WO2019075621A1 - 超声成像设备、系统及其超声造影成像的图像增强方法 - Google Patents

超声成像设备、系统及其超声造影成像的图像增强方法 Download PDF

Info

Publication number
WO2019075621A1
WO2019075621A1 PCT/CN2017/106391 CN2017106391W WO2019075621A1 WO 2019075621 A1 WO2019075621 A1 WO 2019075621A1 CN 2017106391 W CN2017106391 W CN 2017106391W WO 2019075621 A1 WO2019075621 A1 WO 2019075621A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel data
contrast
data
image enhancement
contrast channel
Prior art date
Application number
PCT/CN2017/106391
Other languages
English (en)
French (fr)
Inventor
章希睿
唐杰
罗渝昆
张明博
桑茂栋
向兰茜
覃东海
范伟
Original Assignee
北京深迈瑞医疗电子技术研究院有限公司
中国人民解放军总医院
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京深迈瑞医疗电子技术研究院有限公司, 中国人民解放军总医院, 深圳迈瑞生物医疗电子股份有限公司 filed Critical 北京深迈瑞医疗电子技术研究院有限公司
Priority to PCT/CN2017/106391 priority Critical patent/WO2019075621A1/zh
Priority to CN201780002280.1A priority patent/CN111278363B/zh
Publication of WO2019075621A1 publication Critical patent/WO2019075621A1/zh
Priority to US16/849,958 priority patent/US11737734B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/481Diagnostic techniques involving the use of contrast agent, e.g. microbubbles introduced into the bloodstream
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20056Discrete and fast Fourier transform, [DFT, FFT]

