cerebral blood flow data may be specifically collecting cerebral blood flow data of each cardiac cycle for the ultrasound transcranial Doppler device, and subjecting the cerebral blood flow data to FFT transformation Obtaining a spectral signal; recalculating the envelope data of the spectral signal, and analyzing the validity of the cerebral blood flow data according to the envelope data.
  • the validity of the cerebral blood flow data for all cardiac cycles refers to the validity of the cerebral blood flow data for each cardiac cycle.
  • analyzing the validity of the cerebral blood flow data according to the envelope data may be calculating a spectral parameter according to the envelope data, and if the spectral parameter is calculated, determining that the cerebral blood flow data of the cardiac cycle is valid, if not calculated The spectral parameters determine that the cerebral blood flow data for the cardiac cycle is invalid.
  • the obtaining a cerebral blood flow index for generating a Doppler spectrum according to the periodic cerebral blood flow data and the current scale may be a Peak value of all cardiac cycles included in the periodic blood flow data, or may be all cardiac cycles.
  • the average value of the Peak value may also be the average of the Peak values of the last cardiac cycle.
  • the cerebral blood flow index is an average of the Peak values of the last cardiac cycle.
  • the Doppler spectrogram generated according to the periodic cerebral blood flow data and the current scale is only simulated after the cerebral blood flow data is collected. Instead, the cerebral blood flow index of the Doppler spectrogram is simulated and drawn, and is compared with the first threshold. When the comparison result is that the scale is not required to be adjusted, the Doppler spectrum is directly presented. If the scale needs to be adjusted. Then, according to the current cycle cerebral blood flow data and the adjusted scale, a Doppler spectrum map is generated and presented. This ensures that the current cycle of cerebral blood flow data can be presented in a complete and clear manner on the Doppler spectrogram.
  • the first threshold is preset, which is a basis for detecting whether the Doppler spectrum generated by the current scale can completely present the Doppler data.
  • the Doppler spectrum is presented on one side of the baseline, such that the first threshold is preferably two-thirds of the current scale one-sided scale, so that the Doppler spectrum energy can be accurately determined. Whether the spectrum data is completely presented. For example, if the current scale is 120 cm/s, then the first threshold is 80 cm/s. That is to say, the Doppler signal can occupy up to 66% of the Doppler spectrum, which ensures optimal diagnostic results.
  • the step S20, the comparing the cerebral blood flow index with the first threshold, and adjusting the current scale according to the comparison result specifically includes:
  • comparing the cerebral blood flow index with the first threshold refers to comparing the Peak value of the current periodic cerebral blood flow data with a first threshold to determine whether the Doppler spectrum generated according to the current scale can Complete display of Doppler data.
  • the current scale is adjusted to increase the current scale by a preset ratio.
  • the preset ratio is preset, for example, 5% of the current scale, and the like. That is to say, the current scale is adjusted to 5%, that is, the current adjustment is 105% of the current scale, and the adjusted scale is updated to the current scale to generate a Doppler spectrum according to the updated current scale.
  • the current scale is 80 cm/s, and the cerebral blood flow index of the Doppler spectrum generated according to the current scale is greater than 80*2/3; the current scale is automatically increased to 120 cm/s, according to the update.
  • the Peak value of the current periodic cerebral blood flow data obtained by acquiring the Doppler spectrogram generated according to the updated current scale and the step of comparing with the first threshold are repeatedly performed, if the obtained Peak value is greater than the first
  • the current scale is continuously increased and the acquisition and comparison process is repeated until the Peak value is less than or equal to the first threshold, thereby achieving stepwise adjustment of the scale, and the required scale can be more accurately determined.
  • the adjustment process may be performed before the Doppler frequency map is actually generated, and the Doppler frequency map is generated and presented when the Peak value is less than or equal to the first threshold.
  • the Peak value of the current period is less than or equal to the first threshold, the determination of the current period Peak value is stopped.
  • the method further includes:
  • the second threshold is also preset, for example, the second threshold is one third of the current scale.
  • the current scale is 120 cm/m, then the second threshold is 40 cm/m.
  • comparing the cerebral blood flow index with the second threshold to determine whether the range occupied by the Doppler signal exceeds 33% of the Doppler spectrum, so that the spectral data can be clearly presented in the Doppler spectrum. On the map.
