WO2019075747A1 - 麻醉机、氧电池校准系统及其校准方法 - Google Patents

麻醉机、氧电池校准系统及其校准方法 Download PDF

Info

Publication number
WO2019075747A1
WO2019075747A1 PCT/CN2017/107102 CN2017107102W WO2019075747A1 WO 2019075747 A1 WO2019075747 A1 WO 2019075747A1 CN 2017107102 W CN2017107102 W CN 2017107102W WO 2019075747 A1 WO2019075747 A1 WO 2019075747A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
branch
oxygen battery
oxygen
gas
Prior art date
Application number
PCT/CN2017/107102
Other languages
English (en)
French (fr)
Inventor
邬学涛
陈培涛
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
深圳迈瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 深圳迈瑞科技有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to EP17929072.1A priority Critical patent/EP3711804A1/en
Priority to PCT/CN2017/107102 priority patent/WO2019075747A1/zh
Priority to CN201780094243.8A priority patent/CN111093746B/zh
Publication of WO2019075747A1 publication Critical patent/WO2019075747A1/zh
Priority to US16/846,262 priority patent/US20200238038A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0883Circuit type
    • A61M16/0891Closed circuit, e.g. for anaesthesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/104Preparation of respiratory gases or vapours specially adapted for anaesthetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/01Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes specially adapted for anaesthetising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/208Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0006Calibrating gas analysers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • A61M16/203Proportional
    • A61M16/205Proportional used for exhalation control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/22Carbon dioxide-absorbing devices ; Other means for removing carbon dioxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M2016/102Measuring a parameter of the content of the delivered gas
    • A61M2016/1025Measuring a parameter of the content of the delivered gas the O2 concentration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0468Liquids non-physiological
    • A61M2202/048Anaesthetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3317Electromagnetic, inductive or dielectric measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/52General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/70General characteristics of the apparatus with testing or calibration facilities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated

Definitions

  • the invention relates to the technical field of anesthesia equipment, in particular to an anesthesia machine, an oxygen battery calibration system and a calibration method thereof.
  • the anesthesia machine will give different oxygen concentrations according to the individual patient's condition.
  • the anesthesia machine will usually configure an oxygen battery in the breathing circuit to monitor the gas in real time. Oxygen concentration.
  • Oxygen batteries commonly used in anesthesia machines are divided into chemical oxygen batteries and paramagnetic oxygen batteries.
  • the former is to measure the oxygen concentration by reacting oxygen molecules with specific chemicals in the oxygen battery to generate current. Different concentrations of oxygen enter the oxygen battery. Different currents will be generated.
  • it is necessary to calibrate with a gas of known oxygen concentration, usually two points (such as 21% and 100% oxygen concentration), so as to obtain a corresponding linear relationship between oxygen concentration and current.
  • the reverse solution is performed based on the measured current magnitude and the corresponding functional relationship between the oxygen concentration and the current, and the oxygen concentration value at this time is obtained.
  • the paramagnetic oxygen battery is based on the paramagnetic characteristics of oxygen.
  • the typical measurement method is that when the gas to be tested enters the paramagnetic oxygen battery, it will be absorbed into the magnetic field and hit the internal physics.
  • the structure causes the internal physical structure to generate a deflection torque to obtain a linear relationship between the oxygen concentration and the torque (current).
  • the reverse solution is performed according to the measured current magnitude and the corresponding functional relationship between the oxygen concentration and the current.
  • Oxygen concentration value Paramagnetic oxygen batteries are measured by purely physical principles. In theory, there is no life limit, but usually due to movement, impact, etc., it may cause variation in internal structure and cause measurement deviation. Therefore, it is necessary to make paramagnetic oxygen batteries according to actual needs. Calibrate Often a point (such as 100% oxygen concentration).
  • An oxygen battery calibration system comprising:
  • a breathing circuit comprising an inspiratory branch, an expiratory branch, an absorption tank branch, an inhalation check valve, a connecting line, and an expiratory check valve, the inspiratory branch and the expiratory branch passing through
  • the connection line is connected, the suction check valve is disposed on the suction branch, the exhalation check valve is disposed on the exhalation branch, and one end of the absorption tank branch is opposite to the suction
  • the gas branch is connected, and is located at a front end of the suction check valve, and the other end of the absorption tank branch is in communication with the exhalation branch and is located at a rear end of the exhalation check valve;
  • An oxygen battery connected to the suction branch and having a connection at a rear end of the suction check valve;
  • the calibration management unit controls the calibration gas to enter the inspiratory branch, and flows out through the oxygen battery, the connecting line and the expiratory branch, and the calibration management unit according to the flow through
  • the calibration gas of the oxygen battery is calibrated for oxygen concentration.
  • the oxygen battery calibration system further includes a bypass branch, the bypass a branch line and the suction branch are connected between the suction check valve and the oxygen battery;
  • the calibration management unit controls the calibration gas to enter the intake branch via the bypass branch during oxygen concentration calibration.
  • the oxygen battery calibration system further includes a switch component disposed on the absorber tank branch for controlling the on/off of the absorber tank branch;
  • the switching member turns off the absorption tank branch, and the calibration gas can enter the suction branch.
  • the switching component is an on-off valve or a gas barrier.
  • one end of the bypass branch is connected to a common gas outlet or a fresh gas outlet of the anesthesia machine, and the other end is connected to the rear end of the suction branch check valve.
  • the input end of the inspiratory branch is in communication with a gas source module of the anesthesia machine, or a common gas outlet, or a fresh gas outlet, and the calibration management unit controls the calibration gas during oxygen concentration calibration Output to the inspiratory branch.
  • the calibration management unit calibrates the oxygen battery with at least two calibration gases of different oxygen concentrations.
  • the oxygen battery is a chemical oxygen battery.
  • the oxygen cell is a paramagnetic oxygen cell
  • the calibration management unit calibrates the oxygen cell with at least one calibration gas of oxygen concentration.
  • An anesthesia machine comprising an anesthetic providing device, an exhaust gas discharging device, and an oxygen battery calibration system according to any of the above technical features;
  • One end of an inspiratory branch of the breathing circuit of the oxygen battery calibration system is in communication with the anesthetic supply device, and one end of the expiratory limb of the breathing circuit is in communication with the exhaust gas discharge device;
  • the anesthetic supply device supplies an inhalation gas containing anesthetic to the breathing circuit, and after the inhaled gas enters the inspiratory branch, is supplied to the patient via the connecting line, and at the same time, the patient's exhaled gas The expiratory limb is also reached via a connecting line of the breathing circuit.
  • the anesthesia machine is provided with one or more of a gas source module, a common gas outlet and a fresh gas outlet, and when the oxygen battery is calibrated, the gas source module, the common A gas outlet or the fresh gas outlet provides a calibration gas to the suction branch.
  • the anesthesia machine further includes an exhalation device disposed between the expiratory limb and the exhaust gas discharge device for regulating the flow or pressure of the exhaled gas.
  • the anesthesia machine further includes a control unit that controls the oxygen battery calibration system to perform an oxygen battery calibration when the anesthesia machine self-tests.
  • the anesthesia machine self-test further includes a gas tightness test or a standby flow control system test.
  • the calibration method being applied to an oxygen battery calibration system, the oxygen battery calibration system comprising a breathing circuit and an oxygen battery, the breathing circuit comprising an inspiratory branch, an expiratory branch And connecting a pipeline, the oxygen battery is connected to the suction branch, and the connection is located at a rear end of the suction check valve;
  • the calibration method includes the following steps:
  • Oxygen concentration calibration is performed based on the calibration gas flowing through the oxygen cell.
  • the anesthesia machine, the oxygen battery calibration system and the calibration method thereof of the invention can realize the automatic calibration of the oxygen battery without manual intervention, ensure the reliability of the operation of the oxygen battery, and enable the anesthesia machine to operate normally.
  • FIG. 1 is a schematic view of an oxygen battery calibration system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an embodiment of an oxygen battery calibration system according to another embodiment of the present invention.
  • FIG. 3 is a schematic view of another embodiment of the oxygen battery calibration system shown in FIG. 2;
  • FIG. 4 is a schematic diagram of a gas path of an anesthesia machine according to another embodiment of the present invention.
  • 110-breathing circuit 111-inhalation branch; 112-exhalation branch; 113-absorbent branch; 114-inhalation check valve; 115-exhalation check valve; 116-connecting line; CO 2 absorption tank;
  • the present invention provides an oxygen battery calibration system 100 that includes a breathing circuit 110, an oxygen battery 120, and a calibration management unit.
  • the oxygen battery calibration system 100 can be used in the anesthesia machine shown in FIG.
  • the oxygen battery calibration system 100 is used in an anesthesia machine for calibrating the oxygen battery 120 of the anesthesia machine, so that the oxygen battery 120 can reliably detect the oxygen concentration in the gas of the breathing circuit 110 during use, so that the patient gas is supplied.
  • the oxygen concentration in the medium can meet the actual needs and ensure the safety of the patient.
  • the calibration gas is passed through the calibration gas of the oxygen battery 120 for oxygen concentration calibration.
  • the oxygen battery 120 herein refers to a medical oxygen battery.
  • the oxygen battery calibration system 100 of the present invention can also be used for calibration of the oxygen concentration of the oxygen battery 120 in other devices, such as a ventilator or the like.
  • the breathing circuit 110 includes an inspiratory limb 111, an expiratory limb 112, an absorption tank branch 113, an inhalation check valve 114, a connecting line 116, and an expiratory check valve 115, and an inspiratory branch.
  • the 111 is connected to the expiratory limb 111 through the connecting line 116, the inhalation check valve 114 is disposed on the inspiratory branch 111, and the exhalation check valve 115 is disposed on the expiratory branch 112, and the absorption tank branch 113 is One end is in communication with the inspiratory branch 111, and one end of the absorption tank branch 113 is located at the front end of the inhalation check valve 114, and the other end of the absorption tank branch 113 is in communication with the expiratory branch 112, and is located in the exhalation check valve.
  • the oxygen battery 120 is connected to the suction branch 111, and the connection is located at the rear end of the suction check valve 114.
  • the first end of the breathing circuit 110 is in communication with the anesthetic providing device 200
  • the second end of the breathing circuit 110 is in communication with the exhaust gas discharge device
  • the breathing circuit 110 is also in communication with the breathing end of the patient.
  • the first end here refers to the intake end of the breathing circuit 110
  • the second end refers to the air outlet end of the breathing circuit 110.
  • the anesthetic supply device 200 supplies the inhaled gas containing the anesthetic to the breathing circuit 110 and delivers it to the patient, and the exhaled gas containing the anesthetic exhaled by the patient is purified by the CO2 absorption tank 117 in the circuit and reused, and the excess gas is treated by the exhaust gas discharge device.
  • the exhaust gas discharge means may be an exhaust gas discharge means, an exhaust gas recovery means, or other means capable of treating the exhaust gas.
  • the intake end of the inspiratory branch 111 can communicate with the anesthetic supply device 200 of the anesthesia machine, and the connection line 116 is used to connect the outlet end of the inspiratory limb 111, the intake end of the expiratory limb 112, and the patient.
  • the breathing end of the expiratory limb 112 is in communication with the exhaust gas discharge device.
  • the intake end of the inspiratory branch 111 coincides with the intake end of the breathing circuit 110, which is the same end
