WO2019074258A1 - Composition for transcatheter arterial chemoembolization, comprising nanoparticle for anticancer therapy and gene therapy - Google Patents

Composition for transcatheter arterial chemoembolization, comprising nanoparticle for anticancer therapy and gene therapy Download PDF

Info

Publication number
WO2019074258A1
WO2019074258A1 PCT/KR2018/011855 KR2018011855W WO2019074258A1 WO 2019074258 A1 WO2019074258 A1 WO 2019074258A1 KR 2018011855 W KR2018011855 W KR 2018011855W WO 2019074258 A1 WO2019074258 A1 WO 2019074258A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
chitosan
hydrogel
nanoparticles
sirna
Prior art date
Application number
PCT/KR2018/011855
Other languages
French (fr)
Korean (ko)
Inventor
김현철
한현구
박수현
김도연
서민규
Original Assignee
서강대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교 산학협력단 filed Critical 서강대학교 산학협력단
Publication of WO2019074258A1 publication Critical patent/WO2019074258A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • A61K49/0433X-ray contrast preparations containing an organic halogenated X-ray contrast-enhancing agent
    • A61K49/0438Organic X-ray contrast-enhancing agent comprising an iodinated group or an iodine atom, e.g. iopamidol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides

Definitions

  • the present invention relates to a composition for hepatic artery chemoembolization comprising nanoparticles for chemotherapy and gene therapy. More particularly, the present invention relates to a composition for hepatocarcinoma chemoembolization comprising gene therapy capable of inhibiting nanoparticles containing chemotherapeutic agents, And to a nanoparticle and a composition containing the nanoparticle which can simultaneously perform gene therapy and drug treatment.
  • chemoembolization is the treatment most commonly used for the treatment of liver tumors. It is a treatment to block blood vessels by administering anticancer drugs to find arteries supplying nutrients to liver tumors.
  • the liver tissue is supplied with oxygen and nutrients through the portal vein and the hepatic artery directly from the small intestine and the large intestine.
  • Normal liver tissue is mainly supplied in the context, and tumor tissue is supplied mainly from the hepatic artery. Therefore, administering anticancer drugs to the hepatic artery supplying the tumor and blocking the blood vessels can selectively necrotize the tumor without harming the normal liver tissue.
  • the catheter is first inserted into the femoral artery in the inguinal region, and after approaching the hepatic artery, the angiographic agent is injected to obtain information necessary for the treatment, such as the location, size and blood supply pattern of the tumor. Is inserted into the catheter to find the target artery.
  • the injected embolization substance and the anticancer drug mixture for embolization of hepatic arterial chemoembolization are emulsion composed of an embolization substance and an anticancer drug and mixed with 1: 4 ratio of an embolizing substance Lipiodol and an anticancer drug adriamycin in a ratio of 1: emulsion.
  • adriamycin is dissolved in the pamirite, an Xray contrast agent having a specific gravity similar to that of lipiodol, so that it can be maintained in a long-time emulsion form.
  • the effect of this mixture on hepatocarcinoma treatment is due to the transfer of anticancer drug to hepatocellular carcinoma along with the embolization effect of Lipiodol, thereby preventing the supply of nutrients and maximizing the anticancer effect.
  • the embolization material was washed after a certain time, and the drug spreads throughout the blood vessels to kill the normal cells, but it was not enough to kill the cancer cells.
  • the present invention provides nanoparticles and compositions that can effectively penetrate a drug into cancer cells and at the same time provide sustained drug release effects.
  • the present invention is to provide nanoparticles and compositions that can be used in combination with chemotherapeutic agents and anticancer agents as well as gene therapy.
  • One aspect of the present invention is
  • a composition for hepatic artery embolization comprising nanoparticles for cancer therapy and gene therapy, a water contrast agent and an embolus substance.
  • composition may further comprise a first anticancer agent dispersed or dissolved in the aqueous contrast medium or the embolic material.
  • the nanoparticles for chemotherapy and gene therapy may include a second anti-cancer agent-carrying siRNA hydrogel, chitosan or polyethylene imine coated on the outer surface of the hydrogel, and a hyaluronic acid outer layer surrounding the chitosan.
  • an embolic agent which is an oil contrast agent
  • the composition may be prepared by dispersing or mixing the first anticancer agent in the embolization agent, and then adding the first anticancer agent to the mixed solution to form an emulsion.
  • the present invention includes siRNA nanoparticles for gene therapy in which the second chemotherapeutic agent is carried in a conventional chemoembolization agent, the expression of the target gene can be efficiently inhibited together with the chemoembolization and drug treatment, thereby enhancing the effect of the chemotherapeutic treatment.
  • the composition of the present invention contains the first anticancer drug contained in the emulsion composition as well as the second anticancer drug loaded on the siRNA nanoparticles, and thus the first anticancer drug is initially released and the second anticancer drug is degraded with the siRNA nanoparticle decomposition Since the drug can be released over a long period of time, the chemotherapy can be efficiently performed.
  • the CD44 receptor expressed in hepatocarcinoma cells can be effectively delivered into the cells, thereby maximizing the gene therapy and the anti-cancer therapeutic effect.
  • FIG. 1 is a conceptual diagram of a hepatic artery chemoembolization composition including nanoparticles for chemotherapy and gene therapy according to an embodiment of the present invention.
  • FIG. 2 shows an SEM image of the anti-cancer-siRNA nanoparticles coated with the acrylate chitosan intermediate layer and the hyaluronic acid outer layer on the siRNA hydrogel.
  • FIG. 3 shows a DIC image and a fluorescence image showing that an emulsion is formed by mixing a free anticancer drug (toxin Rubisone) dissolved in Pamirai and anti-cancer-siRNA hydrogel-based nanoparticles with lipiodol.
  • a free anticancer drug toxin Rubisone
  • FIG. 4 shows the size of the completed nanoparticles by coating an intermediate layer with an acrylate chitosan or branched PEI on an siRNA hydrogel and coating the outer layer with hyaluronic acid.
  • FIG. 5 is a graph showing the results of coating the outer layer with hyaluronic acid after coating the intermediate layer with chitosan or acrylate chitosan and selectively inhibiting the expression of the targeted VEGF gene in the nanoparticles transferred to the cells under the in vitro condition of the finished nanoparticles Lt; / RTI >
  • FIG. 6 shows that the nanoparticles transferred to the cells under the in vitro condition of the completed nanoparticles selectively coat the targeted VEGF gene expression by coating the intercalation layer with branched PEI and coating the outermost layer with hyaluronic acid PCR data.
  • FIG. 7 shows the results of cytotoxicity experiments with anticancer drugs continuously released from the prepared anti-cancer-siRNA nanoparticles.
  • FIG. 1 is a conceptual diagram of a composition for hepatic artery (chemo) embolization including nanoparticles for chemotherapy and gene therapy according to an embodiment of the present invention.
  • the hepatic artery embolization composition of the present invention includes nanoparticles 10 for cancer therapy and gene therapy, water-based contrast agent 20, and embolic material 30.
  • the embolic material 30 is an oil-based contrast agent, and the nanoparticles 10 are dispersed in the aqueous contrast medium 20.
  • the composition is prepared by mixing the oil-based contrast agent and the water-based contrast agent to form an emulsion in an oil (oily) -in-water (aqueous) form.
  • the composition may further comprise a first anticancer agent 40 dispersed or dissolved in the aqueous contrast medium or oily embolic material. That is, both the hydrophilic or hydrophobic anticancer agent may be used as the first anticancer agent.
  • the embolic material may be lipiodol, collagen, thrombin, gelatin, alginic acid, alginate, cellulose acetate, polyvinyl acetate, polyethylene vinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl alcohol or a mixture thereof.
  • the composition may contain the nanoparticles and the embolic material in a volume ratio of 1: 1 to 5, preferably 1: 1 to 4, more preferably 1: 2 to 5.
  • the aqueous contrast medium may be selected from the group consisting of Iopamidol, Pamiray, Metrizamide, Diatrizoate, Ioxaglate, Iopentol, Iomeprol ), Iotrolan, Iohexol, Ioversol, Ioxilan, Iopromide, Iodixanol, and Iobitridol. ≪ / RTI >
  • the aqueous contrast agent 20 may disperse the nanoparticles 10 and the first anticancer agent 40.
  • the chemotherapeutic and gene therapy nanoparticles 10 may be prepared by mixing an siRNA hydrogel 11 carrying a second anticancer drug 14, chitosan 12 or polyethyleneimine coated on the outer surface of the hydrogel and a chitosan or polyethyleneimine And a hyaluronic acid outer layer 13 surrounding the outer layer 13.
  • siRNA hydrogel (11) targets mRNAs of a specific gene.
  • siRNA binds messenger RNA (mRNA), which has the same nucleotide sequence as its sense strand, and degrades the expression of a specific protein by degrading mRNA bound to RNA induced silencing complex (RISC) .
  • mRNA messenger RNA
  • RISC RNA induced silencing complex
  • the specific gene may be cancer or any mRNA which induces a specific disease.
  • the siRNA hydrogel 11 may be an anti-VEGF siRNA hydrogel targeting an endothelial growth factor (VEGF) that causes cancer if overexpressed.
  • VEGF endothelial growth factor
  • the siRNA hydrogel may have a molecular weight of 1 x 10 < 5 > g / mol or more.
  • the siRNA hydrogel may contain at least 1 x 10 3 small interfering RNA (siRNA) unit sequences, and may be replicated more than 1 x 10 3 to 1 x 10 10 ranges.
  • siRNA small interfering RNA
  • the second anticancer agent 14 may be carried between the double helix of the siRNA.
  • the second anticancer drug 14 may be doxorubicin (DOX), mitomycin, cisplatin, adriamycin.
  • the first anticancer agent 40 and the second anticancer agent 14 may be the same.
  • the method of supporting the drug on the siRNA hydrogel is as follows.
  • the anti-VEGF siRNA hydrogel For example, if you want to release the anti-VEGF siRNA hydrogel to a desired concentration in a solvent (Nuclease free water), and then apply bath sonication for about 1 minute and then load the second anticancer drug (eg, doxorubicin, DOX) And stored in the dark room for one day. Then, when it is confirmed that the particles loaded with the second anticancer drug on the bottom are settled down, centrifugation (13,200 rpm, 10 minutes) is performed to remove the supernatant, and the drug-loaded siRNA hydrogel can be obtained. The supernatant can be stored separately to determine the amount of DOX loaded.
  • a solvent Nuclease free water
  • the nanoparticles of the present invention use chitosan or a cationic polymer as the intermediate layer (12).
  • the chitosan may be acrylate chitosan.
  • the cationic polymer may be at least one selected from the group consisting of polyethyleneimine, polyamine and polyvinylamine, and preferably branched PEI having relatively low toxicity may be used.
