WO2019071984A1 - 视频转码方法、计算机设备及存储介质 - Google Patents
视频转码方法、计算机设备及存储介质 Download PDFInfo
- Publication number
- WO2019071984A1 WO2019071984A1 PCT/CN2018/093318 CN2018093318W WO2019071984A1 WO 2019071984 A1 WO2019071984 A1 WO 2019071984A1 CN 2018093318 W CN2018093318 W CN 2018093318W WO 2019071984 A1 WO2019071984 A1 WO 2019071984A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- quantization parameter
- initial
- coding unit
- current
- frame
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000013139 quantization Methods 0.000 claims abstract description 671
- 230000000875 corresponding effect Effects 0.000 claims description 376
- 238000004364 calculation method Methods 0.000 claims description 18
- 238000013507 mapping Methods 0.000 claims description 18
- 230000002596 correlated effect Effects 0.000 claims description 8
- 238000007906 compression Methods 0.000 description 31
- 230000006835 compression Effects 0.000 description 30
- 238000010586 diagram Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/234—Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs
- H04N21/2343—Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/124—Quantisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/136—Incoming video signal characteristics or properties
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/136—Incoming video signal characteristics or properties
- H04N19/14—Coding unit complexity, e.g. amount of activity or edge presence estimation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/146—Data rate or code amount at the encoder output
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/154—Measured or subjectively estimated visual quality after decoding, e.g. measurement of distortion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/172—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/189—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
- H04N19/192—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding the adaptation method, adaptation tool or adaptation type being iterative or recursive
- H04N19/194—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding the adaptation method, adaptation tool or adaptation type being iterative or recursive involving only two passes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/189—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
- H04N19/196—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/40—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video transcoding, i.e. partial or full decoding of a coded input stream followed by re-encoding of the decoded output stream
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/44—Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs
- H04N21/4402—Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving reformatting operations of video signals for household redistribution, storage or real-time display
Definitions
- the present application relates to the field of computer processing technologies, and in particular, to a video transcoding method, a computer device, and a storage medium.
- Video transcoding refers to converting a video stream that has been compression-coded into another video stream to accommodate different network bandwidths, different terminal processing capabilities, and different user requirements.
- the essence of transcoding is a process of decoding and re-encoding first, so the same video coding standard may not be followed before and after transcoding.
- the traditional client uploads the compressed video to the server, and the server needs to transcode the received video.
- the traditional video transcoding method has high bandwidth cost.
- a video transcoding method a computer device, and a storage medium are proposed.
- a video transcoding method includes:
- the computer device encodes the current coding unit according to the target coding quantization parameter.
- a computer device comprising a memory and one or more processors, the memory storing computer readable instructions computer readable instructions, the computer readable instructions being executable by the one or more processors Having the one or more processors perform the following steps:
- the current coding unit is encoded according to the target coding quantization parameter.
- One or more non-transitory computer readable storage media storing computer executable instructions, which when executed by one or more processors, cause the one or more processors to perform the following steps : obtaining an initial quantization parameter corresponding to the initial coding unit when encoding the initial compressed video;
- the current coding unit is encoded according to the target coding quantization parameter.
- FIG. 1 is an application environment diagram of a video transcoding method in an embodiment
- FIG. 2 is a flow chart of a video transcoding method in an embodiment
- FIG. 3 is a flowchart of a method for determining a current reference quantization parameter corresponding to a current coding unit in an embodiment
- FIG. 4 is a flowchart of a method for determining a current reference quantization parameter corresponding to a current coding unit in another embodiment
- FIG. 5 is a flow chart of a method for determining a target code quantization parameter in an embodiment
- FIG. 6 is a flowchart of a method for classifying a current video frame according to a frame average quantization parameter corresponding to a current video frame in an embodiment
- FIG. 7 is a schematic flow chart of video transcoding in an embodiment
- FIG. 8 is a schematic flowchart of encoding a coding unit in an embodiment
- FIG. 9 is a flow chart of a video transcoding method in still another embodiment.
- Figure 10 is a block diagram showing the structure of a video transcoding device in an embodiment
- Figure 11 is a block diagram showing the structure of a determining module in an embodiment
- FIG. 12 is a structural block diagram of a video transcoding device in another embodiment
- Figure 13 is a block diagram showing the structure of a video transcoding device in still another embodiment.
- Figure 14 is a diagram showing the internal structure of a computer device in an embodiment.
- FIG. 1 is an application environment diagram of a video transcoding method in an embodiment.
- the video transcoding method is applied to a video transcoding system. It can be applied to the server in the video transcoding system, and can also be applied to the terminal in the video transcoding system.
- the video transcoding system includes a first terminal 110, a server 120, and a second terminal 130.
- the first terminal 110 and the server 120 are connected through a network, and the server 120 and the second terminal 130 are connected through a network.
- the first terminal 110 and the second terminal 130 may specifically be a desktop terminal or a mobile terminal, and the mobile terminal may specifically be at least one of a mobile phone, a tablet computer, a notebook computer, and the like.
- the server 120 can be implemented by a stand-alone server or a server cluster composed of a plurality of servers.
- the first terminal compresses the original video to obtain an initial compressed video, and then uploads the initial compressed video to the server 120.
- the server 120 obtains an initial coding unit corresponding to the initial compressed video.
- the initial quantization parameter is determined, and then the current reference quantization parameter corresponding to the current coding unit in the current video frame is determined according to the initial quantization parameter corresponding to the initial coding unit, and then the quantization parameter to be encoded corresponding to the current coding unit is determined, and then the corresponding coding unit corresponding to the current coding unit is determined.
- the amplitude of the difference between the coded quantization parameter and the corresponding current reference quantization parameter is increased, the quantization parameter to be encoded corresponding to the current coding unit is increased according to the gap width, the target coding quantization parameter is obtained, and the current coding unit is coded according to the target coding quantization parameter. Finally, the target compressed video obtained after transcoding can be sent to the second terminal 130.
- the above video transcoding method can be directly applied to the terminal 110 or 130.
- the terminal 110 or 130 obtains an initial quantization parameter corresponding to the initial coding unit when the initial compressed video is encoded, and then determines a current reference quantization parameter corresponding to the current coding unit in the current video frame according to the initial quantization parameter corresponding to the initial coding unit, and then determines that the current coding unit corresponds to the current coding unit.
- the quantization parameter to be encoded is then determined, and the difference between the quantization parameter to be encoded corresponding to the current coding unit and the corresponding current reference quantization parameter is determined, and the quantization parameter to be encoded corresponding to the current coding unit is increased according to the gap size, and the target coding quantization parameter is obtained. And encoding the current coding unit according to the target coding quantization parameter.
- a video transcoding method is provided.
- the video transcoding method can be applied to both the server and the terminal. This embodiment is mainly illustrated by the method being applied to the server 120 in FIG. 1 described above. Referring to FIG. 2, the video transcoding method specifically includes the following steps:
- Step S202 Acquire an initial quantization parameter corresponding to an initial coding unit when encoding the initial compressed video.
- the quantization parameter is a parameter used to measure the quantization step size, which can affect the image quality.
- the quantization parameter QP is the sequence number of the quantization step Qstep, and the value is 0-51.
- the quantization parameter QP takes a minimum value of 0, it means that the quantization is the finest.
- the quantization parameter QP takes the maximum value of 51, it means that the quantization is the coarsest.
- the quantization parameter is positively correlated with the compression ratio, that is, the smaller the quantization parameter is, the smaller the corresponding compression ratio is, and the larger the quantization parameter is, the higher the corresponding compression ratio is.
- the compression ratio here refers to the ratio of the size before compression to the size after compression.
- the video is composed of one video frame, and each video frame contains coding units, and each coding unit corresponds to one quantization parameter.
- each coding unit corresponds to one quantization parameter.
- the initial compressed video is relative to the current video transcoding, and the video before transcoding is referred to as the initial compressed video.
- the initial coding unit refers to a coding unit included in the initial compressed video
- the initial quantization parameter refers to a quantization parameter corresponding to the initial coding unit.
- the coding unit is a unit constituting a video frame, and the coding unit may be a coding block in a video frame, or may be a coding stripe in a video frame, and the coding stripe includes a plurality of coding blocks, because the coding block in the coding stripe
- the corresponding quantization parameters are the same, so the coded stripe can be regarded as a coding unit, which corresponds to a quantization parameter.
- the initial compressed video is obtained, and the initial compressed video is decoded to obtain an initial decoded frame.
- the initial decoded frame refers to the decoded video frame obtained by decoding the initial compressed video, and obtains initial quantization corresponding to each initial coding unit. parameter.
- Step S204 Determine, according to an initial quantization parameter corresponding to the initial coding unit, a current reference quantization parameter corresponding to the current coding unit in the current video frame.
- the current video frame refers to a video frame to be currently encoded
- the current coding unit refers to a coding unit in the current video frame.
- the current reference quantization parameter is a reference value used to measure the quantization parameter to be encoded corresponding to the current coding unit.
- the essence of video transcoding is a process of decoding and then re-encoding. In order to transcode the initial compressed video, firstly, the initial compressed video needs to be decoded to obtain an initial decoded frame, and then the initial decoded frame is used as the current video frame to be encoded, so as to facilitate subsequent re-encoding.
- the target initial coding unit that matches the current coding unit is obtained, because the decoded initial decoded frame is used as the current to be coded.
- the video frame is then re-encoded, so the initial decoded frame has a one-to-one correspondence with the current video frame to be encoded.
