WO2019071786A1 - 混合动力公交车中储能装置的容量测算方法 - Google Patents

混合动力公交车中储能装置的容量测算方法 Download PDF

Info

Publication number
WO2019071786A1
WO2019071786A1 PCT/CN2017/115624 CN2017115624W WO2019071786A1 WO 2019071786 A1 WO2019071786 A1 WO 2019071786A1 CN 2017115624 W CN2017115624 W CN 2017115624W WO 2019071786 A1 WO2019071786 A1 WO 2019071786A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage device
capacity
term
required power
Prior art date
Application number
PCT/CN2017/115624
Other languages
English (en)
French (fr)
Inventor
卢闻州
陈海英
刘言伟
许吉强
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2019071786A1 publication Critical patent/WO2019071786A1/zh
Priority to US16/684,714 priority Critical patent/US20200086758A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/0321Fuel tanks characterised by special sensors, the mounting thereof
    • B60K2015/03217Fuel level sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/18Buses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/406Traffic density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/14Trucks; Load vehicles, Busses
    • B60Y2200/143Busses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/11Electric energy storages
    • B60Y2400/112Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/11Electric energy storages
    • B60Y2400/114Super-capacities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the invention relates to a method for calculating the capacity of an energy storage device in a hybrid bus, and belongs to the technical field of energy management and control technology of a hybrid bus.
  • the main purpose of the present application is to provide a method for calculating the capacity of an energy storage device in a hybrid bus to overcome the deficiencies of the prior art.
  • the method for calculating the capacity of the energy storage device in the hybrid bus includes the following steps:
  • Determining the energy storage capacity of the short-term energy storage device of the hybrid bus including:
  • the standardized demand power is accumulated step by cycle to obtain a series of accumulated value of the required power value ⁇ P i ,
  • ⁇ P i corresponds to a percentage of the required power accumulation value of the period greater than or equal to the horizontal axis corresponding time period T i to the total required power
  • ⁇ P i corresponds to a percentage of the required power accumulation value of the period greater than or equal to the horizontal axis corresponding time period T i to the total required power
  • the capacity is P with avg *T k ;
  • the advantages of the present application include: the method for calculating the capacity of the energy storage device in the hybrid bus proposed by the present application can be quickly and accurately determined by recording or obtaining the historical power demand data of the historical hybrid bus.
  • the capacity of short-term and long-term energy storage devices to ensure that hybrid buses greatly reduce the cost of energy storage devices and complete vehicles under the premise of continuous and reliable driving.
  • 1 is a schematic structural view of a hybrid bus system
  • Embodiment 3 is a corresponding relationship diagram of required power-cycle obtained by performing Fourier transform on historical data of required power in Embodiment 1 of the present application;
  • the method for calculating the capacity of the energy storage device in the hybrid bus includes the following steps:
  • Determining the energy storage capacity of the short-term energy storage device of the hybrid bus including:
  • the standardized demand power is accumulated step by cycle to obtain a series of accumulated value of the required power value ⁇ P i ,
  • ⁇ P i corresponds to a percentage of the required power accumulation value of the period greater than or equal to the horizontal axis corresponding time period T i to the total required power
  • ⁇ P i corresponds to a percentage of the required power accumulation value of the period greater than or equal to the horizontal axis corresponding time period T i to the total required power
  • the capacity is P with avg *T k ;
  • the capacity calculation method includes: half of the required one or more round trips of the hybrid bus on the selected bus line in determining the energy storage capacity of the short-term energy storage device The required power corresponding to each time period in the time range is subjected to standardization processing.
  • the capacity calculation method includes: half of the required one or more round trips of the hybrid bus on the selected bus line in determining the energy storage capacity of the short-term energy storage device The required power corresponding to each time period in the time range is added to obtain the total amount of required power, and then the required power of each cycle is divided by the total amount of the required power to obtain a series of fractions P i , thereby realizing the standardization. .
  • the capacity calculation method includes: in determining a storage capacity of the short-term energy storage device, accumulating the standardized demand power from a period of a large period to a cycle by cycle to obtain a series of The accumulated value ⁇ P i of the required power value after the standardization, wherein the value of the large period is a value of low frequency and small fluctuation.
  • the capacity calculation method further includes: calculating, according to an energy storage capacity of the long-term energy storage device, a volume of the liquefied fuel to be stored in the long-term energy storage device, the volume of the liquefied fuel passing through The energy storage capacity of the long-term energy storage device is divided by the energy density per unit volume of the liquefied fuel, and then divided by the efficiency of burning the liquefied fuel.