  • the chitosan and bPEI are positively charged, so they are used as an intermediate layer coated with a negatively charged siRNA hydrogel and hyaluronic acid (HA).
  • the chitosan and bPEI can condense or compress the negatively charged siRNA hydrogel to reduce the particle size of the hydrogel.
  • the chitosan and bPEI can form a cationic polymer layer having a strong (+) charge on the outer surface of the core hydrogel, it binds to (-) charged hyaluronic acid with strong electrostatic attraction, The coating structure can be firmly maintained.
  • the chitosan has a structure very similar to that of human tissues and has excellent affinity for human body, so that the chitosan is useful as a drug delivery material in the human body since an immune response does not occur.
  • chitosan is soluble only in acid, it is not well soluble in neutral conditions in the human body and may interfere with the release of anticancer drugs or siRNA hydrogels in the core.
  • the surface functional group of chitosan is modified with acrylate so that chitosan is decomposed well in neutral water.
  • the outer layer 13 is a layer of hyaluronic acid coated on the outer surface of the intermediate layer 12.
  • the hyaluronic acid outer layer represents a negative charge, and therefore the particles including the core of the present invention also exhibit negative charges.
  • hyaluronic acid having a large molecular weight and a small hyaluronic acid may be used, preferably 5 to 10 K, more preferably 5 K hyaluronic acid.
  • Hyaluronic acid is a large complex oligosaccharide consisting of up to 50,000 pairs of disaccharide glucuronate- ⁇ (1-3) N-acetylglucose-amine ⁇ (1-4) as a basic unit. It is found in vivo as a major component of the extracellular matrix. Its tertiary structure is in the form of a random coil with a diameter of about 50 nm.
  • the nanoparticles of the present invention are effectively delivered to the cells through the CD44 receptor expressed on hepatocarcinoma cells by coating with (-) charged hyaluronic acid, thereby maximizing the effect of gene therapy and chemotherapy.
  • the method comprises reacting the acrylated chitosan or bPEI and hyaluronic acid with the siRNA hydrogel in an amount of 1: 0.1-1: 0.5-2, preferably 1: 0.1-0.5: 1, when the RNA concentration of the aqueous solution of siRNA hydrogel is about 100 nmole ⁇ 2 (hydrogel: chitosan / bPEI: hyaluronic acid) may be added.
  • the nanoparticles for chemotherapy and gene therapy of the present invention may have a size of 100 to 400 nm, preferably 200 nm or less.
  • the present invention relates to a method for preparing a composition for hepatic artery embolization.
  • composition manufacturing method includes
  • embolization material 30 which is an oil contrast agent
  • the nanoparticles 10 may be formed of an siRNA hydrogel 11 carrying a second anticancer drug 14, chitosan 12 coated on the hydrogel outer surface or a cationic polymer and hyaluronic acid surrounding the chitosan or cationic polymer, And an outer layer 13.
  • the method for preparing the nanoparticles 10 includes a step of carrying a second anticancer agent on the siRNA hydrogel, an interlayer coating step, a hyaluronic acid coating step, and a separating and drying step.
  • the step of supporting the second anticancer agent on the siRNA hydrogel comprises: mixing the second anticancer agent (14) and the siRNA hydrogel (11) in a solvent (distilled water from which the RNAase activity is removed) And separating the hydrogel from the solvent when the hydrogel is precipitated.
  • chitosan or a cationic polymer is mixed with the siRNA hydrogel solution containing the second anticancer drug.
  • the outer layer coating step includes mixing hyaluronic acid in the solution and coating hyaluronic acid on the surface of the chitosan or cationic polymer.
  • the nanoparticles coated with the outer layer are separated from the solution and dried.
  • the method comprises reacting the acrylated chitosan and hyaluronic acid with the siRNA hydrogel in a ratio of 1: 0.1-1: 0.5-2, preferably 1: 0.1-0.5: 1-2 (hydrogel: chitosan / bPEI: hyaluronic acid) Can be added.
  • the first anticancer drug 40 may be dispersed or mixed in the embolic material 30, and then the emulsion may be formed by mixing the first anticancer drug 40 and the first anticancer drug 40 in the mixed solution.
  • the embolization substance 30, the aqueous contrast medium 20, the first anticancer agent 40 and the second anticancer agent 14 may be referred to above.
  • the nanoparticles and the embolic material may be mixed at a volume ratio of 1: 1 to 5, preferably 1: 1 to 4 or 1: 2 to 5.
  • the method can mix the embolic material and the aqueous contrast agent in a volume ratio of 1: 1 to 5, preferably 1: 1 to 4.
  • the gene therapy nanoparticles carrying the second anticancer drug are redispersed in distilled water (distilled water from which the RNAase activity is removed) to a desired concentration. Thereafter, the first anticancer drug is dispersed in a water-based contrast agent (for example, Iopamidol or Pamiray) so as to have a desired concentration, and then mixed with a redispersed solution of the nanoparticles for chemotherapy and gene therapy.
  • a water-based contrast agent for example, Iopamidol or Pamiray
  • a sufficient amount of aqueous contrast medium can be used.
  • an embolization substance for example, lipiodol
  • a volume ratio embolization substance: aqueous contrast medium
  • DOE first anticancer drug
  • vascular endothelial growth factor (VEGF-A) in rats is 5'-AUGUGAAUGCAGACCAAAGAA TT-3 'and the antisense is 5'-UUCUUUGGUCUGCAUUCA CAU TT-3'. Long linear single stranded DNA encoding the sense and antisense was prepared.
  • the ligated circular DNA template was incubated with the reaction buffer (8 mM Tris-HCl, 0.4 mM spermidine, 1.2 mM MgCl 2 , and 2 mM dithiothreitol) at 37 ° C for 20 hours as in T7 RNA polymerase.
  • the resulting solution was pipetted several times and sonicated for 5 minutes to disintegrate the particles.
  • the solution was centrifuged at 13,200 rpm for 20 minutes at 4 DEG C and the supernatant was removed. The particles were then washed with RNase-free water. The solution was again sonicated for 1 minute and centrifuged.
  • RNA-microsponge anti-VEGF siRNA hydrogel
  • concentration of RNA-microsponge was measured using Quant-iT RNA BR assay kits (Invitrogen).
  • Quant-iT RNA BR assay kits Invitrogen.
  • the self-assembled RNA interference microsponges for efficient siRNA delivery were used for core preparation.
  • DOX was mixed with anti-VEGF siRNA hydrogel and stored overnight in a dark room. When it was confirmed that the DOX-loaded particles were red in the bottom, they were centrifuged at 13,200 rpm for 10 minutes. The supernatant was taken apart to measure the amount of DOX loadiing and the DOX-siRNA hydrogel particles with the supernatant removed.
  • DOX was mixed with anti-VEGF siRNA hydrogel and stored overnight in the dark room. When it was confirmed that the DOX-loaded particles in the red color on the bottom were not scattered, they were centrifuged at 13,200 rpm for 10 minutes. The supernatant was taken apart to measure the loading amount of DOX and the DOX-siVEGF hydrogel particles with the supernatant removed.
  • the previously prepared acrylate chitosan was dissolved in nuclease free water at 1 mg / mL.
  • 48 kDa chitosan and 25 kDa bPEI were also dissolved in nuclease free water at 1 mg / mL.
  • the mixed solution was incubated for 10 minutes and sonicated.
  • the mixture was mixed with 5 ⁇ l of 1 mg / mL hyaluronic acid (HA) and incubated for 30 minutes.
  • HA hyaluronic acid
  • FIG. 3 shows the sizes of the nanoparticles coated with chitosan and bPEI as the intermediate layer and 386.6 nm as the average size of particles coated with chitosan as the middle layer, and the average size of particles coated with bPEI was 362.5 nm.
  • the zeta potential of both particles was about minus 10.
  • the DOX-siRNA hydrogel loaded with the fluorescent dye YOPRO-1 was mixed with bPEI and hyaluronic acid-coated nanoparticles and free DOX dissolved in Pamirai. At this time, the amount of DOX loaded on the nanoparticles and the amount of free DOX were mixed to a total of 6.25 mg / mL.
  • An emulsion containing nanoparticles and free DOX can be obtained by mixing the solution with lipoid in a ratio of 1: 2 using 3 way pumping.
  • FIG. 4 is a micrograph showing the formation of an emulsion.
  • FIG. 4 is a DOX fluorescence microscope photograph showing the presence of DOX contained in the emulsion.
  • the right image shows the presence or absence of siRNA hydrogel contained in the emulsion
  • It is a fluorescence microscope photograph of a siRNA hydrogel. DOX did not fluoresce by itself because it was fluorescent, and siRNA hydrogel chelates YOPRO-1 to confirm fluorescence. That is, referring to the photograph of FIG. 4, it can be confirmed whether or not an emulsion is formed in the solution and that DOX and siRNA hydrogel are contained in the emulsion.
  • HepG2 cells (Korean Cell Line Bank) were seeded in a 6 well cell culture plate (cell culture plate) and incubated for one day. After 3 hours, opti-MEM was removed and washed with DPBS. Opti-MEM mixed with nanoparticles was carefully placed and replaced with normal meida after 12 hours. After incubation for 24 hours, the cells were extracted and RNA was extracted and cDNA was obtained. The gel image was confirmed by PCR and electrophoresis. The cells were treated with control (1), siVEGF hydrogel + 1 mg / ml chitosan + HA, siVEGF hydrogel + 1 mg / mL acylated chitosan + HA (3)
  • VEGF gene expression is more inhibited when coated with acrylated chitosan than with chitosan.
  • Fig. 6 B16F10 cells were used and the same procedure as in the above experiment was carried out except that the intermediate layer of the treated nanoparticles was coated with bPEI (using 1 mg / mL bPEI). At this time, the expression of the VEGF gene in the cell treated with bPEI (2, 3) -coated nanoparticles was markedly reduced compared to control (1).
  • the cells were treated with 1 ⁇ 10 4 seeding of B16F10 cancer cells in a 96-well plate, followed by treatment with free DOX (anti-cancer agent) and nanoparticles of Example 1 (DOX-siVEGF + acrylate chitosan + HA) The experiment was carried out.
  • Example 1 showed a killing effect of 23% compared to the control, and after 72 hours, the killing effect was 52% as compared with the control.
  • composition of the present invention can be administered simultaneously with chemoembolization, drug therapy and gene therapy, and thus can be used for the treatment of liver cancer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to a nanoparticle that comprises a gene therapy-enabling siRNA hydrogel containing an anticancer agent-impregnated nanoparticle and an embolic material therein and which can be used in chemoembolization and perform both gene therapy and drug therapy, and a composition comprising the same. Designed to comprise an siRNA hydrogel core containing a drug therein, a medium layer of cationic chitosan surrounding the core, and an outer layer of anionic hyaluronic acid, the present invention can release siRNA and the drug for a long period of time and thus shows very long sustainability of a medicinal effect. A composition for transcatheter arterial chemoembolization, comprising the nanoparticle according to the present invention can exert chemoembolization and drug therapy and effectively regulate the expression of a target gene, thereby increasing anticancer therapeutic effect. The nanoparticle of the present invention is coated with hyaluronic acid having (-) charges and thus can be effectively delivered into cells through the CD44 receptor expressed on liver cancer cells, bringing about a maximum effect on gene therapy and anticancer therapy.

