WO2020116989A1 - Anti-cancer composition comprising in vivo cell injection chip - Google Patents

Anti-cancer composition comprising in vivo cell injection chip Download PDF

Info

Publication number
WO2020116989A1
WO2020116989A1 PCT/KR2019/017191 KR2019017191W WO2020116989A1 WO 2020116989 A1 WO2020116989 A1 WO 2020116989A1 KR 2019017191 W KR2019017191 W KR 2019017191W WO 2020116989 A1 WO2020116989 A1 WO 2020116989A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
cells
scaffold
hyaluronic acid
cell
Prior art date
Application number
PCT/KR2019/017191
Other languages
French (fr)
Korean (ko)
Inventor
김태돈
최인표
임용택
안영하
정초록
김다슬
김석민
Original Assignee
한국생명공학연구원
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190160276A external-priority patent/KR102282027B1/en
Application filed by 한국생명공학연구원, 성균관대학교산학협력단 filed Critical 한국생명공학연구원
Publication of WO2020116989A1 publication Critical patent/WO2020116989A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor

Definitions

  • the present invention is a porous three-dimensional cryogel scaffold comprising a structure in which a first component and a second component of a hyaluronic acid derivative having different chemical structures are crosslinked: and cells cultured in a chamber of the scaffold It relates to a method for treating a solid cancer and blood cancer comprising the step of administering to the subject an effective amount of an anticancer pharmaceutical composition or an anticancer pharmaceutical composition comprising an in vivo cell input chip as an active ingredient.
  • NK cells are a type of immune cells that show selective cytotoxicity to cancer cells. Unlike other immune cells, NK cells can immediately detect and remove cancer cells, and can differentiate cancer cells from normal cells through various immune receptors on the surface of NK cells. The number of NK cells in the body of cancer patients is lower than that of normal people, and the anticancer activity is also defective. In addition, dysfunction of NK cells is closely related to the development of cancer. In addition, NK cells are known to play a key role in regulating inflammation and immune responses by producing cytokines such as interferon gamma (IFN- ⁇ ) and thien alpha (TNF- ⁇ ).
  • IFN- ⁇ interferon gamma
  • TNF- ⁇ thien alpha
  • NK cells play a key role in regulating the immune response through direct interaction with dendritic cells, macrophages, and T cells and indirect interactions through cytokines. It has been found that NK cells play an important role in the development of inflammatory diseases, autoimmune diseases and various intractable diseases (Front Immunol. 2017; 8:745).
  • cancer stem cells have strong resistance to anti-cancer agents and radiation therapy, and cancer stem cells that survive the attack of the anti-cancer agents are still in an incubated state after the cancer is cured, and then actively proliferate and differentiate again, and cancer metastases to other sites. cause. Therefore, if cancer stem cells are removed, it is highly possible to prevent cancer from recurring and effectively treat it.
  • NK cells not only inhibit the development, proliferation, and metastasis of cancer cells, but also can effectively remove cancer stem cells, which are the most important for cancer recurrence. According to a recent study, when NK cells isolated from normal humans are injected into a patient, the immune rejection response is extremely low, unlike other immune cells, thereby increasing safety in the development of immune cell therapy products.
  • IL-2 is a problem because it increases regulatory T cells (Tregs) that inhibit the anticancer immune response in addition to NK cells.
  • Green Cross Lab Cell announced the prospect of developing an anti-cancer immune cell treatment that can mass-produce using allogeneic NK cells. It has been announced that anti-cancer drugs using NK cells will be able to solve the safety and economic problems of existing immuno-cancer drugs. Even when transplanted to other people, NK cell therapy has no graft-versus-host disease (GVHD), and has already proven its anti-cancer function and safety through hematopoietic transplantation and 89 clinical trials worldwide are ongoing as of 2016. Eleven clinical trials are underway in Korea, and the effectiveness of anticancer drugs using NK cells is positive in clinical practice.
  • GVHD graft-versus-host disease
  • MG4101 Clinical phase 1
  • NK cells from healthy non-associated donors were expanded and administered
  • the NK cell anti-cancer immune cell therapy was safe even at the maximum dose and showed stable lesions in 47.1% of patients and progressive lesions in 52.9% without pretreatment.
  • Cultured allogeneic NK cells can be a useful and safe tumor therapy, but the handling of NK cells is very demanding, so pure culture is not easy and this problem must be solved.
  • NKMAX is an autologous NK cell treatment that uses patients' own cells and plans to submit a Phase 1/2 clinical trial application to the Food and Drug Administration this year. In addition, it aims to obtain drug approval in 2022 by demonstrating its stability and effectiveness, and has already begun production in March in Japan, has given it to patients, and is also preparing for clinical trials in the United States and Mexico.
  • Immunos Bio entered the Japanese market with the approval of the Japan Review Board for NK cell immunotherapy. It plans to start phase 1 clinical trials for liver cancer and brain tumors this year by conducting NK cell immunotherapy in cooperation with Nishihashi Clinic in Japan.
  • dendritic cells, NK cells, and T cells which are therapeutic immune cells currently being tried in clinical trials, have a disadvantage in that a large amount of injected remains at the injection site or does not function in the circulation process in vivo and disappears.
  • attempts have been made to increase cancer treatment efficacy by injecting a large number of 109 therapeutic immune cells in vivo.
  • Porous scaffolds used in the bio and medical fields must be freely controlled in resolution or swelling ratio, depending on their purpose and purpose, but all porous scaffolds produced by the above-mentioned techniques have uniform resolution. Or, there is a disadvantage that the swelling ratio is very low. In particular, it is known that when using a low molecular weight component to control the degree of decomposition or lowering the crosslinking density, the mechanical properties are deteriorated.
  • cell therapies or cancer vaccines are mainly used for blood cancer-related diseases, and in solid cancers, most of them have a very low therapeutic effect.
  • a microenvironment factor that suppresses immune function around solid cancer.
  • cells that lower the function of immune cells in the microenvironment (MDSC: myeoloid-derived stromal cells, Treg: regulatory T cells, TAM: tumor-assocaited macrophages) or immunosuppressive cytokines, metabolites, etc. , It is known to rapidly decrease the activity of immuno-activating substances and therapeutic immune cells (Nat Rev Immunol. 2016; 16(2):112-123).
  • the present invention is a porous three-dimensional cryogel scaffold comprising a structure in which a first component and a second component of a hyaluronic acid derivative having different chemical structures are crosslinked: and the scaffold It is an object of the present invention to provide a pharmaceutical composition for anti-cancer, an anti-cancer treatment method, and a method for manufacturing the scaffold comprising cells cultured in a chamber of a fold, the cell-injection chip in vivo as an active ingredient.
  • the present invention is a porous three-dimensional cryogel scaffold comprising a structure in which a first component and a second component of a hyaluronic acid derivative having different chemical structures are crosslinked: And it provides a pharmaceutical composition for anti-cancer comprising cells incubated in the chamber of the scaffold, an in vivo cell input chip as an active ingredient.
  • the present invention is a porous three-dimensional cryogel scaffold comprising a structure in which a first component and a second component of a hyaluronic acid derivative having different chemical structures are crosslinked: and cells cultured in a chamber of the scaffold
  • a cancer treatment method comprising the step of administering a pharmaceutical composition for anti-cancer to an individual in an effective amount, comprising, as an active ingredient, a cell-injection chip in vivo.
  • the cancer treatment method provides a method for treating solid cancer and blood cancer.
  • the first component is a hyaluronic acid methacrylate (HA-MA) derivative
  • the second component is an oxidized hyaluronic acid methacrylate derivative (oxHA-MA) or hyaluronic acid Aldehyde methacrylate (HA-ald-MA).
  • the first component is hyaluronic acid methacrylate
  • the second component is hyaluronic acid aldehyde methacrylate (HA-ald-MA).
  • the first component is hyaluronic acid methacrylate
  • the second component is oxidized hyaluronic acid methacrylate (oxHA-MA).
  • the cells include Langerhans islet cells, Serto cells, dopaminergic neurons, stem cells, mesenchymal stem cells, umbilical cord blood cells, embryonic stem cells, neural stem cells, differentiated stem cells, T cells, natural killer (NK) cells, and B cells.
  • NK natural killer
  • the cell is a natural killer (NK) cell
  • the natural killer (NK) cell is a chimeric antigen receptor-natural killer (CAR-NK) cell.
  • the chimeric antigen receptor-natural killer (CAR-NK) cells are ecto-domain, hinge, transmembrane, and CD28 of cancer-specific anti-EGFR affibodies. , DAP10 and CD3 ⁇ .
  • the present invention provides an anti-cancer pharmaceutical composition comprising the composition for in vivo cell injection.
  • the present invention provides a method of treating cancer by administering the composition for in vivo cell injection to an individual.
  • the cancer is solid cancer or blood cancer, and the solid cancer is characterized in that it is lung cancer, brain cancer, liver cancer, breast cancer, ovarian cancer, or colon cancer.
  • the blood cancer is characterized by leukemia, multiple myeloma, aplastic anemia or malignant lymphoma.
  • the present invention provides a composition for cell culture comprising a porous three-dimensional cryogel scaffold comprising a structure in which hyaluronic acid methacrylate and oxidized hyaluronic acid methacrylate are crosslinked.
  • Porous three-dimensional cryogel scaffold comprising a structure in which a first component and a second component of a hyaluronic acid derivative having different chemical structures according to one aspect are crosslinked: and cells cultured in a chamber of the scaffold
  • FIG. 1 is a porous three-dimensional cryogel scaffold comprising a structure in which a first component and a second component of a hyaluronic acid derivative having different chemical structures of the present invention are crosslinked, wherein the first component is hyaluronic acid meta An acrylate derivative, the second component is an oxidized hyaluronic acid methacrylate derivative (oxHA-MA), 3D engineered hyaluronic acid based niche for cell expansion, showing the manufacturing process and cell culture method of 3D ENHANCE scaffold.
  • oxHA-MA oxidized hyaluronic acid methacrylate derivative
  • Figure 2a shows an electron micrograph of the 3D ENHANCE scaffold prepared using hyaluronic acid and image images in the form.
  • Figure 2b shows the results of spheroid formation in the NK92 cell line loaded (4 days after loading) on the 3D ENHANCE scaffold.
  • Figure 3 shows the results of comparing the pore structure of the 3D ENHANCE scaffold of the present invention with conventional gel.
  • the 3D ENHANCE scaffold was a bio-degradable cryogel, and was produced based on hyaluronic acid in the same manner as the conventional gel.
  • Figure 4 shows the characteristics of the 3D ENHANCE scaffold and conventional gel of the bio-degradable cryogel of Figure 3b.
  • Figure 5a shows the decomposition process of the 3D ENHANCE scaffold of the present invention.
  • Figure 5b shows the result of adjusting the ratio of the ratio of the hyaluronic acid and oxidized hyaluronic acid and the ratio of scaffold degradation by adjusting the ratio in the components of the 3D ENHANCE scaffold.
  • Figure 5c is a living body according to various ratios of the 3D EVHANCE scaffold, wherein the first component of the present invention is hyaluronic acid methacrylate (HA-MA) and the second component is oxidized hyaluronic acid methacrylate (oxHA-MA). It shows the results of confirming that it does not affect the toxicity by measuring the weight after inserting the scaffold into the segmentation characteristics and the rat.
  • HA-MA hyaluronic acid methacrylate
  • oxHA-MA oxidized hyaluronic acid methacrylate
  • FIG. 6 shows a comparison result with hyaluronic acid based-conventional gel and 2D culture, which are currently used as a 3D culture system.
  • Figure 6a is a 48-well plate culture (2D culture) compared to the cell growth for conventional gel shows the results of measuring and comparing the number of cells recovered 5 days after cultivation
  • Figure 6b is using FACS, the 48 It shows the result of checking cell viability and dead cells for conventional gel compared to -well plate culture (2D culture).
  • FIG. 7 shows the comparison results for the 3D ENHANCE scaffold and 2D cell culture (24 well plate culture or 48 well plate culture) of the bio-degradable cryogel of the present invention.
  • FIG. 7A shows the results obtained by measuring the number of cells recovered 5 days after culturing cell growth
  • FIG. 7B shows the 3D ENHANCE scaffold and 2D cell culture (24 well plate culture or 48 well) using FACS. plate culture).
  • 7C and 7D show the results for cell killing or cell viability of natural killer cells, NK cells in the SK-SC1 scaffold.
  • Figure 8 is a HA-MA and oxHA-MA ratio of 3D-ENHANCE scaffolds different from each other and after loading the killer cells (Natural killer cell, NK cell), compared to 2D cell culture, proliferation and activity of the natural killer cells It shows the result of comparing.
  • Figure 8a shows the results of comparing live cells with a fluorescence image through fluorescence microscopy.
  • Figure 8b shows 2D culture and 3D ENHANCE scaffold NK cell proliferation
  • Figure 8c shows cell viability
  • Figure 8d compares 2D culture and 3D ENHANCE scaffold for NK cell migration activity
  • Figure 8e shows K562 myelogeniys leukemia cell
  • the effect on tumor lytic activity on Raji Burkitt's lymphoma cells is shown by comparing 2D culture and 3D ENHANCE scaffold.
  • Figure 8f is an effect of increasing NK cell proliferation among NK cell activities in the SK-SC1 scaffold of the present invention
  • Figure 8g is an effect of increasing Nk cell migration
  • Figure 8h is a tumor for the K562 myelogeniys leukemia cell
  • Raji Burkitt's lymphoma cell It shows the results confirmed by comparing the effect of increasing lytic activity or cell cytotoxicity with 2D cell culture.
  • Figure 8i shows the results of confirming the genetic changes related to the NK cell cell proliferation, cytokine/chemokine, and NK-medicated cell cytotoxicity for the SK-SC1 scaffold.
  • Figure 8j shows the effect of increasing gene expression related to NK cell proliferation, cytokine receptor interaction, and NK cell mediated cytotoxicity compared to 2D culture (2D) for the 3D ENHANCE scaffold.
  • FIG. 9 is a porous three-dimensional cryogel scaffold comprising a structure in which the first and second components of the hyaluronic acid derivative are crosslinked
  • FIG. 9A is a crosslinking process of Collagen/Hyaluronic acid and Hyaluronic acid derivative at low temperature ( cryogel), a scaffold having a pore size of 150-300 ⁇ m, and a scaffold containing collagen/Hyaluronic acid (collagen matrix scaffold).
  • Figure 9b is a collagen / hyaluronic acid, Hyaluronic acid derivative at a low temperature cross-linking process (cryogel) produced by comparing the cell viability of the scaffold compared to 2D
  • Figure 9c includes the collagen / hyaluronic acid
  • the effect of cancer cell killing ability on hyaluronic acid scaffold containing natural killer cells is compared with 2D, and fluorescence image recording and cancer cell killing ability are graphed after observation with a fluorescence microscope.
  • 9D and 9F show expression confirmation of 1,162 genes in the collagen matrix scaffold cultured NK-92
  • FIGS. 9G and 9H show LTA (Lymphotoxin-) in the collagen matrix scaffold cultured NK-92. alpha), HSPE1 (Heat shock protein), HSPA5 (Glucose-regulated protein), CST7 (Cystatin-F, immune regulator), HYOU1 (Hypoxia up-regulated protein 1), etc. It is shown.
  • Figure 10 shows a comparison of the effect of cell therapy (adoptive cell transfer (ACT)) cells using two-dimensional cell culture (2D culture) and the 3D ENHANCE scaffold of the present invention.
  • the cell therapy effect was confirmed by removing blood cancer cells by injecting blood cancer cells into mice and then injecting the two-dimensional cell culture (2D culture) and NK cells cultured in the 3D ENHANCE scaffold of the present invention.
  • Figure 10A shows the results by using the in vivo imaging equipment for small animals, photographing fluorescent signals in vivo at high speed in real time.
  • Fig. 10b shows the results at the survival rate, and
  • Fig. 10c shows the results compared with the body weight.
  • Figure 11 shows the NK-CAR (natural killer cell-chimeric antigen receptor) containing EGFR affibody and NK 92 cells in the 3D ENHANCE scaffold of the present invention, and then through mice injected with MDA-MB-231 breast cancer cell line. It shows that cancer metastasis reduction effect was confirmed.
  • NK-CAR natural killer cell-chimeric antigen receptor
  • Figure 11a shows the NK-CAR (natural killer cell-chimeric antigen receptor, zEGFR-CAR) information containing the EGFR affibody
  • Figure 11b is the breast cancer cell line MDA-MB-231 EGFR expression It was confirmed by FACS
  • Figure 11c shows the cancer cell lyctic activity of NK-92 and zEGFR-CAR
  • Figure 11d shows the outline of the experiment confirming the effect of reducing cancer metastasis through the mouse
  • Figure 11e is through FACS
  • MDA-MB-231 is a tumor marker for breast cancer cell line CK18 (cytokeratins 18) expression is measured and graphed
  • Figure 11f is the MDA-MB-231 breast cancer cell line in Figure 11d the mice injected with NK 92 and After injecting NK-CAR (natural killer cell-chimeric antigen receptor, chimeric antigen receptor-natural killer (CAR-NK)) containing EGFR affibody, the tumor marker CK18 expression was compared against breast cancer
  • the present invention is a porous three-dimensional cryogel scaffold comprising a structure in which a first component and a second component of a hyaluronic acid derivative having different chemical structures are crosslinked: and cells cultured in a chamber of the scaffold It provides an anti-cancer pharmaceutical composition comprising, as an active ingredient, a cell-injection chip in vivo.
  • the first component is hyaluronic acid methacrylate (HA-MA)
  • the second component is hyaluronic acid aldehyde methacrylate (HA-ald-MA) or oxidized hyaluronic acid meta Acrylate (oxHA-MA).
  • the present invention may be that the hyaluronic acid methacrylate (HA-MA) 1 to 2: oxidized hyaluronic acid methacrylate (oxHA-MA) is mixed in a weight ratio of 0 to 2.
  • the hyaluronic acid methacrylate may be defined by the following Chemical Formula 1
  • the hyaluronic acid aldehyde methacrylate (HA-ald-MA) may be defined by the following Chemical Formula 2
  • the methacrylate (oxHA-MA) may be defined by Formula 3 below.
  • the term “cryogel” refers to a porous hydrogel prepared at 0° C. or lower (subzero temperature), having an interconnected pore structure, and the diameter of the pores is two-step cooling ( cooling) technique can be controlled to 20 to 900 ⁇ m, but 200 ⁇ m is preferred.
  • crosslinking means that one polymer chain is covalently linked to the other polymer chain.
  • the term, "Scaffold (Scaffold)” refers to a substance that replaces a part of an damaged organ or tissue in vivo to secure or replace their functions, and in addition, to receive a desired site by accommodating 1 or 2 or more drugs It may be a material that can be transferred to, and may be a biodegradable material that can be completely decomposed and then disappeared after being maintained in vivo until it sufficiently performs its function and role, but is not limited thereto. In this connection, it also means a physical support and adhesive substrate made to enable in vitro culture of tissue cells and implantation in the body. In this regard, xenograft for treatment or autograft (Allograft) is also included.
  • the scaffolds of the present invention can be used for cell delivery or for culturing cells.
  • Cells can be stimulated to undergo differentiation or other physiological processes by the addition of appropriate growth factors.
  • Culture media comprising one or more cytokines, growth factors, hormones, or mixtures thereof can be used to keep cells undifferentiated or to differentiate cells by a specific pathway.
  • the scaffold can be used to provide a biological environment for the settlement of cells in a bioreactor. It can also be used to study physiological and pathological processes, tumorigenic differentiation and angiogenesis.
  • the cell transport can also be used as a cell transport for therapeutic use.
  • drug refers to small molecules, chemical substances, nucleic acids, nucleic acid derivatives, peptides, peptide derivatives, naturally occurring proteins, non-proteins, which are administered to a subject to treat a disease or dysfunction or otherwise affect the health of an individual.
  • Non-limiting examples of drugs include polypeptides, such as enzymes, hormones, cytokines, antibodies or antibody fragments, antibody derivatives, drugs that affect metabolic functions, organic compounds, such as analgesics, antipyretics, anti-inflammatory agents, antibiotics, Cardiovascular drugs, drugs that affect kidney function, electrolyte metabolites, drugs acting on the central nervous system, chemotherapy compounds, receptor agonists and receptor antagonists.
  • the drug may also include, but is not limited to, plasma proteins such as, for example, extracellular molecules, such as serum albumin, immunoglobulins, apolipoproteins, or transferrins, or proteins found on the surface of red blood cells or lymphocytes.
  • plasma proteins such as, for example, extracellular molecules, such as serum albumin, immunoglobulins, apolipoproteins, or transferrins, or proteins found on the surface of red blood cells or lymphocytes.
  • exemplary drugs include small molecules, chemicals, nucleic acids, nucleic acid derivatives, peptides, peptide derivatives, naturally occurring proteins, non-naturally occurring proteins, peptide-nucleic acids (PNA), staple peptides, phosphorodiamidate morpholino ,
  • Antisense drugs RNA-based silencing drugs, aptamers, glycoproteins, enzymes, hormones, cytokines, interferons, growth factors, blood coagulation factors, antibodies, antibody fragments, antibody derivatives, toxin-conjugated antibodies, metabolic agonists, Analgesic, antipyretic, anti-inflammatory, antibiotic, antimicrobial, antiviral, antifungal, musculoskeletal, cardiovascular, renal, pulmonary, digestive disease, blood, urinary, metabolic, liver, neuro, anticancer, Drugs for treating stomach conditions, drugs for treating colon conditions, drugs for treating skin conditions, and drugs for treating lymph conditions.
  • the scaffold of the present invention can be used without limitation as a therapeutic or tissue regeneration application for various diseases, and the selection and combination of these drugs can be appropriately selected by those skilled in the art.
  • the scaffold of the present invention is a porous scaffold, and the porous scaffold uses a main component of an extracellular matrix (ECM) such as alginate, gelatin, collagen, hyaluronic acid, and a physical/chemical crosslinking method. Can be manufactured.
  • ECM extracellular matrix
  • the cancer of the pharmaceutical composition for anticancer of the present invention is solid cancer or blood cancer, characterized by natural killer (NK) cells, and the natural killer cell is a chimeric antigen receptor-natural killer (CA R-NK) cell.
  • NK natural killer
  • CA R-NK chimeric antigen receptor-natural killer
  • the chimeric antigen receptor (CAR) is characterized in that it comprises an ectodomain (ecto-domain) of cancer-specific anti-EGFR affibodies (tumor-specific zEGFR affibodies).
  • the chimeric antigen receptor (CAR) includes a hinge, transmembrane, CD28, DAP10 and CD3 ⁇ .
  • the term “affibody (affibody, affibo dies)” may mean an antibody mimetic capable of binding to a specific target protein (receptor).
  • the affibody consists of 20 to 150 amino acid residues, may be composed of 2 to 10 alpha helixes, and may include both affibody or affibody molecules capable of recognizing a specific receptor or target protein of a cell.
  • an EGFR target may mean an aphibody capable of recognizing an EGFR protein.
  • the EGFR is a growth factor receptor epidermal growth receptor, and has been reported to be overexpressed in many cancer cells such as solid cancer or blood cancer.
  • the pharmaceutical composition of the present invention includes a pharmaceutical or pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carrier included in the pharmaceutical composition of the present invention is commonly used in preparation, and the pharmaceutical composition of the present invention may further include a suspending agent, a preservative, etc. in addition to the above components. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).
  • a unit dosage form suitable for intra-body administration of a patient according to a conventional method in the pharmaceutical field such as intravenous injection, subcutaneous injection, muscle injection, intraperitoneal injection, etc. It can be formulated and administered as a formulation.
  • the preferred dosage of the pharmaceutical composition of the present invention depends on the patient's condition and body weight, the degree of disease, the drug form, the route of administration, and the duration, but can be appropriately selected by those skilled in the art.
  • the pharmaceutical composition of the present invention can be used through an ampoule for injection.
  • the ampoule for injection may be mixed with an injection solution immediately before use, and physiological saline, glucose, mannitol, Ringer's solution, etc. may be used as the injection solution.
  • the composition or pharmaceutical preparation of the present invention thus prepared may be administered in the form of a mixture with cells used for transplantation and other uses, using administration methods conventionally used in the art.
  • the actual dosage of the active ingredient should be determined in light of various relevant factors such as the disease to be treated, the severity of the disease, the route of administration, the patient's weight, age and sex.
  • the composition of the present invention is a medium for suspending cells, a gene effective for solid cancer or blood cancer (e.g., anti-inflammatory cytokine gene, siRNA for inflammatory cytokine or anti-sense primer) (antisenseprim er)) or an expression vector containing the same, a cytokine that provides an autocrine or paracrine effect, a growth factor, and a combination thereof selected from the group consisting of One or more may be included.
  • the medium may be the same type of medium as the culture medium, and does not contain serum, antibiotics, and antifungal agents at all.
  • the content of the composition for bio-injection included in the pharmaceutical composition of the present invention is not particularly limited, but may be included in an amount of 10 to 50% by weight, more specifically 20 to 40% by weight based on the total weight of the final composition.
  • the pharmaceutical composition of the present invention may be administered in a pharmaceutically effective amount, the term "pharmaceutically effective amount" of the present invention to treat or prevent a disease at a reasonable benefit/risk ratio applicable to medical treatment or prevention
  • the effective dose level is the severity of the disease, the activity of the drug, the patient's age, weight, health, sex, the patient's sensitivity to the drug, the time of administration of the composition of the invention used, the route of administration and the rate of discharge treatment
  • the duration can be determined according to factors including drugs used in combination or coincidental with the composition of the present invention used and other factors well known in the medical field.
  • the pharmaceutical composition of the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, and may be administered sequentially or simultaneously with conventional therapeutic agents. And it can be administered single or multiple. Considering all of the above factors, it is important to administer an amount that can achieve the maximum effect in a minimal amount without side effects.
  • the dosage of the pharmaceutical composition of the present invention can be administered at one or multiple sites (for example, 2 to 50 sites) at a site where cancer is generated, and the dosage is specifically 1.0 ⁇ 105 to 1.0 ⁇ 108.
  • the number of cells/kg (body weight), and more specifically, may be 1.0 ⁇ 10 6 to 1.0 ⁇ 10 7 cell number/kg (body weight).
  • Another aspect of the present invention provides a method of treating cancer, comprising administering the pharmaceutical composition to an individual in which solid cancer or blood cancer has occurred in organs, vascular tissues, and the like.
  • the treatment method may include the step of additionally administering another therapeutic drug or in parallel.
  • Substances with different degrees of decomposition under physiological and chemical conditions after mixing the first component and the second component in an aqueous phase, float on a prepared mold, freeze at a low temperature, and gradually crosslink, and then crosslink the ice layer using a freeze-drying method. (ice crystal) was removed to prepare a cryogel scaffold having cross-linked pores.
  • the first component is hyaluronic acid methacrylate (HA-MA), collagen (Collagen), and the corresponding second component is hyaluronic acid aldehyde methacrylate (HA-ald-MA), hyaluronic acid (Hyaluronic acid) or Oxidized hyaluronic acid methacrylate (oxHA-MA).
  • Hyaluronic acid (Hyal uronic acid: HA, 500 kDa) is dissolved in 100 ml of distilled water at a concentration of 10 mg/ml, and 3.85 g of Methacrylic anhydride (MA) is added.
  • HA-MA was prepared by adjusting the pH to 8 using 5N sodium hydroxide, stirring at room temperature and in the dark, and dialysis (12-14 KDa cutoff) in distilled water for 48 hours, followed by freeze-drying.
  • hyaluronic acid (HA, 500 kDa) was dissolved in 100 ml of distilled water at a concentration of 10 mg/ml, and 534 mg of sodium periodate (NaIO4) was added, followed by stirring for 24 hours in the dark and room temperature so that the oxidation reaction was sufficiently To get up.
  • NaIO4 sodium periodate
  • 1 g of ethylene glycol was added and stirred at room temperature for 1 hour, then dialyzed in distilled water for 12 hours (12-14 KDa cutoff) and lyophilized to prepare HA-ald. .
  • 1 g of the prepared HA-ald was dissolved in 100 ml of distilled water, and 3.85 g of methacryl anhydride (MA) was added.
  • MA methacryl anhydride
  • tetramethylethyldiamine N,N,N',N'-tetramethylethylenediamine
  • the mixture was quickly transferred to a PDMS mold and stored at -20°C for 24 hours to prepare a cryogel scaffold (SK-SC1 scaffold) containing HA-MA/HA-ald-MA.
  • the scaffold was sterilized using 70% ethanol solution, and then washed 3 times using PBS.
  • HA-MA Methacrylate Modified Hyaluronic Acid
  • oxHA-MA oxidized hyaluronic acid methacrylate-m odified oxidized HA
  • 30 mg of ammonium persulfate was added to the mixed solution and mixed with HA.
  • 60 ⁇ l of tetramethyl ethyldiamine N,N,N',N'-tetramethylethylenediamine, TEMED
  • FIG. 1 After recording the electrophotographic and morphological image photographs of the 3D ENHANCE scaffold prepared using hyaluronic acid as described above (FIG. 2A) through the method of dropping NK-92 cells, After loading hyaluronic acid in 3D-engineered hyaluronic acid-based niche for cell expansion (3D-ENHANCE) used for polymerization, the proliferation trend of cells was observed through a fluorescence microscope for 7 days (FIG. 2B).
  • the confirmation of the pore structure of the 3D ENHANCE scaffold of the present invention was compared with the conventional gel (FIG. 3).
  • the 3D ENHANCE scaffold is a bio-degradable cryogel and was produced based on hyaluronic acid in the same manner as the conventional gel.
  • Bio-degradable cryogel since it was made through cryogelation at -20°C for 24 hours, an interconnected pore structure of a certain size is generated therein. Cells grow in the form of spheroids in this constant size pore structure. The formation of spheroids in NK cells enhances the cell's proliferation, viability and killing power.
  • bio-degradable cryogel undergoes two major steps of decomposition.
  • the first stage of decomposition occurs rapidly with the decomposition of oxidize d hyaluronic acid.
  • the second stage of decomposition occurs relatively slowly due to the decomposition of hyaluronic acid (Fig. 5a). Therefore, by controlling the ratio of hyaluronic acid and oxidized hyaluronic acid, the degree of decomposition of scaffold can be controlled (FIG. 5B).
  • hyaluronic acid based- conventional gel which is commonly used as a 3D culture system, was compared with 2D culture.
  • 2D 48-well plate
  • the cell growth rate was confirmed. Although it was confirmed that the cell growth rate was high, it was confirmed that it did not grow at all compared to the number of cells laid (Fig. 6A).
  • the error range of the number of recovered cells was large and the cell viability was lower than that of the 48-well plate culture, as well as 80% or more of the dead cells (FIG. 6B ).
  • the 3D ENHANCE scaffold of the present invention was compared with the 2D cell culture as shown in FIG. 7.
  • the 3D ENHANCE scaffold and 2D culture (24 well plate culture or 48 well plate culture) of the bio-degradable cryogel of the present invention in the case of bio-degradable cryogel culture (0.5x10 5 cells) 5 days after cell culture 20 It was confirmed that embryonic abnormal cells grew.
  • cells decreased in 24-well plate culture (2.5x10 5 cells) and increased approximately 5 times in 48-well plate culture (0.25x10 5 cells) (FIG. 7A).
  • dead cells were more than 70% in 24-well plate culture, and in 48-well plate culture, live cells and dead cells accounted for approximately half, but in bio-degradable cryogel, approximately 20% Only cells were dead (FIG. 7B ).
  • 3D ENHANCE scaffold (3D) and 2D cell culture (2D) were compared using natural killer cells (NK cells).
  • live cells were compared by fluorescence image through fluorescence microscopy (optical electron fluorescence microscopy) observation.
  • fluorescence image through fluorescence microscopy (optical electron fluorescence microscopy) observation.
  • FIG. 8A it was confirmed that the live cell increased
  • 3D ENHANCE scaffold in 3D of the present invention than the 2D, cell It was confirmed that proliferation increased.
  • Figure 8c is a result of confirming the cell viability, compared to 2D, it was found that the cell death in the 3D of the present invention is reduced (increased cell viability), 2D cell culture and 3D for NK cell migration activity as shown in Figure 8d
  • the ENHANCE scaffold it was found that the NK-92 cell migration activity increased in 3D of the present invention compared to the 2D.
  • the ENHANCE scaffold as compared to 2D culture and 3D ENHANCE scaffold for the effect of tumor lytic activity on K562 myelogeniys leukemia cell and Raji Burkitt's lymphoma cell as shown in FIG.
  • a porous three-dimensional cryogel scaffold comprising a structure in which the first and second components of a hyaluronic acid derivative are crosslinked, and a scaffold comprising collagen and hyaluron (collagen matrix scaffold) Fold) production and cell activity measurement
  • a porous three-dimensional cryogel scaffold comprising a structure in which the first component and the second component of the hyaluronic acid derivative are crosslinked, a scaffold containing collagen and hyaluronic acid, and a scaffold containing Collagen/H yaluronic acid Fold (collagen matrix scaffold) preparation and cell activity were measured (Figure 9).
  • Figure 9 After the collagen/Hyaluronic acid and Hyaluronic acid derivatives were cross-linked at low temperature (cryogel), a scaffold with a pore size of 150-300 ⁇ m was produced (200 ⁇ m is preferred) (FIG. 9a), and the NK-92 cell line was injected.
  • NK cells were measured until 7 days after loading into Collagen/Hyaluronic acid porous scaffold (CS). It was confirmed that the NK cells cultured in the scaffold had increased cell viability (Viability, FIG. 9B) and cancer cell killing ability (Cytotoxicity) than 2D cell culture (2D) (FIG. 9C).
  • NK-92 cells were cultured in a 2D cell culture (2D) or a scaffold (collagen matrix scaffold) containing Collagen/Hyaluronic acid to measure gene expression changes.
  • 2D 2D cell culture
  • scaffold Collagen matrix scaffold
  • NGS next generation sequencing
  • the 5 genes that differed most from the 2D culture conditions were LTA (Lymphotoxin-alpha), HSPE1 (Heat shock protein), HSPA5 (Glucose-regulated) protein), CST7 (Cystatin-F, immune regulator), and HYOU1 (Hypoxia up-regulated protein 1) (FIG. 9g).
  • LTA Lymphotoxin-alpha
  • HSPA5 Glucose-regulated protein
  • CST7 Cystatin-F, immune regulator
  • HYOU1 Hypoxia up-regulated protein 1
  • Adoptive cell transfer is a typical anti-cancer immunotherapy method along with an immune checkpoint inhibitor. Therefore, in order to find out if NK cells grown on 3D-ENHANCE scaffolds are more effective than NK cells grown on two-dimensional cell culture in ACT therapy, blood cancer cells are injected into mice and then two-dimensional cell culture and NK cells grown on 3D-ENHANCE are respectively used. The injection was confirmed to remove the blood cancer cells. As a result, it was confirmed that blood cancer cells were more effectively removed from the mice injected with NK cells grown in 3D-ENHANCE, and the survival rate of the mice increased (FIG. 10).
  • the animal experiment was conducted as shown in FIG. 11 to verify the therapeutic effect by implanting a 3D-ENHANCE scaffold containing NK cells in a region where cancer tissue was excised. After transplanting the breast cancer cell line MDA-MB-231 into mice, excised cancer cells were excised and 3D-ENAHNCE scaffolds were transplanted to confirm the degree of cancer cell metastasis.
  • NK-CAR natural killer cell-chimeric antigen receptor or chimeric antigen receptor-natural killer, CAR-NK, zEGFR-CAR
  • NK-92 natural killer cells were used.
  • the grown cancer cells were excised and the SK-SC1 scaffold was transplanted to the site to confirm the degree of cancer cell metastasis.
  • natural killer cells of zEGFR-CAR and NK-92 were used.
  • NK-92 and zEGFR-CAR were cultured for 3 days, the lyctic activity of the breast cancer cell line MDA-MB-231 cells was measured. As shown in Figure 11h, it was confirmed that EGFR was over-expressed in MDA-MB-231 cells, and that lyctic activity was active against the breast cancer cell line MDA-MB-231.

Abstract

The present invention relates to an anti-cancer pharmaceutical composition comprising a vivo cell injection chip as an active ingredient, the composition comprising: a porous three-dimensional cryogel scaffold comprising a structure in which first and second components of a hyaluronic acid derivative, having different chemical structures, are crosslinked; and cells cultured in chambers of the scaffold. The composition comprising the scaffold and the cells cultured in chambers of the scaffold exhibits a cell growth rate, a survival rate, a cancer cell killing ability, and a cancer metastasis reduction effect that is greater than those of a conventional two-dimensional culture, thereby being effectively usable in cancer treatment and cancer treatment methods or as a composition for cell cultures.

