WO2019075884A1 - 基于可控冲击波技术的煤矿井下钻孔增透方法 - Google Patents

基于可控冲击波技术的煤矿井下钻孔增透方法 Download PDF

Info

Publication number
WO2019075884A1
WO2019075884A1 PCT/CN2017/116169 CN2017116169W WO2019075884A1 WO 2019075884 A1 WO2019075884 A1 WO 2019075884A1 CN 2017116169 W CN2017116169 W CN 2017116169W WO 2019075884 A1 WO2019075884 A1 WO 2019075884A1
Authority
WO
WIPO (PCT)
Prior art keywords
shock wave
borehole
working
controllable shock
controllable
Prior art date
Application number
PCT/CN2017/116169
Other languages
English (en)
French (fr)
Inventor
张永民
汤俊萍
赵有志
刘美娟
姚伟博
邱爱慈
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2019075884A1 publication Critical patent/WO2019075884A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures

Definitions

  • the invention belongs to the field of energy and coal mine safety, and particularly relates to a method for drilling and deepening a hole in a coal mine based on a controllable shock wave technology.
  • the geological conditions of coal seams in China's mainland are complex.
  • the main coal fields have undergone many stages, multi-directional and high-strength transformations, and the coal seams are strongly deformed.
  • Most coalfields have severely broken coal structures, and the proportion of Class III and IV coals is heavier.
  • the quality is soft, the coefficient of firmness is small, the permeability of the coal seam is low, and the permeability is generally in the range of (0.001-0.1) ⁇ 10 -3 ⁇ m.
  • the gas drainage effect is not good, which makes the gas control difficult.
  • the coal seam gas is mainly characterized by “three highs and one low” (high stress, high gas pressure, high gas content and low permeability), and conventional gas drainage technology is difficult to function.
  • the mining rate is low, the drainage effect is not obvious, and the gas accident still occurs from time to time. Therefore, it is imperative to adopt gas control measures for forcedly increasing the coal seam.
  • the conventional gas control methods in coal mines in China mainly include techniques such as dense drilling and deep-hole pre-splitting blasting, but have the following disadvantages:
  • the hole spacing of conventional drilling in coal mine is 1 ⁇ 2m, the drilling depth is 50 ⁇ 100m, and the pre-extraction time is 15 ⁇ 30 days. It is a common, labor-intensive and construction-intensive coal seam gas control method. The defects are that the amount of drilling construction is large, the labor intensity of workers is large, the pre-pumping effect lasts for a short time, and the coal seam gas drainage effect is not good;
  • Deep-hole pre-splitting blasting or carbon dioxide fracturing and other volumetric fracturing techniques can only perform one-time, but not full-hole, anti-reflection operations on coal seams in boreholes.
  • the first drawback is that the amount of medication is not good, it will make The hole is collapsed or the hole is scrapped; more people will increase the charge due to the effect of pre-cracking coal seam, which may cause a serious accident such as impact rock pressure.
  • the object of the present invention is to overcome the shortcomings of the above conventional methods. According to the nature and structural characteristics of the coal seam, a method for drilling a hole in a coal mine under the controllable shock wave technology is proposed, and the full hole section is implemented without damaging the coal seam. Enhance the operation, increase the seepage capacity of the coal seam, desorb the capacity and inhibit the re-adsorption capacity of the coal seam, reduce the drilling construction volume, increase the drilling drainage flow rate, shorten the drilling pre-extraction time, and finally ensure the mine production connection and reduce the safety production cost. .
  • the specific technical solution of the present invention is: a method for drilling a hole in a coal mine borehole based on a controllable shock wave technology, which is characterized in that it comprises the following steps:
  • the controller of the controllable shock wave generating device is activated, and the length from the bottom of the borehole to the set distance from the orifice is divided into multiple operations. In the segment, the anti-reflection operation is carried out from the working point of the bottommost working segment;
  • step 5 after all the working points are processed, the drilling machine extracts the controllable shock wave generating device out of the drilling hole;