Description

항암치료 및 유전자 치료용 나노입자를 포함하는 간동맥 화학색전술용 조성물Composition for hepatic artery chemoembolization including nanoparticles for chemotherapy and gene therapy
본 발명은 항암치료 및 유전자 치료용 나노입자를 포함하는 간동맥화학색전술용 조성물에 관한 것으로서, 보다 자세하게는, 유전자 치료가 가능한 siRNA 하이드로젤에 항암제가 담지된 나노입자가 색전물질을 포함하여 화학색전술에 사용됨과 동시에 유전자 치료와 약물 치료를 동시에 수행할 수 있는 나노입자 및 이를 포함하는 조성물에 관한 것이다. The present invention relates to a composition for hepatic artery chemoembolization comprising nanoparticles for chemotherapy and gene therapy. More particularly, the present invention relates to a composition for hepatocarcinoma chemoembolization comprising gene therapy capable of inhibiting nanoparticles containing chemotherapeutic agents, And to a nanoparticle and a composition containing the nanoparticle which can simultaneously perform gene therapy and drug treatment.
최근 영상기술이 발전하여 몸 안에 숨어 있는 암의 정확한 위치를 찾아내어 방사선 조사, 내시경 수술 등 여러 가지 방법으로 제거할 수 있게 되었다. 하지만, 암의 위치를 정확히 발전하더라도 암이 전체 장기에 퍼져 있거나, 다른 장기와 붙어 있는 경우 등 여러 가지 이유로 인해 수술적 제거가 불가능한 경우가 있다. 또한, 간암, 췌장암은 발견하더라도 수술적 완치가 불가능한 경우가 많다.Recent advances in imaging technology have led to the discovery of the exact location of the cancer in the body, which can then be removed by a variety of methods, including radiation and endoscopic surgery. However, even if the position of the cancer is accurately developed, surgical removal can not be performed due to various reasons such as the cancer spreading to the whole organs or the other organ. In addition, liver cancer and pancreatic cancer, even if found in the surgical cure is often impossible.
현재, 간 종양의 치료에 가장 많이 시행되고 있는 시술인 화학색전술은 간 종양에 영양을 공급하는 동맥을 찾아 항암제를 투여한 다음 혈관을 막아주는 치료법이다. 간 조직은 소장 및 대장 등을 돌아 나오는 문맥 (portal vein)과 대동맥에서 직접 나오는 간동맥을 통하여 산소와 영양을 공급받는데, 정상 간 조직은 주로 문맥에서, 종양 조직은 주로 간동맥에서 혈액을 공급받는다. 따라서, 종양에 영양을 공급하는 간동맥에 항암제를 투여하고 혈관을 막아주면 정상 간 조직에 해를 입히지 않으면서 종양만을 선택적으로 괴사시킬 수 있다. 이러한 치료법은 암의 진행 정도에 따른 제약이 없이 적용범위가 넓고, 치료 대상의 제한이 적은 등 장점이 많기 때문에 현재 간암 치료율 향상에 가장 큰 기여를 하고 있는 방법이다. 화학색전술은 먼저 서혜부에 위치한 대퇴동맥에 카테터를 삽입하여 간동맥으로 접근한 후 혈관 조영제를 주사하여 종양의 위치, 크기 및 혈액 공급 양상 등 치료에 필요한 정보를 얻고, 치료 방침이 정해지면 약 1mm 정도 굵기의 가는 관을 카테터에 삽입하여 표적이 되는 동맥을 찾아 시술한다.Currently, chemoembolization is the treatment most commonly used for the treatment of liver tumors. It is a treatment to block blood vessels by administering anticancer drugs to find arteries supplying nutrients to liver tumors. The liver tissue is supplied with oxygen and nutrients through the portal vein and the hepatic artery directly from the small intestine and the large intestine. Normal liver tissue is mainly supplied in the context, and tumor tissue is supplied mainly from the hepatic artery. Therefore, administering anticancer drugs to the hepatic artery supplying the tumor and blocking the blood vessels can selectively necrotize the tumor without harming the normal liver tissue. These treatments are the most important method to improve the treatment rate of liver cancer because there are no limitations on the degree of cancer progression, the scope of application is wide, In chemoembolization, the catheter is first inserted into the femoral artery in the inguinal region, and after approaching the hepatic artery, the angiographic agent is injected to obtain information necessary for the treatment, such as the location, size and blood supply pattern of the tumor. Is inserted into the catheter to find the target artery.
간동맥 화학 색전술을 위하여 주입되는 색전물질, 항암제 혼합액은 색전물질과 항암제로 이루어진 에멀젼(emulsion)으로, 색전물질인 리피오돌 (Lipiodol)과 항암제인 아드리아마이신(Adriamycin)을 1:4 비율로 혼합하여 에멀젼 (emulsion) 형태로 사용되는 것이 일반적이다. 이때 아드리아마이신은 리피오돌과 비중이 비슷한 Xray 조영제인 파미레이에 용해시켜 사용되어 장시간 에멀젼 형태로 유지할 수 있도록 한다. 본 혼합액에 의해 간암치료 효과는 Lipiodol의 색전 효과와 함께 항암제가 간암으로 집중 전달됨으로써, 영양분 공급을 차단함과 동시에 항암 효과의 극대화가 유도된다. The injected embolization substance and the anticancer drug mixture for embolization of hepatic arterial chemoembolization are emulsion composed of an embolization substance and an anticancer drug and mixed with 1: 4 ratio of an embolizing substance Lipiodol and an anticancer drug adriamycin in a ratio of 1: emulsion. At this time, adriamycin is dissolved in the pamirite, an Xray contrast agent having a specific gravity similar to that of lipiodol, so that it can be maintained in a long-time emulsion form. The effect of this mixture on hepatocarcinoma treatment is due to the transfer of anticancer drug to hepatocellular carcinoma along with the embolization effect of Lipiodol, thereby preventing the supply of nutrients and maximizing the anticancer effect.
하지만, 상기 기술은 색전을 시행하였으나, 색전물질이 일정시간 이후에 씻겨져 나가 약물이 혈관을 따라 전신으로 퍼짐에 따라 정상 세포를 사멸시킬 수 있는 반면 암세포를 사멸시키기에는 한계가 있었다.However, although the embolization technique was performed, the embolization material was washed after a certain time, and the drug spreads throughout the blood vessels to kill the normal cells, but it was not enough to kill the cancer cells.
본 발명은 약물을 효과적으로 암세포에 집중 침투시킴과 동시에 장기간 지속적으로 약물 방출 효과를 제공할 수 있는 나노입자 및 조성물을 제공하는 것이다. The present invention provides nanoparticles and compositions that can effectively penetrate a drug into cancer cells and at the same time provide sustained drug release effects.
본 발명은 화학 색전술과 항암제에 의한 치료뿐만 아니라 유전자 치료까지도 병행할 수 있는 나노입자 및 조성물을 제공하는 것이다.The present invention is to provide nanoparticles and compositions that can be used in combination with chemotherapeutic agents and anticancer agents as well as gene therapy.
본 발명의 하나의 양상은One aspect of the present invention is
항암치료 및 유전자 치료용 나노입자, 수성조영제 및 색전물질을 포함하는 간동맥 색전술용 조성물에 관련된다.A composition for hepatic artery embolization comprising nanoparticles for cancer therapy and gene therapy, a water contrast agent and an embolus substance.
상기 조성물은 상기 수성조영제나 색전물질에 분산 내지 용해되는 제 1 항암제를 추가로 포함할 수 있다. The composition may further comprise a first anticancer agent dispersed or dissolved in the aqueous contrast medium or the embolic material.
상기 항암치료 및 유전자 치료용 나노입자는 제 2 항암제를 담지한 siRNA 하이드로젤, 상기 하이드로젤 외면에 코팅된 키토산 또는 폴리에틸렌이민 및 상기 키토산을 둘러싸는 히알루론산 외곽층을 포함할 수 있다.The nanoparticles for chemotherapy and gene therapy may include a second anti-cancer agent-carrying siRNA hydrogel, chitosan or polyethylene imine coated on the outer surface of the hydrogel, and a hyaluronic acid outer layer surrounding the chitosan.
다른 양상에서 본 발명은 In another aspect,
항암치료 및 유전자 치료용 나노입자를 증류수에 분산시키는 단계 ;Dispersing nanoparticles for chemotherapy and gene therapy in distilled water;
분산용액을 수성 조영제와 혼합하는 단계 ; 및Mixing the dispersion solution with a water-based contrast agent; And
유성조영제인 색전물질을 상기 수성 조영제를 포함하는 혼합용액에 넣어 에멀젼을 형성하는 단계를 포함하는 간동맥 색전술용 조성물의 제조방법에 관련된다.And injecting an embolic agent, which is an oil contrast agent, into a mixed solution containing the aqueous contrast agent to form an emulsion.
상기 조성물 제조방법은 상기 색전물질에 제 1 항암제를 분산 내지 혼합한 후 상기 혼합용액에 넣어 에멀젼을 형성할 수 있다.The composition may be prepared by dispersing or mixing the first anticancer agent in the embolization agent, and then adding the first anticancer agent to the mixed solution to form an emulsion.
본 발명은 기존의 화학색전술 제형에 제 2 항암제가 담지된 유전자 치료용 siRNA 나노입자를 포함함으로서 화학색전술 및 약물 치료와 함께 타겟 유전자의 발현을 효율적으로 억제할 수 있으므로 항암 치료 효과를 높일 수 있다. 또한, 본 발명의 조성물은 siRNA 나노입자에 담지된 제 2 항암제뿐만 아니라 에멀젼 조성물에 함유된 free한 제 1 항암제를 포함하고 있어 초기에는 제 1 항암제가 방출되고 제 2 항암제는 siRNA 나노입자 분해와 함께 약물을 장기간에 걸쳐 방출시킬 수 있으므로 항암치료를 효율적으로 수행할 수 있다.Since the present invention includes siRNA nanoparticles for gene therapy in which the second chemotherapeutic agent is carried in a conventional chemoembolization agent, the expression of the target gene can be efficiently inhibited together with the chemoembolization and drug treatment, thereby enhancing the effect of the chemotherapeutic treatment. In addition, the composition of the present invention contains the first anticancer drug contained in the emulsion composition as well as the second anticancer drug loaded on the siRNA nanoparticles, and thus the first anticancer drug is initially released and the second anticancer drug is degraded with the siRNA nanoparticle decomposition Since the drug can be released over a long period of time, the chemotherapy can be efficiently performed.
본 발명의 나노입자는 히알루론산으로 코팅함으로서 간암세포에 발현된 CD44 receptor를 통하여 효과적으로 세포내로 전달되어 유전자 치료 및 항암치료 효과를 극대화 할 수 있다.By coating the nanoparticles of the present invention with hyaluronic acid, the CD44 receptor expressed in hepatocarcinoma cells can be effectively delivered into the cells, thereby maximizing the gene therapy and the anti-cancer therapeutic effect.
도 1은 본 발명의 일구현예에 의한 항암치료 및 유전자 치료용 나노입자를 포함한 간동맥화학색전술 조성물의 개념도를 나타낸다. 1 is a conceptual diagram of a hepatic artery chemoembolization composition including nanoparticles for chemotherapy and gene therapy according to an embodiment of the present invention.
도 2는 siRNA 하이드로젤에 아크릴레이트 키토산 중간층과 히알루론산 외곽층으로 코팅된 항암-siRNA 나노입자의 SEM 이미지를 나타낸다.FIG. 2 shows an SEM image of the anti-cancer-siRNA nanoparticles coated with the acrylate chitosan intermediate layer and the hyaluronic acid outer layer on the siRNA hydrogel.
도 3은 파미레이에 녹인 free 항암제 (독소루비슨)와 항암-siRNA 하이드로젤 기반 나노입자를 리피오돌과 섞어 에멀젼이 형성된 것을 보여주는 DIC 이미지와 형광 이미지를 나타낸다.FIG. 3 shows a DIC image and a fluorescence image showing that an emulsion is formed by mixing a free anticancer drug (toxin Rubisone) dissolved in Pamirai and anti-cancer-siRNA hydrogel-based nanoparticles with lipiodol.
도 4는 siRNA 하이드로젤에 각각 아크릴레이트 키토산 또는 branched PEI 로 중간층을 코팅한 후 외곽층을 히알루론산으로 코팅하여 완성된 나노입자의 사이즈를 보여준다.FIG. 4 shows the size of the completed nanoparticles by coating an intermediate layer with an acrylate chitosan or branched PEI on an siRNA hydrogel and coating the outer layer with hyaluronic acid.
