WO2019075885A1 - 基于可控冲击波复合浪涌式增压注水的煤层气井改造方法 - Google Patents

基于可控冲击波复合浪涌式增压注水的煤层气井改造方法 Download PDF

Info

Publication number
WO2019075885A1
WO2019075885A1 PCT/CN2017/116170 CN2017116170W WO2019075885A1 WO 2019075885 A1 WO2019075885 A1 WO 2019075885A1 CN 2017116170 W CN2017116170 W CN 2017116170W WO 2019075885 A1 WO2019075885 A1 WO 2019075885A1
Authority
WO
WIPO (PCT)
Prior art keywords
water injection
shock wave
wellhead
blowout preventer
pressure
Prior art date
Application number
PCT/CN2017/116170
Other languages
English (en)
French (fr)
Inventor
张永民
汤俊萍
刘美娟
姚伟博
赵有志
邱爱慈
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2019075885A1 publication Critical patent/WO2019075885A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/006Production of coal-bed methane

Definitions

  • the invention belongs to the technical field of energy exploitation, and particularly relates to a method for reforming a coalbed methane well based on a controlled shock wave composite surge type pressurized water injection.
  • CBM is the cause of the country to actively support the cause, CBM production in 2010 of 10 billion national planning m 3, in which the ground pumping five billion m 3, pumping tunnel 5 billion m 3. The pumping of the tunnel has reached the planned output. Due to the limitation of coal seam reconstruction and gas well stimulation measures, the ground pumping has not yet reached the planned output.
  • the traditional method of transforming the coal seam is to inject external liquid into the formation, which will inevitably cause damage to the coal seam.
  • the static pressure due to hydraulic fracturing may cause the coal seam to be compacted, resulting in the coalbed methane well not producing gas;
  • hydraulic power Fracturing measures can only form the effect of “line-like” or incomplete “reticulated” coal reservoirs. In fact, it is impossible to achieve regional infiltration in the true sense, and it is more difficult to lay the sand supporting the cracks into the coal seam cracks.
  • the object of the present invention is to provide a method for reforming a coalbed methane well based on a controlled shock wave composite surge type pressurized water injection to overcome the disadvantages of the above conventional method.
  • a method for rebuilding the ground-extracted coalbed methane well based on repeated controllable shock wave combined surge pressurized water injection is proposed. This method can improve the seepage capacity, analytical capacity and re-adsorption capacity of the coal seam without harming the coal seam. Finally, increase the production and production capacity of CBM wells.
  • the technical solution of the present invention is: a coalbed methane well reforming method based on a controllable shock wave composite surge boosting water injection, which is special in that it comprises the following steps:
  • the number of shock wave operations set in the step 3.2) is greater than 3 times, the set recording interval duration is 5 min, the set pressure value is 1 MPa, and the cumulative note set in the step 3.3)
  • the water volume is 400m 3 ;
  • the shock wave generated by the controllable shock wave generating device has a peak pressure greater than 200 MPa, the shock wave pulse width is greater than 50 ⁇ s, and the operating frequency is 120 s/time.
  • the present invention also proposes another method for reconstructing a coalbed methane well based on a controlled shock wave composite surge pressurized water injection, which is characterized in that it comprises the following steps:
  • the number of shock wave operations set in the step 3) is 5-10 times; the first water injection amount in the step 4.1) is set to 200 m 3 ; and the step 4.2) is set to a pressure value of 1 MPa.
  • the initial water injection amount setting value is 200m 3 ; the cumulative water injection amount setting value of the step 4.3) is 600m 3 ; the shock wave peak pressure generated by the controllable shock wave generating device is greater than 200MPa, the shock wave pulse width is greater than 50 ⁇ s, and the working frequency is 120s/ Times.
  • controllable shock wave technology used in the present invention is a purely physical method, which does not inject any foreign liquid into the coal seam, and thus does not harm the coal seam;
  • the invention combines the dynamic pressure generated by the controllable shock wave technology and the static pressure of the water injection pressure, and the new crack generated by the shock wave can support the crack under the condition of water injection and pressure, and can be further extended. Cracks form a seam around the wellbore to expand the gas desorption area of the coal seam and avoid the compaction that may be caused by the static pressure of the traditional modification method acting on the coal seam.