Definitions

  • the present invention relates to an ultrasound imaging apparatus, and in particular to an image enhancement technique for imaging ultrasound contrast in an ultrasound imaging apparatus.
  • Existing ultrasound contrast imaging uses a conventional focused emission mode. Taking the most basic single beam as an example, only one receiving line can be formed for each transmission; even if multi-beam parallel processing is used, the number of transmissions is not significantly reduced.
  • more firing times means that the microbubbles in the unit frame are boosted by the sound field excitation intensity, which inevitably leads to a shortening of the duration of the contrast image, which in turn affects the integrity of the blood flow perfusion at the lesion.
  • it is possible to achieve an extended duration by reducing the number of shots or reducing the intensity of the emitted sound field, it sacrifices image resolution and contrast signal strength.
  • plane wave angiography In order to break through the above technical bottlenecks, plane wave angiography technology has been applied. Firstly, plane wave angiography does not need to emit focus, the sound field is more uniform, and flexible parallel multi-beam reception can be performed. Secondly, one frame image can be formed for each plane wave transmitted, the number of shots is greatly reduced, and the frame rate is improved. However, arc-shaped artifacts caused by signal saturation appear in the plane wave angiography image, as shown in the white box in Figure 1. In the process of ultrasound diagnosis, curved artifacts can cause problems for the doctor, so that the doctor can not judge whether the strong signal is the ultrasonic echo or the interference reflected by the biological tissue to be tested, which may lead to doctor misdiagnosis.
  • the invention mainly provides an ultrasound imaging apparatus, a system and an image enhancement method thereof for ultrasound contrast imaging.
  • an embodiment provides an image enhancement method for ultrasound contrast imaging, comprising the steps of:
  • contrast channel data using an ultrasonic probe to transmit ultrasonic waves to the biological tissue to be tested containing the contrast agent, receiving the ultrasonic echo signal and extracting the obtained imaging channel data, and receiving the ultrasound probe
  • the ultrasonic echo signals received by the array elements form a channel data
  • the plurality of receiving array elements of the ultrasonic probe receive the ultrasonic echo signals to obtain a plurality of channel data, and are used to extract a position point corresponding to the detected biological tissue.
  • an embodiment provides an image enhancement method for ultrasound contrast imaging, comprising:
  • the beam synthesis result is adjusted and improved by using the image enhancement coefficient to obtain contrast image data.
  • an image enhancement method for ultrasound contrast imaging including:
  • weighted channel data After performing weighting processing on the calculated image enhancement coefficient and the contrast channel data, weighted channel data is obtained;
  • Contrast image data is obtained based on the beam synthesis data.
  • an ultrasound imaging apparatus comprising:
  • An ultrasonic probe for transmitting ultrasonic waves to a region of interest containing a contrast agent, receiving an echo of the ultrasonic feedback, and obtaining an echo signal;
  • a transmitting circuit for outputting an ultrasonic transmission sequence to the ultrasonic probe
  • An echo processing circuit configured to receive the echo signal, process the echo signal, and output channel data, and the echo signal received by each receiving array element in the ultrasonic probe forms a channel data
  • the processor performs the following process by calling the corresponding program module:
  • the beam synthesis result is adjusted and improved by using the image enhancement coefficient to obtain contrast image data.
  • an ultrasound imaging system comprising:
  • the angiographic data acquisition module is configured to acquire contrast channel data, wherein the contrast channel data is data for generating a contrast image extracted from channel data of the ultrasonic echo signal, and the ultrasound echo received by each receiving array element of the ultrasound probe The signal forms a channel of data;
  • An enhancement coefficient calculation module configured to calculate an image enhancement coefficient according to the contrast channel data
  • a beam synthesis module configured to perform beam synthesis according to the contrast channel data, to obtain a beam synthesis result
  • an operation module configured to perform weighting processing on the calculated image enhancement coefficient and the beam synthesis result.
  • an embodiment provides a computer readable storage medium comprising a program executable by a processor to implement the aforementioned image enhancement method.
  • FIG. 1 is a schematic diagram of curved artifacts in a plane wave contrast image formed by a conventional ultrasound imaging apparatus
  • FIG. 2 is a structural block diagram of an embodiment of an ultrasonic imaging apparatus provided by the present invention.
  • FIG. 3 is a flowchart of an image enhancement method of Embodiment 1;
  • FIG. 6 is a flowchart of an image enhancement method of Embodiment 4.
  • Figure 7 is a plan wave angiography image using prior art in the early stage of perfusion
  • Figure 8 is a plane wave angiogram formed by the ultrasonic imaging apparatus provided by the present invention in the early stage of perfusion image
  • Figure 9 is a plan wave angiography image of the prior art using the prior art.
  • Figure 10 is a plan wave angiography image formed by an ultrasound imaging apparatus provided by the present invention during an arterial phase;
  • FIG. 11 is a schematic diagram showing extreme saturation artifacts of a plane wave angiography image using the prior art
  • FIG. 12 is a schematic diagram showing extreme saturation artifacts of a plane wave contrast image formed by the ultrasonic imaging apparatus provided by the present invention.
  • the ultrasound contrast imaging apparatus includes an ultrasound probe 1, a transmitting circuit 2, a transmit/receive selection circuit 3, an echo processing circuit 4, and a processor 5.
  • the ultrasonic probe 1 is used to realize mutual conversion of an electrical pulse signal and an ultrasonic wave, thereby realizing ultrasonic echoes emitted to the detected biological tissue (for example, biological tissue in a human body or an animal body) and receiving the reflected back of the tissue.
  • the ultrasound probe 1 includes a plurality of array elements, and the array elements are also called ultrasonic transducers.
  • the energy device, the plurality of array elements are arranged in a row to form a line array, or arranged in a two-dimensional matrix to form an area array, and the plurality of array elements may also constitute a convex array.
  • the array elements are used to transmit ultrasonic waves according to the excitation electrical signals or to convert the received ultrasonic waves into electrical signals.
  • each element can be used to transmit ultrasound to biological tissue in the region of interest, as well as to receive ultrasound echoes that are returned by tissue.
  • the ultrasonic waves arrive at each position point of the detected biological tissue, and will be different due to different tissue acoustic impedances at different position points.
  • the reflected, reflected ultrasonic waves are picked up by the receiving array elements, and each receiving array element may receive ultrasonic echo signals at a plurality of position points, and the ultrasonic echo signals of different position points received by each receiving array element form different channels.
  • the data in other words, the ultrasonic echo reflected by one position point may be picked up by a plurality of receiving array elements, each receiving array element outputs a channel data corresponding to the position point, and the plurality of receiving array elements may output corresponding to the position point.
  • a plurality of channel data, the plurality of channel data forming a set of channel data corresponding to the location point.
  • the distance to different points in the detected biological tissue is different, so the time that the ultrasonic echo reflected by each position point reaches the array element is different, and the ultrasonic echo can reach the array element according to the ultrasonic echo. The time identifies the correspondence between the ultrasonic echo signal and the position point.
  • the ultrasonic echo reflected at one time point may be picked up by multiple receiving array elements, and each receiving array element outputs one channel data corresponding to the time point, and multiple receiving array elements.
  • a plurality of channel data corresponding to the time point may be output, the plurality of channel data forming a set of channel data corresponding to the time point.
  • a two-dimensional image is composed of several beam-combined data points arranged in a two-dimensional plane according to spatial positional relationship or chronological order, and performs envelope detection, dynamic range compression, and digital scan conversion (DSC, Digital Scan Conversion). ) and so on after the operation. Therefore, the position and time points mentioned herein are not pixel points in a two-dimensional image, but rather refer to beam-synthesized data points.
  • the beam synthesis data point is the result of summing the data of each channel after phase compensation, wherein the key of phase compensation is to determine the time sequence of the echo signal reaching each channel, and the time sequence is determined by the spatial position (spatial distance) Divided by the speed of sound equals time).
  • multiple sets of channel data corresponding to multiple position points or time points can be obtained by using the ultrasonic probe, and the multiple sets of channel data can be respectively divided by different receiving array elements.
  • the ultrasonic echo is an echo signal of ultrasonic waves returned by the detected biological tissue containing the contrast agent by ultrasonic scanning.
  • the ultrasonic probe 1 is used to transmit ultrasonic waves to the detected biological tissue or region of interest containing the contrast agent (step 410 in FIG. 4, step 510 in FIG. 5), and the echo of the ultrasonic feedback is received by the ultrasonic probe 1 to obtain an echo signal.
  • the contrast channel data is extracted from the echo signal (step 430 in Fig. 4, step 530 in Fig. 5).
  • Ultrasounds mentioned herein include: weakly focused ultrasound, planar ultrasound, focused ultrasound, and the like.
  • the region of interest may be a partial or all of the detected biological tissue.
  • the transmitting circuit 2 is configured to output an ultrasonic wave transmitting sequence to the ultrasonic probe 1 to control the ultrasonic probe 1 to perform single-angle or multi-angle deflected ultrasonic plane wave emission; and control the number of transmitting elements, the transmitting voltage and the phase of the ultrasonic probe 1.
  • the transmission/reception selection circuit 3 controls switching of the transmission and reception states of the ultrasonic probe 1; in the present embodiment, the transmission/reception selection circuit 3 is a selection switch. In some embodiments, if the position of the transmitted and received array elements is determined to be constant, the array elements for transmission can be directly electrically connected to the transmitting circuit 2, and the array elements for receiving are directly connected to the echo processing circuit. Thus, the transmission/reception selection circuit 3 can be omitted.
  • the echo processing circuit 4 is configured to receive the ultrasonic echo outputted by the ultrasonic probe 1, and process the ultrasonic echo to output channel data, and the ultrasonic echo signal received by each receiving array element of the ultrasonic probe 1 forms a channel data.
  • the processing of the ultrasonic echo by the echo processing circuit 4 may include filtering, amplification, and the like.
  • the echo processing circuit 4 includes a receiving circuit 41 and a demodulating filter circuit 42.
  • the receiving circuit 41 is configured to receive the ultrasonic echo outputted by the ultrasonic probe 1, and perform amplification of the front end of the ultrasonic echo, and then perform analog-to-digital conversion (ADC) to output channel data (channel domain radio frequency data).
  • ADC analog-to-digital conversion
  • Front-end amplification can be implemented using one or more of a low noise amplifier (LNA), a voltage controlled attenuation/amplifier (VCA), and a programmable gain amplifier (PGA).
  • LNA low noise amplifier
  • VCA voltage controlled attenuation/amplifier
  • PGA programmable gain amplifier
  • the demodulation filter circuit 42 is configured to perform quadrature demodulation on the channel data, and then perform low-pass filtering and down-sampling processing on the baseband signal.
  • the processor 5 is configured to receive channel data and process the channel data according to the data. For example, after receiving the echo signal, the processor 5 performs beam synthesis on the echo signal, and then extracts some useful or different components from the beam synthesized echo signal. For example, processor 5 is from beam synthesis Two different signals are extracted from the echo signal, one is a linear component, the other is a nonlinear component, the linear component reflects the tissue anatomy, and the subsequent ultrasound image is generated; the nonlinear component reflects the contrast microbubble information. , subsequent generation of a contrast image. In this embodiment, the processor 5 first extracts the linear component and the nonlinear component from the channel data before beamforming, thereby obtaining the contrast channel data (step 310 in FIG. 3, step 430 in FIG.
  • the processor may calculate an image enhancement coefficient according to the obtained contrast channel data (step 440), and obtain a beam synthesis result according to the extracted contrast channel data (step 450), thereby obtaining the obtained image enhancement coefficient pair.
  • the beam synthesis results are adjusted for improvement to obtain contrast image data (step 460).
  • the set of contrast channel data used to calculate the image enhancement coefficients is the same set of contrast channel data as the set of contrast channel data used to calculate the beamformed data.
  • an ultrasonic echo signal received by a receiving element of the ultrasonic probe forms a channel data
  • multiple receiving array elements of the ultrasonic probe respectively receive the ultrasonic echo signal to obtain a plurality of channel data for extracting one of the detected biological tissues.
  • the ultrasonic echo signals received by a receiving array element of the ultrasonic probe form a channel data
  • the plurality of receiving array elements in the ultrasonic probe respectively receive a plurality of channel data corresponding to one time point, to obtain corresponding time points.
  • Using the image enhancement coefficient to improve the beam synthesis result can significantly improve the saturation artifact of the contrast image and improve the contrast resolution of the image; in particular, optimize the effect of the contrast image obtained by the ultrasonic plane wave.
  • each position point in the detected biological tissue corresponds to a set of contrast channel data, and the contrast channel data is used.
  • a contrast image is generated subsequently.
  • the processor calculates an image enhancement coefficient of a position point in the detected biological tissue according to the set of contrast channel data (step 320 in FIG. 3), performs beam synthesis according to the set of contrast channel data, and obtains a beam of the position point in the detected biological tissue.
  • Synthesizing data step 330 in FIG. 3
  • performing weighting processing on the calculated image enhancement coefficient and beamforming data to obtain contrast image data corresponding to the position point in the detected biological tissue (FIG.
  • step 340 using each The image enhancement coefficient and the beam synthesis data corresponding to the calculated position are subjected to corresponding weighting processing, thereby realizing point-to-point weighting processing, improving the imaging effect of the contrast image of the detected biological tissue, and significantly improving the saturation artifact of the contrast image and enhancing the image. Contrast resolution; in particular, to optimize the effect of contrast images obtained with ultrasound plane waves.
  • the contrast channel data is acquired (step 610), and the time is calculated by using a set of contrast channel data corresponding to one time point.
  • the image enhancement coefficient corresponds to the image enhancement coefficient (step 620); calculating a beam synthesis result corresponding to the time point by using a set of contrast channel data corresponding to the time point (step 630); and then, using the image enhancement coefficient pair corresponding to the time point.
  • the beam combining result corresponding to the time point is adjusted and improved to obtain the contrast image data at the corresponding time point (step 640).
  • the image enhancement coefficient and the beam synthesis data may be weighted, for example, image enhancement coefficients and beam synthesis data corresponding to the same position point may be used.
  • the weighting process may be performed, and the corresponding image enhancement coefficient and beam synthesis data may be used for weighting processing at the same time point.
  • the weighting process mentioned here may be that the image enhancement coefficient and the beam synthesis data of the same position point are multiplied, or the image enhancement coefficient and the beam synthesis data corresponding to the same time point are multiplied.
  • it is not limited to using only multiplication processing to implement weighting, and may also be other processing methods.
  • Using the image enhancement coefficient calculated by the contrast channel data to perform point-to-point weighting can effectively improve the image contrast resolution and reduce the influence of saturation artifacts.
  • the image enhancement coefficient calculated corresponding to each position point or each time point in the detected biological tissue may directly perform point-to-point weighting processing on the contrast channel data corresponding to each position point or each time point. Then beam synthesis is performed.