  • the outlet end of the expiratory branch 112 coincides with the outlet end of the breathing circuit 110, which is the same end. .
  • the inhaled gas containing the anesthetic delivered by the anesthetic supply device enters the inspiratory branch 111, and enters the respiratory end of the patient through the inspiratory branch 111 via the connecting line 116 to provide anesthetic to the patient; the exhaled gas of the patient enters the connection through the respiratory end Line 116 is passed through the connecting line 116 into the expiratory limb 112.
  • the exhaled gas passes through the CO2 absorption tank 117, and after the CO2 is absorbed, it is reused, and the excess gas is discharged from the exhaust gas discharge device through the exhalation valve.
  • the connecting line 116 includes a Y-shaped tube or a connecting tube for connecting the inspiratory branch 111 and the expiratory branch 112.
  • the ends of the Y-shaped tube are respectively associated with the inspiratory branch 111, the expiratory limb 112, and the patient. connection.
  • the Y-tube can facilitate the inhalation of gas into the patient via the inspiratory limb 111
  • the breathing end also allows the patient's exhaled gas to enter the expiratory limb 112.
  • the inhalation check valve 114 is disposed on the inspiratory branch 111, so that the inhalation gas flowing through the inhalation check valve 114 can be prevented from flowing back, so that the inhaled gas flows in a single direction; the exhalation branch 112 is provided with exhalation
  • the one-way valve 115 is such that the return of the exhaled gas flowing through the exhalation check valve 115 can be prevented, so that the exhaled gas flows in a single direction.
  • the suction check valve 114 is located downstream of the junction of the suction branch 111 and the absorption tank branch 113, that is, the suction gas first passes through the junction of the suction branch 111 and the absorption tank branch 113 in the intake branch 111.
  • the exhalation check valve 115 Flowing through the suction check valve 114; the exhalation check valve 115 is located upstream of the junction of the expiratory limb 112 and the absorption canister branch 113, that is, the exhaled gas first passes through the exhalation check valve 115 in the expiratory limb 112. It then flows through the junction of the expiratory limb 112 and the absorption tank branch 113.
  • the oxygen battery 120 is configured to detect whether the concentration of oxygen in the inhaled gas delivered by the anesthesia machine is up to standard. Specifically, the oxygen battery 120 can detect the concentration of oxygen in the inhaled gas delivered to the patient through the inhalation circuit 111 to ensure the content provided for the patient.
  • the concentration of oxygen in the inhaled gas of the anesthetic can meet the demand and ensure the safety during use. If the concentration of oxygen in the inhaled gas containing the anesthetic is lower or higher than the preset oxygen concentration of the anesthesia machine, it may cause a safety hazard to the patient.
  • the oxygen battery 120 After the oxygen battery 120 is used for a period of time, there is a certain deviation between the oxygen concentration detected by the oxygen battery 120 and the actual oxygen concentration. Therefore, the oxygen battery 120 needs to be calibrated periodically or on demand to ensure that the oxygen battery 120 can accurately detect the oxygen concentration in the inhaled gas, ensure the reliability of the oxygen concentration detection, and thereby ensure the anesthesia machine works reliably.
  • the oxygen concentration calibration of the oxygen battery 120 is achieved by a calibration gas, and the calibration management unit is used to control the flow of the calibration gas.
  • the calibration management unit controls the calibration gas to enter the inspiratory limb 111 and through the oxygen cell 120, the connection line 116, and the expiratory limb 112.
  • the calibration management unit performs oxygen concentration calibration based on the calibration gas flowing through the oxygen battery 120.
  • the calibration management unit collects a current corresponding to the oxygen content in the calibration gas output by the oxygen battery 120, thereby obtaining a linear function relationship between the oxygen concentration and the output current, and the calibration management unit may further obtain a linear relationship relationship between the obtained oxygen concentrations. Stored in the memory of the anesthesia machine.
  • control unit of the anesthesia machine can inversely calculate the oxygen concentration of the test gas from the current value of the output of the oxygen battery 120 according to the linear relationship of the oxygen concentration stored in the memory.
  • control unit and the calibration management unit of the anesthesia machine may be two different components, or may be the same component, such as a board and controller integrated with software algorithms.
  • the calibration management unit can calibrate the oxygen battery 120 with at least two calibration gases of different oxygen concentrations. This can ensure the accuracy of the oxygen battery 120 concentration calibration and improve the safety factor during use.
  • a calibration gas having an oxygen concentration of 21% and a calibration gas having an oxygen concentration of 100% are respectively introduced into the breathing circuit 110.
  • a calibration gas having an oxygen concentration of 21% is first introduced into the suction branch 111, and the flow rate is 5 L/min and stays for 1 min to stabilize the current value output by the oxygen battery 120, and the calibration management unit collects And storing the current output value of the oxygen battery 120; then, introducing a calibration gas having an oxygen concentration of 100% into the inhalation branch 111, the flow rate is 5 L/min and staying for 1 min to stabilize the current value output by the oxygen battery 120, and calibrating
  • the management unit samples and stores the current oxygen battery 120 output current value into the memory, and the calibration management unit obtains a linear relationship of the oxygen concentration according to the correspondence between the current value of the two calibration points and the oxygen concentration value and stores it in the memory to complete the oxygenation.
  • the oxygen concentration of the calibration gas introduced into the inspiratory branch 111 can also be selected from any other controllable two oxygen concentrations, such as 30% and 90%.
  • the oxygen concentration of the calibration gas to the breathing circuit 110 may be one or more of the oxygen concentrations of the calibration gas of 30%, 40%, and 90%, respectively, in addition to the above 21% and 100%.
  • calibration can be performed only with a calibration gas of oxygen concentration.
  • the oxygen battery 120 is a paramagnetic oxygen battery
  • the calibration management unit calibrates the oxygen battery 120 with at least one calibration gas of oxygen concentration.
  • Paramagnetic oxygen cells can be calibrated with only a calibration gas of oxygen concentration; they can also be calibrated with two or more calibration gases of oxygen concentration.
  • a calibration gas having an oxygen concentration of 21% or a calibration gas having an oxygen concentration of 100% is introduced into the intake branch 111.
  • a calibration gas having an oxygen concentration of 21% is introduced into the breathing circuit 110, the flow rate is 5 L/min and stays for 1 min to stabilize the current output from the oxygen battery 120, and the calibration management unit collects and stores the current oxygen.
  • the battery 120 outputs a current value
  • the calibration management unit samples and stores the current oxygen battery 120 output current value into the memory; or, the breathing circuit 110 is supplied with a calibration gas having an oxygen concentration of 100%, and the flow rate is 5 L/min.
  • the calibration management unit collects and stores the current oxygen battery 120 output current value
  • the calibration management unit samples and stores the current oxygen battery 120 output current value into the memory.
  • the control unit draws a linear function relationship according to the correspondence between the current value of the calibration point and the oxygen concentration value and stores it in the memory to complete the calibration operation of the oxygen battery 120.
  • a calibration gas having an oxygen concentration of 21% and a calibration gas having an oxygen concentration of 100% may be introduced into the intake branch 111, respectively.
  • the oxygen concentration of the calibration gas to the breathing circuit 110 can also be selected from any other controllable one or two oxygen concentrations, such as 30% and 90%.
  • the oxygen concentration of the calibration gas to the breathing circuit 110 may be one or more of the oxygen concentrations of the calibration gas of 30%, 40%, and 90%, respectively, in addition to the above 21% and 100%.
  • the flow rate and residence time of the calibration gas that is introduced into the inspiratory branch 111 can also be set according to the specific structure and volume of the breathing circuit, for example, 5 min/min flow rate stays for 3 min, 8 L/min flow rate 2 min, 10 L/ The min flow stays for 1 min, etc., and the relationship between the flow rate and the residence time is such that the gas species in the measurement area of the oxygen battery is completely replaced and stabilized.
  • the oxygen battery 120 When the oxygen battery 120 is being calibrated, it is necessary to turn off the anesthetic supply device 200 so that the calibration gas supplied from the anesthesia machine enters the inspiratory branch 111, and the calibration gas is input into the inspiratory branch 111.
  • the calibration management unit controls the calibration gas to enter the inspiratory branch 111 and flows out through the oxygen battery 120, the connecting line 116, and the expiratory branch 112.
  • the calibration management unit performs oxygen concentration calibration according to the calibration gas flowing through the oxygen battery 120.
  • the oxygen battery 120 can output a corresponding current value according to the actual oxygen concentration value in the calibration gas, and the calibration management unit stores the obtained oxygen concentration as a function of the current value in a memory to realize oxygen. Calibration operation of battery 120.
  • the oxygen battery calibration system 100 of the present invention enables the calibration gas to flow out of the inspiratory bypass 111 through the rear end of the inspiratory check valve 114, after the connection line 116, and then out of the expiratory limb 112.
  • the calibration management unit controls the calibration gas to pass directly into the expiratory limb 112 through the inspiratory limb 111 without disconnecting the connecting line 116. Since the oxygen battery 120 is connected to the suction branch 111 at the rear end of the suction check valve 114, when the calibration gas flows in the intake branch 111, the measurement region of the oxygen battery 120 can be combined with the suction branch 111.
  • the calibration gas is replaced, and the automatic calibration in the oxygen battery 120 is realized to ensure the reliability of the operation of the oxygen battery 120, so that the anesthesia machine can be positive Work often.
  • the calibration gas enters the connecting line 116 through the rear end of the suction check valve 114 in several forms, as detailed below:
  • the oxygen battery calibration system 100 further includes a bypass branch 130, and the bypass branch 130 and the inspiratory branch 111 are connected to the inhalation check valve 114 and the oxygen battery 120. between.
  • the calibration management unit controls the calibration gas to enter the intake branch 111 via the bypass branch 130 during calibration. That is, a bypass branch 130 is separately provided, and the bypass branch 130 is directly introduced into the intake branch 111 at the rear end of the suction check valve 114, and is located before the oxygen battery 120, that is, the calibration gas passes through the bypass. After the branch 130 enters the inspiratory branch 111, it flows through the oxygen battery 120.
  • the calibration gas can only flow along the inspiratory branch 111 through the oxygen battery 120 and the connecting line 116 into the expiratory branch 112, thereby preventing the calibration gas from entering the absorption tank.
  • the calibration management unit controls the calibration gas to enter the inspiratory branch 111 through the bypass branch 130, and flows through the oxygen battery 120 and the connecting line 116 into the exhalation branch 112 to realize the oxygen battery.
  • the automatic calibration of 120 ensures the reliability of the operation of the oxygen battery 120, so that the anesthesia machine can operate normally.
  • one end of the bypass branch 130 is connected to the common gas outlet or the fresh gas outlet of the anesthesia machine, and the other end is connected to the rear end of the check valve of the inspiratory branch 111. It can be understood that both the common gas outlet and the fresh gas outlet can deliver the calibration gas.
  • the calibration management unit controls the calibration gas to flow out from the common gas outlet or the fresh gas outlet and enter the bypass branch 130, and then enters the intake branch 111 through the bypass branch 130, and flows through the oxygen battery 120 and the connecting line 116.
  • automatic calibration of the oxygen battery 120 is achieved to ensure the reliability of the operation of the oxygen battery 120, so that the anesthesia machine can operate normally.
  • the oxygen battery calibration system 100 further includes a switch member 140 disposed on the absorption tank branch 113 for controlling the passage of the absorption tank branch 113. Broken.
  • the switch member 140 turns off the absorption tank branch 113, and the calibration gas can enter the intake branch 111. Since the switching member 140 turns off the absorption tank branch 113 and the calibration gas flows in the suction branch 111, the calibration gas cannot flow along the absorption tank branch 113, and can only continue to flow along the suction branch 111, and can The front end of the suction check valve 114 flows to the rear end. And through the oxygen battery 120 and the connecting line 116 into the expiratory branch 112, the automatic calibration of the oxygen battery 120 is realized, and the reliability of the operation of the oxygen battery 120 is ensured, so that the anesthesia machine can operate normally.
  • the switch member 140 is an on-off valve, a gas barrier, or other component that enables the absorber branch to shut off or prevent a large amount of gas from flowing through the absorber branch. In this way, all or most of the calibration gas can flow into the inspiratory limb 111 and out through the expiratory limb 112 via the connecting line 116.
  • the switch member 140 may be disposed between the CO 2 absorption tank 117 and the intake branch 111, as shown in FIG. 2, or may be disposed between the CO 2 absorption tank 117 and the expiratory branch 112, as shown in FIG. It is to be noted that it is sufficient to ensure that the switching member 140 turns off the absorption tank branch 113 or provides sufficient gas flow resistance in the absorption tank branch 113.
  • the input end of the inspiratory branch 111 may be connected to the air source module of the anesthesia machine, or the common gas outlet, or the fresh gas outlet.
  • the calibration management unit controls the calibration gas output to the inspiratory branch. 111.
  • the gas source module, the common gas outlet and the fresh gas outlet are capable of conveying the calibration gas.
  • the calibration management unit controls the calibration gas to flow out from the gas source module, the common gas outlet or the fresh gas outlet, and enters the suction branch 111, and flows through the suction check valve 114, through the oxygen battery 120, and the connection line 116 to enter the call.
  • automatic calibration of the oxygen battery 120 is achieved to ensure the reliability of the operation of the oxygen battery 120, so that the anesthesia machine can operate normally.
  • the calibration gas may be flow-regulated by a flow meter or a control valve or the like, and then enter the bypass branch 130, and then enter the intake branch by the rear end of the suction check valve 114. 111; or, after the absorption tank branch 113 is turned off by the switch member 140, the calibration gas is flow-regulated by a flow meter or a control valve, and then enters the intake branch 111.
  • the communication between the various components of the oxygen battery 120 calibration system is achieved by a pipeline or a direct assembly seal. In some portions, the components are directly connected to the inspiratory limb 111 and the expiratory limb 112.
  • an inspiratory flow sensor is disposed on the inspiratory branch 111 to detect the flow rate of the inhaled gas in the inspiratory branch 111, to prevent the flow rate of the inhaled gas from being too large or too small, to ensure safe use; and on the expiratory branch 112 Setting an expiratory flow sensor to detect the call in the expiratory limb 112 The flow rate of the gas is avoided, and the flow rate of the exhaled gas is prevented from being too large or too small to ensure safe use.
  • the present invention also provides an anesthesia machine comprising an anesthetic supply device 200, an exhaust gas discharge device (not shown), and an oxygen battery calibration system 100 as in the above embodiment.
  • the intake end of the inspiratory limb 111 of the breathing circuit 110 of the oxygen battery calibration system 100 is in communication with the anesthetic supply device 200, and the outlet end of the expiratory limb 112 of the breathing circuit 110 is in communication with the exhaust gas discharge device via the exhalation valve.
  • the anesthetic supply device 200 supplies the inhalation gas containing the anesthetic to the breathing circuit 110.
  • the inhaled gas After the inhaled gas enters the inspiratory branch 111, it is supplied to the respiratory end of the patient via the connecting line 116, and the patient's breathing end is also Can send out the patient's exhaled gas.
  • the CO 2 in the exhaled gas is absorbed by the CO 2 absorption tank 117 in the breathing circuit 110 and reused, and the excess exhaled gas is purified by the exhaust gas discharge device through the exhalation valve 320. This can avoid direct pollution and pollution in the atmosphere, while avoiding the impact on medical personnel.
  • the anesthesia machine also has one or more of a gas source module, a common gas outlet, and a fresh gas outlet.
  • the calibration gas can enter the inspiratory branch 111 through the gas source module, the common gas outlet or the fresh gas outlet, and flow through the oxygen battery 120 and the connecting line 116 into the expiratory branch 112.
  • the automatic calibration of the oxygen battery 120 ensures the reliability of the operation of the oxygen battery 120, so that the anesthesia machine can operate normally.
  • the anesthesia machine further includes an exhalation device 300 disposed between the expiratory limb 112 and the exhaust gas discharge device for regulating the pressure or flow rate of the exhaled gas.
  • the exhalation device 300 includes a pressure regulating structure and an exhalation valve 320.
  • the intake end and the outlet end of the exhalation valve 320 are respectively connected to the expiratory line 310.
  • One end of the exhalation valve 320 is connected to one end of the expiratory branch 112 through the exhalation line 310, and the other end of the exhalation valve is exhaled.
  • Line 320 is in communication with the exhaust gas discharge device.
  • the exhalation valve 320 is for exhaling the exhaled gas of the patient, and the exhaled gas of the patient can enter the exhalation valve 320 through the expiratory line 310 through the expiratory limb 112, and then is regulated by the exhalation valve 320 and then discharged.
  • the pressure control structure is used to adjust the flow rate or pressure of the exhalation gas sent by the exhalation valve 320 to adjust the valve closing pressure of the exhalation valve 320 to achieve the purpose of closing the exhalation valve 320 with the set pressure.
  • the pressure control structure may be an Adjustable Pressure Limitation (APL valve) or other structure capable of realizing exhaled gas pressure regulation.
  • the pressure control structure includes a regulating line 340 for inputting and outputting the regulating gas, and a regulating valve 330 disposed on the regulating line 340.
  • the output end of the regulating valve 330 is in communication with the exhalation valve 320, and the regulating valve
  • the pressure or flow rate of the regulated gas in the conditioning line 340 can be adjusted to achieve pressure regulation of the exhaled gas in the exhalation valve 320.
  • the anesthesia machine further includes a control unit that controls the oxygen battery calibration system to perform oxygen battery calibration when the anesthesia machine self-tests.
  • the anesthesia machine self-test includes one or more of air tightness detection, standby flow control system detection, flow sensor calibration, and the like.
  • the control unit can control the self-test when the anesthesia machine is turned on, the self-test during standby, or the self-test according to the control signal input by the user.
  • the calibration of the oxygen battery is completed together with the self-test of the anesthesia machine, and no operator intervention or care is required at all, which reduces the burden on the operator, and avoids the measurement of the oxygen concentration when the anesthesia machine is used due to the operator forgetting the calibration. The safety hazard caused by the patient. Further, the calibration of the oxygen battery is completed together with the self-checking of the anesthesia machine, and the operation of disconnecting the connecting line by the operator can be omitted.
  • the invention also provides a calibration method for an oxygen battery calibration system, the calibration method being applied to the oxygen battery calibration system 100 described above; the calibration method comprises the following steps:
  • the oxygen concentration calibration is performed based on the calibration gas flowing through the oxygen battery 120.
  • the calibration management unit controls the calibration gas to enter the inspiratory branch 111 and flows out through the oxygen battery 120, the connecting line 116, and the expiratory branch 112 without the need to connect the connecting line 116. disconnect.
  • the calibration management unit performs oxygen calibration of the oxygen battery 120 based on the calibration gas flowing through the oxygen battery 120.
  • the oxygen battery 120 can output a corresponding current value according to the actual oxygen concentration value in the calibration gas, and the control unit stores the oxygen concentration as a function of the current value to realize the calibration operation of the oxygen battery 120.