- the specification of the initial coding unit in the initial decoded frame and the specification of the current coding unit in the current video frame to be encoded may be the same or different.
- the current coding unit may be a coding block or a coding strip. Regardless of whether the specifications of the two are the same, there is a corresponding matching relationship between the current coding unit and the initial coding unit. For example, if the current coding unit is a coding strip and the initial coding unit is a coding block, then there are multiple corresponding initial coding units that match the current coding unit.
- a target initial coding unit that matches the current coding unit is acquired, and then a current reference quantization parameter corresponding to the current coding unit is calculated according to an initial quantization parameter corresponding to the target initial coding unit.
- the current reference quantization parameter may be obtained by subtracting a value from the initial quantization parameter corresponding to the target initial coding unit.
- the target initial decoding frame corresponding to the current video frame is obtained, the initial quantization parameter corresponding to each initial coding unit in the target initial decoding frame is obtained, and the initial quantization parameters corresponding to the initial coding units are sorted according to the size. Sorting the result, and determining a current reference quantization parameter corresponding to the current coding unit according to the ranking result.
- Step S206 determining a quantization parameter to be encoded corresponding to the current coding unit.
- the current coding unit to be encoded is obtained, and the quantization parameter to be encoded corresponding to the current coding unit is calculated. Since the encoding depends on the quantization parameter corresponding to the coding unit, before encoding, it is first necessary to calculate the quantization parameter to be encoded corresponding to the coding unit. The calculation of the quantization parameter to be encoded is related to factors such as image complexity and target code rate. The specific calculation can be calculated by the rate control algorithm, or the adaptive quantization parameter calculation method can be used. Of course, other algorithms can also be used for calculation. The calculation of the coding quantization parameter is not limited here.
- Step S208 determining a difference width between a current reference quantization parameter corresponding to the current coding unit and a corresponding quantization parameter to be coded, and increasing a quantization parameter to be coded corresponding to the current coding unit according to the gap size, to obtain a target coding quantization parameter.
- the gap magnitude refers to the magnitude of the difference between the current reference quantization parameter corresponding to the current coding unit and the quantization parameter to be encoded. According to the calculated gap magnitude, the quantization parameter to be encoded corresponding to the current coding unit is correspondingly increased and adjusted, and the target coding quantization parameter is obtained.
- the target coded quantization parameter refers to the resulting quantized parameter that is ultimately used for encoding.
- the current reference quantization parameter reflects the magnitude of the quantization parameter employed in encoding the initial coding unit, and the quantization parameter reflects the fineness of the image. Since the original compressed video is decoded not by the original video but by the already compressed video, if the quality of the already compressed video is not good, even if the encoding is performed with a relatively small quantization parameter, the encoding cannot be further improved. Video quality, but will waste the bit rate. Therefore, by using the current reference quantization parameter as a reference value, the difference between the current reference quantization parameter and the quantization parameter to be encoded is calculated. When the difference amplitude is relatively large, the quantization parameter to be encoded is relatively small, and the coding quantization parameter can be corresponding according to the gap magnitude.
- the magnitude of the quantization parameter increase adjustment is positively correlated with the magnitude of the gap, and the larger the gap is, the larger the adjustment parameter of the corresponding quantization parameter is.
- Step S210 encoding the current coding unit according to the target coding quantization parameter.
- the target coded quantization parameter is a final coded quantization parameter corresponding to the current coding unit.
- the current coding unit is encoded according to the adjusted target coding quantization parameter, and the corresponding compressed video is obtained. Since the calculated quantization parameter to be encoded is adjusted and adjusted, it is beneficial to ensure subjective quality. Improve the compression ratio of the video, reduce the corresponding code rate, and save the corresponding bandwidth cost.
- the current video frame to be transcoded is identified. If the current video frame contains the target content (for example, the content including the face), the current quantization parameter to be encoded is not adjusted and adjusted.
- the video transcoding method by acquiring an initial quantization parameter corresponding to an initial coding unit when encoding the initial compressed video, determining a current reference quantization parameter corresponding to the current coding unit according to the initial quantization parameter, and then according to the to-be-coded quantization parameter corresponding to the current coding unit, The gap between the current reference quantization parameters is increased, the quantization parameter to be encoded is increased and adjusted, the target coding quantization parameter is obtained, and finally the current coding unit is coded according to the target quantization parameter.
- increasing the adjustment of the coding quantization parameter is beneficial to improve the compression efficiency and thus reduce the bandwidth cost.
- the step S204 of determining the current reference quantization parameter corresponding to the current coding unit according to the initial quantization parameter corresponding to the initial coding unit is obtained by acquiring the current coding unit in the current video frame, and the step S204 includes:
- Step S204A Acquire a target initial decoded frame that matches the current video frame.
- the initial decoded frame refers to a video frame obtained by decoding the initial compressed video.
- the target initial decoded frame refers to the initial decoded frame that matches the current video frame.
- the current video frame refers to the video frame currently to be encoded.
- the server receives the initial compressed video, decodes the initial compressed video, obtains an initial decoded frame, and then re-encodes the video by using the initial decoded frame as the video frame to be encoded. Therefore, the video frame to be encoded has a one-to-one correspondence with the initial decoded frame.
- the matching relationship between the video frame to be encoded and the initial decoded frame may be customized.
- the initial decoded frame corresponding to the current video frame may be directly used as the target initial decoded frame.
- the current video frame may also be matched with multiple initial decoded frames, for example, the current video frame and the corresponding initial decoded frame and the decoded frame adjacent to the initial decoded frame are used as matching target initial decoding frames.
- the initial decoded frame obtained by decoding the initial compressed video has 6 frames, which are 1, 2, 3, 4, 5, and 6, respectively.
- the current video frame to be encoded is 3, and the target initial decoding frame that matches the current video frame 3 can be obtained according to a pre-customized rule.
- the corresponding initial decoding frame 3 can be directly set as the matching target initial decoding frame. It is also possible to set the initial decoded frames 2, 3 and 4 together as the target initial decoded frame.
- Step S204B Acquire a target initial coding unit that is matched by the current coding unit in the target initial decoding frame.
- the current coding unit refers to a coding unit currently to be encoded, and the current coding unit is included in the current video frame. Obtaining a target initial coding unit that the current coding unit matches in the target initial decoded frame.
- the matching relationship between the coding unit to be coded and the original coding unit can also be customized.
- an initial coding unit in the target initial decoded frame may be used as the target initial coding unit that matches the current coding unit.
- a plurality of initial decoding units in the target initial decoded frame may also be used together as a target initial encoding unit that matches the current coding unit.
- the initial coding unit corresponding to the current coding unit position in the target initial decoded frame may be used as the target initial coding unit that matches the current coding unit.
- Step S204C Determine a current reference quantization parameter corresponding to the current coding unit according to the initial quantization parameter corresponding to the target initial coding unit.
- the current reference quantization parameter is a criterion for measuring the quantization parameter to be encoded corresponding to the current coding unit, and then the quantization parameter to be encoded is adjusted according to the current reference quantization parameter. Specifically, the initial quantization parameter corresponding to the target initial coding unit is obtained, and then the current reference quantization parameter corresponding to the current coding unit is calculated according to the initial quantization parameter. In an embodiment, it is assumed that an initial quantization parameter of an initial decoding frame corresponding to a current video frame cannot be obtained. Since quantization parameters of adjacent frames are relatively close, an initial quantization parameter corresponding to an adjacent frame may be acquired as a corresponding initial quantization parameter. And then determine the current reference quantization parameter corresponding to the current coding unit. In one embodiment, the initial quantization parameter may be subtracted from a certain predetermined value to obtain a current reference quantization parameter corresponding to the current coding unit.
- the step S204 of determining the current reference unit in the current video frame and determining the current reference quantization parameter corresponding to the current coding unit according to the initial quantization parameter corresponding to the initial coding unit includes:
- Step S204a Acquire a target initial decoded frame that matches the current video frame.
- the initial decoded frame refers to a video frame obtained by decoding the initial compressed video.
- the target initial decoded frame refers to the initial decoded frame that matches the current video frame.
- the current video frame refers to the video frame currently to be encoded.
- the server receives the initial compressed video, decodes the initial compressed video, obtains an initial decoded frame, and then re-encodes the video by using the initial decoded frame as the video frame to be encoded. Therefore, the video frame to be encoded has a one-to-one correspondence with the initial decoded frame.
- the matching relationship between the video frame to be encoded and the initial decoded frame may be customized.
- the initial decoded frame corresponding to the current video frame may be directly used as the target initial decoded frame.
- the current video frame may also be matched with a plurality of initial decoded frames, for example, the current video frame is used as a matching target initial decoding frame together with the corresponding initial decoded frame and the decoded frame adjacent to the initial decoded frame.
- the initial decoded frame obtained by decoding the initial compressed video has 6 frames, which are 1, 2, 3, 4, 5, and 6, respectively.
- the current video frame to be encoded is 3, and the target initial decoding frame that matches the current video frame 3 can be obtained according to a pre-customized rule.
- the corresponding initial decoding frame 3 can be directly set as the matching target initial decoding frame. It is also possible to set the initial decoded frames 2, 3 and 4 together as the target initial decoded frame of the match.
- Step S204b Acquire an initial quantization parameter corresponding to each initial coding unit in the target initial decoding frame.
- each initial decoding frame includes a plurality of initial coding units, and after obtaining the matched target initial decoding frame, the initial quantization parameter corresponding to each initial coding unit in the target initial decoding frame needs to be acquired.