  • the processor extracts the contrast channel data according to the echo signal received by the ultrasound probe (step 530); calculates the image enhancement coefficient according to the contrast channel data (step 540), first After the calculated image enhancement coefficient and the contrast channel data are weighted, the weighted channel data is obtained (step 550), and then the beam combining data is obtained by beam combining using the weighted channel data (step 560), and the angiography is obtained according to the beam combining data.
  • the contrast channel data used for calculating the image enhancement coefficient and the contrast channel data used for performing the weighting processing are the same group of contrast channel data, for example, the same group of contrast channel data may be a set of contrast channel data corresponding to the same position point, It can also be a set of contrast channel data corresponding to the same time point.
  • the processor calculates the image enhancement coefficient according to the contrast channel data, and performs weighting processing on the calculated image enhancement coefficient and the contrast channel data, and the following steps are performed in the process of obtaining the weighted channel data:
  • Cache a set of contrast channel data, which may be a set of contrast channel data corresponding to the same location point, or a set of contrast channel data corresponding to the same time point;
  • the weighted channel data is obtained for beam synthesis.
  • the weighting process in this embodiment may be that the calculated image enhancement coefficient and the contrast channel data are multiplied.
  • the corresponding image enhancement coefficient can be calculated, and for each position point or time point, the following process is performed, that is, the image of the position point or the time point is enhanced.
  • the coefficient and the contrast data of the position point or the time point are subjected to point-to-point weighting processing, and the contrast data may be the contrast channel data, or may be a beam combining result after beam-synthesizing the contrast channel data. It can be seen that the embodiment only processes the noise of each position point or time point, and does not affect the overall echo processing coefficient and the overall gain, so the ultrasound can be reduced without loss of image resolution and signal strength. Curved artifacts in contrast imaging.
  • the image enhancement coefficient mentioned in this embodiment may be a correlation calculation result between channel data corresponding to a plurality of receiving array elements in the contrast channel data. For example, the correlation between each channel data in a group of channel data corresponding to the same location point or the same time point may be calculated, and the image enhancement coefficient may be obtained or determined according to the calculation result of the correlation.
  • the correlation between the data of each contrast channel specifically includes the correlation of each contrast channel data in one or more dimensions in the phase domain, the space-frequency domain, and the envelope domain.
  • the phase domain refers to the information and difference in phase between the signals (contrast channel data) between the channels;
  • the space-frequency domain refers to the information and difference in the space and frequency of the signals between the channels (the contrast channel data);
  • the domain refers to the information and difference in amplitude between the signals (contrast channel data) between channels.
  • the correlation between each contrast channel data in a set of contrast channel data is calculated by any of the following methods:
  • the first type envelope detection of each contrast channel data in a set of contrast channel data, extracting the envelope data, and calculating the correlation between the contrast channel data according to the envelope data, the envelope detection including the package under any power Network detection.
  • the correlation is calculated directly using each contrast channel data in a set of contrast channel data.
  • the correlation is calculated using the magnitude (absolute value) of the summation of the individual contrast channel data in a set of contrast channel data; the correlation is calculated using the energy (squares) of the summation of the individual contrast channel data in a set of contrast channel data.
  • the third type phase detection of a set of contrast channel data to obtain phase data, and calculation of correlation between data of each contrast channel based on phase data. Specifically, performing phase detection on the contrast channel data, and acquiring statistics in the phase data, such as standard deviation, variance, and distance, according to statistics The acquired statistics calculate the correlation between the contrast channel data.
  • the fourth type Fourier transform is performed on each contrast channel data in a set of contrast channel data to obtain frequency domain data, and the correlation between each contrast channel data is calculated according to the frequency domain data.
  • the image enhancement factor is determined based on the correlation, either directly or indirectly.
  • the image enhancement coefficient is obtained indirectly according to the correlation, for example, calculating a correlation coefficient between two channels of data (such as two adjacent contrast channel data) in a set of contrast channel data, when the correlation coefficient is less than a preset At the threshold, it is considered that there is no correlation between the data of the two channels, and vice versa, it is considered to have correlation; the frequency of statistical non-correlation and correlation occurs, and finally the image enhancement coefficient is obtained.
  • x 1 , x 2 , ..., x N represent N delayed post-contrast channels in a set of contrast channel data (except for delay, without any processing).
  • the calculation process of the image enhancement coefficient is decomposed as follows.
  • Step1 Calculate the correlation coefficient ⁇ between the two pairs of contrast channel data according to the following formula 1:
  • Equation 1 Cov(.) and Var(.) represent the covariance operation and the variance operation of two random variables, respectively, and n represents the nth contrast channel data.
  • Step2 According to Step1, the correlation coefficient between (N-1) contrast channel data is calculated. Predetermine an empirical threshold ⁇ (0,1). When ⁇ n,n+1 ⁇ , it is considered that the two contrast channel data are “correlated, and vice versa. If ⁇ n,n+1 ⁇ , then It is considered that the two channel data are "unrelated".
  • enhancement coefficient f(K 1 );
  • enhancement coefficient 1 - f(K 2 ); where f(K); is a monotonically increasing function with respect to the variable K, and The value range is (0, 1), and the function is various in form, as long as the above requirements are met, and is not specifically provided herein.
  • the ultrasonic echo is from a signal source (such as tissue or contrast microbubbles) that is desired to be acquired
  • the data of each contrast channel is relatively close in terms of envelope, phase, and frequency.
  • the correlation is high, and the calculated correlation is high.
  • the image enhancement factor tends to 1 and retains the data points after beam synthesis.
  • the ultrasonic echo comes from random signals such as interference, clutter, and noise
  • the data of each contrast channel will naturally have a large difference in terms of envelope, phase, and frequency.
  • the consistency of the contrast channel data is low, and finally calculated.
  • the enhancement factor tends to zero, which in turn acts as a suppression.
  • the final result Yes Retain useful imaging content and suppress unwanted side lobes and interference.
  • the correlation calculation result between the adjacent two contrast channel data in a set of contrast channel data is used, and the correlation coefficient corresponding to each group of contrast channel data is obtained after normalization, thereby obtaining an image.
  • Enhancement factor A position point or time point corresponds to a set of contrast channel data, and at least one correlation coefficient is obtained by using a set of contrast channel data correspondingly.
  • delay processing can be added.
  • the contrast channel data may be subjected to delay processing, and then used to calculate image enhancement coefficients and/or perform beam synthesis.
  • the delay processing can be added before the step of acquiring or extracting the contrast channel data.
  • the ultrasonic echo signal received by the ultrasonic probe is subjected to delay processing to obtain delayed data, and then the contrast channel data reflecting the contrast agent information is extracted from the delayed data to eliminate The phase difference of each contrast channel data in each group of contrast channel data. Therefore, in some embodiments, the contrast channel data may be extracted according to the delayed echo signal; or the contrast channel data may be subjected to delay processing after the contrast channel data is extracted.
  • the image enhancement method may further include: performing coherent composite processing on the data after the beam combining to obtain the contrast image data.
  • step 340 the image enhancement coefficient and the beamforming data are weighted to obtain a weighted image, and the weighted image data is subjected to coherent composite processing to obtain contrast image data (step 350).
  • Coherent recombination requires a corresponding weighted image of multiple angles, which may be obtained by the following method. Using ultrasonic probes to transmit ultrasonic waves of multiple angles to the biological tissue or region of interest, receiving echoes of ultrasonic feedback to obtain echo signals, and each angle is transmitted by using multiple receiving array elements of the ultrasonic probe to receive ultrasonic waves of corresponding angles.
  • the echo signal obtains a plurality of sets of channel data corresponding to the angle, thereby forming a plurality of sets of contrast channel data corresponding to the plurality of position points of the detected biological tissue or the region of interest at the angle.
  • the emission mode of the multi-angle ultrasonic plane wave can be referred to, for example, by controlling the excitation delay of the array elements in the ultrasonic probe, thereby obtaining ultrasonic plane waves of a plurality of deflection angles.
  • the angle here is measured by the angle between the direction of the ultrasonic wave and the normal to the probe.
  • Using multiple sets of contrast channel data corresponding to multiple position points at one angle respectively obtain image enhancement coefficients and beam synthesis data corresponding to the plurality of position points at the angle respectively, and use image enhancement coefficients corresponding to corresponding position points at one angle
  • the beam synthesis data is weighted to obtain the corresponding position
  • Pointing a weighted image data corresponding to the corresponding angle then, a plurality of position points at one angle can respectively obtain a set of weighted image data, and multiple angles respectively obtain multiple sets of weighted image data, and weights corresponding to the plurality of angles respectively
  • the image (for example, the plurality of sets of weighted image data) is subjected to coherent composite processing at a plurality of angles to obtain the contrast image data, and a portion of the one-frame contrast image data corresponding to the plurality of position points or at least one frame of the contrast image data is obtained.
  • a position point or time point corresponds to a weighted image data at an angle.
  • the data after the adjustment improvement may be coherently combined and processed.
  • the contrast image data corresponding to the time point is obtained (step 650).
  • Coherent recombination requires a corresponding weighted image of multiple angles, which may be obtained by the following method.
  • Ultrasonic probes are used to transmit multi-angle ultrasonic waves to the region of interest containing the contrast agent, for example by controlling the time delay of the emitter elements to adjust the angle of emission of the ultrasonic waves, so that ultrasonic waves of multiple angles can be obtained.
  • the echoes of the multi-angle ultrasonic feedback are received by the ultrasonic probe to obtain echo signals corresponding to the plurality of angles respectively.
  • the processor can extract corresponding contrast channel data for each angle according to the echo signals corresponding to each angle, and multiple angles respectively corresponding to obtaining multiple types of contrast channel data, one angle corresponding to one type of contrast channel data, and the same one at one angle
  • the position point or the time point correspondingly obtains a set of contrast channel data. Therefore, the plurality of angles respectively correspond to obtaining the plurality of types of contrast channel data, and may include multiple types of contrast channel data corresponding to the same position point at multiple angles, wherein One position point corresponds to one type of contrast channel data at one angle, and one position point corresponds to multiple types of contrast channel data at multiple angles, and a group of contrast channel data corresponding to the same position point may include the same position at multiple angles.
  • the type of contrast channel data corresponding to one angle may further include: a plurality of sets of contrast channel data corresponding to the plurality of position points at the same angle.
  • the plurality of angles respectively corresponding to obtaining the plurality of types of contrast channel data may further include: a plurality of types of contrast channel data corresponding to the plurality of angles at the same time point, wherein one time point corresponds to one type of contrast channel data at one angle, one The time point corresponds to multiple types of contrast channel data at multiple angles, and a group of contrast channel data corresponding to the same time point may include part or all of the plurality of types of contrast channel data corresponding to the same time point at multiple angles, similarly
  • the corresponding type of contrast channel data at one angle may further include: a plurality of sets of contrast channel data corresponding to the plurality of time points at the same angle.
  • the image enhancement coefficient and the beam synthesis result corresponding to each angle are respectively calculated, and the beam enhancement result corresponding to the corresponding angle is adjusted and improved by using the image enhancement coefficient corresponding to each angle.
  • the adjustment result corresponding to each angle obtains a plurality of types of adjustment results by using a plurality of types of contrast channel data corresponding to the plurality of angles respectively; and the plurality of types of adjustment results are subjected to coherent composite processing according to the plurality of angles to obtain the contrast image data.
  • image enhancement coefficients and beamforming corresponding to the same position point or time point respectively at each angle are respectively calculated according to a type of contrast channel data corresponding to the same position point or time point at each angle.
  • the beam synthesis results obtained by the same position point or time point corresponding to the corresponding angle are adjusted and improved, thereby obtaining the same angle at each angle.
  • the adjustment result corresponding to a position point or time point can also be adopted: using multiple sets of contrast channel data corresponding to multiple position points or time points at one angle, respectively obtaining image enhancement coefficients and beam synthesis data corresponding to the plurality of position points or time points respectively at the angles.
  • the position point or the time point may respectively obtain a set of weighted image data, and the plurality of angles respectively obtain the plurality of sets of weighted image data, and the plurality of sets of weighted image data are coherently combined to obtain the contrast image data according to the plurality of angles, and the obtained plurality of obtained image data are obtained.
  • the adjustment improvement in this paper can be weighted processing.
  • multiple types of contrast channel data corresponding to the same position point or time point at multiple angles
  • multiple types of adjustment results are obtained correspondingly; the multi-class adjustment results are coherently combined and processed according to multiple angles to obtain contrast image data.
  • the increased coherent composite processing may be after beam combining, for example, in one embodiment, using an ultrasound probe to transmit multi-angle ultrasound to a region of interest containing contrast agent, receiving the The multi-angle ultrasonic feedback echo obtains echo signals corresponding to multiple angles respectively, and the processor extracts corresponding contrast channel data for each angle according to the echo signals corresponding to each angle, and multiple angles respectively corresponding to obtain multiple types
  • the data of the multi-type contrast channel please refer to the related descriptions above, and no further description is provided here.
  • the image enhancement coefficients corresponding to the same position point or time point at each angle are respectively calculated, and then The image enhancement coefficient corresponding to the same position point or time point at each angle and the contrast channel data corresponding to the same position point or time point at the corresponding angle are weighted, and the same position point or time point is obtained under each angle.
  • the corresponding weighted channel data is obtained, thereby obtaining weighted channel data corresponding to the same position point or time point respectively at multiple angles.
  • beam synthesis is performed to obtain beam synthesis data corresponding to the same position point or time point at multiple angles, and then the same position point or The time point is correspondingly used to perform the coherent composite processing on the beam synthesis data at a plurality of angles to obtain the contrast image data.