Description

생체내 세포 투입칩을 포함하는 항암용 조성물 Anticancer composition comprising in vivo cell input chip
본 발명은 서로 다른 화학적 구조를 지닌 히알루론산 유도체의 제1성분 및 제2성분이 가교된 구조를 포함하는 다공성 3차원 크라이오젤 스캐폴드(scaffold): 및 상기 스캐폴드의 챔버내에서 배양된 세포를 포함하는, 생체내 세포 투입칩을 유효성분으로 포함하는 항암용 약학조성물 또는 상기 항암용 약학 조성물을 유효한 양으로 개체에 투여되는 단계를 포함하는 고형암 및 혈액암을 치료하기 위한 방법에 관한 것이다. The present invention is a porous three-dimensional cryogel scaffold comprising a structure in which a first component and a second component of a hyaluronic acid derivative having different chemical structures are crosslinked: and cells cultured in a chamber of the scaffold It relates to a method for treating a solid cancer and blood cancer comprising the step of administering to the subject an effective amount of an anticancer pharmaceutical composition or an anticancer pharmaceutical composition comprising an in vivo cell input chip as an active ingredient.
현재 기존의 항암치료는 주로 외과적 수술, 항암제 투여, 방사선 조사가 있다. 그러나 세포독성 등 심각한 부작용과 암의 전이·재발 등으로 인해 새로운 치료법 개발의 필요성이 증가하고 있다. 수술, 항암제 투여 및 방사선 조사는 체력의 약화와 면역력 저하를 초래한다. 또한 치료 후 몸속에 남아있는 암세포는 암의 재발 및 전이를 유발할 가능성이 있으며, 암으로 사망하는 환자들의 대부분의 사망 원인은 암의 재발이다. 따라서 최근 개발되는 암 치료제는 적은 부작용 선택적으로 암세포만을 파괴하는데 주목하고 있다. 현재 주목 받고 있는 항암치료법의 연구 방향은 우선 암을 기존 치료방법으로 최소화시킨 후, 잔존 암세포를 세포면역치료에 의해 완전히 제거하는 방향으로 진행되고 있다. 또한, 최근 잔존 암세포를 목표로 하는 세포면역치료인 암세포를 선택적으로 파괴하는 NK 세포, 세포독성 T세포, 수지상 세포가 주목받고 있다.Currently, existing anti-cancer treatments mainly include surgical surgery, chemotherapy, and irradiation. However, due to serious side effects such as cytotoxicity and cancer metastasis and recurrence, the need for new treatments is increasing. Surgery, administration of anticancer drugs, and irradiation cause weakening of physical strength and reduced immunity. In addition, cancer cells remaining in the body after treatment are likely to cause cancer recurrence and metastasis, and the most common cause of death among cancer patients is cancer recurrence. Therefore, recently developed cancer treatments are focused on destroying only cancer cells with few side effects. The current research direction of anti-cancer therapy is currently being directed toward minimizing cancer as an existing treatment method and then completely removing residual cancer cells by cell immunotherapy. In addition, NK cells, cytotoxic T cells, and dendritic cells that selectively destroy cancer cells, which are cell immunotherapy targeting residual cancer cells, have recently attracted attention.
한편, NK 세포는 면역세포의 일종으로 암세포에 대해 선택적인 세포독성을 보이는 세포이다. NK 세포는 다른 면역세포와 달리 암세포를 즉각적으로 감지하여 바로 제거할 수 있는데, NK 세포 표면에 있는 다양한 면역 수용체를 통해 암세포와 정상세포를 구분할 수 있다. 암환자의 체내의 NK 세포는 그 수가 정상인에 비해 떨어지고 항암활성에도 결함이 있다. 그뿐 아니라, NK 세포의 기능 이상은 암의 발생과 밀접한 관련을 가지고 있다. 또한 NK 세포는 인터페론 감마(IFN-γ)나 티엔에프알파(TNF-α)와 같은 사이토카인(cytokine) 생성해 염증 및 면역반응을 조절하는데 핵심적인 역할을 하는 것으로 알려져 있다. NK 세포는 수지상 세포, 대식세포, T세포와의 직접적 상호작용 및 사이토카인을 통한 간접적인 상호작용을 통해 면역반응을 조절하는데 핵심적인 역할을 한다. 염증질환, 자가 면역 질환 및 각종 난치성 질환의 발병에도 NK 세포가 중요한 역할을 하고 있음이 밝혀졌다(Front Immunol. 2017; 8:745).On the other hand, NK cells are a type of immune cells that show selective cytotoxicity to cancer cells. Unlike other immune cells, NK cells can immediately detect and remove cancer cells, and can differentiate cancer cells from normal cells through various immune receptors on the surface of NK cells. The number of NK cells in the body of cancer patients is lower than that of normal people, and the anticancer activity is also defective. In addition, dysfunction of NK cells is closely related to the development of cancer. In addition, NK cells are known to play a key role in regulating inflammation and immune responses by producing cytokines such as interferon gamma (IFN-γ) and thien alpha (TNF-α). NK cells play a key role in regulating the immune response through direct interaction with dendritic cells, macrophages, and T cells and indirect interactions through cytokines. It has been found that NK cells play an important role in the development of inflammatory diseases, autoimmune diseases and various intractable diseases (Front Immunol. 2017; 8:745).
한편, 암 줄기세포는 항암제와 방사선 치료에 강한 저항성이 있으며 암이 완치된 뒤에도 항암제의 공격에 살아남은 암 줄기세포가 잠복상태에 있다가 다시 활발히 증식, 분화하여 다른 부위로의 암이 전이·재발을 유발한다. 따라서 암 줄기세포를 제거한다면 암의 재발을 막고 효과적으로 치료할 수 있는 가능성이 크다. 이때, NK 세포는 암세포의 발생, 증식, 전이를 억제할 뿐만 아니라 암의 재발에 가장 중요한 암 줄기세포를 효과적으로 제거할 수 있다. 최근 연구결과에 따르면, 정상인으로부터 분리한 NK 세포를 환자에게 주입했을 때도 다른 면역세포들과 달리면역거부 반응이 극히 적어 면역세포치료제 개발에 안전성을 높일 수 있다.On the other hand, cancer stem cells have strong resistance to anti-cancer agents and radiation therapy, and cancer stem cells that survive the attack of the anti-cancer agents are still in an incubated state after the cancer is cured, and then actively proliferate and differentiate again, and cancer metastases to other sites. cause. Therefore, if cancer stem cells are removed, it is highly possible to prevent cancer from recurring and effectively treat it. At this time, NK cells not only inhibit the development, proliferation, and metastasis of cancer cells, but also can effectively remove cancer stem cells, which are the most important for cancer recurrence. According to a recent study, when NK cells isolated from normal humans are injected into a patient, the immune rejection response is extremely low, unlike other immune cells, thereby increasing safety in the development of immune cell therapy products.
NK 세포 이식은 이식된 NK 세포가 암 환자의 체내에 오랫동안 지속되지 않아서 이를 극복하기 위해 이식 후에 NK세포 증식을 유도할 수 있는 사이토카인 IL-2를 주기적으로 넣어주는 방법이 시도되었다. 그러나 IL-2는 NK 세포 외에도 항암면역 반응을 억제하는 조절 T세포(Treg)를 증가시키기 때문에 문제가 되고 있다.In order to overcome this, the NK cell transplantation did not last for a long time in the body of the cancer patient, and a method of periodically inserting a cytokine IL-2 capable of inducing NK cell proliferation after transplantation was attempted. However, IL-2 is a problem because it increases regulatory T cells (Tregs) that inhibit the anticancer immune response in addition to NK cells.
녹십자랩 셀은 동종 NK (allogeneic NK) 세포를 활용해 대량 생산이 가능한 항암면역세포 치료제 개발 전망에 대해 발표하였다. NK 세포를 활용한 항암제는 기존 면역항암제의 안전성·경제적 문제 문제를 해결할 수 있을 것이라고 발표하였다. NK 세포치료제는 타인에게 이식할 경우에도 이식편대숙주병(GVHD)가 없고, 이미 조혈모이식 등을 통해 항암기능과 안전성이 입증되었고 2016년 기준 전세계적으로 89건의 임상이 진행중이다. 국내에서도 11건의 임상이 진행중이고 NK 세포를 이용한 항암치료제의 효과는 실제 임상에서 긍정적인 결과를 보이고 있다. 건강한 비혈연 공여자의 NK 세포를 확장 배양해 투여한 임상 1상(MG4101)에 따르면 NK 세포 항암면역세포 치료제는 최대용량에도 안전하고, 전 처치 없이도 환자 47.1%에서 안정병변, 52.9%에서 진행성 병변을 보였다. 배양한 동종 NK 세포는 유용하고 안전한 종양 치료법이 될 수 있지만, NK 세포의 취급이 매우 까다로워 순수배양이 용이하지 않아이 문제는 반드시 해결되어야 할 것이다.Green Cross Lab Cell announced the prospect of developing an anti-cancer immune cell treatment that can mass-produce using allogeneic NK cells. It has been announced that anti-cancer drugs using NK cells will be able to solve the safety and economic problems of existing immuno-cancer drugs. Even when transplanted to other people, NK cell therapy has no graft-versus-host disease (GVHD), and has already proven its anti-cancer function and safety through hematopoietic transplantation and 89 clinical trials worldwide are ongoing as of 2016. Eleven clinical trials are underway in Korea, and the effectiveness of anticancer drugs using NK cells is positive in clinical practice. According to the clinical phase 1 (MG4101), in which NK cells from healthy non-associated donors were expanded and administered, the NK cell anti-cancer immune cell therapy was safe even at the maximum dose and showed stable lesions in 47.1% of patients and progressive lesions in 52.9% without pretreatment. . Cultured allogeneic NK cells can be a useful and safe tumor therapy, but the handling of NK cells is very demanding, so pure culture is not easy and this problem must be solved.
엔케이맥스(NKMAX)는 환자 자신의 세포를 이용하는 자가 NK세포 치료제로 올해 식약처에 임상 1/2상 승인신청서를 제출할 계획이다. 또한, 안정성과 유효성을 입증해 2022년에 의약품 허가를 받는 것을 목표로 하고 있으며, 이미 일본에서는 3월부터 생산을 시작해 환자에 투약하였고 미국, 멕시코에서도 임상을 준비중에 있다.NKMAX is an autologous NK cell treatment that uses patients' own cells and plans to submit a Phase 1/2 clinical trial application to the Food and Drug Administration this year. In addition, it aims to obtain drug approval in 2022 by demonstrating its stability and effectiveness, and has already begun production in March in Japan, has given it to patients, and is also preparing for clinical trials in the United States and Mexico.
그뿐 아니라, 이뮤니스바이오는 NK 세포 면역치료에 대해 일본 심사위원회의 승인을 얻고 일본 시장에 진출하였다. 일본의 니즈하시클리닉과 협력해서 NK 세포면역치료를 진행하여 올해 간암과 뇌종양을 대상으로 임상 1상을 시작할 계획이다.In addition, Immunos Bio entered the Japanese market with the approval of the Japan Review Board for NK cell immunotherapy. It plans to start phase 1 clinical trials for liver cancer and brain tumors this year by conducting NK cell immunotherapy in cooperation with Nishihashi Clinic in Japan.
현재 임상에 시도되고 있는 치료용 면역세포인 수지상세포, NK 세포, T 세포는 주입된 많은 양이 주입 부위에 머물거나 생체 내 순환과정에서 기능을 다하지 못하고 소멸되는 단점이 있다는 점이 보고되었다. 이러한 단점을 극복하기 위해, 실제 임상분야에서는 많은 수(109)의 치료용 면역세포를 생체 내 주입함으로써, 암치료효능을 높이기 위한 시도가 진행되고 있다. 그러나 많은 수의 세포를 체외에서 배양하는 데 많은 시간과 비용이 소요되며, 치료비용도 매우 높다는 문제점이 남아있다.It has been reported that dendritic cells, NK cells, and T cells, which are therapeutic immune cells currently being tried in clinical trials, have a disadvantage in that a large amount of injected remains at the injection site or does not function in the circulation process in vivo and disappears. In order to overcome these drawbacks, in practice, attempts have been made to increase cancer treatment efficacy by injecting a large number of 109 therapeutic immune cells in vivo. However, it takes a lot of time and money to cultivate a large number of cells in vitro, and there is a problem that the treatment cost is very high.
또한 체외에서 배양된 많은 수의 세포는 지정된 기간 내에 환자에 사용되어야 하며, 그렇지 못한 경우에는 고가의 비용으로 제조된 많은 수의 치료용 세포가폐기처분 되어야 하는 치명적 단점을 갖고 있다(Nat Rev Immunol. 2018; 18(11):671-688). 따라서 많은 수의 살아있는 NK 세포를 확보하고 항암활성을 보유하고 있는 NK 세포를 얻기 위해서는 기존의 세포 배양방식이 아닌 다공성 스캐폴드를 이용한 새로운 3차원 배양방식의 NK 세포의 배양이 필요한 실정이다.In addition, a large number of cells cultured in vitro should be used in patients within a designated period, otherwise, there is a fatal disadvantage that a large number of therapeutic cells produced at a high cost must be disposed of (Nat Rev Immunol. 2018; 18(11):671-688). Therefore, in order to secure a large number of live NK cells and obtain NK cells having anticancer activity, it is necessary to cultivate a new three-dimensional culture type NK cell using a porous scaffold rather than a conventional cell culture method.
바이오 및 의료분야에 사용되는 다공성 스캐폴드는 그 용도와 목적에 따라서, 분해도나 스웰링비 (Swelling ration)가 자유롭게 조절되어야 하지만, 위에서 언급된 기법에 의해 제조된 다공성 스캐폴드는 모두 획일적인 분해도를 가지고 있거나, 스웰링비가 매우 낮다는 단점이 있다. 특히, 분해도를 조절하기 위해 저분자량 (low molecular weight)의 구성물질을 사용하거나 가교밀도 (crosslinking density)를 낮게 할 경우, 기계적 물성이 낮아지는 단점이 있다는 점이 알려져 있다.Porous scaffolds used in the bio and medical fields must be freely controlled in resolution or swelling ratio, depending on their purpose and purpose, but all porous scaffolds produced by the above-mentioned techniques have uniform resolution. Or, there is a disadvantage that the swelling ratio is very low. In particular, it is known that when using a low molecular weight component to control the degree of decomposition or lowering the crosslinking density, the mechanical properties are deteriorated.
한편, 세포치료제나 암백신은 주로 혈액암 관련 질병에 주로 사용되고 있고, 고형암에서는 대부분 그 치료효능이 매우 낮다는 단점을 갖고 있다. 이러한 이유 중의 하나는 고형암 주위에서 면역기능을 억제하는 미세환경 요인이 있다. 실제로 종양미세환경에서 면역세포의 기능을 저하시키는 세포(MDSC: myeoloid-derived stromal cells, Treg: regulatory T cell, TAM: tumor-assocaited macrophages)나 면역억제유발 사이토카인, 대사체 등이 활발하게 작용함으로써, 면역활성화 물질과 치료용 면역세포의 활성을 급격하게 저하시킨다고 알려져 있다(Nat Rev Immunol. 2016; 16(2):112-123).On the other hand, cell therapies or cancer vaccines are mainly used for blood cancer-related diseases, and in solid cancers, most of them have a very low therapeutic effect. One of these reasons is a microenvironment factor that suppresses immune function around solid cancer. In fact, cells that lower the function of immune cells in the microenvironment (MDSC: myeoloid-derived stromal cells, Treg: regulatory T cells, TAM: tumor-assocaited macrophages) or immunosuppressive cytokines, metabolites, etc. , It is known to rapidly decrease the activity of immuno-activating substances and therapeutic immune cells (Nat Rev Immunol. 2016; 16(2):112-123).
상기와 같은 문제점을 해결하기 위하여, 본 발명은 서로 다른 화학적 구조를 지닌 히알루론산 유도체의 제1성분 및 제2성분이 가교된 구조를 포함하는 다공성 3차원 크라이오젤 스캐폴드(scaffold): 및 상기 스캐폴드의 챔버내에서 배양된 세포를 포함하는, 생체내 세포 투입칩을 유효성분으로 포함 하는 항암용 약학조성물, 항암치료방법 및 이의 상기 스캐폴드 제조방법을 제공하는 것을 목적으로 한다. In order to solve the above problems, the present invention is a porous three-dimensional cryogel scaffold comprising a structure in which a first component and a second component of a hyaluronic acid derivative having different chemical structures are crosslinked: and the scaffold It is an object of the present invention to provide a pharmaceutical composition for anti-cancer, an anti-cancer treatment method, and a method for manufacturing the scaffold comprising cells cultured in a chamber of a fold, the cell-injection chip in vivo as an active ingredient.
또한 본 발명은 3차원 생분해성 스캐폴드를 이용하여 세포를 배양하고 이를 직접 생체내에 투입하여 암 치료에 사용할 수 있는 조성물 및 스캐폴드를 제공하는데 목적이 있다. It is also an object of the present invention to provide a composition and scaffold that can be used for cancer treatment by culturing cells using a three-dimensional biodegradable scaffold and directly injecting them into a living body.
상기와 같은 목적을 달성하기 위하여, 본 발명은 본 발명은 서로 다른 화학적 구조를 지닌 히알루론산 유도체의 제1성분 및 제2성분이 가교된 구조를 포함하는 다공성 3차원 크라이오젤 스캐폴드(scaffold): 및 상기 스캐폴드의 챔버내에서 배양된 세포를 포함하는, 생체내 세포 투입칩을 유효성분으로 포함하는 항암용 약학조성물을 제공한다. In order to achieve the above object, the present invention is a porous three-dimensional cryogel scaffold comprising a structure in which a first component and a second component of a hyaluronic acid derivative having different chemical structures are crosslinked: And it provides a pharmaceutical composition for anti-cancer comprising cells incubated in the chamber of the scaffold, an in vivo cell input chip as an active ingredient.
또한 본 발명은 서로 다른 화학적 구조를 지닌 히알루론산 유도체의 제1성분 및 제2성분이 가교된 구조를 포함하는 다공성 3차원 크라이오젤 스캐폴드(scaffold): 및 상기 스캐폴드 의 챔버내에서 배양된 세포를 포함하는, 생체내 세포 투입칩을 유효성분으로 포함하는, 항암용 약학조성물을 유효한 양으로 개체에 투여되는 단계를 포함하는 암 치료방법을 제공한다. 보다 바람직하게 상기 암 치료방법은 고형암 및 혈액암을 치료하기 위한 방법을 제공한다. In addition, the present invention is a porous three-dimensional cryogel scaffold comprising a structure in which a first component and a second component of a hyaluronic acid derivative having different chemical structures are crosslinked: and cells cultured in a chamber of the scaffold It provides a cancer treatment method comprising the step of administering a pharmaceutical composition for anti-cancer to an individual in an effective amount, comprising, as an active ingredient, a cell-injection chip in vivo. More preferably, the cancer treatment method provides a method for treating solid cancer and blood cancer.
일 구현예에 따르면, 상기 제1성분은 히알루론산 메타아크릴레이트 (Hyaluronic acid-methacrylate, HA-MA) 유도체이고, 상기 제2성분은 산화된 히알루론산 메타아크릴레이트 유도체(oxHA-MA) 또는 히알루론산 알데히드 메타아크릴레이트 (HA-ald-MA) 이다. According to one embodiment, the first component is a hyaluronic acid methacrylate (HA-MA) derivative, and the second component is an oxidized hyaluronic acid methacrylate derivative (oxHA-MA) or hyaluronic acid Aldehyde methacrylate (HA-ald-MA).
