CN107069782B - 应用于轨道交通车载混合储能系统的容量配置方法 - Google Patents

应用于轨道交通车载混合储能系统的容量配置方法 Download PDF

Info

Publication number
CN107069782B
CN107069782B CN201611078600.5A CN201611078600A CN107069782B CN 107069782 B CN107069782 B CN 107069782B CN 201611078600 A CN201611078600 A CN 201611078600A CN 107069782 B CN107069782 B CN 107069782B
Authority
CN
China
Prior art keywords
energy storage
storage system
vehicle
mounted hybrid
hybrid energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611078600.5A
Other languages
English (en)
Other versions
CN107069782A (zh
Inventor
王占国
韦绍远
韩伟
李雪飞
王成涛
吴健
马泽宇
龚敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
CRRC Changchun Railway Vehicles Co Ltd
Original Assignee
Beijing Jiaotong University
CRRC Changchun Railway Vehicles Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University, CRRC Changchun Railway Vehicles Co Ltd filed Critical Beijing Jiaotong University
Priority to CN201611078600.5A priority Critical patent/CN107069782B/zh
Publication of CN107069782A publication Critical patent/CN107069782A/zh
Application granted granted Critical
Publication of CN107069782B publication Critical patent/CN107069782B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明涉及一种应用于轨道交通车载混合储能系统的容量配置方法。该方法包括:定义重量权重因子(α)和充电能量权重因子(Q);以列车的牵引工况信息、α、Q、和车载混合储能系统各储能元件参数为输入量,代入车载混合储能系统的能量需求、充电功率需求和放电功率需求的每一个边界条件中,分别输出一个车载混合储能系统总重量的边界值,记录三个边界值中最大值作为本次α和Q分配下实际需要配置的车载混合储能系统总重量;通过优化计算调节α和Q的大小获得最佳容量配置方案。本发明在满足列车牵引需求的同时,以车载混合储能系统的重量作为优化目标,通过优化计算制定出不同类型储能元件耦合的优化容量配置方案,为车载混合储能系统容量配置提供了新的思路。