  • the peak value of the shock wave pressure used in the present invention is much larger than the compressive strength of the coal seam, the seam is formed in the original coal and left in the structural coal, and the non-connected pores, micro-cracks and the like in the coal seam are communicated to improve the coal seam. Seepage capacity.
  • the shock wave used in the coal layer generates strong shear force at the interface of the medium with large wave impedance difference in the coal seam, and peels off the debris attached to the surface of the coal rock in the seepage channel such as pores and fissures of the coal seam.
  • the coal seam blocking effect is removed and the coal seam seepage capacity is improved.
  • the invention can segment the coal seam without using a packer, and can not only perform fine treatment on the coal seam, but also selectively perform treatment in a specific region.
  • the pressurized water injection can make up for the insufficient formation pressure caused by the formation deficit, and can also promote the crack extension.
  • Figure 1 is a schematic view of a wellhead connection of the present invention
  • Figure 2 is a flow chart of the operation of the present invention.
  • the reform method of coalbed methane well based on controlled shock wave composite surge boosting water injection combines the traditional static method with the dynamic method.
  • the shock wave combined surge pressurized water injection method is divided into shock wave series surge boosting water injection.
  • shock wave alternating surge boosting water injection two kinds of work processes.
  • the controllable shock wave generating device uses a wire electric explosion plasma to drive the energetic material to generate a shock wave.
  • the controllable shock wave cracks part of the coal seam. After creating new cracks in the coal seam, communicating and expanding the original fissures, these fissures are supported and extended under the water pressure of the wellbore, thereby improving the desorption and seepage capacity of the coal seam and inhibiting the coal seam. Re-adsorption capacity.
  • the water injection speed when the water injection speed is fast, the single water injection amount is used as the control target, which is called the quantitative surge; when the water injection speed is slow, the water injection pressure is the control target, which is called the constant pressure surge.
  • a method for reforming a coalbed methane well based on a controlled shock wave composite surge boosting water injection comprising the following steps:
  • the inner diameter of the casing of the coalbed methane well is 118.6mm-127.3mm, and the diameter of the controllable shock wave generating equipment is 102mm. Due to the possibility of deformation of the casing of the coalbed methane well, the diameter of the controllable shock wave generating equipment is not The well is less than 108mm and the length is not less than 1.5m, and the well is drilled to 10m below the deepest working point to ensure the smooth down of the equipment.
  • the shock wave generated by the controllable shock wave generating device has a peak pressure greater than 200 MPa, a shock wave pulse width greater than 50 ⁇ s, and an operating frequency of 120 s/time.
  • a method for reforming a coalbed methane well based on a controlled shock wave composite surge boosting water injection comprising the following steps:
  • the inner diameter of the casing of the coalbed methane well is 118.6mm-127.3mm, and the diameter of the controllable shock wave generating equipment is 102mm. Due to the possibility of deformation of the casing of the coalbed methane well, the diameter of the controllable shock wave generating equipment is not The well is less than 108mm and the length is not less than 1.5m, and the well is drilled to 10m below the deepest working point to ensure the smooth down of the equipment.
  • the shock wave generated by the controllable shock wave generating device has a peak pressure greater than 200 MPa, a shock wave pulse width greater than 50 ⁇ s, and an operating frequency of 120 s/time.
  • the controllable shock wave generating device described in the patent document disclosed in the publication No. CN105674818A can be used as a specific structure and principle of the specification, and other devices capable of generating a controllable shock wave can be used.