Landscapes

  • Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Hybrid Cells (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

一种氧电池校准系统(100)、包括氧电池校准系统(100)的麻醉机以及应用于氧电池校准系统(100)的校准方法,其中,氧电池校准系统(100)包括:呼吸回路(110),包括吸气支路(111)、呼气支路(112)、吸收罐支路(113)、吸气单向阀(114)、连接管路(116)及呼气单向阀(115),吸气支路(111)与呼气支路(112)通过连接管路(116)连通;氧电池(120),连接于吸气支路(111)上,且连接处位于吸气单向阀(114)的后端;以及校准管理单元,校准管理单元控制标定气体进入吸气支路(111),并经氧电池(120)、连接管路(116)及呼气单向阀(115)流出,校准管理单元根据流经氧电池(120)的标定气体进行氧气浓度校准。在进行氧电池(120)校准时,不需要拔下连接管路(116),标定气体能够从吸气支路(111)向呼气支路(112)流动,而不会进入吸收罐支路(113)中,实现氧电池(120)自动化校准,保证氧电池(120)工作的可靠性,提升了氧电池(120)校准的便捷性。

Description

麻醉机、氧电池校准系统及其校准方法 技术领域
本发明涉及麻醉设备技术领域,特别是涉及一种麻醉机、氧电池校准系统及其校准方法。
背景技术
麻醉机在通气过程中,会根据病人个体情况差异,给定不同的氧浓度,为了保障病人的吸入氧浓度在设定范围内,麻醉机通常会在呼吸回路配置氧电池,用以实时监测气体氧浓度。
麻醉机常用的氧电池分为化学氧电池和顺磁氧电池,前者是通过氧气分子与氧电池内特定的化学物质发生反应产生电流的机理实现氧浓度的测量,不同浓度的氧气进入氧电池内,会产生不同的电流,在使用氧电池前,需要使用已知氧气浓度的气体进行标定,通常为两个点(如21%及100%氧浓度),从而得到氧气浓度与电流的对应线性关系,在实际工作中测量氧浓度时,则根据实测电流大小及氧浓度与电流的对应函数关系进行逆向求解,得到此时的氧浓度值。化学氧电池在工作过程中,随着测量时间的推移,由于化学物质的形态改变,其氧浓度与电流的对应关系会发生漂移,为了保证氧浓度测量的准确及可靠性,在氧电池使用寿命期内,需要定期对氧电池进行校准操作;顺磁氧电池是根据氧气的顺磁性特点,典型的测量方式是当待测气体进入顺磁氧电池时,会被吸入到磁场中撞击内部的物理结构使内部物理结构发生偏转力矩从而得到氧浓度与力矩(电流)的线性关系,在实际工作中测量氧浓度时,则根据实测电流大小及氧浓度与电流的对应函数关系进行逆向求解,得到此时的氧浓度值。顺磁氧电池是通过纯物理原理进行测量,理论上并没有寿命限制,但是通常由于移动、撞击等原因,可能造成内部结构的变异从而造成测量偏差,因此也需要根据实际需要对顺磁氧电池进行校准,通 常为一个点(如100%氧浓度)。
目前,市场上的麻醉机大多数使用化学氧电池,在进行21%及100%氧气浓度点校准时,通常需要先将氧电池取下放置到空气中静置一段时间,如1~3分钟,然后在校准程序内执行校准操作,取得当前氧电池的输出电流值,然后将氧电池装回麻醉机上,调节新鲜气体(纯氧)冲洗回路一段时间,通常为1~3分钟之后,在校准程序内执行校准操作,取得当前氧电池的输出电流值,前后两次电流值分别对应氧浓度为21%及100%的点,从而得到氧浓度与电流的线性关系。目前的校准操作需要人工干预,且操作程序复杂、耗时。
发明内容
基于此,有必要针对目前麻醉机在进行氧电池自动校准时需要人工干预的问题,提供一种氧电池校准系统,同时还提供一种含有上述氧电池校准系统的麻醉机,以及提供一种应用上述氧电池校准系统的校准方法。
上述目的通过下述技术方案实现:
一种氧电池校准系统,包括:
呼吸回路,包括吸气支路、呼气支路、吸收罐支路、吸气单向阀、连接管路及呼气单向阀,所述吸气支路和所述呼气支路通过所述连接管路连通,所述吸气单向阀设置于所述吸气支路上,所述呼气单向阀设置于所述呼气支路上,所述吸收罐支路的一端与所述吸气支路连通,且位于所述吸气单向阀的前端,所述吸收罐支路的另一端与所述呼气支路连通,且位于所述呼气单向阀的后端;
氧电池,连接于所述吸气支路上,且连接处位于所述吸气单向阀的后端;以及
校准管理单元,所述校准管理单元控制标定气体进入所述吸气支路,并经所述氧电池、所述连接管路及所述呼气支路流出,所述校准管理单元根据流经所述氧电池的标定气体进行氧气浓度校准。
在其中一个实施例中,所述氧电池校准系统还包括旁通支路,所述旁通 支路与所述吸气支路连接于所述吸气单向阀与氧电池之间;
所述校准管理单元在进行氧气浓度校准时控制标定气体经旁通支路进入所述吸气支路。
在其中一个实施例中,所述氧电池校准系统还包括开关部件,所述开关部件设置于所述吸收罐支路上,用于控制所述吸收罐支路的通断;
在进行氧气浓度校准时,所述开关部件关断所述吸收罐支路,标定气体能够进入所述吸气支路。
在其中一个实施例中,所述开关部件为开关阀或气阻。
在其中一个实施例中,所述旁通支路一端连接于麻醉机的共同气体出口或新鲜气体出口,另外一端连接于所述吸气支路单向阀后端。
在其中一个实施例中,所述吸气支路的输入端与麻醉机的气源模块,或共同气体出口,或新鲜气体出口连通,在进行氧气浓度校准时,所述校准管理单元控制标定气体输出到所述吸气支路。
在其中一个实施例中,所述校准管理单元通过至少两种不同氧气浓度的标定气体对氧电池进行校准。
在其中一个实施例中,所述氧电池为化学氧电池。
在其中一个实施例中,所述氧电池为顺磁氧氧电池,所述校准管理单元通过至少一种氧气浓度的标定气体对氧电池进行校准。
一种麻醉机,包括麻药提供装置、废气排放装置及如上述任一技术特征所述的氧电池校准系统;
所述氧电池校准系统的呼吸回路的吸气支路的一端与所述麻药提供装置连通,所述呼吸回路的呼气支路的一端与所述废气排放装置连通;
麻醉机在使用时,所述麻药提供装置向所述呼吸回路提供含有麻药的吸入气体,吸入气体进入所述吸气支路后,经所述连接管路提供给患者,同时,患者的呼出气体还通过所述呼吸回路的连接管路到达所述呼气支路。
在其中一个实施例中,所述麻醉机上设置气源模块、共同气体出口与新鲜气体出口中的一个或多个,所述氧电池校准时,所述气源模块、所述共同 气体出口或所述新鲜气体出口向所述吸气支路提供标定气体。
在其中一个实施例中,所述麻醉机还包括呼气装置,所述呼气装置设置于所述呼气支路与所述废气排放装置之间,用于调节呼出气体的流量或压力。
在其中一个实施例中,所述麻醉机还包括控制单元,所述控制单元在所述麻醉机自检时控制所述氧电池校准系统进行氧电池校准。
在其中一个实施例中,所述麻醉机自检还包括气密性检测或备用流量控制系统测试。
还涉及一种氧电池校准系统的校准方法,所述校准方法应用于氧电池校准系统,所述氧电池校准系统包括呼吸回路及氧电池,所述呼吸回路包括吸气支路、呼气支路及连接管路,所述氧电池连接于所述吸气支路上,且连接处位于所述吸气单向阀的后端;
所述校准方法包括如下步骤:
控制标定气体进入所述吸气支路,并经所述氧电池、所述连接管路及所述呼气支路流出;
根据流经所述氧电池的标定气体进行氧气浓度校准。
采用上述技术方案后,本发明的有益效果为:
本发明的麻醉机、氧电池校准系统及其校准方法,不需要人工干预即可实现氧电池的自动化校准,保证氧电池工作的可靠性,使得麻醉机能够正常工作运行。
附图说明
图1为本发明一实施例的氧电池校准系统的示意图;
图2为本发明另一实施例的氧电池校准系统一实施方式的示意图;
图3为图2所示的氧电池校准系统另一实施方式的示意图;
图4为本发明另一实施例提供的麻醉机的气路示意图;
其中:
100-氧电池校准系统;
110-呼吸回路;111-吸气支路;112-呼气支路;113-吸收罐支路;114-吸气单向阀;115-呼气单向阀;116-连接管路;117-CO2吸收罐;
120-氧电池;
130-旁通支路;
140-开关部件;
200-麻药提供装置;
300-呼气装置;
310-呼气管路;
320-呼气阀;
330-调节阀;
340-调节管路。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本发明的麻醉机、氧电池校准系统及其校准方法进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
参见图1至图3,本发明提供了一种氧电池校准系统100,氧电池校准系统100包括呼吸回路110、氧电池120及校准管理单元。该氧电池校准系统100可以用于图4所示的麻醉机中。该氧电池校准系统100应用于麻醉机中,用于对麻醉机的氧电池120进行校准,这样麻醉机在使用时氧电池120能够可靠的检测呼吸回路110气体中的氧气浓度,使得供给患者气体中的氧气浓度能够满足实际需求,保证患者的使用安全。在需要对氧电池120进行校准时,将标定气体流经氧电池120的标定气体进行氧气浓度校准。这里的氧电池120是指医用氧电池。当然,在本发明的其他实施方式中,本发明的氧电池校准系统100还可用于其他设备中氧电池120的氧气浓度的校准,如呼吸机等等。
在本发明中,呼吸回路110包括吸气支路111、呼气支路112、吸收罐支路113、吸气单向阀114、连接管路116及呼气单向阀115,吸气支路111与呼气支路111通过连接管路116连通,吸气单向阀114设置于吸气支路111上,呼气单向阀115设置于呼气支路112上,吸收罐支路113的一端与吸气支路111连通,且吸收罐支路113的一端位于吸气单向阀114的前端,吸收罐支路113的另一端与呼气支路112连通,且位于呼气单向阀115的后端。氧电池120连接于吸气支路111上,且连接处位于吸气单向阀114的后端。
麻醉机在正常使用时,呼吸回路110的第一端与麻药提供装置200连通,呼吸回路110的第二端与废气排放装置连通,而且,呼吸回路110还与患者的呼吸端连通。这里的第一端是指呼吸回路110的进气端,第二端是指呼吸回路110的出气端。麻药提供装置200向呼吸回路110提供含有麻药的吸入气体,并输送给患者,患者呼出的含有麻药的呼出气体在回路中通过CO2吸收罐117净化后重复利用,多余的气体则通过废气排放装置处理。而且,废气排放装置可以是废气排放装置,也可以是废气回收装置,还可以为其他能够对废气进行处理的装置。