  • the drilled hole is flushed with a large displacement of fresh water before the controllable shock wave generating device is fed into the borehole.
  • the peak pressure of the shock wave generated by the controllable shock wave generating device is not more than 150 MPa, and the pulse width of the shock wave is less than 30 ⁇ s.
  • the length from the bottom of the drilled hole to 30 meters from the orifice is divided into a plurality of working sections, and the length of each working section and the number of operations performed at each working point are determined according to the physical properties and mechanical parameters of the coal seam.
  • each working section has a length of 5-20 meters, and the movement of the shock wave generating device is performed step by step to realize the anti-reflection operation of the entire drilling hole.
  • the number of operations per job point is greater than three times, and each operation is a fatigue process for the next operation, and the coal seam crack is expanded by the fatigue effect.
  • the operating point of the controllable shock wave generating device is the middle of each of the working segments, and the shock wave generation can be uniformly applied to each of the working segments.
  • a FRP screen is sleeved in the borehole, and a support hole wall can be formed in the borehole to prevent the borehole from collapsing.
  • the above controllable shock wave generating device uses a wire electric explosion plasma to drive the energetic material to generate a shock wave.
  • controllable shock wave technology used in the present invention is a purely physical method, which uses water injected into the borehole as a medium for transmission, and thus does not damage the coal seam.
  • the invention can implement the anti-reflection operation under the premise of protecting the drilling stability, and avoid the problem of impact rock pressure caused by the measures with poor energy controllability.
  • the screen wall of the screen can be installed according to the physical properties of the coal seam.
  • the shock wave is enhanced in the screen.
  • the drilling hole is divided into several working sections, and the movement of the shock wave generating equipment is carried out step by step to realize the anti-reflection operation of the whole drilling section, which can not only finely treat the coal seam, but also have a choice. Process the segments that need to be processed.
  • the invention utilizes the sealing function of the orifice device to make the shock wave generating device work in the water, because the water is operated, and there is a certain water pressure in the borehole, which can meet the requirements of the relevant coal mine safety regulations, and can efficiently couple the shock wave to Coal seam.
  • the present invention can perform repeated operations for each work point multiple times, and each operation is a fatigue process for the next operation, and the coal seam cracks are expanded by fatigue action.
  • the shock wave generated by the controllable shock wave generating equipment can strip the coal pores, cracks and debris in the seepage channel attached to the surface of the coal rock, which can relieve the coal seam blocking effect and improve the coal seam seepage capacity.
  • the invention adopts multiple impacts on the coal seam, so that the coal rock molecules and the van der Waals adsorbing gas not only break, but also suffer strong damage, accelerate the desorption of coal seam gas, and inhibit the coal seam re-adsorption capacity.
  • Figure 1 is a flow chart of the operation of the present invention
  • Figure 2 is a diagram of a controllable shock wave generating apparatus of the present invention
  • FIG. 3 is a view showing the construction of a controllable shock wave generating device used in the present invention in a coal mine;
  • FIG. 4 is a schematic view showing the on-site construction of the anti-reflection operation of the controllable shock wave technology of the present invention in a hard coal seam;
  • Figure 5 is a gas flow in the hard coal seam where no anti-reflection is implemented
  • Figure 6 is a gas flow rate of the controllable shock wave of the present invention after the anti-reflection is performed in a hard coal seam;
