WO2019075982A1 - 一种基于基线的多普勒频谱图的调整方法及设备 - Google Patents

一种基于基线的多普勒频谱图的调整方法及设备 Download PDF

Info

Publication number
WO2019075982A1
WO2019075982A1 PCT/CN2018/077708 CN2018077708W WO2019075982A1 WO 2019075982 A1 WO2019075982 A1 WO 2019075982A1 CN 2018077708 W CN2018077708 W CN 2018077708W WO 2019075982 A1 WO2019075982 A1 WO 2019075982A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood flow
baseline
cerebral blood
adjusting
doppler
Prior art date
Application number
PCT/CN2018/077708
Other languages
English (en)
French (fr)
Inventor
邢英琦
韩珂
周果
吴伟文
任冠清
邹文
梁志成
Original Assignee
深圳市德力凯医疗设备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市德力凯医疗设备股份有限公司 filed Critical 深圳市德力凯医疗设备股份有限公司
Publication of WO2019075982A1 publication Critical patent/WO2019075982A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0808Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals

Definitions

  • the present invention relates to the field of IT and medical technology, and in particular, to a method and a device for adjusting a Doppler spectrum map based on a baseline.
  • Transcranial Doppler ultrasound analyzer is used to diagnose cerebrovascular disease and help to check for cerebral vascular narrowing, obstruction, poor blood flow or cerebral hemorrhage.
  • Doppler spectrum analysis technology it can provide blood flow waveform, blood flow velocity (maximum velocity, average velocity, etc.), blood flow disorder and frequency width under eddy current state, blood flow volume and other information for clinical diagnosis. Early detection of the disease is important.
  • the existing Doppler spectrogram is provided with a scale and a baseline, wherein the baseline characterizes the velocity range exhibited by the Doppler spectrogram of the transcranial Doppler ultrasound analyzer; the baseline is in the Doppler spectrogram The line of blood flow in different directions is distinguished, and the Doppler spectrogram can be completely clear by adjusting the baseline and the scale.
  • the existing transcranial Doppler device requires a doctor to manually adjust the Doppler spectrum, which increases the specific workload of the doctor.
  • the technical problem to be solved by the present invention is to provide a method and a device for adjusting a Doppler spectrum based on a baseline in order to solve the problem that the existing ultrasonic Doppler device needs to manually adjust the baseline.
  • a method for adjusting a Doppler spectrum map based on a baseline comprising:
  • a one-sided Doppler spectrum map is generated based on the adjusted baseline.
  • the method for adjusting a baseline-based Doppler spectrogram wherein the obtaining a cerebral blood flow index based on the collected cerebral blood flow data and the current baseline to generate a unilateral Doppler spectrogram further comprises:
  • the cardiac cycle of the collected cerebral blood flow data is analyzed, and the cerebral blood flow data is divided into corresponding periodic cerebral blood flow data according to a preset number of cardiac cycles.
  • the method for adjusting a baseline-based Doppler spectrogram wherein the acquiring a cerebral blood flow index that generates a unilateral Doppler spectrum according to the collected cerebral blood flow data and a current baseline specifically includes:
  • a cerebral blood flow index is generated that generates a unilateral Doppler spectrum according to the periodic cerebral blood flow data and the current baseline.
  • the method for adjusting a baseline-based Doppler spectrogram, wherein the acquiring a cerebral blood flow index that generates a unilateral Doppler spectrum according to the collected cerebral blood flow data and a current baseline is specifically:
  • a unilateral Doppler spectrum map is generated according to the collected cerebral blood flow data and the current baseline, and the cerebral blood flow index of the unilateral spectrum of the unilateral Doppler spectrum is obtained.
  • the method for adjusting a baseline-based Doppler spectrogram wherein the comparing the cerebral blood flow index with a preset first threshold, and adjusting the current baseline according to the comparison result specifically includes:
  • the current baseline is adjusted to a preset distance from the unpresented spectral data side.
  • the method for adjusting a baseline-based Doppler spectrogram, wherein, if the cerebral blood flow index is greater than a first threshold, adjusting the current baseline to the unpresented spectral data side specifically includes:
  • the cerebral blood flow index is greater than the first threshold, obtaining an interval between the current baseline and the preset baseline, where the preset baseline is the bottom end of the spectrum data side not present;
  • the current baseline is adjusted to the unpresented spectrum data side.
  • the method for adjusting a baseline-based Doppler spectrogram wherein if the cerebral blood flow index is greater than a first threshold, adjusting the current baseline to the unpresented spectral data side further includes:
  • the performing the adjustment baseline operation is stopped and the Doppler spectrum is presented.
  • a storage medium storing a plurality of instructions adapted to be loaded by a processor and to perform a method of adjusting a baseline-based Doppler spectrogram as described above.
  • An adjustment device for a baseline-based Doppler spectrogram comprising:
  • a storage device adapted to store a plurality of instructions adapted to be loaded by the processor and to perform a method of adjusting a baseline-based Doppler spectrogram as described above.
  • the present invention provides a method and apparatus for adjusting a baseline-based Doppler spectrum, the method comprising: acquiring one-sided according to collected brain blood flow data and current baseline a cerebral blood flow index of the Doppler spectrogram; comparing the acquired cerebral blood flow index with a preset first threshold, and adjusting the current baseline according to the comparison result; generating a one-sided Doppler spectrogram based on the adjusted baseline .