  • the capacity calculation method further includes: multiplying the energy storage capacity of the obtained long-term energy storage device and the energy storage capacity of the obtained short-term energy storage device by the margin coefficient C 1 of the long-term energy storage capacity, and short-term storage.
  • C 1 and C 2 are related to additional influencing factors, including the efficiency of the power conversion device, the safety margin and safety limit of the energy storage device, and the increase in the load of the winter air conditioner. At least one of the increase in power demand for the peak of the commute.
  • the load energy demand of the hybrid bus includes the driving force energy demand required for the vehicle to advance and the energy demand required for the normal safe operation of the vehicle device.
  • the long-term energy storage device may be a fuel energy storage device.
  • the short-term energy storage device may be a battery or a capacitor energy storage device.
  • the application object considered is a hybrid bus.
  • the system structure diagram is shown in Figure 1.
  • the hybrid bus generally has two sources of power or energy, which can be regarded as a hybrid bus.
  • the energy storage device of the vehicle the two energy storage devices may be a general oil-electric hybrid type, or the gasoline may be replaced by other fuels such as compressed natural gas, propane, hydrogen, ethanol, etc., which may be collectively referred to as fuel-electric hybrid.
  • Energy storage device can be regarded as a long-term energy storage device as a long-term energy source for providing power demand
  • the battery or capacitor energy storage device can be regarded as a short-term energy storage device as a short-term energy source for buffering fluctuations in power demand.
  • the load energy demand of the electric bus includes the driving force energy demand required for the vehicle to advance and the energy demand required for the normal safe operation of various vehicle-mounted devices such as the car air conditioner and the car wifi, wherein the driving energy demand occupies a large part of the energy demand, and
  • the driving energy demand changes with the state of the vehicle's start, stop, acceleration and deceleration, and high and low speed driving.
  • the method when the method is used to calculate the capacity of the energy storage device, it is first necessary to analyze the specific bus route, and record or obtain a typical round trip of more than 2 hours on this specific bus line (8427).
  • the hybrid bus historical demand power data P is used as shown in Fig. 2.
  • the power value per second is used as the historical data of the required power, so there are 8427 historical demand power data in Fig. 2.
  • the average of the 8427 historical demand power data can be averaged to obtain the average value of the required power for the two hours, using avg .
  • the above-mentioned 8427 historical demand power data needs to be fast Fourier transformed to obtain the relationship between the required power and the frequency, that is, the power-frequency relationship diagram similar to the spectrogram, as shown in FIG.
  • the required power of the 4214 seconds is added to obtain the total required power, and the required power of 4214 seconds is divided by the required power, and a series of ratios P i greater than 0 and less than 1 are obtained, that is, the standardization is realized. . Thereafter, these ratios P i are accumulated from the value of the period (i.e., the frequency is low, the fluctuation is small, here is the period corresponding to 4214 seconds), and are accumulated one by one in the direction of the small period (the accumulated termination period is from the period corresponding to 4214 seconds).
  • the accumulated value ⁇ P i corresponds to a percentage of the total required power of the required power sum of the period greater than or equal to the horizontal axis corresponding period T i . Then select a critical short and long term percentage k, and find the corresponding period T k, T k is smaller than the period length can be considered short term energy storage devices need to buffer, then the short-term energy storage device capacity can be calculated using the P Avg *T k .
  • the long-term energy storage energy source here is the fossil fuel of the hybrid bus
  • the calculated long-term energy storage needs to be calculated.
  • the capacity of the device is converted into the volume of the fossil fuel, which is obtained by dividing the calculated capacity of the long-term energy storage device by the energy density per unit volume of the fossil fuel, and dividing by the efficiency of burning the fossil fuel.
  • the capacity of the short-term energy storage device and the long-term energy storage device capacity obtained are summed to obtain the capacity of the energy storage device in the hybrid bus.
  • the capacity of the device is multiplied by a capacity factor C 1 and C 2 to obtain the capacity of the energy storage device in the final hybrid bus, where C 1 is the long-term energy storage capacity coefficient and C 2 is the capacity coefficient of the short-term energy storage device, 1 ⁇ C 1 ⁇ 2, 1 ⁇ C 2 ⁇ 2.
  • the method for calculating the capacity of the energy storage device in the hybrid bus proposed by the present application can quickly and accurately determine the short-term and long-term energy storage by recording or acquiring the historical power demand data of the hybrid vehicle.
  • the capacity of the device to ensure that the hybrid bus greatly reduces the cost of the energy storage device and the entire vehicle under the premise of continuous and reliable driving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种混合动力公交车中储能装置的容量测算方法,其包括:获取混合动力公交车在选定公交线路上往返一次或多次时的需求功率 P ,再得到平均需求功率 P avg;确定混合动力公交车的短期储能装置的储能容量,包括:对需求功率 P 进行傅里叶变换,获得需求功率 P 与时间周期之间的关系模型,其中纵轴为需求功率数据 P ,横轴为时间周期值 T=1/f,f 为频率,确定混合动力公交车的长期储能装置的储能容量,包括:计算 n 个供需失配功率 P Δ i,P Δ i=P avg-P ,并将获得的n个 P Δ i 头尾相接,再计算其中任意 q 个相连数据之和的最大值,求得的最大值即为长期储能装置的储能容量。