Landscapes

  • Pipe Accessories (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

公开了一种基于可控冲击波复合浪涌式增压注水的煤层气井改造方法。该方法包括以下步骤:1)安装井口四通(1)和电缆防喷器(2),其中井口四通(1)下端与井口连接,上端与电缆防喷器(2)连接,第一侧口连接高压注水管线,第二侧口连接压力表(3);2)将可控冲击波产生设备穿过电缆防喷器(2)下入井中;3)关闭电缆防喷器(2),向煤层气井中注水,当注水压力达到煤层的抗压强度后,启动可控冲击波产生设备进行冲击波复合浪涌式注水增压作业;4)完成所有作业点后,打开井口四通(1)和井口电缆防喷器(2),起出可控冲击波产生设备;5)下水泵、水管和抽水杆,根据排采工艺投入排采。

Description

基于可控冲击波复合浪涌式增压注水的煤层气井改造方法 技术领域
本发明属于能源开采技术领域,具体涉及基于可控冲击波复合浪涌式增压注水的煤层气井改造方法。
背景技术
煤层气事业是国家积极扶持的事业,2010年全国规划的煤层气产量100亿m 3,其中地面抽排50亿m 3,坑道抽排50亿m 3。坑道抽排已达到规划产量,由于煤层改造和气井增产措施的限制,地面抽排尚未达到规划产量。
由于80%的煤层气是以吸附状态存在煤层中,为了实现煤层气的工业开采和加快矿井中煤层气的抽排速度,需要对煤层进行改造。目前的煤层改造方法基本沿用了油层改造的传统工艺,以水力压裂为主要方法。这些传统的方法存在以下缺点:
首先,传统改造煤层的方法都是需向地层注入外来液体,必然会对煤层造成伤害;其次,因水力压裂的静压力可能使煤层被压实,导致煤层气井不产气;其三,水力压裂措施往往只能形成“线状”或不完整“网状”的煤储层改造效果,实际上无法达到真正意义上的区域增渗,更难以将支撑裂缝的砂子铺入煤层裂缝。
发明内容
本发明的目的在于提供一种基于可控冲击波复合浪涌式增压注水的煤层气井改造方法,以克服上述传统方法的缺点。提出一种基于重复可控冲击波复合浪涌式增压注水的地面抽采煤层气井改造方法,该方法在不伤害煤层的情况下,提高煤层的渗流能力、解析能力和抑制煤层的再吸附能力,最终提高煤层气井的产量和产能。
本发明的技术解决方案是:基于可控冲击波复合浪涌式增压注水的煤层气井改造方法,其特殊之处在于:包括以下步骤:
1)安装井口四通和电缆防喷器,其中井口四通下端与井口连接,上端与电缆防喷器连接,第一侧口连接高压注水管线,第二侧口连接压力表;
2)将可控冲击波产生设备穿过电缆防喷器下入井中;
3)关闭电缆防喷器,向煤层气井中注水,当注水压力达到煤层的抗压强度后,启动可控冲击波产生设备进行冲击波复合浪涌式注水增压作业;
4)完成所有作业点后,打开井口四通和井口电缆防喷器,起出可控冲击波产生设备;
5)下水泵、水管和抽水杆,根据排采工艺投入排采。
上述步骤3)具体如下:
3.1)关闭井口电缆防喷器,通过高压注水管线向煤层气井中注水,当注水压力达到煤层的抗压强度后,停止加压并记录注水量,开始冲击波作业;
3.2)每完成设定次数的冲击波作业后停止,每隔固定时长记录一次井口压力,直至井口压力下降到设定压力值以下时停止;
3.3)重复步骤3.1)和步骤3.2)的操作,直至累计注水量达到设定值,完成作业。
进一步地,所述步骤3.2)中设定的冲击波作业次数大于3次,所述设定的记录间隔时长为5min,所述设定压力值为1MPa;所述步骤3.3)中设定的累计注水量为400m 3;可控冲击波产生装置产生的冲击波峰值压力大于200MPa,冲击波脉宽大于50μs,工作频率为120s/次。