  • the invention compares the cerebral blood flow index of the Doppler spectrum with the first threshold and automatically adjusts the baseline according to the comparison result, so that the entire spectrum data is presented in the Doppler map region without the doctor manually adjusting the baseline size. Improve the efficiency of doctors' work and reduce the time for patients to visit.
  • FIG. 1 is a flow chart of a preferred embodiment of a method for adjusting a baseline-based Doppler spectrogram provided by the present invention.
  • FIG. 2 is an exemplary diagram of a Doppler spectrum map generated from a current baseline.
  • FIG 3 is an exemplary diagram of a Doppler spectrum map generated from a adjusted baseline in accordance with the present invention.
  • FIG. 4 is a schematic structural diagram of a preferred embodiment of an apparatus for adjusting a baseline-based Doppler spectrum according to the present invention.
  • the present invention provides a method and a device for adjusting a Doppler spectrum based on a baseline.
  • the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • FIG. 1 is a flowchart of a preferred embodiment of a method for adjusting a baseline-based Doppler spectrum according to the present invention. The method includes:
  • the baseline-based Doppler spectrogram adjustment method obtained by the embodiment obtains a cerebral blood flow peak according to the collected cerebral blood flow data and the current baseline to generate a unilateral Doppler spectrum map as a cerebral blood flow index, and The cerebral blood flow index is compared with a preset first threshold, and the baseline is automatically adjusted according to the comparison result, so that the Doppler spectrogram can clearly and completely present the spectrum data, and the doctor does not need to manually adjust the baseline size to improve the doctor's work. Efficiency also reduces patient visit time.
  • the cerebral blood flow data is a cerebral blood flow velocity
  • the cerebral blood flow index is a peak value of the collected cerebral blood flow velocity of the same cerebral blood vessel, which is recorded as a Peak value.
  • the Peak value is the peak of the unilateral cerebral blood flow velocity, such as a peak value of the forward cerebral blood flow velocity or a peak of the negative cerebral blood flow velocity. In this embodiment, the Peak value is a peak value of the forward cerebral blood flow velocity.
  • the speed of blood flow in the human body is generally changed according to the cardiac cycle.
  • the heart is ejected outward, and the blood flow velocity in the blood vessels is accelerated; during the diastolic phase, the blood flow velocity in the blood vessels is slowed down. Therefore, in order to improve the timeliness and accuracy of the baseline adjustment, the cerebral blood flow velocity of a continuous preset number of cardiac cycles can be accumulated to form a spectral period, and the Peak value of the spectral period can be acquired.
  • the step S10 before acquiring the cerebral blood flow index according to the collected cerebral blood flow data and the current baseline to generate the unilateral Doppler spectrum map, may further include:
  • the preset number is preset, such as 3, 4, and 5, and the like.
  • the preset number is preferably 3, so that the Doppler spectrum state of the blood vessel corresponding to the cerebral blood flow data can be determined, and the baseline adjustment can be performed quickly and timely to make the Doppler
  • the spectrogram can present complete Doppler data.
  • the step S10 obtaining a cerebral blood flow index according to the collected cerebral blood flow data and the current baseline to generate a unilateral Doppler spectrum map specifically includes:
  • the validity of the cerebral blood flow data for determining all cardiac cycles included in the cerebral blood flow data refers to the validity of each cardiac cycle cerebral blood flow data included in the periodic cerebral blood flow data.
  • the process of judging the validity of each cerebral blood flow cerebral blood flow data may be specifically collecting cerebral blood flow data of each cardiac cycle for the ultrasound transcranial Doppler device, and subjecting the cerebral blood flow data to FFT transformation Obtaining a spectral signal; recalculating the envelope data of the spectral signal, and analyzing the validity of the cerebral blood flow data according to the envelope data.
  • the validity of the cerebral blood flow data for all cardiac cycles refers to the validity of the cerebral blood flow data for each cardiac cycle.
  • analyzing the validity of the cerebral blood flow data according to the envelope data may be calculating a spectral parameter according to the envelope data, and if the spectral parameter is calculated, determining that the cerebral blood flow data of the cardiac cycle is valid, if not calculated The spectral parameters determine that the cerebral blood flow data for the cardiac cycle is invalid.
  • the obtaining a cerebral blood flow index for generating a unilateral Doppler spectrum according to the periodic cerebral blood flow data and the current baseline may be a Peak value of all cardiac cycles included in the periodic blood flow data, or may be all
  • the average value of the Peak value of the cardiac cycle may also be the average of the Peak values of the last cardiac cycle.
  • the cerebral blood flow index is an average of the Peak values of the last cardiac cycle.
  • the unilateral Doppler spectrogram generated according to the periodic cerebral blood flow data and the current baseline is only performed after the cerebral blood flow data is collected. Simulate the drawing, but first obtain the cerebral blood flow index of the Doppler spectrum, and compare it with the first threshold. When the comparison result is that the baseline is not needed, the Doppler spectrum is directly presented, if necessary. By adjusting the baseline, a Doppler spectrogram is generated and presented based on the current periodic cerebral blood flow data and the adjusted baseline. This ensures that the current cycle of cerebral blood flow data can be presented in a complete and clear manner on the Doppler spectrogram.