도 5는 중간층을 키토산 또는 아크릴레이트 키토산으로 코팅한 후 외곽층을 히알루론산으로 코팅하여 완성된 나노입자의 생체 외 조건하 세포에 전달된 나노입자가 목표로 하는 VEGF 유전자의 발현을 선택적으로 억제함을 보여주는 PCR 데이터이다.FIG. 5 is a graph showing the results of coating the outer layer with hyaluronic acid after coating the intermediate layer with chitosan or acrylate chitosan and selectively inhibiting the expression of the targeted VEGF gene in the nanoparticles transferred to the cells under the in vitro condition of the finished nanoparticles Lt; / RTI >
도 6는 충간층을 branched PEI 로 코팅한 후 최외각층을 히알루론산으로 코팅하여 완성된 나노입자의 생체 외 조건하 세포에 전달된 나노입자가 목표로 하는 VEGF 유전자의 발현을 선택적으로 억제함을 보여주는 PCR 데이터이다.FIG. 6 shows that the nanoparticles transferred to the cells under the in vitro condition of the completed nanoparticles selectively coat the targeted VEGF gene expression by coating the intercalation layer with branched PEI and coating the outermost layer with hyaluronic acid PCR data.
도 7은 제작된 항암-siRNA 나노입자로부터 지속적으로 방출된 항암제에 의한 세포 독성 실험을 한 결과이다.FIG. 7 shows the results of cytotoxicity experiments with anticancer drugs continuously released from the prepared anti-cancer-siRNA nanoparticles.
본 발명은 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체 예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아니다.The present invention can be all accomplished by the following description. The following description should be understood to describe preferred embodiments of the present invention, but the present invention is not necessarily limited thereto.
도 1은 본 발명의 일구현예에 의한 항암치료 및 유전자 치료용 나노입자를 포함한 간동맥(화학)색전술용 조성물의 개념도를 나타낸다.1 is a conceptual diagram of a composition for hepatic artery (chemo) embolization including nanoparticles for chemotherapy and gene therapy according to an embodiment of the present invention.
도 1을 참고하면, 본 발명의 간동맥 색전술 조성물은 항암치료 및 유전자 치료용 나노입자(10), 수성조영제(20) 및 색전물질(30)을 포함한다.Referring to FIG. 1, the hepatic artery embolization composition of the present invention includes nanoparticles 10 for cancer therapy and gene therapy, water-based contrast agent 20, and embolic material 30.
상기 색전물질(30)은 유성 조영제이고, 상기 나노입자(10)는 수성 조영제(20)에 분산된다. 상기 조성물은 유성조영제와 수성 조영제가 혼합되어 오일(유성)-in-물(수성) 형태의 에멀젼을 형성한다.The embolic material 30 is an oil-based contrast agent, and the nanoparticles 10 are dispersed in the aqueous contrast medium 20. The composition is prepared by mixing the oil-based contrast agent and the water-based contrast agent to form an emulsion in an oil (oily) -in-water (aqueous) form.
상기 조성물은 상기 수성조영제나 유성인 색전물질에 분산 내지 용해되는 제 1 항암제(40)를 추가로 포함할 수 있다. 즉, 상기 제 1항암제로 친수성이나 소수성 항암제를 모두 사용할 수 있다.The composition may further comprise a first anticancer agent 40 dispersed or dissolved in the aqueous contrast medium or oily embolic material. That is, both the hydrophilic or hydrophobic anticancer agent may be used as the first anticancer agent.
상기 색전물질은 리피오돌, 콜라겐, 트롬빈, 젤라틴, 알기닉산, 알기네이트, 초산 섬유소, 폴리아세트산비닐, 폴리에틸렌비닐알코올, 에틸렌-비닐알코올 공중합체, 폴리비닐 알코올 또는 이들의 혼합물일 수 있다. The embolic material may be lipiodol, collagen, thrombin, gelatin, alginic acid, alginate, cellulose acetate, polyvinyl acetate, polyethylene vinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl alcohol or a mixture thereof.
상기 조성물은 상기 나노입자와 상기 색전물질을 1 : 1~5, 바람직하게는 1 : 1~4, 더욱 바람직하게는 1 : 2~5의 부피비로 포함할 수 있다.The composition may contain the nanoparticles and the embolic material in a volume ratio of 1: 1 to 5, preferably 1: 1 to 4, more preferably 1: 2 to 5.
상기 수성조영제는 이오파미돌(Iopamidol), 파미레이(Pamiray), 메트리자미드(Metrizamide), 디아트리조에이트 (Diatrizoate), 이옥사글레이트(Ioxaglate), 이오펜톨(Iopentol), 이오메프롤(Iomeprol), 이오트롤란(Iotrolan), 이오헥솔(Iohexol), 이오베르솔 (Ioversol), 이옥실란(Ioxilan), 이오프로마이드(Iopromide), 이오딕사놀 (Iodixanol) 및 이오비트리돌(Iobitridol)의 군에서 선택될 수 있다.The aqueous contrast medium may be selected from the group consisting of Iopamidol, Pamiray, Metrizamide, Diatrizoate, Ioxaglate, Iopentol, Iomeprol ), Iotrolan, Iohexol, Ioversol, Ioxilan, Iopromide, Iodixanol, and Iobitridol. ≪ / RTI >
상기 수성 조영제(20)는 상기 나노입자(10)와 상기 제 1 항암제(40)를 분산시킬 수 있다.The aqueous contrast agent 20 may disperse the nanoparticles 10 and the first anticancer agent 40.
상기 항암치료 및 유전자 치료용 나노입자(10)는 제 2 항암제(14)를 담지한 siRNA 하이드로젤(11), 상기 하이드로젤 외면에 코팅된 키토산(12) 또는 폴리에틸렌이민, 및 상기 키토산 또는 폴리에틸렌이민을 둘러싸는 히알루론산 외곽층(13)을 포함할 수 있다.The chemotherapeutic and gene therapy nanoparticles 10 may be prepared by mixing an siRNA hydrogel 11 carrying a second anticancer drug 14, chitosan 12 or polyethyleneimine coated on the outer surface of the hydrogel and a chitosan or polyethyleneimine And a hyaluronic acid outer layer 13 surrounding the outer layer 13.
상기 siRNA 하이드로젤(11)은 특정 유전자의 mRNA 들을 표적한다. siRNA는 그의 센서 (sense) 가닥과 염기 서열이 동일한 메신저 RNA (messenger RNA, mRNA)와 결합하여 RNA 유도 침묵 복합체 (RNA induced silencing complex, RISC)가 결합된 mRNA를 분해시킴으로서 특정 단백질의 발현을 저해할 수 있다.The siRNA hydrogel (11) targets mRNAs of a specific gene. siRNA binds messenger RNA (mRNA), which has the same nucleotide sequence as its sense strand, and degrades the expression of a specific protein by degrading mRNA bound to RNA induced silencing complex (RISC) .
상기 특정 유전자로는 암 또는 특정 질병을 유발하는 모든 mRNA가 해당될 수 있다. 예를 들면, 상기 siRNA 하이드로젤(11)은 과도하게 발현되면 암을 유발하는 혈관내피 성장인자 (VEGF)를 표적하는 anti-VEGF siRNA 하이드로젤일 수 있다.The specific gene may be cancer or any mRNA which induces a specific disease. For example, the siRNA hydrogel 11 may be an anti-VEGF siRNA hydrogel targeting an endothelial growth factor (VEGF) that causes cancer if overexpressed.
상기 siRNA 하이드로젤은 분자량이 1× 105 g/mol 이상일 수 있다. 상기 siRNA 하이드로젤은 작은 간섭 RNA(siRNA) 단위 서열이 1× 103 이상 탑재될 수 있으며, 1× 103 ~ 1× 1010 개 범위 이상 복제되어 탑재될 수 있다. The siRNA hydrogel may have a molecular weight of 1 x 10 < 5 > g / mol or more. The siRNA hydrogel may contain at least 1 x 10 3 small interfering RNA (siRNA) unit sequences, and may be replicated more than 1 x 10 3 to 1 x 10 10 ranges.
상기 제 2 항암제(14)는 상기 siRNA의 이중 나선 사이에 담지될 수 있다. The second anticancer agent 14 may be carried between the double helix of the siRNA.
상기 제 2 항암제(14)는 독소루비신 (DOX), 마이토마이신, 시스플라틴, 아드리아마이신일 수 있다.The second anticancer drug 14 may be doxorubicin (DOX), mitomycin, cisplatin, adriamycin.
상기 제 1항암제(40)와 제 2 항암제(14)는 동일할 수 있다.The first anticancer agent 40 and the second anticancer agent 14 may be the same.
약물을 siRNA 하이드로젤에 담지시키는 방법은 다음과 같다.The method of supporting the drug on the siRNA hydrogel is as follows.
약물과 siRNA 하이드로젤을 용매(물)에 넣어 혼합한 후 소정시간 동안 보관하는 단계 및 siRNA 하이드로젤이 침전되면 용매로부터 분리하는 단계를 포함한다.Mixing the drug and the siRNA hydrogel in a solvent (water), storing the mixture for a predetermined time, and separating the siRNA hydrogel from the solvent when the hydrogel is precipitated.
예를 들면, 먼저 anti-VEGF siRNA 하이드로젤을 용매 (Nuclease free water)에 원하는 농도로 풀어주고 1분 정도 bath sonication을 시켜준 후 제 2 항암제 약물(예를 들면, 독소루비신, DOX)를 로딩하고 싶은 만큼 섞어서 암실에 하루 동안 보관한다. 이어서, 바닥에 붉은 색으로 제 2 항암제가 loading 된 입자가 가라앉은 것이 확인되면 원심분리시켜(13,200rpm, 10분) 상층액을 제거하면 약물이 로딩된 siRNA 하이드로젤을 수득할 수 있다. 상층액은 따로 보관하여 로딩된 DOX의 양을 확인할 수 있다.For example, if you want to release the anti-VEGF siRNA hydrogel to a desired concentration in a solvent (Nuclease free water), and then apply bath sonication for about 1 minute and then load the second anticancer drug (eg, doxorubicin, DOX) And stored in the dark room for one day. Then, when it is confirmed that the particles loaded with the second anticancer drug on the bottom are settled down, centrifugation (13,200 rpm, 10 minutes) is performed to remove the supernatant, and the drug-loaded siRNA hydrogel can be obtained. The supernatant can be stored separately to determine the amount of DOX loaded.
본 발명의 나노입자는 중간층(12)으로 키토산 또는 양이온성 고분자를 사용한다. 바람직하게는 상기 키토산은 아크릴레이트 키토산일 수 있다.The nanoparticles of the present invention use chitosan or a cationic polymer as the intermediate layer (12). Preferably, the chitosan may be acrylate chitosan.
상기 양이온성 고분자는 폴리에틸렌이민, 폴리아민 및 폴리비닐아민으로 이루어진 군에서 선택된 어느 하나 이상일 수 있으며, 바람직하게는 독성이 상대적으로 낮은 branched PEI를 사용할 수 있다.The cationic polymer may be at least one selected from the group consisting of polyethyleneimine, polyamine and polyvinylamine, and preferably branched PEI having relatively low toxicity may be used.
본 발명에서 상기 키토산과 bPEI는 양전하를 띠므로 음전하를 띠는 siRNA 하이드로젤과 히알루론산 (HA)의 상이에 코팅되는 중간층으로 사용된다. 상기 키토산과 bPEI 는 음전하를 띠는 siRNA 하이드로젤을 응축 또는 압축하여 하이드로젤의 입자 사이즈를 줄일 수 있다. 또한, 상기 키토산과 bPEI 는 코어인 하이드로젤 외면에 강한 (+) 전하를 띠는 양이온성 고분자층을 형성할 수 있으므로 (-) 전하를 띠는 히알루론산과 강한 정전기적 인력으로 결합하여 히알루론산 외곽 코팅 구조를 견고히 유지할 수 있다. In the present invention, the chitosan and bPEI are positively charged, so they are used as an intermediate layer coated with a negatively charged siRNA hydrogel and hyaluronic acid (HA). The chitosan and bPEI can condense or compress the negatively charged siRNA hydrogel to reduce the particle size of the hydrogel. In addition, since the chitosan and bPEI can form a cationic polymer layer having a strong (+) charge on the outer surface of the core hydrogel, it binds to (-) charged hyaluronic acid with strong electrostatic attraction, The coating structure can be firmly maintained.
또한, 상기 키토산은 우리 인체조직과 매우 유사한 구조를 이루고 있고 인체 친화성이 우수하여 면역반응이 일어나지 않기 때문에 인체 내 약물 전달 물질로 유용하다.In addition, the chitosan has a structure very similar to that of human tissues and has excellent affinity for human body, so that the chitosan is useful as a drug delivery material in the human body since an immune response does not occur.
키토산은 산성에서만 녹기 때문에 인체 내 중성 조건에서 잘 용해되지 않아 코어의 항암 약물이나 siRNA 하이드로젤의 방출을 방해할 수 있다. 이러한 문제를 해결하기 위해, 본 발명에서는 키토산의 표면 기능기를 아크릴레이트로 개질하여 중성인 물에도 키토산이 잘 분해되도록 하였다. Because chitosan is soluble only in acid, it is not well soluble in neutral conditions in the human body and may interfere with the release of anticancer drugs or siRNA hydrogels in the core. To solve this problem, in the present invention, the surface functional group of chitosan is modified with acrylate so that chitosan is decomposed well in neutral water.