  • multiple sets of contrast channel data corresponding to multiple time points or position points at one angle are used to obtain image enhancement coefficients corresponding to the plurality of time points or position points at the angle, and then The image enhancement coefficient corresponding to the corresponding position point or the corresponding time point at each angle and the contrast channel data corresponding to the corresponding position point or the corresponding time point at the corresponding angle are weighted, and the corresponding time point or corresponding position point is obtained at the corresponding angle.
  • a plurality of position points or a plurality of time points at one angle can respectively obtain a set of weighted image data, thereby obtaining multiple corresponding points or multiple time points respectively under multiple angles Group weighted channel data.
  • Multiple sets of weighted channel data are separately beam-combined to obtain a set of beam synthesis data of multiple time points or position points at corresponding angles, thereby obtaining multiple sets of beamforming corresponding to multiple time points or position points at multiple angles.
  • Data, and finally, the angiographic image data is obtained by performing coherent composite processing on multiple sets of beam compositing data according to a plurality of angles, and obtaining a portion of one frame of angiographic image data corresponding to a plurality of time points or position points, or at least one frame angiography Image data.
  • the correlation enhancement can be obtained by using the correlation channel data in the type of contrast channel data corresponding to the same position point or time point at one angle to obtain the above image enhancement.
  • an ultrasound system includes an ultrasound probe 1, a transmitting circuit 2, a transmit/receive selection circuit 3, an echo processing circuit 4, and a processor 5.
  • super An acoustic probe for transmitting ultrasonic waves to a region of interest containing a contrast agent, receiving an echo of the ultrasonic feedback, and obtaining an echo signal; a transmitting circuit for outputting an ultrasonic transmitting sequence to the ultrasonic probe; and an echo processing circuit for Receiving the foregoing echo signal, processing the echo signal to output channel data, and the echo signal received by each receiving array element in the ultrasonic probe forms a channel data; the processor performs the following process by calling the corresponding program module:
  • the aforementioned beamforming result is adjusted and improved by using the aforementioned image enhancement coefficient to obtain contrast image data.
  • a set of contrast channel data used to calculate image enhancement coefficients is the same set of contrast channel data as a set of contrast channel data used to calculate beamformed data.
  • the aforementioned contrast channel data is a set of contrast channel data corresponding to the same location point, or a set of contrast channel data corresponding to the same point in time.
  • the aforementioned image enhancement coefficients are obtained by calculating correlations between individual contrast channel data in a set of contrast channel data corresponding to the same location point or at the same point in time.
  • the processor performs the foregoing calculation of the image enhancement coefficient according to the foregoing contrast channel data, obtains the beam synthesis result according to the foregoing contrast channel data, and adjusts the foregoing beam synthesis result by using the foregoing image enhancement coefficient. the process of:
  • Method 1 calculating an image enhancement coefficient of a position point in the detected biological tissue according to a set of contrast channel data, performing beam synthesis according to the foregoing set of contrast channel data, obtaining beam synthesis data of the foregoing position point, and, using the image enhancement coefficient And performing weighting processing on the beamforming data to obtain contrast image data corresponding to the foregoing position points in the detected biological tissue, wherein the set of the contrast channel data is corresponding to the region of interest received by the plurality of receiving array elements of the ultrasound probe Multiple contrast channel data at one location point.
  • Method 2 calculating the image enhancement coefficient corresponding to the foregoing time point by using a set of contrast channel data corresponding to a time point, calculating a beam synthesis result corresponding to the time point by using a set of contrast channel data corresponding to the time point, and using the foregoing
  • the image enhancement coefficient corresponding to the time point weights the beam synthesis result corresponding to the foregoing time point to obtain a contrast image at the corresponding time point data.
  • the aforementioned contrast channel data is extracted according to the echo signal after the delay processing; or the contrast channel data is subjected to delay processing after the foregoing extraction of the contrast channel data.
  • delay please refer to the relevant description in the previous section.
  • the ultrasonic probe is used to emit multi-angle ultrasonic waves to the region of interest including the contrast agent, and the echoes of the multi-angle ultrasonic feedback are received to obtain echo signals corresponding to the plurality of angles respectively;
  • the echo signals corresponding to each angle extract the aforementioned contrast channel data corresponding to each angle, and calculate image enhancement coefficients and beam synthesis results corresponding to each angle respectively according to the corresponding contrast channel data of each angle, and
  • the weighted channel data or the result corresponding to the corresponding angle is obtained by using the image enhancement coefficient corresponding to each angle and the beam combining result of the corresponding angle to obtain weighted channel data or results corresponding to the respective angles, thereby obtaining weighted channel data or results corresponding to the plurality of angles respectively, and corresponding to the multiple angles
  • the weighted channel data or the result is subjected to coherent composite processing to obtain the aforementioned contrast image.
  • the foregoing plurality of angles respectively corresponding to obtaining the plurality of types of contrast channel data include: a plurality of types of contrast channel data corresponding to the same time point or the position point at multiple angles, wherein one time point or position point is at an angle
  • the portion of the program module executed by the processor constitutes an ultrasound imaging system including: an angiography data acquisition module 51, an enhancement coefficient calculation module 52, a beam synthesis module 53, and an arithmetic module 54 .
  • the system can also include a coherence angle composite module 55.
  • the contrast data acquisition module 51 is configured to acquire contrast channel data, which is data for generating a contrast image extracted from channel data of the ultrasonic echo signal, and the ultrasound echo received by each receiving array element of the ultrasound probe.
  • the signal forms a channel of data, for example, each location point or each time point in the region of interest corresponds to a set of contrast channel data.
  • the enhancement coefficient calculation module 52 is configured to calculate an image enhancement coefficient according to the contrast channel data, for example, calculate an image enhancement coefficient of a position point or a time point according to the contrast channel data. Specifically, the enhancement coefficient calculation module 52 calculates a correlation between each contrast channel data in each group of contrast channel data, An image enhancement coefficient of a position point in the detected biological tissue corresponding to the contrast channel data is determined according to the correlation.
  • the beam synthesis module 53 is configured to perform beam synthesis according to the contrast channel data to obtain a beam synthesis result.
  • the beam synthesis result corresponding to the corresponding position point or time point can be obtained according to the same position point or the contrast channel data corresponding to the same time point.
  • the operation module 54 is configured to perform weighting processing on the calculated image enhancement coefficient and the beam synthesis result, for example, weighting the image enhancement coefficient corresponding to the same location point or the same time point, and the beam synthesis result corresponding to the corresponding location point or time point. deal with.
  • the image enhancement coefficient is determined by the correlation between the contrast channel data in the contrast channel data, and is applied to the plane wave beam synthesis data, which can effectively reduce the weight of the beam synthesis data corresponding to the signal saturation, and can reduce the side lobes. In turn, it suppresses off-axis interference and clutter, and finally achieves the effect of eliminating artifacts and improving contrast resolution.
  • the angiographic data acquisition module 51 in this embodiment is configured to perform step 310, step 430, step 530, or step 610 in FIG. 3 to FIG. 6;
  • the enhancement coefficient calculation module 52 is configured to perform step 440 in FIG. 3 to FIG. Step 540, step 620 or step 320;
  • the beam synthesis module 53 is configured to perform step 330, step 450, step 560 or step 630 in FIG. 3 to FIG. 6;
  • the operation module 54 is configured to perform the steps in FIG. 3 to FIG. 340, step 460, step 550 or step 640, so refer to the detailed explanation of the related steps in the foregoing, and no further details are provided herein.
  • an ultrasound imaging system further includes a delay processing module for phase aligning a plurality of channel data for each location point or point in time.
  • a delay processing module for phase aligning a plurality of channel data for each location point or point in time.
  • the ultrasonic echo reflected by the position point can be picked up by a plurality of receiving elements and form a channel data corresponding to the position point.
  • the processing of the delay processing module can make the data of each channel in the channel data corresponding to the position point. The phase is the same.
  • the delay processing module delays the contrast channel data in each contrast channel data after the contrast data acquisition module 51 extracts the contrast channel data reflecting the contrast agent information from the channel data to eliminate the The phase difference of each contrast channel data in the contrast channel data.
  • the delay processing module performs delay processing on the channel data before extracting the contrast channel data reflecting the contrast agent information from the channel data.
  • the contrast channel data processed in the enhancement coefficient calculation module 52 and the beam synthesis module 53 is the delayed contrast channel data.
  • the beam synthesizing module 53 is specifically configured to perform dynamic receiving aperture, apodization, and phase rotation on the contrast channel data output by the contrast data acquiring module 51, and perform channel summation processing.
  • the operation module 54 performs the point-to-point weighting processing on the image enhancement coefficient and the beam synthesis data, including: multiplying the image enhancement coefficient corresponding to each position point or each time point in the region of interest by the beam synthesis data of the corresponding position point or time point for subsequent imaging Contrast data. Since for a receiving array element, the distance to different points in the detected biological tissue is different, the time of the ultrasonic echo reflected by each position point reaching the array element is different, and the ultrasonic echo can be reached according to the ultrasonic echo. The time identifies the correspondence between the ultrasonic echo signal and the position point.
  • the image enhancement coefficient and the beam synthesis data obtained by the contrast channel data of each position point to be imaged in the detected biological tissue are in a one-to-one correspondence relationship, and the data obtained by multiplying the two together is subjected to contrast imaging, and finally reduced or even A plane wave contrast image of curved artifacts is eliminated. Since the image enhancement coefficient is multiplied with the corresponding beam synthesis data, it does not mean multiplication with the image pixel. Therefore, the data required for ultrasound contrast imaging is filtered, effectively suppressing the back. Random signals such as interference, clutter, and noise in the wave signal enhance the contrast resolution of the contrast image.
  • the coherence angle combining module 55 is configured to perform coherent recombination (before enveloping) operation on the beam synthesis data after the enhancement processing under all the transmission angles, mainly to improve the SNR (Signal to Noise Ratio) and the lateral resolution of the image.
  • the ultrasonic probe 1 emits ultrasonic wave waves of different angles to excite the medium.
  • the coherence angle combining module 55 performs beam combining processing on the echo data at each angle, and finally performs weighted summation processing on the beam synthesized data at all angles.
  • the angiographic data acquisition module extracts the corresponding contrast channel data for each angle according to the echo signals corresponding to each angle, and the plurality of angles respectively obtain the plurality of types of contrast channel data, and the enhancement coefficient calculation module according to each
  • the corresponding contrast channel data is used to calculate the image enhancement coefficient corresponding to each angle;
  • the beam synthesis module calculates the beam synthesis result corresponding to each angle, and the operation module utilizes the image enhancement coefficient corresponding to each angle and the beam fusion of the corresponding angle
  • weighting processing is performed to obtain weighted channel data or results corresponding to the corresponding angles, thereby obtaining weighted channel data or results corresponding to the plurality of angles respectively, and the coherent angle combining module 55 performs coherent composite processing by using the weighted channel data or results corresponding to the plurality of angles. Used to obtain the aforementioned contrast image data.
  • the present embodiment starts from the contrast channel data and performs simultaneous beamforming processing. Firstly, the contrast channel data is subjected to delay, dynamic receiving aperture and apodization weighting processing, and then the phase domain, the envelope domain and the frequency domain of the contrast channel data after the above processing are extracted, and used for calculating the image enhancement coefficient of the plane wave contrast image. Finally, the set of coefficients is applied to the plane wave beam synthesis data; thus, the saturation artifact of the plane wave image can be significantly improved, and the contrast resolution of the image can be improved.
  • the contrast data acquisition module 51, the enhancement coefficient calculation module 52, and the beam combination are all functions or program modules of the processor; and in some embodiments, the contrast data acquisition module 51, the enhancement coefficient calculation module 52, and beamforming
  • the module 53, the computing module 54, the coherent angle combining module 55, and the delay processing module may be implemented by one or more processors, and the processor may be a processor disposed within the host or be disposed outside of the host of the ultrasound device A processor, such as a server or a processor on a portable device, can do so.
  • the linear wave probe of the ultrasound platform is used to collect the plane wave contrast baseband channel data of the canine liver (of course, the embodiment can also be applied to the radio frequency channel data), and the image proposed by the embodiment is based on the MATLAB simulation platform.
  • the enhancement method was verified by simulation.
  • Figure 7 to Figure 12 show the typical comparison results of 3 frames.
  • FIG. 7 is a plane wave angiography image using the prior art in the early stage of perfusion
  • FIG. 8 is a plane wave angiography image formed by the image enhancement method provided by the embodiment in the early stage of perfusion, and it can also be seen from the figure that the medium-to-field method is adopted after the enhancement method.
  • the saturated artifact form is greatly improved and even completely removed.
  • FIG. 8 is a plane wave angiography image using the prior art in the early stage of perfusion.
  • FIG. 11 is a schematic diagram showing extreme saturation artifacts of a plane wave angiography image using the prior art
  • FIG. 12 is a schematic diagram showing extreme saturation artifacts of a plane wave angiography image formed by the ultrasound imaging apparatus provided by the embodiment. The figure shows that the saturation artifacts in the near-field are greatly improved, even completely eliminated, and the image quality is improved.
  • the image enhancement method for ultrasound contrast imaging proposed in this embodiment has strong clinical application value.
  • the embodiment is not limited to plane wave angiography, and is equally applicable to conventional focused wave angiography.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: a read only memory, a random access memory, a magnetic disk, an optical disk, a hard disk, etc.
  • the computer executes the program to implement the above functions.
  • the program is stored in the memory of the device, and when the program in the memory is executed by the processor, the above all can be realized. Part or part of the function.
  • a computer readable storage medium includes a program executable by a processor to implement the image enhancement method described above.
  • the image enhancement coefficient of each position point in the detected biological tissue is first calculated according to the contrast channel data
  • the image enhancement coefficient and the beam synthesis data are point-to-point.
  • the weighting process reduces arcing artifacts in ultrasound contrast imaging without loss of image resolution and signal intensity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Hematology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声成像设备、系统及其超声造影成像的图像增强方法。由于先根据造影通道数据计算出被检测生物组织中各位置点的图像增强系数,再将图像增强系数和波束合成数据进行加权处理。