  • the first threshold is preset, which is a basis for detecting whether the Doppler spectrum generated by the current baseline can completely present the Doppler data.
  • the first threshold is preferably two-thirds of the spectrum data side scale.
  • the presentation spectral data side scale is 120 cm/s
  • the first threshold is 80 cm/s. That is to say, the Doppler signal can occupy up to 66% of the Doppler spectrum of the spectrum data side, which ensures optimal diagnosis.
  • the step S20, the comparing the cerebral blood flow index with the first threshold, and adjusting the current baseline according to the comparison result specifically includes:
  • comparing the cerebral blood flow index with the first threshold refers to comparing the Peak value of the current periodic cerebral blood flow data with a first threshold to determine whether the Doppler spectrogram generated according to the current baseline can Complete display of Doppler data.
  • the preset distance is preset, for example, the preset distance is 5% of the spectrum data side scale, that is, the baseline position is moved to the unpresented spectrum data side to represent 5% of the spectrum data side scale. And generate a one-sided Doppler spectrum map based on the updated current baseline.
  • the length of the scale on the side of the spectrum data side that is not present on the spectrum data side may be the same or different, because the baseline may not be at 0 cm/s after adjusting the baseline.
  • the position for example, the baseline is at a position of -10 cm/m, and the like.
  • Figure 2 shows the Doppler spectrum before adjustment
  • Figure 3 shows the adjusted Doppler spectrum.
  • the adjustment process may be performed before the Doppler frequency map is actually generated, and the Doppler frequency map is generated and presented when the Peak value is less than or equal to the first threshold.
  • the Peak value of the current period is less than or equal to the first threshold, the determination of the current period Peak value is stopped.
  • the method includes the steps of the foregoing embodiment, which differ from the above embodiment in that if the cerebral blood flow index is greater than the first threshold, the current baseline is not presented to the spectrum.
  • Data side adjustments specifically include:
  • the cerebral blood flow index is greater than the first threshold, obtain an interval between the current baseline and the preset baseline, where the preset baseline is the bottom end of the spectrum data side that is not presented;
  • the bottom end of the non-present spectrum data side refers to a maximum value of the spectrum data side scale that is not present
  • the interval refers to the scale value corresponding to the current baseline and the maximum value of the spectrum data side scale not presented.
  • the adjustment of the baseline operation may be stopped and the Doppler spectrogram may be presented; the baseline may also be adjusted at a preset position and the Doppler spectrogram is presented.
  • the user may also be prompted to adjust the current baseline, and ask whether the automatic scale adjustment function is turned on, and automatically adjust the scale after the user turns on the automatic adjustment ruler function (for example, the current scale is adjusted to 1.5 times the current scale). Etc.) Repeat the above baseline adjustment process and turn off the auto-adjust ruler function after performing the preset distance adjustment baseline.
  • the user may be prompted to manually adjust the scale, and prompt the user to manually adjust the size of the scale according to the relationship between the interval and the preset distance, thereby enabling the user to quickly adjust the scale.
  • the present invention also provides a computer readable storage medium storing a plurality of instructions adapted to be loaded by a processor and to perform a method of adjusting a baseline-based Doppler spectrogram as described above
  • the present invention also provides an adjustment apparatus for a baseline-based Doppler spectrogram, as shown in FIG. 4, which includes a host 100 and a probe 200; the host 100 includes at least one processor 101; and a memory (memory) 102; it may also include a transmitting device, a probe holder, a processing circuit, and the like.
  • the processor 101, the transmitting device, the memory 102, and the probe 200 can complete communication with each other through a bus.
  • the processor can call logic instructions in memory to perform the methods in the above embodiments.
  • logic instructions in the above-described memory may be implemented in the form of a software functional unit and sold or used as a stand-alone product, and may be stored in a computer readable storage medium.
  • the memory is a computer readable storage medium, and can be configured to store a software program, a computer executable program, a program instruction or a module corresponding to the method in the embodiment of the present disclosure.
  • the processor 30 executes the functional application and data processing by executing software programs, instructions or modules stored in the memory, ie, implementing the methods in the above embodiments.
  • the memory may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the terminal device, and the like. Further, the memory may include a high speed random access memory, and may also include a nonvolatile memory. For example, a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, etc., may also be used to store a program code. State storage medium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Neurology (AREA)
  • Hematology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种基于基线的多普勒频谱图的调整方法及设备,方法包括:获取根据采集到的脑血流数据及当前基线生成单侧多普勒频谱图的脑血流指数(S10);将获取到的脑血流指数与预设的第一阈值进行比较,并根据比较结果调整当前基线(S20);基于调整后的基线生成单侧多普勒频谱图(S30)。通过将多普勒频谱图的脑血流指数与第一阈值进行比较,并根据比较结果自动调整基线,使多普勒图谱区域中呈现整个频谱数据,而无需医生手动调整基线大小的工作,提高医生工作效率,也减少患者的就诊时间。