具体的,吸气支路111的进气端能够与麻醉机的麻药提供装置200连通,连接管路116用于连接吸气支路111的出气端、呼气支路112的进气端及患者的呼吸端,呼气支路112的出气端与废气排放装置连通。这里的吸气支路111的进气端与呼吸回路110的进气端重合,为同一个端部,呼气支路112的出气端与与呼吸回路110的出气端重合,为同一个端部。麻药提供装置所输送的含有麻药的吸入气体进入吸气支路111,并通过吸气支路111经连接管路116进入患者的呼吸端,为患者提供麻药;患者的呼出气体经呼吸端进入连接管路116,并通过连接管路116进入到呼气支路112中。在吸气阶段,呼出气体经过CO2吸收罐117,吸收CO2之后,重复利用,多余的气体则经呼气阀,从废气排放装置排出。而且,连接管路116包括Y型管或用于连接吸气支路111与呼气支路112的连通管,Y型管的端部分别与吸气支路111、呼气支路112及患者连接。Y型管能够方便吸入气体经吸气支路111进入患者 的呼吸端,还能使得患者的呼出气体进入呼气支路112。同时,吸气支路111上设置吸气单向阀114,这样能够避免流经吸气单向阀114的吸入气体回流,使得吸入气体沿着单一方向流动;呼气支路112上设置呼气单向阀115,这样能够避免流经呼气单向阀115的呼出气体回流,使得呼出气体沿着单一方向流动。吸气单向阀114位于吸气支路111与吸收罐支路113连接处的下游,即吸入气体在吸气支路111中先经过吸气支路111与吸收罐支路113的连接处再流经吸气单向阀114;呼气单向阀115位于呼气支路112与吸收罐支路113连接处的上游,即呼出气体在呼气支路112中先经过呼气单向阀115再流经呼气支路112与吸收罐支路113的连接处。
氧电池120用于检测麻醉机所输送的吸入气体中氧气浓度是否达标,具体为:氧电池120能够检测通过吸气回路111向患者输送的吸入气体中的氧气浓度,以保证为患者提供的含有麻药的吸入气体中的氧气浓度能够满足需求,保证使用时的安全性。如果含有麻药的吸入气体中的氧气浓度低于或者高于麻醉机的预设氧气浓度时,会对患者安全造成隐患。氧电池120经过一段时间的使用后,氧电池120检测到的氧气浓度与实际的氧气浓度会存在一定的偏差。因此,需要定期或按需对氧电池120进行校准,以保证氧电池120能够准确的检测吸入气体中的氧气浓度,保证氧气浓度检测的可靠性,进而保证麻醉机工作可靠。
而且,氧电池120的氧气浓度校准通过标定气体实现,校准管理单元用于控制标定气体的流动。在需要对氧电池120进行校准时,校准管理单元控制标定气体进入吸气支路111,并经氧电池120、连接管路116和呼气支路112。校准管理单元根据流经氧电池120的标定气体进行氧气浓度校准。具体地,校准管理单元采集氧电池120输出的对应标定气体中的氧气含量的电流,从而得到氧气浓度与输出电流之间的线性函数关系,校准管理单元可以进一步将得到的氧浓度线性函数关系式存储到麻醉机的存储器中。后续进行氧浓度测量时,麻醉机的控制单元可以根据存储器中存储的氧浓度线性函数关系,由氧电池120的输出的电流值逆向计算得到检查气体的氧气浓度。在具体的 实施方案中,麻醉机的控制单元与校准管理单元可以是两个不同的部件,也可以是同一部件,例如集成软件算法的板卡与控制器。
具体地,如果氧电池120为化学氧电池。校准管理单元可以通过至少两种不同氧气浓度的标定气体对氧电池120进行校准。这样能够保证氧电池120浓度校准的准确性,提高使用时的安全系数。在本发明的一实施方式中,分别向呼吸回路110中通入氧气浓度为21%的标定气体和氧气浓度为100%的标定气体。在进行氧电池120校准时,先向吸气支路111中通入氧气浓度为21%的标定气体,流量为5L/min并停留1min以使氧电池120输出的电流值稳定,校准管理单元采集并储存当前氧电池120输出电流值;然后,向吸气支路111中通入氧气浓度为100%的标定气体,流量为5L/min并停留1min以使氧电池120输出的电流值稳定,校准管理单元采样并将当前氧电池120输出电流值存储到存储器中,校准管理单元根据两个校准点的电流值与氧浓度值对应关系得到氧浓度线性函数关系式并储存到存储器中,完成对氧电池120的校准操作。当然,向吸气支路111通入的标定气体的氧气浓度还可以选择其他任意可控的两种氧气浓度,如30%以及90%等。当然,向呼吸回路110通入标定气体的氧气浓度除上述的21%与100%以外,还可分别通入标定气体的氧气浓度为30%、40%以及90%中一种或者多种。另外,如果对于校准效果要求不太高的情况下,也可以仅通过一种氧气浓度的标定气体进行校准。
当然,在本发明的另一实施方式中,氧电池120为顺磁氧氧电池,校准管理单元通过至少一种氧气浓度的标定气体对氧电池120进行校准。顺磁氧氧电池可以只通过一种氧气浓度的标定气体进行校准;也可以通过两种甚至更多种氧气浓度的标定气体进行校准。向吸气支路111中通入氧气浓度为21%的标定气体或氧气浓度为100%的标定气体。在进行氧电池120校准时,向呼吸回路110中通入氧气浓度为21%的标定气体,流量为5L/min并停留1min以使氧电池120输出的电流稳定,校准管理单元采集并储存当前氧电池120输出电流值,校准管理单元采样并将当前氧电池120输出电流值存储到存储器中;或者,向呼吸回路110中通入氧气浓度为100%的标定气体,流量为5L/min 并停留1min以使氧电池120输出的电流稳定,校准管理单元采集并储存当前氧电池120输出电流值,校准管理单元采样并将当前氧电池120输出电流值存储到存储器中。控制单元根据校准点的电流值与氧浓度值对应关系绘制线性函数关系式并储存到存储器中,完成氧电池120的校准操作。当然,也可分别向吸气支路111中通入氧气浓度为21%的标定气体和氧气浓度为100%的标定气体。当然,向呼吸回路110通入标定气体的氧气浓度还可以选择其他任意可控的一种或两种氧气浓度,如30%以及90%。当然,向呼吸回路110通入标定气体的氧气浓度除上述的21%与100%以外,还可分别通入标定气体的氧气浓度为30%、40%以及90%中一种或者多种。
以上校准操作中,向吸气支路111通入的标定气体的流量及停留时间还可根据呼吸回路具体结构和容积进行设定,例如5L/min流量停留3min,8L/min流量2min,10L/min流量停留1min等,流量与停留时间的关系为使得氧电池测量区域的气体种类得到完全的置换并达到稳定为目标。
氧电池120在校准时,需要关断麻药提供装置200,使得麻醉机提供的标定气体进入吸气支路111,向吸气支路111中输入标定气体。校准管理单元控制标定气体进入吸气支路111,并经氧电池120、连接管路116及呼气支路112流出,校准管理单元根据流经氧电池120的标定气体进行氧气浓度校准。标定气体流经氧电池120时,氧电池120能够根据标定气体中实际氧气浓度值输出对应的电流值,校准管理单元将得到的氧浓度与电流值的函数关系式存储到存储器中,以实现氧电池120的校准操作。
本发明的氧电池校准系统100能够使得标定气体在吸气支路111中经吸气单向阀114的后端,经连接管路116后由呼气支路112后流出。在氧电池120校准时,校准管理单元控制标定气体通过吸气支路111直接进入到呼气支路112中,而不需要将连接管路116断开。由于氧电池120是连接在吸气单向阀114后端的吸气支路111上的,这样标定气体在吸气支路111中流动时,氧电池120测量区域能够与吸气支路111中的标定气体进行置换,实现氧电池120中的自动化校准,保证氧电池120工作的可靠性,使得麻醉机能够正 常工作运行。标定气体经吸气单向阀114的后端进入连接管路116有几种形式,详述如下:
参见图1,在本发明的一实施例中,氧电池校准系统100还包括旁通支路130,旁通支路130与吸气支路111连接于吸气单向阀114与氧电池120之间。校准管理单元在进行校准时控制标定气体经旁通支路130进入吸气支路111。也就是说,单独设置一个旁通支路130,该旁通支路130直接引入到吸气单向阀114后端的吸气支路111上,并位于氧电池120之前,即标定气体通过旁通支路130进入吸气支路111后,再流经氧电池120。而且,由于吸气单向阀114的作用,标定气体只能沿着吸气支路111流经氧电池120及连接管路116进入到呼气支路112中,能够避免标定气体进入到吸收罐支路113中。氧电池120在进行校准时,校准管理单元控制标定气体经过旁通支路130进入吸气支路111中,流经氧电池120及连接管路116进入到呼气支路112中,实现氧电池120的自动化校准,保证氧电池120工作的可靠性,使得麻醉机能够正常工作运行。
进一步地,旁通支路130一端连接于麻醉机的共同气体出口或新鲜气体出口,另外一端连接于吸气支路111单向阀后端。可以理解的是,共同气体出口与新鲜气体出口均能够输送标定气体。校准管理单元控制标定气体从共同气体出口或新鲜气体出口流出并进入旁通支路130中,再经过旁通支路130进入吸气支路111中,流经氧电池120及连接管路116进入到呼气支路112中,实现氧电池120的自动化校准,保证氧电池120工作的可靠性,使得麻醉机能够正常工作运行。
参见图2和图3,在本发明的另一实施例中,氧电池校准系统100还包括开关部件140,开关部件140设置于吸收罐支路113上,用于控制吸收罐支路113的通断。在进行氧气浓度校准时,开关部件140关断吸收罐支路113,标定气体能够进入吸气支路111。由于开关部件140关断吸收罐支路113,标定气体在吸气支路111中流动时,标定气体不能沿着吸收罐支路113流动,只能沿着吸气支路111继续流动,可以从吸气单向阀114的前端流向后端, 并流经氧电池120及连接管路116进入到呼气支路112中,实现氧电池120的自动化校准,保证氧电池120工作的可靠性,使得麻醉机能够正常工作运行。
较佳地,开关部件140为开关阀、气阻或者其他能够实现吸收罐支路关断或阻止大量气体流经吸收罐支路的元件。这样,所有或大部分标定气体能流入吸气支路111,经连接管路116后经呼气支路112流出。而且,开关部件140可以设置在CO2吸收罐117与吸气支路111之间,如图2所示,也可以设置在CO2吸收罐117与呼气支路112之间,如图3所示,只要能够保证开关部件140关断吸收罐支路113或在吸收罐支路113中提供足够的气体流动阻力即可。
此时,吸气支路111的输入端可以与麻醉机的气源模块,或共同气体出口,或新鲜气体出口连通,在进行氧气浓度校准时,校准管理单元控制标定气体输出到吸气支路111。可以理解的是,气源模块、共同气体出口及新鲜气体出口均能够输送标定气体。校准管理单元控制标定气体从气源模块、共同气体出口或新鲜气体出口流出并进入吸气支路111,并流过吸气单向阀114、流经氧电池120及连接管路116进入到呼气支路112中,实现氧电池120的自动化校准,保证氧电池120工作的可靠性,使得麻醉机能够正常工作运行。
当然,在本发明的其他实施例中,标定气体可经流量计或控制阀等等进行流量调节后后进入旁通支路130,再由吸气单向阀114的后端进入吸气支路111中;或者,通过开关部件140关断吸收罐支路113后,标定气体经流量计或控制阀等进行流量调节后进入吸气支路111中。需要说明的是,氧电池120校准系统的各个部件之间的连通是通过管路或者直接装配密封实现的,在某些部分所述的部件直接连接在吸气支路111、呼气支路112等上,实际是部件通过管路或者直接装配密封连接在吸气支路111、呼气支路112等上,在此不一一赘述。可选地,吸气支路111上设置吸气流量传感器,以检测吸气支路111中吸入气体的流量,避免吸入气体的流量过大或过小,保证使用安全;呼气支路112上设置呼气流量传感器,以检测呼气支路112中呼 出气体的流量,避免呼出气体的流量过大或过小,保证使用安全。