Description

混合动力公交车中储能装置的容量测算方法 技术领域
本申请特别涉及一种混合动力公交车中储能装置的容量测算方法,属于混合动力公交车能量管理与控制技术领域技术领域。
背景技术
单纯采用化石燃料的汽车会造成比较大的环境污染,例如化石燃料汽车是目前受到广泛关注的PM2.5的产生源之一,因此世界各国都正在积极研发、推广纯电动汽车相关技术。但单纯的电动汽车由于受制于电池能量密度较低、充电设施不方便等问题的困扰,技术问题和推广难度都很大。因此,目前比较折中的好办法是采用混合动力汽车作为到达电动汽车的过渡手段。并且政府通过试点各类混合动力公交车,以期待通过示范作用引起大家的重视,并推广相关技术的应用。但是如何确定混合动力公交车中两种动力来源的容量(把动力来源看成是储能装置,即确定储能装置的容量),目前还没有快速、精确的测算方法出现。一般的油电混合式混合动力公交车,如果选取的电池容量过大,会导致不必要的成本上升、重量增加、耗电量提升;但电池容量过小时,又会导致公交车燃烧过多的化石能源污染空气。因此,找到一种确定混合动力公交车储能装置容量的计算方法,具有十分重要的意义。
申请内容
本申请的主要目的在于提供一种混合动力公交车中储能装置的容量测算方法,以克服现有技术的不足。
为实现前述申请目的,本申请采用的技术方案包括:
本申请实施例一种混合动力公交车中储能装置的容量测算方法,包括:
获取混合动力公交车在选定公交线路上往返一次或多次时于单位时间内的实际负载能量需求值,即需求功率P,再对所述混合动力公交车在所述选定公交线路上往返一次或多次所需时间范围内所对应的需求功率求和再取平均值,得到平均需求功率P用avg
确定所述混合动力公交车的短期储能装置的储能容量,包括:
对需求功率P进行傅里叶变换,获得需求功率P与时间周期之间的关系模型,其中纵轴为需求功率数据P,横轴为时间周期值T=1/f,f为频率,
对所述混合动力公交车在所述选定公交线路上往返一次或多次所需时间范围内的不超过一半时间内每个时间周期对应的需求功率进行标幺化处理,获得标幺化处理后的比值Pi,0<Pi<1,再将这些标幺化后的需求功率逐个周期进行累加,得到一系列标幺化后需求功率值的累加值ΣPi,
建立累加值与时间周期的关系曲线,其中ΣPi对应的是周期大于或等于横轴对应时间周期Ti的需求功率累加值占整个需求功率总量的百分比,再在该关系曲线上选定一个长短期临界百分比k,0.2<k<0.4,并确定其对应的周期Tk,且判定小于Tk的周期长度需要所述短期储能装置来缓冲,则确定所述短期储能装置的储能容量为P用avg*Tk
确定所述混合动力公交车的长期储能装置的储能容量,包括:计算n个供需失配功率PΔi,PΔi=P用avg-P,并将获得的n个PΔi头尾相接,再计算其中任意q个相连数据之和的最大值,求得的最大值即为所述长期储能装置的储能容量,其中n为正整数,q为大于或等于1而小于或等于n的自然数。
与现有技术相比,本申请的优点包括:本申请所提出的对于混合动力公交车中储能装置容量的测算方法,可以通过记录或获取历史混合动力公交车需求功率数据快速、准确确定其中的短期和长期储能装置的容量,以保证混合动力公交车在连续、可靠行驶的前提下极大降低储能装置及整车的成本。
附图说明
图1是混合动力公交车系统的结构示意图;
图2是本申请实施例1中选定公交线路上混合动力公交车需求功率的历史数据;
图3是本申请实施例1中对需求功率的历史数据进行傅里叶变换后得到的需求功率-周期的对应关系图;
图4是本申请实施例1中标幺化后需求功率值的累加值与周期的关系曲线图。
具体实施方式
鉴于现有技术中的不足,本案申请人经长期研究和大量实践,得以提出本申请的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
本申请实施例一种混合动力公交车中储能装置的容量测算方法,包括:
获取混合动力公交车在选定公交线路上往返一次或多次时于单位时间内的实际负载能量需求值,即需求功率P,再对所述混合动力公交车在所述选定公交线路上往返一次或多次所需时间范围内所对应的需求功率求和再取平均值,得到平均需求功率P用avg
确定所述混合动力公交车的短期储能装置的储能容量,包括:
对需求功率P进行傅里叶变换,获得需求功率P与时间周期之间的关系模型,其中纵轴为需求功率数据P,横轴为时间周期值T=1/f,f为频率,
对所述混合动力公交车在所述选定公交线路上往返一次或多次所需时间范围内的不超过一半时间内每个时间周期对应的需求功率进行标幺化处理,获得标幺化处理后的比值Pi,0<Pi<1,再将这些标幺化后的需求功率逐个周期进行累加,得到一系列标幺化后需求功率值的累加值ΣPi,
建立累加值与时间周期的关系曲线,其中ΣPi对应的是周期大于或等于横轴对应时间周期Ti的需求功率累加值占整个需求功率总量的百分比,再在该关系曲线上选定一个长短期临界百分比k,0.2<k<0.4,并确定其对应的周期Tk,且判定小于Tk的周期长度需要所述短期储能装置来缓冲,则确定所述短期储能装置的储能容量为P用avg*Tk
确定所述混合动力公交车的长期储能装置的储能容量,包括:计算n个供需失配功率PΔi,PΔi=P用avg-P,并将获得的n个PΔi头尾相接,再计算其中任意q个相连数据之和的最大值,求得的最大值即为所述长期储能装置的储能容量,其中n为正整数,q为大于或等于1而小于或等于n的自然数。
进一步的,所述的容量测算方法包括:在确定所述短期储能装置储能容量的过程中,对所述混合动力公交车在所述选定公交线路上往返一次或多次所需的一半时间范围内的每个时间周期对应的需求功率进行标幺化处理。
进一步的,所述的容量测算方法包括:在确定所述短期储能装置储能容量的过程中,对所述混合动力公交车在所述选定公交线路上往返一次或多次所需的一半时间范围内的每个时间周期对应的需求功率进行相加得到需求功率总量,然后将每个周期的需求功率除以这个需求功率总量,得到一系列小数Pi,从而实现了标幺化。
更进一步的,所述的容量测算方法包括:在确定所述短期储能装置储能容量的过程中,将这些标幺化后的需求功率从周期大的值开始逐个周期进行累加,得到一系列标幺化后需求功率值的累加值ΣPi,其中,所述周期大的值是频率低、波动小的值。
更进一步的,所述的容量测算方法还包括:依据所述长期储能装置的储能容量,计算所述长期储能装置内所需储存的液化燃料的体积,所述液化燃料的体积是通过将所述长期储能装置的储能容量除以液化燃料的单位体积内的能量密度,之后再除以燃烧液化燃料的效率而得到。
进一步的,所述的容量测算方法还包括:将所获长期储能装置的储能容量、所获短期储能装置的储能容量分别乘以长期储能容量的裕量系数C1、短期储能装置容量的裕量系数C2,1≤C1≤2,1≤C2≤2。
进一步的,C1、C2的取值与额外的影响因素相关,所述的额外影响因素包括电力变换装置的效率、储能装置的安全裕量和安全限值、冬夏天气空调负载增大、上下班高峰驱动功率需求增大中的至少一种。
进一步的,所述混合动力公交车的负载能量需求包括车辆前进所需的驱动力能量需求以及车载设备正常安全运行所需的能量需求。
进一步的,所述长期储能装置可以为燃料储能装置。
进一步的,所述短期储能装置可以为电池或电容储能装置。
如下将结合具体实施例以及附图对该技术方案、其实施过程及原理等作进一步的解释说明。
实施例1
本实施例中一典型实施案例中,考虑的应用对象是混合动力公交车,其系统结构图如图1所示,混合动力公交车一般有两种动力或能量来源,可看成是混合动力公交车的储能装置,两种储能装置可以是一般的油电混合式,也可以将汽油用其他燃料,例如压缩天然气、丙烷、氢气、乙醇等燃料来替代,可统一称为燃料-电混合式储能装置。其中燃料储能装置作为提供动力需求的长期能量来源,可看作是长期储能装置,而电池或电容储能装置作为缓冲电力需求波动的短期能量来源,可看作是短期储能装置。电动公交车的负载能量需求包括车辆前进所需的驱动力能量需求以及车载空调、车载wifi等各种车载设备正常安全运行所需的能量需求,其中驱动能量需求占据很大的一部分能量需求,并且驱动能量需求随着车辆的启、停、加减速、高低速行驶等状态而时刻变化。