Description

一种基于基线的多普勒频谱图的调整方法及设备 技术领域
本发明涉及IT及医疗技术领域,特别涉及一种基于基线的多普勒频谱图的调整方法及设备。
背景技术
经颅多普勒超声分析仪用于诊断脑血管病变,帮助检查脑血管变窄、阻塞、血流不畅或脑溢血等病情。应用多普勒频谱分析技术,可以为临床诊断提供血流波形,血流速度(最大速度、平均速度等)、血流紊乱和涡流状态下的频率宽度、血流体积等信息,这对于脑血管疾病的早期发现十分重要。
现有的多普勒频谱图中设置有标尺和基线,其中,所述基线表征了经颅多普勒超声分析仪的多普勒频谱图所呈现的速度范围;基线是多普勒频谱图中区分了不同方向血流的线,并通过调整基线和标尺使得多普勒频谱图可完整清晰的多普勒频谱图。而为了获得显示效果更好的多普勒频谱图,现有的经颅多普勒设备需要医生手动调整多普勒频谱图,增加了医生具体工作量。
因而现有技术还有待改进和提高。
发明内容
本发明要解决的技术问题在于,针对现有技术的不足,提供一种基于基线的多普勒频谱图的调整方法及设备,以解决现有超声多普勒设备需要手动调整基线的问题。
为了解决上述技术问题,本发明所采用的技术方案如下:
一种基于基线的多普勒频谱图的调整方法,其包括:
获取根据采集到的脑血流数据及当前基线生成单侧多普勒频谱图的脑血流指数;
将所述脑血流指数与预设的第一阈值进行比较,并根据比较结果调整基线;
基于调整后的基线生成单侧多普勒频谱图。
所述基于基线的多普勒频谱图的调整方法,其中,所述获取根据采集到的脑血流数据及当前基线生成单侧多普勒频谱图的脑血流指数之前还包括:
分析采集到的脑血流数据的心动周期,并将所述脑血流数据按照预设数量的心动周期划分为对应的周期脑血流数据。
所述基于基线的多普勒频谱图的调整方法,其中,所述获取根据采集到的脑血流数据及当前基线生成单侧多普勒频谱图的脑血流指数具体包括:
判断所述周期脑血流数据包含的所有心动周期的脑血流数据的有效性;
当所有心动周期的脑血流数据全部有效时,获取根据所述周期脑血流数据及当前基线生成单侧多普勒频谱图的脑血流指数。
所述基于基线的多普勒频谱图的调整方法,其中,所述获取根据采集到的脑血流数据及当前基线生成单侧多普勒频谱图的脑血流指数具体为:
根据采集到的脑血流数据及当前基线生成单侧多普勒频谱图,并获取所述单侧多普勒频谱图单侧频谱的脑血流指数。
所述基于基线的多普勒频谱图的调整方法,其中,所述将所述脑血流指数与预设的第一阈值进行比较,并根据比较结果调整当前基线具体包括:
将所述脑血流指数与预设的第一阈值进行比较;
若所述脑血流指数大于第一阈值,则将当前基线向未呈现频谱数据侧调整预设距离。
所述基于基线的多普勒频谱图的调整方法,其中,所述若所述脑血流指数大于第一阈值,则将当前基线向未呈现频谱数据侧调整具体包括:
若所述脑血流指数大于第一阈值,则获取当前基线与预设基线的间隔,其中,所述预设基线为未呈现频谱数据侧的最底端;
将所述间隔与预设距离进行比较;
当所述间隔小于等于预设距离时,将当前基线向未呈现频谱数据侧调整。
所述基于基线的多普勒频谱图的调整方法,其中,所述若所述脑血流指数大于第一阈值,则将当前基线向未呈现频谱数据侧调整还包括:
当所述间隔大于预设距离时,停止执行调整基线操作并呈现所述多普勒频谱图。
所述基于基线的多普勒频谱图的调整方法,其中,所述第一阈值为呈现频谱数据侧标尺的三分之二。
一种存储介质,其存储有多条指令,所述指令适于由处理器加载并执行如上任一所述的基于基线的多普勒频谱图的调整方法。
一种基于基线的多普勒频谱图的调整设备,其包括:
处理器,适于实现各指令;以及
存储设备,适于存储多条指令,所述指令适于由处理器加载并执行如上任一所述的基于基线的多普勒频谱图的调整方法。
有益效果:与现有技术相比,本发明提供了一种基于基线的多普勒频谱图的调整方法及设备,所述方法包括:获取根据采集到的脑血流数据及当前基线生成单侧多普勒频谱图的脑血流指数;将获取到的脑血流指数与预设的第一阈值进行比较,并根据比较结果调整当前基线;基于调整后的基线生成单侧多普勒频谱图。本发明通过将多普勒频谱图的脑血流指数与第一阈值进行比较,并根据比较结果自动调整基线,使多普勒图谱区域中呈现整个频谱数据,而无需医生手动调整基线大小的工作,提高医生工作效率,也减少患者的就诊时间。
附图说明
图1为本发明提供的基于基线的多普勒频谱图的调整方法较佳实施例的流程图。
图2为根据当前基线生成的多普勒频谱图的示例图。
图3为根据本发明调整后基线生成的多普勒频谱图的示例图。