- Step S204c Sort the initial quantization parameters corresponding to the respective initial coding units according to the size to obtain a ranking result, and determine a current reference quantization parameter corresponding to the current coding unit according to the ranking result.
- each initial quantization parameter is sorted according to the size of the initial quantization parameter, and a corresponding sorting result is obtained, where the ordering may be from large to small. It can also be from small to large.
- the current reference quantization parameter corresponding to the current coding unit is then determined according to the ranking result.
- the sorted second to last small quantization parameter may be used as the current reference quantization parameter corresponding to the current coding unit.
- the first 10% initial quantization parameter may be obtained, then the average of the 10% initial quantization parameters is calculated, and the calculated average is taken as the current reference quantization parameter corresponding to the current coding unit.
- the step of determining a current reference quantization parameter corresponding to the current coding unit according to the ranking result comprises: using a minimum initial quantization parameter in the ranking result as a current reference quantization parameter corresponding to the current coding unit.
- the smallest initial quantization parameter in the sorting result is used as the current reference quantization parameter corresponding to the current coding unit, and the smaller the quantization parameter, the higher the fineness of the representative, so The minimum value in the result is used as the current reference quantization parameter, which is advantageous for subsequent adjustment and adjustment of the quantization parameter to be encoded according to the current reference quantization parameter, so as to increase the corresponding compression ratio and save bandwidth cost.
- the step of determining the current reference coding parameter corresponding to the current coding unit according to the initial quantization parameter corresponding to the initial coding unit is performed by acquiring the current coding unit in the current video frame, and acquiring an initial video coding standard corresponding to the initial compressed video, and acquiring The current video coding standard corresponding to the current video frame; determining a mapping relationship of the quantization parameter according to the initial video coding standard and the current video coding standard; and obtaining the current reference quantization parameter according to the initial quantization parameter and the mapping relationship corresponding to the initial coding unit.
- the original quantization parameter needs to be mapped to the quantization parameter in the current video coding standard corresponding to the current video frame.
- f i F (S 1 , S 2 )
- S 1 is the initial compressed video coding standard
- S 2 is the current video coding standard.
- determining a difference width between a current reference quantization parameter corresponding to a current coding unit and a corresponding quantization parameter to be coded, and increasing a quantization parameter to be coded corresponding to the current coding unit according to the gap size includes:
- step S208A it is determined whether the gap width is greater than a preset threshold. If yes, the process proceeds to step S208B, and if no, the process proceeds to step S208D.
- the gap magnitude refers to the magnitude of the difference between the current reference quantization parameter and the quantization parameter to be encoded. Determine whether the gap is larger than the preset threshold. If yes, it indicates that the encoding quantization parameter needs to be increased and adjusted. By obtaining the adjustment coefficient, the quantization parameter increment is calculated according to the adjustment coefficient and the gap width; if not, the quantization parameter to be encoded need not be adjusted. The quantization parameter to be encoded is directly used as the target coding quantization parameter.
- Step S208B Obtain an adjustment coefficient, and calculate a quantization parameter increment according to the adjustment coefficient and the gap width.
- the adjustment factor is a coefficient for controlling the magnitude of the adjustment amplitude, which may be preset. After calculating the difference amplitude, the corresponding quantization parameter increment can be calculated according to the adjustment coefficient and the gap width. In one embodiment, the product of the adjustment factor and the gap magnitude can be directly used as a quantization parameter increment. In another embodiment, the product of the adjustment factor and the gap magnitude may be further added to a constant as a quantization parameter increment.
- Step S208C Calculate the target coding quantization parameter according to the quantization parameter increment and the quantization parameter to be encoded corresponding to the current coding unit.
- the quantization parameter increment refers to an adjustment amount to be increased by the quantization parameter to be encoded
- the target coding quantization parameter is obtained by adding the quantization parameter increment to the quantization parameter to be encoded
- step S208D the quantization parameter to be encoded is directly used as the target coding quantization parameter.
- the quantization parameter to be encoded is directly used as the target coding quantization parameter, and no adjustment is needed.
- the current reference quantization parameter is determined by the quantization parameter corresponding to the initial coding unit, and the current reference quantization parameter reflects the quantization parameter used when encoding the initial coding unit, and the quantization parameter reflects the fineness of the image. Since the original compressed video is decoded instead of the original video, but the compressed video, if the compressed video quality is not good, even if the quantization parameter used in transcoding is small, the video quality cannot be further improved, and the code rate is wasted.
- the quantization parameter facilitates the improvement of the compression ratio of the encoding under the premise of ensuring subjective quality, avoids wasting the bit rate, and reduces the corresponding bandwidth cost.
- the segmentation function is used to calculate the target coding quantization parameter corresponding to the current coding unit.
- the calculated quantization parameter to be encoded is greater than the current reference quantization parameter minus the preset threshold, it is not necessary to adjust the quantization parameter to be encoded, that is, the calculated quantization to be encoded is directly used as the target coding quantization parameter.
- the calculated quantization parameter to be encoded is less than or equal to the current reference quantization parameter minus the preset threshold, the corresponding quantization parameter increment is calculated according to the adjustment coefficient and the difference between the current reference quantization parameter and the quantization parameter to be encoded. Then the target coding quantization parameter is equal to the sum of the quantization parameter to be encoded and the quantization parameter increment.
- the video transcoding method further includes: acquiring a target initial decoding frame that matches a current video frame; and determining an average reference quantization parameter corresponding to the current coding unit according to an initial quantization parameter corresponding to the initial coding unit in the target initial decoding frame.
- the average reference quantization parameter corresponding to the current coding unit is calculated according to the initial quantization parameter corresponding to the initial coding unit in the target initial decoding frame.
- the initial quantization parameters corresponding to the respective initial coding units may be directly averaged to obtain an average reference quantization parameter.
- the initial quantization parameters may also be sorted by size, and then the value corresponding to the initial quantization parameter of the intermediate position is taken as the average reference quantization parameter.
- the calculated average reference quantization parameters need to be mapped and calculated to obtain a final average reference quantization parameter.
- the step of obtaining the adjustment coefficient comprises: calculating a target difference value between the average reference quantization parameter and the current reference quantization parameter; calculating an adjustment coefficient according to the target difference, the adjustment coefficient being inversely related to the target difference.
- the determining of the adjustment coefficient may be calculated according to a difference between the average reference quantization parameter and the current reference quantization parameter, and the difference between the calculated average reference quantization parameter and the current reference quantization parameter is called "Target difference".
- Target difference the difference between the calculated average reference quantization parameter and the current reference quantization parameter.
- the step of determining an average reference quantization parameter corresponding to the current coding unit according to the initial quantization parameter corresponding to the initial coding unit in the target initial decoding frame comprises: acquiring an initial quantization parameter corresponding to each initial coding unit in the target initial decoding frame. And performing average calculation according to the initial quantization parameter corresponding to each initial coding unit to obtain an average quantization parameter; and using the average quantization parameter as an average reference quantization parameter corresponding to the current coding unit in the current video frame.
- the operation obtains an average quantization parameter, and directly uses the average quantization parameter as an average reference quantization parameter corresponding to the current coding unit in the current video frame.
- the video transcoding method further includes: a step of classifying a current video frame according to a frame average quantization parameter corresponding to a current video frame, where the step includes the following steps:
- Step S212A Acquire an initial decoded frame obtained by decoding the initial compressed video, calculate a frame average quantization parameter corresponding to each initial decoded frame, and calculate a video average quantization parameter corresponding to the initial compressed video according to the frame average quantization parameter.
- the initial decoded frame is a video frame resulting from decoding the initial compressed video.
- the frame average quantization parameter refers to an average quantization parameter corresponding to the initial decoded frame, and the frame average quantization parameter may obtain an initial quantization parameter corresponding to each initial coding unit in the initial decoded frame, and then perform an average operation according to the initial quantization parameter corresponding to each initial coding unit. The average value obtained can be used as a frame average quantization parameter.
- the video average quantization parameter corresponding to the initial compressed video may be calculated according to the frame average quantization parameter corresponding to each initial decoded frame in the initial compressed video.
- Step S212B determining whether the difference between the frame average quantization parameter and the video average quantization parameter is greater than a preset parameter, and if yes, proceeding to step S212C, and if no, proceeding to step S212D.
- the difference between the frame average quantization parameter and the video average quantization parameter is determined. If it is greater than a preset parameter (for example, 5), such a video frame is regarded as a type of video frame, otherwise, as a second type of video frame. .
- a preset parameter for example, 5
- Step S212C The current video frame that matches the initial decoded frame is used as a type of video frame.
- Step S212D The current video frame that matches the initial decoded frame is used as the second type of video frame.
- the initial decoded frames are divided into two categories based on the magnitude of the difference between the video average quantization parameter and the frame average quantization parameter. Since the decoded initial frame is used as the current video frame to be encoded, the initial decoded frame is in one-to-one correspondence with the current video frame. When the difference between the frame average quantization parameter and the video average quantization parameter is greater than a preset parameter, The current video frame corresponding to the initial decoded frame is used as a type of video frame. Otherwise, the current video frame corresponding to the initial decoded frame is used as the second type of video frame.
- the difference between the frame average quantization parameter and the video average quantization parameter is relatively large, it indicates that the quantization parameter corresponding to the initial coding unit of the video frame is large, and the corresponding image quality is poor. On the contrary, the image quality is better.