在此具体实施方式中,使用本方法计算储能装置的容量时,首先需要对具体的公交线路行驶路线进行分析,记录或获取这一具体公交线路上典型的一趟往返2个多小时(8427秒)的混合动力公交车历史需求功率数据P,如图2所示,图2中以每秒的功率值作为需求功率的历史数据,因此图2中有8427个历史需求功率数据。并且将这8427个历史需求功率数据进行求和平均可以得到这2个多小时中需求功率的平均值P用avg
计算短期储能装置容量时,首先需要将上述8427个历史需求功率数据进行快速傅立叶变换,得到需求功率与频率之间的关系,即类似频谱图的功率-频率关系图,如图3所示,图中纵坐标为需求功率数据P,横坐标为频率f,但为了使显示更为直观,图3中将频率值转换成与其对应的时间周期值T,其中T=1/f。 由于快速傅立叶变换的时间长度限制,变换之后可以只需对整个计算时长(这里为2小时的8427秒)的一半时间(即4214秒)内的数据进行后续分析。将这4214秒对应的需求功率进行相加得到需求功率总量,再用这4214秒的需求功率除以需求功率总量,得到一系列大于0小于1的比值Pi,即实现了标幺化。之后,将这些比值Pi从周期大(即频率低、波动小,这里为4214秒对应的周期)的值开始向周期小的方向逐个周期进行累加(这里累加的终止周期从4214秒对应的周期到1秒对应的周期,有4214个数据),得到一系列比值Pi的累加值ΣPi,从而得到一条累加值与周期的关系曲线,如图4所示。在这条关系曲线中,累加值ΣPi对应的是周期大于等于横轴对应周期Ti的需求功率累加值占整个需求功率总量的百分比。然后选定一个长短期临界百分比k,并找到其对应的周期Tk,小于Tk的周期长度可认为是需要短期储能装置来缓冲,那么短期储能装置的容量就可以算出来为P用avg*Tk。这里,选定长短期临界百分比k=0.3,并找到了其对应的周期Tk=112秒,所以可以计算出短期储能装置的容量为112秒乘以平均需求功率得到的容量,即短期储能装置容量。
计算长期储能装置容量时,首先需要将平均需求功率P用avg减去一系列公交车需求功率历史数据P,即PΔi=P用avg-P,得到一系列假想供需失配功率数据PΔi(这里有8427个),再将这8427个PΔi数据头尾相接,然后计算出其中任意q个相连数据之和的最大值,其中q是大于等于1且小于等于8427的自然数,那么这个最大值所对应的能量就是长期储能装置的容量。
计算出了长期储能装置的容量后,还需要换算到长期储能装置对应的体积,由于这里的长期储能能量来源提供方为混合动力公交车的化石燃料,需要将计算出的长期储能装置容量换算成化石燃料的体积,即用计算出的长期储能装置容量除以化石燃料的单位体积内的能量密度,再除以燃烧化石燃料的效率即可得到。
将获得的短期储能装置容量和长期储能装置容量求和得到混合动力公交车中储能装置容量。
除此之外,还需要考虑电力变换装置的效率、储能装置的安全裕量和安全限值、冬夏天气空调负载增大、上下班高峰驱动需求功率增大等因素,将计算出的 储能装置容量乘以一个容量系数C1和C2,从而获得最终的混合动力公交车中储能装置容量,其中C1是长期储能容量系数,C2是短期储能装置容量系数,1≤C1≤2,1≤C2≤2。
与现有技术相比,本申请所提出的对于混合动力公交车中储能装置容量的测算方法,可以通过记录或获取历史混合动力公交车需求功率数据快速、准确确定其中的短期和长期储能装置的容量,以保证混合动力公交车在连续、可靠行驶的前提下极大降低储能装置及整车的成本。
应当理解,上述实施例仅为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡根据本申请精神实质所作的等效变化或修饰,都应涵盖在本申请的保护范围之内。