进一步地,在安装井口四通和电缆防喷器之前采用通井规通井,以确保设备顺利下井。
进一步地,在安装井口四通和电缆防喷器之前起出井下所有生产管柱,以便可控冲击波产生装置能够下入煤层气井中作业。
同时,本发明还提出了另一种基于可控冲击波复合浪涌式增压注水的煤层气井改造方法,其特征在于:包括以下步骤:
1)安装井口四通和电缆防喷器,其中井口四通下端与井口连接,上端与电缆防喷器连接,第一侧口连接高压注水管线,第二侧口连接压力表;
2)将可控冲击波产生设备穿过电缆防喷器下入井中;
3)关闭井口电缆防喷器,给井筒注水,液面到达井口后,开始冲击波作业,完成每个作业点设定的作业次数后,起出井下冲击波产生设备;
4)拆下电缆防喷器,封堵井口,开始浪涌式注水增压,达到注水量以后,拆下注水管;
5)安装水泵、水管和抽水杆,根据排采工艺投入排采。
上述步骤4)具体如下:
4.1)拆下电缆防喷器,封堵井口,通过高压注水管线向煤层气井注水增压,当压力达到作业煤层的抗压强度或者一次注水量达到设定值后停止注水;
4.2)待注水压力自然下降到设定值以下时,再次向井筒注水加压,当压力达到作业煤层的抗压强度或者一次注水量达到设定值后停止注水;
4.3)重复步骤4.1)和步骤4.2)在煤层中形成浪涌,当累计向井筒注入水量达到设定值 以上时,完成作业。
进一步地,所述步骤3)中设定的冲击波作业次数为5-10次;所述步骤4.1)中的一次注水量设定值为200m 3;所述步骤4.2)设定压力值为1MPa,一次注水量设定值为200m 3;所述步骤4.3)的累计注水量设定值为600m 3;可控冲击波产生装置产生的冲击波峰值压力大于200MPa,冲击波脉宽大于50μs,工作频率为120s/次。
进一步地,在安装井口四通和电缆防喷器之前采用通井规通井,以确保设备顺利下井。
进一步地,在安装井口四通和电缆防喷器之前起出井下所有生产管柱,以便可控冲击波产生装置能够下入煤层气井中作业。
采用本发明的方案,具有以下优点:
1、本发明所采用的可控冲击波技术是纯物理方法,不向煤层注入任何外来液体,因此不伤害煤层;
2、本发明由于将可控冲击波技术产生的动压力和注水加压的静压力的特点进行了结合,冲击波产生的新裂缝可在注水加压的条件下实现对裂缝的支撑,又可进一步延伸裂缝,在井筒周围形成缝网,扩大煤层瓦斯解吸面积,避免传统改造方法的静压作用于煤层时可能造成的压实作用。
3、本发明由于所采用的冲击波压力峰值远大于煤层的抗压强度,会在原生煤中造缝和在构造煤中留痕,沟通煤层中不连通的孔隙、微裂隙等渗流通道,提高煤层的渗流能力。
4、本发明由于所采用的冲击波会在煤层中波阻抗相差较大的介质界面上产生较强的剪切力,剥离煤层孔隙、裂隙等渗流通道中附着在煤岩表面的杂物,起到解除煤层堵塞作用,提高煤层渗流能力。
5、本发明不用封隔器即可对煤层进行分段处理,不仅可以对煤层进行精细处理,还可有选择的进行特定区域的处理。
6、本发明在可控冲击波产生设备对煤层气井进行改造的同时,加压注水可以弥补因为地层亏空导致的地层压力不足,还可促进裂缝延伸。
附图说明
图1是本发明的井口连接示意图;
图2是本发明的作业流程图。
图中:1—井口四通,2—电缆防喷器,3—压力表,4—井口。
具体实施方式
基于可控冲击波复合浪涌式增压注水的煤层气井改造方法,是将传统的静力学方法与动力学方法相结合,冲击波复合浪涌式增压注水方法分为冲击波串联浪涌式增压注水和冲击波交替浪涌式增压注水两种作业工艺。可控冲击波产生设备采用金属丝电爆炸等离子体驱动含能材料产生冲击波。可控冲击波对部分煤层致裂,在煤层中创造新的裂隙、沟通、扩展原有裂隙后,这些裂隙在井筒水压作用下被支撑和伸展,从而提高煤层的解吸、渗流能力,抑制煤层的再吸附能力。根据注水情况,注水速度较快时,以单次注水量为控制目标,称为定量浪涌;注水速度较慢时,以注水压力为控制目标,称为定压浪涌。