参见图4,本发明还提供一种麻醉机,包括麻药提供装200、废气排放装置(未示出)及如上述实施例中的氧电池校准系统100。氧电池校准系统100的呼吸回路110的吸气支路111的进气端与麻药提供装置200连通,呼吸回路110的呼气支路112的出气端经呼气阀后与废气排放装置连通。麻醉机在使用时,麻药提供装置200向呼吸回路110提供含有麻药的吸入气体,吸入气体进入吸气支路111后,经连接管路116提供给患者的呼吸端,同时,患者的呼吸端还能送出患者的呼出气体。呼出气体中的CO2通过呼吸回路110中的CO2吸收罐117吸收后重复利用,多余的呼出气体则经呼气阀320后通过废气排放装置净化处理。这样能够避免直接排放带大气中会产生污染,同时避免对医护人员等产生影响。
麻醉机还具有气源模块、共同气体出口与新鲜气体出口中的一个或者多个。氧电池120在校准时,标定气体能够通过气源模块、共同气体出口或者新鲜气体出口进入吸气支路111,并流经氧电池120及连接管路116进入到呼气支路112中,实现氧电池120的自动化校准,保证氧电池120工作的可靠性,使得麻醉机能够正常工作运行。
进一步地,麻醉机还包括呼气装置300,呼气装置300设置于呼气支路112与废气排放装置之间,用于调节呼出气体的压力或流量。呼气装置300包括压力调节结构及呼气阀320。呼气阀320的进气端与出气端分别连接呼气管路310,呼气阀320的一端通过呼气管路310与呼气支路112的一端连通,呼气阀的另一端通过呼气管路320与废气排放装置连通。呼气阀320是用来排出患者的呼出气体的,患者的呼出气体能够通过呼气支路112经呼气管路310进入呼气阀320,继而通过呼气阀320调压后排出。压力控制结构用于调节呼气阀320送出呼出气体的流量或压力,以调节呼气阀320的封阀压力,达到以设定压力封闭呼气阀320的目的。这样,当呼吸回路110的吸气支路111中的吸气压力超过呼气阀的封阀压力时,吸气支路111中多余的吸入气体会直接流入呼气阀320卸放而不会到达患者,从而保证患者端吸入 气体的压力不会超过设定的压力,以保证患者使用时的安全,提高安全系数。压力控制结构可以为可调压力限制阀(Adjustable Pressure Limitation,简称APL阀)或者其他能够实现呼出气体压力调节的结构。在本实施例中,压力控制结构包括用于输入与输出调节气体的调节管路340以及设置于调节管路340上的调节阀330,调节阀330的输出端与呼气阀320连通,调节阀330能够调节调节管路340中调压气体的压力或流量,以实现呼气阀320中呼出气体的压力调节。
随着科技的进步,麻醉机的诸多自检项目,如气密性、流量测量精度及流量传感器校准等已经实现了全自动化,不仅解放了医务人员,使其能更专注于病人及手术过程,而且也提升了设备的可靠性,避免了人工干预造成的偏差。
进一步地,麻醉机还包括控制单元,控制单元在麻醉机自检时控制所述氧电池校准系统进行氧电池校准。麻醉机自检包括气密性检测、备用流量控制系统检测、流量传感器校准等中的一个或多个。控制单元可以控制在麻醉机开机时进行自检、待机时自检,也可以定时或根据用户输入的控制信号进行自检。
将氧电池校准放在麻醉机自检时一起完成,完全不需要操作人员干预或者关心,降低了操作人员负担,还避免了由于操作人员忘记校准而导致麻醉机使用时氧气浓度测量不准而对病人造成的安全隐患。进一步,将氧电池校准与麻醉机气密性自检一起完成,还可省去操作人员断开连接管路的操作。
本发明还提供一种氧电池校准系统的校准方法,该校准方法应用于上述的氧电池校准系统100;校准方法包括如下步骤:
控制标定气体进入吸气支路111,并经氧电池120、连接管路116及呼气支路112流出;
根据流经氧电池120的标定气体进行氧气浓度校准。
在氧电池120校准时,校准管理单元控制标定气体进入吸气支路111,并经氧电池120、连接管路116及呼气支路112流出,而不需要将连接管路116 断开。校准管理单元根据流经氧电池120的标定气体进行氧气浓度校准,实现氧电池120的自动校准。而且,标定气体流经氧电池120时,氧电池120能够根据标定气体中实际氧气浓度值输出对应的电流值,控制单元存储氧浓度与电流值的函数关系式,以实现氧电池120的校准操作。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书的记载范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种氧电池校准系统,其特征在于,包括:
    呼吸回路,包括吸气支路、呼气支路、吸收罐支路、吸气单向阀、连接管路及呼气单向阀,所述吸气支路和所述呼气支路通过所述连接管路连通,所述吸气单向阀设置于所述吸气支路上,所述呼气单向阀设置于所述呼气支路上,所述吸收罐支路的一端与所述吸气支路连通,且位于所述吸气单向阀的前端,所述吸收罐支路的另一端与所述呼气支路连通,且位于所述呼气单向阀的后端;
    氧电池,连接于所述吸气支路上,且连接处位于所述吸气单向阀的后端;以及
    校准管理单元,所述校准管理单元控制标定气体进入所述吸气支路,并经所述氧电池、所述连接管路及所述呼气支路流出,所述校准管理单元根据流经所述氧电池的标定气体进行氧气浓度校准。
  2. 根据权利要求1所述的氧电池校准系统,其特征在于,所述氧电池校准系统还包括旁通支路,所述旁通支路与所述吸气支路连接于所述吸气单向阀与氧电池之间;
    所述校准管理单元在进行氧气浓度校准时控制标定气体经旁通支路进入所述吸气支路。
  3. 根据权利要求1所述的氧电池校准系统,其特征在于,所述氧电池校准系统还包括开关部件,所述开关部件设置于所述吸收罐支路上,用于控制所述吸收罐支路的通断;
    在进行氧气浓度校准时,所述开关部件关断所述吸收罐支路,标定气体能够进入所述吸气支路。
  4. 根据权利要求3所述的氧电池校准系统,其特征在于,所述开关部件为开关阀或气阻。
  5. 根据权利要求2所述的氧电池校准系统,其特征在于,所述旁通支路 一端连接于麻醉机的共同气体出口或新鲜气体出口,另外一端连接于所述吸气支路单向阀后端。
  6. 根据权利要求3至4任一项所述的氧电池校准系统,其特征在于,所述吸气支路的输入端与麻醉机的气源模块,或共同气体出口,或新鲜气体出口连通,在进行氧气浓度校准时,所述校准管理单元控制标定气体输出到所述吸气支路。
  7. 根据权利要求1所述的氧电池校准系统,其特征在于,所述校准管理单元通过至少两种不同氧气浓度的标定气体对氧电池进行校准。
  8. 根据权利要求1-7任一项所述的氧电池校准系统,其特征在于,所述氧电池为化学氧电池。
  9. 根据权利要求1-6任一项所述的氧电池校准系统,其特征在于,所述氧电池为顺磁氧氧电池,所述校准管理单元通过至少一种氧气浓度的标定气体对氧电池进行校准。
  10. 一种麻醉机,其特征在于,包括麻药提供装置、废气排放装置及如权利要求1至9任一项所述的氧电池校准系统;
    所述氧电池校准系统的呼吸回路的吸气支路的一端与所述麻药提供装置连通,所述呼吸回路的呼气支路的一端与所述废气排放装置连通;
    麻醉机在使用时,所述麻药提供装置向所述呼吸回路提供含有麻药的吸入气体,吸入气体进入所述吸气支路后,经所述连接管路提供给患者,同时,患者的呼出气体还通过所述呼吸回路的连接管路到达所述呼气支路。
  11. 根据权利要求10所述的麻醉机,其特征在于,所述麻醉机上设置气源模块、共同气体出口与新鲜气体出口中的一个或多个,所述氧电池校准时,所述气源模块、所述共同气体出口或所述新鲜气体出口向所述吸气支路提供标定气体。
  12. 根据权利要求10所述的麻醉机,其特征在于,所述麻醉机还包括呼气装置,所述呼气装置设置于所述呼气支路与所述废气排放装置之间,用于调节呼出气体的流量或压力。
  13. 根据权利要求10所述的麻醉机,其特征在于,所述麻醉机还包括控制单元,所述控制单元在所述麻醉机自检时控制所述氧电池校准系统进行氧电池校准。
  14. 根据权利要求13所述的麻醉机,其特征在于,所述麻醉机自检还包括气密性检测、流量控制系统测试或流量传感器校准中的一个或多个。
  15. 一种氧电池校准系统的校准方法,其特征在于,所述校准方法应用于权利要求1-9任一项所述的氧电池校准系统,所述氧电池校准系统包括呼吸回路及氧电池,所述呼吸回路包括吸气支路、呼气支路及连接管路,所述氧电池连接于所述吸气支路上,且连接处位于所述吸气单向阀的后端;
    所述校准方法包括如下步骤:
    控制标定气体进入所述吸气支路,并经所述氧电池、所述连接管路及所述呼气支路流出;
    根据流经所述氧电池的标定气体进行氧气浓度校准。
PCT/CN2017/107102 2017-10-20 2017-10-20 麻醉机、氧电池校准系统及其校准方法 WO2019075747A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17929072.1A EP3711804A1 (en) 2017-10-20 2017-10-20 Anesthesia machine, oxygen battery calibration system and calibration method thereof
PCT/CN2017/107102 WO2019075747A1 (zh) 2017-10-20 2017-10-20 麻醉机、氧电池校准系统及其校准方法
CN201780094243.8A CN111093746B (zh) 2017-10-20 2017-10-20 麻醉机、氧电池校准系统及其校准方法
US16/846,262 US20200238038A1 (en) 2017-10-20 2020-04-10 Anesthesia machine, oxygen battery calibration system and calibration method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/107102 WO2019075747A1 (zh) 2017-10-20 2017-10-20 麻醉机、氧电池校准系统及其校准方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/846,262 Continuation US20200238038A1 (en) 2017-10-20 2020-04-10 Anesthesia machine, oxygen battery calibration system and calibration method thereof