Description

超声成像设备、系统及其超声造影成像的图像增强方法 技术领域
本发明涉及一种超声成像设备,具体涉及超声成像设备中对超声造影成像的图像增强技术。
背景技术
现有超声造影成像采用传统的聚焦发射模式。以最基本的单波束为例,每发射1次仅能形成1根接收线;即便采用多波束并行处理,发射次数也难以显著减少。对于超声造影成像而言,较多的发射次数意味着单位帧内微泡被声场激励强度的提升,必然导致造影图像持续时间的缩短,进而影响病灶处血流灌注的完整性。固然可以通过减少发射次数或者降低发射声场强度的方式达到延长持续时间的目的,却又牺牲了图像分辨率和造影信号强度。
为了突破上述技术瓶颈,平面波造影技术得以应用。首先,平面波造影无需发射聚焦,发射声场更加均匀,可进行灵活的并行多波束接收;其次,每发射1次平面波即可形成1帧图像,发射次数大大降低,且帧率得以提升。但平面波造影图像中会出现由信号饱和导致的弧形伪影,如图1中白框内所示。在超声诊断过程中,弧形伪影会给医生带来困扰,使医生无法判断该强信号是由被测生物组织反射的超声回波还是干扰,从而可能导致医生误诊。
为消除弧形伪影,一方面可以减小接收孔径或调整接收变迹系数对其进行控制,但这种方案会使信号的主瓣展宽,导致成像的横向分辨率下降;另一方面可以降低模拟增益,尽可能减少饱和现象,但须以信号强度的损失为代价。
发明内容
本发明主要提供一种超声成像设备、系统及其超声造影成像的图像增强方法。
根据第一方面,一种实施例中提供了一种超声造影成像的图像增强方法,包括如下步骤:
获取造影通道数据,利用超声探头向包含造影剂的被测生物组织发射超声波,接收超声回波信号并提取获得所述造影通道数据,超声探头的一接收 阵元接收的所述超声回波信号形成一通道数据,利用超声探头的多个接收阵元接收所述超声回波信号获得多个通道数据,用以提取被检测生物组织中一位置点对应的一组造影通道数据;
根据一组造影通道数据计算被检测生物组织中一位置点的图像增强系数;
根据所述一组造影通道数据进行波束合成,得到所述位置点的波束合成数据;和,
将所述图像增强系数和所述波束合成数据进行加权处理用以获得被检测生物组织中所述位置点对应的造影图像数据。
根据第二方面,一种实施例中提供了一种超声造影成像的图像增强方法,包括:
向包含造影剂的感兴趣区域发射超声波;
接收所述超声波反馈的回波,获得回波信号;
根据所述回波信号,提取造影通道数据;
根据所述造影通道数据计算图像增强系数;
根据所述造影通道数据获得波束合成结果;
利用所述图像增强系数对所述波束合成结果进行调整改善,获得造影图像数据。
根据第三方面,一种实施例中提供了一种超声造影成像的图像增强方法,包括:
向包含造影剂的感兴趣区域发射超声波;
接收所述超声波反馈的回波,获得回波信号;
根据所述回波信号,提取造影通道数据;
根据所述造影通道数据计算图像增强系数;
将计算获得的图像增强系数和所述造影通道数据进行加权处理后,得到加权通道数据;
利用加权通道数据进行波束合成获得波束合成数据;
根据所述波束合成数据获得造影图像数据。
根据第四方面,一种实施例中提供了一种超声成像设备,包括:
超声探头,用于向包含造影剂的感兴趣区域发射超声波,接收所述超声波反馈的回波,获得回波信号;
发射电路,用于向所述超声探头输出超声波发射序列;
回波处理电路,用于接收所述回波信号,对回波信号进行处理后输出通道数据,超声探头中的每一接收阵元接收的回波信号形成一通道数据;
处理器,通过调用相应的程序模块来执行以下过程:
根据所述回波信号,提取造影通道数据;
根据所述造影通道数据计算图像增强系数;
根据所述造影通道数据获得波束合成结果;和,
利用所述图像增强系数对所述波束合成结果进行调整改善,获得造影图像数据。
根据第五方面,一种实施例中提供了一种超声成像系统,包括:
造影数据获取模块,用于获取造影通道数据,所述造影通道数据是从超声回波信号的通道数据中提取的用于生成造影图像的数据,超声探头的每一接收阵元接收的超声回波信号形成一通道数据;
增强系数计算模块,用于根据造影通道数据计算图像增强系数;
波束合成模块,用于根据造影通道数据进行波束合成,得到波束合成结果;
运算模块,用于将计算获得的图像增强系数和波束合成结果进行加权处理。
根据第六方面,一种实施例中提供了一种计算机可读存储介质,其包括程序,所述程序能够被处理器执行以实现前述的图像增强方法。
附图说明
图1为现有超声成像设备形成的平面波造影图像中的弧形伪影的示意图;
图2为本发明提供的超声成像设备的一种实施例的结构框图;
图3为实施例1的图像增强方法的流程图;
图4为实施例2的图像增强方法的流程图;
图5为实施例3的图像增强方法的流程图;
图6为实施例4的图像增强方法的流程图;
图7为灌注早期采用现有技术的平面波造影图像;
图8为灌注早期采用本发明提供的超声成像设备形成的平面波造影图 像;
图9为动脉期采用现有技术的平面波造影图像;
图10为动脉期采用本发明提供的超声成像设备形成的平面波造影图像;
图11为采用现有技术的平面波造影图像出现极端饱和伪影的示意图;
图12为采用本发明提供的超声成像设备形成的平面波造影图像出现极端饱和伪影的示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
请参考图2,本发明提供的一种实施例中,超声造影成像设备包括超声探头1、发射电路2、发射/接收选择电路3、回波处理电路4和处理器5。
超声探头1用于实现电脉冲信号和超声波的相互转换,从而实现向被检测生物组织(例如人体或动物体中的生物组织)发射超声波并接收组织反射回的超声回波。本实施例中,超声探头1包括多个阵元,阵元也称为超声换 能器,多个阵元排列成一排构成线阵,或排布成二维矩阵构成面阵,多个阵元也可以构成凸阵列。阵元用于根据激励电信号发射超声波,或将接收的超声波变换为电信号。因此每个阵元可用于向感兴趣区域的生物组织发射超声波,也可用于接收经组织返回的超声波回波。在进行超声检测时,可通过发射序列和接收序列控制哪些阵元用于发射超声波,哪些阵元用于接收超声波,或者控制阵元分时隙用于发射超声波或接收超声回波。参与超声波发射的所有阵元可以被电信号同时激励,从而同时发射超声波;或者参与超声波发射的阵元也可以被具有一定时间间隔的若干电信号激励,从而持续发射具有一定时间间隔的超声波。如果将被检测生物组织内接收和反射超声波的最小处理区域称为组织内的位置点,则超声波到达被检测生物组织的每个位置点后,将因不同位置点的组织声阻抗不同而产生不同的反射,反射的超声波被接收阵元拾取,且每一接收阵元可能接收到多个位置点的超声回波信号,每一接收阵元接收的不同位置点的超声回波信号形成不同的通道数据,换言之,一个位置点反射的超声波回波可能被多个接收阵元拾取,每个接收阵元输出对应于该位置点的一个通道数据,多个接收阵元可输出对应于该位置点的多个通道数据,该多个通道数据形成与该位置点对应的一组通道数据。对于某个接收阵元而言,其到被检测生物组织中不同位置点的距离不同,因此各位置点反射的超声回波到达该阵元的时间也不同,可根据超声回波到达该阵元的时间识别超声回波信号和位置点的对应关系。当然,在一些实施例中,也可以是,一个时间点反射的超声波回波可能被多个接收阵元拾取,每个接收阵元输出对应于该时间点的一个通道数据,多个接收阵元可输出对应于该时间点的多个通道数据,该多个通道数据形成与该时间点对应的一组通道数据。
超声成像中,一帧二维图像是由若干个波束合成数据点根据空间位置关系或者时间先后顺序排列于二维平面,并且进行包络检测、动态范围压缩和数字扫描转换(DSC,Digital Scan Conversion)等操作后得到。因此,本文提及的位置点和时间点并不是二维图像中的像素点,而是指代波束合成数据点。具体来说,波束合成数据点是各个通道数据在进行相位补偿后求和的结果,其中相位补偿的关键在于确定回波信号到达各通道的时间先后,而时间先后则由空间位置决定(空间距离除以声速等于时间)。
例如,超声平面波一次发射后,利用超声探头可以获得多个位置点或时间点对应的多组通道数据,这些多组通道数据可以分别由不同的接收阵元分 时或同时获得,将这些多组通道数据进行波束合成后,可以得到至少一帧超声造影图像。
本实施例中,超声回波是经超声波扫描包含造影剂的被检测生物组织返回的超声波的回波信号。例如,利用超声探头1向包含造影剂的被检测生物组织或感兴趣区域发射超声波(图4中步骤410,图5中步骤510),并通过超声探头1接收超声波反馈的回波获得回波信号(图4中步骤420,图5中步骤520),从回波信号中提取获得造影通道数据(图4中步骤430,图5中步骤530)。本文中提到的超声波包括:弱聚焦超声波、平面超声波、聚焦超声波等等。感兴趣区域可以是被检测生物组织中的部分位置或全部。
发射电路2用于向超声探头1输出超声波发射序列,以控制超声探头1完成单角度或者多角度偏转的超声平面波发射;并控制超声探头1的发射阵元数、发射电压和相位。
发射/接收选择电路3控制超声探头1发射和接收状态的切换;本实施例中,发射/接收选择电路3为选择开关。在有些实施例中,如果发射和接收的阵元位置确定不变,则可将用于发射的阵元直接和发射电路2电连接,将用于接收的阵元直接和回波处理电路电连接,从而可以省略发射/接收选择电路3。
回波处理电路4用于接收超声探头1输出的超声波回波,对超声波回波进行处理后输出通道数据,超声探头1的每一接收阵元接收的超声回波信号形成一通道数据。
回波处理电路4对超声回波的处理可包括滤波、放大等。本实施例中,回波处理电路4包括接收电路41和解调滤波电路42。
接收电路41用于接收超声探头1输出的超声波回波,对超声波回波进行前端放大后,再进行模数转换(ADC),输出通道数据(通道域射频数据)。前端放大可采用低噪声放大器(LNA)、压控衰减/放大器(VCA)和可编程增益放大器(PGA)中的一种或多种实现。
解调滤波电路42用于对通道数据进行正交解调,随后对基带信号进行低通滤波及降采样处理。
处理器5用于接收通道数据,并根据对通道数据进行处理。例如,处理器5接收到回波信号后,对回波信号进行波束合成,然后从波束合成后的回波信号中提取出一些有用的或不同成分的信号。例如,处理器5从波束合成 后的回波信号中提取出两种不同的信号,一种是线性成分,另一种是非线性成分,线性成分反映组织解剖特征,后续生成组织的超声图像;非线性成分反映造影剂微泡信息,后续生成造影图像。本实施例中,处理器5从波束合成之前的通道数据中先提取出线性成分和非线性成分,从而得到造影通道数据(图3中步骤310,图4中步骤430和图5中步骤530)。参见图4所示,处理器可以根据得到的造影通道数据计算图像增强系数(步骤440),以及根据提取的造影通道数据获得波束合成结果(步骤450),从而利用计算得到的图像增强系数对获得的波束合成结果进行调整改善,用以获得造影图像数据(步骤460)。在其中一个实施例中,用于计算图像增强系数的一组造影通道数据与用于计算波束合成数据的一组造影通道数据为同一组造影通道数据。例如,超声探头的一接收阵元接收的超声回波信号形成一通道数据,利用超声探头的多个接收阵元分别接收超声回波信号获得多个通道数据,用以提取被检测生物组织中一位置点对应的一组造影通道数据。又例如,超声探头的一接收阵元接收的超声回波信号形成一通道数据,利用超声探头中的多个接收阵元分别接收一个时间点对应的多个通道数据,用以获得该时间点对应的一组造影通道数据。利用图像增强系数来改善波束合成结果,可以显著改善造影图像的饱和伪影问题,提升图像的对比分辨率;特别是优化利用超声平面波获得的造影图像的效果。
基于同一组造影通道数据分别计算图像增强系数和波束合成数据时,在其中一个实施例中,参见图3所示,被检测生物组织中每一位置点对应一组造影通道数据,造影通道数据用于后续生成造影图像。处理器根据一组造影通道数据计算被检测生物组织中一位置点的图像增强系数(图3中步骤320),根据该组造影通道数据进行波束合成,得到被检测生物组织中该位置点的波束合成数据(图3中步骤330),将计算得到的图像增强系数和波束合成数据进行加权处理用以获得被检测生物组织中该位置点对应的造影图像数据(图3步骤340),利用每个位置点对应计算得到的图像增强系数和波束合成数据进行相应的加权处理,从而实现点对点加权处理,改善被检测生物组织的造影图像的成像效果,可以显著改善造影图像的饱和伪影问题,提升图像的对比分辨率;特别是优化利用超声平面波获得的造影图像的效果。
在另一个实施例中,参见图6,参见前述步骤510至步骤530获取造影通道数据(步骤610),利用一个时间点对应的一组造影通道数据计算该时间 点对应的所述图像增强系数(步骤620);利用该时间点对应的一组造影通道数据计算此时间点对应的波束合成结果(步骤630);然后,利用该时间点对应的图像增强系数对该时间点对应的波束合成结果进行调整改善,用以获得相应时间点的造影图像数据(步骤640)。
利用计算得到的图像增强系数对获得的波束合成结果进行调整改善时,可以通过将图像增强系数和波束合成数据进行加权处理来实现,例如,可以采用同一位置点相应的图像增强系数和波束合成数据进行加权处理,也可以采用同一时间点相应的图像增强系数和波束合成数据进行加权处理。这里提到的加权处理可以是,将同一位置点相应的图像增强系数和波束合成数据进行相乘处理,或者是,将同一时间点相应的图像增强系数和波束合成数据进行相乘处理。当然本实施例中不限于只采用相乘处理来实现加权,还可以是其他处理方式。利用造影通道数据计算得到的图像增强系数来进行点对点的加权处理后可以有效改善图像对比分辨率,降低饱和伪影的影响。
此外,在有的实施例中,也可以将被检测生物组织中各位置点或各时间点对应计算得到的图像增强系数直接和各位置点或各时间点对应的造影通道数据进行点对点加权处理,然后再进行波束合成。例如,在其中一个实施例中,参见图5所示,处理器根据超声探头接收到的回波信号,提取造影通道数据(步骤530);根据造影通道数据计算图像增强系数(步骤540),先将计算获得的图像增强系数和造影通道数据进行加权处理后,得到加权通道数据(步骤550),然后,利用加权通道数据进行波束合成获得波束合成数据(步骤560),根据此波束合成数据获得造影图像数据(步骤570)。进一步地,用于计算图像增强系数的造影通道数据与进行加权处理所采用的造影通道数据为同一组造影通道数据,例如,同一组造影通道数据可以是同一位置点对应的一组造影通道数据,也可以是同一时间点对应的一组造影通道数据。
在其中一个实施例中,处理器根据造影通道数据计算图像增强系数,将计算获得的图像增强系数和造影通道数据进行加权处理后,得到加权通道数据的过程中包括以下步骤:
缓存一组造影通道数据,这一组造影通道数据可以是同一位置点对应的一组造影通道数据,也可以是同一时间点对应的一组造影通道数据;
根据这一组造影通道数据计算图像增强系数;和,
读取缓存的一组造影通道数据与计算获得的图像增强系数进行加权处 理,获得加权通道数据用以进行波束合成。
本实施例中的加权处理,可以是将计算获得的图像增强系数和造影通道数据进行相乘处理。
对于被检测生物组织中的每个位置点或每个时间点,都可以计算出对应的图像增强系数,对于每一个位置点或时间点都执行以下过程,即将该位置点或时间点的图像增强系数和该位置点或时间点的造影数据进行点对点加权处理,造影数据可以是造影通道数据,也可以是将造影通道数据经波束合成后的波束合成结果。可见本实施例只是针对每个位置点或时间点的噪声进行处理,不会影响到整体的回波处理系数和整体的增益,因此在不损失图像分辨率和信号强度的前提下,能够降低超声造影成像中的弧形伪影。
本实施例中提到的图像增强系数可以为造影通道数据中与多个接收阵元对应的通道数据之间的相关性计算结果。例如,可以是计算同一位置点或同一时间点对应的一组通道数据中各个通道数据之间的相关性,根据相关性的计算结果获得或确定图像增强系数。
其中,各造影通道数据之间的相关性,具体包括各造影通道数据在相域、空间-频域以及包络域中的一种或多种维度下的相关性。相域是指各通道间的信号(造影通道数据)在相位方面的信息和差异;空间-频域是指各通道间的信号(造影通道数据)在空间和频率方面的信息和差异;包络域则是指各通道间的信号(造影通道数据)在幅度方面的信息和差异。
具体的,通过以下方式中的任一种计算一组造影通道数据中各造影通道数据之间的相关性:
第一种:对一组造影通道数据中各造影通道数据进行包络检测,提取其包络数据,根据包络数据计算造影通道数据之间的相关性,包络检测包括任意次幂下的包络检测。
第二种:直接使用一组造影通道数据中各个造影通道数据计算相关性。例如,使用一组造影通道数据中各个造影通道数据求和的幅度(绝对值)的形式计算相关性;使用一组造影通道数据中各个造影通道数据求和的能量(平方)的形式计算相关性。
第三种:对一组造影通道数据进行相位检测获取相位数据,根据相位数据计算各个造影通道数据之间的相关性。具体的,对造影通道数据进行相位检测,获取相位数据中的统计量,例如标准差、方差和距离等统计量,根据 获取的统计量计算造影通道数据之间的相关性。
第四种:对一组造影通道数据中各个造影通道数据进行傅立叶变换获得频域数据,根据频域数据计算各个造影通道数据之间的相关性。
根据相关性确定图像增强系数,可采用直接或间接的方式。本实施例中,根据相关性间接的得到图像增强系数,例如,计算一组造影通道数据中两两通道数据(如相邻的两个造影通道数据)间的相关系数,当相关系数小于预设阈值时,认为该两个通道数据间不具有相关性,反之则认为具有相关性;统计非相关性和相关性出现的频次,最终得到图像增强系数。
具体的,令x1,x2,……,xN分别表示一组造影通道数据中的N个时延后的造影通道数据(除了时延,未作任何处理)。图像增强系数的计算过程分解如下。
Step1:根据以下公式1,计算两两造影通道数据间的相关系数ρ:
Figure PCTCN2017106391-appb-000001
公式1中,Cov(.)和Var(.)分别表示两个随机变量的协方差运算和方差运算,n表示第n个造影通道数据。
Step2:根据Step1,共计算得到(N-1)个造影通道数据间的相关系数。预设一个经验阈值β∈(0,1),当ρn,n+1≥β时,认为该两个造影通道数据间为“相关,,;反之若ρn,n+1<β,则认为该两个通道数据间为“非相关”。
Step3:分别统计两两通道数据间出现“相关”和“非相关”的频次,分别记为K1和K2,其中,K1+K2=N-1。考虑两种增强系数计算方式:(1)增强系数=f(K1);(2)增强系数=1-f(K2);其中f(K);为关于变量K的单调递增函数,且值域为(0,1],该函数形式多样,只要满足上述要求即可,在此不具体提供。
当超声回波来自于期望获取的信号源(比如组织、造影剂微泡)时,各造影通道数据在包络、相位和频率等方面是较为接近的,此时相关性较高,算出来的图像增强系数趋向于1,对波束合成后的数据点起保留作用。
当超声回波来自于干扰、杂波、噪声这些随机信号时,各造影通道数据在包络、相位和频率等方面将天然存在较大的差异,造影通道数据一致性较低,最终算出来的增强系数趋向于0,进而起到抑制效果。最终达到的效果 是:保留有用的成像内容而压制无用的旁瓣和干扰等。
可见,在其中一个实施例中,利用一组造影通道数据中相邻两个造影通道数据之间的相关性计算结果,进行归一化后获得每组造影通道数据对应的相关系数,从而获得图像增强系数。一个位置点或时间点对应一组造影通道数据,利用一组造影通道数据对应获得至少一个相关性系数。
为了消除各个组造影通道数据内各造影通道数据的相位差,可以增加时延处理。例如,可以在获取或提取造影通道数据的步骤之后,先对造影通道数据进行时延处理,再用于计算图像增强系数和/或进行波束合成。还例如,可以在获取或提取造影通道数据的步骤之前,增加时延处理。在其中一个实施例中,先对超声探头接收到的超声回波信号进行时延处理,获得时延后的数据,然后从时延后的数据中提取反映造影剂信息的造影通道数据,以消除各个组造影通道数据内各造影通道数据的相位差。因此,在一些实施例中,可以根据时延处理后的回波信号,提取造影通道数据;也可以,在提取造影通道数据之后先对造影通道数据进行时延处理。