Claims (10)

  1. 一种混合动力公交车中储能装置的容量测算方法,其特征在于包括:
    获取混合动力公交车在选定公交线路上往返一次或多次时于单位时间内的实际负载能量需求值,即需求功率P,再对所述混合动力公交车在所述选定公交线路上往返一次或多次所需时间范围内所对应的需求功率求和再取平均值,得到平均需求功率P用avg
    确定所述混合动力公交车的短期储能装置的储能容量,包括:
    对需求功率P进行傅里叶变换,获得需求功率P与时间周期之间的关系模型,其中纵轴为需求功率数据P,横轴为时间周期值T=1/f,f为频率,
    对所述混合动力公交车在所述选定公交线路上往返一次或多次所需时间范围内的不超过一半时间内的每个时间周期对应的需求功率进行标幺化处理,获得标幺化处理后的比值Pi,0<Pi<1,再将这些标幺化后的需求功率逐个周期进行累加,得到一系列标幺化后需求功率值的累加值ΣPi,
    建立累加值与时间周期的关系曲线,其中ΣPi对应的是周期大于或等于横轴对应时间周期Ti的需求功率累加值占整个需求功率总量的百分比,再在该关系曲线上选定一个长短期临界百分比k,0.2<k<0.4,并确定其对应的周期Tk,且判定小于Tk的周期长度需要所述短期储能装置来缓冲,则确定所述短期储能装置的储能容量为P用avg*Tk
    确定所述混合动力公交车的长期储能装置的储能容量,包括:计算n个供需失配功率PΔi,PΔi=P用avg-P,并将获得的n个PΔi头尾相接,再计算其中任意q个相连数据之和的最大值,求得的最大值即为所述长期储能装置的储能容量,其中n为正整数,q为大于或等于1而小于或等于n的自然数。
  2. 根据权利要求1所述的容量测算方法,其特征在于包括:在确定所述短期储能装置储能容量的过程中,对所述混合动力公交车在所述选定公交线路上往返一次或多次所需的一半时间范围内的每个时间周期对应的需求功率进行标幺化处理。
  3. 根据权利要求2所述的容量测算方法,其特征在于包括:在确定所述短期储能装置储能容量的过程中,对所述混合动力公交车在所述选定公交线路上往返一次或多次所需的一半时间范围内的每个时间周期对应的需求功率进行相加得到需求功率总量,然后将每个周期的需求功率除以这个需求功率总量,得到一系列小数Pi,从而实现了标幺化。
  4. 根据权利要求1或2或3所述的容量测算方法,其特征在于包括:在确定所述短期储能装置储能容量的过程中,将这些标幺化后的需求功率从周期大的值开始逐个周期进行累加,得到一系列标幺化后需求功率值的累加值ΣPi,其中,所述周期大的值是频率低、波动小的值。
  5. 根据权利要求1所述的容量测算方法,其特征在于还包括:依据所述长期储能装置的储能容量,计算所述长期储能装置内所需储存的液化燃料的体积,所述液化燃料的体积是通过将所述长期储能装置的储能容量除以液化燃料的单位体积内的能量密度,之后再除以燃烧液化燃料的效率而得到。
  6. 根据权利要求1或5所述的容量测算方法,其特征在于还包括:将所获长期储能装置的储能容量、所获短期储能装置的储能容量分别乘以长期储能容量的裕量系数C1、短期储能装置容量的裕量系数C2,1≤C1≤2,1≤C2≤2。
  7. 根据权利要求6所述的容量测算方法,其特征在于:C1、C2的取值与额外的影响因素相关,所述的额外影响因素包括电力变换装置的效率、储能装置的安全裕量和安全限值、冬夏天气空调负载增大、上下班高峰驱动功率需求增大中的至少一种。
  8. 根据权利要求1所述的容量测算方法,其特征在于:所述混合动力公交车的负载能量需求包括车辆前进所需的驱动力能量需求以及车载设备正常安全运行所需的能量需求。
  9. 根据权利要求1所述的容量测算方法,其特征在于:所述长期储能装置为燃料储能装置。
  10. 根据权利要求1所述的容量测算方法,其特征在于:所述短期储能装置为电池或电容储能装置。
PCT/CN2017/115624 2017-10-10 2017-12-12 混合动力公交车中储能装置的容量测算方法 WO2019071786A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/684,714 US20200086758A1 (en) 2017-10-10 2019-11-15 Method for Measuring Capacity of Energy Storage Devices in Hybrid Bus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710940576.XA CN107741567B (zh) 2017-10-10 2017-10-10 混合动力公交车中储能装置的容量测算方法
CN201710940576.X 2017-10-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/684,714 Continuation US20200086758A1 (en) 2017-10-10 2019-11-15 Method for Measuring Capacity of Energy Storage Devices in Hybrid Bus