바람직한 일 구현예에 따르면, 상기 제1성분은 히알루론산 메타아크릴레이트이고, 제2성분은 히알루론산 알데히드 메타아크릴레이트 (HA-ald-MA)이다. According to a preferred embodiment, the first component is hyaluronic acid methacrylate, and the second component is hyaluronic acid aldehyde methacrylate (HA-ald-MA).
다른 바람직한 일 구현예에 따르면, 상기 제1성분은 히알루론산 메타아크릴레이트이고, 제2성분은 산화된 히알루론산 메타아크릴레이트(oxHA-MA)이다. According to another preferred embodiment, the first component is hyaluronic acid methacrylate, and the second component is oxidized hyaluronic acid methacrylate (oxHA-MA).
상기 세포는 랑게르한스섬 세포, 세르토리 세포, 도파민성 뉴런, 줄기 세포, 간엽 줄기 세포, 제대혈 세포, 배아 줄기 세포, 신경 줄기 세포, 분화된 줄기 세포, T세포, 자연살해(NK)세포, 및 B세포로 이루어진 군에서 하나 이상 포함될 수 있다. The cells include Langerhans islet cells, Serto cells, dopaminergic neurons, stem cells, mesenchymal stem cells, umbilical cord blood cells, embryonic stem cells, neural stem cells, differentiated stem cells, T cells, natural killer (NK) cells, and B cells. One or more of the group consisting of.
다른 특정예에서, 상기 세포는 자연살해(NK)세포이며, 하나의 특정예에서 상기 자연살해(NK)세포는 키메릭항원수용체-자연살해(CAR-NK)세포이다. 상기 키메릭항원수용체-자연살해(CAR-NK)세포는 암 특이적 항 EGFR 애피바디 (tumor-specific zEGFR affibodies) 의 엑토도메인(ecto-domain), 힌지(hinge), 막통과 (transmembrane), CD28, DAP10 및 CD3ζ을 포함한다. In another specific example, the cell is a natural killer (NK) cell, and in one particular example, the natural killer (NK) cell is a chimeric antigen receptor-natural killer (CAR-NK) cell. The chimeric antigen receptor-natural killer (CAR-NK) cells are ecto-domain, hinge, transmembrane, and CD28 of cancer-specific anti-EGFR affibodies. , DAP10 and CD3ζ.
또한 본 발명은 상기 생체내 세포 투입용 조성물을 포함하는 항암용 약학 조성물을 제공한다. In addition, the present invention provides an anti-cancer pharmaceutical composition comprising the composition for in vivo cell injection.
또한 본 발명은 상기 생체내 세포 투입용 조성물을 개체에 투여하여 암을 치료하는 방법을 제공한다. In addition, the present invention provides a method of treating cancer by administering the composition for in vivo cell injection to an individual.
상기 암은 고형암 또는 혈액암인 것이며, 상기 고형암은 폐암, 뇌암, 간암, 유방암, 난소 암 또는 대장암인 것을 특징으로 한다. 또한 상기 혈액암은 백혈병, 다발성 골수종, 재생불량성 빈혈 또는 악성림프종인 것을 특징으로 한다. The cancer is solid cancer or blood cancer, and the solid cancer is characterized in that it is lung cancer, brain cancer, liver cancer, breast cancer, ovarian cancer, or colon cancer. In addition, the blood cancer is characterized by leukemia, multiple myeloma, aplastic anemia or malignant lymphoma.
또한 본 발명은 히알루론산 메타아크릴레이트 및 산화된 히알루론산 메타아크릴레이트가 가교된 구조를 포함하는 다공성 3차원 크라이오젤 스캐폴드를 포함하는 세포배양용 조성물을 제공한다. In addition, the present invention provides a composition for cell culture comprising a porous three-dimensional cryogel scaffold comprising a structure in which hyaluronic acid methacrylate and oxidized hyaluronic acid methacrylate are crosslinked.
일 양상에 따른 서로 다른 화학적 구조를 지닌 히알루론산 유도체의 제1성분 및 제2성분이 가교된 구조를 포함하는 다공성 3차원 크라이오젤 스캐폴드(scaffold): 및 상기 스캐폴드 의 챔버내에서 배양된 세포를 포함하는, 생체내 세포 투입칩을 유효성분으로 포함하는 항암용 약학조성물은 상기 스캐폴드가 종래의 2차원 배양과 비교하여, 세포의 성장률, 생존율, 암세포 살상능, 암전이 감소 효과를 나타내어, 암 치료방법 또는 암 치료 조성물로 유용하게 사용될 수 있다. Porous three-dimensional cryogel scaffold comprising a structure in which a first component and a second component of a hyaluronic acid derivative having different chemical structures according to one aspect are crosslinked: and cells cultured in a chamber of the scaffold A pharmaceutical composition for anti-cancer containing an in vivo cell input chip as an active ingredient, wherein the scaffold exhibits a cell growth rate, survival rate, cancer cell killing ability, and cancer metastasis reduction effect compared to a conventional two-dimensional culture, It can be usefully used as a cancer treatment method or a cancer treatment composition.
도 1은 본 발명의 서로 다른 화학적 구조를 지닌 히알루론산 유도체의 제1성분 및 제2성분이 가교된 구조를 포함하는 다공성 3차원 크라이오젤 스캐폴드(scaffold)로, 상기 제1성분은 히알루론산 메타아크릴레이트 유도체이고, 상기 제2성분은 산화된 히알루론산 메타아크릴레이트 유도체(oxHA-MA)인, 3D engineered hyaluronic acid based niche for cell expansion, 3D ENHANCE 스캐폴드의 제작 과정 및 세포 배양 방법을 나타낸 것이다. 1 is a porous three-dimensional cryogel scaffold comprising a structure in which a first component and a second component of a hyaluronic acid derivative having different chemical structures of the present invention are crosslinked, wherein the first component is hyaluronic acid meta An acrylate derivative, the second component is an oxidized hyaluronic acid methacrylate derivative (oxHA-MA), 3D engineered hyaluronic acid based niche for cell expansion, showing the manufacturing process and cell culture method of 3D ENHANCE scaffold.
도 2a는 Hyaluronic acid를 이용하여 제조된 3D ENHANCE 스캐폴드의 전자현미경 사진과 형태의 이미지 사진을 나타낸 것이다. 도 2b는 3D ENHANCE 스캐폴드에 로딩된 (로딩 후 4일) NK92 세포주의 스페로이드 (spheroid) 형성 결과를 나타낸 것이다. Figure 2a shows an electron micrograph of the 3D ENHANCE scaffold prepared using hyaluronic acid and image images in the form. Figure 2b shows the results of spheroid formation in the NK92 cell line loaded (4 days after loading) on the 3D ENHANCE scaffold.
도 3은 본 발명의 3D ENHANCE 스캐폴드의 기공구조에 대한 확인을 기존의 conventional gel과 비교한 결과를 나타낸 것이다. 상기 3D ENHANCE 스캐폴드는 bio-degradable cryogel로, 상기 conventional gel과 동일하게 Hyaluronic acid를 기본으로 제작되었다. Figure 3 shows the results of comparing the pore structure of the 3D ENHANCE scaffold of the present invention with conventional gel. The 3D ENHANCE scaffold was a bio-degradable cryogel, and was produced based on hyaluronic acid in the same manner as the conventional gel.
도 4는 상기 도 3b의 bio-degradable cryogel의 3D ENHANCE 스캐폴드와 conventional gel의 특성을 나타낸 것이다. Figure 4 shows the characteristics of the 3D ENHANCE scaffold and conventional gel of the bio-degradable cryogel of Figure 3b.
도 5a는 본 발명의 3D ENHANCE 스캐폴드의 분해 과정을 나타낸 것이다. 또한 도5b는 상기 3D ENHANCE 스캐폴드의 구성 성분에서, hyaluronic acid와 oxidized hyaluronic acid의 비율과 상기 비율을 조절을 통한 스캐폴드 분해 정도 조절 결과를 나타낸 것이다. 또한 도 5c는 본 발명의 제1성분이 히알루론산 메타아크릴레이트 (HA-MA)이고, 제2성분은 산화된 히알루론산 메타아크릴레이트 (oxHA-MA)인 3D EVHANCE 스캐폴드의 다양한 비율에 따른 생체 분행 특성과 쥐에 상기 스캐폴드를 삽입후 무게를 측정함으로써 독성에 영향을 미치지 않는 것을 확인한 결과를 나타낸 것이다. Figure 5a shows the decomposition process of the 3D ENHANCE scaffold of the present invention. In addition, Figure 5b shows the result of adjusting the ratio of the ratio of the hyaluronic acid and oxidized hyaluronic acid and the ratio of scaffold degradation by adjusting the ratio in the components of the 3D ENHANCE scaffold. In addition, Figure 5c is a living body according to various ratios of the 3D EVHANCE scaffold, wherein the first component of the present invention is hyaluronic acid methacrylate (HA-MA) and the second component is oxidized hyaluronic acid methacrylate (oxHA-MA). It shows the results of confirming that it does not affect the toxicity by measuring the weight after inserting the scaffold into the segmentation characteristics and the rat.
도 6은 현재 3D culture system으로 많이 사용하고 있는 hyaluronic acid based-conventional gel과 2D culture와 비교 결과를 나타낸 것이다. 도6a는 48-well plate culture (2D culture) 에 비해 conventional gel에 대한 세포성장을 배양 후 5일 후 회수된 세포 수를 측정하여 비교한 결과를 나타낸 것이고, 도6b는 FACS를 이용하여, 상기 48-well plate culture (2D culture) 에 비해 conventional gel에 대한 세포생존율과 죽은 세포를 확인한 결과를 나타낸 것이다. 6 shows a comparison result with hyaluronic acid based-conventional gel and 2D culture, which are currently used as a 3D culture system. Figure 6a is a 48-well plate culture (2D culture) compared to the cell growth for conventional gel shows the results of measuring and comparing the number of cells recovered 5 days after cultivation, Figure 6b is using FACS, the 48 It shows the result of checking cell viability and dead cells for conventional gel compared to -well plate culture (2D culture).
도 7은 본 발명의 bio-degradable cryogel의 3D ENHANCE 스캐폴드와 2D cell culture (24 well plate culture 또는 48 well plate culture)에 대한 비교 결과를 나타낸 것이다. 도 7a는 세포성장을 배양 후 5일 후 회수된 세포 수를 측정하여 비교한 결과를 나타낸 것이고, 도 7b는 FACS를 이용하여, 상기 3D ENHANCE 스캐폴드와 2D cell culture (24 well plate culture 또는 48 well plate culture)에 대한 비교 결과를 나타낸 것이다. 도 7c와 도 7d는 SK-SC1 스캐폴드 내에서의 자연살해세포, NK 세포의 세포 사멸 또는 세포 생존율에 대한 결과를 나타낸 것이다. Figure 7 shows the comparison results for the 3D ENHANCE scaffold and 2D cell culture (24 well plate culture or 48 well plate culture) of the bio-degradable cryogel of the present invention. FIG. 7A shows the results obtained by measuring the number of cells recovered 5 days after culturing cell growth, and FIG. 7B shows the 3D ENHANCE scaffold and 2D cell culture (24 well plate culture or 48 well) using FACS. plate culture). 7C and 7D show the results for cell killing or cell viability of natural killer cells, NK cells in the SK-SC1 scaffold.
도 8은 HA-MA와 oxHA-MA비율이 서로 다른 3D-ENHANCE 스캐폴드에 자열살해세포 (Natural killer cell, NK cell)를 로딩 후 2D cell culture와 비교하여, 상기 자연살해세포의 proliferation 과 activity를 비교한 결과를 나타낸 것이다. 도 8a는 형광현미경관찰을 통한 fluorescence image로 live cell을 비교한 결과를 나타낸 것이다. 도 8b는 2D culture와 3D ENHANCE 스캐폴드의 NK cell proliferation, 도 8c는 세포생존율, cell viability를, 도8d는 NK cell migration activity에 대한 2D culture와 3D ENHANCE 스캐폴드 비교, 도8e는 K562 myelogeniys leukemia cell과, Raji Burkitt’s lymphoma cell에 대한 tumor lytic activity에 대한 효과를 2D culture와 3D ENHANCE 스캐폴드 비교하여 나타낸 것이다. 또한 도 8f는 본 발명의 SK-SC1 스캐폴드에서의 NK 세포 활성도 중 NK cell proliferation 증가 효과, 도 8g는 Nk cell migration 증가 효과, 도 8h는 상기 K562 myelogeniys leukemia cell과, Raji Burkitt’s lymphoma cell에 대한 tumor lytic activity 또는 cell cytotoxicity 증가 효과를 2D cell culture와 비교하여 확인한 결과를 나타낸 것이다. 도 8i는 SK-SC1 스캐폴드에 대한 상기 NK 세포 cell proliferation, cytokine/chemokine, NK-medicated cell cytotoxicity 관련 유전자 변화를 확인한 결과를 나타낸 것이다. 또한 도 8j는 상기 3D ENHANCE 스캐폴드에 대한 2D culture (2D)와 비교하여 NK cell proliferation, cytokine receptor interaction, NK cell mediated cytotoxicity 관련 유전자 발현 증가 효과 결과를 나타낸 것이다. Figure 8 is a HA-MA and oxHA-MA ratio of 3D-ENHANCE scaffolds different from each other and after loading the killer cells (Natural killer cell, NK cell), compared to 2D cell culture, proliferation and activity of the natural killer cells It shows the result of comparing. Figure 8a shows the results of comparing live cells with a fluorescence image through fluorescence microscopy. Figure 8b shows 2D culture and 3D ENHANCE scaffold NK cell proliferation, Figure 8c shows cell viability, cell viability, Figure 8d compares 2D culture and 3D ENHANCE scaffold for NK cell migration activity, Figure 8e shows K562 myelogeniys leukemia cell And, the effect on tumor lytic activity on Raji Burkitt's lymphoma cells is shown by comparing 2D culture and 3D ENHANCE scaffold. In addition, Figure 8f is an effect of increasing NK cell proliferation among NK cell activities in the SK-SC1 scaffold of the present invention, Figure 8g is an effect of increasing Nk cell migration, Figure 8h is a tumor for the K562 myelogeniys leukemia cell, and Raji Burkitt's lymphoma cell It shows the results confirmed by comparing the effect of increasing lytic activity or cell cytotoxicity with 2D cell culture. Figure 8i shows the results of confirming the genetic changes related to the NK cell cell proliferation, cytokine/chemokine, and NK-medicated cell cytotoxicity for the SK-SC1 scaffold. In addition, Figure 8j shows the effect of increasing gene expression related to NK cell proliferation, cytokine receptor interaction, and NK cell mediated cytotoxicity compared to 2D culture (2D) for the 3D ENHANCE scaffold.
도 9는 히알루론산 유도체의 제1성분 및 제2성분이 가교된 구조를 포함하는 다공성 3차원 크라이오젤 스캐폴드(scaffold)로, 도 9a는 Collagen/Hyaluronic acid, Hyaluronic acid derivative를 저온에서 가교공정(cryogel)을 통하여, pore의 크기가 150-300 μm 인 스캐폴드, Collagen/Hyaluronic acid를 포함하는 스캐폴드(콜라겐 매트릭스 스캐폴드)를 나타낸 것이다. 도 9b는 상기 Collagen/Hyaluronic acid, Hyaluronic acid derivative를 저온에서 가교공정(cryogel)을 통해 제작된 스캐폴드에 대한 세포 생존율을 2D와 비교하여 나타낸 것이고, 도 9c는 상기 Collagen/Hyaluronic acid를 포함하고, 자연살해세포를 포함하는 히알루론산 스캐폴드에 대한 암세포 살사능의 효과를 2D와 비교하여, 형광현미경으로 관찰 후 형광 image 기록과 암세포 살상능을 그래프로 나타낸 것이다. 도 9d와 도 9f는 상기 콜라겐 매트릭스 스캐폴드 배양된 NK-92에서 1,162개 유전자의 발현 확인을 나타낸 것이며, 또한 도 9g와 도 9h는 상기 콜라겐 매트릭스 스캐폴드 배양된 NK-92에서의 LTA (Lymphotoxin-alpha), HSPE1 (Heat shock protein), HSPA5 (Glucose-regulated protein), CST7 (Cystatin-F, immune regulator), HYOU1 (Hypoxia up-regulated protein 1) 등 암세포 살사능과 관련된 유전자 발현 정도를 확인한 결과를 나타낸 것이다. 9 is a porous three-dimensional cryogel scaffold comprising a structure in which the first and second components of the hyaluronic acid derivative are crosslinked, and FIG. 9A is a crosslinking process of Collagen/Hyaluronic acid and Hyaluronic acid derivative at low temperature ( cryogel), a scaffold having a pore size of 150-300 μm, and a scaffold containing collagen/Hyaluronic acid (collagen matrix scaffold). Figure 9b is a collagen / hyaluronic acid, Hyaluronic acid derivative at a low temperature cross-linking process (cryogel) produced by comparing the cell viability of the scaffold compared to 2D, Figure 9c includes the collagen / hyaluronic acid, The effect of cancer cell killing ability on hyaluronic acid scaffold containing natural killer cells is compared with 2D, and fluorescence image recording and cancer cell killing ability are graphed after observation with a fluorescence microscope. 9D and 9F show expression confirmation of 1,162 genes in the collagen matrix scaffold cultured NK-92, and FIGS. 9G and 9H show LTA (Lymphotoxin-) in the collagen matrix scaffold cultured NK-92. alpha), HSPE1 (Heat shock protein), HSPA5 (Glucose-regulated protein), CST7 (Cystatin-F, immune regulator), HYOU1 (Hypoxia up-regulated protein 1), etc. It is shown.
도 10은 이차원적 세포 배양 (2D culture) 와 본 발명의 3D ENHANCE 스캐폴드를 이용한 적응입양세포 (adoptive cell transfer (ACT)) 세포 치료효과를 비교하여 나타난 것이다. 상기 세포치료효과는 혈액암 세포를 마우스에 주입 후 상기 이차원적 세포 배양 (2D culture) 와 본 발명의 3D ENHANCE 스캐폴드에서 배양한 NK 세포를 주입하여 혈액암 세포 제거정도를 확인하였다. 도 10A는 소동물용 인비보 이미징 장비를 이용하여, 생체 내 형광 신호를 실시간으로 고속으로 촬영하여, 결과를 나타낸 것이다. 도 10b는 survival rate로 결과를 나타낸 것이고, 도 10c는 Body weight로 비교하여 결과를 나타낸 것이다. Figure 10 shows a comparison of the effect of cell therapy (adoptive cell transfer (ACT)) cells using two-dimensional cell culture (2D culture) and the 3D ENHANCE scaffold of the present invention. The cell therapy effect was confirmed by removing blood cancer cells by injecting blood cancer cells into mice and then injecting the two-dimensional cell culture (2D culture) and NK cells cultured in the 3D ENHANCE scaffold of the present invention. Figure 10A shows the results by using the in vivo imaging equipment for small animals, photographing fluorescent signals in vivo at high speed in real time. Fig. 10b shows the results at the survival rate, and Fig. 10c shows the results compared with the body weight.