- the step S208B includes: when the current video frame where the current coding unit is located is a type of video frame, acquiring the first adjustment coefficient, according to the first adjustment coefficient and the gap The amplitude calculation obtains the quantization parameter increment; when the current video frame where the current coding unit is located is the second type of video frame, the second adjustment coefficient is obtained, and the quantization parameter increment is calculated according to the second adjustment coefficient and the gap amplitude.
- the adjustment coefficients are set for different types of video frames, and for those video frames whose frame average quantization parameters are relatively large, the adjustment coefficients may be correspondingly adjusted.
- the setting is larger, because the average quantization parameter of the frame corresponding to the initial decoded frame is relatively large, indicating that the original image quality of the frame is already very poor, so even if the encoding is performed with a smaller quantization parameter, the quality cannot be improved.
- the adjustment factor is increased, which is beneficial to further improve the compression efficiency.
- the adjustment coefficient can be set smaller.
- FIG. 7 it is a schematic flowchart of video transcoding in one embodiment.
- the video before compression of the terminal is referred to as “original video”
- the code stream after compression by the terminal is referred to as “one-time compressed code stream”, that is, the code stream to be transcoded
- the terminal compression process is referred to as “one-time compression”.
- the terminal uploads the compressed stream to the server once.
- the server transcoding process is divided into "one-time compressed code stream decoding" and "secondary compression”.
- the code stream obtained after transcoding the server is called “secondary compressed code stream", and the server Compression is called “secondary compression.”
- the server first decodes the compressed code stream, obtains an initial quantization parameter of each coding unit in the compressed video frame, and calculates a secondary compression corresponding to each coding unit according to the initial quantization parameter.
- Quantizing the reference value of the parameter then calculating the secondary compression quantization parameter of each coding unit, and increasing and adjusting the calculated secondary compression quantization parameter according to the reference value of the secondary compression quantization parameter to obtain a secondary compression target quantization parameter, and then The coding unit is coded according to the secondary compression target quantization parameter to obtain a secondary compressed code stream.
- a quantization scheme is calculated for each coding unit, and then a flow diagram of coding the coding unit is performed.
- prediction is performed.
- the purpose of prediction is to reduce spatial redundancy and temporal redundancy of video images by intra prediction and inter prediction.
- the transformation is performed to remove the correlation between adjacent data by transforming from the time domain to the frequency domain, that is, to remove spatial redundancy.
- quantization is performed, which is different from the traditional direct calculation of the quantization parameters. By adjusting the calculated quantization parameters, it is beneficial to improve the compression efficiency and avoid the waste of the code stream.
- the encoding unit is encoded by entropy coding. .
- a video transcoding method which specifically includes the following steps:
- Step S901 Acquire an initial quantization parameter corresponding to an initial coding unit when encoding the initial compressed video.
- Step S902 Acquire a target initial decoding frame that matches the current video frame, and obtain an initial quantization parameter corresponding to each initial coding unit in the target initial decoding frame.
- Step S903 Sort the initial quantization parameters corresponding to the initial coding units according to the size to obtain a ranking result, and use the smallest initial quantization parameter in the ranking result as the current reference quantization parameter corresponding to the current coding unit.
- Step S904 calculating a quantization parameter to be encoded corresponding to the current coding unit
- Step S905 calculating a difference between the current reference quantization parameter corresponding to the current coding unit and the corresponding quantization parameter to be coded;
- step S906 it is determined whether the gap width is greater than a preset threshold. If yes, the process goes to step S907, and if no, the process goes to step S908.
- Step S907 obtaining an adjustment coefficient, calculating a quantization parameter increment according to the adjustment coefficient and the gap width, and calculating a target coding quantization parameter according to the quantization parameter increment and the quantization parameter to be encoded corresponding to the current coding unit.
- step S908 the quantization parameter to be encoded is directly used as the target coding quantization parameter.
- Step S909 encoding the current coding unit according to the target coding quantization parameter.
- a video transcoding device comprising:
- the initial quantization parameter obtaining module 1002 is configured to obtain an initial quantization parameter corresponding to the initial coding unit when encoding the initial compressed video.
- a determining module 1004 configured to acquire a current coding unit in a current video frame, and determine a current reference quantization parameter corresponding to the current coding unit according to an initial quantization parameter corresponding to the initial coding unit;
- the to-be-coded quantization parameter determining module 1006 is configured to determine a quantization parameter to be encoded corresponding to the current coding unit;
- the target coding quantization parameter determining module 1008 is configured to determine a gap between the current reference quantization parameter corresponding to the current coding unit and the corresponding quantization parameter to be encoded, and increase the to-be-corresponding to the current coding unit according to the gap magnitude Encoding the quantization parameter to obtain a target coding quantization parameter;
- the encoding module 1010 is configured to encode the current coding unit according to the target coding quantization parameter.
- the determining module 1004 is further configured to acquire a target initial decoding frame that is matched by the current video frame, and obtain a target initial coding unit that is matched by the current coding unit in the target initial decoded frame, according to the target initial coding.
- the initial quantization parameter corresponding to the unit determines a current reference quantization parameter corresponding to the current coding unit.
- the determining module 1004 includes:
- the sorting module 1004A is configured to acquire a target initial decoding frame that matches the current video frame, and obtain an initial quantization parameter corresponding to each initial coding unit in the target initial decoding frame, and perform initial quantization parameters corresponding to the initial coding units according to the size. Sort to get the sort result;
- the current reference quantization parameter determining module 1004B is configured to determine a current reference quantization parameter corresponding to the current coding unit according to the ranking result.
- the current reference quantization parameter determining module is further configured to use a minimum initial quantization parameter of the sorting result as a current reference quantization parameter corresponding to the current coding unit.
- the determining module 1004 is further configured to acquire an initial video coding standard corresponding to the initial compressed video, and obtain a current video coding standard corresponding to the current video frame, according to the initial video coding standard and the current video.
- the coding standard determines a mapping relationship of the quantization parameter to obtain the current reference quantization parameter according to the initial quantization parameter corresponding to the initial coding unit and the mapping relationship.
- the target encoding quantization parameter determining module 1008 is further configured to: when the gap amplitude is greater than a preset threshold, acquire an adjustment coefficient, and calculate a quantization parameter increment according to the adjustment coefficient and the gap amplitude; And calculating a target coding quantization parameter according to the quantization parameter increment and the quantization parameter to be encoded corresponding to the current coding unit.
- the video transcoding device further includes:
- the average reference quantization parameter determining module 1012 is further configured to obtain a target initial decoding frame that matches the current video frame, and determine an average reference quantization parameter corresponding to the current coding unit according to an initial quantization parameter corresponding to the initial coding unit in the target initial decoding frame;
- the target encoding quantization parameter determining module 1008 is further configured to calculate a target difference value of the average reference quantization parameter and the current reference quantization parameter, and calculate an adjustment coefficient according to the target difference, the adjustment coefficient and the target The difference is positively correlated.
- the average reference quantization parameter determining module 1012 is further configured to obtain an initial quantization parameter corresponding to each initial coding unit in the target initial decoding frame, and perform an average calculation according to the initial quantization parameter corresponding to each initial coding unit.
- An average quantization parameter; the average quantization parameter is used as an average reference quantization parameter corresponding to a current coding unit in the current video frame.
- the video transcoding device includes:
- the video average quantization parameter calculation module 1014 is configured to obtain an initial decoded frame obtained by decoding the initial compressed video, calculate a frame average quantization parameter corresponding to each initial decoded frame, and calculate and obtain the initial compressed video according to the frame average quantization parameter. Corresponding video average quantization parameter;
- the video frame determining module 1016 is configured to: when the difference between the video average quantization parameter and the frame average quantization parameter is greater than a preset parameter, use a current video frame that matches the initial decoded frame as a type of video frame. ;
- the second type of video frame determining module 1018 is configured to: when the difference between the video average quantization parameter and the frame average quantization parameter is less than or equal to a preset parameter, use a current video frame that matches the initial decoded frame as a second class.
- the target coded quantization parameter determining module 1008 is further configured to: when the current video frame where the current coding unit is located, is a type of video frame, obtain a first adjustment coefficient, and calculate, according to the first adjustment coefficient and the difference amplitude, Quantizing the parameter increment; when the current video frame in which the current coding unit is located is a second type of video frame, acquiring a second adjustment coefficient, and calculating a quantization parameter increment according to the second adjustment coefficient and the difference width.
- Figure 14 is a diagram showing the internal structure of a computer device in one embodiment.
- the computer device may specifically be the server 120 of FIG.
- the computer device includes the computer device including a processor, a memory, and a network interface connected by a system bus.
- the memory comprises a non-volatile storage medium and an internal memory.
- the non-volatile storage medium of the computer device stores an operating system and can also store computer readable instructions that, when executed by the processor, cause the processor to implement a video transcoding method.
- the internal memory can also store computer readable instructions that, when executed by the processor, cause the processor to perform a video transcoding method.
- FIG. 14 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation of the computer device to which the solution of the present application is applied.
- the specific computer device may It includes more or fewer components than those shown in the figures, or some components are combined, or have different component arrangements.
- the video transcoding device provided herein can be implemented in the form of a computer readable instruction that can be executed on a computer device as shown in FIG.
- Each program module constituting the video transcoding device may be stored in a memory of the computer device, for example, an initial quantization parameter acquisition module 1002, a determination module 1004, a quantization parameter calculation module 1006 to be encoded, and a target coding quantization parameter determination module shown in FIG. 1008 and encoding module 1010.