实施例一
基于可控冲击波复合浪涌式增压注水的煤层气井改造方法,包括以下步骤:
1)安装井口四通1和电缆防喷器2,其中井口四通1下端与井口4连接,上端与电缆防喷器2连接,第一侧口连接高压注水管线,第二侧口连接压力表3;
2)将可控冲击波产生设备穿过电缆防喷器2下入井中;
3)关闭电缆防喷器2,向煤层气井中注水,当注水压力达到煤层的抗压强度后,启动可控冲击波产生设备进行冲击波复合浪涌式注水增压作业;
3.1)关闭井口电缆防喷器2,通过高压注水管线向煤层气井中注水,当注水压力达到煤层的抗压强度后,停止加压并记录注水量,开始冲击波作业;
3.2)每完成3次冲击波作业后停止,每隔5min记录一次井口压力,直至井口压4力下降到以下1MPa时停止;
3.3)重复步骤3.1)和步骤3.2)的操作,直至累计注水量达到400m 3,完成作业。
4)完成所有作业点后,打开井口四通和井口电缆防喷器2,起出可控冲击波产生设备;
5)下水泵、水管和抽水杆,根据排采工艺投入排采。
若井下有生产管柱,在安装井口四通和电缆防喷器之前起出井下所有生产管柱,以便可控冲击波产生装置能够下入煤层气井中作业。
一般煤层气井套管的内径为118.6mm-127.3mm,可控冲击波产生设备的直径为102mm,由于煤层气井套管可能有变形等意外情况,所以,在可控冲击波产生设备下井前,用直径不小于108mm、长度不小于1.5m的通井规通井到最深作业点以下10m处,以确保设备顺利下井。
上述可控冲击波产生装置产生的冲击波峰值压力大于200MPa,冲击波脉宽大于50μs,工作频率为120s/次。
实施例二
基于可控冲击波复合浪涌式增压注水的煤层气井改造方法,包括以下步骤:
1)安装井口四通1和电缆防喷器2,其中井口四通1下端与井口4连接,上端与电缆防喷器2连接,第一侧口连接高压注水管线,第二侧口连接压力表3;
2)将可控冲击波产生设备穿过电缆防喷器2下入井中;
3)关闭井口电缆防喷器2,给井筒注水,液面到达井口后,开始冲击波作业,完成每个作业点设定的作业次数后,起出井下冲击波产生设备;
4)拆下电缆防喷器,封堵井口,开始浪涌式注水增压,达到注水量以后,拆下注水管;
4.1)拆下电缆防喷器2,封堵井口,通过高压注水管线向煤层气井注水增压,当压力达到作业煤层的抗压强度或者一次注水量达到200m 3后停止注水;
4.2)待注水压力自然下降到1MPa以下时,再次向井筒注水加压,当压力达到作业煤层的抗压强度或者一次注水量达到200m 3后停止注水;
4.3)重复步骤4.1)和步骤4.2)在煤层中形成浪涌,当累计向井筒注入水量达到600m 3以上时,完成作业。
5)安装水泵、水管和抽水杆,根据排采工艺投入排采。
若井下有生产管柱,在安装井口四通1和电缆防喷器2之前起出井下所有生产管柱,以便可控冲击波产生装置能够下入煤层气井中作业。
一般煤层气井套管的内径为118.6mm-127.3mm,可控冲击波产生设备的直径为102mm,由于煤层气井套管可能有变形等意外情况,所以,在可控冲击波产生设备下井前,用直径不小于108mm、长度不小于1.5m的通井规通井到最深作业点以下10m处,以确保设备顺利下井。
上述可控冲击波产生装置产生的冲击波峰值压力大于200MPa,冲击波脉宽大于50μs,工作频率为120s/次。该可控冲击波产生装置可使用公开号为CN105674818A的专利文献中记载的可控冲击波产生装置,其具体结构和原理详见说明书具体实施方式部分,也可使用其它可以产生可控冲击波的装置。