도 11은 본 발명의 3D ENHANCE 스캐폴드에 EGFR affibody를 포함하는 NK-CAR (자연살해세포-키메릭항원수용체)와 NK 92 세포를 로딩한 후 MDA-MB-231 유방암세포주를 주입한 마우스에 통해 암전이 감소 효과를 확인한 것을 나타낸 것이다. 도 11a는 상기 EGFR 애피바디 (affibody)를 포함하는 NK-CAR (자연살해세포-키메릭항원수용체, zEGFR-CAR) 정보를 나타낸 것이고, 도 11b는 상기 유방암세포주인 MDA-MB-231 EGFR 발현을 FACS로 확인한 것이며, 도 11c는 NK-92와 zEGFR-CAR의 암세포 lyctic activity를 나타낸 것이고, 도 11d는 상기 마우스에 통해 암전이 감소 효과를 확인 실험에 대한 개요를 나타낸 것이며, 도 11e는 FACS를 통해, MDA-MB-231 유방암세포주에 대한 종양마커인 CK18 (cytokeratins 18) 발현을 측정 및 그래프로 나타낸 것이고, 도 11f는 상기 도 11d에서의 MDA-MB-231 유방암세포주를 주입한 마우스에 NK 92와 EGFR affibody를 포함하는 NK-CAR (자연살해세포-키메릭항원수용체, 키메릭항원수용체-자연살해(CAR-NK))를 주입 한 후 유방암 조직에 대해 종양마커 CK18 발현을 비교하여 그래프로 나타낸 것이며, 도 11g는 면역조직화학염색법(Immunohistochemistry staining)을 사용하여 조직변화, 암세포 전이 감소를 확인한 것을 나타낸 것이다. 도 11h는 NK세포가 포함된 SK-SC1 스캐폴드의 암조직에 대한 lytic activity를 확인한 결과를 나타낸 것이다. Figure 11 shows the NK-CAR (natural killer cell-chimeric antigen receptor) containing EGFR affibody and NK 92 cells in the 3D ENHANCE scaffold of the present invention, and then through mice injected with MDA-MB-231 breast cancer cell line. It shows that cancer metastasis reduction effect was confirmed. Figure 11a shows the NK-CAR (natural killer cell-chimeric antigen receptor, zEGFR-CAR) information containing the EGFR affibody, Figure 11b is the breast cancer cell line MDA-MB-231 EGFR expression It was confirmed by FACS, Figure 11c shows the cancer cell lyctic activity of NK-92 and zEGFR-CAR, Figure 11d shows the outline of the experiment confirming the effect of reducing cancer metastasis through the mouse, Figure 11e is through FACS , MDA-MB-231 is a tumor marker for breast cancer cell line CK18 (cytokeratins 18) expression is measured and graphed, Figure 11f is the MDA-MB-231 breast cancer cell line in Figure 11d the mice injected with NK 92 and After injecting NK-CAR (natural killer cell-chimeric antigen receptor, chimeric antigen receptor-natural killer (CAR-NK)) containing EGFR affibody, the tumor marker CK18 expression was compared against breast cancer tissue and graphed. , Figure 11g shows that the tissue change, cancer cell metastasis reduction was confirmed by using immunohistochemistry staining. Figure 11h shows the results of confirming the lytic activity for cancer tissue of SK-SC1 scaffold containing NK cells.
본 발명은 서로 다른 화학적 구조를 지닌 히알루론산 유도체의 제1성분 및 제2성분이 가교된 구조를 포함하는 다공성 3차원 크라이오젤 스캐폴드(scaffold) : 및 상기 스캐폴드 의 챔버내에서 배양된 세포를 포함하는, 생체내 세포 투입칩을 유효성분으로 포함 하는 항암용 약학조성물을 제공한다. The present invention is a porous three-dimensional cryogel scaffold comprising a structure in which a first component and a second component of a hyaluronic acid derivative having different chemical structures are crosslinked: and cells cultured in a chamber of the scaffold It provides an anti-cancer pharmaceutical composition comprising, as an active ingredient, a cell-injection chip in vivo.
상기 제1성분은 히알루론산 메타아크릴레이트 (Hyaluronic acid-methacrylate: HA-MA)이고, 제2성분은 히알루론산 알데히드 메타아크릴레이트 (Hyaluronic acid-aldehyde methacrylate HA-ald-MA) 또는 산화된 히알루론산 메타아크릴레이트(oxHA-MA) 이다.The first component is hyaluronic acid methacrylate (HA-MA), and the second component is hyaluronic acid aldehyde methacrylate (HA-ald-MA) or oxidized hyaluronic acid meta Acrylate (oxHA-MA).
또한, 본 발명은 상기 히알루론산 메타아크릴레이트(HA-MA) 1 내지 2 : 산화된 히알루론산 메타아크릴레이트(oxHA-MA)가 0 내지 2의 중량비로 혼합된 것일 수 있다.In addition, the present invention may be that the hyaluronic acid methacrylate (HA-MA) 1 to 2: oxidized hyaluronic acid methacrylate (oxHA-MA) is mixed in a weight ratio of 0 to 2.
상기 히알루론산 메타아크릴레이트 (HA-MA)는 하기 화학식1로 정의될 수 있고, 상기 히알루론산 알데히드 메타아크릴레이트 (HA-ald-MA)는 하기 화학식2로 정의될 수 있으며, 상기 산화된 히알루론산 메타아크릴레이트(oxHA-MA) 는 하기 화학식3으로 정의될 수 있다. The hyaluronic acid methacrylate (HA-MA) may be defined by the following Chemical Formula 1, and the hyaluronic acid aldehyde methacrylate (HA-ald-MA) may be defined by the following Chemical Formula 2, and the oxidized hyaluronic acid The methacrylate (oxHA-MA) may be defined by Formula 3 below.
Figure PCTKR2019017191-appb-C000001
Figure PCTKR2019017191-appb-C000001
Figure PCTKR2019017191-appb-C000002
Figure PCTKR2019017191-appb-C000002
Figure PCTKR2019017191-appb-C000003
Figure PCTKR2019017191-appb-C000003
본 발명 에서 용어 “크라이오젤”이란, 0℃ 이하(subzero temperature)에서 제조된 다공성 하이드로젤을 의미하는 것으로서, 서로 연결된 기공 구조(interconnected pore structure)를 가지며, 상기 기공의 직경은 2단계의 쿨링(cooling) 기법에 의 해 20 내지 900 ㎛로 조절될 수 있으나, 200 ㎛가 바람직하다. In the present invention, the term “cryogel” refers to a porous hydrogel prepared at 0° C. or lower (subzero temperature), having an interconnected pore structure, and the diameter of the pores is two-step cooling ( cooling) technique can be controlled to 20 to 900 μm, but 200 μm is preferred.
본 발명에서 용어 “가교”는 하나의 중 합체쇄가 다른 중합체쇄에 공유결합으로 연결된 것을 의미한다. In the present invention, the term "crosslinking" means that one polymer chain is covalently linked to the other polymer chain.
본 발명에서 용어, “스캐폴드 (Scaffold)”는 생체 내에서 손상된 장기나 조직의 일부를 대체하여 이들의 기능을 보안 또는 대신하는 물질을 의미하며, 이에 더하여 1 또는 2 이상의 약물을 수용하여 원하는 부위로 전달할 수 있는 물질 일 수 있고, 그 기능과 역할을 충분히 수행할 때 까지 생체 내에서 유지된 후 완전히 분해되어 없어질 수 있는 생분해성 소재일 수 있으나, 이에 제한되지 않는다. 이와 관련하 여, 조직 세포의 체외 배양과 체내 이식이 가능하도록 만들어진 물리적 지지체 및 점착 기질을 의미하기도 한다. 이와 관련하여, 치료를 위한 이종이식제 (xenograft) 또는 자가이식제 (Allograft)도 포함된다. In the present invention, the term, "Scaffold (Scaffold)" refers to a substance that replaces a part of an damaged organ or tissue in vivo to secure or replace their functions, and in addition, to receive a desired site by accommodating 1 or 2 or more drugs It may be a material that can be transferred to, and may be a biodegradable material that can be completely decomposed and then disappeared after being maintained in vivo until it sufficiently performs its function and role, but is not limited thereto. In this connection, it also means a physical support and adhesive substrate made to enable in vitro culture of tissue cells and implantation in the body. In this regard, xenograft for treatment or autograft (Allograft) is also included.
선택적으로 본 발명의 스캐폴드는 세포 운반에 사용되거나, 세포를 배양하기 위해 사용될 수 있다. 세포는 적절한 성장인자의 추가에 의해 분화 또는 다른 생리학적 과정들이 진행되도록 자극될 수 있다. 하나 이상의 사이토카인, 성장인자, 호르몬 또는 그의 혼합물을 포함하는 배양배지가 세포를 미분화 상태로 유지하기 위하여 또는 세포를 특정 경로로 분화시키기 위하여 사용될 수 있다. 이와 관련하여, 상기 스캐폴드는 생물반응기 내에 세포의 정착을 위한 생물학적 환경을 제공하기 위해 사용될 수 있다. 또한 생리학적 및 병리학적 과정, 종양형성 분화 및 혈관 형성을 연구하기 위해서도 사용될 수 있다. 또한 상기 세포 운반은 치료적 사용을 위한 세 포 운반으로 사용될 수 있다. Optionally, the scaffolds of the present invention can be used for cell delivery or for culturing cells. Cells can be stimulated to undergo differentiation or other physiological processes by the addition of appropriate growth factors. Culture media comprising one or more cytokines, growth factors, hormones, or mixtures thereof can be used to keep cells undifferentiated or to differentiate cells by a specific pathway. In this regard, the scaffold can be used to provide a biological environment for the settlement of cells in a bioreactor. It can also be used to study physiological and pathological processes, tumorigenic differentiation and angiogenesis. The cell transport can also be used as a cell transport for therapeutic use.
본 발명에서 용어 “약물”은, 질환 또는 기능이상을 치료하거나 달리 개체의 건강에 영향을 끼치기 위해 피험자에게 투여되는 소분자, 화학 물질, 핵산, 핵산 유도체, 펩타이드, 펩타이드 유도체, 천연 발생 단백질, 비-천연 발생 단백질, 당단백질 및 스테로이드를 지칭할 수 있다. 약물의 비제한적 예는 폴리펩타이드, 예를 들어, 효소, 호르몬, 사이토킨 , 항체 또는 항체 단편, 항체 유도체, 대사 기능에 영향을 끼치는 약물, 유기 화합물, 예를 들어, 진통제, 해열제, 소염제, 항생제, 심혈관 약물, 신장 기능에 영향을 끼치는 약물, 전해질 대사물, 중추 신경계에 작용 하는 약물, 화학요법 화합물, 수용체 작용제 및 수용체 길항제를 포함한다. 또한 상기 약물은, 예를 들어, 세포외 분자, 예를 들어, 혈청 알부민, 면역글로불린, 아 포지단백질 또는 트랜스페린과 같은 혈장 단백질 또는 적혈구 또는 림프구의 표면 에서 발견되는 단백질을 포함하고 이로 제한되지 않는 혈청 인자들을 포함한다. 따라서, 예시적인 약물은 소분자, 화학물질, 핵산, 핵산 유도체, 펩타이드, 펩타이드 유도체, 천연 발생 단백질, 비-천연 발생 단백질, 펩타이드-핵산 (PNA), 스테이플 식 펩타이드, 포스포로디아미데이트 모폴리노, 안티센스 약물, RNA-기반 사일런싱 약물, 압타머, 당단백질, 효소, 호르몬, 사이토킨, 인터페론, 성장 인자, 혈액 응고 인자, 항체, 항체 단편, 항체 유도체, 독소-접합된 항체, 대사 효능제, 진통제, 해열제, 소염제, 항생제, 항미생물제, 항바이러스제, 항진균제, 근골격 약물, 심혈관 약물, 신장 약물, 폐 약물, 소화 질환 약물, 혈액 약물, 비뇨기 약물, 대사 약물, 간 약물, 신경 약물, 항암 약물, 위 병태 치료 약물, 결장 병태 치료 약물, 피부 병태 치료 약물 및 림프 병태 치료 약물을 포함한다. 상기 약물들 중 본 발명의 스캐폴드에 탑재될 수 있는 것이라면 어느 것이라도 적용 가능하며, 단일 약물 뿐 만 아니라 약물의 조합도 적용될 수 있다. 따라서 본 발명의 스캐폴드는 다양한 질환의 치료 용도 또는 조직 재생 용도로 제한 없이 이용될 수 있으며, 이러한 약물 의 선택 및 조합은 당업자가 적절히 선택할 수 있는 것이다.In the present invention, the term “drug” refers to small molecules, chemical substances, nucleic acids, nucleic acid derivatives, peptides, peptide derivatives, naturally occurring proteins, non-proteins, which are administered to a subject to treat a disease or dysfunction or otherwise affect the health of an individual. Naturally occurring proteins, glycoproteins and steroids. Non-limiting examples of drugs include polypeptides, such as enzymes, hormones, cytokines, antibodies or antibody fragments, antibody derivatives, drugs that affect metabolic functions, organic compounds, such as analgesics, antipyretics, anti-inflammatory agents, antibiotics, Cardiovascular drugs, drugs that affect kidney function, electrolyte metabolites, drugs acting on the central nervous system, chemotherapy compounds, receptor agonists and receptor antagonists. The drug may also include, but is not limited to, plasma proteins such as, for example, extracellular molecules, such as serum albumin, immunoglobulins, apolipoproteins, or transferrins, or proteins found on the surface of red blood cells or lymphocytes. Includes arguments. Thus, exemplary drugs include small molecules, chemicals, nucleic acids, nucleic acid derivatives, peptides, peptide derivatives, naturally occurring proteins, non-naturally occurring proteins, peptide-nucleic acids (PNA), staple peptides, phosphorodiamidate morpholino , Antisense drugs, RNA-based silencing drugs, aptamers, glycoproteins, enzymes, hormones, cytokines, interferons, growth factors, blood coagulation factors, antibodies, antibody fragments, antibody derivatives, toxin-conjugated antibodies, metabolic agonists, Analgesic, antipyretic, anti-inflammatory, antibiotic, antimicrobial, antiviral, antifungal, musculoskeletal, cardiovascular, renal, pulmonary, digestive disease, blood, urinary, metabolic, liver, neuro, anticancer, Drugs for treating stomach conditions, drugs for treating colon conditions, drugs for treating skin conditions, and drugs for treating lymph conditions. Any of the above drugs that can be mounted on the scaffold of the present invention can be applied, and not only a single drug but also a combination of drugs can be applied. Therefore, the scaffold of the present invention can be used without limitation as a therapeutic or tissue regeneration application for various diseases, and the selection and combination of these drugs can be appropriately selected by those skilled in the art.
본 발명의 스캐폴드는 다공성 스캐폴드로, 상기 다공성 스캐폴드는 알지네이트, 젤라틴, 콜라겐, 히알루론산과 같 은 세포외기질(extracellular matrix, ECM)의 주성분을 이용하고, 물리 /화학적 가교 방법을 이용하여 제조될 수 있다.The scaffold of the present invention is a porous scaffold, and the porous scaffold uses a main component of an extracellular matrix (ECM) such as alginate, gelatin, collagen, hyaluronic acid, and a physical/chemical crosslinking method. Can be manufactured.
또한 본 발명의 항암용 약학 조성물의 암은 고형암 또는 혈액암인 것이며,자연살해(NK)세포를 특징으로 하며, 상기 자연살해세 포는 키메릭항원수용체-자연살해(CA R-NK)세포가 바람직하다. 상기 키메릭항원수용체(CAR)는 암 특이적 항 EGFR 애피바디 (tumor-specific zEGFR affibodies)의 엑토도메인(ecto-domain)을 포함하는 것을 특징으로 한다. 또한 상기 키메릭항원수용체(CAR)는 힌지(hinge), 막통과 (transmembrane), CD28, DAP10 및 CD3ζ을 포함한다. In addition, the cancer of the pharmaceutical composition for anticancer of the present invention is solid cancer or blood cancer, characterized by natural killer (NK) cells, and the natural killer cell is a chimeric antigen receptor-natural killer (CA R-NK) cell. desirable. The chimeric antigen receptor (CAR) is characterized in that it comprises an ectodomain (ecto-domain) of cancer-specific anti-EGFR affibodies (tumor-specific zEGFR affibodies). In addition, the chimeric antigen receptor (CAR) includes a hinge, transmembrane, CD28, DAP10 and CD3ζ.
본 발명에서 용어 “애피바디 (affibody, affibo dies)”특정 타겟 단백질 (수용체)에 결합 할 수 있는 항체 모사체를 의미할 수 있다. 일반적으로 애피바디는 20 내지 150의 아미노산 잔기 로 구성되며, 2 내지 10개의 알파 헬릭스로 구성될 수 있고, 세포의 특 정 수용체 또는 표적 단백질을 인식할 수 있는 애피바디 또는 애피바디 분자를 모두 포함할 수 있다. 본 발명에서는 상세하게 EGFR을 타겟으로, EGFR 단백질을 인식할 수 있는 애피바디를 의미할 수 있다. 상기 EGFR은 성장인자 수용체 epidermal growth receptor로, 고형암 또는 혈액암 등 많은 암세포에서 과발현되는 것으로 보고되어져 있다. In the present invention, the term “affibody (affibody, affibo dies)” may mean an antibody mimetic capable of binding to a specific target protein (receptor). In general, the affibody consists of 20 to 150 amino acid residues, may be composed of 2 to 10 alpha helixes, and may include both affibody or affibody molecules capable of recognizing a specific receptor or target protein of a cell. Can be. In the present invention, in detail, an EGFR target may mean an aphibody capable of recognizing an EGFR protein. The EGFR is a growth factor receptor epidermal growth receptor, and has been reported to be overexpressed in many cancer cells such as solid cancer or blood cancer.
한편, 본 발명의 약학 조성물은 약학적 또는 약제학적으로 허용되는 담체를 포함한다. 본 발명의 약학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시 통상적으로 이용되는 것으로서, 본 발명의 약제 학적 조성물은 상기 성분들 이외에 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다.On the other hand, the pharmaceutical composition of the present invention includes a pharmaceutical or pharmaceutically acceptable carrier. The pharmaceutically acceptable carrier included in the pharmaceutical composition of the present invention is commonly used in preparation, and the pharmaceutical composition of the present invention may further include a suspending agent, a preservative, etc. in addition to the above components. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).
본 발명의 약학적 조성물이 객체에 투여되는 방식으로 사용되는 경우, 정맥 내 주입, 피하 주입, 근육 주입, 복강 주입 등 약학적 분야에서 통상의 방법에 따라 환 자의 신체 내 투여에 적합한 단위투여형의 제제로 제형화시켜 투여할 수 있다. When the pharmaceutical composition of the present invention is used in a manner to be administered to an object, a unit dosage form suitable for intra-body administration of a patient according to a conventional method in the pharmaceutical field such as intravenous injection, subcutaneous injection, muscle injection, intraperitoneal injection, etc. It can be formulated and administered as a formulation.
본 발명의 약학적 조성물의 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물 형태, 투여경로, 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다.The preferred dosage of the pharmaceutical composition of the present invention depends on the patient's condition and body weight, the degree of disease, the drug form, the route of administration, and the duration, but can be appropriately selected by those skilled in the art.
본 발명의 약학적 조성물은 주사용 앰플을 통해 사용될 수 있다. 상기 주사용 앰플 은 사용 직전에 주사액과 혼합 조제할 수 있으며, 주사액으로는 생리 식염수, 포도 당, 만니톨, 링거액 등을 사용할 수 있다. 이렇게 제조된 본 발명의 조성물 또는 약학적 제제는 당업계에서 통상적으로 사용하는 투여방법을 이용하여 이식 및 기타 용도에 사용되는 세포와 함께 혼합물의 형태로 투여될 수 있다. 유효성분의 실제 투여량은 치료하고자 하는 질환, 질환의 중증도, 투여경로, 환자의 체중, 연령 및 성별 등의 여러 관련 인자에 비추어 결정되어야 한다.The pharmaceutical composition of the present invention can be used through an ampoule for injection. The ampoule for injection may be mixed with an injection solution immediately before use, and physiological saline, glucose, mannitol, Ringer's solution, etc. may be used as the injection solution. The composition or pharmaceutical preparation of the present invention thus prepared may be administered in the form of a mixture with cells used for transplantation and other uses, using administration methods conventionally used in the art. The actual dosage of the active ingredient should be determined in light of various relevant factors such as the disease to be treated, the severity of the disease, the route of administration, the patient's weight, age and sex.