  • Figure 8 is a flow of adjacent pores of 15 meters after the controlled shock wave of the present invention is subjected to anti-reflection in a hard coal seam. the amount.
  • a method for drilling a hole in a coal mine borehole based on a controllable shock wave technology includes the following steps:
  • a FRP screen is placed inside the borehole to form a support hole wall in the borehole to prevent the borehole from collapsing.
  • the drilling machine 1 feeds the controllable shock wave generating device 3 into the borehole through the drill pipe 2;
  • the controller of the controllable shock wave generating device When the borehole is filled with water and the water pressure reaches 0.1-0.3 MPa, the controller of the controllable shock wave generating device is energized, and the controller of the controllable shock wave generating device is started, and the bottom hole of the entire borehole is from the orifice.
  • the length at the set distance is divided into a plurality of working segments, and the anti-dipping operation is performed from the working point of the bottommost working segment;
  • step 5 repeating step 5), after all the working points are processed, the drilling machine 1 extracts the controllable shock wave generating device 3 out of the drilling hole;
  • shock wave parameters should be selected before all operations start.
  • the main parameters are: shock wave peak pressure and shock wave pulse width.
  • each work segment and the number of operations performed at each work site are determined based on the physical properties and mechanical parameters of the coal seam.
  • the maximum length of the entire working section is the length from the bottom of the borehole to 30 meters from the orifice. It can also be set to the length from the bottom of the borehole to 40 or 50 meters from the orifice, as determined by the specific coal seam.
  • Each working section has a length of 5-20 meters, and the movement of the shock wave generating device 3 is performed step by step to realize the anti-reflection operation of the entire drilling hole, and the number of operations per working point is more than 3 times.
  • Each operation is a fatigue process for the next operation. Through the fatigue action, the coal seam crack is expanded.
  • the working point of the controllable shock wave generating device 3 is the middle of each working segment, and the shock wave can be uniformly applied to each operation. segment.
  • the controllable shock wave generating device 3 uses the wire electric explosion plasma to drive the energetic material to generate a shock wave, and the peak pressure of the shock wave generated by the controllable shock wave generating device is not more than 150 MPa, and the shock wave pulse width is less than 30 ⁇ s.
  • the controllable shock wave generating device, the high voltage direct current power source 34, the energy storage capacitor 33, the energy controller 32, and the energy converter 31 are integrated into a coaxial whole body, and the high voltage direct current power source 34 charges the storage capacitor 33.
  • the energy controller 32 opens to pressurize the energy converter 31 to generate a shock wave for operation.
  • the four distance observation holes on the side of the drilling machine are respectively corresponding to the gas flow rate which is not permeated in FIG. 5, the gas flow rate after the anti-reflection is performed in FIG. 6, and the airflow after the anti-reflection is performed in FIG.
  • the gas flow rate and the gas flow of 15 meters after the anti-reflection is carried out in Fig. 8 .
  • the gas permeability of the coal seam which is not subjected to the anti-permeability is only 0.008 m 3 /hm ⁇ min, and is attenuated exponentially.
  • the flow rate of the hundred meters of gas increases to 0.04 m 3 /hm ⁇ min or more, showing an upward trend.
  • the flow rate of the 100 m gas in the adjacent 5 m hole is increased more, and the flow rate per 100 m gas reaches 0.2 m 3 /hm ⁇ min.
  • the flow rate of the hundred meters gas in the adjacent hole 15 meters from the permeation working hole, the flow rate of the hundred meters gas also reached 0.1 m 3 /hm ⁇ min.
  • the increase in the flow rate of the adjacent pores from the increased permeability indicates that the effective anti-permeability area has reached 15 meters, but the drilling flow rate of the adjacent 5 meters has increased the most.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Earth Drilling (AREA)