Claims (10)

  1. 基于可控冲击波复合浪涌式增压注水的煤层气井改造方法,其特征在于:包括以下步骤:
    1)安装井口四通和电缆防喷器,其中井口四通下端与井口连接,上端与电缆防喷器连接,第一侧口连接高压注水管线,第二侧口连接压力表;
    2)将可控冲击波产生设备穿过电缆防喷器下入井中;
    3)关闭电缆防喷器,向煤层气井中注水,当注水压力达到煤层的抗压强度后,启动可控冲击波产生设备进行冲击波复合浪涌式注水增压作业;
    4)完成所有作业点后,打开井口四通和井口电缆防喷器,起出可控冲击波产生设备;
    5)下水泵、水管和抽水杆,根据排采工艺投入排采。
  2. 根据权利要求1所述的基于可控冲击波复合浪涌式增压注水的煤层气井改造方法,其特征在于:所述步骤3)具体如下:
    3.1)关闭井口电缆防喷器,通过高压注水管线向煤层气井中注水,当注水压力达到煤层的抗压强度后,停止加压并记录注水量,开始冲击波作业;
    3.2)每完成设定次数的冲击波作业后停止,每隔固定时长记录一次井口压力,直至井口压力下降到设定压力值以下时停止;
    3.3)重复步骤3.1)和步骤3.2)的操作,直至累计注水量达到设定值,完成作业。
  3. 根据权利要求2所述的基于可控冲击波复合浪涌式增压注水的煤层气井改造方法,其特征在于:所述步骤3.2)中设定的冲击波作业次数大于3次,所述设定的记录间隔时长为5min,所述设定压力值为1MPa;所述步骤3.3)中设定的累计注水量为400m 3;可控冲击波产生装置产生的冲击波峰值压力大于200MPa,冲击波脉宽大于50μs,工作频率为120s/次。
  4. 根据权利要求1或2或3所述的基于可控冲击波复合浪涌式增压注水的煤层气井改造方法,其特征在于:在安装井口四通和电缆防喷器之前采用通井规通井。
  5. 根据权利要求1或2或3所述的基于可控冲击波复合浪涌式增压注水的煤层气井改造方法,其特征在于:在安装井口四通和电缆防喷器之前起出井下所有生产管柱。
  6. 基于可控冲击波复合浪涌式增压注水的煤层气井改造方法,其特征在于:包括以下步骤:
    1)安装井口四通和电缆防喷器,其中井口四通下端与井口连接,上端与电缆防喷器连 接,第一侧口连接高压注水管线,第二侧口连接压力表;
    2)将可控冲击波产生设备穿过电缆防喷器下入井中;
    3)关闭井口电缆防喷器,给井筒注水,液面到达井口后,开始冲击波作业,完成每个作业点设定的作业次数后,起出井下冲击波产生设备;
    4)拆下电缆防喷器,封堵井口,开始浪涌式注水增压,达到注水量以后,拆下注水管;
    5)安装水泵、水管和抽水杆,根据排采工艺投入排采。
  7. 根据权利要求6所述的基于可控冲击波复合浪涌式增压注水的煤层气井改造方法,其特征在于:所述步骤4)具体如下:
    4.1)拆下电缆防喷器,封堵井口,通过高压注水管线向煤层气井注水增压,当压力达到作业煤层的抗压强度或者一次注水量达到设定值后停止注水;
    4.2)待注水压力自然下降到设定值以下时,再次向井筒注水加压,当压力达到作业煤层的抗压强度或者一次注水量达到设定值后停止注水;
    4.3)重复步骤4.1)和步骤4.2)在煤层中形成浪涌,当累计向井筒注入水量达到设定值以上时,完成作业。
  8. 根据权利要求7所述的基于可控冲击波复合浪涌式增压注水的煤层气井改造方法,其特征在于:所述步骤3)中设定的冲击波作业次数为5-10次;所述步骤4.1)中的一次注水量设定值为200m 3;所述步骤4.2)设定压力值为1MPa,一次注水量设定值为200m 3;所述步骤4.3)的累计注水量设定值为600m 3;可控冲击波产生装置产生的冲击波峰值压力大于200MPa,冲击波脉宽大于50μs,工作频率为120s/次。
  9. 根据权利要求6或7或8所述的基于可控冲击波复合浪涌式增压注水的煤层气井改造方法,其特征在于:在安装井口四通和电缆防喷器之前采用通井规通井。
  10. 根据权利要求6或7或8所述的基于可控冲击波复合浪涌式增压注水的煤层气井改造方法,其特征在于:采用通井规通井前起出井下所有生产管柱。
PCT/CN2017/116170 2017-10-18 2017-12-14 基于可控冲击波复合浪涌式增压注水的煤层气井改造方法 WO2019075885A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710972985.8 2017-10-18
CN201710972985.8A CN107989586B (zh) 2017-10-18 2017-10-18 基于可控冲击波复合浪涌式增压注水的煤层气井改造方法