본원 발명의 조성물은 세포를 현탁하기 위한 배지, 고형암 또는 혈액암에 효과적인 유전자 (예: 항-염증성 사이토카인 (anti-inflammatory cytokine) 유전자, 염증성 사이토카인 (inflammatory cytokine)에 대한 siRNA 또는 안티-센스 프라이머 (antisenseprim er)) 또는 이를 포함하는 발현벡터, 자가분비 (autocrine) 또는 측분비 (paracrine) 효과를 제공하는 사이토카인, 성장인자 (growth factor), 및 이 들의 조합으로 이루어진 군에서 선택된 보조성 분을 하나 이상 추가로 포함할 수 있다. 이 때, 배지는 상기 배양용 배지와 동일한 종류의 배지일 수 있으며, 혈청, 항생제 및 항진균제는 전혀 포함하지 않는다.The composition of the present invention is a medium for suspending cells, a gene effective for solid cancer or blood cancer (e.g., anti-inflammatory cytokine gene, siRNA for inflammatory cytokine or anti-sense primer) (antisenseprim er)) or an expression vector containing the same, a cytokine that provides an autocrine or paracrine effect, a growth factor, and a combination thereof selected from the group consisting of One or more may be included. At this time, the medium may be the same type of medium as the culture medium, and does not contain serum, antibiotics, and antifungal agents at all.
본 발명의 약학 조성물에 포함된 상기 생체 투입용 조성물의 함량은 특별히 이에 제한되지 않으나, 최종 조성물 총중량을 기준으로 10 내지 50 중량%, 보다 구체적으로는 20 내지 40 중량%의 함량으로 포함될 수 있다. The content of the composition for bio-injection included in the pharmaceutical composition of the present invention is not particularly limited, but may be included in an amount of 10 to 50% by weight, more specifically 20 to 40% by weight based on the total weight of the final composition.
상기 본 발명의 약학 조성물은 약제학적으로 유효한 양으로 투여될 수 있는데, 본 발명의 용어 "약제학적으로 유효한 양"이란 의학적 치료 또는 예방에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료 또는 예방하기에 충분한 양을 의미하며, 유효 용량 수준은 질환의 중증도, 약물의 활성, 환자의 연령, 체중, 건강, 성별, 환자의 약물에 대한 민감도, 사용된 본 발명 조성물의 투여 시간, 투여 경로 및 배출 비율 치료기간, 사용된 본 발명의 조성물과 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 약학 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적으로 또는 동시에 투여될 수 있다. 그리고 단일 또는 다중 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하다.The pharmaceutical composition of the present invention may be administered in a pharmaceutically effective amount, the term "pharmaceutically effective amount" of the present invention to treat or prevent a disease at a reasonable benefit/risk ratio applicable to medical treatment or prevention By sufficient amount, the effective dose level is the severity of the disease, the activity of the drug, the patient's age, weight, health, sex, the patient's sensitivity to the drug, the time of administration of the composition of the invention used, the route of administration and the rate of discharge treatment The duration can be determined according to factors including drugs used in combination or coincidental with the composition of the present invention used and other factors well known in the medical field. The pharmaceutical composition of the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, and may be administered sequentially or simultaneously with conventional therapeutic agents. And it can be administered single or multiple. Considering all of the above factors, it is important to administer an amount that can achieve the maximum effect in a minimal amount without side effects.
본 발명의 약학 조성물의 투여량은 예를 들어, 암 발생 부위에 1개소 또는 복수 개소(예를 들면 2~50개소)에 투여할 수 있으며, 투여량은 구체적으로는 1.0 × 105 내지 1.0 × 108 세포수/kg(체중), 보다 구체적으로는 1.0 × 106 내지 1.0 × 107 세포수/kg(체중)이 될 수 있다.The dosage of the pharmaceutical composition of the present invention can be administered at one or multiple sites (for example, 2 to 50 sites) at a site where cancer is generated, and the dosage is specifically 1.0×105 to 1.0×108. The number of cells/kg (body weight), and more specifically, may be 1.0×10 6 to 1.0×10 7 cell number/kg (body weight).
본 발명의 다른 하나의 양태는 상기 약학 조성물을 장기, 혈관 조직 등에 발생한 고형암 또는 혈액암이 발생된 개체에 투여하는 단계를 포함하는, 암의 치료방법을 제공한다.Another aspect of the present invention provides a method of treating cancer, comprising administering the pharmaceutical composition to an individual in which solid cancer or blood cancer has occurred in organs, vascular tissues, and the like.
또한, 상기 치료방법은 타 치료약물을 추가로 투여하는 단계를 또는 병행하여 투여하는 단계를 포함할 수 있다.In addition, the treatment method may include the step of additionally administering another therapeutic drug or in parallel.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments are provided to help understanding of the present invention. However, the following examples are only provided to more easily understand the present invention, and the contents of the present invention are not limited by the following examples.
<실시예1.> 히알루론산 유도체의 제1성분 및 제2성분이 가교된 구조를 포함하는 다 공성 3차원 크라이오젤 스캐폴드(scaffold) 제조<Example 1>> Preparation of porous three-dimensional cryogel scaffold comprising a structure in which the first component and the second component of the hyaluronic acid derivative are crosslinked
생리 화학적 조건 하에서 분해도가 서로 다른 물질, 제 1성분과 제 2성분을 수용액상에서 혼합한 후에, 제조된 몰드위에 붇고, 저온에서 얼린 후에 가교를 서서히 진행하고, 가교 후 동결건조방 법을 이용하여 얼음층(ice crystal)을 제거하여 서로 연결된(cross-linked) 구조의 기공(pore)을 갖는 크라이오젤 스캐폴드를 제조하였다. 제1성분에는 히알루론산 메타아크릴레이트(HA-MA), 콜라겐(Collagen)이 있고, 이에 대응하는 제2성분에는 히알루론산 알데히드 메타아크릴레이트(HA-ald-MA), 히알루론산(Hyaluronic acid) 또는 산화된 히알루론산 메타아크릴레이트(oxHA-MA)이 있다.Substances with different degrees of decomposition under physiological and chemical conditions, after mixing the first component and the second component in an aqueous phase, float on a prepared mold, freeze at a low temperature, and gradually crosslink, and then crosslink the ice layer using a freeze-drying method. (ice crystal) was removed to prepare a cryogel scaffold having cross-linked pores. The first component is hyaluronic acid methacrylate (HA-MA), collagen (Collagen), and the corresponding second component is hyaluronic acid aldehyde methacrylate (HA-ald-MA), hyaluronic acid (Hyaluronic acid) or Oxidized hyaluronic acid methacrylate (oxHA-MA).
1-1. 제1성분이 히알루론산 메타아크릴레이트 (HA-MA)이고, 제2성분은 히알루론산 알데히드 메타아크릴레이트 (HA-ald-MA)인 스캐폴드 제조 (SK-SC1 스캐폴드 제조) 1-1. Preparation of a scaffold with the first component being hyaluronic acid methacrylate (HA-MA) and the second component being hyaluronic acid aldehyde methacrylate (HA-ald-MA) (manufactured by SK-SC1 scaffold)
히알루론산(Hyal uronic acid: HA, 500 kDa)을 10㎎/㎖의 농도로 100㎖의 증류수에 녹이고, 3.85g의 메타크릴 무수화물(Methacrylic anhydride: MA)을 첨가한다. 5N의 수산화나트륨을 사용하여 pH를 8로 맞추고, 상온, 암실에서 교반시킨 후, 48시간 동안 증류수에 투석(12-14 KDa cutoff)하고 동결건조하여 HA-MA을 제조하였다. 그 다음, 히알루론산(HA, 500 kDa)을 10㎎/㎖의 농도로 100㎖의 증류수에 녹이고 과아 이오딘산나트륨(NaIO4) 534㎎을 첨가하여 24시간 동안 암실, 상온에서 교반하여 산화반응이 충분히 일어나도록 하였다. 산화반응을 종결시키기 위해 에틸렌 글리 콜(Ethylene glycol) 1g을 첨가하여 1시간 동안 상온에서 교반시킨 후, 48시간 동 안 증류수에 투석(12-14 KDa cutoff)하고 동결건조 하여 HA-ald을 제조하였다. 제조한 HA-ald 1g을 100㎖의 증류수에 녹이고 3.85g의 메타크릴 무수화물(MA)을 첨가하였다. 이어서 5N의 수산화나트륨을 사용하여 pH를 8로 맞추고 암실, 실온에서 교반시킨 후, 48시간 동안 증류수에 투석(12-14 KDa cutoff)하고, 동결건조 하여 HA-ald-MA을 제조하였다. 상기 HA-MA 100㎎과 HA-ald-MA 100㎎을 10㎎/㎖의 농도로 4℃에서 다양한 비율(HA-MA:HA-ald-MA=1:0, 2:1, 1:1)로 PBS에 녹인다. 상기 혼합 용액에 30㎎의 과산화황산암모늄(ammonium persulfate)을 첨가하여 섞어주었다. HA-MA과 HA-ald-MA의 가교결합 반응을 유도하기 위해 테트라메틸에틸디아 민(N,N,N',N'-tetramethylethylenediamine) 60㎕를 상기 혼합용액에 첨가하여 완전 히 섞어주었다. 상기 혼합물을 재빨리 PDMS 몰드(mold)에 옮기고 -20℃에 24시간 동안 보관하여 HA-MA/HA-ald-MA를 포함하는 크라이오젤 스캐폴드 (SK-SC1 스캐폴 드)를 제조하였다. 상기 스캐폴드는 70% 에탄올 용액을 이용하여 살균한 후, PBS 를 이용하여 3번 세척하였다.Hyaluronic acid (Hyal uronic acid: HA, 500 kDa) is dissolved in 100 ml of distilled water at a concentration of 10 mg/ml, and 3.85 g of Methacrylic anhydride (MA) is added. HA-MA was prepared by adjusting the pH to 8 using 5N sodium hydroxide, stirring at room temperature and in the dark, and dialysis (12-14 KDa cutoff) in distilled water for 48 hours, followed by freeze-drying. Then, hyaluronic acid (HA, 500 kDa) was dissolved in 100 ml of distilled water at a concentration of 10 mg/ml, and 534 mg of sodium periodate (NaIO4) was added, followed by stirring for 24 hours in the dark and room temperature so that the oxidation reaction was sufficiently To get up. To terminate the oxidation reaction, 1 g of ethylene glycol was added and stirred at room temperature for 1 hour, then dialyzed in distilled water for 12 hours (12-14 KDa cutoff) and lyophilized to prepare HA-ald. . 1 g of the prepared HA-ald was dissolved in 100 ml of distilled water, and 3.85 g of methacryl anhydride (MA) was added. Subsequently, the pH was adjusted to 8 using 5N sodium hydroxide, and the mixture was stirred at dark room and room temperature, dialyzed in distilled water (12-14 KDa cutoff) for 48 hours, and lyophilized to prepare HA-ald-MA. The ratio of 100 mg of HA-MA and 100 mg of HA-ald-MA at a concentration of 10 mg/ml at 4° C. (HA-MA:HA-ald-MA=1:0, 2:1, 1:1) Dissolve in PBS. 30 mg of ammonium persulfate was added to the mixed solution and mixed. In order to induce the cross-linking reaction between HA-MA and HA-ald-MA, 60 µl of tetramethylethyldiamine (N,N,N',N'-tetramethylethylenediamine) was added to the mixed solution and thoroughly mixed. The mixture was quickly transferred to a PDMS mold and stored at -20°C for 24 hours to prepare a cryogel scaffold (SK-SC1 scaffold) containing HA-MA/HA-ald-MA. The scaffold was sterilized using 70% ethanol solution, and then washed 3 times using PBS.
1-2. 제1성분이 히알루론산 메타아크릴레이트(HA-MA)이고, 제2성분은 산화된 히알루론산 메타아크릴레이트(oxHA-MA)인 스캐폴드 제조 (3D ENHANCE 스캐폴드 제조) 1-2. Production of scaffolds with the first component being hyaluronic acid methacrylate (HA-MA) and the second component being oxidized hyaluronic acid methacrylate (oxHA-MA) (manufactured by 3D ENHANCE scaffold)
히알루론산 메타아크릴레이트(Methacrylate Modified Hyaluronic Acid (HA-MA) 100mg과 산화된 히알루론산 메타아크릴레이트 methacrylate-m odified oxidized HA (oxHA-MA) 100㎎을 10㎎/㎖의 농도로 4℃에서 다양한 비율(HA-MA:ox-MA=1:0, 2:1, 1:1)로 PBS에 녹인다. 상기 혼합 용액에 30㎎의 과산화황산암모늄(ammonium persulfate)을 첨가하여 섞어 주었다. HA-MA과 oxHA-MA의 가교결합 반응을 유도하기 위해 테트라메틸 에틸디아민(N,N,N',N'- tetramethylethylenediamine, TEMED) 60㎕를 상기 혼합용액에 첨가하여 완전히 섞어주었다. 상기 혼합물을 재빨리 PDMS 몰드(mold)에 옮기고 -20℃에 24시간 동안 보관하여 HA-MA/oxHA-MA를 포함하는 크라이오젤 스캐폴드를 제조하였다. 상기 스캐폴드는 70% 에탄올 용액을 이용하여 살균 한 후, PBS를 이용하여 3번 세척하였다 (도 1). 상기와 같이 Hyaluronic acid를 이용하여 제조된 3D ENHANCE 스캐폴드의 전자현기명 사진과 형태의 이미지 사진을 기록한 후 (도 2a) NK-92 세포를 dropping 방법을 통하여, hyaluronic acid를 중합에 이용한 3D-engineered hyaluronic acid-based niche for cell expansion (3D- ENHANCE)에 로딩 후 7일간 세포의 proliferation 경향을 형광 현미경을 통하여 관찰하였다(도 2b).100 mg of 100 mg of Methacrylate Modified Hyaluronic Acid (HA-MA) and 100 mg of oxidized hyaluronic acid methacrylate-m odified oxidized HA (oxHA-MA) at a concentration of 10mg/ml at 4℃ Dissolve in PBS with (HA-MA:ox-MA=1:0, 2:1, 1:1) 30 mg of ammonium persulfate was added to the mixed solution and mixed with HA. To induce the crosslinking reaction of oxHA-MA, 60 µl of tetramethyl ethyldiamine (N,N,N',N'-tetramethylethylenediamine, TEMED) was added to the mixed solution, and the mixture was thoroughly mixed. mold) and stored at -20° C. for 24 hours to prepare a cryogel scaffold containing HA-MA/oxHA-MA.The scaffold was sterilized using a 70% ethanol solution, followed by PBS. Washed 3 times (FIG. 1) After recording the electrophotographic and morphological image photographs of the 3D ENHANCE scaffold prepared using hyaluronic acid as described above (FIG. 2A) through the method of dropping NK-92 cells, After loading hyaluronic acid in 3D-engineered hyaluronic acid-based niche for cell expansion (3D-ENHANCE) used for polymerization, the proliferation trend of cells was observed through a fluorescence microscope for 7 days (FIG. 2B).
<실시예2.> 다공성 삼차원 중합 스캐폴드의 기공구조 또는 분해 과정 분석 <Example 2> Analysis of pore structure or decomposition process of porous three-dimensional polymerization scaffold
본 발명의 3D ENHANCE 스캐폴드의 기공구조에 대한 확인을 기존의 conventional gel과 비교하였다 (도 3). 상기 3D ENHANCE 스캐폴드는 bio-degradable cryogel로 상기 conventional gel과 동일하게 Hyaluronic acid를 기본으로 제작되었다. 본 발명의 3D ENHANCE 스캐폴드, Bio-degradable cryogel의 경우 -20℃에서 24시간 동안 냉동겔화(cryogelation)를 통해 만들어졌기 때문에 내부에 일정한 크기의 기공구 조(interconnected pore structure)가 생성된다. 이러한 일정한 크기의 기공구조에 세포가 spheroid 형태로 자라게 된다. NK 세포의 spheroid 형성은 세포의 증식력, 생존력, 살상력을 높여준다. 이와는 다르게 conventional gel은 기공의 크기가 일 정하지 않으며 기공구조 자체가 제대로 형성되지 않는다. 따라서 세포의 로딩이 어 렵고 기공 내에 세포가 제대로 안착되지 않는다. 도 4에 상기 본 발명의 3D ENHANCE 스캐폴드 bio-degradable cryogel의 3D ENHANCE 스캐폴드와 conventional gel의 특성을 나타내었다. The confirmation of the pore structure of the 3D ENHANCE scaffold of the present invention was compared with the conventional gel (FIG. 3). The 3D ENHANCE scaffold is a bio-degradable cryogel and was produced based on hyaluronic acid in the same manner as the conventional gel. In the case of the 3D ENHANCE scaffold of the present invention, Bio-degradable cryogel, since it was made through cryogelation at -20°C for 24 hours, an interconnected pore structure of a certain size is generated therein. Cells grow in the form of spheroids in this constant size pore structure. The formation of spheroids in NK cells enhances the cell's proliferation, viability and killing power. In contrast, conventional gels do not have a uniform pore size and the pore structure itself is not formed properly. Therefore, it is difficult to load the cells and the cells do not properly settle within the pores. 4 shows the characteristics of the 3D ENHANCE scaffold and conventional gel of the 3D ENHANCE scaffold of the present invention bio-degradable cryogel.
그 다음으로, 도 5a 또는 도 5b와 같이, 본 발명의 3D ENHANCE 스캐폴드의 분해 과정 분석하였다. Bio-degradable cryogel의 가장 큰 장점은 scaffold의 분해 정도를 조절 할 수 있다는 점이다. Bio-degradable cryogel은 크게 두 단계의 분해를 거친다. 첫 번째 단계의 분해는 oxidize d hyaluronic acid의 분해로 빠르게 일어난다. 두 번째 단계의 분해는 hyaluronic acid의 분해로 비교적 천천히 일어난다(도 5a). 따라서 hyaluronic acid와 oxidized hyaluronic acid의 비율을 조절함으로써 scaffold의 분해 정도를 조절 할 수 있다(도 5b). Next, as shown in Figure 5a or 5b, the analysis of the degradation process of the 3D ENHANCE scaffold of the present invention. The biggest advantage of bio-degradable cryogel is that it can control the degree of scaffold degradation. Bio-degradable cryogel undergoes two major steps of decomposition. The first stage of decomposition occurs rapidly with the decomposition of oxidize d hyaluronic acid. The second stage of decomposition occurs relatively slowly due to the decomposition of hyaluronic acid (Fig. 5a). Therefore, by controlling the ratio of hyaluronic acid and oxidized hyaluronic acid, the degree of decomposition of scaffold can be controlled (FIG. 5B).
또한 본 발명의 제1성분이 히알루론산 메타아크릴레이트 (HA-MA)이고, 제2성분은 히알루론산 알데히드 메타아크릴레이트 (HA-ald-MA)인 스캐폴드인 SK-SC1 스캐폴드에 대한 생체 분해 특성을 확인한 결과, 도 5c와 같이 분해가 되는 것을 확인하였으며, 상기 SK-SC1 스캐 폴드를 쥐 또는 마우스에 삽입한 후 쥐의 무게를 측정한 결과, 상기 삽입된 스캐폴드가 쥐에 독성을 미치지 않는 것을 확인하였다. In addition, biodegradation to the SK-SC1 scaffold, the scaffold of which the first component of the present invention is hyaluronic acid methacrylate (HA-MA), and the second component is hyaluronic acid aldehyde methacrylate (HA-ald-MA) As a result of confirming the characteristics, it was confirmed that the decomposition was performed as shown in FIG. 5C, and the weight of the rat was measured after inserting the SK-SC1 scaffold into a rat or mouse, and the inserted scaffold did not cause toxicity to the rat. Was confirmed.