图4为本发明提供的基于基线的多普勒频谱图的调整设备较佳实施例的结构原理图。
具体实施方式
本发明提供一种基于基线的多普勒频谱图的调整方法及设备,为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个 或更多个相关联的列出项的全部或任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
下面结合附图,通过对实施例的描述,对发明内容作进一步说明。
请参照图1,图1为本发明提供的基于基线的多普勒频谱图的调整方法较佳实施例的流程图。所述方法包括:
S10、获取根据采集到的脑血流数据及当前基线生成单侧多普勒频谱图的脑血流指数;
S20、将所述脑血流指数与预设的第一阈值进行比较,并根据比较结果调整基线;
S30、基于调整后的基线生成单侧多普勒频谱图。
本实施例提供的基于基线的多普勒频谱图的调整方法,其获取根据采集到的脑血流数据及当前基线生成单侧多普勒频谱图的脑血流峰值作为脑血流指数,并将脑血流指数与预设第一阈值进行比较,并根据比较结果自动调整基线,使得所述多普勒频谱图可以清楚完整的呈现频谱数据,无需医生手动调整基线大小的工作,提高医生工作效率,也减少患者的就诊时间。
具体的来说,在所述步骤S10中,所述脑血流数据为脑血流速度,所述脑血流指数为采集到的同一脑血管的脑血流速度的峰值,这里记为Peak值。所述Peak值为单侧脑血流速度的峰值,如,正向脑血流速度峰值或负向脑血流速度峰值。在本实施中,所述Peak值为正向脑血流速度峰值。
进一步,人体中血液流动的速度一般都是按照心动周期进行变化。心脏在收缩期,其向外射血,血管内血流速度加快;心脏在舒张期,血管内血流速度减慢。因此,为了提高基线调整的及时性以及准确性,可以累积连续预设数量心动周期的脑血流速度以形成一频谱周期,并获取所述频谱周期的Peak值。相应的,所述步骤S10、获取根据采集到的脑血流数据及当前基线生成单侧多普勒频谱图的脑血流指数之前还可以包括:
S01、分析所述脑血流数据的心动周期,并将所述脑血流数据按照预设数量的心动周期划分为对应的周期脑血流数据。
具体地,所述预设数量为预设设置的,如3、4以及5等。在本实施例中,所述预设数量优选为3,这样既可以能确定采集到脑血流数据对应的血管的多普勒频谱状态,又可以快速及时的进行基线调整,以使得多普勒频谱图可以呈现完整的多普勒数据。
相应的,所述步骤S10、获取根据采集到的脑血流数据及当前基线生成单侧多普勒频谱图的脑血流指数具体包括:
S11、判断所述周期脑血流数据包含的所有心动周期的脑血流数据的有效性。
具体地,所述判断所述脑血流数据包含的所有心动周期的脑血流数据的有效性指的是包含于所述周期脑血流数据中的各心动周期脑血流数据的有效性。各脑血流各心动周期脑血流数据的有效性的判断过程具体可以为对超声经颅多普勒设备采集每个心动周期的脑血流数据,并将所述脑血流数据经过FFT变换得到频谱信号;再计算所述频谱信号的包络数据,并根据所述包络数据分析脑血流数据的有效性。当然,所述所有心动周期的脑血流数据的有效性指的是各心动周期脑血流数据的有效性。在实际应用中,根据所述包络数据分析脑血流数据的有效性可以是根据包络数据计算频谱参数,如果计算得到频谱参数则判定该心动周期的脑血流数据有效,如果未计算得到频谱参数则判定该心动周期的脑血流数据无效。
S12、当所有心动周期的脑血流数据全部有效时,获取根据所述周期脑血流数据及当前基线生成单侧多普勒频谱图的脑血流指数。
具体地,所述获取根据所述周期脑血流数据及当前基线生成单侧多普勒频谱图的脑血流指数可以为周期闹血流数据包含的所有心动周期的Peak值,也可以是所有心动周期的Peak值的平均值,还可以是最后一个心动周期的Peak值的平均值。在实施例中,所述脑血流指数为最后一个心动周期的Peak值的平均值。此外,当所有心动周期的脑血流数据存在无效数据时,直接忽略了当前周期脑血流数据的所有心动周期的脑血流数据,并从而获取下一周期脑血流数据。
进一步,为了提高多普勒频谱图显示的清晰性和完整性,所述根据所述周期脑血流数据及当前基线生成单侧多普勒频谱图仅是在采集到脑血流数据后进行 的模拟绘制,而是先获取模拟绘制得到多普勒频谱图的脑血流指数,并将其与第一阈值,在比较结果为无需调整基线时,直接将多普勒频谱图呈现出来,如果需要调整基线,则根据当前周期脑血流数据以及调整后的基线生成并呈现多普勒频谱图。这样可以保证当前周期脑血流数据可以完整清晰的呈现在多普勒频谱图上。