  • the current scale is adjusted to be adjusted according to a preset ratio, and the preset ratio is the same as the preset preset ratio, that is, 5% of the current scale.
  • the current scale reduction process can be the same as the current scale up procedure, and will not be described here.
  • the present invention also provides a computer readable storage medium storing a plurality of instructions adapted to be loaded by a processor and to perform a scale-based Doppler spectrogram adjustment method as described above
  • the present invention also provides an adjustment device based on a scale-based Doppler spectrogram, as shown in FIG. 4, which includes a host 100 and a probe 200; the host 100 includes at least one processor 101; and a memory (memory) 102; it may also include a transmitting device, a probe holder, a processing circuit, and the like.
  • the processor 101, the transmitting device, the memory 102, and the probe 200 can complete communication with each other through a bus.
  • the processor can call logic instructions in memory to perform the methods in the above embodiments.
  • logic instructions in the above-described memory may be implemented in the form of a software functional unit and sold or used as a stand-alone product, and may be stored in a computer readable storage medium.
  • the memory is a computer readable storage medium, and can be configured to store a software program, a computer executable program, a program instruction or a module corresponding to the method in the embodiment of the present disclosure.
  • the processor 30 executes the functional application and data processing by executing software programs, instructions or modules stored in the memory, ie, implementing the methods in the above embodiments.
  • the memory may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the terminal device, and the like. Further, the memory may include a high speed random access memory, and may also include a nonvolatile memory. For example, a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, etc., may also be used to store a program code. State storage medium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Theoretical Computer Science (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种基于标尺的多普勒频谱图的调整方法及设备,所述方法包括:获取根据采集到的脑血流数据及当前标尺生成多普勒频谱图的脑血流指数(S10);将获取到的脑血流指数与预设的第一阈值进行比较,并根据比较结果调整当前标尺(S20);基于调整后的标尺生成多普勒频谱图(S30)。