- the computer readable instructions formed by the various program modules cause the processor to perform the steps in the video transcoding method of various embodiments of the present application described in this specification.
- the 14 may perform initial quantization parameters corresponding to the initial coding unit when the initial compressed video is encoded by the initial quantization parameter acquisition module 1002 in the video transcoding device shown in FIG. 10; Obtaining a current coding unit in the current video frame, determining a current reference quantization parameter corresponding to the current coding unit according to the initial quantization parameter corresponding to the initial coding unit; and calculating, by the to-be-coded quantization parameter calculation module 1006, the current coding unit a quantization parameter to be encoded; the target encoding quantization parameter determining module 1008 performs a calculation of a gap between a current reference quantization parameter corresponding to the current coding unit and a corresponding quantization parameter to be encoded, and increases the current coding according to the gap width The quantization parameter to be encoded corresponding to the unit obtains the target coding quantization parameter; and the encoding module 1010 performs encoding on the current coding unit according to the target coding quantization parameter.
- a computer device comprising a memory and one or more processors, the memory storing computer readable instructions, the computer readable instructions being executed by the one or more processors such that the one or more The processor performs the following steps: obtaining an initial quantization parameter corresponding to the initial coding unit when the initial compressed video is encoded; determining a current reference quantization parameter corresponding to the current coding unit in the current video frame according to the initial quantization parameter corresponding to the initial coding unit; a quantization parameter to be encoded corresponding to the current coding unit; determining a difference width between the to-be-coded quantization parameter corresponding to the current coding unit and the corresponding current reference quantization parameter, and increasing the to-be-coded quantization corresponding to the current coding unit according to the gap width And obtaining a target coding quantization parameter, and encoding the current coding unit according to the target coding quantization parameter.
- the step of acquiring the current coding unit in the current video frame and determining the current reference quantization parameter corresponding to the current coding unit according to the initial quantization parameter corresponding to the initial coding unit includes: acquiring a current video frame matching The target initial decoding frame is obtained; the target initial coding unit that is matched by the current coding unit in the target initial decoding frame is obtained; and the current reference quantization parameter corresponding to the current coding unit is determined according to the initial quantization parameter corresponding to the target initial coding unit.
- the step of acquiring the current coding unit in the current video frame and determining the current reference quantization parameter corresponding to the current coding unit according to the initial quantization parameter corresponding to the initial coding unit includes: acquiring a current video frame match a target initial decoding frame; acquiring an initial quantization parameter corresponding to each initial coding unit in the target initial decoding frame; sorting initial quantization parameters corresponding to the respective initial coding units according to the size to obtain a sorting result, and determining, according to the sorting result a current reference quantization parameter corresponding to the current coding unit.
- the determining, according to the ranking result, the current reference quantization parameter corresponding to the current coding unit comprises: using a minimum initial quantization parameter of the ranking result as a current current corresponding to the current coding unit Refer to the quantization parameters.
- the step of acquiring the current coding unit in the current video frame, and determining the current reference quantization parameter corresponding to the current coding unit according to the initial quantization parameter corresponding to the initial coding unit includes: acquiring the initial compressed video Corresponding initial video coding standard, acquiring a current video coding standard corresponding to the current video frame; determining a mapping relationship of the quantization parameter according to the initial video coding standard and the current video coding standard; and initial quantization parameter corresponding to the initial coding unit And the mapping relationship to obtain the current reference quantization parameter.
- the step of obtaining the target coding quantization parameter includes: when the gap amplitude is greater than a preset threshold, acquiring an adjustment coefficient, and calculating a quantization parameter increment according to the adjustment coefficient and the gap amplitude; according to the quantization parameter increment
- the target coding quantization parameter is calculated by calculating a quantization parameter to be encoded corresponding to the current coding unit.
- the processor when the computer readable instructions are executed by the processor, the processor further causes the processor to perform the steps of: acquiring a target initial decoded frame of a current video frame match; initial coding unit in the initial decoded frame according to the target Corresponding initial quantization parameter determines an average reference quantization parameter corresponding to the current coding unit; the step of acquiring the adjustment coefficient includes: calculating a target difference value of the average reference quantization parameter and the current reference quantization parameter; according to the target difference The value calculation yields an adjustment factor that is positively correlated with the target difference.
- the determining, according to the initial quantization parameter corresponding to the initial coding unit in the target initial decoding frame, the average reference quantization parameter corresponding to the current coding unit comprises: acquiring an initial corresponding to each initial coding unit in the target initial decoding frame The quantization parameter is averaged according to the initial quantization parameter corresponding to each initial coding unit to obtain an average quantization parameter; and the average quantization parameter is used as an average reference quantization parameter corresponding to the current coding unit in the current video frame.
- the computer readable instructions when executed by the processor, further cause the processor to perform the steps of: obtaining an initial decoded frame obtained by decoding the initial compressed video, and calculating respective initial decoded frames a frame average quantization parameter, and calculating, according to the frame average quantization parameter, a video average quantization parameter corresponding to the initial compressed video; when a difference between the video average quantization parameter and the frame average quantization parameter is greater than a preset parameter, And the current video frame that matches the initial decoded frame is used as a type of video frame; and when the difference between the video average quantization parameter and the frame average quantization parameter is less than or equal to a preset parameter,
- the matching current video frame is used as the second type of video frame;
- the obtaining the adjustment coefficient, and the step of calculating the quantization parameter increment according to the adjustment coefficient and the gap width comprises: when the current video frame where the current coding unit is located is one When the video frame is similar, the first adjustment coefficient is obtained, and the quantization is calculated according to the first adjustment coefficient and the
- one or more non-transitory computer readable storage media having stored thereon computer readable instructions, when executed by one or more processors, cause one or more processors Performing the following steps: obtaining an initial quantization parameter corresponding to the initial coding unit when the initial compressed video is encoded; determining a current reference quantization parameter corresponding to the current coding unit in the current video frame according to the initial quantization parameter corresponding to the initial coding unit; determining the current coding a quantization parameter to be encoded corresponding to the unit; determining a difference width between the to-be-coded quantization parameter corresponding to the current coding unit and the corresponding current reference quantization parameter, and increasing the to-be-coded quantization parameter corresponding to the current coding unit according to the gap size, Obtaining a target coding quantization parameter; encoding the current coding unit according to the target coding quantization parameter.
- the step of acquiring the current coding unit in the current video frame and determining the current reference quantization parameter corresponding to the current coding unit according to the initial quantization parameter corresponding to the initial coding unit includes: acquiring a current video frame matching The target initial decoding frame is obtained; the target initial coding unit that is matched by the current coding unit in the target initial decoding frame is obtained; and the current reference quantization parameter corresponding to the current coding unit is determined according to the initial quantization parameter corresponding to the target initial coding unit.
- the step of acquiring the current coding unit in the current video frame and determining the current reference quantization parameter corresponding to the current coding unit according to the initial quantization parameter corresponding to the initial coding unit includes: acquiring a current video frame match a target initial decoding frame; acquiring an initial quantization parameter corresponding to each initial coding unit in the target initial decoding frame; sorting initial quantization parameters corresponding to the respective initial coding units according to the size to obtain a sorting result, and determining, according to the sorting result a current reference quantization parameter corresponding to the current coding unit.
- the determining, according to the ranking result, the current reference quantization parameter corresponding to the current coding unit comprises: using a minimum initial quantization parameter of the ranking result as a current current corresponding to the current coding unit Refer to the quantization parameters.
- the step of acquiring the current coding unit in the current video frame, and determining the current reference quantization parameter corresponding to the current coding unit according to the initial quantization parameter corresponding to the initial coding unit includes: acquiring the initial compressed video Corresponding initial video coding standard, acquiring a current video coding standard corresponding to the current video frame; determining a mapping relationship of the quantization parameter according to the initial video coding standard and the current video coding standard; and initial quantization parameter corresponding to the initial coding unit And the mapping relationship to obtain the current reference quantization parameter.
- the step of obtaining the target coding quantization parameter includes: when the gap amplitude is greater than a preset threshold, acquiring an adjustment coefficient, and calculating a quantization parameter increment according to the adjustment coefficient and the gap amplitude; according to the quantization parameter increment
- the target coding quantization parameter is calculated by calculating a quantization parameter to be encoded corresponding to the current coding unit.
- the processor when the computer readable instructions are executed by the processor, the processor further causes the processor to perform the steps of: acquiring a target initial decoded frame of a current video frame match; initial coding unit in the initial decoded frame according to the target Corresponding initial quantization parameter determines an average reference quantization parameter corresponding to the current coding unit; the step of acquiring the adjustment coefficient includes: calculating a target difference value of the average reference quantization parameter and the current reference quantization parameter; according to the target difference The value calculation yields an adjustment factor that is positively correlated with the target difference.
- the determining, according to the initial quantization parameter corresponding to the initial coding unit in the target initial decoding frame, the average reference quantization parameter corresponding to the current coding unit comprises: acquiring an initial corresponding to each initial coding unit in the target initial decoding frame The quantization parameter is averaged according to the initial quantization parameter corresponding to each initial coding unit to obtain an average quantization parameter; and the average quantization parameter is used as an average reference quantization parameter corresponding to the current coding unit in the current video frame.