Abstract

一种基于可控冲击波技术的煤矿井下钻孔增透方法,将可控冲击波产生设备(3)推送入钻孔内,在钻孔孔口位置安装孔口密封装置(4)后对钻孔注水,钻孔内注满水后并逐段作业,将每一个作业段的中部作为冲击波的作业点,在每一个作业点上进行多次重复冲击。在孔中注水的作用下,既使冲击波产生设备(3)免于在爆炸性气体环境中工作,又高效耦合冲击波到煤层,解决现有瓦斯治理方式劳动强度大以及安全性低的问题。

Description

基于可控冲击波技术的煤矿井下钻孔增透方法 技术领域
本发明属于能源及煤矿安全领域,具体涉及基于可控冲击波技术的煤矿井下钻孔增透方法。
背景技术
我国大陆煤层地质条件复杂,主要煤田经受了多期次、多方向和强度较大的改造,且煤层多强烈变形,多数煤田煤体构造破碎严重,Ⅲ、Ⅳ类煤所占比例较重,煤质松软、坚固性系数偏小,煤层透气性低,渗透率一般在(0.001-0.1)×10-3μm范围内,瓦斯抽采效果不佳,造成瓦斯治理困难。随着采掘活动向纵深延伸,煤层瓦斯赋存以“三高一低”(高应力、高瓦斯压力、高瓦斯含量及低渗透性)为主要特征,常规的瓦斯抽采技术难以发挥作用,抽采率低下,抽采效果不明显,瓦斯事故仍时有发生,因此,采用强制增透煤层的瓦斯治理措施势在必行。
目前,我国煤矿常规的瓦斯治理方式主要有密集钻孔和深孔预裂爆破等技术,但存在以下缺点:
煤矿井下常规钻孔的布孔间距为1~2m,钻孔深度50~100m,预抽时间为15~30天,是一种常用的、劳动强度和施工密集型的煤层瓦斯治理手段,其存在的缺陷是钻孔施工量多、工人劳动强度大,预抽效果持续时间短,煤层瓦斯抽放效果不佳;
深孔预裂爆破或二氧化碳压裂等体积压裂技术在钻孔中只能对煤层进行一次性、但不能全孔段实施的增透作业。首要缺陷就是用药量掌控不好,则会造 成钻孔坍塌或钻孔报废;更有甚者会因追求预裂煤层的效果而增大装药量,极有可能引起冲击矿压等恶性事故。
发明内容
本发明的目的在于克服上述传统方法的缺点,根据煤层的性质和结构特点,提出一种基于可控冲击波技术的煤矿井下钻孔增透方法,在不伤害煤层的情况下,实施全孔段的增透作业,提高煤层的渗流能力、解吸能力和抑制煤层的再吸附能力,降低钻孔施工量,提高钻孔抽放流量、缩短钻孔预抽时间,最终保障矿井生产接续和降低安全生产成本。
为了完成上述目的,本发明的具体技术解决方案是:基于可控冲击波技术的煤矿井下钻孔增透方法,其特殊之处在于:包括以下步骤:
1)安装封孔管、孔口法兰和孔口密封装置;
2)钻机通过钻杆将可控冲击波产生设备送入钻孔内;
3)关闭孔口密封装置,向钻孔内注水;
4)当钻孔内充满水且水压达到0.1-0.3MPa后,启动可控冲击波产生设备的控制器,将整个钻孔的孔底至距孔口设定距离处的长度分为多个作业段,从最底端的作业段的作业点开始实施增透作业;
5)每完成一个作业点的作业量后,打开孔口密封装置,利用钻机将钻杆回抽到下一个作业段的作业点位置,再次关闭孔口密封装置,注水继续该作业点作业;
6)重复步骤5),所有作业点处理完毕后,钻机将可控冲击波产生设备抽出该钻孔;
7)将该钻孔接通矿井抽放系统,负压抽放瓦斯。
进一步地,所述步骤2)中将可控冲击波产生设备送入钻孔内之前采用大排量清水冲洗钻孔。
进一步地,所述可控冲击波产生设备产生的冲击波峰值压力不大于150MPa,冲击波脉宽小于30μs。
进一步地,将整个钻孔孔底至距孔口30米处的长度分为多个作业段,每个作业段长度和在每个作业点实施的作业次数根据煤层的物性和力学参数确定。
进一步地,每个作业段的长度为5-20米,通过冲击波产生设备的移动,逐段进行作业,实现对整个钻孔全孔段的增透作业。
进一步地,每个作业点的作业次数大于3次,每一次作业对下一次作业都是一次疲劳的过程,通过疲劳作用,扩展煤层裂隙。
进一步地,可控冲击波产生设备的作业点为每个作业段的中部,可将冲击波产生均匀地作用于每个作业段。
进一步地,在钻孔内套设有玻璃钢筛管,可以在钻孔内形成支撑孔壁,防止钻孔垮塌。
上述可控冲击波产生设备采用金属丝电爆炸等离子体驱动含能材料产生冲击波。
与现有技术相比,本发明的优点在于:
1、本发明所采用的可控冲击波技术是纯物理方法,利用注入钻孔内的水作为传递的介质,因此不伤害煤层。
2、因可控冲击波产生设备的能量可控优势,本发明可在保护钻孔稳定的前提下,实施增透作业,避免能量可控性差的措施引起冲击矿压的问题。
3、针对难以成孔的松软煤层,可根据煤层物性对钻孔安装筛管支护孔壁, 在筛管进行冲击波增透作业。