在一些实施例中,图像增强方法中还可以包括,对波束合成之后的数据进行相干复合处理后得到造影图像数据。通过增加复合角度数目,可以有效提升图像的分辨率和信噪比。
例如,参见图3所示,在步骤340中,将图像增强系数和波束合成数据进行加权处理获得加权图像,将加权图像数据进行相干复合处理获得造影图像数据(步骤350)。相干复合需要多个角度的对应的加权图像,具体可以是按照以下方法获得。利用超声探头向被测生物组织或感兴趣区域发射的多个角度的超声波,接收超声波反馈的回波获得回波信号,每个角度发射时利用超声探头的多个接收阵元接收相应角度的超声回波信号获得该角度对应的多组通道数据,从而形成被检测生物组织或感兴趣区域的多个位置点在该角度下对应的多组造影通道数据。对于多个角度的超声波的发射可参照多角度超声平面波的发射方式,例如,通过控制超声探头中阵元的激励时延从而可以获得多个偏转角度的超声平面波。这里的角度通过超声波发射方向与探头法线的夹角来衡量。通过上述方法可以获取多个角度对应的多类造影通道数据。利用一个角度下多个位置点对应的多组造影通道数据,分别获得多个位置点在该角度下分别对应的图像增强系数和波束合成数据,利用在一个角度下相应位置点对应的图像增强系数和波束合成数据进行加权处理后获得相应位置 点在相应角度下对应的一个加权图像数据,那么,一个角度下多个位置点可以分别获得一组加权图像数据,多个角度分别对应获得多组加权图像数据,将多个角度分别对应的加权图像(例如多组加权图像数据)按照多个角度进行相干复合处理获得造影图像数据,获得的是多个位置点对应的一帧造影图像数据的部分、或者至少一帧造影图像数据。在一个角度下一个位置点或时间点对应一个加权图像数据。
又例如,参见图6所示,在步骤640利用相应时间点对应的图像增强系数对该时间点对应的波束合成结果进行调整改善之后,可以先对调整改善后的数据进行相干复合处理后用以获得该时间点对应的造影图像数据(步骤650)。相干复合需要多个角度的对应的加权图像,具体可以是按照以下方法获得。利用超声探头向包含造影剂的感兴趣区域发射多角度的超声波,例如通过控制发射阵元的时延来调整超声波的发射角度,从而可以获得多角度的超声波。
通过超声探头接收多角度的超声波反馈的回波,获得多个角度分别对应的回波信号。
处理器可以根据每个角度对应的回波信号,提取每个角度相应的造影通道数据,多个角度分别对应获得多类造影通道数据,一个角度对应一类造影通道数据,在一个角度下同一个位置点或时间点对应获得一组造影通道数据,因此,这里的多个角度分别对应获得多类造影通道数据,可以包括,同一个位置点在多个角度下对应的多类造影通道数据,其中一个位置点在一个角度下对应一类造影通道数据,一个位置点在多个角度下对应多类造影通道数据,同一个位置点对应的一组造影通道数据中可以包括多个角度下同一个位置点对应的多类造影通道数据的部分或全部,同理,一个角度下对应的一类造影通道数据还可以包括:同一角度下多个位置点分别对应的多组造影通道数据。此外,多个角度分别对应获得多类造影通道数据还可以包括:同一个时间点在多个角度下对应的多类造影通道数据,其中一个时间点在一个角度下对应一类造影通道数据,一个时间点在多个角度下对应多类造影通道数据,同一个时间点对应的一组造影通道数据中可以包括多个角度下同一个时间点对应的多类造影通道数据的部分或全部,同理,一个角度下对应的一类造影通道数据还可以包括:同一角度下多个时间点分别对应的多组造影通道数据。
根据每个角度相应的造影通道数据,分别计算每个角度分别对应的图像增强系数和波束合成结果,和,利用每个角度对应的图像增强系数对相应角度对应的波束合成结果进行调整改善,获得每个角度对应的调整结果,利用多个角度分别对应的多类造影通道数据相应获得多类调整结果;对多类调整结果按照多个角度进行相干复合处理后用以获得造影图像数据。其中,在一些实施例中,根据每个角度下同一个位置点或时间点对应的一类造影通道数据,分别计算每个角度下同一个位置点或时间点分别对应的图像增强系数和波束合成结果,然后,利用每个角度下同一个位置点或时间点分别对应的图像增强系数对相应角度下同一个位置点或时间点对应获得的波束合成结果进行调整改善,从而获得每个角度下同一个位置点或时间点对应的调整结果。当然,还可以采用如下方式:利用一个角度下多个位置点或时间点对应的多组造影通道数据,分别获得多个位置点或时间点在该角度下分别对应的图像增强系数和波束合成数据,利用在一个角度下相应位置点或时间点对应的图像增强系数和波束合成数据进行加权处理后获得相应位置点或时间点在相应角度下对应的一个加权图像数据,那么,一个角度下多个位置点或时间点可以分别获得一组加权图像数据,多个角度分别对应获得多组加权图像数据,将多组加权图像数据按照多个角度进行相干复合处理获得造影图像数据,获得的是多个位置点或时间点对应的一帧造影图像数据的部分、或者至少一帧造影图像数据。
本文的调整改善可以是加权处理,具体可参见前文相关说明。利用多个角度下同一个位置点或时间点分别对应的多类造影通道数据,相应获得多类调整结果;对多类调整结果按照多个角度进行相干复合处理后用以获得造影图像数据。
在图5所示的实施例中,增加的相干复合处理可以在波束合成之后,例如,在其中一个实施例中,利用超声探头向包含造影剂的感兴趣区域发射多角度的超声波,接收所述多角度的超声波反馈的回波,获得多个角度分别对应的回波信号,处理器根据每个角度对应的回波信号,提取每个角度相应的造影通道数据,多个角度分别对应获得多类造影通道数据,关于多类造影通道数据的详细描述具体可以参见前文的相关说明,在此不再累述。
根据每个角度相应的造影通道数据,计算每个角度分别对应的图像增强系数,将每个角度对应的图像增强系数和相应角度对应的造影通道数据进行 加权处理后,获得每个角度对应的加权通道数据,和,利用加权通道数据进行波束合成获得每个角度对应的波束合成数据,从而获得多个角度分别对应的波束合成数据;然后,利用多个角度对应的波束合成数据进行相干复合处理后获得所述造影图像。其中,在一些实施例中,根据每个角度下同一个位置点或时间点对应的一类造影通道数据,分别计算每个角度下同一个位置点或时间点对应的图像增强系数,然后,将每个角度下同一个位置点或时间点分别对应的图像增强系数和相应角度下同一个位置点或时间点对应的造影通道数据进行加权处理后,获得每个角度下同一个位置点或时间点对应的加权通道数据,从而得到同一个位置点或时间点在多个角度下分别对应的加权通道数据。利用同一个位置点或时间点在多个角度下分别对应的加权通道数据,分别进行波束合成获得同一个位置点或时间点在多个角度下对应的波束合成数据,再利用同一个位置点或时间点在多个角度下分别对应波束合成数据按照多个角度进行相干复合处理后用以获得造影图像数据。当然,在另一些实施例中,利用一个角度下多个时间点或位置点对应的多组造影通道数据,获得多个时间点或位置点在该角度下分别对应的图像增强系数,然后,将每个角度下相应位置点或相应时间点分别对应的图像增强系数和相应角度下相应位置点或相应时间点对应的造影通道数据进行加权处理后,获得相应时间点或相应位置点在相应角度下对应的一个加权图像数据,那么,一个角度下多个位置点或多个时间点可以分别获得一组加权图像数据,从而得到在多个角度下多个位置点或多个时间点分别对应的多组加权通道数据。将多组加权通道数据分别进行波束合成,获得多个时间点或位置点在相应角度下的一组波束合成数据,从而得到,多个角度下多个时间点或位置点对应的多组波束合成数据,最后,利用将多组波束合成数据按照多个角度进行相干复合处理后获得造影图像数据,获得的是多个时间点或位置点对应的一帧造影图像数据的部分、或者至少一帧造影图像数据。
上述多角度的情况下,针对每个角度对应的造影通道数据,可以利用在一个角度下同一位置点或时间点对应的一类造影通道数据中的各个造影通道数据进行相关性计算获得上述图像增强系数,至于如何利用各个通道数据进行相关性计算可参见前文的相关说明。
参见图2所示,在其中一些实施例中,一种超声系统包括:超声探头1、发射电路2、发射/接收选择电路3、回波处理电路4和处理器5。其中,超 声探头,用于向包含造影剂的感兴趣区域发射超声波,接收前述超声波反馈的回波,获得回波信号;发射电路,用于向前述超声探头输出超声波发射序列;回波处理电路,用于接收前述回波信号,对回波信号进行处理后输出通道数据,超声探头中的每一接收阵元接收的回波信号形成一通道数据;处理器,通过调用相应的程序模块来执行以下过程:
根据前述回波信号,提取造影通道数据;
根据前述造影通道数据计算图像增强系数;
根据前述造影通道数据获得波束合成结果;和,
利用前述图像增强系数对前述波束合成结果进行调整改善,获得造影图像数据。
上述处理器执行的上述过程可参见前文中关于图4中步骤410至步骤460的相关说明,在此不再累述。
在一些实施例中,用于计算图像增强系数的一组造影通道数据与用于计算波束合成数据的一组造影通道数据为同一组造影通道数据。
在一些实施例中,前述造影通道数据为同一位置点对应的一组造影通道数据,或同一时间点对应的一组造影通道数据。
在一些实施例中,前述图像增强系数通过计算同一位置点或同一时间点对应的一组造影通道数据中各个造影通道数据之间的相关性而获得。
在一些实施例中,处理器采用以下方式之一执行前述根据前述造影通道数据计算图像增强系数,根据前述造影通道数据获得波束合成结果,和,利用前述图像增强系数对前述波束合成结果进行调整改善的过程:
方式一:根据一组造影通道数据计算被检测生物组织中一位置点的图像增强系数,根据前述一组造影通道数据进行波束合成,得到前述位置点的波束合成数据,和,将前述图像增强系数和前述波束合成数据进行加权处理用以获得被检测生物组织中前述位置点对应的造影图像数据,其中,前述一组造影通道数据为利用超声探头的多个接收阵元接收的对应于感兴趣区域中的一位置点的多个造影通道数据。
方式二:利用一个时间点对应的一组造影通道数据计算前述时间点对应的前述图像增强系数,利用前述时间点对应的一组造影通道数据计算前述时间点对应的波束合成结果,和,利用前述时间点对应的图像增强系数对前述时间点对应的波束合成结果进行加权处理,用以获得相应时间点的造影图像 数据。
方式一可参见前文中关于图3所示实施例中各个步骤的相关说明。方式二可参见前文中关于图6所示实施例中各个步骤的相关说明。
在一些实施例中,根据时延处理后的回波信号,提取前述造影通道数据;或者,在前述提取造影通道数据之后先对造影通道数据进行时延处理。关于时延可参见前文中的相关说明。
在一些实施例中,利用超声探头向包含造影剂的感兴趣区域发射多角度的超声波,并接收前述多角度的超声波反馈的回波,获得多个角度分别对应的回波信号;前述处理器根据每个角度对应的回波信号,提取每个角度相应的前述造影通道数据,以及,根据每个角度相应的造影通道数据,分别计算每个角度分别对应的图像增强系数和波束合成结果,和,利用每个角度对应的图像增强系数与相应角度的波束合成结果进行加权处理获得相应角度对应的加权通道数据或结果,从而获得多个角度分别对应的加权通道数据或结果,利用多个角度对应的加权通道数据或结果进行相干复合处理后获得前述造影图像。在一些实施例中,前述多个角度分别对应获得多类造影通道数据包括:同一个时间点或位置点在多个角度下对应的多类造影通道数据,其中一个时间点或位置点在一个角度下对应一类造影通道数据。有关多角度的相干复合处理的添加方式可参见前文中关于步骤350和650等的具体描述,特别是关于如何进行多角度发射以及多角度对应的造影通道数据中如何进行相干复合处理的相关描述。
在一些实施例中,针对处理器执行的程序模块的部分,构成一种超声成像系统,在该系统中包括:造影数据获取模块51、增强系数计算模块52、波束合成模块53、和运算模块54。此外本系统还可以包括相干角度复合模块55。
造影数据获取模块51用于获取造影通道数据,所述造影通道数据是从超声回波信号的通道数据中提取的用于生成造影图像的数据,超声探头的每一接收阵元接收的超声回波信号形成一通道数据,例如,感兴趣区域中每一位置点或者每一时间点对应获得一组造影通道数据。
增强系数计算模块52用于根据造影通道数据计算图像增强系数,例如,根据造影通道数据计算一位置点或一时间点的图像增强系数。具体的,增强系数计算模块52计算每一组造影通道数据中各造影通道数据之间的相关性, 根据相关性确定该造影通道数据所对应的被检测生物组织中位置点的图像增强系数。
波束合成模块53用于根据造影通道数据进行波束合成,得到波束合成结果,例如,根据同一位置点或同一时间点对应的造影通道数据可以获得相应位置点或时间点对应的波束合成结果。
运算模块54用于将计算获得的图像增强系数和波束合成结果进行加权处理,例如,将同一位置点或同一时间点对应的图像增强系数、和相应位置点或时间点对应的波束合成结果进行加权处理。由造影通道数据中各造影通道数据之间的相关性来确定图像增强系数,将其作用于平面波波束合成数据后,可有效的降低信号饱和对应的波束合成数据所占的权重,能够降低旁瓣,进而抑制离轴干扰和杂波,最终达到消除伪影和提升对比分辨率的效果。
本实施例中的造影数据获取模块51用于执行图3至图6中的步骤310、步骤430、步骤530、或步骤610;增强系数计算模块52用于执行图3至图6中的步骤440、步骤540、步骤620或步骤320;波束合成模块53用于执行图3至图6中的步骤330、步骤450、步骤560或步骤630;运算模块54用于执行图3至图6中的步骤340、步骤460、步骤550或步骤640,因此参见前文中相关步骤的详细解释,在此不再赘述。
在一些实施例中,一种超声成像系统还包括时延处理模块,时延处理模块用于对每个位置点或时间点的多个通道数据进行相位对齐。对于一个位置点而言,该位置点反射的超声回波可被多个接收阵元拾取,并形成与该位置点对应的一个通道数据。但由于该位置点到多个接收阵元的距离不同,因此不同接收阵元输出的超声回波相位不同,经过时延处理模块的处理,可使得与该位置点对应的通道数据内各通道数据的相位一致。一种具体实施例中,时延处理模块在造影数据获取模块51从通道数据中提取出反映造影剂信息的造影通道数据之后对各造影通道数据中的造影通道数据进行时延处理,以消除该造影通道数据内各造影通道数据的相位差。另一种实施例中,时延处理模块在从通道数据中提取出反映造影剂信息的造影通道数据之前先对通道数据进行时延处理。增强系数计算模块52和波束合成模块53中所处理的造影通道数据为时延后的造影通道数据。
波束合成模块53具体用于对造影数据获取模块51输出的造影通道数据进行动态接收孔径、变迹及相位旋转等操作,并作通道求和处理。
运算模块54将图像增强系数和波束合成数据进行点对点加权处理包括:将感兴趣区域中各位置点或各个时间点对应的图像增强系数乘以相应位置点或时间点的波束合成数据作为后续成像用造影数据。由于对于某个接收阵元而言,其到被检测生物组织中不同位置点的距离不同,因此各位置点反射的超声回波到达该阵元的时间不同,可根据超声回波到达该阵元的时间识别超声回波信号和位置点的对应关系。故由被检测生物组织中需要成像的各位置点的造影通道数据分别得到的图像增强系数和波束合成数据是一一对应的关系,两者相乘得到的数据再进行造影成像,最终得到减弱甚至消除了弧形伪影的平面波造影图像。由于图像增强系数是和对应的波束合成数据之间进行乘法运算,并不是指与图像像素点之间进行乘法运算,因此是对超声造影成像所需的数据进行了筛选处理,有效的抑制了回波信号中的干扰、杂波、噪声等随机信号,提升了造影图像的对比分辨率。
相干角度复合模块55用于对所有发射角度下,经过增强处理后的波束合成数据进行相干复合(求包络前)操作,主要在于提升图像的SNR(信噪比)与横向分辨率。具体的,超声探头1发射不同角度的超声平面波来激励介质。相干角度复合模块55对每个角度下的回波数据进行波束合成处理,最终将所有角度下的波束合成后的数据进行加权求和处理。在一些实例中,造影数据获取模块根据每个角度对应的回波信号,提取每个角度相应的造影通道数据,多个角度分别对应获得多类造影通道数据,以及,增强系数计算模块根据每个角度相应的造影通道数据,计算每个角度分别对应的图像增强系数;波束合成模块计算每个角度对应的波束合成结果,和,运算模块利用每个角度对应的图像增强系数与相应角度的波束合成结果进行加权处理获得相应角度对应的加权通道数据或结果,从而获得多个角度分别对应的加权通道数据或结果,相干角度复合模块55利用多个角度对应的加权通道数据或结果进行相干复合处理后用以获得前述造影图像数据。
综上所述,本实施例从造影通道数据入手,与波束合成处理同时进行。首先对造影通道数据进行延时、动态接收孔径和变迹加权处理,随后提取经过上述处理后造影通道数据的相域、包络域和频域等信息,用于计算平面波造影的图像增强系数,最终将该套系数作用于平面波波束合成数据;从而能够显著改善平面波造影图像的饱和伪影问题,并提升图像的对比分辨率。
在上述实施例中,造影数据获取模块51、增强系数计算模块52、波束合 成模块53、运算模块54、相干角度复合模块55和时延处理模块均为处理器的功能或程序模块;而在有的实施例中,造影数据获取模块51、增强系数计算模块52、波束合成模块53、运算模块54、相干角度复合模块55和时延处理模块可以通过一个或多个处理器来实现,而处理器可以是设置在主机内的处理器,或者脱离于超声设备主机之外处理器,例如服务器或便携式设备上的处理器,只要能实现上述功能即可。
本实施例使用超声平台的线阵探头,采集了犬肝脏的平面波造影基带通道数据(当然,本实施例还可以应用于射频通道数据)共211帧,并基于MATLAB仿真平台对本实施例提出的图像增强方法进行了仿真验证,图7-图12给出了3帧比较典型的对比结果。
如图7-图12所示,使用了本实施例提出的图像增强方法,中近场的饱和伪影形态得到极大的改善,甚至被完全清除;通过图9和图10的对比还可发现,在噪声相当的前提下,采用了增强算法的平面波造影图像中的微泡信号更加饱满。图7为灌注早期采用现有技术的平面波造影图像;图8为灌注早期采用本实施例提供的图像增强方法形成的平面波造影图像,从图中也可以看出,采用增强方法后中近场的饱和伪影形态得到极大的改善,甚至被完全清除。同理,图11为采用现有技术的平面波造影图像出现极端饱和伪影的示意图;图12为采用本实施例提供的超声成像设备形成的平面波造影图像出现极端饱和伪影的示意图,同样的,图中显示中近场的饱和伪影形态得到极大的改善,甚至被完全清除,图像质量有所提升。
综上可见,本实施例所提出的超声造影成像的图像增强方法,具有较强的临床应用价值。当然,本实施例不限于平面波造影,同样适用于传统聚焦波造影。
基于所述图像增强方法的原理、特点和细节在上述超声成像设备的实施例中已详细阐述,在此不再赘述。
本领域技术人员可以理解,上述实施方式中各种方法的全部或部分功能可以通过硬件的方式实现,也可以通过计算机程序的方式实现。当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器、随机存储器、磁盘、光盘、硬盘等,通过计算机执行该程序以实现上述功能。例如,将程序存储在设备的存储器中,当通过处理器执行存储器中程序,即可实现上述全 部或部分功能。另外,当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序也可以存储在服务器、另一计算机、磁盘、光盘、闪存盘或移动硬盘等存储介质中,通过下载或复制保存到本地设备的存储器中,或对本地设备的系统进行版本更新,当通过处理器执行存储器中的程序时,即可实现上述实施方式中全部或部分功能。因此在一些实例中,一种计算机可读存储介质,包括程序,所述程序能够被处理器执行以实现前述所述的图像增强方法。
依据上述实施例的超声成像设备及其超声造影成像的图像增强方法,由于先根据造影通道数据计算出被检测生物组织中各位置点的图像增强系数,再将图像增强系数和波束合成数据进行点对点加权处理,在不损失图像分辨率和信号强度的前提下,降低了超声造影成像中的弧形伪影。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本领域的一般技术人员,依据本发明的思想,可以对上述具体实施方式进行变化。