- the computer readable instructions when executed by the processor, further cause the processor to perform the steps of: obtaining an initial decoded frame obtained by decoding the initial compressed video, and calculating respective initial decoded frames a frame average quantization parameter, and calculating, according to the frame average quantization parameter, a video average quantization parameter corresponding to the initial compressed video; when a difference between the video average quantization parameter and the frame average quantization parameter is greater than a preset parameter, And the current video frame that matches the initial decoded frame is used as a type of video frame; and when the difference between the video average quantization parameter and the frame average quantization parameter is less than or equal to a preset parameter,
- the matching current video frame is used as the second type of video frame;
- the obtaining the adjustment coefficient, and the step of calculating the quantization parameter increment according to the adjustment coefficient and the gap width comprises: when the current video frame where the current coding unit is located is one When the video frame is similar, the first adjustment coefficient is obtained, and the quantization is calculated according to the first adjustment coefficient and the
- Non-volatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
- Volatile memory can include random access memory (RAM) or external cache memory.
- RAM is available in a variety of formats, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronization chain.
- SRAM static RAM
- DRAM dynamic RAM
- SDRAM synchronous DRAM
- DDRSDRAM double data rate SDRAM
- ESDRAM enhanced SDRAM
- Synchlink DRAM SLDRAM
- Memory Bus Radbus
- RDRAM Direct RAM
- DRAM Direct Memory Bus Dynamic RAM
- RDRAM Memory Bus Dynamic RAM
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
Claims (27)
- 一种视频转码方法,包括:计算机设备获取编码初始压缩视频时初始编码单元对应的初始量化参数;所述计算机设备根据所述初始编码单元对应的初始量化参数确定当前视频帧中当前编码单元对应的当前参考量化参数;所述计算机设备确定所述当前编码单元对应的待编码量化参数;所述计算机设备确定所述当前编码单元对应的当前参考量化参数与对应的待编码量化参数之间的差距幅度,根据所述差距幅度增大所述当前编码单元对应的待编码量化参数,得到目标编码量化参数;及所述计算机设备根据所述目标编码量化参数对当前编码单元进行编码。
- 根据权利要求1所述的方法,其特征在于,所述计算机设备获取当前视频帧中当前编码单元,根据所述初始编码单元对应的初始量化参数确定所述当前编码单元对应的当前参考量化参数包括:所述计算机设备获取当前视频帧匹配的目标初始解码帧;所述计算机设备获取当前编码单元在所述目标初始解码帧中匹配的目标初始编码单元;所述计算机设备根据所述目标初始编码单元对应的初始量化参数确定所述当前编码单元对应的当前参考量化参数。
- 根据权利要求1所述的方法,其特征在于,所述计算机设备获取当前视频帧中的当前编码单元,根据所述初始编码单元对应的初始量化参数确定所述当前编码单元对应的当前参考量化参数包括:所述计算机设备获取当前视频帧匹配的目标初始解码帧;所述计算机设备获取所述目标初始解码帧中各个初始编码单元对应的初始量化参数;所述计算机设备对所述各个初始编码单元对应的初始量化参数根据大小进行排序得到排序结果,根据所述排序结果确定与所述当前编码单元对应的 当前参考量化参数。
- 根据权利要求3所述的方法,其特征在于,所述根据所述排序结果确定与所述当前编码单元对应的当前参考量化参数包括:所述计算机设备将所述排序结果中最小的初始量化参数作为所述当前编码单元对应的当前参考量化参数。
- 根据权利要求1所述的方法,其特征在于,所述获取当前视频帧中当前编码单元,根据所述初始编码单元对应的初始量化参数确定所述当前编码单元对应的当前参考量化参数包括:所述计算机设备获取所述初始压缩视频对应的初始视频编码标准,获取当前视频帧对应的当前视频编码标准;所述计算机设备根据所述初始视频编码标准和所述当前视频编码标准确定量化参数的映射关系;所述计算机设备根据所述初始编码单元对应的初始量化参数和所述映射关系得到所述当前参考量化参数。
- 根据权利要求1所述的方法,其特征在于,所述确定所述当前编码单元对应的当前参考量化参数与对应的待编码量化参数之间的差距幅度,根据所述差距幅度增大所述当前编码单元对应的待编码量化参数,得到目标编码量化参数包括:当所述差距幅度大于预设阈值时,所述计算机设备获取调整系数,根据所述调整系数和所述差距幅度计算得到量化参数增量;所述计算机设备根据所述量化参数增量和当前编码单元对应的待编码量化参数计算得到目标编码量化参数。
- 根据权利要求6所述的方法,其特征在于,所述方法还包括:所述计算机设备获取当前视频帧匹配的目标初始解码帧;所述计算机设备根据目标初始解码帧中初始编码单元对应的初始量化参数确定与当前编码单元对应的平均参考量化参数;所述获取调整系数,包括:所述计算机设备计算所述平均参考量化参数和所述当前参考量化参数的目标差值;所述计算机设备根据所述目标差值计算得到调整系数,所述调整系数与所述目标差值成正相关。
- 根据权利要求7所述的方法,其特征在于,所述计算机设备根据目标初始解码帧中初始编码单元对应的初始量化参数确定与当前编码单元对应的平均参考量化参数,包括:所述计算机设备获取目标初始解码帧中各个初始编码单元对应的初始量化参数,根据所述各个初始编码单元对应的初始量化参数进行均值计算得到平均量化参数;所述计算机设备将所述平均量化参数作为所述当前视频帧中当前编码单元对应的平均参考量化参数。
- 根据权利要求6所述的方法,其特征在于,所述方法包括:所述计算机设备获取解码所述初始压缩视频得到的初始解码帧,计算各个初始解码帧对应的帧平均量化参数,根据所述帧平均量化参数计算得到与所述初始压缩视频对应的视频平均量化参数;当所述视频平均量化参数与所述帧平均量化参数的差值大于预设参数时,所述计算机设备将与所述初始解码帧匹配的当前视频帧作为一类视频帧;当所述视频平均量化参数与所述帧平均量化参数的差值小于或等于预设参数时,所述计算机设备将与所述初始解码帧匹配的当前视频帧作为二类视频帧;所述计算机设备获取调整系数,根据所述调整系数和所述差距幅度计算得到量化参数增量,包括:当所述当前编码单元所在的当前视频帧为一类视频帧时,所述计算机设备获取第一调整系数,根据所述第一调整系数和所述差距幅度计算得到量化参数增量;当所述当前编码单元所在的当前视频帧为二类视频帧时,所述计算机设 备获取第二调整系数,根据所述第二调整系数和所述差距幅度计算得到量化参数增量。
- 一种计算机设备,包括存储器和一个或多个处理器,所述存储器中储存有计算机可读指令,所述计算机可读指令被所述一个或多个处理器执行时,使得所述一个或多个处理器执行以下步骤:获取编码初始压缩视频时初始编码单元对应的初始量化参数;根据所述初始编码单元对应的初始量化参数确定当前视频帧中当前编码单元对应的当前参考量化参数;确定所述当前编码单元对应的待编码量化参数;确定所述当前编码单元对应的当前参考量化参数与对应的待编码量化参数之间的差距幅度,根据所述差距幅度增大所述当前编码单元对应的待编码量化参数,得到目标编码量化参数;及根据所述目标编码量化参数对当前编码单元进行编码。
- 根据权利要求10所述的计算机设备,其特征在于,所述获取当前视频帧中当前编码单元,根据所述初始编码单元对应的初始量化参数确定所述当前编码单元对应的当前参考量化参数,包括:获取当前视频帧匹配的目标初始解码帧;获取当前编码单元在所述目标初始解码帧中匹配的目标初始编码单元;根据所述目标初始编码单元对应的初始量化参数确定所述当前编码单元对应的当前参考量化参数。
- 根据权利要求10所述的计算机设备,其特征在于,所述获取当前视频帧中的当前编码单元,根据所述初始编码单元对应的初始量化参数确定所述当前编码单元对应的当前参考量化参数,包括:获取当前视频帧匹配的目标初始解码帧;获取所述目标初始解码帧中各个初始编码单元对应的初始量化参数;对所述各个初始编码单元对应的初始量化参数根据大小进行排序得到排 序结果,根据所述排序结果确定与所述当前编码单元对应的当前参考量化参数。
- 根据权利要求12所述的计算机设备,其特征在于,所述根据所述排序结果确定与所述当前编码单元对应的当前参考量化参数,包括:将所述排序结果中最小的初始量化参数作为所述当前编码单元对应的当前参考量化参数。
- 根据权利要求10所述的计算机设备,其特征在于,所述获取当前视频帧中当前编码单元,根据所述初始编码单元对应的初始量化参数确定所述当前编码单元对应的当前参考量化参数,包括:获取所述初始压缩视频对应的初始视频编码标准,获取当前视频帧对应的当前视频编码标准;根据所述初始视频编码标准和所述当前视频编码标准确定量化参数的映射关系;根据所述初始编码单元对应的初始量化参数和所述映射关系得到所述当前参考量化参数。
- 根据权利要求10所述的计算机设备,其特征在于,所述确定所述当前编码单元对应的当前参考量化参数与对应的待编码量化参数之间的差距幅度,根据所述差距幅度增大所述当前编码单元对应的待编码量化参数,得到目标编码量化参数,包括:当所述差距幅度大于预设阈值时,获取调整系数,根据所述调整系数和所述差距幅度计算得到量化参数增量;根据所述量化参数增量和当前编码单元对应的待编码量化参数计算得到目标编码量化参数。
- 根据权利要求15所述的计算机设备,其特征在于,所述计算机可读指令还使得所述处理器执行以下步骤:获取当前视频帧匹配的目标初始解码帧;根据目标初始解码帧中初始编码单元对应的初始量化参数确定与当前编 码单元对应的平均参考量化参数;所述获取调整系数,包括:计算所述平均参考量化参数和所述当前参考量化参数的目标差值;根据所述目标差值计算得到调整系数,所述调整系数与所述目标差值成正相关。
- 根据权利要求16所述的计算机设备,其特征在于,所述根据目标初始解码帧中初始编码单元对应的初始量化参数确定与当前编码单元对应的平均参考量化参数,包括:获取目标初始解码帧中各个初始编码单元对应的初始量化参数,根据所述各个初始编码单元对应的初始量化参数进行均值计算得到平均量化参数;将所述平均量化参数作为所述当前视频帧中当前编码单元对应的平均参考量化参数。