Publications (1)

Publication Number Publication Date
WO2019071786A1 true WO2019071786A1 (zh) 2019-04-18

Family

ID=61237249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115624 WO2019071786A1 (zh) 2017-10-10 2017-12-12 混合动力公交车中储能装置的容量测算方法

Country Status (3)

Country Link
US (1) US20200086758A1 (zh)
CN (1) CN107741567B (zh)
WO (1) WO2019071786A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113060154A (zh) * 2021-04-28 2021-07-02 合达信科技集团有限公司 智能物流车能量管理方法
CN113733936B (zh) * 2021-08-18 2023-05-23 中车唐山机车车辆有限公司 一种混合驱动有轨电车的功率控制方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1724285A (zh) * 2005-07-07 2006-01-25 上海奥威科技开发有限公司 一种混合型电源系统
JP2007185008A (ja) * 2006-01-04 2007-07-19 Kansai Electric Power Co Inc:The 電力供給システムおよびその制御方法
CN102798422A (zh) * 2012-08-07 2012-11-28 武汉理工大学 一种测量混合动力电动汽车油耗的方法
US20140200723A1 (en) * 2012-12-19 2014-07-17 Robert Bosch Gmbh System and Method for Energy Distribution
CN105162150A (zh) * 2015-09-29 2015-12-16 江南大学 组合蓄能离网新能源发电系统储能装置容量的测算方法
CN105365589A (zh) * 2015-10-23 2016-03-02 江南大学 一种电动公交车储能装置的容量测算方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8405355B2 (en) * 2010-09-23 2013-03-26 GM Global Technology Operations LLC Energy storage system energy capacity and capability monitor
CN103499792B (zh) * 2013-07-18 2016-02-24 浙江工业大学 电动汽车动力电池集群可用容量的预测方法
US20190067958A1 (en) * 2015-04-03 2019-02-28 Charles Zimnicki Hybrid Power Supply Unit For Audio Amplifier
US10131341B2 (en) * 2015-06-16 2018-11-20 Mississippi State University Bandwidth-based methodology for controlling and optimally designing a hybrid power system
CN107069782B (zh) * 2016-11-29 2020-02-04 北京交通大学 应用于轨道交通车载混合储能系统的容量配置方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1724285A (zh) * 2005-07-07 2006-01-25 上海奥威科技开发有限公司 一种混合型电源系统
JP2007185008A (ja) * 2006-01-04 2007-07-19 Kansai Electric Power Co Inc:The 電力供給システムおよびその制御方法
CN102798422A (zh) * 2012-08-07 2012-11-28 武汉理工大学 一种测量混合动力电动汽车油耗的方法
US20140200723A1 (en) * 2012-12-19 2014-07-17 Robert Bosch Gmbh System and Method for Energy Distribution
CN105162150A (zh) * 2015-09-29 2015-12-16 江南大学 组合蓄能离网新能源发电系统储能装置容量的测算方法
CN105365589A (zh) * 2015-10-23 2016-03-02 江南大学 一种电动公交车储能装置的容量测算方法

Also Published As

Publication number Publication date
US20200086758A1 (en) 2020-03-19
CN107741567A (zh) 2018-02-27
CN107741567B (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
Hong et al. An energy management strategy based on dynamic power factor for fuel cell/battery hybrid locomotive