Description

应用于轨道交通车载混合储能系统的容量配置方法
技术领域
本发明涉及多能源耦合储能的容量配置研究,特别是涉及应用于轨道交通车载混合储能系统的容量配置方法。
背景技术
根据轨道交通动力系统需求,选择具有长寿命、宽温度范围、高倍率等特性的车载储能系统,不仅响应国家节能、环保的号召,还可以降低人工维护成本,符合我国铁路建设的长远规划目标。电池以其高能量密度、可模组化、可靠性等优点成为目前最常用的储能元件,但是其温度特性差、低循环寿命、低功率密度等缺点限制了电池储能的工作效率。在轨道交通中采用单一电池储能的方案将导致电池经常工作在大电流和高功率的工况,这将大大减少电池的循环寿命和可靠性。为了匹配轨道交通列车的功率需求,只能提高电池储能的容量,这将使系统的成本、体积、重量增加。
与电池相比,超级电容具有高功率密度、长循环寿命、温度特性好、但是低能量密度的特点,对于需求高能量的轨道交通动力系统而言也不能满足需求。
对于特定的储能元件,其功率特性和能量特性与储能元件本身电压、内阻、容量等指标内在的联系在一起,是由其物理、化学特性决定的,在制造工艺受限情况下,元件性能无法兼顾功率性和能量性,单一的储能元件为解决这一问题,只能提高配比容量,这将导致储能元件成本、体积的增加。
为了解决储能系统功率和能量的矛盾,选用两种或者更多类型的储能元件混合使用组成的混合储能系统,可实现功率型储能元件和能量型储能元件的特性互补,匹配轨道交通动力系统的功率需求和能量需求。电池与超级电容混合储能作为城市轨道交通列车动力系统能量的来源,通过控制可以让电池和超级电容特性互补,从而可以保证列车牵引加速时对储能系统的功率需求,同时还能满足列车长距离牵引的能量需求。采用高功率密度的超级电容和高能量密度的锂离子电池混合使用,超级电容储能主要用来提供牵引加速和吸收制动回馈时的高频、尖峰功率,锂离子电池储能主要用来维持列车运行,工作于低频、低功率模式,延长了锂离子电池的寿命。电池与超级电容构成的混合储能系统作为城市轨道交通列车能量的来源,其容量配置需要满足列车牵引的能量需求和功率需求。发挥各储能元件的长处来匹配轨道交通动力系统的功率需求和能量需求,可以提高储能系统的运行效率和使用寿命,解决了单一储能元件特性受限的问题。
因此,从能量需求和功率需求的角度考虑,以高比功率型储能元件超级电容和高比能量型储能元件锂离子电池构成的混合储能系统是解决轨道交通储能系统功率和能量矛盾问题的最佳方案。为充分满足铁路列车轻量化的目标,需要对车载混合储能系统的重量问题进行优化,对超级电容和锂离子电池进行容量的优化配置,在匹配列车牵引需求的同时最大程度的降低车载混合储能系统的重量。
但是,由于不同的储能元件功率密度和能量密度各不相同,不同车型、不同牵引工况对储能系统的需求也不同,为减小车载混合储能系统的重量,需要对混合储能系统进行容量的优化配置以满足列车轻量化的指标,提高运行效率。
发明内容
针对上述问题,本发明的目的是提供一种应用于轨道交通车载混合储能系统的容量优化配置方法,该方法在满足列车牵引需求的同时,以车载混合储能系统的重量作为优化目标,通过优化计算制定出不同类型储能元件耦合的优化容量配置方案。该方法可以用于以车载混合储能系统重量最小作为优化目标,在匹配列车牵引需求的同时最大限度的减小车载混合储能系统的重量,提高列车运行效率。
为达到以上目的,本发明采取如下技术方案:
应用于轨道交通车载混合储能系统的容量配置方法,其特征在于,包括如下步骤:
步骤1,定义重量权重因子α和充电能量权重因子Q:
将所述重量权重因子α定义为列车的车载混合储能系统中某一种储能元件重量占车载混合储能系统总重量的比重;
则另外的一种或几种储能元件占车载混合储能系统总重量的比重为1-α;所述重量权重因子α用于车载混合储能系统重量分配;0≤α≤1;