4、将钻孔分为多个作业段,通过冲击波产生设备的移动,逐段进行作业,实现对整个钻孔全孔段的增透作业,不仅可以对煤层进行精细处理,还可有选择的处理需要处理的区段。
5、本发明利用孔口装置的密封功能,使冲击波产生设备在水中工作,因是水中作业,且钻孔内有一定水压,可满足相关煤矿安全规定之要求,并能高效的耦合冲击波到煤层。
6、本发明可以对每一个作业点进行多次重复作业,每一次作业对下一次作业都是一次疲劳的过程,通过疲劳作用,扩展煤层裂隙。
7、可控冲击波产生设备产生的冲击波可剥离煤层孔隙、裂隙、渗流通道中附着在煤岩表面的杂物,起到解除煤层堵塞作用,提高煤层渗流能力。
8、本发明由于对煤层采用多次冲击作用,使煤岩分子与吸附气体的范德华健不仅断裂,而且遭受强烈破坏,加速煤层瓦斯的解吸、抑制煤层再吸附能力。
附图说明
图1是本发明的作业流程图;
图2是本发明的可控冲击波产生设备图;
图3是本发明使用的可控冲击波产生设备在煤矿井下的现场施工图;
图4是本发明可控冲击波技术在硬煤层中实施增透作业的现场施工示意图;
图5是硬煤层中未实施增透的瓦斯流量;
图6是本发明可控冲击波在硬煤层钻孔实施增透后的瓦斯流量;
图7是本发明可控冲击波在硬煤层中实施增透后相聚5米的邻孔瓦斯流量;
图8是本发明可控冲击波在硬煤层中实施增透后相聚15米的邻孔瓦斯流 量。
图中:1-钻机,2-钻杆,3-可控冲击波产生设备,4-孔口密封装置,5-封孔管,6-孔口法兰,31-能量转换器,32-能量控制器,33-储能电容器,34-高压直流电源。
具体实施方式
以下结合附图和具体实施例对本发明进行详细说明:
参见图1,基于可控冲击波技术的煤矿井下钻孔增透方法,包括以下步骤:
1)在钻孔内套设有玻璃钢筛管,可以在钻孔内形成支撑孔壁,防止钻孔垮塌。
2)安装封孔管5、孔口法兰6和孔口密封装置4;
3)大排量清水冲洗钻孔,将孔内煤渣及大颗粒杂质冲洗干净;
4)钻机1通过钻杆2将可控冲击波产生设备3送入钻孔内;
5)关闭孔口密封装置4,向钻孔内注水;
6)当钻孔内充满水且水压达到0.1-0.3MPa后,可控冲击波产生设备的控制器加电,启动可控冲击波产生设备的控制器,将整个钻孔的孔底至距孔口设定距离处的长度分为多个作业段,从最底端的作业段的作业点开始实施增透作业;
7)每完成一个作业点的作业量后,打开孔口密封装置4,利用钻机1将钻杆2回抽到下一个作业段的作业点位置,再次关闭孔口密封装置,注水继续该作业点作业;
8)重复步骤5),所有作业点处理完毕后,钻机1将可控冲击波产生设备3抽出该钻孔;
9)将该钻孔接通矿井抽放系统,负压抽放瓦斯。
在所有的作业开始前应先选择冲击波参数,主要参数有:冲击波峰值压力和冲击波脉宽。
如图3所示,每个作业段长度和在每个作业点实施的作业次数根据煤层的物性和力学参数确定。整个作业段的最大长度为钻孔的孔底至距孔口30米处的长度,也可设置为钻孔的孔底至距孔口40米或50米处的长度,根据具体煤层确定。每个作业段的长度均为5-20米,通过冲击波产生设备3的移动,逐段进行作业,实现对整个钻孔全孔段的增透作业,每个作业点的作业次数大于3次,每一次作业对下一次作业都是一次疲劳的过程,通过疲劳作用,扩展煤层裂隙,可控冲击波产生设备3的作业点为每个作业段的中部,可将冲击波产生均匀地作用于每个作业段。
上述可控冲击波产生设备3采用金属丝电爆炸等离子体驱动含能材料产生冲击波,可控冲击波产生设备产生的冲击波峰值压力不大于150MPa,冲击波脉宽小于30μs。如图2所示,可控冲击波产生设备,高压直流电源34、储能电容器33、能量控制器32以及能量转换器31集成一个同轴型整体,高压直流电源34给储能电容器33充电,当储能电容器33充电到设定值时,能量控制器32打开给能量转换器31加压产生冲击波进行作业。
如图4所示,钻机边的四个距离观察孔由近及远分别对应图5未增透的瓦斯流量、图6实施增透后的瓦斯流量、图7实施增透后相聚5米的的瓦斯流量和图8实施增透后相聚15米的瓦斯流量。本方法在硬煤层中实施时,如图5所示,未进行增透的煤层百米瓦斯流量仅仅0.008m3/hm·min,且以指数规律衰减。如图6所示,钻孔进行增透作业后,百米瓦斯流量增加到0.04m3/hm·min以上,呈上升 趋势。如图7所示,相邻5米的钻孔百米瓦斯流量增加更多,百米瓦斯流量达到0.2m3/hm·min。如图8所示,距离增透作业孔15米的邻孔中,百米瓦斯流量也达到了0.1m3/hm·min。从增透后的邻孔流量增加现象说明有效增透区域达到了15米,但相邻5米的钻孔流量增加最多。