- 根据权利要求15所述的计算机设备,其特征在于,所述计算机可读指令还使得所述处理器执行以下步骤:获取解码所述初始压缩视频得到的初始解码帧,计算各个初始解码帧对应的帧平均量化参数,根据所述帧平均量化参数计算得到与所述初始压缩视频对应的视频平均量化参数;当所述视频平均量化参数与所述帧平均量化参数的差值大于预设参数时,将与所述初始解码帧匹配的当前视频帧作为一类视频帧;当所述视频平均量化参数与所述帧平均量化参数的差值小于或等于预设参数时,将与所述初始解码帧匹配的当前视频帧作为二类视频帧;所述获取调整系数,根据所述调整系数和所述差距幅度计算得到量化参数增量,包括:当所述当前编码单元所在的当前视频帧为一类视频帧时,获取第一调整系数,根据所述第一调整系数和所述差距幅度计算得到量化参数增量;当所述当前编码单元所在的当前视频帧为二类视频帧时,获取第二调整系数,根据所述第二调整系数和所述差距幅度计算得到量化参数增量。
- 一个或多个存储有计算机可读指令的计算机可读非易失性存储介质,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行以下步骤:获取编码初始压缩视频时初始编码单元对应的初始量化参数;根据所述初始编码单元对应的初始量化参数确定当前视频帧中当前编码单元对应的当前参考量化参数;确定所述当前编码单元对应的待编码量化参数;确定所述当前编码单元对应的当前参考量化参数与对应的待编码量化参数之间的差距幅度,根据所述差距幅度增大所述当前编码单元对应的待编码量化参数,得到目标编码量化参数;及根据所述目标编码量化参数对当前编码单元进行编码。
- 根据权利要求19所述的存储介质,其特征在于,所述获取当前视频帧中当前编码单元,根据所述初始编码单元对应的初始量化参数确定所述当前编码单元对应的当前参考量化参数,包括:获取当前视频帧匹配的目标初始解码帧;获取当前编码单元在所述目标初始解码帧中匹配的目标初始编码单元;根据所述目标初始编码单元对应的初始量化参数确定所述当前编码单元对应的当前参考量化参数。
- 根据权利要求19所述的存储介质,其特征在于,所述获取当前视频帧中的当前编码单元,根据所述初始编码单元对应的初始量化参数确定所述当前编码单元对应的当前参考量化参数,包括:获取当前视频帧匹配的目标初始解码帧;获取所述目标初始解码帧中各个初始编码单元对应的初始量化参数;对所述各个初始编码单元对应的初始量化参数根据大小进行排序得到排序结果,根据所述排序结果确定与所述当前编码单元对应的当前参考量化参数。
- 根据权利要求21所述的存储介质,其特征在于,所述根据所述排序结果确定与所述当前编码单元对应的当前参考量化参数,包括:将所述排序结果中最小的初始量化参数作为所述当前编码单元对应的当前参考量化参数。
- 根据权利要求19所述的存储介质,其特征在于,所述获取当前视频帧中当前编码单元,根据所述初始编码单元对应的初始量化参数确定所述当前编码单元对应的当前参考量化参数,包括:获取所述初始压缩视频对应的初始视频编码标准,获取当前视频帧对应的当前视频编码标准;根据所述初始视频编码标准和所述当前视频编码标准确定量化参数的映射关系;根据所述初始编码单元对应的初始量化参数和所述映射关系得到所述当前参考量化参数。
- 根据权利要求19所述的存储介质,其特征在于,所述确定所述当前编码单元对应的当前参考量化参数与对应的待编码量化参数之间的差距幅度,根据所述差距幅度增大所述当前编码单元对应的待编码量化参数,得到目标编码量化参数,包括:当所述差距幅度大于预设阈值时,获取调整系数,根据所述调整系数和所述差距幅度计算得到量化参数增量;根据所述量化参数增量和当前编码单元对应的待编码量化参数计算得到目标编码量化参数。
- 根据权利要求24所述的存储介质,其特征在于,所述计算机可读指令还使得所述处理器执行以下步骤:获取当前视频帧匹配的目标初始解码帧;根据目标初始解码帧中初始编码单元对应的初始量化参数确定与当前编码单元对应的平均参考量化参数;所述获取调整系数,包括:计算所述平均参考量化参数和所述当前参考量化参数的目标差值;根据所述目标差值计算得到调整系数,所述调整系数与所述目标差值成正相关。
- 根据权利要求25所述的存储介质,其特征在于,所述根据目标初始解码帧中初始编码单元对应的初始量化参数确定与当前编码单元对应的平均参考量化参数,包括:获取目标初始解码帧中各个初始编码单元对应的初始量化参数,根据所述各个初始编码单元对应的初始量化参数进行均值计算得到平均量化参数;将所述平均量化参数作为所述当前视频帧中当前编码单元对应的平均参考量化参数。
- 根据权利要求24所述的存储介质,其特征在于,所述计算机可读指令还使得所述处理器执行以下步骤:获取解码所述初始压缩视频得到的初始解码帧,计算各个初始解码帧对应的帧平均量化参数,根据所述帧平均量化参数计算得到与所述初始压缩视频对应的视频平均量化参数;当所述视频平均量化参数与所述帧平均量化参数的差值大于预设参数时,将与所述初始解码帧匹配的当前视频帧作为一类视频帧;当所述视频平均量化参数与所述帧平均量化参数的差值小于或等于预设参数时,将与所述初始解码帧匹配的当前视频帧作为二类视频帧;所述获取调整系数,根据所述调整系数和所述差距幅度计算得到量化参数增量,包括:当所述当前编码单元所在的当前视频帧为一类视频帧时,获取第一调整系数,根据所述第一调整系数和所述差距幅度计算得到量化参数增量;当所述当前编码单元所在的当前视频帧为二类视频帧时,获取第二调整系数,根据所述第二调整系数和所述差距幅度计算得到量化参数增量。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019561246A JP6881819B2 (ja) | 2017-10-10 | 2018-06-28 | ビデオトランスコーディング方法、コンピューター機器、及び記憶媒体 |
KR1020197035404A KR102291570B1 (ko) | 2017-10-10 | 2018-06-28 | 비디오 트랜스코딩 방법, 컴퓨터 디바이스 및 저장 매체 |
EP18866688.7A EP3697095A4 (en) | 2017-10-10 | 2018-06-28 | VIDEO TRANSCODING METHOD, COMPUTER DEVICE AND STORAGE MEDIUM |
US16/436,570 US10951905B2 (en) | 2017-10-10 | 2019-06-10 | Video transcoding method, computer device, and storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710937011.6 | 2017-10-10 | ||
CN201710937011.6A CN109660825B (zh) | 2017-10-10 | 2017-10-10 | 视频转码方法、装置、计算机设备及存储介质 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/436,570 Continuation US10951905B2 (en) | 2017-10-10 | 2019-06-10 | Video transcoding method, computer device, and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019071984A1 true WO2019071984A1 (zh) | 2019-04-18 |
Family
ID=66101287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/093318 WO2019071984A1 (zh) | 2017-10-10 | 2018-06-28 | 视频转码方法、计算机设备及存储介质 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10951905B2 (zh) |
EP (1) | EP3697095A4 (zh) |
JP (1) | JP6881819B2 (zh) |
KR (1) | KR102291570B1 (zh) |
CN (1) | CN109660825B (zh) |
MA (1) | MA50765A (zh) |
WO (1) | WO2019071984A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11139827B2 (en) * | 2019-03-15 | 2021-10-05 | Samsung Electronics Co., Ltd. | Conditional transcoding for encoded data |
CN110944200B (zh) * | 2019-12-10 | 2022-03-15 | 南京大学 | 一种评估沉浸式视频转码方案的方法 |
CN111193924B (zh) | 2019-12-26 | 2022-01-25 | 腾讯科技(深圳)有限公司 | 视频码率的确定方法、装置、计算机设备及存储介质 |
CN111107395B (zh) * | 2019-12-31 | 2021-08-03 | 广州市百果园网络科技有限公司 | 一种视频转码的方法、装置、服务器和存储介质 |
CN112203094B (zh) * | 2020-11-16 | 2024-05-14 | 北京世纪好未来教育科技有限公司 | 编码方法、装置、电子设备及存储介质 |
CN114333862B (zh) * | 2021-11-10 | 2024-05-03 | 腾讯科技(深圳)有限公司 | 音频编码方法、解码方法、装置、设备、存储介质及产品 |
CN116756589B (zh) * | 2023-08-16 | 2023-11-17 | 北京壁仞科技开发有限公司 | 匹配算子的方法、计算设备和计算机可读存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1653822A (zh) * | 2002-05-17 | 2005-08-10 | 通用仪表公司 | 用于代码转换压缩视频比特流的方法和设备 |
US20080031337A1 (en) * | 2006-08-04 | 2008-02-07 | Megachips Corporation | Transcoder and coded image conversion method |
CN101594525A (zh) * | 2008-05-31 | 2009-12-02 | 华为技术有限公司 | 量化参数的获取方法、装置及转码器 |
CN104202660A (zh) * | 2014-09-15 | 2014-12-10 | 乐视网信息技术(北京)股份有限公司 | 分片转码方法及装置 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3244399B2 (ja) * | 1994-03-25 | 2002-01-07 | 三洋電機株式会社 | 圧縮動画像符号信号の情報量変換回路、及び方法 |
US5677969A (en) * | 1995-02-23 | 1997-10-14 | Motorola, Inc. | Method, rate controller, and system for preventing overflow and underflow of a decoder buffer in a video compression system |
US6441754B1 (en) * | 1999-08-17 | 2002-08-27 | General Instrument Corporation | Apparatus and methods for transcoder-based adaptive quantization |
JP3561485B2 (ja) * | 2000-08-18 | 2004-09-02 | 株式会社メディアグルー | 符号化信号分離・合成装置、差分符号化信号生成装置、符号化信号分離・合成方法、差分符号化信号生成方法、符号化信号分離・合成プログラムを記録した媒体および差分符号化信号生成プログラムを記録した媒体 |
KR100540655B1 (ko) * | 2003-01-23 | 2006-01-10 | 삼성전자주식회사 | 비디오 코딩시의 비트율 제어 방법 및 장치 |
JP4063204B2 (ja) * | 2003-11-20 | 2008-03-19 | セイコーエプソン株式会社 | 画像データ圧縮装置及びエンコーダ |
JP4747494B2 (ja) * | 2004-03-03 | 2011-08-17 | ソニー株式会社 | データ処理装置およびその方法と符号化装置 |
US8295343B2 (en) * | 2005-11-18 | 2012-10-23 | Apple Inc. | Video bit rate control method |
CN101009829A (zh) * | 2006-01-25 | 2007-08-01 | 松下电器产业株式会社 | 可以及累积误差的比特元率转换编码方法,转换编码器,及集成电路 |