상기 외곽층(13)은 상기 중간층(12) 외면에 코팅된 히알루론산층이다. The outer layer 13 is a layer of hyaluronic acid coated on the outer surface of the intermediate layer 12.
상기 히알루론산 외곽층은 (-)전하를 나타내고, 따라서, 본 발명의 코어를 포함한 입자도 그 외부가 (-) 전하를 나타낸다.The hyaluronic acid outer layer represents a negative charge, and therefore the particles including the core of the present invention also exhibit negative charges.
본 발명의 목적에는 다양한 형태의 히알루론산이 가능하다. 특히, 분자량이 큰 것과 작은 히알루론산이 이용될 수 있으며, 바람직하게는 5~10K, 더욱 바람직하게는 5K 히알루론산을 사용할 수 있다.Various forms of hyaluronic acid are possible for the purposes of the present invention. Particularly, a hyaluronic acid having a large molecular weight and a small hyaluronic acid may be used, preferably 5 to 10 K, more preferably 5 K hyaluronic acid.
히알루론산(HA)은 기본단위로 디사카라이드 글루쿠로닌산-β(1-3) N-아세틸글루코즈-아민β(1-4)이 최고 50,000쌍으로 구성된 큰 복합 올리고사카라이드이다. 이는 세포외 매트릭스(extracellular matrix)의 주요 성분으로써 생체 내에서 발견된다. 이의 3차 구조는 직경이 약 50nm인 무작위(random) 코일 형태이다.       Hyaluronic acid (HA) is a large complex oligosaccharide consisting of up to 50,000 pairs of disaccharide glucuronate-β (1-3) N-acetylglucose-amine β (1-4) as a basic unit. It is found in vivo as a major component of the extracellular matrix. Its tertiary structure is in the form of a random coil with a diameter of about 50 nm.
본 발명의 나노입자는 (-) 전하를 띠는 히알루론산으로 코팅함으로써 간암세포에 발현된 CD44 receptor를 통하여 효과적으로 세포내로 전달되어 유전자 치료 및 항암치료 효과를 극대화 할 수 있는 장점이 있다.The nanoparticles of the present invention are effectively delivered to the cells through the CD44 receptor expressed on hepatocarcinoma cells by coating with (-) charged hyaluronic acid, thereby maximizing the effect of gene therapy and chemotherapy.
상기 방법은 상기 아크릴레이트된 키토산 또는 bPEI, 히알루론산을 상기 siRNA 하이드로젤 수용액의 RNA 농도가 100nmole 정도일 때 siRNA 하이드로젤 대비 1 : 0.1~1 : 0.5~2, 바람직하게는 1 : 0.1~0.5 : 1~2(하이드로젤 : 키토산/bPEI : 히알루론산)를 첨가할 수 있다.The method comprises reacting the acrylated chitosan or bPEI and hyaluronic acid with the siRNA hydrogel in an amount of 1: 0.1-1: 0.5-2, preferably 1: 0.1-0.5: 1, when the RNA concentration of the aqueous solution of siRNA hydrogel is about 100 nmole ~ 2 (hydrogel: chitosan / bPEI: hyaluronic acid) may be added.
본 발명의 상기 항암치료 및 유전자 치료용 나노입자는 사이즈가 100~400nm, 바람직하게는 200nm 이내일 수 있다.The nanoparticles for chemotherapy and gene therapy of the present invention may have a size of 100 to 400 nm, preferably 200 nm or less.
다른 양상에서 본 발명은 간동맥 색전술용 조성물의 제조방법에 관련된다. In another aspect, the present invention relates to a method for preparing a composition for hepatic artery embolization.
상기 조성물 제조방법은 The composition manufacturing method includes
항암치료 및 유전자 치료용 나노입자(10)를 증류수에 분산시키는 단계 ;Dispersing nanoparticles (10) for chemotherapy and gene therapy into distilled water;
분산용액을 수성 조영제(20)와 혼합하는 단계 ; 및Mixing the dispersion solution with a water-based contrast agent (20); And
유성조영제인 색전물질(30)을 상기 수성 조영제를 포함하는 혼합용액에 넣어 에멀젼을 형성하는 단계를 포함한다.And injecting the embolization material 30, which is an oil contrast agent, into a mixed solution containing the aqueous contrast agent to form an emulsion.
상기 항암치료 및 유전자 치료용 나노입자는 앞에서 상술한 나노입자(10)를 사용할 수 있다. 상기 나노입자(10)는 제 2 항암제(14)를 담지한 siRNA 하이드로젤(11), 상기 하이드로젤 외면에 코팅된 키토산(12) 또는 양이온성 고분자 및 상기 키토산 또는 양이온성 고분자를 둘러싸는 히알루론산 외곽층(13)을 포함할 수 있다.As the nanoparticles for chemotherapy and gene therapy, the nanoparticles 10 described above can be used. The nanoparticles 10 may be formed of an siRNA hydrogel 11 carrying a second anticancer drug 14, chitosan 12 coated on the hydrogel outer surface or a cationic polymer and hyaluronic acid surrounding the chitosan or cationic polymer, And an outer layer 13.
상기 나노입자(10)를 제조하는 방법은 제 2 항암제를 상기 siRNA 하이드로젤에 담지하는 단계, 중간층 코팅단계, 히알루론산 코팅단계 및 분리 건조 단계를 포함한다.The method for preparing the nanoparticles 10 includes a step of carrying a second anticancer agent on the siRNA hydrogel, an interlayer coating step, a hyaluronic acid coating step, and a separating and drying step.
제 2 항암제를 상기 siRNA 하이드로젤에 담지하는 단계는 제 2 항암제(14)와 siRNA 하이드로젤(11)을 용매(RNA 분해 효소 활성을 제거한 증류수)에 넣어 혼합한 후 소정시간 동안 보관하는 단계 및 siRNA 하이드로젤이 침전되면 용매로부터 분리하는 단계를 포함할 수 있다.The step of supporting the second anticancer agent on the siRNA hydrogel comprises: mixing the second anticancer agent (14) and the siRNA hydrogel (11) in a solvent (distilled water from which the RNAase activity is removed) And separating the hydrogel from the solvent when the hydrogel is precipitated.
중간층 코팅단계는 제 2 항암제가 담지된 상기 siRNA 하이드로젤 용액에 키토산 또는 양이온성 고분자를 혼합하여 코팅하는 단계이다.In the intermediate layer coating step, chitosan or a cationic polymer is mixed with the siRNA hydrogel solution containing the second anticancer drug.
외곽층 코팅단계는 상기 용액에 히알루론산을 혼합하여 상기 키토산 또는 양이온성 고분자 표면에 히알루론산을 코팅하는 단계를 포함한다.The outer layer coating step includes mixing hyaluronic acid in the solution and coating hyaluronic acid on the surface of the chitosan or cationic polymer.
상기 분리 건조 단계는 외곽층이 코팅된 나노입자를 용액에서 분리시켜 건조시키는 단계이다. In the separation and drying step, the nanoparticles coated with the outer layer are separated from the solution and dried.
상기 방법은 상기 아크릴레이트된 키토산, 히알루론산을 상기 siRNA 하이드로젤 대비 1 : 0.1~1 : 0.5~2, 바람직하게는 1 : 0.1~0.5 : 1~2(하이드로젤 : 키토산/bPEI : 히알루론산)를 첨가할 수 있다. The method comprises reacting the acrylated chitosan and hyaluronic acid with the siRNA hydrogel in a ratio of 1: 0.1-1: 0.5-2, preferably 1: 0.1-0.5: 1-2 (hydrogel: chitosan / bPEI: hyaluronic acid) Can be added.
상기 방법은 상기 색전물질(30)에 제 1 항암제(40)를 분산 내지 혼합한 후 상기 혼합용액에 넣어 에멀젼을 형성할 수 있다.In the method, the first anticancer drug 40 may be dispersed or mixed in the embolic material 30, and then the emulsion may be formed by mixing the first anticancer drug 40 and the first anticancer drug 40 in the mixed solution.
상기 색전물질(30), 수성조영제(20), 제 1 항암제(40) 및 제 2 항암제(14)는 앞에서 상술한 내용을 참고할 수 있다.The embolization substance 30, the aqueous contrast medium 20, the first anticancer agent 40 and the second anticancer agent 14 may be referred to above.
상기 방법은 상기 나노입자와 상기 색전물질을 1 : 1~5, 바람직하게는 1 : 1~4 또는 1 : 2~5의 부피비로 혼합할 수 있다.In the method, the nanoparticles and the embolic material may be mixed at a volume ratio of 1: 1 to 5, preferably 1: 1 to 4 or 1: 2 to 5.
상기 방법은 상기 색전물질과 상기 수성 조영제를 1 : 1~5, 바람직하게는 1 : 1 ~ 4의 부피비로 혼합할 수 있다.The method can mix the embolic material and the aqueous contrast agent in a volume ratio of 1: 1 to 5, preferably 1: 1 to 4.
본 발명의 조성물 제조 방법은 제 2 항암제가 담지된 유전자 치료용 나노입자를 증류수(RNA 분해 효소 활성을 제거한 증류수임)에 원하는 농도로 재분산시킨다. 이후에 제 1항암제를 원하는 농도가 되도록 수성조영제(예를 들면, 오파미돌(Iopamidol) 또는 파미레이(Pamiray))에 분산시켜 항암치료 및 유전자 치료용 나노입자가 재분산된 용액과 섞어준다. In the method for producing a composition of the present invention, the gene therapy nanoparticles carrying the second anticancer drug are redispersed in distilled water (distilled water from which the RNAase activity is removed) to a desired concentration. Thereafter, the first anticancer drug is dispersed in a water-based contrast agent (for example, Iopamidol or Pamiray) so as to have a desired concentration, and then mixed with a redispersed solution of the nanoparticles for chemotherapy and gene therapy.
이때 수성 조영제는 충분한 양을 사용할 수 있다. 색전물질과의 혼합을 위하여 나노입자와 제 1 항암제(DOX)가 섞인 수성 조영제 용액에 색전물질(예를 들면, 리피오돌)을 1 : 1~5의 부피비(색전물질 : 수성 조영제)로 분산시킨다.A sufficient amount of aqueous contrast medium can be used. For mixing with an embolus substance, an embolization substance (for example, lipiodol) is dispersed in a volume ratio (embolization substance: aqueous contrast medium) of 1: 1 to 5 to a water-based contrast agent solution containing nanoparticles and a first anticancer drug (DOX).
이하, 본 발명의 이해를 돕기 위해 바람직한 실시예를 제시하지만, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following embodiments are provided for the purpose of easier understanding of the present invention, but the present invention is not limited thereto.
실시예 1Example 1
anti-VEGF siRNA 하이드로젤 합성anti-VEGF siRNA hydrogel synthesis
쥐의 혈관내피 성장 인자 (vascular endothelial growth factoer A (VEGF-A))의 센스는 5’-AUGUGAAUGCAGACCAAAGAA TT-3’이고, 안티센스는 5’-UUCUUUGGUCUGCAUUCA CAU TT-3’이다. 상기 센스 및 안티센스를 인코딩한 긴 선형 단일가닥 DNA를 제조하였다. The sense of vascular endothelial growth factor (VEGF-A) in rats is 5'-AUGUGAAUGCAGACCAAAGAA TT-3 'and the antisense is 5'-UUCUUUGGUCUGCAUUCA CAU TT-3'. Long linear single stranded DNA encoding the sense and antisense was prepared.
Ligase된 원형 DNA 템플릿을 T7 RNA 폴리머레이즈와 같이 37℃에서 20 시간 동안 반응버퍼 (8mM Tris-HCl, 0.4mM spermidine, 1.2mM MgCl2, and 2mM dithiothreitol)에서 배양하였다. 생성된 용액을 여러 번 피펫하고 5분 동안 초음파처리해서 입자를 분해하였다. 용액을 4℃ 조건하 13,200rpm에서 20분 동안 원심분리하고 상층액을 제거하였다. 그 후 RNase-free water를 첨가해 입자를 세척하였다. 용액을 1분 동안 다시 초음파처리하고 원심 분리하였다. 세척단계를 세 번 더 반복해서 RCT 시약을 제거하여 RNA-microsponge (anti-VEGF siRNA 하이드로젤)를 수득하였다. RNA-microsponge의 농도는 Quant-iT RNA BR assay kits (Invitrogen)를 사용하여 측정하였다. 코어 제조는 본 발명자의 선행 논문을 참고하였다.(Self-assembled RNA interference microsponges for efficient siRNA delivery(nature material, 2012. 11. 26 공개))The ligated circular DNA template was incubated with the reaction buffer (8 mM Tris-HCl, 0.4 mM spermidine, 1.2 mM MgCl 2 , and 2 mM dithiothreitol) at 37 ° C for 20 hours as in T7 RNA polymerase. The resulting solution was pipetted several times and sonicated for 5 minutes to disintegrate the particles. The solution was centrifuged at 13,200 rpm for 20 minutes at 4 DEG C and the supernatant was removed. The particles were then washed with RNase-free water. The solution was again sonicated for 1 minute and centrifuged. The washing step was repeated three more times to remove the RCT reagent to obtain RNA-microsponge (anti-VEGF siRNA hydrogel). The concentration of RNA-microsponge was measured using Quant-iT RNA BR assay kits (Invitrogen). The self-assembled RNA interference microsponges for efficient siRNA delivery (nature material, published on Nov. 26, 2012) were used for core preparation.