<실시예3.> 3D 스캐폴드와 2D cell culture 비교<Example 3> 3D scaffold and 2D cell culture comparison
도 6과 같이, 3D culture system으로 많이 사용하고 있는 hyaluronic acid based- conventional gel과 2D culture와 비교하였다. 48-well plate(2D)와 conventional gel 에 동일 양의 세포 (1.25x105cells)를 배양하고 5일 후 회수된 세포 수를 측정하여 세포성장률을 확인해 본 결과 48-well plate culture에 비해 conventional gel에서 세포성장률이 높음을 확인하였으나 깔아주었던 세포 수에 비해서는 전혀 자라지 않았음을 확인하였다(도 6a). 그리고 회수된 세포 수의 오차범위가 크고 48-well plate culture에 비해 세포생존율이 낮은 뿐만 아니라 80% 이상 죽은 세포였다(도 6b). As shown in FIG. 6, hyaluronic acid based- conventional gel, which is commonly used as a 3D culture system, was compared with 2D culture. After culturing the same amount of cells (1.25x10 5 cells) in 48-well plate (2D) and conventional gel and measuring the number of cells recovered after 5 days, the cell growth rate was confirmed. Although it was confirmed that the cell growth rate was high, it was confirmed that it did not grow at all compared to the number of cells laid (Fig. 6A). In addition, the error range of the number of recovered cells was large and the cell viability was lower than that of the 48-well plate culture, as well as 80% or more of the dead cells (FIG. 6B ).
그 다음 본 발명의 3D ENHANCE 스캐폴드와 2D cell culture 비교를 도 7과 같이 진 행하였다. 본 발명의 bio-degradable cryogel의 3D ENHANCE 스캐폴드와 2D culture (24 well plate culture 또는 48 well plate culture)에 대한 비교 결과, bio- degradable cryogel culture(0.5x105cells)의 경우 세포배양 5일 후 20배 이상 세포 가 자란 것을 확인하였다. 그에 비해 24-well plate culture (2.5x105cells)시 오히려 세포가 줄었으며 48-well plate culture (0.25x105cells)에서는 대략 5배 정도 증가하였다 (도 7a). 세포생존률을 측정하였을 경우 24-well plate culture의 경우 죽은 세포가 70% 이상이였으며, 48-well plate culture시에는 살아있는 세포와 죽 은 세포가 대략 절반씩 차지하였으나 bio-degradable cryogel의 경우 대략 20%의 세포만이 죽어있었다(도 7b). Then, the 3D ENHANCE scaffold of the present invention was compared with the 2D cell culture as shown in FIG. 7. As a result of comparison of the 3D ENHANCE scaffold and 2D culture (24 well plate culture or 48 well plate culture) of the bio-degradable cryogel of the present invention, in the case of bio-degradable cryogel culture (0.5x10 5 cells) 5 days after cell culture 20 It was confirmed that embryonic abnormal cells grew. In comparison, cells decreased in 24-well plate culture (2.5x10 5 cells) and increased approximately 5 times in 48-well plate culture (0.25x10 5 cells) (FIG. 7A). In the case of measuring cell viability, dead cells were more than 70% in 24-well plate culture, and in 48-well plate culture, live cells and dead cells accounted for approximately half, but in bio-degradable cryogel, approximately 20% Only cells were dead (FIG. 7B ).
그 다음으로, SK-SC1 스캐폴드 내에서의 자연살해세포(NK) 세포의 세포 생존율을 도 7c 또는 도 7d와 같이 비교한 결과, 2D cell culture (2D ) 에서의 세포 배양은 5일 이후부터 세포 사멸히 급격하게 증가하였지만, 본 발명의 상기 3D, SK-SC1 스캐폴드에서는 2D에 비해 적은 수의 세포 사멸을 확인하였다. Next, as a result of comparing the cell viability of natural killer cells (NK) cells in the SK-SC1 scaffold as shown in Figure 7c or Figure 7d, cell culture in 2D cell culture (2D) cells after 5 days Although death increased rapidly, in the 3D and SK-SC1 scaffolds of the present invention, fewer cell deaths were observed than in 2D.
그 다음, 자연살해세포 (Natural killer cell, NK cell)을 이용하여 3D ENHANCE 스캐폴드(3D) 와 2D cell culture (2D) 비교를 하였다. 먼저 형광 현미경 (광학전자형광현미경) 관찰을 통한 fluorescence image로 live cell을 비교를 하였다. 도 8a와 같이 2D와 비교하여, live cell이 증가 한 것으로 확인되었고, 도 8b과 같이 2D culture와 3D ENHANCE 스캐폴 드의 NK cell proliferation을 비교한 결과, 상기 2D보다 본 발명의 3 D에서, cell proliferation이 증가한 것이 확인되었다. 또한 도 8c는 세포생존율을 확인한 결과로, 2D와 비교하여, 본 발명의 3D에서 Cell death가 감소한 것으로 나타났으며(cell viability 증가), 도 8d과 같이 NK cell migration activity에 대한 2D cell culture와 3D ENHANCE 스캐폴드 비교한 결과, 상기 2D와 비교하여, 본 발명의 3D에서 NK-92 Cell migration activity가 증가한 것으로 나타났다. 또한 도 8e와 같이 K562 myelogeniys leukemia cell과, Raji Burkitt’s lymphoma cell에 대한 tumor lytic activity에 대한 효과를 2D culture와 3D ENHANCE 스캐폴드 비교한 결과, 2D와 비교하여, 본 발명의 3D ENHANCE 스캐폴드에서 암세포 용해능(tumor lytic activity)이 증가한 것으로 나타났다. 또한 NK 세포 활성과 관련하여, 도8j와 같이 2D culture (2D)와 비교하여 NK cell proliferation, cytokine receptor interaction, NK cell mediated cytotoxicity 관련 유전자 발현을 확인한 결과 2D에 비해 본 발명의 3D ENHANCE 스캐폴드에서 상기의 유전자 발현이 증가하는 것을 확인하였다. Then, 3D ENHANCE scaffold (3D) and 2D cell culture (2D) were compared using natural killer cells (NK cells). First, live cells were compared by fluorescence image through fluorescence microscopy (optical electron fluorescence microscopy) observation. Compared to 2D as shown in FIG. 8A, it was confirmed that the live cell increased, and as a result of comparing NK cell proliferation of 2D culture and 3D ENHANCE scaffold as shown in FIG. 8B, in 3D of the present invention than the 2D, cell It was confirmed that proliferation increased. In addition, Figure 8c is a result of confirming the cell viability, compared to 2D, it was found that the cell death in the 3D of the present invention is reduced (increased cell viability), 2D cell culture and 3D for NK cell migration activity as shown in Figure 8d As a result of comparing the ENHANCE scaffold, it was found that the NK-92 cell migration activity increased in 3D of the present invention compared to the 2D. In addition, as compared to 2D culture and 3D ENHANCE scaffold for the effect of tumor lytic activity on K562 myelogeniys leukemia cell and Raji Burkitt's lymphoma cell as shown in FIG. 8E, compared with 2D, cancer cell lysis in 3D ENHANCE scaffold of the present invention Tumor lytic activity increased. In addition, in relation to NK cell activity, as shown in FIG. 8j, as compared with 2D culture (2D), NK cell proliferation, cytokine receptor interaction, and NK cell mediated cytotoxicity-related gene expression were confirmed, compared to 2D, in the 3D ENHANCE scaffold of the present invention. It was confirmed that the expression of the gene is increased.
또한 SK-SC1 스캐폴드에서의 NK 세포 활성도를 2D cell culture(2D)와 비교하여 확인한 결과, 도 8f와 같이 NK 세포주인 NK 92 세포의 cell proliferation 증가하였고, 또한 도 8g와 같이 cell migration이 증가한 것을 확인하였다. 또한 도 8h와 같이 상기 K562 m yelogeniys leukemia cell과, Raji Burkitt’s lymphoma cell에 대한 tumor lytic activity 또는 cell cytotoxicity가 증가한 것을 확인하였다. 또한 도 8i와 같이 SK-SC1 스캐폴드에 대한 상기 NK 세포 cell proliferation, cytokine/chemokine, NK-medicated cell cytotoxicity 관련 유전자 변화를 확인하 였다. In addition, as a result of confirming NK cell activity in the SK-SC1 scaffold compared to 2D cell culture (2D), cell proliferation of NK cell line NK 92, as shown in FIG. 8F, and cell migration increased as shown in FIG. 8G. Confirmed. In addition, it was confirmed that the tumor lytic activity or cell cytotoxicity of the K562 m yelogeniys leukemia cell and Raji Burkitt's lymphoma cell increased as shown in FIG. 8h. In addition, as shown in Figure 8i, the NK cell cell proliferation, cytokine/chemokine, and NK-medicated cell cytotoxicity related gene changes for the SK-SC1 scaffold were confirmed.
<실시예4.> 히알루론산 유도체의 제1성분 및 제2성분이 가교된 구조를 포함하는 다공성 3차원 크라이오젤 스캐폴드(scaffold)로, 콜라겐과 히알루론을 포함하는 스 캐폴드 (콜라겐 매트릭스 스캐폴드) 제조 및 세포 활성 측정 <Example 4.> A porous three-dimensional cryogel scaffold comprising a structure in which the first and second components of a hyaluronic acid derivative are crosslinked, and a scaffold comprising collagen and hyaluron (collagen matrix scaffold) Fold) production and cell activity measurement
히알루론산 유도체의 제1성분 및 제2 성분이 가교된 구조를 포함하는 다공성 3차원 크라이오젤 스캐폴드(scaffold)로, 콜라겐과 히알루론산을 포함하는 스캐폴드로, Collagen/H yaluronic acid를 포함하는 스캐폴드 (콜라겐 매트릭스 스캐폴드) 제조 및 세포 활성을 측정하였다(도 9). Collagen/Hyaluronic acid, Hyaluronic acid derivative를 저온에서 가교공정(cryogel)을 통하여, pore의 크기가 150-300 μm 인 스캐폴드 제작 (200μm가 바람직)한 다음(도 9a), NK-92 세포주를 injection 방 법을 통하여, Collagen/Hyaluronic acid porous scaffold (C.S)에 로딩 후 7일까지 NK 세포의 활성을 측정하였다. 상기 스캐폴드에서 배양된 NK 세포는 2D cell culture(2D) 보다 세포의 생존률 (Viability, 도면 9b)과 암세포 살상능 (Cytotoxicity)이 증가된 것을 확인하였다(도 9c). A porous three-dimensional cryogel scaffold comprising a structure in which the first component and the second component of the hyaluronic acid derivative are crosslinked, a scaffold containing collagen and hyaluronic acid, and a scaffold containing Collagen/H yaluronic acid Fold (collagen matrix scaffold) preparation and cell activity were measured (Figure 9). After the collagen/Hyaluronic acid and Hyaluronic acid derivatives were cross-linked at low temperature (cryogel), a scaffold with a pore size of 150-300 μm was produced (200 μm is preferred) (FIG. 9a), and the NK-92 cell line was injected. Through the method, the activity of NK cells was measured until 7 days after loading into Collagen/Hyaluronic acid porous scaffold (CS). It was confirmed that the NK cells cultured in the scaffold had increased cell viability (Viability, FIG. 9B) and cancer cell killing ability (Cytotoxicity) than 2D cell culture (2D) (FIG. 9C).
그 다음으로, 2D cell culture (2D) 또는 상기 Collagen/Hyaluronic acid를 포함하는 스캐폴드(콜라겐 매트릭스 스캐폴드)에서 NK-92 세포를 배양 후 유전자 발현 변화를 측정하였다. 2D 또는 매트릭스에서 NK-92 세포를 배양 후 NGS(next generation sequencing) 스터디를 진행하였다. 5일째에 2D 대비해서 Collagen/Hyaluronic acid를 포함하는 스캐폴드 배양된 NK-92에서 1,162개 유전자의 발현 증가 또는 감소가 확인되었다(도 9d와 도 9f). 또한 암세포 살상능과 관련된 유전자 발현 정도를 확인한 결과, Volum plot 분석을 통해 2D 배양 조건과 가장 크게 차이가 나는 5개의 유전자는 LTA (Lymphotoxin-alpha), HSPE1 (Heat shock protein), HSPA5 (Glucose-regulated protein), CST7 (Cystatin-F, immune regulator), HYOU1 (Hypoxia up-regulated protein 1)이었다(도 9g). 또한 NK 세포의 살상능과 관련된 유전자의 mRNA 발현이 증가되어 있는 것을 확인하였다 (도 9h). Next, NK-92 cells were cultured in a 2D cell culture (2D) or a scaffold (collagen matrix scaffold) containing Collagen/Hyaluronic acid to measure gene expression changes. After NK-92 cells were cultured in 2D or matrix, NGS (next generation sequencing) studies were conducted. On the 5th day, an increase or decrease in the expression of 1,162 genes was observed in the NK-92 cultured scaffold containing Collagen/Hyaluronic acid compared to 2D (FIGS. 9D and 9F ). In addition, as a result of confirming the gene expression level related to cancer cell killing ability, through the Volum plot analysis, the 5 genes that differed most from the 2D culture conditions were LTA (Lymphotoxin-alpha), HSPE1 (Heat shock protein), HSPA5 (Glucose-regulated) protein), CST7 (Cystatin-F, immune regulator), and HYOU1 (Hypoxia up-regulated protein 1) (FIG. 9g). In addition, it was confirmed that the mRNA expression of the gene related to the killing ability of NK cells was increased (FIG. 9h ).
<실시예5.> 이차원적 세포배양과 3D-ENAHNCE를 이용한 Adoptive cell transfer (ACT)세포치료의 효과 비교<Example 5> Comparison of the effects of two-dimensional cell culture and Adoptive cell transfer (ACT) cell therapy using 3D-ENAHNCE
Adoptive cell transfer(ACT)는 면역관문억제제 (immune checkpoint inhibitor)와 더불어 대표적인 항암면역치료방법이다. 따라서 ACT 치료법에서 3D-ENHANCE 스캐폴드에서 키운 NK세포가 이차원적 세포배양으로 키운 NK세포보다 더욱 효과적인지 알아보기 위하여 혈액암세포를 마우스에 주입 후 이차원적 세포배양법과 3D-ENHANCE에서 키운 NK세포를 각각 주입하여 혈액암세포의 제거 정도를 확인하였다. 그 결과 3D-ENHANCE에서 키운 NK세포를 주입한 마우스에서 혈액암세포가 더욱 효과적으로 제거되었으며, 마우스의 생존률이 증가함을 확인하였다(도 10).Adoptive cell transfer (ACT) is a typical anti-cancer immunotherapy method along with an immune checkpoint inhibitor. Therefore, in order to find out if NK cells grown on 3D-ENHANCE scaffolds are more effective than NK cells grown on two-dimensional cell culture in ACT therapy, blood cancer cells are injected into mice and then two-dimensional cell culture and NK cells grown on 3D-ENHANCE are respectively used. The injection was confirmed to remove the blood cancer cells. As a result, it was confirmed that blood cancer cells were more effectively removed from the mice injected with NK cells grown in 3D-ENHANCE, and the survival rate of the mice increased (FIG. 10).
<실시예6.> 암조직에 대한 스캐 폴드 치료용 효과 검증 <Example 6.> Validation of scaffold treatment effect on cancer tissue
6-1. 3D-ENHANCE 스캐폴드의 암조직에 대한 치료 효과 검증 6-1. Validation of the therapeutic effect of 3D-ENHANCE scaffold on cancer tissue
암 조직이 절제된 부위에 NK세포가 포함된 3D-ENHANCE 스캐폴드를 이식하여 치료용 효과에 대한 검증하기 위하여 도 11과 같이 동물실험을 진행하였다. 유방암 세포주 인 MDA-MB-231를 마우스에 이식한 후 자란 암세포를 절제하고 그 부위에 3D- ENAHNCE 스캐폴드를 이식하여 암세포가 전이된 정도를 확인하였다. 상기 동물실험 에는 EGFR affibody를 포함하는 NK-CAR (자연살해세포-키메릭 항원수용체 또는 키 메릭항원수용체-자연살해, CAR-NK, zEGFR-CAR)와, NK-92 자연살해세포가 사용되었다. 상기 NK-92와 상기 zEGFR-CAR를 3일 동안 배양 후, MDA-MB-231 유방암세포주 에 대한 lyctic activity를 측정하였다(도 11c). 상기와 같이 유방암 세포주인 MDA-MB-231를 마우스에 이식한 후 자란 암세포를 절제하고 그 부위에 3D-ENAHNCE (NK92 또는 zEGFR-CAR를 로딩 후 배양한 3D-ENAHNCE scaffold)를 이식하여 암세포가 전이된 정도를 확인하였다. 마우스 폐 조직을 갈아 암세포 특이적인 마커인 CK-18의 발현 정도를 확인한 결과, 도 11f와 같이 본 발명의 zEGFR-CAR를 로딩 후 배양한 3D ENHACE 스캐폴드 (zEGFR-CAR, zEGFR-CAR scaffold) 시험군에서 40%의 암세포 전이 감소 효과를 나타내었다. 상기와 같이 3D-ENHANCE 스캐폴드가 마우스 생체 내 이식이 가능하며, 암세포의 전이를 효과적으로 감소시킬 수 있음을 확인하였다. The animal experiment was conducted as shown in FIG. 11 to verify the therapeutic effect by implanting a 3D-ENHANCE scaffold containing NK cells in a region where cancer tissue was excised. After transplanting the breast cancer cell line MDA-MB-231 into mice, excised cancer cells were excised and 3D-ENAHNCE scaffolds were transplanted to confirm the degree of cancer cell metastasis. In the animal experiment, NK-CAR (natural killer cell-chimeric antigen receptor or chimeric antigen receptor-natural killer, CAR-NK, zEGFR-CAR) containing EGFR affibody, and NK-92 natural killer cells were used. After incubating the NK-92 and the zEGFR-CAR for 3 days, lyctic activity against the MDA-MB-231 breast cancer cell line was measured (FIG. 11C). After transplanting the breast cancer cell line MDA-MB-231 into the mouse as described above, the grown cancer cells are excised, and 3D-ENAHNCE (3D-ENAHNCE scaffold cultured after loading NK92 or zEGFR-CAR) is transplanted to the site, and cancer cells metastasize. The degree was confirmed. 3D ENHACE scaffold (zEGFR-CAR, zEGFR-CAR scaffold) test cultured after loading zEGFR-CAR of the present invention as shown in FIG. The group showed a cancer cell metastasis reduction effect of 40%. As described above, it was confirmed that the 3D-ENHANCE scaffold can be transplanted in vivo in a mouse and can effectively reduce the metastasis of cancer cells.
6-2. SK-SC1 스캐폴드에 대한 암 조직에 대한 치료 효과 검증6-2. Validation of treatment effect on cancer tissues on SK-SC1 scaffold
상기 실시예 6-1의 방법으로 유방암 세포주인 MDA-MB-231를 마우스에 이식한 후 자란 암세포를 절제하고 그 부위에 SK-SC1 스캐폴드를 이식하여 암세포가 전이된 정도를 확인하였다. 상기 동물실험에는 zEGFR-CAR와 NK-92 자연살해세포가 사용되었다. NK-92 와 zEGFR-CAR를 3일 동안 배양 후, 유방암 세포주인 MDA-MB-231세포에 대한 lyctic activity를 측정하였다. 도 11h와 같이 MDA-MB-231 세포에서 EGFR이 과 발현되는 것을 확인하였고, 유방암세포주인 MDA-MB-231에 대한 lyctic activity 활성 있는 것을 확인하였다. After transplanting the breast cancer cell line MDA-MB-231 into the mouse by the method of Example 6-1, the grown cancer cells were excised and the SK-SC1 scaffold was transplanted to the site to confirm the degree of cancer cell metastasis. In the animal experiment, natural killer cells of zEGFR-CAR and NK-92 were used. After NK-92 and zEGFR-CAR were cultured for 3 days, the lyctic activity of the breast cancer cell line MDA-MB-231 cells was measured. As shown in Figure 11h, it was confirmed that EGFR was over-expressed in MDA-MB-231 cells, and that lyctic activity was active against the breast cancer cell line MDA-MB-231.