进一步,在所述步骤S20中,所述第一阈值为预先设置的,其为检测当前基线生成的多普勒频谱图是否可以完整呈现多普勒数据的依据。在本实施例中,所述第一阈值优选为呈现频谱数据侧标尺的三分之二。例如,呈现频谱数据侧标尺为120cm/s,那么所述第一阈值为80cm/s。也就是说,所述多普勒信号所占用的范围最多可以达到呈现频谱数据侧多普勒频谱图的66%,这样确保了实现最佳的诊断效果。
示例性的,所述步骤S20、所述将所述脑血流指数与第一阈值进行比较,并根据比较结果调整当前基线具体包括:
S21、将所述脑血流指数与第一阈值进行比较。
具体地,所述将脑血流指数与第一阈值进行比较指的是将当前周期脑血流数据的Peak值与第一阈值进行比较,以确定根据当前基线生成的多普勒频谱图能否完整显示多普勒数据。
S22、若所述脑血流指数大于第一阈值,则将当前基线向未呈现频谱数据侧调整预设距离。
具体地,所述预设距离为预先设置的,例如,预设距离为呈现频谱数据侧标尺的5%,也就是说,将基线位置向未呈现频谱数据侧移动呈现频谱数据侧标尺的5%,并根据更新后的当前基线生成单侧多普勒频谱图。此外,应该说明的是,在多普勒频谱图中,呈现频谱数据侧为未呈现频谱数据侧的标尺长度可以相同,也可以不同,这要是由于当调整基线后,基线可以不处于0cm/s的位置,例如,基线处于-10cm/m的位置等。例如,图2给出调整前多普勒频谱图,图3给出调整后多普勒频谱图。
进一步,在将当前基线调整后,重复执行获取根据更新后当前基线生成的多普勒频谱图的当前周期脑血流数据的Peak值以及与第一阈值比较的步骤,如果获取Peak值大于第一阈值,则继续调整当前基线并重复获取与比较过程直至Peak值小于等于第一阈值,从而实现了基线的逐步调整,可以更加准确的确定 所需基线。
进一步,所述调整过程可以在实际生成多普勒频率图之前执行,而在Peak值小于等于第一阈值时生成并呈现多普勒频率图。当然,也可以调整一次后生成并呈现多普勒频率图,而在获取下一个周期脑血流数据时,同时对当前周期脑血流数据和下一个周期脑血流数据进行同时判断,而当存在一个周期的Peak值大于第一阈值时调整下一周期对应的当前基线。此外,在当前周期的Peak值小于等于第一阈值时,停止对当前周期Peak值判断。
在本发明的一个实施例中,其包含上述实施例的步骤,其与上述实施例的不同之处在于,所述若所述脑血流指数大于第一阈值,则将当前基线向未呈现频谱数据侧调整具体包括:
H10、若所述脑血流指数大于第一阈值,则获取当前基线与预设基线的间隔,其中,所述预设基线为未呈现频谱数据侧的最底端;
H20、将所述间隔与预设距离进行比较;
H30、当所述间隔小于等于预设距离时,将当前基线向未呈现频谱数据侧调整;
H40、当所述间隔大于预设距离时,停止执行调整基线操作并呈现所述多普勒频谱图。
具体地,所述未呈现频谱数据侧的最底端指的是未呈现频谱数据侧标尺的最大值,所述间隔指的是当前基线对应的标尺值与未呈现频谱数据侧标尺的最大值的差值的绝对值。也就是说,所述间隔=∣未呈现频谱数据侧标尺的最大值-当前基线对应的标尺值∣,例如,当然基线所处位置为-10cm/s,未呈现频谱数据侧标尺的最大值为-60cm/s,那么间隔为50。
进一步,当间隔大于预设距离时,说明无法按照预设距离调整基线。此时,可以停止调整基线操作并呈现所述多普勒频谱图;也可以将基线调整在预设位置并呈现所述多普勒频谱图。在实际应用中,还可以提示用户当前基线无法调整,并询问是否开启自动标尺调节功能,并在用户开启自动调整标尺功能后,自动调节标尺(例如,将当前标尺调大为当前标尺的1.5倍等)并重复执行上述基线调整过程,以及在执行预设距离调整基线后,关闭自动调整标尺功能。在本实施例的变形实施例中,还可以提示用户手动调节标尺,并根据间隔与预设距离之间的 关系提示用户手动调节标尺的尺寸,进而可以使得用户快速调整标尺。
本发明还提供了一种计算机可读的存储介质,其存储有多条指令,所述指令适于由处理器加载并执行如上任一所述的基于基线的多普勒频谱图的调整方法
本发明还提供了一种基于基线的多普勒频谱图的调整设备,如图4所示,其包括可以主机100和探头200;所述主机100包括至少一个处理器(processor)101;以及存储器(memory)102;其还可以包括发射装置、探头座和处理电路等。其中,所述处理器101、发射装置、存储器102和探头200可以通过总线完成相互间的通信。处理器可以调用存储器中的逻辑指令,以执行上述实施例中的方法。