Doxorubicin(DOX)을 담지한 siRNA 하이드로젤 (DOX-siRNA 하이드로젤) 합성Synthesis of siRNA hydrogel (DOX-siRNA hydrogel) carrying Doxorubicin (DOX)
DOX에 anti-VEGF siRNA 하이드로젤을 섞어서 암실에 overnight 보관하였다. 바닥에 붉은 색으로 DOX가 loading 된 입자가 가라앉아 있는 게 확인되면 13,200 rpm 으로 10분 동안 원심 분리시켰다. 상층액을 따로 걷어서 DOX의 loadiing 양을 측정하고 상층액을 제거한 DOX-siRNA 하이드로젤 입자를 수득하였다.DOX was mixed with anti-VEGF siRNA hydrogel and stored overnight in a dark room. When it was confirmed that the DOX-loaded particles were red in the bottom, they were centrifuged at 13,200 rpm for 10 minutes. The supernatant was taken apart to measure the amount of DOX loadiing and the DOX-siRNA hydrogel particles with the supernatant removed.
DOX에 anti-VEGF siRNA hydrogel을 섞어서 암실에 overnight 보관하였다. 바닥에 붉은 색으로 DOX가 loading 된 입자가 가라않아 있는 게 확인되면 13,200 rpm으로 10분 동안 원심분리 시켰다. 상층액을 따로 걷어서 DOX의 loading 양을 측정하고 상층액을 제거한 DOX-siVEGF hydrogel 입자를 수득하였다. DOX was mixed with anti-VEGF siRNA hydrogel and stored overnight in the dark room. When it was confirmed that the DOX-loaded particles in the red color on the bottom were not scattered, they were centrifuged at 13,200 rpm for 10 minutes. The supernatant was taken apart to measure the loading amount of DOX and the DOX-siVEGF hydrogel particles with the supernatant removed.
아크릴레이트Acrylate 키토산 합성 Chitosan synthesis
48kDa 키토산 80mg을 8 mL distilled water (DW)에 섞은 다음 0.4 M acetic acid 182.4 μL를 넣어서 60℃에 stirring 시키면서 1~2시간 정도 완전히 녹였다. 0.05% NaOH 400 μL 와 Glycidyl methacrylate (GMA) 472 μL를 첨가하고 60℃에 overnight stirring 하였다. 이를 상온으로 온도를 내린 후에 2M NaOH 5mL와 Acetic anhydride 10μL 첨가하고 3~4 hr 교반하였다. Dialysis membrane을 이용하여 4,000 rpm에 10분씩 여러 번 원심 분리시켜서 미반응물을 제거하여 하기 아크릴레이트 키토산을 수득하였다.80 mg of 48 kDa chitosan was mixed with 8 mL distilled water (DW), and then 182.4 μL of 0.4 M acetic acid was added, and the solution was completely dissolved for 1 to 2 hours while stirring at 60 ° C. 400 μL of 0.05% NaOH and 472 μL of Glycidyl methacrylate (GMA) were added and stirred at 60 ° C. overnight. After the temperature was lowered to room temperature, 5 mL of 2M NaOH and 10 μL of acetic anhydride were added and stirred for 3 to 4 hours. And centrifuged several times for 10 minutes at 4,000 rpm using a dialysis membrane to remove unreacted materials to obtain the following acrylate chitosan.
Figure PCTKR2018011855-appb-C000001
Figure PCTKR2018011855-appb-C000001
나노입자 제조Nanoparticle manufacturing
앞에서 제조한 아크릴레이트 키토산을 1 mg/mL으로 nuclease free water에 녹였다. 48kDa 키토산과 25 kDa bPEI 역시 1 mg/mL 으로 nuclease free water에 녹였다.The previously prepared acrylate chitosan was dissolved in nuclease free water at 1 mg / mL. 48 kDa chitosan and 25 kDa bPEI were also dissolved in nuclease free water at 1 mg / mL.
(1)1 mg/mL chitosan/bPEI 1㎕와 nuclease free water 9㎕를 섞고 (1) 1 μl of 1 mg / mL chitosan / bPEI and 9 μl of nuclease free water were mixed
(2)sonication 시킨 DOX-siRNA hydrogel 3㎕에 nuclease free water 12 ㎕를 섞은 후 두 개의 용액(1, 2)을 모두 섞었다.(2) Add 12 μl of nuclease free water to 3 μl of DOX-siRNA hydrogel sonicated, and mix the two solutions (1 and 2).
혼합용액을 10분간 incubation한 후 sonication 처리하였다. 혼합용액에 1 mg/mL hyaluronic acid (HA)를 5ul 섞어서 30분 정도 incubation하였다.The mixed solution was incubated for 10 minutes and sonicated. The mixture was mixed with 5 μl of 1 mg / mL hyaluronic acid (HA) and incubated for 30 minutes.
최종적으로 제조된 나노입자의 SEM 사진을 도2에 나타냈고 나노입자의 사이즈는 도3에 나타냈다.SEM photographs of the finally prepared nanoparticles are shown in FIG. 2, and the sizes of the nanoparticles are shown in FIG.
도 3은 각각 중간층을 키토산과 bPEI 로 코팅한 나노입자의 사이즈로서 중간층이 키토산으로 코팅된 입자의 평균 사이즈는 386.6nm이고 bPEI로 코팅된 입자의 평균 사이즈는 362.5nm이다. 두 입자 모두 제타 전위는 마이너스 10 정도로 나타났다.FIG. 3 shows the sizes of the nanoparticles coated with chitosan and bPEI as the intermediate layer and 386.6 nm as the average size of particles coated with chitosan as the middle layer, and the average size of particles coated with bPEI was 362.5 nm. The zeta potential of both particles was about minus 10.
색전술용 조성물 제조Preparation of composition for embolization
형광 dye 인 YOPRO-1을 로딩한 DOX-siRNA 하이드로젤에 bPEI 와 히알루론산으로 코팅한 나노입자와 파미레이에 녹인 free DOX를 섞어주었다. 이때 나노입자에 로딩된 DOX의 양과 free DOX의 양이 총 6.25mg/mL이 되도록 섞었다. 이 용액에 리피오돌을 1:2 비율이 되도록 3 way pumping을 이용하여 섞어주면 나노입자와 free DOX를 함유한 에멀젼을 수득할 수 있다. The DOX-siRNA hydrogel loaded with the fluorescent dye YOPRO-1 was mixed with bPEI and hyaluronic acid-coated nanoparticles and free DOX dissolved in Pamirai. At this time, the amount of DOX loaded on the nanoparticles and the amount of free DOX were mixed to a total of 6.25 mg / mL. An emulsion containing nanoparticles and free DOX can be obtained by mixing the solution with lipoid in a ratio of 1: 2 using 3 way pumping.
도 4를 참고하면 수용액 상에 DOX와 siRNA 나노입자를 함유한 에멀젼이 존재하는 것을 확인할 수 있다. Referring to FIG. 4, it can be seen that an emulsion containing DOX and siRNA nanoparticles is present on the aqueous solution.
도4의 좌측 그림은 에멀젼의 형성 여부를 볼 수 있는 마이크로현미경 사진이고, 중간 그림은 에멀젼 내에 포함된 DOX의 여부를 알 수 있는 DOX 형광 현미경 사진이며 우측 그림은 에멀젼 내에 포함된 siRNA hydrogel 여부를 알 수 있는 siRNA hydrogel 의 형광 현미경 사진이다. DOX는 그 자체로 형광을 띠기 때문에 따로 형광을 입히지 않았고 siRNA hydrogel은 YOPRO-1이라는 형광 물질을 킬레이트하여 형광을 확인하였다. 즉, 도 4 사진을 참고하면, 용액 내 에멀젼 형성 여부와 에멀젼 내에 DOX와 siRNA hydrogel이 포함되었다는 것을 확인할 수 있다. FIG. 4 is a micrograph showing the formation of an emulsion. FIG. 4 is a DOX fluorescence microscope photograph showing the presence of DOX contained in the emulsion. The right image shows the presence or absence of siRNA hydrogel contained in the emulsion It is a fluorescence microscope photograph of a siRNA hydrogel. DOX did not fluoresce by itself because it was fluorescent, and siRNA hydrogel chelates YOPRO-1 to confirm fluorescence. That is, referring to the photograph of FIG. 4, it can be confirmed whether or not an emulsion is formed in the solution and that DOX and siRNA hydrogel are contained in the emulsion.
Gene silencing 실험 방법 및 RT-PCR 데이터 Gene silencing experiment method and RT-PCR data
도 5의 경우 6 well cell culture plate (세포배양 플레이트)에 HepG2 세포 (한국세포주은행)을 40만개씩 seeding 하고 하루 동안 incubation 하였다. 3시간 후에 opti-MEM을 제거하고 DPBS로 washing 해 준 후에 나노입자를 섞은 opti-MEM을 조심스럽게 넣어주고 12시간 후에 일반 meida로 갈아주었다. 24시간 incubtaion 시킨 후 cell을 걷어서 RNA를 추출하고 cDNA로 만든 후 PCR과 전기영동을 거쳐 젤 이미지를 확인하였다. 상기 cell에 control(1), siVEGF hydrogel + 1mg/ml chitosan + HA(2), siVEGF hydrogel + 1mg/mL acylated chitosan + HA(3)을 medium과 섞어 처리하였다.In case of FIG. 5, 400,000 HepG2 cells (Korean Cell Line Bank) were seeded in a 6 well cell culture plate (cell culture plate) and incubated for one day. After 3 hours, opti-MEM was removed and washed with DPBS. Opti-MEM mixed with nanoparticles was carefully placed and replaced with normal meida after 12 hours. After incubation for 24 hours, the cells were extracted and RNA was extracted and cDNA was obtained. The gel image was confirmed by PCR and electrophoresis. The cells were treated with control (1), siVEGF hydrogel + 1 mg / ml chitosan + HA, siVEGF hydrogel + 1 mg / mL acylated chitosan + HA (3)
도 5를 참고하면, control (1)에 비해 chitosan (2) 이나 acrylated chitosan (3) 으로 코팅된 나노입자를 처리한 세포의 VEGF 유전자의 발현이 현저히 줄어든 것을 확인할 수 있다. 또한 일반 키토산으로 코팅을 했을 때 보다 acrylated chitosan 으로 코팅을 했을 때 VEGF 유전자 발현이 더욱 잘 억제됨을 확인할 수 있다. 5, the expression of the VEGF gene in cells treated with chitosan (2) or acrylated chitosan (3) coated nanoparticles was significantly reduced compared to control (1). In addition, VEGF gene expression is more inhibited when coated with acrylated chitosan than with chitosan.
도 6의 경우 B16F10 cell을 이용하였고 처리한 나노입자의 중간층을 bPEI로 코팅하였다는 점을 제외하고는 위 실험과 같은 방식으로 진행되었다(1mg/mL bPEI 사용하였음). 이 때, control(1)에 비해 bPEI(2,3)로 코팅한 나노입자를 처리한 cell의 VEGF 유전자의 발현이 현저히 줄어든 것을 확인할 수 있다.    In Fig. 6, B16F10 cells were used and the same procedure as in the above experiment was carried out except that the intermediate layer of the treated nanoparticles was coated with bPEI (using 1 mg / mL bPEI). At this time, the expression of the VEGF gene in the cell treated with bPEI (2, 3) -coated nanoparticles was markedly reduced compared to control (1).
세포 생존율 시험Cell viability test
96 well plate 에 B16F10 암세포를 1×104 seeding 한 후 24시간 경과 후, 대조군, free DOX (항암제) 그리고 실시예 1의 나노입자(DOX-siVEGF + 아크릴레이트 키토산 + HA)로 처리한 그룹으로 구분하여 실험을 진행하였다. The cells were treated with 1 × 10 4 seeding of B16F10 cancer cells in a 96-well plate, followed by treatment with free DOX (anti-cancer agent) and nanoparticles of Example 1 (DOX-siVEGF + acrylate chitosan + HA) The experiment was carried out.
세 개 그룹 모두 DOX 농도를 200nM로 처리한 후, 6 시간 동안 보관하였다. 항암제 약물을 제거한 후에 새로운 cell media를 처리한 후에 24시간, 48시간, 그리고 72시간 후에 cell viability를 도 7에 나타내었다. All three groups were treated with 200 nM DOX concentration and stored for 6 hours. Cell viability is shown in FIG. 7 after 24 hours, 48 hours, and 72 hours after treatment with new cell media after removal of the anticancer drug.
도 7을 참고하면, 48시간 경과 후, 실시예 1은 대조군에 비해 23% 의 사멸효과를 보였고, 72시간 경과 후에는 대조군에 비해 52%의 사멸효과를 보여주고 있다. Referring to FIG. 7, after 48 hours, Example 1 showed a killing effect of 23% compared to the control, and after 72 hours, the killing effect was 52% as compared with the control.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로, 본 발명의 구체적인 보호범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims.
본 발명의 조성물은 화학색전술, 약물치료 및 유전자 치료를 동시에 시행할 수 있어 간암치료에 사용될 수 있다.  The composition of the present invention can be administered simultaneously with chemoembolization, drug therapy and gene therapy, and thus can be used for the treatment of liver cancer.