Claims (37)

  1. 一种超声造影成像的图像增强方法,其特征在于,包括如下步骤:
    获取造影通道数据,利用超声探头向包含造影剂的被测生物组织发射超声波,接收超声回波信号并提取获得所述造影通道数据,超声探头的一接收阵元接收的所述超声回波信号形成一通道数据,利用超声探头的多个接收阵元接收所述超声回波信号获得多个通道数据,用以提取被检测生物组织中一位置点对应的一组造影通道数据;
    根据一组造影通道数据计算被检测生物组织中一位置点的图像增强系数;
    根据所述一组造影通道数据进行波束合成,得到所述位置点的波束合成数据;和,
    将所述图像增强系数和所述波束合成数据进行加权处理用以获得被检测生物组织中所述位置点对应的造影图像数据。
  2. 如权利要求1所述的图像增强方法,其特征在于,用于计算图像增强系数的一组造影通道数据与用于计算波束合成数据的一组造影通道数据为同一组造影通道数据。
  3. 如权利要求1所述的图像增强方法,其特征在于,所述根据一组造影通道数据计算被检测生物组织中一位置点的图像增强系数中,包括:
    计算每一组造影通道数据中各个造影通道数据之间的相关性,根据所述相关性确定所述图像增强系数。
  4. 如权利要求3所述的图像增强方法,其特征在于,所述计算每一组造影通道数据中各个造影通道数据之间的相关性的步骤包括以下方式中的任一种:
    对一组造影通道数据中各个造影通道数据分别进行包络检测获得包络数据,根据所述包络数据计算各个造影通道数据之间的相关性,所述包络检测包括任意次幂下的包络检测;
    直接使用一组造影通道数据中各个造影通道数据计算各个造影通道数据之间的相关性;
    对一组造影通道数据中各个造影通道数据进行相位检测获取相位数据,根据所述相位数据计算各个造影通道数据之间的相关性;和,
    对一组造影通道数据中各个造影通道数据进行傅立叶变换获得频域数 据,根据所述频域数据计算各个造影通道数据之间的相关性。
  5. 如权利要求1所述的图像增强方法,其特征在于,所述将所述图像增强系数和所述波束合成数据进行加权处理包括:将同一位置点对应获得的图像增强系数和波束合成数据进行相乘处理。
  6. 如权利要求1所述的图像增强方法,其特征在于,所述超声波为平面超声波。
    如权利要求1所述的图像增强方法,其特征在于,在获取造影通道数据的步骤之后,对所述造影通道数据进行时延处理。
  7. 如权利要求1所述的图像增强方法,其特征在于,在获取造影通道数据的步骤之前还包括:
    对所述超声回波信号进行时延处理,获得时延后的数据;
    从所述时延后的数据中提取反映造影剂信息的所述造影通道数据。
  8. 如权利要求1所述的图像增强方法,其特征在于,所述将所述图像增强系数和所述波束合成数据进行加权处理用以获得被检测生物组织中所述位置点对应的造影图像数据包括:
    将所述图像增强系数和所述波束合成数据进行加权处理获得加权图像数据;和,
    将加权图像数据进行相干复合处理获得所述造影图像数据。
  9. 如权利要求8所述的图像增强方法,其特征在于,所述利用超声探头获取造影通道数据包括:利用超声探头获取多个角度对应的造影通道数据,所述多个角度对应的造影通道数据源于利用超声探头向所述被测生物组织发射的多个角度的超声波反馈的超声回波信号,每个角度发射时利用超声探头的多个接收阵元接收相应角度的超声回波信号获得该角度对应的多个通道数据,从而形成被检测生物组织的一个位置点在该角度下对应的一组造影通道数据;
    所述将所述图像增强系数和所述波束合成数据进行加权处理获得加权图像数据,和,将加权图像数据进行相干复合处理获得所述造影图像数据包括:
    利用一个角度下一个位置点对应的一组造影通道数据,分别获得所述位置点在所述一个角度下对应的图像增强系数和波束合成数据,利用所述位置点在所述一个角度下对应的图像增强系数和波束合成数据进行加权处理后获得所述位置点在所述一个角度下对应的加权图像数据,从而得到多个所述角 度分别对应的加权图像数据,将多个所述角度分别对应的加权图像数据按照多个角度进行相干复合处理获得所述造影图像数据。
  10. 一种超声造影成像的图像增强方法,其特征在于,包括:
    向包含造影剂的感兴趣区域发射超声波;
    接收所述超声波反馈的回波,获得回波信号;
    根据所述回波信号,提取造影通道数据;
    根据所述造影通道数据计算图像增强系数;
    根据所述造影通道数据获得波束合成结果;
    利用所述图像增强系数对所述波束合成结果进行调整改善,获得造影图像数据。
  11. 根据权利要求10所述的图像增强方法,其特征在于,用于计算图像增强系数的一组造影通道数据与用于计算波束合成数据的一组造影通道数据为同一组造影通道数据。
  12. 根据权利要求10所述的图像增强方法,其特征在于,所述接收所述超声波反馈的回波,获得回波信号,和,根据所述回波信号,提取造影通道数据包括:利用超声探头中的多个接收阵元分别接收一个时间点或位置点对应的多个通道数据,用以获得所述时间点或位置点对应的一组造影通道数据;以及,
    利用所述时间点或位置点对应的一组造影通道数据计算所述时间点对应的所述图像增强系数;
    利用所述时间点或位置点对应的一组造影通道数据计算所述时间点对应的波束合成结果;和,
    利用所述时间点或位置点对应的图像增强系数对所述时间点对应的波束合成结果进行调整改善,用以获得相应时间点或位置点的造影图像数据。
  13. 根据权利要求12所述的图像增强方法,其特征在于,所述利用所述图像增强系数对所述波束合成结果进行调整改善包括:将所述图像增强系数和所述波束合成数据进行加权处理。
  14. 根据权利要求12所述的图像增强方法,其特征在于,所述利用所述时间点或位置点对应的图像增强系数对所述时间点或位置点对应的波束合成结果进行调整改善包括:将所述时间点或位置点对应的图像增强系数乘以所 述时间点或位置点对应的波束合成结果。
  15. 根据权利要求10所述的图像增强方法,其特征在于,所述图像增强系数为所述造影通道数据中与多个接收阵元对应的通道数据之间的相关性计算结果。
  16. 根据权利要求10所述的图像增强方法,其特征在于,所述根据所述造影通道数据计算图像增强系数的步骤包括以下方式中的任一种:
    对一组造影通道数据中各个造影通道数据分别进行包络检测获得包络数据,根据所述包络数据计算各个造影通道数据之间的相关性,所述包络检测包括任意次幂下的包络检测;
    直接使用一组造影通道数据中各个造影通道数据计算各个造影通道数据之间的相关性;
    对一组造影通道数据中各个造影通道数据进行相位检测获取相位数据,根据所述相位数据计算各个造影通道数据之间的相关性;和,
    对一组造影通道数据中各个造影通道数据进行傅立叶变换获得频域数据,根据所述频域数据计算各个造影通道数据之间的相关性。
  17. 根据权利要求10所述的图像增强方法,其特征在于,所述超声波为平面超声波。
  18. 如权利要求10所述的图像增强方法,其特征在于,所述方法中包括采用以下方式之一获得所述造影通道数据:
    根据时延处理后的所述回波信号,提取所述造影通道数据;和,
    所述提取造影通道数据之后对所述造影通道数据进行时延处理。
  19. 如权利要求10所述的图像增强方法,其特征在于,所述向包含造影剂的感兴趣区域发射超声波,接收所述超声波反馈的回波,获得回波信号,和,根据所述回波信号,提取造影通道数据包括:
    向包含造影剂的感兴趣区域发射多角度的超声波,
    接收所述多角度的超声波反馈的回波,获得多个角度分别对应的回波信号,
    根据每个角度对应的回波信号,提取每个角度相应的造影通道数据;以及,
    所述根据所述造影通道数据计算图像增强系数,根据所述造影通道数据获得波束合成结果,和,利用所述图像增强系数对所述波束合成结果进行调 整改善包括:
    根据每个角度相应的造影通道数据,分别计算每个角度对应的图像增强系数和波束合成结果,和,
    利用每个角度对应的图像增强系数对相应角度对应的波束合成结果进行调整改善,获得每个角度对应的调整结果,利用多个角度分别对应的造影通道数据相应获得多个角度分别对应的调整结果;
    所述方法还包括:将多个角度分别对应的调整结果按照所述多个角度进行相干复合处理后用以获得所述造影图像数据。
  20. 一种超声造影成像的图像增强方法,其特征在于,包括:
    向包含造影剂的感兴趣区域发射超声波;
    接收所述超声波反馈的回波,获得回波信号;
    根据所述回波信号,提取造影通道数据;
    根据所述造影通道数据计算图像增强系数;
    将计算获得的图像增强系数和所述造影通道数据进行加权处理后,得到加权通道数据;
    利用加权通道数据进行波束合成获得波束合成数据;
    根据所述波束合成数据获得造影图像数据。
  21. 根据权利要求20所述的图像增强方法,其特征在于,包括:用于计算图像增强系数的造影通道数据与进行加权处理所采用的造影通道数据为同一组造影通道数据。
  22. 根据权利要求20所述的图像增强方法,其特征在于,所述造影通道数据为同一位置点对应的一组造影通道数据,或同一时间点对应的一组造影通道数据。
  23. 根据权利要求20所述的图像增强方法,其特征在于,所述图像增强系数通过计算同一位置点或同一时间点对应的一组造影通道数据中各个造影通道数据之间的相关性而获得。
  24. 根据权利要求20所述的图像增强方法,其特征在于,所述方法中包括采用以下方式之一获得所述造影通道数据:
    根据时延处理后的回波信号,提取所述造影通道数据;和,
    在所述提取造影通道数据之后先对所述造影通道数据进行时延处理。
  25. 根据权利要求20所述的图像增强方法,其特征在于,所述向包含造影剂的感兴趣区域发射超声波,接收所述超声波反馈的回波,获得回波信号,和根据所述回波信号,提取造影通道数据包括:
    向包含造影剂的感兴趣区域发射多角度的超声波,
    接收所述多角度的超声波反馈的回波,获得多个角度分别对应的回波信号,
    根据每个角度对应的回波信号,提取每个角度相应的造影通道数据,获得多个角度分别对应的造影通道数据;以及,
    所述根据所述造影通道数据计算图像增强系数,将计算获得的图像增强系数和所述造影通道数据进行加权处理后,得到加权通道数据,和,利用加权通道数据进行波束合成获得波束合成数据包括:
    根据每个角度相应的造影通道数据,计算每个角度分别对应的图像增强系数,
    将每个角度对应的图像增强系数和相应角度对应的造影通道数据进行加权处理后,获得每个角度对应的加权通道数据,和,
    利用加权通道数据进行波束合成获得每个角度对应的波束合成数据,从而获得多个角度分别对应的波束合成数据;
    所述根据所述波束合成数据获得造影图像数据包括:
    利用多个角度对应的波束合成数据进行相干复合处理后获得所述造影图像。
  26. 一种超声成像设备,其特征在于,包括:
    超声探头,用于向包含造影剂的感兴趣区域发射超声波,接收所述超声波反馈的回波,获得回波信号;
    发射电路,用于向所述超声探头输出超声波发射序列;
    回波处理电路,用于接收所述回波信号,对回波信号进行处理后输出通道数据,超声探头中的每一接收阵元接收的回波信号形成一通道数据;
    处理器,通过调用相应的程序模块来执行以下过程:
    根据所述回波信号,提取造影通道数据;
    根据所述造影通道数据计算图像增强系数;
    根据所述造影通道数据获得波束合成结果;和,
    利用所述图像增强系数对所述波束合成结果进行调整改善,获得造影图像数据。
  27. 根据权利要求26所述的超声成像设备,其特征在于,用于计算图像增强系数的一组造影通道数据与用于计算波束合成数据的一组造影通道数据为同一组造影通道数据。
  28. 根据权利要求26所述的超声成像设备,其特征在于,所述造影通道数据为同一位置点对应的一组造影通道数据,或同一时间点对应的一组造影通道数据。
  29. 根据权利要求26所述的超声成像设备,其特征在于,所述图像增强系数通过计算同一位置点或同一时间点对应的一组造影通道数据中各个造影通道数据之间的相关性而获得。
  30. 根据权利要求26所述的超声成像设备,其特征在于,处理器采用以下方式之一执行所述根据所述造影通道数据计算图像增强系数,根据所述造影通道数据获得波束合成结果,和,利用所述图像增强系数对所述波束合成结果进行调整改善的过程:
    根据一组造影通道数据计算被检测生物组织中一位置点的图像增强系数,根据所述一组造影通道数据进行波束合成,得到所述位置点的波束合成数据,和,将所述图像增强系数和所述波束合成数据进行加权处理用以获得被检测生物组织中所述位置点对应的造影图像数据,其中,所述一组造影通道数据为利用超声探头的多个接收阵元接收的对应于感兴趣区域中的一位置点的多个造影通道数据;和,
    利用一个时间点对应的一组造影通道数据计算所述时间点对应的所述图像增强系数,利用所述时间点对应的一组造影通道数据计算所述时间点对应的波束合成结果,和,利用所述时间点对应的图像增强系数对所述时间点对应的波束合成结果进行加权处理,用以获得相应时间点的造影图像数据。
  31. 根据权利要求26所述的超声成像设备,其特征在于,根据时延处理后的回波信号,提取所述造影通道数据;或者,在所述提取造影通道数据之后先对造影通道数据进行时延处理。
  32. 根据权利要求26所述的超声成像设备,其特征在于,利用超声探头向包含造影剂的感兴趣区域发射多角度的超声波,并接收所述多角度的超声波反馈的回波,获得多个角度分别对应的回波信号;
    所述处理器根据每个角度对应的回波信号,提取每个角度相应的造影通道数据,以及,根据每个角度相应的造影通道数据,分别计算每个角度对应的图像增强系数和波束合成结果,和,利用每个角度对应的图像增强系数与相应角度的波束合成结果进行加权处理获得多个角度对应的加权通道数据或结果,从而获得相应角度对应的加权通道数据,利用多个角度对应的加权通道数据进行相干复合处理后获得所述造影图像。
  33. 一种超声成像系统,其特征在于包括:
    造影数据获取模块,用于获取造影通道数据,所述造影通道数据是从超声回波信号的通道数据中提取的用于生成造影图像的数据,超声探头的每一接收阵元接收的超声回波信号形成一通道数据;
    增强系数计算模块,用于根据造影通道数据计算图像增强系数;
    波束合成模块,用于根据造影通道数据进行波束合成,得到波束合成结果;
    运算模块,用于将计算获得的图像增强系数和波束合成结果进行加权处理。
  34. 根据权利要求33所述的超声成像系统,其特征在于,感兴趣区域中每一位置点或者每一时间点对应获得一组造影通道数据。
  35. 根据权利要求34所述的超声成像系统,其特征在于,所述增强系数计算模块还用于根据造影通道数据计算一位置点或一时间点的图像增强系数;所述波束合成模块还用于根据同一位置点或同一时间点对应的造影通道数据可以获得相应位置点或时间点对应的波束合成结果;所述运算模块还用于将同一位置点或同一时间点对应的图像增强系数、和相应位置点或时间点对应的波束合成结果进行加权处理。
  36. 根据权利要求33所述的超声成像系统,其特征在于,所述系统中,所述造影数据获取模块,用于根据每个角度对应的回波信号,提取每个角度相应的造影通道数据;
    所述增强系数计算模块,用于根据每个角度相应的造影通道数据,计算每个角度分别对应的图像增强系数;
    所述波束合成模块,用于计算每个角度对应的波束合成结果;
    所述运算模块,利用每个角度对应的图像增强系数与相应角度的波束合 成结果进行加权处理获得相应角度对应的加权通道数据,从而获得多个角度分别对应的加权通道数据,和
    所述相干角度复合模块,用于利用多个角度对应的加权通道数据进行相干复合处理后用以获得造影图像数据。
  37. 一种计算机可读存储介质,其特征在于,包括程序,所述程序能够被处理器执行以实现如权利要求1-25中任一项所述的方法。
PCT/CN2017/106391 2017-10-16 2017-10-16 超声成像设备、系统及其超声造影成像的图像增强方法 WO2019075621A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/106391 WO2019075621A1 (zh) 2017-10-16 2017-10-16 超声成像设备、系统及其超声造影成像的图像增强方法
CN201780002280.1A CN111278363B (zh) 2017-10-16 2017-10-16 超声成像设备、系统及其超声造影成像的图像增强方法
US16/849,958 US11737734B2 (en) 2017-10-16 2020-04-15 Ultrasound imaging device and system, and image enhancement method for contrast enhanced ultrasound imaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/106391 WO2019075621A1 (zh) 2017-10-16 2017-10-16 超声成像设备、系统及其超声造影成像的图像增强方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/849,958 Continuation US11737734B2 (en) 2017-10-16 2020-04-15 Ultrasound imaging device and system, and image enhancement method for contrast enhanced ultrasound imaging