Claims (10)

  1. 基于可控冲击波技术的煤矿井下钻孔增透方法,其特征在于:包括以下步骤:
    1)安装封孔管(5)、孔口法兰(6)和孔口密封装置(4);
    2)钻机(1)通过钻杆(2)将可控冲击波产生设备(3)送入钻孔内;
    3)关闭孔口密封装置(4),向钻孔内注水;
    4)当钻孔内充满水且水压达到0.1-0.3MPa后,启动可控冲击波产生设备(3)的控制器,将整个钻孔的孔底至距孔口设定距离处的长度分为多个作业段,从最底端的作业段的作业点开始实施增透作业;
    5)每完成一个作业点的作业量后,打开孔口密封装置(4),利用钻机(1)将钻杆(2)回抽到下一个作业段的作业点位置,再次关闭孔口密封装置,注水继续该作业点作业;
    6)重复步骤5),所有作业点处理完毕后,钻机(1)将可控冲击波产生设备(3)抽出该钻孔;
    7)将该钻孔接通矿井抽放系统,负压抽放瓦斯。
  2. 根据权利要求1所述的基于可控冲击波技术的煤矿井下钻孔增透方法,其特征在于:所述步骤2)中将可控冲击波产生设备(3)送入钻孔内之前采用大排量清水冲洗钻孔。
  3. 根据权利要求1或2所述的基于可控冲击波技术的煤矿井下钻孔增透方法,其特征在于:所述可控冲击波产生设备(3)产生的冲击波峰值压力不大于150MPa,冲击波脉宽小于30μs。
  4. 根据权利要求3所述的基于可控冲击波技术的煤矿井下钻孔增透方法, 其特征在于:将整个钻孔孔底至距孔口30米处的长度分为多个作业段,每个作业段长度和在每个作业点实施的作业次数根据煤层的物性和力学参数确定。
  5. 根据权利要求4所述的基于可控冲击波技术的煤矿井下钻孔增透方法,其特征在于:每个作业段的长度为5-20米。
  6. 根据权利要求5所述的基于可控冲击波技术的煤矿井下钻孔增透方法,其特征在于:每个作业点的作业次数大于3次。
  7. 根据权利要求6所述的基于可控冲击波技术的煤矿井下钻孔增透方法,其特征在于:可控冲击波产生设备(3)的作业点位于每个作业段的中部。
  8. 根据权利要求7所述的基于可控冲击波技术的煤矿井下钻孔增透方法,其特征在于:所述钻孔内套设有玻璃钢筛管,在玻璃钢筛管中实施冲击波增透作业。
  9. 根据权利要求8所述的基于可控冲击波技术的煤矿井下钻孔增透方法,其特征在于:可控冲击波产生设备(3)采用金属丝电爆炸等离子体驱动含能材料产生冲击波。
  10. 根据权利要求9所述的基于可控冲击波技术的煤矿井下钻孔增透方法,其特征在于:所述可控冲击波产生设备包括高压直流电源(34)、储能电容器(33)、能量控制器(32)和能量转换器(31),所述高压直流电源(34)与储能电容器(33)、能量控制器(32)以及能量转换器(31)同轴集成一个整体。
PCT/CN2017/116169 2017-10-18 2017-12-14 基于可控冲击波技术的煤矿井下钻孔增透方法 WO2019075884A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710972989.6A CN107956505A (zh) 2017-10-18 2017-10-18 基于可控冲击波技术的煤矿井下钻孔增透方法
CN201710972989.6 2017-10-18

Publications (1)

Publication Number Publication Date
WO2019075884A1 true WO2019075884A1 (zh) 2019-04-25

Family

ID=61963606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116169 WO2019075884A1 (zh) 2017-10-18 2017-12-14 基于可控冲击波技术的煤矿井下钻孔增透方法

Country Status (2)