本发明通过将多普勒频谱图的脑血流指数与第一阈值进行比较,并根据比较结果自动调整标尺,使多普勒图谱区域呈现整个频谱数据,而无需医生手动调整标尺大小,提高医生工作效率,也减少患者的就诊时间。

Description

一种基于标尺的多普勒频谱图的调整方法及设备 技术领域
本发明涉及IT及医疗技术领域,特别涉及一种基于标尺的多普勒频谱图的调整方法及设备。
背景技术
经颅多普勒超声分析仪用于诊断脑血管病变,帮助检查脑血管变窄、阻塞、血流不畅或脑溢血等病情。应用多普勒频谱分析技术,可以为临床诊断提供血流波形,血流速度(最大速度、平均速度等)、血流紊乱和涡流状态下的频率宽度、血流体积等信息,这对于脑血管疾病的早期发现十分重要。
目前,现有的多普勒频谱图中设置有标尺和基线,其中,所述标尺表征了经颅多普勒超声分析仪的多普勒频谱图所呈现的速度范围;基线是多普勒频谱图中区分了不同方向血流的线。但是,在多普勒频谱图中标尺为预先设置,那么当通过多普勒超声设备采集到的频谱数据(如脑血流数据)超过设定标尺的范围时,多普勒频谱图无法完整显示整个频谱数据,而当频谱数据太小而设定的标尺太大,频谱数据挤压在一起而无法清楚显示。此时,为了获得显示效果更好的多普勒频谱图,现有的经颅多普勒设备需要医生手动调整多普勒频谱图,增加了医生具体工作量。
因而现有技术还有待改进和提高。
发明内容
本发明要解决的技术问题在于,针对现有技术的不足,提供一种基于标尺的多普勒频谱图的调整方法及设备,以解决现有超声多普勒设备需要手动调整标尺的问题。
为了解决上述技术问题,本发明所采用的技术方案如下:
一种基于标尺的多普勒频谱图的调整方法,其包括:
获取根据采集到的脑血流数据及当前标尺生成多普勒频谱图的脑血流指数;
将获取到的脑血流指数与预设的第一阈值进行比较,并根据比较结果调整当前标尺;
基于调整后的标尺生成多普勒频谱图。
所述基于标尺的多普勒频谱图的调整方法,其中,所述获取根据采集到的脑 血流数据及当前标尺生成多普勒频谱图的脑血流指数之前还包括:
分析采集到的脑血流数据的心动周期,并将所述脑血流数据按照预设数量的心动周期划分为对应的周期脑血流数据。
所述基于标尺的多普勒频谱图的调整方法,其中,所述获取根据采集到的脑血流数据及当前标尺生成多普勒频谱图的脑血流指数具体包括:
判断所述周期脑血流数据包含的所有心动周期的脑血流数据的有效性;
当所有心动周期的脑血流数据全部有效时,获取根据所述周期脑血流数据及当前标尺生成多普勒频谱图的脑血流指数。
所述基于标尺的多普勒频谱图的调整方法,其中,所述获取根据采集到的脑血流数据及当前标尺生成多普勒频谱图的脑血流指数具体为:
根据采集到的脑血流数据及当前标尺生成多普勒频谱图,并获取所述多普勒频谱图单侧频谱的脑血流指数。
所述基于标尺的多普勒频谱图的调整方法,其中,所述将所述脑血流指数与预设的第一阈值进行比较,并根据比较结果调整当前标尺具体包括:
将所述脑血流指数与预设的第一阈值进行比较;
若所述脑血流指数大于第一阈值,则将所述当前标尺调大。
所述基于标尺的多普勒频谱图的调整方法,其中,所述将所述脑血流指数分别与第一阈值和第二阈值进行比较,并根据比较结果调整当前标尺还包括:
若所述脑血流指数小于第一阈值,则将所述脑血流指数与第二阈值进行比较;
当脑血流数据小于第二阈值时,则将所述当前标尺调小。
所述基于标尺的多普勒频谱图的调整方法,其中,所述根据比较结果调整当前标尺具体为:根据比较结果按照预设比例调整当前标尺。
所述基于标尺的多普勒频谱图的调整方法,其中,所述第一阈值为当前标尺单侧标尺的三分之二,第二阈值为当前标尺单侧标尺的三分之一。
一种存储介质,其存储有多条指令,所述指令适于由处理器加载并执行如上任一所述的基于标尺的多普勒频谱图的调整方法。
一种基于标尺的多普勒频谱图的调整设备,其包括:
处理器,适于实现各指令;以及
存储设备,适于存储多条指令,所述指令适于由处理器加载并执行如上任一 所述的基于标尺的多普勒频谱图的调整方法。
有益效果:与现有技术相比,本发明提供了一种基于标尺的多普勒频谱图的调整方法及设备,所述方法包括:获取根据采集到的脑血流数据及当前标尺生成多普勒频谱图的脑血流指数;将获取到的脑血流指数与预设的第一阈值进行比较,并根据比较结果调整当前标尺;基于调整后的标尺生成多普勒频谱图。本发明通过将多普勒频谱图的脑血流指数与第一阈值进行比较,并根据比较结果自动调整标尺,使多普勒图谱区域中呈现整个频谱数据,而无需医生手动调整标尺大小的工作,提高医生工作效率,也减少患者的就诊时间。