Claims (13)

  1. 서로 다른 화학적 구조를 지닌 히알루론산 유도체의 제1성분 및 제2성분이 가교된 구조를 포함하는 다공성 3차원 크라이오젤 스캐폴드(scaffold): 및 상기 스캐폴드의 챔버내에서 배양된 세포를 포함하는, 생체내 세포 투입칩을 유효성분으로 포함하는 항암용 약학조성물. A porous three-dimensional cryogel scaffold comprising a structure in which a first component and a second component of a hyaluronic acid derivative having different chemical structures are cross-linked, and comprising cells cultured in a chamber of the scaffold, An anti-cancer pharmaceutical composition comprising an in vivo cell input chip as an active ingredient.
  2. 제1항에 있어서, 상기 제1성분은 히알루론산 메타아크릴레이트(HA-MA) 또는 이의 유도체이고, 상기 제2성분은 산화된 히알루론산 메타아크릴레이트(oxHA-MA), oxHA-MA 유도체(oxHA-MA) 또는 히알루론산 알데히드 메타아크릴레이트(HA-ald-MA)인 것을 특징으로 하는 항암용 약학조성물.The method of claim 1, wherein the first component is hyaluronic acid methacrylate (HA-MA) or a derivative thereof, and the second component is oxidized hyaluronic acid methacrylate (oxHA-MA), an oxHA-MA derivative (oxHA). -MA) or hyaluronic acid aldehyde methacrylate (HA-ald-MA) pharmaceutical composition for anticancer, characterized in that.
  3. 제2항에 있어서, 상기 제1성분은 히알루론산 메타아크릴레이트이고, 제2성분은 히알루론산 알데히드 메타아크릴레이트(HA-ald-MA)인 것을 특징으로 하는 항암용 약학조성물.The pharmaceutical composition for anticancer according to claim 2, wherein the first component is hyaluronic acid methacrylate, and the second component is hyaluronic acid aldehyde methacrylate (HA-ald-MA).
  4. 제2항에 있어서, 상기 제1성분은 히알루론산 메타아크릴레이트이고, 제2성분은 산화된 히알루론산 메타아크릴레이트(oxHA-MA)인 것을 특징으로 하는 항암용 약학조성물.The pharmaceutical composition for anticancer according to claim 2, wherein the first component is hyaluronic acid methacrylate and the second component is oxidized hyaluronic acid methacrylate (oxHA-MA).
  5. 제1항에 있어서, 상기 세포는 랑게르한스섬 세포, 세르토리 세포, 도파민성 뉴런, 줄기 세포, 간엽 줄기 세포, 제대혈 세포, 배아 줄기 세포, 신경 줄기 세포, 분화된 줄기 세포, 자연살해(NK)세포, 및 B세포로 이루어진 군에서 하나 이상 포함하는 것을 특징으로 하는 항암용 약학조성물.The method of claim 1, wherein the cells are Langerhans islet cells, Serto cells, dopaminergic neurons, stem cells, mesenchymal stem cells, umbilical cord blood cells, embryonic stem cells, neural stem cells, differentiated stem cells, natural killer (NK) cells, And B cells comprising at least one pharmaceutical composition for anti-cancer.
  6. 제1항에 있어서, 상기 세포는 자연살해(NK)세포인 것을 특징으로 하는 항암용 약학조성물.The method of claim 1, wherein the cells are natural killer (NK) cells, characterized in that the pharmaceutical composition for cancer.
  7. 제6항에 있어서, 상기 자연살해(NK)세포는 키메릭항원수용체-자연살해(CAR-NK)세포인 것을 특징으로 하는 항암용 약학조성물.7. The pharmaceutical composition for anticancer according to claim 6, wherein the natural killer (NK) cells are chimeric antigen receptor-natural killer (CAR-NK) cells.
  8. 제7항에 있어서, 상기 키메릭항원수용체(CAR)는 암 특이적 항 EGFR 애피바디 (tumor-specific zEGFR affibodies)의 엑토도메인(ecto-domain)을 포함하는 것을 특징으로 하는 항암용 약학 조성물. The pharmaceutical composition for anticancer according to claim 7, wherein the chimeric antigen receptor (CAR) comprises an ecto-domain of a cancer-specific anti-EGFR affibodies.
  9. 제8항에 있어서, 상기 CAR는 힌지(hinge), 막통과(transmembrane), CD28, DAP10 및 CD3ζ을 포함하는 것을 특징으로 하는 항암용 약학 조성물.The pharmaceutical composition for anti-cancer according to claim 8, wherein the CAR comprises a hinge, transmembrane, CD28, DAP10 and CD3ζ.
  10. 제1항에 있어서, 상기 암은 고형암 또는 혈액암인 것인 것을 특징으로 하는 항암용 약학조성물.The pharmaceutical composition for anticancer according to claim 1, wherein the cancer is solid cancer or blood cancer.
  11. 제10항에 있어서, 상기 고형암은 폐암, 뇌암, 간암, 유방암, 난소암 또는 대장암인 것을 특징으로 하는 항암용 약학 조성물.The pharmaceutical composition for anticancer according to claim 10, wherein the solid cancer is lung cancer, brain cancer, liver cancer, breast cancer, ovarian cancer or colon cancer.
  12. 제10항에 있어서, 상기 혈액암은 백혈병, 다발성 골수종, 재생불량성 빈혈 또는 악성림프종인 것을 특징으로 하는 항암용 약학 조성물.The pharmaceutical composition for anti-cancer according to claim 10, wherein the blood cancer is leukemia, multiple myeloma, aplastic anemia or malignant lymphoma.
  13. 히알루론산 메타아크릴레이트 및 산화된 히알루론산 메타아크릴레이트가 가교된 구조를 포함하는 다공성 3차원 크라이오젤 스캐폴드를 포함하는 세포배양용 조성물.A composition for cell culture comprising a porous three-dimensional cryogel scaffold comprising a cross-linked structure of hyaluronic acid methacrylate and oxidized hyaluronic acid methacrylate.
PCT/KR2019/017191 2018-12-07 2019-12-06 Anti-cancer composition comprising in vivo cell injection chip WO2020116989A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0157023 2018-12-07
KR20180157023 2018-12-07
KR1020190160276A KR102282027B1 (en) 2018-12-07 2019-12-05 Anticancer composition comprising biological cell injection chip
KR10-2019-0160276 2019-12-05