Country Link
CN (1) CN107956505A (zh)
WO (1) WO2019075884A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108729913B (zh) * 2018-05-25 2022-05-13 西安闪光能源科技有限公司 可控冲击波预裂页岩储层方法
CN108757010B (zh) * 2018-06-06 2019-07-12 西安闪光能源科技有限公司 干式可控冲击波煤层增透器
CN108505956A (zh) * 2018-06-06 2018-09-07 西安闪光能源科技有限公司 大电流传输同轴线式钻杆
CN109187237A (zh) * 2018-08-06 2019-01-11 华侨大学 一种隧道及地下工程爆破开挖模型试验系统与试验方法
CN111188603A (zh) * 2018-11-14 2020-05-22 西安交通大学 基于可控冲击波的注水井增注方法
CN109323974A (zh) * 2018-12-18 2019-02-12 重庆大学 一种多场耦合可控冲击波致裂含瓦斯煤体的实验方法
CN109578060B (zh) * 2019-02-01 2024-04-26 西安闪光能源科技有限公司 基于可控冲击波技术的煤层瓦斯抽采方法
CN109779610B (zh) * 2019-02-01 2022-09-06 西安闪光能源科技有限公司 基于可控冲击波技术的增透钻孔有效作用半径测定方法
CN110344828B (zh) * 2019-06-13 2020-12-15 太原理工大学 等离子体l式消减厚硬顶板及遗留煤柱复合强矿压的方法
CN110439525A (zh) * 2019-08-30 2019-11-12 西安闪光能源科技有限公司 煤层气水平井解堵、增透完井方法
CN112709574B (zh) * 2019-10-24 2023-05-09 西安闪光能源科技有限公司 基于可控冲击波增透的突出煤层消突方法
CN112709573B (zh) * 2019-10-24 2023-08-11 西安闪光能源科技有限公司 基于可控冲击波预裂的坚硬采煤工作面冲击地压防治方法
CN112709572A (zh) * 2019-10-24 2021-04-27 西安闪光能源科技有限公司 基于可控冲击波增透的石门揭煤方法
CN112709575A (zh) * 2019-10-24 2021-04-27 西安闪光能源科技有限公司 一种基于可控冲击波预裂的坚硬厚煤层放顶煤方法
CN112709595B (zh) * 2019-10-24 2023-05-05 西安闪光能源科技有限公司 定向冲击波产生装置及基于该装置的松软煤层瓦斯抽采方法
CN112709571A (zh) * 2019-10-24 2021-04-27 西安闪光能源科技有限公司 基于可控冲击波预裂卸压的煤矿巷道冲击地压防治方法
CN110656972A (zh) * 2019-10-31 2020-01-07 郑州慧矿智能科技有限公司 一种基于可控冲击波的煤巷条带煤层瓦斯抽采方法
CN110985108B (zh) * 2019-12-17 2021-07-06 华北科技学院 一种用于提升煤层瓦斯透气率的空气炮
CN111237013B (zh) * 2020-03-13 2022-03-22 神华神东煤炭集团有限责任公司 排水方法及装置
CN111173488B (zh) * 2020-03-16 2021-11-30 西安诚科石油工程技术服务有限公司 一种利用可控冲击波实现气井投产的方法
CN111472774B (zh) * 2020-04-14 2021-12-07 西安闪光能源科技有限公司 一种用于产生可控冲击波的复合型破岩棒及其制作方法
CN111472771A (zh) * 2020-04-14 2020-07-31 西安闪光能源科技有限公司 一种用于产生冲击波的液体破岩棒及其制作方法
CN111472773B (zh) * 2020-04-14 2021-12-07 西安闪光能源科技有限公司 一种用于产生可控冲击波的复合液体破岩棒及其制作方法
CN111472772A (zh) * 2020-04-14 2020-07-31 西安闪光能源科技有限公司 一种用于产生冲击波的破岩棒及其制作方法
CN112483000A (zh) * 2020-12-16 2021-03-12 浙江迅蓝智能科技有限公司 一种水平入孔式高功率冲击波发生装置和方法
CN113047899B (zh) * 2021-04-09 2022-02-01 中国矿业大学 一种深孔多级松动爆破致裂方法
CN114753820B (zh) * 2022-04-06 2023-12-05 重庆大学 一种超声波辅助煤层增透方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU977827A1 (ru) * 1981-04-03 1982-11-30 Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Институт Горного Дела Им.А.А.Скочинского Способ дегазации угольных пластов
CN104481574A (zh) * 2014-09-29 2015-04-01 中国矿业大学(北京) 一种利用高能声电复合技术提高煤层透气性的方法
CN105275443A (zh) * 2015-11-06 2016-01-27 中国矿业大学 一种煤矿井下高功率电爆震辅助水力压裂增透方法
CN105712810A (zh) * 2016-02-03 2016-06-29 西安贯通能源科技有限公司 一种复合含能材料及其制备应用方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103195466B (zh) * 2013-03-30 2015-08-19 重庆大学 一种定向水压爆破提高煤层透气性的方法
CN104863628B (zh) * 2015-04-15 2017-08-25 中国矿业大学 一种利用脉冲爆震波致裂增透掩护煤巷掘进方法
CN106968706A (zh) * 2017-05-24 2017-07-21 太原理工大学 一种水力割缝消除煤层巷道掘进中煤与瓦斯突出的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU977827A1 (ru) * 1981-04-03 1982-11-30 Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Институт Горного Дела Им.А.А.Скочинского Способ дегазации угольных пластов
CN104481574A (zh) * 2014-09-29 2015-04-01 中国矿业大学(北京) 一种利用高能声电复合技术提高煤层透气性的方法
CN105275443A (zh) * 2015-11-06 2016-01-27 中国矿业大学 一种煤矿井下高功率电爆震辅助水力压裂增透方法
CN105712810A (zh) * 2016-02-03 2016-06-29 西安贯通能源科技有限公司 一种复合含能材料及其制备应用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHANG, YONGMIN ET AL.: "Engineering Practice on Controllable Shock Wave Reinforcement on Soft Coal Seam", SHANXI COKING COAL SCIENCE & TECHNOLOGY, 15 September 2017 (2017-09-15), pages 116 - 121, ISSN: 1672-0652 *
ZHANG, YONGMIN ET AL.: "Principle and Engineering Practices on Coal Reservoir Permeability Improved with Electric Pulse Controllable Shock Waves", COAL SCIENCE AND TECHNOLOGY, vol. 45, no. 9, 15 September 2017 (2017-09-15), pages 79 - 85, ISSN: 0253-2336 *