Claims (21)

  1. 항암치료 및 유전자 치료용 나노입자, 수성조영제 및 색전물질을 포함하는 간동맥 색전술용 조성물.Compositions for hepatic artery embolization comprising nanoparticles for cancer therapy and gene therapy, aqueous contrast agents, and embolic agents.
  2. 제 1항에 있어서, 상기 색전물질은 유성 조영제이고, 상기 나노입자는 수성 조영제에 분산되어 상기 조성물은 에멀젼을 형성하는 것을 특징으로 하는 간동맥 색전술용 조성물.The composition for hepatic artery embolization according to claim 1, wherein the embolic material is a contrast agent and the nanoparticles are dispersed in a water-based contrast agent to form an emulsion.
  3. 제 1항에 있어서, 상기 조성물은 상기 수성조영제나 색전물질에 분산 내지 용해되는 제 1 항암제를 추가로 포함하는 것을 특징으로 하는 간동맥 색전술용 조성물.The composition for hepatic artery embolization according to claim 1, wherein the composition further comprises a first anti-cancer agent dispersed or dissolved in the aqueous contrast agent or the embolic material.
  4. 제 1항에 있어서, 상기 색전물질은 리피오돌, 콜라겐, 트롬빈, 젤라틴, 알기닉산, 알기네이트, 초산 섬유소, 폴리아세트산비닐, 폴리에틸렌비닐알코올, 에틸렌-비닐알코올 공중합체, 폴리비닐 알코올 또는 이들의 혼합물인 것을 특징으로 하는 간동맥색전술용 조성물.The method of claim 1, wherein the embolic material is selected from the group consisting of lipiodol, collagen, thrombin, gelatin, alginic acid, alginate, cellulose acetate, polyvinyl acetate, polyethylene vinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl alcohol, Wherein the composition for hepatic artery embolization comprises:
  5. 제 1항에 있어서, 상기 조성물은 상기 나노입자와 상기 색전물질을 1 : 1~5의 부피비로 포함하는 것을 특징으로 하는 간동맥색전술용 조성물.The composition for hepatic artery embolization according to claim 1, wherein the composition comprises the nanoparticles and the embolic material in a volume ratio of 1: 1 to 5: 1.
  6. 제 1항에 있어서, 상기 수성조영제는 이오파미돌(Iopamidol), 파미레이(Pamiray), 메트리자미드(Metrizamide), 디아트리조에이트 (Diatrizoate), 이옥사글레이트(Ioxaglate), 이오펜톨(Iopentol), 이오메프롤(Iomeprol), 이오트롤란(Iotrolan), 이오헥솔(Iohexol), 이오베르솔 (Ioversol), 이옥실란(Ioxilan), 이오프로마이드(Iopromide), 이오딕사놀 (Iodixanol) 및 이오비트리돌(Iobitridol)의 군에서 선택되는 어느 하나 이상인 것임을 특징으로 하는 간동맥색전술용 조성물.7. The composition of claim 1, wherein the aqueous contrast agent is selected from the group consisting of Iopamidol, Pamiray, Metrizamide, Diatrizoate, Ioxaglate, Iopentol, , Iomeprol, Iotrolan, Iohexol, Ioversol, Ioxilan, Iopromide, Iodixanol and Iovitol, (Iobitridol). ≪ / RTI > < RTI ID = 0.0 > 11. < / RTI >
  7. 제 1 항에 있어서, 상기 항암치료 및 유전자 치료용 나노입자는The method of claim 1, wherein the nanoparticles for chemotherapy and gene therapy comprise
    제 2 항암제를 담지한 siRNA 하이드로젤 ;An siRNA hydrogel carrying a second anticancer drug;
    상기 하이드로젤 외면에 코팅된 키토산 또는 폴리에틸렌이민 ; 및   Chitosan or polyethyleneimine coated on the outer surface of the hydrogel; And
    상기 키토산 또는 폴리에틸렌이민을 둘러싸는 히알루론산 외곽층을 포함하는 것을 특징으로 하는 간동맥 색전술용 조성물.  And a hyaluronic acid outer layer surrounding the chitosan or polyethyleneimine.
  8. 제 7항에 있어서, 상기 키토산은 아크릴레이트 키토산인 것을 특징으로 하는 간동맥 색전술용 조성물.The composition for hepatic artery embolization according to claim 7, wherein the chitosan is acrylate chitosan.
  9. 제 7항에 있어서, 상기 siRNA 하이드로젤은 특정 유전자의 mRNA를 표적하여 이의 발현을 억제하는 것을 특징으로 하는 간동맥 색전술용 조성물.[8] The composition for hepatic artery embolization according to claim 7, wherein the siRNA hydrogel targets mRNA of a specific gene and inhibits its expression.
  10. 제 7항에 있어서, 상기 제 2 항암제는 상기 siRNA의 이중 나선 사이에 담지되는 것을 특징으로 하는 간동맥 색전술용 조성물.[8] The composition according to claim 7, wherein the second anticancer agent is carried between double strands of the siRNA.
  11. 제 7항에 있어서, 상기 제 2 항암제는 약물은 독소루비신(DOX), 마이토마이신, 시스플라틴, 아드리아마이신, 젬시타빈 인 것을 특징으로 하는 간동맥 색전술용 조성물.8. The composition for hepatic artery embolization according to claim 7, wherein the second anticancer agent is doxorubicin (DOX), mitomycin, cisplatin, adriamycin, gemcitabine.
  12. 제 7항에 있어서, 상기 siRNA 하이드로겔과 히알루론산층은 (-) 전하, 상기 키토산 내지 폴리에틸렌이민층은 (+) 전하를 띄되, 상기 나노입자는 전체적으로 (-) 전하를 나타내는 것을 특징으로 하는 간동맥 색전술용 조성물.8. The method of claim 7, wherein the siRNA hydrogel and the hyaluronic acid layer are (-) charges and the chitosan to polyethylene imine layer is (+) charged, A composition for embolization.
  13. 제 7항에 있어서, 상기 항암치료 및 유전자 치료용 나노입자는 사이즈가 100~400nm인 것을 특징으로 하는 간동맥 색전술용 조성물.[8] The composition for hepatic artery embolization according to claim 7, wherein the nanoparticles for chemotherapy and gene therapy have a size of 100 to 400 nm.
  14. 항암치료 및 유전자 치료용 나노입자를 증류수에 분산시키는 단계 ;Dispersing nanoparticles for chemotherapy and gene therapy in distilled water;
    분산용액을 수성 조영제와 혼합하는 단계 ; 및Mixing the dispersion solution with a water-based contrast agent; And
    유성조영제인 색전물질을 상기 수성 조영제를 포함하는 혼합용액에 넣어 에멀젼을 형성하는 단계를 포함하는 간동맥 색전술용 조성물의 제조방법. Forming an emulsion by adding an embolic agent, which is an oil contrast agent, to a mixed solution containing the aqueous contrast agent.
  15. 제 14항에 있어서, 상기 방법은 상기 색전물질에 제 1 항암제를 분산 내지 혼합한 후 상기 혼합용액에 넣어 에멀젼을 형성하는 것을 특징으로 하는 간동맥 색전술용 조성물의 제조방법. 15. The method according to claim 14, wherein the first anticancer agent is dispersed or mixed in the embolic material, and the emulsion is formed in the mixed solution.
  16. 제 14항에 있어서, 상기 방법은 상기 나노입자와 상기 색전물질을 1 : 1~5의 부피비로 혼합하는 것을 특징으로 하는 간동맥 색전술용 조성물의 제조방법.15. The method according to claim 14, wherein the nanoparticles and the embolic material are mixed at a volume ratio of 1: 1 to 5: 5.
  17. 제 14항에 있어서, 상기 방법은 상기 색전물질과 상기 수성 조영제를 1 : 1~4의 부피비로 혼합하는 것을 특징으로 하는 간동맥 색전술용 조성물의 제조방법.15. The method according to claim 14, wherein the embolization substance and the aqueous contrast agent are mixed at a volume ratio of 1: 1 to 4: 1.
  18. 제 14항에 있어서, 상기 항암치료 및 유전자 치료용 나노입자는15. The method according to claim 14, wherein the nanoparticles for chemotherapy and gene therapy
    제 2 항암제를 담지한 siRNA 하이드로젤 ;An siRNA hydrogel carrying a second anticancer drug;
    상기 하이드로젤 외면에 코팅된 키토산 또는 폴리에틸렌이민 ; 및   Chitosan or polyethyleneimine coated on the outer surface of the hydrogel; And
    상기 키토산 내지 폴리에틸렌이민을 둘러싸는 히알루론산 외곽층을 포함하는 것을 특징으로 하는 간동맥 색전술용 조성물의 제조방법.  And a hyaluronic acid outer layer surrounding the chitosan to polyethyleneimine.
  19. 제 14항에 있어서, 상기 항암치료 및 유전자 치료용 나노입자를 제조하는 방법은 15. The method according to claim 14, wherein the nanoparticles for chemotherapy and gene therapy are prepared
    제 2 항암제와 siRNA 하이드로젤을 용매에 넣어 혼합한 후 소정시간 동안 보관하는 단계 및 siRNA 하이드로젤이 침전되면 용매로부터 분리하는 단계를 포함하는 상기 제 2 항암제를 상기 siRNA 하이드로젤에 담지하는 단계 ;Supporting the second anticancer agent comprising the second anticancer agent and the siRNA hydrogel in a solvent for storage for a predetermined period of time, and separating the second anticancer agent and the siRNA hydrogel from the solvent when the siRNA hydrogel is precipitated, on the siRNA hydrogel;
    제 2 항암제가 담지된 상기 siRNA 하이드로젤 용액에 아크릴레이트된 키토산 또는 폴리에틸렌이민을 혼합하여 코팅하는 단계 ; 및 Mixing and coating acrylate chitosan or polyethyleneimine with the siRNA hydrogel solution containing the second anticancer agent; And
    상기 용액에 히알루론산을 혼합하여 상기 키토산 또는 폴리에틸렌이민 표면에 히알루론산을 코팅하는 단계 ; 및 Mixing the solution with hyaluronic acid to coat the surface of the chitosan or polyethylene imine with hyaluronic acid; And
    입자를 분리 검조시키는 단계를 포함하는 것을 특징으로 하는 간동맥 색전술용 조성물의 제조방법.And separating and gauging the particles. The method for preparing a composition for hepatic artery embolization according to claim 1,
  20. 제 19항에 있어서, 상기 방법은 상기 아크릴레이트된 키토산, 히알루론산을 상기 siRNA 하이드로젤 대비 1 : 0.1~1 : 0.5~2(하이드로겔 : 키토산 : 히알루론산)를 첨가하는 것을 특징으로 하는 간동맥 색전술용 조성물의 제조방법.20. The method according to claim 19, wherein the method comprises adding the acrylated chitosan and hyaluronic acid to the siRNA hydrogel in a ratio of 1: 0.1-1: 0.5-2 (hydrogel: chitosan: hyaluronic acid) ≪ / RTI >
  21. 항암제와 siRNA 하이드로젤을 용매에 넣어 혼합한 후 소정시간 동안 보관하는 단계 및 siRNA 하이드로젤이 침전되면 용매로부터 분리하는 단계를 포함하는 항암제를 상기 siRNA 하이드로젤에 담지하는 단계 ;Carrying an anticancer agent comprising the anticancer agent and the siRNA hydrogel in a solvent, storing the mixture for a predetermined time, and separating the siRNA hydrogel from the solvent when the siRNA hydrogel is precipitated, on the siRNA hydrogel;
    항암제가 담지된 상기 siRNA 하이드로젤 용액에 아크릴레이트된 키토산을 혼합하여 코팅하는 단계 ; 및 Mixing and coating the acrylated chitosan with the siRNA hydrogel solution carrying the anticancer agent; And
    상기 용액에 히알루론산을 혼합하여 상기 키토산 표면에 히알루론산을 코팅하는 단계 ; 및 Mixing the solution with hyaluronic acid to coat the surface of the chitosan with hyaluronic acid; And
    입자를 분리 검조시키는 단계를 포함하는 것을 특징으로 하는 항암치료 및 유전자 치료용 나노입자 제조방법. And separating and purifying the particles. The method for producing nanoparticles for chemotherapy and gene therapy.
PCT/KR2018/011855 2017-10-12 2018-10-10 Composition for transcatheter arterial chemoembolization, comprising nanoparticle for anticancer therapy and gene therapy WO2019074258A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170132259A KR102075823B1 (en) 2017-10-12 2017-10-12 Composition for hepatic arterial embolization comprising Nanoparticles for genes and anticancer drug delivery
KR10-2017-0132259 2017-10-12