US8320450B2 (en) * | 2006-03-29 | 2012-11-27 | Vidyo, Inc. | System and method for transcoding between scalable and non-scalable video codecs |
US20070274396A1 (en) * | 2006-05-26 | 2007-11-29 | Ximin Zhang | Complexity adaptive skip mode estimation for video encoding |
US8982947B2 (en) * | 2007-07-20 | 2015-03-17 | The Hong Kong University Of Science And Technology | Rate control and video denoising for noisy video data |
EP2227020B1 (en) * | 2007-09-28 | 2014-08-13 | Dolby Laboratories Licensing Corporation | Video compression and transmission techniques |
BRPI0817655A2 (pt) * | 2007-10-05 | 2015-03-31 | Thomson Licensing | Método e aparelho para precisão de controle de taxa em codificação e decodificação de vídeo |
CN101779467B (zh) * | 2008-06-27 | 2012-06-27 | 索尼公司 | 图像处理装置和图像处理方法 |
CN101888542B (zh) * | 2010-06-11 | 2013-01-09 | 北京数码视讯科技股份有限公司 | 视频转码的帧级码率控制方法及转码器 |
CN101924943B (zh) * | 2010-08-27 | 2011-11-16 | 郭敏 | 一种实时的基于h.264的低比特率视频转码方法 |
JP6056122B2 (ja) * | 2011-01-24 | 2017-01-11 | ソニー株式会社 | 画像符号化装置と画像復号装置およびその方法とプログラム |
US9135724B2 (en) * | 2011-03-11 | 2015-09-15 | Sony Corporation | Image processing apparatus and method |
CN102685478B (zh) * | 2011-03-11 | 2015-04-29 | 华为技术有限公司 | 编码方法以及装置、解码方法以及装置 |
CN102685485B (zh) * | 2011-03-11 | 2014-11-05 | 华为技术有限公司 | 编码方法以及装置、解码方法以及装置 |
US8804820B2 (en) * | 2011-04-21 | 2014-08-12 | Dialogic Corporation | Rate control with look-ahead for video transcoding |
JP5900163B2 (ja) * | 2012-05-30 | 2016-04-06 | ソニー株式会社 | 画像処理装置、画像処理方法およびプログラム |
CN103763559B (zh) * | 2014-01-09 | 2017-12-29 | 能力天空科技(北京)有限公司 | 一种视频文件转码方法 |
JP2015186120A (ja) * | 2014-03-25 | 2015-10-22 | 沖電気工業株式会社 | 符号化方式変換装置及びプログラム |
US10097828B2 (en) * | 2014-12-11 | 2018-10-09 | Intel Corporation | Rate control for parallel video encoding |
CN105992004B (zh) * | 2015-02-13 | 2019-03-22 | 北京博雅华录视听技术研究院有限公司 | 基于视频编码标准的图像编码码率控制方法 |
CN104717507A (zh) * | 2015-03-31 | 2015-06-17 | 北京奇艺世纪科技有限公司 | 一种视频转码方法及装置 |
CN106488227B (zh) * | 2016-10-12 | 2019-03-15 | 广东中星电子有限公司 | 一种视频参考帧管理方法和系统 |
US10506196B2 (en) * | 2017-04-01 | 2019-12-10 | Intel Corporation | 360 neighbor-based quality selector, range adjuster, viewport manager, and motion estimator for graphics |
-
2017
- 2017-10-10 CN CN201710937011.6A patent/CN109660825B/zh active Active
-
2018
- 2018-06-28 EP EP18866688.7A patent/EP3697095A4/en active Pending
- 2018-06-28 KR KR1020197035404A patent/KR102291570B1/ko active IP Right Grant
- 2018-06-28 MA MA050765A patent/MA50765A/fr unknown
- 2018-06-28 WO PCT/CN2018/093318 patent/WO2019071984A1/zh unknown
- 2018-06-28 JP JP2019561246A patent/JP6881819B2/ja active Active
-
2019
- 2019-06-10 US US16/436,570 patent/US10951905B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1653822A (zh) * | 2002-05-17 | 2005-08-10 | 通用仪表公司 | 用于代码转换压缩视频比特流的方法和设备 |
US20080031337A1 (en) * | 2006-08-04 | 2008-02-07 | Megachips Corporation | Transcoder and coded image conversion method |
CN101594525A (zh) * | 2008-05-31 | 2009-12-02 | 华为技术有限公司 | 量化参数的获取方法、装置及转码器 |
CN104202660A (zh) * | 2014-09-15 | 2014-12-10 | 乐视网信息技术(北京)股份有限公司 | 分片转码方法及装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3697095A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN109660825A (zh) | 2019-04-19 |
EP3697095A1 (en) | 2020-08-19 |
EP3697095A4 (en) | 2021-07-07 |
JP2020519207A (ja) | 2020-06-25 |
CN109660825B (zh) | 2021-02-09 |
US10951905B2 (en) | 2021-03-16 |
MA50765A (fr) | 2020-08-19 |
KR102291570B1 (ko) | 2021-08-19 |
US20190320193A1 (en) | 2019-10-17 |
KR20200003115A (ko) | 2020-01-08 |
JP6881819B2 (ja) | 2021-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019071984A1 (zh) | 视频转码方法、计算机设备及存储介质 | |
US11159801B2 (en) | Video characterization for smart encoding based on perceptual quality optimization | |
US11412229B2 (en) | Method and apparatus for video encoding and decoding | |
US11563974B2 (en) | Method and apparatus for video decoding | |
WO2018171447A1 (zh) | 视频编码方法、视频解码方法、计算机设备和存储介质 | |
WO2019242486A1 (zh) | 视频编码方法、解码方法、装置、计算机设备及存储介质 | |
KR20140042845A (ko) | 지각적 비디오 코딩을 위한 구조적 유사성 기반의 레이트-왜곡 최적화 방법 및 시스템 | |
CN108574841B (zh) | 一种基于自适应量化参数的编码方法及装置 | |
WO2018161845A1 (zh) | 视频编码的码率分配、编码单元码率分配方法及计算机设备 | |
US9872032B2 (en) | Autogressive pixel prediction in the neighborhood of image borders | |
CN101523915B (zh) | 使用min-max方法的用于视频编码的两遍速率控制技术 | |
WO2018095890A1 (en) | Methods and apparatuses for encoding and decoding video based on perceptual metric classification | |
CN114793282A (zh) | 带有比特分配的基于神经网络的视频压缩 | |
Lin et al. | Multipass encoding for reducing pulsing artifacts in cloud based video transcoding | |
US20230388491A1 (en) | Colour component prediction method, encoder, decoder and storage medium | |
He et al. | Efficient Rate Control in Versatile Video Coding With Adaptive Spatial–Temporal Bit Allocation and Parameter Updating | |
EP3552395B1 (en) | Motion compensation techniques for video | |
KR102506115B1 (ko) | 타겟 태스크별 양자화 테이블 생성 방법 | |
Jenab et al. | Content-adaptive resolution control to improve video coding efficiency | |
CN112313950A (zh) | 视频图像分量的预测方法、装置及计算机存储介质 | |
US11736730B2 (en) | Systems, methods, and apparatuses for video processing | |
US20220377369A1 (en) | Video encoder and operating method of the video encoder | |
WO2023050072A1 (en) | Methods and systems for video compression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18866688 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019561246 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197035404 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018866688 Country of ref document: EP Effective date: 20200511 |