Publications (1)

Publication Number Publication Date
WO2020116989A1 true WO2020116989A1 (en) 2020-06-11

Family

ID=70974769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017191 WO2020116989A1 (en) 2018-12-07 2019-12-06 Anti-cancer composition comprising in vivo cell injection chip

Country Status (1)

Country Link
WO (1) WO2020116989A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4180049A1 (en) * 2021-11-16 2023-05-17 Ostravska univerzita Therapeutic composition for cancer treatment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110262489A1 (en) * 2008-09-10 2011-10-27 Xiaobin Zhao Hyaluronic acid cryogel - compositions, uses, processes for manufacturing
KR20130124798A (en) * 2012-05-07 2013-11-15 영남대학교 산학협력단 Cryogel scaffold comprising synthetic polymer, polysaccharide and protein, and tissue regeneration method using the same
KR20170027989A (en) * 2015-09-03 2017-03-13 경희대학교 산학협력단 Hyaluronic acid-based hydrogel and use thereof
EP2701745B1 (en) * 2011-04-28 2018-07-11 President and Fellows of Harvard College Injectable preformed macroscopic 3-dimensional scaffolds for minimally invasive administration
KR20190073262A (en) * 2017-12-18 2019-06-26 성균관대학교산학협력단 Cryogel scaffold with controlled degradability and Soft implantable device which is the scaffold loaded with a drug for controlling the immunosuppressive action in a solid tumor microenvironment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110262489A1 (en) * 2008-09-10 2011-10-27 Xiaobin Zhao Hyaluronic acid cryogel - compositions, uses, processes for manufacturing
EP2701745B1 (en) * 2011-04-28 2018-07-11 President and Fellows of Harvard College Injectable preformed macroscopic 3-dimensional scaffolds for minimally invasive administration
KR20130124798A (en) * 2012-05-07 2013-11-15 영남대학교 산학협력단 Cryogel scaffold comprising synthetic polymer, polysaccharide and protein, and tissue regeneration method using the same
KR20170027989A (en) * 2015-09-03 2017-03-13 경희대학교 산학협력단 Hyaluronic acid-based hydrogel and use thereof
KR20190073262A (en) * 2017-12-18 2019-06-26 성균관대학교산학협력단 Cryogel scaffold with controlled degradability and Soft implantable device which is the scaffold loaded with a drug for controlling the immunosuppressive action in a solid tumor microenvironment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REZAEEYAZDI, M.: "Injectable Hyaluronic Acid-co-Gelatin Cryogels for Tissue-Engineering Applications", MATERIALS, 1374, 7 August 2018 (2018-08-07), XP055717658 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4180049A1 (en) * 2021-11-16 2023-05-17 Ostravska univerzita Therapeutic composition for cancer treatment
WO2023088506A1 (en) * 2021-11-16 2023-05-25 Ostravska Univerzita Therapeutic composition for cancer treatment

Similar Documents

Publication Publication Date Title
Grosskopf et al. Delivery of CAR-T cells in a transient injectable stimulatory hydrogel niche improves treatment of solid tumors
Liang et al. Nanoparticle-enhanced chemo-immunotherapy to trigger robust antitumor immunity
Silva et al. Thermoresponsive gel embedded with adipose stem-cell-derived extracellular vesicles promotes esophageal fistula healing in a thermo-actuated delivery strategy
Xie et al. Redox-responsive interleukin-2 nanogel specifically and safely promotes the proliferation and memory precursor differentiation of tumor-reactive T-cells
JP5529021B2 (en) Composition for diagnosing, preventing or treating diseases associated with IL-8 or GRO-α expressing cells, including umbilical cord blood-derived mesenchymal stem cells
CN107184987B (en) Lipoic acid modified targeted integrin alpha v beta 3 nano-polypeptide carrier and preparation method and application thereof
Wofford et al. Modulation of macrophage phenotype via phagocytosis of drug‐loaded microparticles
US8216558B2 (en) Polymer coating of cells
US9289500B2 (en) Saccharide-peptide hydrogels
Li et al. Simultaneous blockage of contextual TGF-β by cyto-pharmaceuticals to suppress breast cancer metastasis
WO2020116989A1 (en) Anti-cancer composition comprising in vivo cell injection chip
Zhou et al. Injectable and photocurable CAR-T cell formulation enhances the anti-tumor activity to melanoma in mice
Tang et al. A simple self-assembly nanomicelle based on brain tumor-targeting peptide-mediated siRNA delivery for glioma immunotherapy via intranasal administration
Ding et al. Genetically engineered nanovesicles mobilize synergistic antitumor immunity by ADAR1 silence and PDL1 blockade
Ge et al. Programmable DNA hydrogel provides suitable microenvironment for enhancing TSPCS therapy in healing of tendinopathy
Bhatta et al. T cell-responsive macroporous hydrogels for in situ T cell expansion and enhanced antitumor efficacy
Wang et al. Programming of regulatory T cells in situ for nerve regeneration and long-term patency of vascular grafts
Tian et al. DiR-labeled tolerogenic dendritic cells for targeted imaging in collagen-induced arthritis rats
KR102282027B1 (en) Anticancer composition comprising biological cell injection chip
CN111388452B (en) Adipose tissue targeting peptide P3-chitosan oligomeric lactic acid-polyethylene glycol delivery system and application thereof in nucleic acid drug delivery
Mi et al. Establishment of the glioma polyploid giant cancer cell model by a modified PHA-DMSO-PEG fusion method following dual drug-fluorescence screening in vitro
WO2017200156A1 (en) Nanoparticles for chemotherapy for anoikis-resistant cancer cells
US11963997B2 (en) Anti-tumor polypeptide Bax-BH3, fluorescent polymeric nanomicelle, preparation method and use thereof
WO2022231157A1 (en) Colon cancer-specific target exosome composition as drug carrier material, and use thereof
Yuan et al. M2 Macrophage-Derived Extracellular Vesicles Encapsulated in Hyaluronic Acid Alleviate Osteoarthritis by Modulating Macrophage Polarization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893849

Country of ref document: EP

Kind code of ref document: A1