将所述充电能量权重因子Q定义为列车的车载混合储能系统中能量型储能元件在列车减速进站充电时的充电深度(即该能量型储能元件的充电能量占该能量型储能元件的额定能量的比重);0≤Q≤1;
步骤2,以列车的牵引工况信息、重量权重因子α、充电能量权重因子Q、车载混合储能系统中各储能元件的能量密度值、充电功率密度和放电功率密度为输入量,代入如下(a)、(b)和(c)三个条件的每一个中:
(a)车载混合储能系统能量需求的边界条件,
(b)车载混合储能系统充电功率需求的边界条件,
(c)车载混合储能系统放电功率需求的边界条件,
分别获得一个车载混合储能系统总重量的边界值,记录三个车载混合储能系统总重量的边界值中的最大值作为本次重量权重因子α和充电能量权重因子Q分配下实际需要配置的车载混合储能系统总重量;
步骤3,通过优化计算调节重量权重因子α和充电能量权重因子Q的大小制定不同的车载混合储能系统(即车载混合储能系统中储能元件的类型不同)的实际需要配置的车载混合储能系统总重量,经过制图比对,获得最佳容量配置方案。
在上述技术方案基础上,步骤2中,所述牵引工况信息包括列车的牵引功率峰值PT、制动功率峰值Pch、和全程牵引能耗值ED
在上述技术方案基础上,步骤2中,车载混合储能系统能量需求的边界条件为:
为满足列车续航需求,列车每次减速进站车载混合储能系统充电的计划能量值大于或等于每站平均充电能量。
在上述技术方案基础上,所述列车每次减速进站车载混合储能系统充电的计划能量值为列车的制动回馈能量和充电站能量之和;
所述每站平均充电能量为全程牵引能耗值ED减去车载混合储能系统初始能量值E0后,除以列车运行全程充电站个数N得到的平均到每一站的能量值。
在上述技术方案基础上,步骤2中,车载混合储能系统充电功率需求的边界条件为:
为满足列车充电功率需求,车载混合储能系统中各储能元件的充电功率值大于或等于其进站充电功率。
在上述技术方案基础上,所述进站充电功率为根据充电能量权重因子Q、制动功率峰值Pch和车载混合储能系统中储能元件能量密度值计算得到的;
所述充电功率值为根据重量权重因子α、车载混合储能系统的总重量和车载混合储能系统中储能元件充电功率密度计算得到的。
在上述技术方案基础上,步骤2中,车载混合储能系统放电功率需求的边界条件为:
为满足列车放电功率需求,车载混合储能系统放电功率Pdis大于或等于牵引功率峰值PT
在上述技术方案基础上,车载混合储能系统放电功率Pdis为车载混合储能系统各储能元件放电功率之和,
车载混合储能系统各储能元件放电功率根据重量权重因子α、车载混合储能系统的总重量和放电功率密度计算。
在上述技术方案基础上,所述车载混合储能系统包括能量型储能元件(如锂离子电池)、和如下两种储能元件中的至少一种:
功率型储能元件(如超级电容)和能量兼顾功率型储能元件;
优选的,所述车载混合储能系统由超级电容和锂离子电池组成。
在上述技术方案基础上,步骤3采用基于枚举法的寻优策略进行。
优选的,基于枚举法的寻优策略通过改变重量权重因子α和充电能量权重因子Q全局寻优,通过输入不同类型(功率型、能量型、功率兼顾能量型)储能元件参数得到不同类型储能元件配比结果。
本发明的有益效果如下:
采用本发明所述方案可以实现车载混合储能系统容量的优化配置,在满足列车牵引系统能量和功率需求的同时,又能减小车载混合储能系统重量,提高列车运行效率。
本发明针对轨道交通车载混合储能系统,从多能源耦合容量配置的角度,以车载混合储能系统轻量化作为优化目标,提取牵引工况信息,计算车载混合储能系统总重量的边界条件,通过枚举法全局寻优制定不同的配置方案,为车载混合储能容量配置提供新的思路。本发明所述方案可以实现由不同类型储能元件(能量型、功率型、能量兼顾功率型)构成的混合储能系统容量优化配置,在满足牵引系统功率和能量需求的前提下又保证车载混合储能系统重量的轻量化,充分发挥不同类型储能元件互补的优越性,为轨道交通车载混合储能容量的优化配置又提供一种新的方法。