此外,上述的存储器中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令或模块。处理器30通过运行存储在存储器中的软件程序、指令或模块,从而执行功能应用以及数据处理,即实现上述实施例中的方法。
存储器可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器。例如,U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
此外,上述存储介质以及移动终端中的多条指令处理器加载并执行的具体过程在上述方法中已经详细说明,在这里就不再一一陈述。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种基于基线的多普勒频谱图的调整方法,其特征在于,其包括:
    获取根据采集到的脑血流数据及当前基线生成单侧多普勒频谱图的脑血流指数;
    将所述脑血流指数与预设的第一阈值进行比较,并根据比较结果调整基线;
    基于调整后的基线生成单侧多普勒频谱图。
  2. 根据权利要求1所述基于基线的多普勒频谱图的调整方法,其特征在于,所述获取根据采集到的脑血流数据及当前基线生成单侧多普勒频谱图的脑血流指数之前还包括:
    分析采集到的脑血流数据的心动周期,并将所述脑血流数据按照预设数量的心动周期划分为对应的周期脑血流数据。
  3. 根据权利要求2所述基于基线的多普勒频谱图的调整方法,其特征在于,所述获取根据采集到的脑血流数据及当前基线生成单侧多普勒频谱图的脑血流指数具体包括:
    判断所述周期脑血流数据包含的所有心动周期的脑血流数据的有效性;
    当所有心动周期的脑血流数据全部有效时,获取根据所述周期脑血流数据及当前基线生成单侧多普勒频谱图的脑血流指数。
  4. 根据权利要求1-3任一所述基于基线的多普勒频谱图的调整方法,其特征在于,所述获取根据采集到的脑血流数据及当前基线生成单侧多普勒频谱图的脑血流指数具体为:
    根据采集到的脑血流数据及当前基线生成单侧多普勒频谱图,并获取所述单侧多普勒频谱图单侧频谱的脑血流指数。
  5. 根据权利要求1所述基于基线的多普勒频谱图的调整方法,其特征在于,所述将所述脑血流指数与预设的第一阈值进行比较,并根据比较结果调整当前基线具体包括:
    将所述脑血流指数与预设的第一阈值进行比较;
    若所述脑血流指数大于第一阈值,则将当前基线向未呈现频谱数据侧调整预设距离。
  6. 根据权利要求5所述基于基线的多普勒频谱图的调整方法,其特征在于,所述若所述脑血流指数大于第一阈值,则将当前基线向未呈现频谱数据侧调整具 体包括:
    若所述脑血流指数大于第一阈值,则获取当前基线与预设基线的间隔,其中,所述预设基线为未呈现频谱数据侧的最底端;
    将所述间隔与预设距离进行比较;
    当所述间隔小于等于预设距离时,将当前基线向未呈现频谱数据侧调整。
  7. 根据权利要求6所述基于基线的多普勒频谱图的调整方法,其特征在于,所述若所述脑血流指数大于第一阈值,则将当前基线向未呈现频谱数据侧调整还包括:
    当所述间隔大于预设距离时,停止执行调整基线操作并呈现所述多普勒频谱图。
  8. 根据权利要求1所述基于基线的多普勒频谱图的调整方法,其特征在于,所述第一阈值为呈现频谱数据侧标尺的三分之二。
  9. 一种存储介质,其特征在于,其存储有多条指令,所述指令适于由处理器加载并执行如权利要求1-8任一所述的基于基线的多普勒频谱图的调整方法。
  10. 一种基于基线的多普勒频谱图的调整设备,其特征在于,其包括:
    处理器,适于实现各指令;以及
    存储设备,适于存储多条指令,所述指令适于由处理器加载并执行如权利要求1-8任一所述的基于基线的多普勒频谱图的调整方法。
PCT/CN2018/077708 2017-10-16 2018-03-01 一种基于基线的多普勒频谱图的调整方法及设备 WO2019075982A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710961993.2A CN107822656A (zh) 2017-10-16 2017-10-16 一种基于基线的多普勒频谱图的调整方法及设备
CN201710961993.2 2017-10-16