Song et al. Pontryagin’s minimum principle-based real-time energy management strategy for fuel cell hybrid electric vehicle considering both fuel economy and power source durability
Chukwu et al. V2G parking lot with PV rooftop for capacity enhancement of a distribution system
Yiyun et al. Research on vehicle-to-grid technology
CN103257323B (zh) 一种锂离子电池剩余可用能量的估计方法
Xie et al. Optimal power management for fuel cell–battery full hybrid powertrain on a test station
De Lorenzo et al. Numerical simulation model for the preliminary design of hybrid electric city bus power train with polymer electrolyte fuel cell
Shokrzadeh et al. Repurposing batteries of plug-in electric vehicles to support renewable energy penetration in the electric grid
Yang et al. Research on the energy management strategy of extended range electric vehicles based on a hybrid energy storage system
Ferrara et al. Energy management of heavy-duty fuel cell electric vehicles: Model predictive control for fuel consumption and lifetime optimization
CN104899691A (zh) 一种确定规模化电动汽车可调度容量的方法
CN110470994A (zh) 一种动力电池峰值功率的预测方法
CN102555830B (zh) 基于双储能单元的汽车供电系统和汽车供电控制方法
Qi et al. The development and numerical verification of a compromised real time optimal control algorithm for hybrid electric vehicle
WO2019071786A1 (zh) 混合动力公交车中储能装置的容量测算方法
Karaoğlan et al. Investigation of the effects of battery types and power management algorithms on drive cycle simulation for a range-extended electric vehicle powertrain
Jia et al. Energy management strategy of fuel cell/battery hybrid vehicle based on series fuzzy control
Hai et al. Deep learning-based prediction of lithium-ion batteries state of charge for electric vehicles in standard driving cycle
CN110751346A (zh) 一种基于驾驶速度预测和博弈论的分布式能源管理方法
CN113352946A (zh) 一种燃料电池汽车动力系统的能量管理方法
CN105365589B (zh) 一种电动公交车储能装置的容量测算方法
CN109159715A (zh) 一种考虑经济优化的v2g微网能量控制方法
Khadhraoui et al. Energy Management and Performances Evaluation of Proton Exchange Membrane Fuel Cell Battery Electric Vehicle
Cui et al. Research on predictive control based energy management strategy for hybrid electric vehicle
Ma et al. Real‐Time Application Optimization Control Algorithm for Energy Management Strategy of the Hybrid Power System Based on Artificial Intelligence

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928306

Country of ref document: EP

Kind code of ref document: A1