附图说明
本发明有如下附图:
图1为一种轨道交通车载动力系统及站内充电系统结构的示意图。
图2为基于枚举法的寻优策略。
图3为车载混合储能系统的能量需求、充电功率需求和放电功率需求的边界条件计算方法的示意图。
具体实施方式
以下结合附图对本发明作进一步详细说明。
实施例1、应用于轨道交通车载混合储能系统的容量配置方法
本实施例中的车载混合储能系统由能量型储能元件锂离子电池(图1中的电池系统)和功率型储能元件超级电容(图1中的电容系统)组成。
本实施例中的轨道交通车载动力系统及站内充电系统结构的示意图,如图1所示。
如图2和图3所示,本实施例中,应用于轨道交通车载混合储能系统的容量配置方法,包括如下步骤:
步骤一,定义重量权重因子α和充电能量权重因子Q:
将所述重量权重因子α定义为列车的车载混合储能系统中超级电容的重量占车载混合储能系统总重量的比重;
将所述充电能量权重因子Q定义为列车的车载混合储能系统中锂离子电池在列车减速进站充电时的充电深度;即锂离子电池的充电能量占该锂离子电池的额定能量的比重;
步骤二,以列车的牵引工况信息(牵引功率峰值PT、制动功率峰值Pch(列车制动的时候能量回馈给储能元件充电)、和全程牵引能耗值ED)、重量权重因子α、充电能量权重因子Q、车载混合储能系统中各储能元件(超级电容和锂离子电池)的能量密度值、充电功率密度和放电功率密度为输入量,代入如下(a)、(b)和(c)三个条件的每一个中:
(a)车载混合储能系统能量需求的边界条件,
(b)车载混合储能系统充电功率需求的边界条件,
(c)车载混合储能系统放电功率需求的边界条件,
分别输出一个车载混合储能系统总重量的边界值,记录三个车载混合储能系统总重量的边界值中的最大值作为本次重量权重因子α和充电能量权重因子Q分配下实际需要配置的车载混合储能系统总重量;
步骤三,采用基于枚举法的寻优策略(如图2所示)通过优化计算调节重量权重因子(α)和充电能量权重因子(Q)的大小制定不同的车载混合储能系统的实际需要配置的车载混合储能系统总重量,经过制图比对,获得最佳容量配置方案。
如图3所示,车载混合储能系统能量需求的边界条件的计算方法如下:
步骤1、提取全程牵引能耗值ED和车载混合储能系统初始能量值E0
其中,
Figure BDA0001165296350000071
式(1)中,
ebatt为锂离子电池能量密度值,
eUC为超级电容能量密度值,
MHESS为车载混合储能系统总重量,
α为定义的重量权重因子,即超级电容占车载混合储能系统总重量的比重。
步骤2、将全程牵引能耗值ED减去车载混合储能系统初始能量值E0后可得平均到每一站的能量值(即每站平均充电能量)EcharS
Figure BDA0001165296350000081
式(2)中,N为列车运行全程充电站个数。
步骤3、计算列车每次减速进站车载混合储能系统充电的计划能量值(即每站计划充电能量)Echar,即制动回馈能量与充电站能量之和:
Echar=[Q×(1-α)×ebatt+α×eUC]×MHESS (3)。
步骤4、为满足列车续航需求,列车每次减速进站车载混合储能系统充电的计划能量值要大于或等于平均到每一站的能量值(即每站平均充电能量),即:
EcharS≤Echar (4);
将式(1)、(2)和(3)代入式(4),计算得到:
Figure BDA0001165296350000082
将这个条件即式(4)定义为车载混合储能系统能量需求的边界条件。