Publications (1)

Publication Number Publication Date
WO2019075885A1 true WO2019075885A1 (zh) 2019-04-25

Family

ID=62029847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116170 WO2019075885A1 (zh) 2017-10-18 2017-12-14 基于可控冲击波复合浪涌式增压注水的煤层气井改造方法

Country Status (2)

Country Link
CN (1) CN107989586B (zh)
WO (1) WO2019075885A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111502740A (zh) * 2020-03-30 2020-08-07 北京科技大学 单元循环式压抽一体化瓦斯抽采系统及方法
CN116696272A (zh) * 2023-07-13 2023-09-05 河南省许昌新龙矿业有限责任公司 一种缓冲控喷孔连续密闭抽水位自显示防喷装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111188603A (zh) * 2018-11-14 2020-05-22 西安交通大学 基于可控冲击波的注水井增注方法
CN110243236A (zh) * 2019-05-31 2019-09-17 周子惠 一种重复脉冲强冲击波反蛙人装置及工作方法
CN110344827B (zh) * 2019-06-13 2021-01-15 太原理工大学 等离子体弱化下伏煤层开采厚硬顶板强矿压的方法和装置
CN110439525A (zh) * 2019-08-30 2019-11-12 西安闪光能源科技有限公司 煤层气水平井解堵、增透完井方法
CN110656972A (zh) * 2019-10-31 2020-01-07 郑州慧矿智能科技有限公司 一种基于可控冲击波的煤巷条带煤层瓦斯抽采方法
CN110617103B (zh) * 2019-11-05 2021-02-02 西安闪光能源科技有限公司 煤矿井下瓦斯抽放钻孔增透改造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014059777A1 (zh) * 2012-10-17 2014-04-24 中国矿业大学 一种高压气动爆破卸压增透方法
CN104481574A (zh) * 2014-09-29 2015-04-01 中国矿业大学(北京) 一种利用高能声电复合技术提高煤层透气性的方法
CN104832149A (zh) * 2015-05-16 2015-08-12 太原理工大学 一种电脉冲辅助水力压裂的非常规天然气储层增透方法
CN105275443A (zh) * 2015-11-06 2016-01-27 中国矿业大学 一种煤矿井下高功率电爆震辅助水力压裂增透方法
CN105298462A (zh) * 2015-11-06 2016-02-03 中国矿业大学 一种底抽巷高功率电爆震辅助水力压裂煤层增透方法
CN105370257A (zh) * 2015-11-06 2016-03-02 中国矿业大学 一种煤层气井高功率电爆震辅助水力压裂增产方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155253B (zh) * 2011-01-26 2013-02-27 吕晓琳 基于重复频率冲击波的地面抽采煤层气井改造方法
CN102889094B (zh) * 2011-07-20 2015-02-25 平安煤矿瓦斯治理国家工程研究中心有限责任公司 煤层注水系统
RU2511329C1 (ru) * 2012-11-02 2014-04-10 Федеральное государственное бюджетное учреждение науки ИНСТИТУТ ПРОБЛЕМ КОМПЛЕКСНОГО ОСВОЕНИЯ НЕДР РОССИЙСКОЙ АКАДЕМИИ НАУК (ИПКОН РАН) Способ воздействия на угольный пласт