附图说明
图1为本发明提供的基于标尺的多普勒频谱图的调整方法较佳实施例的流程图。
图2为根据当前标尺生成的多普勒频谱图的示例图。
图3为根据本发明调整后标尺生成的多普勒频谱图的示例图。
图4为本发明提供的基于标尺的多普勒频谱图的调整设备较佳实施例的结构原理图。
具体实施方式
本发明提供一种基于标尺的多普勒频谱图的调整方法及设备,为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括 技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
下面结合附图,通过对实施例的描述,对发明内容作进一步说明。
请参照图1,图1为本发明提供的基于标尺的多普勒频谱图的调整方法较佳实施例的流程图。所述方法包括:
S10、获取根据采集到的脑血流数据及当前标尺生成多普勒频谱图的脑血流指数;
S20、将获取到的脑血流指数与预设的第一阈值进行比较,并根据比较结果调整当前标尺;
S30、基于调整后的标尺生成多普勒频谱图。
本实施例提供的基于标尺的多普勒频谱图的调整方法,其获取根据采集到的脑血流数据及当前标尺生成多普勒频谱图的脑血流峰值作为脑血流指数,并将脑血流指数与预设第一阈值进行比较,并根据比较结果自动调整标尺,使得所述多普勒频谱图可以清楚完整的呈现频谱数据,无需医生手动调整标尺大小的工作,提高医生工作效率,也减少患者的就诊时间。
具体的来说,在所述步骤S10中,所述脑血流数据为脑血流速度,所述脑血流指数为采集到的同一脑血管的脑血流速度的峰值,这里记为Peak值。所述Peak值为单侧脑血流速度的峰值,如,正向脑血流速度峰值或负向脑血流速度峰值。在本实施中,所述Peak值为正向脑血流速度峰值。所述多普勒频谱图为单侧多普勒频谱图,也就是说,根据采集到的脑血流数据及当前标尺在基线的一侧生成多普勒频谱图,并获取单侧多普勒频谱图的脑血流指数,这样了可以不用计算脑血流的方向,提高了自动调整的效率。
进一步,人体中血液流动的速度一般都是按照心动周期进行变化。心脏在收缩期,其向外射血,血管内血流速度加快;心脏在舒张期,血管内血流速度减慢。因此,为了提高标尺调整的及时性以及准确性,可以累积连续预设数量心动周期的脑血流速度以形成一频谱周期,并获取所述频谱周期的Peak值。相应的,所述步骤S10、获取根据采集到的脑血流数据及当前标尺生成多普勒频谱图的脑血 流指数之前还可以包括:
S01、分析所述脑血流数据的心动周期,并将所述脑血流数据按照预设数量的心动周期划分为对应的周期脑血流数据。
具体地,所述预设数量为预设设置的,如3、4以及5等。在本实施例中,所述预设数量优选为3,这样既可以能确定采集到脑血流数据对应的血管的多普勒频谱状态,又可以快速及时的进行标尺调整,以使得多普勒频谱图可以呈现完整的多普勒数据。
相应的,所述步骤S10、获取根据采集到的脑血流数据及当前标尺生成多普勒频谱图的脑血流指数具体包括:
S11、判断所述周期脑血流数据包含的所有心动周期的脑血流数据的有效性。
具体地,所述判断所述脑血流数据包含的所有心动周期的脑血流数据的有效性指的是包含于所述周期脑血流数据中的各心动周期脑血流数据的有效性。各脑血流各心动周期脑血流数据的有效性的判断过程具体可以为对超声经颅多普勒设备采集每个心动周期的脑血流数据,并将所述脑血流数据经过FFT变换得到频谱信号;再计算所述频谱信号的包络数据,并根据所述包络数据分析脑血流数据的有效性。当然,所述所有心动周期的脑血流数据的有效性指的是各心动周期脑血流数据的有效性。在实际应用中,根据所述包络数据分析脑血流数据的有效性可以是根据包络数据计算频谱参数,如果计算得到频谱参数则判定该心动周期的脑血流数据有效,如果未计算得到频谱参数则判定该心动周期的脑血流数据无效。
S12、当所有心动周期的脑血流数据全部有效时,获取根据所述周期脑血流数据及当前标尺生成多普勒频谱图的脑血流指数。
具体地,所述获取根据所述周期脑血流数据及当前标尺生成多普勒频谱图的脑血流指数可以为周期闹血流数据包含的所有心动周期的Peak值,也可以是所有心动周期的Peak值的平均值,还可以是最后一个心动周期的Peak值的平均值。在实施例中,所述脑血流指数为最后一个心动周期的Peak值的平均值。此外,当所有心动周期的脑血流数据存在无效数据时,直接忽略了当前周期脑血流数据的所有心动周期的脑血流数据,并从而获取下一周期脑血流数据。
进一步,为了提高多普勒频谱图显示的清晰性和完整性,所述根据所述周期 脑血流数据及当前标尺生成多普勒频谱图仅是在采集到脑血流数据后进行的模拟绘制,而是先获取模拟绘制得到多普勒频谱图的脑血流指数,并将其与第一阈值,在比较结果为无需调整标尺时,直接将多普勒频谱图呈现出来,如果需要调整标尺,则根据当前周期脑血流数据以及调整后的标尺生成并呈现多普勒频谱图。这样可以保证当前周期脑血流数据可以完整清晰的呈现在多普勒频谱图上。