如图3所示,车载混合储能系统充电功率需求的边界条件的计算方法如下:
步骤1、提取制动功率峰值Pch,根据充电能量权重因子Q分别计算车载混合储能系统中各个储能元件的进站充电功率,其中:
PBchS:PUCchS=Q×(1-α)×ebatt:α×eUC (6);
式(6)中,PBchS为锂离子电池的进站充电功率,PUCchS为超级电容的进站充电功率;则:
Figure BDA0001165296350000091
步骤2、分别计算车载混合储能系统中各个储能元件的充电功率值:
Figure BDA0001165296350000092
式(8)中,pbatt_char为锂离子电池的充电功率密度,pUC_char为超级电容的充电功率密度,Pbattch为锂离子电池的充电功率值,PUCch为超级电容的充电功率值。
步骤3、为满足列车充电功率需求,车载混合储能系统中各储能元件的充电功率值要大于或等于其进站充电功率,将这个条件定义为车载混合储能系统充电功率需求的边界条件,将式(7)和式(8)代入该条件中,即可得到:
如图3所示,车载混合储能系统放电功率需求的边界条件的计算方法如下:
步骤1、提取列车牵引行驶时的实际峰值功率值即牵引功率峰值PT
步骤2、分别计算各个储能元件的放电功率:
Figure BDA0001165296350000094
则车载混合储能系统放电功率Pdis为:
Pdis=Pbattdis+PUCdis (11)
其中,pbatt_dis为锂离子电池的放电功率密度,pUC_dis为超级电容的放电功率密度,Pbattdis为锂离子电池的放电功率,PUCdis为超级电容的放电功率。
步骤3、为满足列车放电功率需求,车载混合储能系统放电功率Pdis要大于或等于牵引时的实际峰值功率值即牵引功率峰值PT,将这个条件定义为车载储能系统放电功率需求的边界条件,得到:
Figure BDA0001165296350000101
如图2所示,基于枚举法的寻优策略以制定出不同的车载混合储能系统容量配置方案,具体如下:
步骤1、设置α=0(α∈[0,1]),Q=0(Q∈[0,1]),定义重量权重因子更新步长为k,充电能量权重因子更新步长为kk,采用枚举法进行寻优;
步骤2、按照上述方法计算车载混合储能系统的3个边界条件:能量需求的边界条件、充电功率需求的边界条件、放电功率需求的边界条件;
步骤3、将储能元件参数(ebatt、eUC、pbatt_char、pUC_char、pbatt_dis、pUC_dis)和已知权重因子(α、Q)以及牵引工况信息(ED、PT、Pch)代入公式(5)、(9)、(11)中,计算得出三个车载混合储能系统总重量的边界值;
步骤4、由于实际需要配置的车载混合储能系统总重量需要大于或等于步骤3中三个边界值中的最大值才能保证满足列车的牵引需求,记录本次权重(即重量权重因子和充电能量权重因子)分配下实际需要配置的车载混合储能系统总重量为车载混合储能系统总重量的边界值中的最大值;
步骤5、更新Q,Q=Q+kk;
步骤6、循环步骤2至5,当Q=1,执行步骤7;
步骤7、更新α=α+k,清零Q;
步骤8、循环步骤2至7,当α=1且Q=1,执行步骤9;
步骤9、改变储能元件参数,循环步骤1~8;
步骤10、记录枚举寻优数据(即权重(即重量权重因子和充电能量权重因子)分配下实际需要配置的车载混合储能系统总重量为车载混合储能系统总重量的边界值中的最大值),通过Matlab制图对比得到最佳的车载混合储能系统容量配置方案。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。
本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (10)