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014059777A1 (zh) * 2012-10-17 2014-04-24 中国矿业大学 一种高压气动爆破卸压增透方法
CN104481574A (zh) * 2014-09-29 2015-04-01 中国矿业大学(北京) 一种利用高能声电复合技术提高煤层透气性的方法
CN104832149A (zh) * 2015-05-16 2015-08-12 太原理工大学 一种电脉冲辅助水力压裂的非常规天然气储层增透方法
CN105275443A (zh) * 2015-11-06 2016-01-27 中国矿业大学 一种煤矿井下高功率电爆震辅助水力压裂增透方法
CN105298462A (zh) * 2015-11-06 2016-02-03 中国矿业大学 一种底抽巷高功率电爆震辅助水力压裂煤层增透方法
CN105370257A (zh) * 2015-11-06 2016-03-02 中国矿业大学 一种煤层气井高功率电爆震辅助水力压裂增产方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111502740A (zh) * 2020-03-30 2020-08-07 北京科技大学 单元循环式压抽一体化瓦斯抽采系统及方法
CN111502740B (zh) * 2020-03-30 2024-06-04 北京科技大学 单元循环式压抽一体化瓦斯抽采系统及方法
CN116696272A (zh) * 2023-07-13 2023-09-05 河南省许昌新龙矿业有限责任公司 一种缓冲控喷孔连续密闭抽水位自显示防喷装置
CN116696272B (zh) * 2023-07-13 2024-01-19 河南省许昌新龙矿业有限责任公司 一种缓冲控喷孔连续密闭抽水位自显示防喷装置

Also Published As

Publication number Publication date
CN107989586A (zh) 2018-05-04
CN107989586B (zh) 2018-12-25

Similar Documents

Publication Publication Date Title
WO2019075885A1 (zh) 基于可控冲击波复合浪涌式增压注水的煤层气井改造方法
CN101575983B (zh) 煤矿井下定向压裂增透消突方法及压裂增透消突装置
CN105625946B (zh) 煤层气水平井超临界co2射流造腔及多段同步爆燃压裂方法
WO2019075884A1 (zh) 基于可控冲击波技术的煤矿井下钻孔增透方法
US7882895B2 (en) Method for impulse stimulation of oil and gas well production
CN108952655B (zh) 一种常压页岩气筛管完井水力喷射体积压裂方法
US8082989B2 (en) Method for impulse stimulation of oil and gas well production
CN102022104B (zh) 裸眼水平井裸眼封隔器和预置连通器压裂完井方法
CN109973067B (zh) 水平井裂缝封堵井筒再造重复压裂方法
CN202108493U (zh) 水平井水力喷射多簇分段压裂管柱
CN105239984B (zh) 一种煤矿井下压裂裂缝扩展控制方法
CN107816340B (zh) 利用大功率超声波结合分支水平井热采页岩气的工艺方法
CN107587529B (zh) 气水压力平衡式地下防渗止水工艺及所用的设备
CN112832728B (zh) 一种基于甲烷多级燃爆的页岩储层压裂方法
CN104213896A (zh) 煤层气储层压裂洞穴一体化完井方法
CN109209332B (zh) 一种页岩气水平井的酸性滑溜水复合压裂方法
CN111691864A (zh) 一种煤矿井下超声激励辅助水力压裂卸压增透方法
CN109025940B (zh) 一种针对致密油藏的co2压裂驱油一体化采油方法
CN108661603B (zh) 注氮气诱发煤层自改造提高甲烷采收率方法
CN110886594B (zh) 开采煤层气的方法
CN113107454B (zh) 一种常压页岩气水平井的储层改造方法与应用
RU2626104C1 (ru) Способ заблаговременной дегазации угольных пластов
CN115492557B (zh) 深部不可采煤层co2封存及煤层气负压抽采装置及方法
CN105298433B (zh) 一种水力压、冲、抽一体化封孔装置及方法
CN107313743A (zh) 一种利用煤层气井对煤层底板隔水层薄弱区带修补方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928929

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17928929

Country of ref document: EP

Kind code of ref document: A1