Also Published As

Publication number Publication date
CN107956505A (zh) 2018-04-24

Similar Documents

Publication Publication Date Title
WO2019075884A1 (zh) 基于可控冲击波技术的煤矿井下钻孔增透方法
CN105971660B (zh) 超声波空化与水力压裂联合激励煤层气抽采方法
CN104481574B (zh) 一种利用高能声电复合技术提高煤层透气性的方法
CN108397182B (zh) 电脉冲协同液氮冻融增透煤层的装置及方法
CN101575983B (zh) 煤矿井下定向压裂增透消突方法及压裂增透消突装置
CN109209472B (zh) 一种冲孔、爆破、注水相互耦合的煤层卸压防突方法
CN102155253B (zh) 基于重复频率冲击波的地面抽采煤层气井改造方法
WO2021189660A1 (zh) 一种安全环保的岩石爆破装置及方法
CN101440704B (zh) 可地浸矿层连续高能气体压裂增渗方法及专用高能气体发生器
WO2019075885A1 (zh) 基于可控冲击波复合浪涌式增压注水的煤层气井改造方法
CN105370257A (zh) 一种煤层气井高功率电爆震辅助水力压裂增产方法
CN105804786B (zh) 一种松软煤层底板穿层钻孔压冲增透方法
CN114165197B (zh) 一种脉冲水力裂切煤层卸压增透装置及卸压增透方法
CN110145294A (zh) 一种煤田火区压煤地下原位气化方法
CN107120137A (zh) 一种煤巷掘进沿煤层底板深孔预裂爆破抽采方法
CN106930746A (zh) 钻孔丙酮侵袭与水力压裂相结合的交替式煤层增透方法
CN206942804U (zh) 一种新型水力冲孔作业机
CN110656972A (zh) 一种基于可控冲击波的煤巷条带煤层瓦斯抽采方法
Yang et al. Application of coalbed methane hydraulic jet-increasing permeability-nitrogen injection to increase production in Shanxi mining area
CN213450352U (zh) 一种煤层气水平井增产装置
CN112160728B (zh) 一种矿井探放水钻孔的处理方法
CN208168859U (zh) 电脉冲协同液氮冻融增透煤层的装置
CN115199296A (zh) 一种盾构管片的免拆卸式注浆开孔方法
CN112709574B (zh) 基于可控冲击波增透的突出煤层消突方法
CN104632218A (zh) 极软弱低含水率煤体工作面的注水强化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929093

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 19.10.2020)