Publications (1)

Publication Number Publication Date
WO2019074258A1 true WO2019074258A1 (en) 2019-04-18

Family

ID=66101453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011855 WO2019074258A1 (en) 2017-10-12 2018-10-10 Composition for transcatheter arterial chemoembolization, comprising nanoparticle for anticancer therapy and gene therapy

Country Status (2)

Country Link
KR (1) KR102075823B1 (en)
WO (1) WO2019074258A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113332454A (en) * 2021-02-03 2021-09-03 东华大学 Ultra-small ferroferric oxide loaded polyethyleneimine nanogel/siRNA compound
CN113457587A (en) * 2021-05-24 2021-10-01 金陵科技学院 Multiple-response core-shell structure nanogel and preparation method and application thereof
CN114470304A (en) * 2021-12-28 2022-05-13 广东粤港澳大湾区国家纳米科技创新研究院 Chemoembolization composition and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040020679A (en) * 2002-08-31 2004-03-09 한국과학기술연구원 Emulsion agent using iodized oil with cationic polymers as an efficient carrier for physiologically active materials or drug and preparation method thereof
KR20040066300A (en) * 2003-01-17 2004-07-27 한국과학기술연구원 Paclitaxel mixed composition and water-in-oil type emulsion formulation for chemoembolization and preparation method thereof
KR101706047B1 (en) * 2015-08-31 2017-02-16 서강대학교산학협력단 siRNA hydrogel-based nanoparticles for the treatment of atopic dermatitis method for preparing the same
JP2017506568A (en) * 2014-02-14 2017-03-09 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Rapidly degradable embolic particles with therapeutic agent release

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040020679A (en) * 2002-08-31 2004-03-09 한국과학기술연구원 Emulsion agent using iodized oil with cationic polymers as an efficient carrier for physiologically active materials or drug and preparation method thereof
KR20040066300A (en) * 2003-01-17 2004-07-27 한국과학기술연구원 Paclitaxel mixed composition and water-in-oil type emulsion formulation for chemoembolization and preparation method thereof
JP2017506568A (en) * 2014-02-14 2017-03-09 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Rapidly degradable embolic particles with therapeutic agent release
KR101706047B1 (en) * 2015-08-31 2017-02-16 서강대학교산학협력단 siRNA hydrogel-based nanoparticles for the treatment of atopic dermatitis method for preparing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BUTT, ADEEL MASOOD ET AL.: "Doxorubicin and siRNA Codelivery via Chitosan-coated pH-responsive Mixed Micellat Polyplexes for Enhanced Cancer Therapy in Multidrug-resistant Tumors", MOLECULAR PHARMACEUTICS, vol. 13, no. 12, 2016, pages 4179 - 4190, XP055592387, ISSN: 1543-8384, DOI: 10.1021/acs.molpharmaceut.6b00776 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113332454A (en) * 2021-02-03 2021-09-03 东华大学 Ultra-small ferroferric oxide loaded polyethyleneimine nanogel/siRNA compound
CN113332454B (en) * 2021-02-03 2022-11-11 东华大学 Ultra-small ferroferric oxide loaded polyethyleneimine nanogel/siRNA compound
CN113457587A (en) * 2021-05-24 2021-10-01 金陵科技学院 Multiple-response core-shell structure nanogel and preparation method and application thereof
CN114470304A (en) * 2021-12-28 2022-05-13 广东粤港澳大湾区国家纳米科技创新研究院 Chemoembolization composition and application thereof

Also Published As

Publication number Publication date
KR102075823B1 (en) 2020-02-10
KR20190041154A (en) 2019-04-22

Similar Documents

Publication Publication Date Title
Ball et al. Oral delivery of siRNA lipid nanoparticles: fate in the GI tract
Su et al. Pancreatic cancer cell exosome-mediated macrophage reprogramming and the role of microRNAs 155 and 125b2 transfection using nanoparticle delivery systems
Frede et al. Colonic gene silencing using siRNA-loaded calcium phosphate/PLGA nanoparticles ameliorates intestinal inflammation in vivo
WO2019074258A1 (en) Composition for transcatheter arterial chemoembolization, comprising nanoparticle for anticancer therapy and gene therapy
Yang et al. Optimized phospholipid-based nanoparticles for inner ear drug delivery and therapy
Wayne et al. Targeted delivery of siRNA lipoplexes to cancer cells using macrophage transient horizontal gene transfer
CN102666879B (en) Templated nanometer conjugate
EP2591770B1 (en) Compositions for siRNA delivery and methods of manufacturing and using same
Zobel et al. Cationic polyhexylcyanoacrylate nanoparticles as carriers for antisense oligonucleotides
EP2549986B1 (en) Multi-compartmental macrophage delivery
Lo et al. Chondroitin sulfate-polyethylenimine copolymer-coated superparamagnetic iron oxide nanoparticles as an efficient magneto-gene carrier for microRNA-encoding plasmid DNA delivery
WO2012005376A1 (en) Composition for nucleic acid delivery, carrier composition, pharmaceutical composition using the composition for nucleic acid delivery or the carrier composition, and method for delivering nucleic acid
WO2006017476A2 (en) Amino functionalized ormosil nanoparticles as delivery vehicles
Liu et al. Mesoporous silica-coated silver nanoparticles as ciprofloxacin/siRNA carriers for accelerated infected wound healing
CN109381705A (en) Reversible crosslink Biodegradable polymer vesicles and preparation method thereof with asymmetric membrane structure
Teng et al. Intracellular RNA and nuclear DNA-dual-targeted tumor therapy via upconversion nanoplatforms with UCL/MR dual-mode bioimaging
Zhang et al. Dual-phase injectable thermosensitive hydrogel incorporating Fe3O4@ PDA with pH and NIR triggered drug release for synergistic tumor therapy
Comegna et al. Assisting PNA transport through cystic fibrosis human airway epithelia with biodegradable hybrid lipid-polymer nanoparticles
Han et al. Synchronous conjugation of i-motif DNA and therapeutic siRNA on the vertexes of tetrahedral DNA nanocages for efficient gene silence
EP2488165B1 (en) Nanoparticle of the core-shell type suitable for delivering therapeutic oligonucleotides to target tissues and the use thereof for the preparation of a medicament for treating duchenne muscular dystrophy
Lee et al. L-DNA linear duplex: An efficient drug delivery carrier with a simple structure
CN109718381B (en) Subcellular targeting nano-drug delivery system
EP3616702B1 (en) Prophylactic or therapeutic agent for inflammatory bowel disease
CA3032839A1 (en) Membrane-lytic block copolymers
WO2020116989A1 (en) Anti-cancer composition comprising in vivo cell injection chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867206

Country of ref document: EP

Kind code of ref document: A1