Publications (1)

Publication Number Publication Date
WO2019075621A1 true WO2019075621A1 (zh) 2019-04-25

Family

ID=66173026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106391 WO2019075621A1 (zh) 2017-10-16 2017-10-16 超声成像设备、系统及其超声造影成像的图像增强方法

Country Status (3)

Country Link
US (1) US11737734B2 (zh)
CN (1) CN111278363B (zh)
WO (1) WO2019075621A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111080535A (zh) * 2019-11-05 2020-04-28 浙江大华技术股份有限公司 图像增强方法和计算机存储介质
CN114098795A (zh) * 2020-08-26 2022-03-01 通用电气精准医疗有限责任公司 用于生成超声探头引导指令的系统和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209211A (zh) * 2006-12-30 2008-07-02 深圳迈瑞生物医疗电子股份有限公司 接收孔径可调整的数字化超声波束合成方法及装置
CN101347345A (zh) * 2007-07-16 2009-01-21 通用电气公司 多发射对比成像的方法和装置
CN103126725A (zh) * 2011-12-01 2013-06-05 深圳迈瑞生物医疗电子股份有限公司 一种超声成像的方法和装置
WO2014045073A1 (en) * 2012-09-18 2014-03-27 B-K Medical Aps Ultrasound imaging
CN104688271A (zh) * 2015-03-27 2015-06-10 清华大学 合成聚焦超声成像方法和装置
CN104720850A (zh) * 2013-12-23 2015-06-24 深圳迈瑞生物医疗电子股份有限公司 一种超声造影成像方法及造影图像的区域检测、显像方法
CN105105785A (zh) * 2015-07-23 2015-12-02 深圳开立生物医疗科技股份有限公司 超声造影成像非造影区域自动去除方法、装置及设备

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511426B1 (en) * 1998-06-02 2003-01-28 Acuson Corporation Medical diagnostic ultrasound system and method for versatile processing
EP1387317A4 (en) 2001-04-19 2008-10-15 Toshiba Kk IMAGE PROCESSING AND PICTURE PROCESSING DEVICE
US8021301B2 (en) * 2003-12-26 2011-09-20 Fujifilm Corporation Ultrasonic image processing apparatus, ultrasonic image processing method and ultrasonic image processing program
US20070083114A1 (en) * 2005-08-26 2007-04-12 The University Of Connecticut Systems and methods for image resolution enhancement
DE102006005803A1 (de) * 2006-02-08 2007-08-09 Siemens Ag Verfahren zur Rauschreduktion in bildgebenden Verfahren
CN100594515C (zh) * 2007-08-21 2010-03-17 北京航空航天大学 一种基于相关系数的自适应图像增强方法
US20090187106A1 (en) * 2008-01-23 2009-07-23 Siemens Medical Solutions Usa, Inc. Synchronized combining for contrast agent enhanced medical diagnostic ultrasound imaging
US20090204003A1 (en) * 2008-02-07 2009-08-13 Guracar Ismayil M Tracking selection for medical diagnostic ultrasound imaging
CN101617946B (zh) * 2008-07-04 2012-07-04 深圳迈瑞生物医疗电子股份有限公司 用于超声成像的空间复合方法与装置以及超声成像系统
CN101645167B (zh) * 2008-08-06 2012-08-15 深圳迈瑞生物医疗电子股份有限公司 帧相关系数控制及帧相关处理方法、装置及超声成像系统
US8882672B2 (en) * 2008-12-29 2014-11-11 Perseus-Biomed Inc. Method and system for tissue imaging and analysis
CN101854537B (zh) * 2009-03-31 2014-03-26 深圳迈瑞生物医疗电子股份有限公司 一种超声图像数据优化及其造影定量分析方法和系统
CN101866480B (zh) * 2009-04-15 2015-05-13 深圳迈瑞生物医疗电子股份有限公司 一种空间复合成像中的帧相关处理方法及系统
CN101770639B (zh) * 2010-01-14 2012-05-23 北京航空航天大学 一种低照度图像增强方法
CN103156636B (zh) * 2011-12-15 2016-05-25 深圳迈瑞生物医疗电子股份有限公司 一种超声成像装置和方法
CN103871025A (zh) * 2012-12-07 2014-06-18 深圳先进技术研究院 医学影像增强方法及其系统
TWI490818B (zh) * 2013-01-02 2015-07-01 Chunghwa Picture Tubes Ltd 權重式影像強化方法以及系統
JP6300782B2 (ja) * 2013-02-28 2018-03-28 株式会社日立製作所 画像処理装置、磁気共鳴イメージング装置および画像処理方法
KR101980537B1 (ko) * 2013-07-11 2019-05-22 삼성전자주식회사 영상 처리 유닛, 초음파 영상 장치 및 영상 처리 방법
CN104778662A (zh) * 2014-12-25 2015-07-15 深圳市一体太赫兹科技有限公司 一种毫米波图像增强方法及系统
CN105023253A (zh) * 2015-07-16 2015-11-04 上海理工大学 基于视觉底层特征的图像增强方法
CN105147316B (zh) * 2015-09-11 2020-05-05 深圳市理邦精密仪器股份有限公司 使用通道数据处理的共模噪声抑制方法
CN108882896B (zh) * 2015-09-23 2022-05-27 史赛克欧洲运营有限公司 用于评定组织的治愈的方法和系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209211A (zh) * 2006-12-30 2008-07-02 深圳迈瑞生物医疗电子股份有限公司 接收孔径可调整的数字化超声波束合成方法及装置
CN101347345A (zh) * 2007-07-16 2009-01-21 通用电气公司 多发射对比成像的方法和装置
CN103126725A (zh) * 2011-12-01 2013-06-05 深圳迈瑞生物医疗电子股份有限公司 一种超声成像的方法和装置
WO2014045073A1 (en) * 2012-09-18 2014-03-27 B-K Medical Aps Ultrasound imaging
CN104720850A (zh) * 2013-12-23 2015-06-24 深圳迈瑞生物医疗电子股份有限公司 一种超声造影成像方法及造影图像的区域检测、显像方法
CN104688271A (zh) * 2015-03-27 2015-06-10 清华大学 合成聚焦超声成像方法和装置
CN105105785A (zh) * 2015-07-23 2015-12-02 深圳开立生物医疗科技股份有限公司 超声造影成像非造影区域自动去除方法、装置及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111080535A (zh) * 2019-11-05 2020-04-28 浙江大华技术股份有限公司 图像增强方法和计算机存储介质
CN114098795A (zh) * 2020-08-26 2022-03-01 通用电气精准医疗有限责任公司 用于生成超声探头引导指令的系统和方法

Also Published As

Publication number Publication date
US20200253586A1 (en) 2020-08-13
CN111278363A (zh) 2020-06-12
CN111278363B (zh) 2022-07-22
US11737734B2 (en) 2023-08-29

Similar Documents

Publication Publication Date Title
US6346079B1 (en) Method and apparatus for adaptive frame-rate adjustment in ultrasound imaging system
JP6342212B2 (ja) 超音波診断装置
CN106469461B (zh) 视图方向自适应体积超声成像
JP2006346459A (ja) 超音波空間複合イメージングのリアルタイム運動補正のための方法及び装置
US20130172752A1 (en) Ultrasound transducer apparatus and ultrasound imaging system and imaging method
US6666824B2 (en) System and method of dynamic automatic sensing of available dynamic range
JPH10295694A (ja) 超音波イメージング・システムの作動方法
WO2014115783A1 (ja) 超音波診断装置、画像処理装置及び画像処理方法
KR101552427B1 (ko) 초음파 영상의 스페클 저감장치
KR101792589B1 (ko) 빔포머, 진단시스템, 의료영상시스템 및 진단영상을 표시하는 방법
JP2015213575A (ja) 超音波診断装置及び超音波イメージングプログラム
US20070083109A1 (en) Adaptive line synthesis for ultrasound
Hemmsen et al. Tissue harmonic synthetic aperture ultrasound imaging
US11737734B2 (en) Ultrasound imaging device and system, and image enhancement method for contrast enhanced ultrasound imaging
US11529125B2 (en) Methods and systems for processing an ultrasound image
CN110501711A (zh) 一种基于乘幂法的低复杂度最小方差超声成像方法
US20100113926A1 (en) System and method for clutter filter processing for improved adaptive beamforming
US11883240B2 (en) Sparse convolutional beamforming for ultrasound imaging
US20220330920A1 (en) Ultrasonic diagnostic apparatus and medical image processing apparatus
US20220043131A1 (en) Adaptive weighting for adaptive ultrasound imaging
US20220022848A1 (en) Ultrasound imaging system using coherence estimation of a beamformed signal
CN112890855B (zh) 多波束p次根压缩相干滤波波束合成方法及装置
JP7130008B2 (ja) 超音波信号データを処理する方法及び装置
US11982741B2 (en) Methods and systems for processing an ultrasound image
Wang et al. Generalized sidelobe canceller beamforming method for ultrasound imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17929345

Country of ref document: EP

Kind code of ref document: A1