进一步,在所述步骤S20中,所述第一阈值为预先设置的,其为检测当前标尺生成的多普勒频谱图是否可以完整呈现多普勒数据的依据。在本实施例中,所述多普勒频谱图呈现于基线的一侧,从而所述第一阈值优选为当前标尺单侧标尺的三分之二,这样可以根据准确的判定多普勒频谱能否完整呈现频谱数据。例如,当前标尺为120cm/s,那么所述第一阈值为80cm/s。也就是说,所述多普勒信号所占用的范围最多可以达到多普勒频谱图的66%,这样确保了实现最佳的诊断效果。
示例性的,所述步骤S20、所述将所述脑血流指数与第一阈值进行比较,并根据比较结果调整当前标尺具体包括:
S21、将所述脑血流指数与第一阈值进行比较。
具体地,所述将脑血流指数与第一阈值进行比较指的是将当前周期脑血流数据的Peak值与第一阈值进行比较,以确定根据当前标尺生成的多普勒频谱图能否完整显示多普勒数据。
S22、若所述脑血流指数大于第一阈值,则将所述当前标尺调大。
具体地,将所述当前标尺调大为按照预设比例将当前标尺调大。所述预设比例为预先设置,例如,当前标尺的5%等。也就是说,将所述当前标尺调大5%,即将当前调整为当前标尺的105%,并将调整后的标尺更新为当前标尺,以根据更新后的当前标尺生成多普勒频谱图。例如,如图2所示,当前标尺为80cm/s,根据当前标尺生成的多普勒频谱图的脑血流指数大于80*2/3;自动将当前标尺增大为120cm/s,根据更新后标尺生成的多普勒频谱图的脑血流指数小于120*2/3=80cm/s(如图3所示)。
进一步,在将当前标尺调大后,重复执行获取根据更新后当前标尺生成的多普勒频谱图的当前周期脑血流数据的Peak值以及与第一阈值比较的步骤,如果获取Peak值大于第一阈值,则继续将当前标尺调大并重复获取与比较过程直至 Peak值小于等于第一阈值,从而实现了标尺的逐步调整,可以更加准确的确定所需标尺。
进一步,所述调整过程可以在实际生成多普勒频率图之前执行,而在Peak值小于等于第一阈值时生成并呈现多普勒频率图。当然,也可以调整一次后生成并呈现多普勒频率图,而在获取下一个周期脑血流数据时,同时对当前周期脑血流数据和下一个周期脑血流数据进行同时判断,而当存在一个周期的Peak值大于第一阈值时调整下一周期对应的当前标尺。此外,在当前周期的Peak值小于等于第一阈值时,停止对当前周期Peak值判断。
在本发明的一个实施例中,当Peak值小于第一阈值时,为了避免当前标尺过大而造成频谱数据无法显示清楚,从而所述方法还包括:
S40、若所述脑血流指数小于第一阈值,则将所述脑血流指数与第二阈值进行比较。
具体地,所述第二阈值也为预先设定,例如,所述第二阈值为当前标尺的三分之一。例如,当前标尺为120cm/m,那么第二阈值为40cm/m。而将所述脑血流指数与第二阈值进行比较为判断多普勒信号所占用的范围是否超过到多普勒频谱图的33%,这样可以使得频谱数据可以清晰的呈现于多普勒频谱图上。
S50、当脑血流数据小于第二阈值时,则将所述当前标尺调小。
具体地,所述将当前标尺调大为按照预设比例进行调整,所述预设比例与调小的预设比例相同,即为当前标尺的5%。此外,将当前标尺调小过程可以与将当前标尺调大过程相同,这里不再赘述。
本发明还提供了一种计算机可读的存储介质,其存储有多条指令,所述指令适于由处理器加载并执行如上任一所述的基于标尺的多普勒频谱图的调整方法
本发明还提供了一种基于标尺的多普勒频谱图的调整设备,如图4所示,其包括可以主机100和探头200;所述主机100包括至少一个处理器(processor)101;以及存储器(memory)102;其还可以包括发射装置、探头座和处理电路等。其中,所述处理器101、发射装置、存储器102和探头200可以通过总线完成相互间的通信。处理器可以调用存储器中的逻辑指令,以执行上述实施例中的方法。
此外,上述的存储器中的逻辑指令可以通过软件功能单元的形式实现并作为 独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令或模块。处理器30通过运行存储在存储器中的软件程序、指令或模块,从而执行功能应用以及数据处理,即实现上述实施例中的方法。
存储器可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器。例如,U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
此外,上述存储介质以及移动终端中的多条指令处理器加载并执行的具体过程在上述方法中已经详细说明,在这里就不再一一陈述。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种基于标尺的多普勒频谱图的调整方法,其特征在于,其包括:
    获取根据采集到的脑血流数据及当前标尺生成多普勒频谱图的脑血流指数;
    将所述脑血流指数与预设的第一阈值进行比较,并根据比较结果调整当前标尺;