Publications (1)

Publication Number Publication Date
WO2019075747A1 true WO2019075747A1 (zh) 2019-04-25

Family

ID=66174211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107102 WO2019075747A1 (zh) 2017-10-20 2017-10-20 麻醉机、氧电池校准系统及其校准方法

Country Status (4)

Country Link
US (1) US20200238038A1 (zh)
EP (1) EP3711804A1 (zh)
CN (1) CN111093746B (zh)
WO (1) WO2019075747A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806513A (en) * 1996-10-11 1998-09-15 Ohmeda Inc. Method and apparatus for controlling a medical anesthesia delivery system
WO2008000299A1 (en) * 2006-06-29 2008-01-03 Maquet Critical Care Ab Anaesthesia apparatus and method for operating an anaesthesia apparatus
CN101288791A (zh) * 2007-04-18 2008-10-22 深圳迈瑞生物医疗电子股份有限公司 一种麻醉机呼吸装置及其流量传感器的标定方法
CN101468221A (zh) * 2007-12-29 2009-07-01 北京谊安医疗系统股份有限公司 麻醉吸收回路
CN102580213A (zh) * 2012-03-21 2012-07-18 深圳市科曼医疗设备有限公司 麻醉机通气系统及其流量校准方法
CN103893879A (zh) * 2012-12-27 2014-07-02 北京谊安医疗系统股份有限公司 一种呼吸机或麻醉机及其氧浓度自动校验方法
CN203786078U (zh) * 2014-04-04 2014-08-20 山东新华医用环保设备有限公司 自动校准的氧浓度变送器
CN104215677A (zh) * 2013-06-05 2014-12-17 北京谊安医疗系统股份有限公司 麻醉机及其氧气浓度监测方法和氧气浓度监测装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701888A (en) * 1996-08-05 1997-12-30 Ohmeda Inc. Automatic air wash for anesthesia system
US7007693B2 (en) * 1999-08-03 2006-03-07 The Research Foundatilon Of State University Of New York Device and method of reducing bias flow in oscillatory ventilators
DE10014959C1 (de) * 2000-03-25 2001-05-03 Draeger Medizintech Gmbh Vorrichtung zur Messung eines Atemgasbestandteils in einer Atemgasleitung
DE10210292A1 (de) * 2001-03-09 2002-10-31 Go Hirabayashi Auf Wärmestrahlung beruhendes, künstliches Beatmungssystem mit Co¶2¶-Absorbens und Kanister zur Benutzung darin
US20040107965A1 (en) * 2002-09-16 2004-06-10 Hickle Randall S. System and method for monitoring gas supply and delivering gas to a patient
US7353824B1 (en) * 2004-08-30 2008-04-08 Forsyth David E Self contained breathing apparatus control system for atmospheric use
US8459261B2 (en) * 2005-11-16 2013-06-11 Treymed, Inc. Side-stream respiratory gas monitoring system and method
US7788963B2 (en) * 2006-10-31 2010-09-07 Ric Investments, Llc System and method for calibrating a determination of partial pressure of one or more gaseous analytes
AT9946U1 (de) * 2006-12-28 2008-06-15 Sieber Arne Dipl Ing Dr Sauerstoffpartialdruckmessvorrichtung für kreislauftauchgeräte
EP2205323B1 (en) * 2007-10-29 2018-07-25 Poseidon Diving Systems Auto calibration / validation of oxygen sensor in breathing apparatus
WO2009062540A1 (en) * 2007-11-12 2009-05-22 Maquet Critical Care Ab Regulation of delivery of multiple anesthetic agents to a patient from an anesthetic breathing apparatus
US8978652B2 (en) * 2007-11-14 2015-03-17 Maquet Critical Care Ab Anesthetic breathing apparatus having improved monitoring of anesthetic agent
EP2298399B1 (de) * 2009-09-16 2016-02-10 Drägerwerk AG & Co. KGaA Anästhesievorrichtung und Verfahren zum Betreiben einer Anästhesievorrichtung
CN102441213B (zh) * 2010-10-09 2015-08-19 深圳迈瑞生物医疗电子股份有限公司 氧电池座组件、氧电池组件及麻醉机
US8770191B2 (en) * 2011-01-07 2014-07-08 General Electric Company System and method for providing mechanical ventilation support to a patient
JP2012202973A (ja) * 2011-03-28 2012-10-22 Nakajima Jidosha Denso:Kk 可燃性ガスを含有する被処理物の処理装置
CN102721691A (zh) * 2011-04-08 2012-10-10 南京分析仪器厂有限公司 一种磁力机械式氧分析器用减波电路
US9032954B2 (en) * 2011-10-01 2015-05-19 Jerome Bernstein Anesthesia machine CO2 absorber bypass
DE102011118265B4 (de) * 2011-11-11 2016-06-30 Drägerwerk AG & Co. KGaA Beatmungsvorrichtung
CN103217320B (zh) * 2012-01-19 2016-12-14 深圳迈瑞生物医疗电子股份有限公司 一种气体处理装置及医疗设备
JP5927013B2 (ja) * 2012-04-16 2016-05-25 日本光電工業株式会社 生体情報モニタ装置
EP3108241A1 (en) * 2014-02-19 2016-12-28 Mallinckrodt Hospital Products IP Limited Methods for compensating long term sensitivity drift of electrochemical gas sensors exposed to nitric oxide
EP3581226B1 (en) * 2014-05-09 2024-02-28 Mallinckrodt Pharmaceuticals Ireland Limited Systems for delivery of therapeutic gas
CN105476637B (zh) * 2014-09-19 2020-10-16 Ge医疗系统环球技术有限公司 校准麻醉机的呼气流量传感器的方法及装置
CN105517612B (zh) * 2014-12-02 2018-06-12 深圳迈瑞生物医疗电子股份有限公司 麻醉机呼吸系统及麻醉机
CN105709318B (zh) * 2014-12-03 2018-02-02 深圳市科曼医疗设备有限公司 呼吸装置及其氧浓度检测机构
CN104784793B (zh) * 2015-04-14 2017-10-10 深圳市科曼医疗设备有限公司 呼吸机及呼吸机的氧传感器自动校准方法
CN105597210B (zh) * 2016-02-25 2018-05-11 深圳市诺然美泰科技股份有限公司 兼容上升式和下降式风箱呼吸回路的麻醉系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806513A (en) * 1996-10-11 1998-09-15 Ohmeda Inc. Method and apparatus for controlling a medical anesthesia delivery system
WO2008000299A1 (en) * 2006-06-29 2008-01-03 Maquet Critical Care Ab Anaesthesia apparatus and method for operating an anaesthesia apparatus
CN101288791A (zh) * 2007-04-18 2008-10-22 深圳迈瑞生物医疗电子股份有限公司 一种麻醉机呼吸装置及其流量传感器的标定方法
CN101468221A (zh) * 2007-12-29 2009-07-01 北京谊安医疗系统股份有限公司 麻醉吸收回路
CN102580213A (zh) * 2012-03-21 2012-07-18 深圳市科曼医疗设备有限公司 麻醉机通气系统及其流量校准方法
CN103893879A (zh) * 2012-12-27 2014-07-02 北京谊安医疗系统股份有限公司 一种呼吸机或麻醉机及其氧浓度自动校验方法
CN104215677A (zh) * 2013-06-05 2014-12-17 北京谊安医疗系统股份有限公司 麻醉机及其氧气浓度监测方法和氧气浓度监测装置
CN203786078U (zh) * 2014-04-04 2014-08-20 山东新华医用环保设备有限公司 自动校准的氧浓度变送器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3711804A4 *

Also Published As

Publication number Publication date
US20200238038A1 (en) 2020-07-30
CN111093746A (zh) 2020-05-01
EP3711804A4 (en) 2020-09-23
CN111093746B (zh) 2023-02-28
EP3711804A1 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP7067925B2 (ja) 高度なガス源を関するシステム及び方法並びに/又は治療ガスの供給システム及び方法並びに/又は治療ガス供給の増強性能検証
US5957129A (en) On-line fault detection and correction in anesthesia delivery system
US8141552B2 (en) Respiratory anaesthesia apparatus with device for measuring the xenon concentration
EP0916358B1 (en) Emergency oxygen flowmeter arrangement
US9199056B2 (en) Device, an aggregate and a method for providing a gasified anesthetic agent
JP2017517361A5 (zh)
US20090250054A1 (en) Anaesthesia apparatus and method for operating an anaesthesia apparatus
EP1961439A1 (en) Inhalation anaesthesia delivery system and a method for leak detection in the inhalation anaesthesia delivery system
CN108883245B (zh) 防止流生成系统中的交叉污染的系统和方法
US11596759B2 (en) Methods and systems for a medical gas delivery module
US7703455B2 (en) Apparatus and method for supplying respiratory gas to a patient in which respiratory gas components are metered with great accuracy
US8978652B2 (en) Anesthetic breathing apparatus having improved monitoring of anesthetic agent
JP2019503242A (ja) 呼吸ガス流の計測における中断の補償
WO2019075747A1 (zh) 麻醉机、氧电池校准系统及其校准方法
US20210008322A1 (en) Method for inhalation effect on the body, and apparatus for implementing same
US20240100287A1 (en) Hybrid single-limb medical ventilation
CN221038943U (zh) 一种呼吸机单次二氧化碳排出量精度的检测装置
AU2017100108A4 (en) Method for Monitoring Gas Analyser and Breathing Apparatus
US20230277798A1 (en) Device and method for regulating a gas flow
US20230041741A1 (en) Supply arrangement and process for safely supplying a medical device with a gas mixture
CN210864425U (zh) 一种治疗气体流量控制装置
US20230285709A1 (en) No delivery apparatus with manual ventilation system
US20240118160A1 (en) Apparatus and process for detecting a leak during artificial ventilation
WO2024069315A1 (en) Hybrid single-limb medical ventilation
JPH0999085A (ja) 人工呼吸器用吸入ガス混合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929072

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017929072

Country of ref document: EP

Effective date: 20200316

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017929072

Country of ref document: EP

Effective date: 20200520