1.应用于轨道交通车载混合储能系统的容量配置方法,其特征在于,包括如下步骤:
步骤1,定义重量权重因子α和充电能量权重因子Q:
将所述重量权重因子α定义为列车的车载混合储能系统中某一种储能元件重量占车载混合储能系统总重量的比重;
将所述充电能量权重因子Q定义为列车的车载混合储能系统中能量型储能元件在列车减速进站充电时的充电深度;
步骤2,以列车的牵引工况信息、重量权重因子α、充电能量权重因子Q、车载混合储能系统中各储能元件的能量密度值、充电功率密度和放电功率密度为输入量,代入如下(a)、(b)和(c)三个条件的每一个中:
(a)车载混合储能系统能量需求的边界条件,
(b)车载混合储能系统充电功率需求的边界条件,
(c)车载混合储能系统放电功率需求的边界条件,
分别输出一个车载混合储能系统总重量的边界值,记录三个车载混合储能系统总重量的边界值中的最大值作为本次重量权重因子α和充电能量权重因子Q分配下实际需要配置的车载混合储能系统总重量;
步骤3,通过优化计算调节重量权重因子α和充电能量权重因子Q的大小制定不同的车载混合储能系统的实际需要配置的车载混合储能系统总重量,经过制图比对,获得最佳容量配置方案;
所述优化计算具体为通过采用更新重量权重因子α和充电能量权重因子Q的步长,并采用枚举寻优数据。
2.如权利要求1所述的应用于轨道交通车载混合储能系统的容量配置方法,其特征在于,步骤2中,所述牵引工况信息包括列车的牵引功率峰值PT、制动功率峰值Pch、和全程牵引能耗值ED
3.如权利要求2所述的应用于轨道交通车载混合储能系统的容量配置方法,其特征在于,步骤2中,车载混合储能系统能量需求的边界条件为:
为满足列车续航需求,列车每次减速进站车载混合储能系统充电的计划能量值Echar大于或等于每站平均充电能量Echars
4.如权利要求3所述的应用于轨道交通车载混合储能系统的容量配置方法,其特征在于,
所述列车每次减速进站车载混合储能系统充电的计划能量值Echar为列车的制动回馈能量和充电站能量之和;
所述每站平均充电能量Echars为全程牵引能耗值ED减去车载混合储能系统初始能量值E0后,除以列车运行全程充电站个数得到的平均到每一站的能量值。
5.如权利要求2所述的应用于轨道交通车载混合储能系统的容量配置方法,其特征在于,步骤2中,车载混合储能系统充电功率需求的边界条件为:
为满足列车充电功率需求,车载混合储能系统中各储能元件的充电功率值大于或等于其进站充电功率。
6.如权利要求5所述的应用于轨道交通车载混合储能系统的容量配置方法,其特征在于,
所述进站充电功率为根据充电能量权重因子Q、制动功率峰值Pch和车载混合储能系统中储能元件能量密度值计算得到的;
所述充电功率值为根据重量权重因子α、车载混合储能系统的总重量和车载混合储能系统中储能元件充电功率密度计算得到的。
7.如权利要求2所述的应用于轨道交通车载混合储能系统的容量配置方法,其特征在于,步骤2中,车载混合储能系统放电功率需求的边界条件为:
为满足列车放电功率需求,车载混合储能系统放电功率Pdis大于或等于牵引功率峰值PT
8.如权利要求7所述的应用于轨道交通车载混合储能系统的容量配置方法,其特征在于,车载混合储能系统放电功率Pdis为车载混合储能系统各储能元件放电功率之和,
车载混合储能系统各储能元件放电功率根据重量权重因子α、车载混合储能系统的总重量和放电功率密度计算。
9.如权利要求1所述的应用于轨道交通车载混合储能系统的容量配置方法,其特征在于,所述车载混合储能系统包括能量型储能元件、和如下两种储能元件中的至少一种:
功率型储能元件和能量兼顾功率型储能元件。
10.如权利要求1所述的应用于轨道交通车载混合储能系统的容量配置方法,其特征在于,步骤3采用基于枚举法的寻优策略进行。
CN201611078600.5A 2016-11-29 2016-11-29 应用于轨道交通车载混合储能系统的容量配置方法 Active CN107069782B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611078600.5A CN107069782B (zh) 2016-11-29 2016-11-29 应用于轨道交通车载混合储能系统的容量配置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611078600.5A CN107069782B (zh) 2016-11-29 2016-11-29 应用于轨道交通车载混合储能系统的容量配置方法