Publications (1)

Publication Number Publication Date
WO2019075982A1 true WO2019075982A1 (zh) 2019-04-25

Family

ID=61648189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077708 WO2019075982A1 (zh) 2017-10-16 2018-03-01 一种基于基线的多普勒频谱图的调整方法及设备

Country Status (2)

Country Link
CN (1) CN107822656A (zh)
WO (1) WO2019075982A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070043319A (ko) * 2005-10-21 2007-04-25 주식회사 메디슨 도플러 스펙트럼의 베이스라인 및 스케일을 조절하는 영상처리 시스템 및 방법
CN101647715A (zh) * 2007-08-28 2010-02-17 深圳迈瑞生物医疗电子股份有限公司 自动优化多普勒成像参数的方法和装置
JP2010088943A (ja) * 2010-01-25 2010-04-22 Toshiba Corp ドプラ超音波診断装置
CN102247170A (zh) * 2010-09-29 2011-11-23 深圳市蓝韵实业有限公司 一种多普勒成像自动优化方法
CN202920239U (zh) * 2012-08-16 2013-05-08 无锡祥生医学影像有限责任公司 一种用于触摸屏超声诊断仪的多普勒频谱优化装置
CN105476661A (zh) * 2016-01-13 2016-04-13 北京悦琦创通科技有限公司 调整多普勒频谱图的方法和设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070043319A (ko) * 2005-10-21 2007-04-25 주식회사 메디슨 도플러 스펙트럼의 베이스라인 및 스케일을 조절하는 영상처리 시스템 및 방법
CN101647715A (zh) * 2007-08-28 2010-02-17 深圳迈瑞生物医疗电子股份有限公司 自动优化多普勒成像参数的方法和装置
JP2010088943A (ja) * 2010-01-25 2010-04-22 Toshiba Corp ドプラ超音波診断装置
CN102247170A (zh) * 2010-09-29 2011-11-23 深圳市蓝韵实业有限公司 一种多普勒成像自动优化方法
CN202920239U (zh) * 2012-08-16 2013-05-08 无锡祥生医学影像有限责任公司 一种用于触摸屏超声诊断仪的多普勒频谱优化装置
CN105476661A (zh) * 2016-01-13 2016-04-13 北京悦琦创通科技有限公司 调整多普勒频谱图的方法和设备

Also Published As

Publication number Publication date
CN107822656A (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
AU2010213753A1 (en) Detection of parameters in cardiac output related waveforms
RU2012146904A (ru) Способы, система и устройство для обнаружения, диагностики и лечения нарушений биологического ритма
AU2015321421B2 (en) Method and apparatus for determining aortic valve opening
WO2018218441A1 (zh) 谱图分析方法、装置和设备及计算机可读存储介质
CN104382618A (zh) 基于胎心率检测的去噪方法和胎心率检测仪
WO2018129822A1 (zh) 一种血压测量方法及设备
US20210369235A1 (en) Method for determining pulse transmission time, arteriosclerosis detection apparatus and system
WO2019010985A1 (zh) 脑血流自动调节指数的输出方法、存储介质及超声设备
WO2019075981A1 (zh) 一种基于标尺的多普勒频谱图的调整方法及设备
CN105912879A (zh) 一种胎心率曲线修正方法及其装置
WO2022142518A1 (zh) 基于血管充血状态的诊断模式确定方法及系统
CN111603144A (zh) 一种新型冠状病毒感染患者快速初筛检测仪和检测方法
CN105476630A (zh) 中医心藏功能的检测方法
WO2019010983A1 (zh) 一种超声系统数据的选段方法、存储介质及超声设备
US11375908B2 (en) Blood pressure detection signal sampling and compensation method and apparatus, and blood pressure signal collection system
CN106991291B (zh) 胎儿心电信号实时转换为胎儿胎音的计算机仿真转换方法
WO2019075982A1 (zh) 一种基于基线的多普勒频谱图的调整方法及设备
WO2013080115A1 (en) System and method for identifying high risk pregnancies
CN103646164A (zh) 一种便携式全方位人体健康检测系统及方法
JP2010068955A (ja) 超音波診断装置および超音波診断装置のデータ処理プログラム
Wróbel et al. Automated detection of fetal movements in Doppler ultrasound signals versus maternal perception
US9867547B2 (en) System and method to calculate cardiac characteristics
WO2024093696A1 (zh) 用于脉搏波测量的设备、方法、介质和程序产品
CN113768476B (zh) 心动周期时相检测方法、装置及计算机程序产品
Kaluzynski et al. System for objective assessment of fetal activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868359

Country of ref document: EP

Kind code of ref document: A1