    基于调整后的标尺生成多普勒频谱图。
  2. 根据权利要求1所述基于标尺的多普勒频谱图的调整方法,其特征在于,所述获取根据采集到的脑血流数据及当前标尺生成多普勒频谱图的脑血流指数之前还包括:
    分析采集到的脑血流数据的心动周期,并将所述脑血流数据按照预设数量的心动周期划分为对应的周期脑血流数据。
  3. 根据权利要求2所述基于标尺的多普勒频谱图的调整方法,其特征在于,所述获取根据采集到的脑血流数据及当前标尺生成多普勒频谱图的脑血流指数具体包括:
    判断所述周期脑血流数据包含的所有心动周期的脑血流数据的有效性;
    当所有心动周期的脑血流数据全部有效时,获取根据所述周期脑血流数据及当前标尺生成多普勒频谱图的脑血流指数。
  4. 根据权利要求1-3任一所述基于标尺的多普勒频谱图的调整方法,其特征在于,所述获取根据采集到的脑血流数据及当前标尺生成多普勒频谱图的脑血流指数具体为:
    根据采集到的脑血流数据及当前标尺生成多普勒频谱图,并获取所述多普勒频谱图单侧频谱的脑血流指数。
  5. 根据权利要求1所述基于标尺的多普勒频谱图的调整方法,其特征在于,所述将所述脑血流指数与预设的第一阈值进行比较,并根据比较结果调整当前标尺具体包括:
    将所述脑血流指数与预设的第一阈值进行比较;
    若所述脑血流指数大于第一阈值,则将所述当前标尺调大。
  6. 根据权利要求5所述基于标尺的多普勒频谱图的调整方法,其特征在于,所述将所述脑血流指数分别与第一阈值和第二阈值进行比较,并根据比较结果调整当前标尺还包括:
    若所述脑血流指数小于第一阈值,则将所述脑血流指数与第二阈值进行比较;
    当脑血流数据小于第二阈值时,则将所述当前标尺调小。
  7. 根据权利要求1、5或6任一所述基于标尺的多普勒频谱图的调整方法,其特征在于,所述根据比较结果调整当前标尺具体为:根据比较结果按照预设比例调整当前标尺。
  8. 根据权利要求7所述基于标尺的多普勒频谱图的调整方法,其特征在于,所述第一阈值为当前标尺单侧标尺的三分之二,第二阈值为当前标尺单侧标尺的三分之一。
  9. 一种存储介质,其特征在于,其存储有多条指令,所述指令适于由处理器加载并执行如权利要求1-8任一所述的基于标尺的多普勒频谱图的调整方法。
  10. 一种基于标尺的多普勒频谱图的调整设备,其特征在于,其包括:
    处理器,适于实现各指令;以及
    存储设备,适于存储多条指令,所述指令适于由处理器加载并执行如权利要求1-8任一所述的基于标尺的多普勒频谱图的调整方法。
PCT/CN2018/077692 2017-10-16 2018-03-01 一种基于标尺的多普勒频谱图的调整方法及设备 WO2019075981A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710959353.8A CN107595321A (zh) 2017-10-16 2017-10-16 一种基于标尺的多普勒频谱图的调整方法及设备
CN201710959353.8 2017-10-16

Publications (1)

Publication Number Publication Date
WO2019075981A1 true WO2019075981A1 (zh) 2019-04-25

Family

ID=61077360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077692 WO2019075981A1 (zh) 2017-10-16 2018-03-01 一种基于标尺的多普勒频谱图的调整方法及设备

Country Status (2)

Country Link
CN (1) CN107595321A (zh)
WO (1) WO2019075981A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107595321A (zh) * 2017-10-16 2018-01-19 深圳市德力凯医疗设备股份有限公司 一种基于标尺的多普勒频谱图的调整方法及设备
CN110613477B (zh) * 2018-12-29 2024-05-24 深圳迈瑞生物医疗电子股份有限公司 超声成像方法以及超声设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187828A (ja) * 2002-12-10 2004-07-08 Ge Medical Systems Global Technology Co Llc 超音波診断装置
CN105476663A (zh) * 2016-01-13 2016-04-13 北京悦琦创通科技有限公司 调整多普勒频谱图的方法和设备
CN106859701A (zh) * 2017-02-13 2017-06-20 深圳安盛生物医疗技术有限公司 一种高脉冲多普勒成像的速度标尺调节方法及装置
CN107595321A (zh) * 2017-10-16 2018-01-19 深圳市德力凯医疗设备股份有限公司 一种基于标尺的多普勒频谱图的调整方法及设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105476661A (zh) * 2016-01-13 2016-04-13 北京悦琦创通科技有限公司 调整多普勒频谱图的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187828A (ja) * 2002-12-10 2004-07-08 Ge Medical Systems Global Technology Co Llc 超音波診断装置
CN105476663A (zh) * 2016-01-13 2016-04-13 北京悦琦创通科技有限公司 调整多普勒频谱图的方法和设备
CN106859701A (zh) * 2017-02-13 2017-06-20 深圳安盛生物医疗技术有限公司 一种高脉冲多普勒成像的速度标尺调节方法及装置
CN107595321A (zh) * 2017-10-16 2018-01-19 深圳市德力凯医疗设备股份有限公司 一种基于标尺的多普勒频谱图的调整方法及设备

Also Published As

Publication number Publication date
CN107595321A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
Bathala et al. Transcranial doppler: Technique and common findings (Part 1)
JP5972279B2 (ja) ピーク強度検出を伴う超音波イメージングシステム及び方法
AU2015321421B2 (en) Method and apparatus for determining aortic valve opening
WO2018218441A1 (zh) 谱图分析方法、装置和设备及计算机可读存储介质
JP7041147B2 (ja) 造影剤流の肝灌流を特徴付けるシステム及び方法
WO2022237161A1 (zh) 脑动脉波强度和波功率的测量方法、终端设备及存储介质
CN104382618A (zh) 基于胎心率检测的去噪方法和胎心率检测仪
WO2019075981A1 (zh) 一种基于标尺的多普勒频谱图的调整方法及设备
CN103040524B (zh) 减少生理活动对医学成像或测量结果干扰的装置及方法
CN105912879A (zh) 一种胎心率曲线修正方法及其装置
CN113040814B (zh) 超声微泡空化设备的成像处理方法及成像处理系统
WO2019010983A1 (zh) 一种超声系统数据的选段方法、存储介质及超声设备
CN106991291B (zh) 胎儿心电信号实时转换为胎儿胎音的计算机仿真转换方法
US11375908B2 (en) Blood pressure detection signal sampling and compensation method and apparatus, and blood pressure signal collection system
CN110491504B (zh) 一种心音信号医学指标数据的获取方法
WO2019075982A1 (zh) 一种基于基线的多普勒频谱图的调整方法及设备
Huang Detecting spatial variations of erythrocytes by ultrasound backscattering statistical parameters under pulsatile flow
CN108498088A (zh) 一种检测和分析脑动脉功能和状态的仪器
CN207996202U (zh) 孕妇体检用的胎心监护仪
JP2010068955A (ja) 超音波診断装置および超音波診断装置のデータ処理プログラム
CN1026553C (zh) 脑血管动力学参数的检测分析方法及仪器
Atbi et al. Heart sounds and heart murmurs sepataion
JP4373762B2 (ja) 医用画像診断装置及び超音波診断装置
WO2024093696A1 (zh) 用于脉搏波测量的设备、方法、介质和程序产品
CN112120733B (zh) 一种获取脑血流速度的方法、存储介质及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868034

Country of ref document: EP

Kind code of ref document: A1