Publications (2)

Publication Number Publication Date
CN107069782A CN107069782A (zh) 2017-08-18
CN107069782B true CN107069782B (zh) 2020-02-04

Family

ID=59619592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611078600.5A Active CN107069782B (zh) 2016-11-29 2016-11-29 应用于轨道交通车载混合储能系统的容量配置方法

Country Status (1)

Country Link
CN (1) CN107069782B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107741567B (zh) * 2017-10-10 2019-09-20 江南大学 混合动力公交车中储能装置的容量测算方法
CN108062619B (zh) * 2017-12-04 2021-02-09 中车工业研究院有限公司 一种轨道车辆车地一体化容量配置方法及装置
CN108110877B (zh) * 2017-12-12 2020-08-04 中国科学院广州能源研究所 一种地铁用混合储能系统
CN109787364A (zh) * 2019-01-07 2019-05-21 重庆中涪科瑞工业技术研究院有限公司 城市轨道交通车载混合储能系统在线能量管理方法
CN111628515B (zh) * 2020-06-18 2021-08-27 安徽能汇轨道交通技术有限公司 用于轨道交通的地面式混合储能系统控制方法
CN114537150B (zh) * 2022-01-25 2023-09-12 兰州交通大学 高速铁路长大坡道再生制动能量混合储能优化配置方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103238264A (zh) * 2010-09-21 2013-08-07 普罗特拉公司 具有不同储能配置的等效快速充电系统及方法
CN103580041A (zh) * 2013-11-08 2014-02-12 国家电网公司 一种平抑风电功率波动的混合储能系统容量配置方法
CN104037776A (zh) * 2014-06-16 2014-09-10 国家电网公司 随机惯性因子粒子群优化算法的电网无功容量配置方法
CN104129313A (zh) * 2014-06-11 2014-11-05 湖南南车时代电动汽车股份有限公司 一种超级电容车中超级电容储能系统结构的确定方法
EP2822140A1 (en) * 2013-07-04 2015-01-07 Alcatel Lucent Method for power allocation and resource management system
CN104795829A (zh) * 2015-04-29 2015-07-22 中国电力科学研究院 一种基于削峰填谷的储能系统调度方法
CN105226688A (zh) * 2015-10-12 2016-01-06 中国电力科学研究院 基于机会约束模型的多类型储能系统容量优化配置方法
CN105365589A (zh) * 2015-10-23 2016-03-02 江南大学 一种电动公交车储能装置的容量测算方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103238264A (zh) * 2010-09-21 2013-08-07 普罗特拉公司 具有不同储能配置的等效快速充电系统及方法
EP2822140A1 (en) * 2013-07-04 2015-01-07 Alcatel Lucent Method for power allocation and resource management system
CN103580041A (zh) * 2013-11-08 2014-02-12 国家电网公司 一种平抑风电功率波动的混合储能系统容量配置方法
CN104129313A (zh) * 2014-06-11 2014-11-05 湖南南车时代电动汽车股份有限公司 一种超级电容车中超级电容储能系统结构的确定方法
CN104037776A (zh) * 2014-06-16 2014-09-10 国家电网公司 随机惯性因子粒子群优化算法的电网无功容量配置方法
CN104795829A (zh) * 2015-04-29 2015-07-22 中国电力科学研究院 一种基于削峰填谷的储能系统调度方法
CN105226688A (zh) * 2015-10-12 2016-01-06 中国电力科学研究院 基于机会约束模型的多类型储能系统容量优化配置方法
CN105365589A (zh) * 2015-10-23 2016-03-02 江南大学 一种电动公交车储能装置的容量测算方法

Also Published As

Publication number Publication date
CN107069782A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
CN107069782B (zh) 应用于轨道交通车载混合储能系统的容量配置方法
CN106696721B (zh) 纯电动汽车双源能量系统及供电控制方法、快充方法和慢充方法
CN107229987A (zh) 基于光储系统运行优化的混合储能配比计算方法
CN107634532B (zh) 基于改进v2g和优先级调度的充放储一体站控制方法
CN102355031B (zh) 一种磷酸铁锂动力电池组主动均衡充电方法
CN106080223A (zh) 一种锂电池与超级电容器双能源功率分配控制系统及方法
CN107039696B (zh) 一种轨道交通用车载储能锂离子电池的优化充电方法
CN108520314A (zh) 结合v2g技术的主动配电网调度方法
CN103366314A (zh) 考虑目标分解及其互补平抑的风电场复合储能容量规划方法
CN103997052B (zh) 一种多储能电站的有功功率控制的方法
CN108470220A (zh) 考虑功率变化率限制的混合储能系统能量管理优化方法
CN108062619B (zh) 一种轨道车辆车地一体化容量配置方法及装置
CN103777091A (zh) 一种基于k均值的高铁电能质量监测数据分类方法
CN106427607A (zh) 一种电动车混合式储能系统能量分配方法
CN109421689A (zh) 一种车辆节能控制方法、系统及车辆
CN103927588A (zh) 用于平抑风电功率波动的混合储能电站容量确定方法
CN105305489B (zh) 一种电网需求侧响应资源频率响应能力评估方法
CN203761142U (zh) 车用复合储能系统
Zhang et al. Genetic Algorithm based optimal component sizing for an electric vehicle
CN109278765A (zh) 一种干线混合动力机车组控制系统及方法
CN107054124B (zh) 一种基于车载导航的混合动力系统及方法
CN109586389B (zh) 一种车载混合储能系统能量控制策略
CN103915851A (zh) 一种递进步长和期望输出均可变的储能系统优化控制方法
CN206277966U (zh) 一种汽车动力电池模组间电压均衡系统
Ye et al. A fast Q-learning energy management strategy for battery/supercapacitor electric vehicles considering energy saving and battery aging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant