WO2019071726A1 - Amoled显示装置及其驱动方法 - Google Patents

Amoled显示装置及其驱动方法 Download PDF

Info

Publication number
WO2019071726A1
WO2019071726A1 PCT/CN2017/111972 CN2017111972W WO2019071726A1 WO 2019071726 A1 WO2019071726 A1 WO 2019071726A1 CN 2017111972 W CN2017111972 W CN 2017111972W WO 2019071726 A1 WO2019071726 A1 WO 2019071726A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
thin film
film transistor
oled
pixel
Prior art date
Application number
PCT/CN2017/111972
Other languages
English (en)
French (fr)
Inventor
黄泰钧
王振岭
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US15/736,119 priority Critical patent/US10643530B2/en
Publication of WO2019071726A1 publication Critical patent/WO2019071726A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/08Fault-tolerant or redundant circuits, or circuits in which repair of defects is prepared
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an AMOLED display device and a driving method thereof.
  • OLED Organic Light Emitting Display
  • OLED has self-illumination, low driving voltage, high luminous efficiency, short response time, high definition and contrast ratio, near 180° viewing angle, wide temperature range, and flexible display.
  • a large-area full-color display and many other advantages have been recognized by the industry as the most promising display device.
  • OLED can be divided into two types: passive matrix OLED (PMOLED) and active matrix OLED (AMOLED), namely direct addressing and thin film transistor (TFT) matrix addressing. class.
  • PMOLED passive matrix OLED
  • AMOLED active matrix OLED
  • TFT thin film transistor
  • the AMOLED has pixels arranged in an array, belongs to an active display type, has high luminous efficiency, and is generally used as a high-definition large-sized display device.
  • the AMOLED is a current driving device. When a current flows through the organic light emitting diode, the organic light emitting diode emits light, and the luminance of the light is determined by the current flowing through the organic light emitting diode itself. Most existing integrated circuits (ICs) only transmit voltage signals, so the pixel driving circuit of AMOLED needs to complete the task of converting a voltage signal into a current signal.
  • the conventional AMOLED pixel driving circuit is usually 2T1C, that is, a structure in which two thin film transistors are added with a capacitor to convert a voltage into a current.
  • a conventional AMOLED display device generally forms a plurality of pixel isolation dams on a planarization layer on a TFT array substrate, and a plurality of pixel isolation dams define a plurality of pixel regions on the TFT array substrate, and then adopt a printing method.
  • the OLED functional layer is formed in a plurality of pixel regions, specifically, the solution OLED material is dropped into a plurality of pixel regions, and then the OLED material is dried to obtain an OLED functional layer. Since the organic material used in the pixel isolation dam is generally hydrophilic or hydrophobic, when the pixel isolation dam is made of a hydrophilic material, the thickness of the OLED functional layer formed by printing in the center of the pixel region is smaller than that at the edge of the pixel region.
  • the thickness of the OLED functional layer produced by printing in the center of the pixel region is greater than the thickness at the edge of the pixel region, that is, the film thickness of the OLED functional layer is uneven.
  • the brightness of the light emitted from the same pixel region is uneven, which affects the display. quality.
  • Another object of the present invention is to provide a driving method for an AMOLED display device, which can make the AMOLED display device have uniform brightness in each pixel region during display and improve the display quality of the AMOLED display device.
  • the present invention firstly provides an AMOLED display device, comprising: a TFT substrate, a plurality of pixel isolation dams disposed on the TFT substrate, a plurality of OLED functional layers disposed on the TFT substrate, and a plurality of OLEDs disposed on the OLED a cathode on the functional layer; the plurality of pixel isolation dams define a plurality of pixel regions on the TFT substrate, and the plurality of OLED functional layers are respectively located in the plurality of pixel regions;
  • the TFT substrate includes a base substrate, a TFT array layer disposed on the base substrate, and a plurality of anode layers disposed on the TFT array layer and correspondingly located in the plurality of pixel regions;
  • Each of the anode layers includes: a first anode located at a center of the corresponding pixel region; and a second anode disposed around the first anode and spaced apart from the first anode; the first anode and the OLED functional layer and the cathode above thereof constitute a first anode a sub-OLED, the second anode and the OLED functional layer and the cathode thereon constitute a second sub-OLED;
  • Each of the pixel-embedded circuits is electrically connected to the first anode and the second anode, and the pixel driving circuit is configured to be respectively displayed when the AMOLED display device is displayed.
  • the first anode and the second anode pass the first current and the second current to drive the first sub-OLED and the second OLED to emit light, and the first sub-OLED and the second OLED emit light with the same brightness.
  • the material of the pixel isolation dam is a hydrophilic material, and a thickness of a portion of the OLED functional layer corresponding to the first anode is smaller than a thickness of a portion corresponding to the second anode; the first current is less than the second Current.
  • the material of the pixel isolation dam is a hydrophobic material
  • a thickness of a portion of the OLED functional layer corresponding to the first anode is greater than a thickness of a portion corresponding to the second anode; the first current is greater than the second current .
  • Each of the pixel driving circuits includes a first thin film transistor, a second thin film transistor, a third thin film transistor, a fourth thin film crystal, a first capacitor, and a second capacitor;
  • the first thin film transistor, the second thin film transistor, the third thin film transistor, the fourth thin film crystal, the first capacitor, and the second capacitor are all located in the TFT array layer; the gate of the first thin film transistor is connected to the scan signal, The source is connected to the first data signal, and the drain is electrically connected to the second thin film crystal a gate of the transistor; a drain of the second thin film transistor is connected to a positive voltage of the power source, the source is electrically connected to the first anode in the corresponding pixel region; and a gate of the third thin film transistor is electrically connected to the first thin film transistor a gate, a source is connected to the second data signal, and a drain is electrically connected to the gate of the fourth thin film transistor; a drain of the fourth thin film transistor is connected to a positive voltage of the power source, and the source is electrically connected to the corresponding pixel region
  • the second anode is electrically connected to the gate and the drain of the second thin film transistor respectively; the two ends of the second capacitor are electrically connected to the
  • the cathode is connected to a negative voltage of the power source
  • the scan signal controls the first thin film transistor and the third thin film transistor to be turned on, and the first data signal and the second data signal are respectively written into the gates of the second thin film transistor and the fourth thin film transistor.
  • the scan signal controls the first thin film transistor and the third thin film transistor to be turned on, and the first data signal and the second data signal are respectively written into the gates of the second thin film transistor and the fourth thin film transistor.
  • the scan signal controls the first thin film transistor and the third thin film transistor to be turned on, and the first data signal and the second data signal are respectively written into the gates of the second thin film transistor and the fourth thin film transistor.
  • the TFT substrate further includes a planarization layer disposed between the anode layer and the TFT array layer.
  • a thickness of a region of the planarization layer corresponding to the first anode is smaller than a thickness of a region corresponding to the second anode.
  • the invention also provides a driving method of an AMOLED display device, comprising the following steps:
  • Step S1 providing an AMOLED display device
  • the AMOLED display device includes: a TFT substrate, a plurality of pixel isolation dams disposed on the TFT substrate, a plurality of OLED functional layers disposed on the TFT substrate, and cathodes disposed on the plurality of OLED functional layers;
  • the pixel isolation dam defines a plurality of pixel regions on the TFT substrate, and the plurality of OLED functional layers are respectively located in the plurality of pixel regions;
  • the TFT substrate includes a base substrate, a TFT array layer disposed on the base substrate, and a plurality of anode layers disposed on the TFT array layer and correspondingly located in the plurality of pixel regions;
  • Each of the anode layers includes: a first anode located at a center of the corresponding pixel region; and a second anode disposed around the first anode and spaced apart from the first anode; the first anode and the OLED functional layer and the cathode above thereof constitute a first anode a sub-OLED, the second anode and the OLED functional layer and the cathode thereon constitute a second sub-OLED;
  • the AMOLED display device is provided with a pixel driving circuit corresponding to each pixel region, and the pixel driving circuit is electrically connected to the first anode and the second anode, respectively;
  • Step S2 The AMOLED display device performs display, the pixel driving circuit respectively inputs a first current and a second current to the first anode and the second anode, and drives the first sub-OLED and the second OLED to emit light, and the first sub-OLED is enabled. It is consistent with the brightness of the second OLED.
  • the material of the pixel isolation dam is a hydrophilic material, and a thickness of a portion of the OLED functional layer corresponding to the first anode is smaller than a thickness of a portion corresponding to the second anode; In S2, the first current is less than the second current.
  • the material of the pixel isolation dam is a hydrophobic material, and a thickness of a portion of the OLED functional layer corresponding to the first anode is greater than a thickness of a portion corresponding to the second anode; in the step S2, the first A current is greater than the second current.
  • Each of the pixel driving circuits includes a first thin film transistor, a second thin film transistor, a third thin film transistor, a fourth thin film crystal, a first capacitor, and a second capacitor;
  • the first thin film transistor, the second thin film transistor, the third thin film transistor, the fourth thin film crystal, the first capacitor, and the second capacitor are all located in the TFT array layer; the gate of the first thin film transistor is connected to the scan signal, The source is connected to the first data signal, and the drain is electrically connected to the gate of the second thin film transistor; the drain of the second thin film transistor is connected to the positive voltage of the power source, and the source is electrically connected to the first anode in the corresponding pixel region
  • the gate of the third thin film transistor is electrically connected to the gate of the first thin film transistor, the source is connected to the second data signal, and the drain is electrically connected to the gate of the fourth thin film transistor; the fourth thin film transistor is The drain is connected to the positive voltage of the power source, and the source is electrically connected to the second anode in the corresponding pixel region; the two ends of the first capacitor are electrically connected to the gate and the drain of the second thin film transistor respectively; the second capacitor The two ends are electrically connected to the gate and the
  • the cathode is connected to a negative voltage of the power source
  • the scan signal controls the first thin film transistor and the third thin film transistor to be turned on, and the first data signal and the second data signal are respectively written into the gates of the second thin film transistor and the fourth thin film transistor, corresponding to A first current and a second current are generated to pass to the first anode and the second anode, respectively.
  • the present invention also provides an AMOLED display device, comprising: a TFT substrate, a plurality of pixel isolation dams disposed on the TFT substrate, a plurality of OLED functional layers disposed on the TFT substrate, and a cathode disposed on the plurality of OLED functional layers
  • the plurality of pixel isolation dams define a plurality of pixel regions on the TFT substrate, and the plurality of OLED functional layers are respectively located in the plurality of pixel regions;
  • the TFT substrate includes a base substrate, a TFT array layer disposed on the base substrate, and a plurality of anode layers disposed on the TFT array layer and correspondingly located in the plurality of pixel regions;
  • Each of the anode layers includes: a first anode located at a center of the corresponding pixel region; and a second anode disposed around the first anode and spaced apart from the first anode; the first anode and the OLED functional layer and the cathode above thereof constitute a first anode a sub-OLED, the second anode and the OLED functional layer and the cathode thereon constitute a second sub-OLED;
  • Each of the pixel-embedded circuits is electrically connected to the first anode and the second anode, and the pixel driving circuit is configured to be respectively displayed when the AMOLED display device is displayed.
  • the first anode and the second anode pass the first current And driving the first sub-OLED and the second OLED to emit light, and making the first sub-OLED and the second OLED have the same brightness;
  • the material of the pixel isolation dam is a hydrophilic material
  • a thickness of a portion of the OLED functional layer corresponding to the first anode is smaller than a thickness of a portion corresponding to the second anode; the first current is less than the second current;
  • Each of the pixel driving circuits includes a first thin film transistor, a second thin film transistor, a third thin film transistor, a fourth thin film crystal, a first capacitor, and a second capacitor;
  • the first thin film transistor, the second thin film transistor, the third thin film transistor, the fourth thin film crystal, the first capacitor, and the second capacitor are all located in the TFT array layer; the gate of the first thin film transistor is connected to the scan signal, The source is connected to the first data signal, and the drain is electrically connected to the gate of the second thin film transistor; the drain of the second thin film transistor is connected to the positive voltage of the power source, and the source is electrically connected to the first anode in the corresponding pixel region
  • the gate of the third thin film transistor is electrically connected to the gate of the first thin film transistor, the source is connected to the second data signal, and the drain is electrically connected to the gate of the fourth thin film transistor; the fourth thin film transistor is The drain is connected to the positive voltage of the power source, and the source is electrically connected to the second anode in the corresponding pixel region; the two ends of the first capacitor are electrically connected to the gate and the drain of the second thin film transistor respectively; the second capacitor The two ends are electrically connected to the gate and the
  • the cathode is connected to a negative voltage of the power source
  • the scan signal controls the first thin film transistor and the third thin film transistor to be turned on, and the first data signal and the second data signal are respectively written into the gates of the second thin film transistor and the fourth thin film transistor.
  • the scan signal controls the first thin film transistor and the third thin film transistor to be turned on, and the first data signal and the second data signal are respectively written into the gates of the second thin film transistor and the fourth thin film transistor.
  • the TFT substrate further includes a planarization layer disposed between the anode layer and the TFT array layer;
  • the thickness of the region corresponding to the first anode on the planarization layer is smaller than the thickness of the region corresponding to the second anode.
  • the present invention provides an AMOLED display device in which an anode layer in a pixel region includes a first anode, a second anode disposed at a periphery of the first anode and spaced apart from the first anode, and a first anode, and The second anode and the OLED functional layer and the cathode respectively form a first sub-OLED and a second sub-OLED, and a pixel driving circuit is disposed corresponding to each pixel region, and the pixel driving circuit is respectively connected to the first anode and the second anode.
  • the pixel driving circuit respectively inputs different first currents and second currents to the first anode and the second anode, and the first sub-OLED and the second current can be controlled by controlling the currents of the first current and the second current.
  • the brightness of the sub-OLEDs is uniform, which solves the problem of uneven brightness of the pixels caused by the uneven thickness of the OLED functional layer when the OLED functional layer is formed by printing, thereby improving the quality of the display.
  • the driving method of the AMOLED display device provided by the invention enables the AMOLED display device to uniformly emit light in each pixel region during display, thereby improving the display quality of the AMOLED display device.
  • FIG. 1 is a schematic structural view of a first embodiment of an AMOLED display device of the present invention
  • FIG. 2 is a circuit diagram of a pixel driving circuit of the AMOLED display device of the present invention connected to a first sub-OLED and a second sub-OLED;
  • FIG. 3 is a schematic structural view of a second embodiment of an AMOLED display device of the present invention.
  • FIG. 4 is a schematic structural view of a third embodiment of an AMOLED display device of the present invention.
  • FIG. 5 is a flowchart of a driving method of an AMOLED display device of the present invention.
  • a first embodiment of an AMOLED display device of the present invention includes: a TFT substrate 100 and a plurality of TFT substrates 100 disposed on the TFT substrate 100. a pixel isolation barrier 200, a plurality of OLED functional layers 300 disposed on the TFT substrate 100, and a cathode 400 disposed on the plurality of OLED functional layers 300; the plurality of pixel isolation dams 200 are defined on the TFT substrate 100 a plurality of pixel regions 101, a plurality of OLED functional layers 300 are respectively located in the plurality of pixel regions 101;
  • the TFT substrate 100 includes a base substrate 110, a TFT array layer 120 disposed on the base substrate 110, and a plurality of anode layers 130 disposed on the TFT array layer 120 and correspondingly located in the plurality of pixel regions 101;
  • Each of the anode layers 130 includes: a first anode 131 located at a center of the corresponding pixel region 101, and a second anode 132 disposed around the first anode 131 and spaced apart from the first anode 131; the first anode 131 and the upper portion thereof
  • the OLED functional layer 300 and the cathode 400 constitute a first sub-OLED D1
  • the second anode 132 and the OLED functional layer 300 and the cathode 400 thereof constitute a second sub-OLED D2;
  • the AMOLED display device is provided with a pixel driving circuit corresponding to each pixel region 101.
  • the pixel driving circuit 10 is electrically connected to the first anode 131 and the second anode 132 respectively.
  • the pixel driving circuit 10 is configured to pass through the first anode 131 and the second anode 132 respectively when the AMOLED display device displays.
  • the first sub-OLED D1 and the second OLED D2 are driven to emit light, and the first sub-OLED D1 and the second OLED D2 are made to have the same brightness.
  • the OLED functional layer 300 includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer which are stacked in this order from bottom to top.
  • the OLED functional layer 300 is fabricated in the pixel region 101 by printing.
  • the thickness of the portion of the OLED functional layer 300 located at the center of the pixel region 101 is different from the thickness of the portion located at the edge of the pixel region 101.
  • the anode layer 130 corresponding to each pixel region 101 is disposed to include a first anode 131 located at the center of the pixel region 101, and a second anode 132 disposed at the periphery of the first anode 131 and spaced apart from the first anode 131, first The anode 131 and the second anode 132 respectively form a first sub-OLED D1 and a second sub-OLED D2 with the OLED functional layer 300 and the cathode 400, and a pixel driving circuit 10 is disposed corresponding to each pixel region 101.
  • the pixel driving circuit is provided. 10 is respectively connected to the first anode 131 and the second anode 132.
  • the pixel driving circuit 10 respectively inputs different first currents and second currents to the first anode 131 and the second anode 132, and controls the first current.
  • the current magnitude of the second current can make the brightness of the light emitted by the first sub-OLED D1 and the second sub-OLED D2 uniform, that is, although the OLED functional layer 300 is at the center and edge thickness of the pixel region 101.
  • the brightness of the light emitted by the AMOLED display device in each of the pixel regions 101 can be kept uniform, which solves the problem of uneven brightness of the pixels caused by uneven thickness of the OLED functional layer 300 when the OLED functional layer 300 is formed by printing.
  • the quality of the display is described in the display.
  • the material of the base substrate 110 is glass.
  • the TFT substrate 100 further includes a planarization layer 140 disposed between the anode layer 130 and the TFT array layer 120 , and the plurality of pixel isolation dams 200 are disposed on the planarization layer 140 .
  • the surface of the planarization layer 140 is flat.
  • the cathode 400 may cover the plurality of OLED functional layers 300 and the plurality of pixel isolation dams 200 on the whole surface, or may be correspondingly disposed on the plurality of OLED functional layers 300 according to the first embodiment of the present invention as shown in FIG. 1 . None of this will affect the implementation of the present invention.
  • the material of the pixel isolation dam 200 is a hydrophilic material, and thus the OLED function is completed after the OLED functional layer 300 is completed by printing.
  • the thickness of the portion of the layer 300 corresponding to the first anode 131 is smaller than the thickness of the portion corresponding to the second anode 132; correspondingly, when the AMOLED display device is displayed,
  • the first current that the pixel driving circuit 10 passes into the first anode 131 is smaller than the second current that is input to the second anode 132, so that the brightness of the first sub-OLED D1 and the second sub-OLED D2 are the same.
  • each pixel driving circuit 10 includes a first thin film transistor T1, a second thin film transistor T2, a third thin film transistor T3, a fourth thin film crystal T4, a first capacitor C1, and a second capacitor C2;
  • the first thin film transistor T1, the second thin film transistor T2, the third thin film transistor T3, the fourth thin film crystal T4, the first capacitor C1, and the second capacitor C2 are all located in the TFT array layer 120;
  • the gate of the transistor T1 is connected to the scan signal scan, the source is connected to the first data signal data1, the drain is electrically connected to the gate of the second thin film transistor T2, and the drain of the second thin film transistor T2 is connected to the positive voltage of the power supply.
  • the source is electrically connected to the first anode 131 in the corresponding pixel region 101;
  • the gate of the third thin film transistor T3 is electrically connected to the gate of the first thin film transistor T1, and the source is connected to the second data signal data2,
  • the drain is electrically connected to the gate of the fourth thin film transistor T4;
  • the drain of the fourth thin film transistor T4 is connected to the power supply positive voltage OVDD, and the source is electrically connected to the second anode 132 in the corresponding pixel region 101;
  • the two ends of the capacitor C1 are respectively electrically connected to the gate and the drain of the second thin film transistor T2;
  • the two ends of the second capacitor C2 are electrically connected to the gate and the drain of the fourth thin film transistor T4, respectively; 400 access power supply negative voltage OVSS; in AMOLED
  • the scan signal Scan controls the first thin film transistor T1 and the third thin film transistor T3 to be turned on, and the first data signal data1 and the second data signal data2 are respectively written into the second thin
  • the gate of the transistor T4 can adjust the current value of the first current and the second current generated by the pixel driving circuit 10, and then the first current and the second current.
  • the current flows into the first anode 131 and the second anode 132, respectively, and drives the first sub-OLED D1 and the second sub-OLED D2 to emit light of uniform brightness.
  • a second embodiment of the AMOLED display device of the present invention is different from the above-described first embodiment in that the thickness of the region corresponding to the first anode 131 on the planarization layer 140 is It is smaller than the thickness of the region corresponding to the second anode 132, and thus the difference in thickness between the portion of the OLED functional layer 300 at the center of the pixel region 101 and the edge portion of the pixel region 101 is reduced due to the step difference of the planarization layer 140, and therefore, When the OLED functional layer 300 is formed by printing, the thickness of the OLED functional layer 300 is not uniform, so that the current difference between the first current and the second current can be reduced, which is convenient for practical use.
  • the remaining features are the same as those in the first embodiment, and are not described herein again.
  • FIG. 4 is a third embodiment of the AMOLED display device of the present invention.
  • the difference between the embodiment and the first embodiment is that the material of the pixel isolation dam 200 is sparse.
  • the water-based material after the OLED functional layer 300 is completed by printing, the thickness of the portion of the OLED functional layer 300 corresponding to the first anode 131 is greater than the thickness of the portion corresponding to the second anode 132; correspondingly, in the AMOLED
  • the first current that the pixel driving circuit 10 sends to the first anode 131 is greater than the second current that is input to the second anode 132, so that the first sub-OLED D1 and the second sub-OLED D2
  • the brightness of the illumination is the same.
  • the rest are the same as the first embodiment, and are not described herein again.
  • the thickness of the region corresponding to the first anode 131 on the planarization 140 may be set to be larger than the thickness of the region corresponding to the second anode 132 to reduce
  • the thickness of the OLED functional layer 300 is not uniform, so that the current difference between the first current and the second current can be reduced, which is convenient for practical use.
  • the present invention further provides a driving method of an AMOLED display device, including the following steps:
  • Step S1 please refer to FIG. 1, FIG. 3, or FIG. 4, to provide an AMOLED display device
  • the AMOLED display device includes a TFT substrate 100, a plurality of pixel isolation dams 200 disposed on the TFT substrate 100, a plurality of OLED functional layers 300 disposed on the TFT substrate 100, and a plurality of OLED functional layers 300.
  • the plurality of pixel isolation dams 200 define a plurality of pixel regions 101 on the TFT substrate 100, and the plurality of OLED functional layers 300 are respectively located in the plurality of pixel regions 101;
  • the TFT substrate 100 includes a base substrate 110, a TFT array layer 120 disposed on the base substrate 110, and a plurality of anode layers 130 disposed on the TFT array layer 120 and correspondingly located in the plurality of pixel regions 101;
  • Each of the anode layers 130 includes: a first anode 131 located at a center of the corresponding pixel region 101, and a second anode 132 disposed around the first anode 131 and spaced apart from the first anode 131; the first anode 131 and the upper portion thereof
  • the OLED functional layer 300 and the cathode 400 constitute a first sub-OLED D1
  • the second anode 132 and the OLED functional layer 300 and the cathode 400 thereof constitute a second sub-OLED D2;
  • Each of the pixel regions 101 is provided with a pixel driving circuit 10, and the pixel driving circuit 10 is electrically connected to the first anode 131 and the second anode 132, respectively.
  • the material of the TFT substrate 110 is glass.
  • the cathode 400 can cover the plurality of OLED functional layers 300 and the plurality of pixel isolation dams 200 on the whole surface, or can be correspondingly disposed on the plurality of OLED functional layers 300 as shown in FIG. 1 , FIG. 2 , or FIG. 4 . None of this will affect the implementation of the present invention.
  • the OLED functional layer 300 includes a hole injection layered in order from bottom to top. Incoming layer, hole transport layer, light emitting layer, electron transport layer, and electron injecting layer.
  • the OLED functional layer 300 is fabricated in the pixel region 101 by printing.
  • each pixel driving circuit 10 includes a first thin film transistor T1, a second thin film transistor T2, a third thin film transistor T3, a fourth thin film crystal T4, a first capacitor C1, and a second capacitor C2;
  • the first thin film transistor T1, the second thin film transistor T2, the third thin film transistor T3, the fourth thin film crystal T4, the first capacitor C1, and the second capacitor C2 are all located in the TFT array layer 120; the first thin film transistor T1 The gate is connected to the scan signal scan, the source is connected to the first data signal data1, the drain is electrically connected to the gate of the second thin film transistor T2, and the drain of the second thin film transistor T2 is connected to the positive power supply voltage OVDD.
  • the source is electrically connected to the first anode 131 in the corresponding pixel region 101; the gate of the third thin film transistor T3 is electrically connected to the gate of the first thin film transistor T1, the source is connected to the second data signal data2, and the drain is Electrically connecting the gate of the fourth thin film transistor T4; the drain of the fourth thin film transistor T4 is connected to the power supply positive voltage OVDD, and the source is electrically connected to the second anode 132 in the corresponding pixel region 101; the first capacitor The two ends of the second thin film transistor T2 are respectively electrically connected to the gate and the drain of the second thin film transistor T2; the two ends of the second capacitor C2 are electrically connected to the gate and the drain of the fourth thin film transistor T4, respectively; Enter the power supply negative voltage OVSS.
  • the material of the pixel isolation dam 200 is a hydrophilic material, so after the OLED functional layer 300 is completed by printing, the OLED is used.
  • the thickness of the portion of the functional layer 300 corresponding to the first anode 131 is smaller than the thickness of the portion corresponding to the second anode 132.
  • the material of the pixel isolation dam 200 is a hydrophobic material, and thus the OLED function is completed after the OLED functional layer 300 is completed by printing.
  • the thickness of the portion of the layer 300 corresponding to the first anode 131 is greater than the thickness of the portion corresponding to the second anode 132.
  • the TFT substrate 100 further includes a planarization layer 140 disposed between the anode layer 130 and the TFT array layer 120 , and the plurality of pixel isolation dams 200 are disposed. On the planarization layer 140.
  • the planarization layer 140 may be disposed to have a flat surface; or, referring to FIG. 3, when the material of the pixel isolation dam 200 is a hydrophilic material, the planarization layer 140 may also be disposed such that the thickness of the region corresponding to the first anode 131 is smaller than the thickness of the region corresponding to the second anode 132 such that the thickness difference between the portion of the OLED functional layer 300 at the center of the pixel region 101 and the edge portion of the pixel region 101 is reduced.
  • the planarization layer 140 may also be disposed such that the thickness of the region corresponding to the first anode 131 is greater than the thickness of the region corresponding to the second anode 132, so that the OLED is Functional layer 300 in the pixel area The difference in thickness between the portion of the center of the domain 101 and the edge portion of the pixel region 101 is reduced.
  • Step S2 The AMOLED display device performs display, and the pixel driving circuit 10 respectively inputs a first current and a second current to the first anode 131 and the second anode 132, and drives the first sub-OLED D1 and the second OLED D2 to emit light, and The first sub-OLED D1 and the second OLED D2 are made to have the same luminance.
  • the scan signal Scan controls the first thin film transistor T1 and the third thin film transistor T3 to be turned on, and the first data signal data1 and the second data signal data2 are respectively written into the second thin film transistor T2 and
  • the gate of the fourth thin film transistor T4 can adjust the current value of the first current and the second current generated by the pixel driving circuit 10 by controlling the voltage values of the first data signal data1 and the second data signal data2, thereby further converting the first current
  • the second current flows into the first anode 131 and the second anode 132 respectively, and drives the first sub-OLED D1 and the second sub-OLED D2 to emit light of uniform brightness.
  • the first current is smaller than the second current; when the material of the pixel isolation dam 200 is a hydrophobic material, In the step S2, the first current is greater than the second current.
  • the thickness of the portion of the OLED functional layer 300 located at the center of the pixel region 101 is different from the thickness of the portion located at the edge of the pixel region 101.
  • the AMOLED driving device sets the anode layer 130 corresponding to each pixel region 101 to include a first anode 131 located at the center of the pixel region 101, and a periphery of the first anode 131 and The second anode 132, the first anode 131 and the second anode 132, respectively, of the anode 131 are respectively formed with the OLED functional layer 300 and the cathode 400 above the first sub-OLED D1 and the second sub-OLED D2, and corresponding to each pixel region.
  • a pixel driving circuit 10 is provided. The pixel driving circuit 10 is respectively connected to the first anode 131 and the second anode 132.
  • the first anode 131 and the second anode 132 are respectively connected to the first anode through the pixel driving circuit 10.
  • the current and the second current can control the brightness of the first sub-OLED D1 and the second sub-OLED D2 by controlling the currents of the first current and the second current, that is,
  • the OLED functional layer 300 has different thicknesses at the center and the edge of the pixel region 101, and the luminance of the luminescence of the AMOLED display device in each of the pixel regions 101 can be kept uniform, thereby solving the OLED functional layer 300 when the OLED functional layer 300 is formed by printing.
  • the problem of uneven brightness of pixels caused by uneven thickness improves the quality of the display.
  • the anode layer in the pixel region includes a first anode, and a second anode disposed at a periphery of the first anode and spaced apart from the first anode, the first anode and the second anode respectively
  • the OLED functional layer and the cathode above it constitute the first sub-OLED and the second
  • the sub-OLED is provided with a pixel driving circuit corresponding to each pixel region, and the pixel driving circuit is respectively connected to the first anode and the second anode. When operating, the pixel driving circuit respectively inputs different paths to the first anode and the second anode.
  • the first current and the second current can control the brightness of the first sub-OLED and the second sub-OLED by controlling the current of the first current and the second current, thereby solving the problem that the OLED functional layer is formed by using the printing method.
  • the problem of uneven brightness of pixels caused by uneven thickness of the OLED functional layer improves the quality of the display.
  • the driving method of the AMOLED display device of the present invention can make the AMOLED display device have uniform luminance in each pixel region during display, and improve the display quality of the AMOLED display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种AMOLED显示装置及其驱动方法,其中,AMOLED显示装置的像素区域(101)内的阳极层(130)包括第一阳极(131)、及设于第一阳极(131)外围且与第一阳极(131)间隔的第二阳极(132),第一阳极(131)及第二阳极(132)分别与其上方的OLED功能层(300)及阴极(400)构成第一子OLED(D1)及第二子OLED(D2),同时对应每一像素区域(101)设有一像素驱动电路(10),像素驱动电路(10)分别与第一阳极(131)及第二阳极(132)连接,工作时,像素驱动电路(10)分别向第一阳极(131)和第二阳极(132)通入不相同的第一电流及第二电流,通过控制第一电流及第二电流的电流大小,能够使第一子OLED(D1)与第二子OLED(D2)发出的光亮度一致,解决了由于采用打印的方式制作OLED功能层(300)时OLED功能层(300)厚度不均匀产生的像素亮度不均的问题,提升了显示的品质。

Description

AMOLED显示装置及其驱动方法 技术领域
本发明涉及显示技术领域,尤其涉及一种AMOLED显示装置及其驱动方法。
背景技术
有机发光二极管显示装置(Organic Light Emitting Display,OLED)具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
OLED按照驱动方式可以分为无源矩阵型OLED(Passive Matrix OLED,PMOLED)和有源矩阵型OLED(Active Matrix OLED,AMOLED)两大类,即直接寻址和薄膜晶体管(TFT)矩阵寻址两类。其中,AMOLED具有呈阵列式排布的像素,属于主动显示类型,发光效能高,通常用作高清晰度的大尺寸显示装置。
AMOLED是电流驱动器件,当有电流流过有机发光二极管时,有机发光二极管发光,且发光亮度由流过有机发光二极管自身的电流决定。大部分已有的集成电路(Integrated Circuit,IC)都只传输电压信号,故AMOLED的像素驱动电路需要完成将电压信号转变为电流信号的任务。传统的AMOLED像素驱动电路通常为2T1C,即两个薄膜晶体管加一个电容的结构,将电压变换为电流。
现有的AMOLED显示装置一般在TFT阵列基板上的平坦化层上制作多条像素隔离坝(Bank),由多条像素隔离坝在TFT阵列基板上限定出多个像素区域,之后采用打印的方式在多个像素区域内制作OLED功能层,具体为将溶液态的OLED材料滴到多个像素区域内,之后对OLED材料进行干燥,得到OLED功能层。由于像素隔离坝采用的有机材料一般具有亲水性或疏水性,在采用亲水性材料制作像素隔离坝时,采用打印的方式制作的OLED功能层在像素区域中心的厚度要小于在像素区域边缘的厚度,在采用疏水性材料制作像素隔离坝时,采用打印的方式制作的OLED功能层在像素区域中心的厚度要大于在像素区域边缘的厚度,也即OLED功能层的膜厚不均,在此基础上驱动AMOLED显示装置进行显示时,电流在流过厚度不均的OLED功能层后,同一像素区域发出的光亮度不均,影响显示 品质。
发明内容
本发明的目的在于提供一种AMOLED显示装置,显示时每一像素区域内的发光亮度均匀,显示品质高。
本发明的另一目的在于提供一种AMOLED显示装置的驱动方法,能够使AMOLED显示装置在显示时每一像素区域内的发光亮度均匀,提升AMOLED显示装置的显示品质。
为实现上述目的,本发明首先提供一种AMOLED显示装置,包括:TFT基板、设于TFT基板上的多条像素隔离坝、设于TFT基板上的多个OLED功能层、及设于多个OLED功能层上的阴极;所述多条像素隔离坝在TFT基板上限定出多个像素区域,多个OLED功能层分别位于多个像素区域内;
所述TFT基板包括衬底基板、设于衬底基板上的TFT阵列层、及设于TFT阵列层上且对应位于多个像素区域内的多个阳极层;
每一阳极层均包括:位于对应的像素区域的中心的第一阳极、及设于第一阳极周围且与第一阳极间隔的第二阳极;第一阳极与其上方的OLED功能层及阴极构成第一子OLED,第二阳极与其上方的OLED功能层及阴极构成第二子OLED;
所述AMOLED显示装置对应每一像素区域设有一像素驱动电路,所述像素驱动电路分别与第一阳极及第二阳极电性连接,所述像素驱动电路用于在AMOLED显示装置显示时,分别向第一阳极及第二阳极通入第一电流及第二电流,驱动第一子OLED及第二OLED发光,且使第一子OLED与第二OLED发光亮度一致。
可选地,所述像素隔离坝的材料为亲水性材料,所述OLED功能层与第一阳极对应的部分的厚度小于与第二阳极对应的部分的厚度;所述第一电流小于第二电流。
可选地,所述像素隔离坝的材料为疏水性材料,所述OLED功能层与第一阳极对应的部分的厚度大于与第二阳极对应的部分的厚度;所述第一电流大于第二电流。
每一像素驱动电路均包括第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体、第一电容、第二电容;
所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体、第一电容、第二电容均位于TFT阵列层中;所述第一薄膜晶体管的栅极接入扫描信号,源极接入第一数据信号,漏极电性连接第二薄膜晶体 管的栅极;所述第二薄膜晶体管的漏极接入电源正电压,源极电性连接对应像素区域中的第一阳极;所述第三薄膜晶体管的栅极电性连接第一薄膜晶体管的栅极,源极接入第二数据信号,漏极电性连接第四薄膜晶体管的栅极;所述第四薄膜晶体管的漏极接入电源正电压,源极电性连接对应像素区域中的第二阳极;所述第一电容的两端分别电性连接第二薄膜晶体管的栅极及漏极;所述第二电容的两端分别电性连接第四薄膜晶体管的栅极及漏极;
所述阴极接入电源负电压;
在AMOLED显示装置进行显示时,扫描信号控制第一薄膜晶体管及第三薄膜晶体管导通,所述第一数据信号、及第二数据信号分别写入第二薄膜晶体管及第四薄膜晶体管的栅极,对应产生第一电流及第二电流分别通入第一阳极及第二阳极。
所述TFT基板还包括设于阳极层与TFT阵列层之间的平坦化层。
所述平坦化层上对应第一阳极的区域的厚度小于对应第二阳极的区域的厚度。
本发明还提供一种AMOLED显示装置的驱动方法,包括如下步骤:
步骤S1、提供AMOLED显示装置;
所述AMOLED显示装置包括:TFT基板、设于TFT基板上的多条像素隔离坝、设于TFT基板上的多个OLED功能层、及设于多个OLED功能层上的阴极;所述多条像素隔离坝在TFT基板上限定出多个像素区域,多个OLED功能层分别位于多个像素区域内;
所述TFT基板包括衬底基板、设于衬底基板上的TFT阵列层、及设于TFT阵列层上且对应位于多个像素区域内的多个阳极层;
每一阳极层均包括:位于对应的像素区域的中心的第一阳极、及设于第一阳极周围且与第一阳极间隔的第二阳极;第一阳极与其上方的OLED功能层及阴极构成第一子OLED,第二阳极与其上方的OLED功能层及阴极构成第二子OLED;
所述AMOLED显示装置对应每一像素区域设有一像素驱动电路,所述像素驱动电路分别与第一阳极及第二阳极电性连接;
步骤S2、AMOLED显示装置进行显示,所述像素驱动电路分别向第一阳极及第二阳极通入第一电流及第二电流,驱动第一子OLED及第二OLED发光,且使第一子OLED与第二OLED发光亮度一致。
可选地,所述像素隔离坝的材料为亲水性材料,所述OLED功能层与第一阳极对应的部分的厚度小于与第二阳极对应的部分的厚度;所述步骤 S2中,所述第一电流小于第二电流。
可选地,所述像素隔离坝的材料为疏水性材料,所述OLED功能层与第一阳极对应的部分的厚度大于与第二阳极对应的部分的厚度;所述步骤S2中,所述第一电流大于第二电流。
每一像素驱动电路均包括第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体、第一电容、第二电容;
所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体、第一电容、第二电容均位于TFT阵列层中;所述第一薄膜晶体管的栅极接入扫描信号,源极接入第一数据信号,漏极电性连接第二薄膜晶体管的栅极;所述第二薄膜晶体管的漏极接入电源正电压,源极电性连接对应像素区域中的第一阳极;所述第三薄膜晶体管的栅极电性连接第一薄膜晶体管的栅极,源极接入第二数据信号,漏极电性连接第四薄膜晶体管的栅极;所述第四薄膜晶体管的漏极接入电源正电压,源极电性连接对应像素区域中的第二阳极;所述第一电容的两端分别电性连接第二薄膜晶体管的栅极及漏极;所述第二电容的两端分别电性连接第四薄膜晶体管的栅极及漏极;
所述阴极接入电源负电压;
所述步骤S2中,扫描信号控制第一薄膜晶体管及第三薄膜晶体管导通,所述第一数据信号、及第二数据信号分别写入第二薄膜晶体管及第四薄膜晶体管的栅极,对应产生第一电流及第二电流分别通入第一阳极及第二阳极。
本发明还提供一种AMOLED显示装置,包括:TFT基板、设于TFT基板上的多条像素隔离坝、设于TFT基板上的多个OLED功能层、及设于多个OLED功能层上的阴极;所述多条像素隔离坝在TFT基板上限定出多个像素区域,多个OLED功能层分别位于多个像素区域内;
所述TFT基板包括衬底基板、设于衬底基板上的TFT阵列层、及设于TFT阵列层上且对应位于多个像素区域内的多个阳极层;
每一阳极层均包括:位于对应的像素区域的中心的第一阳极、及设于第一阳极周围且与第一阳极间隔的第二阳极;第一阳极与其上方的OLED功能层及阴极构成第一子OLED,第二阳极与其上方的OLED功能层及阴极构成第二子OLED;
所述AMOLED显示装置对应每一像素区域设有一像素驱动电路,所述像素驱动电路分别与第一阳极及第二阳极电性连接,所述像素驱动电路用于在AMOLED显示装置显示时,分别向第一阳极及第二阳极通入第一电流 及第二电流,驱动第一子OLED及第二OLED发光,且使第一子OLED与第二OLED发光亮度一致;
其中,所述像素隔离坝的材料为亲水性材料,所述OLED功能层与第一阳极对应的部分的厚度小于与第二阳极对应的部分的厚度;所述第一电流小于第二电流;
其中,每一像素驱动电路均包括第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体、第一电容、第二电容;
所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体、第一电容、第二电容均位于TFT阵列层中;所述第一薄膜晶体管的栅极接入扫描信号,源极接入第一数据信号,漏极电性连接第二薄膜晶体管的栅极;所述第二薄膜晶体管的漏极接入电源正电压,源极电性连接对应像素区域中的第一阳极;所述第三薄膜晶体管的栅极电性连接第一薄膜晶体管的栅极,源极接入第二数据信号,漏极电性连接第四薄膜晶体管的栅极;所述第四薄膜晶体管的漏极接入电源正电压,源极电性连接对应像素区域中的第二阳极;所述第一电容的两端分别电性连接第二薄膜晶体管的栅极及漏极;所述第二电容的两端分别电性连接第四薄膜晶体管的栅极及漏极;
所述阴极接入电源负电压;
在AMOLED显示装置进行显示时,扫描信号控制第一薄膜晶体管及第三薄膜晶体管导通,所述第一数据信号、及第二数据信号分别写入第二薄膜晶体管及第四薄膜晶体管的栅极,对应产生第一电流及第二电流分别通入第一阳极及第二阳极;
其中,所述TFT基板还包括设于阳极层与TFT阵列层之间的平坦化层;
其中,所述平坦化层上对应第一阳极的区域的厚度小于对应第二阳极的区域的厚度。
本发明的有益效果:本发明提供的一种AMOLED显示装置,像素区域内的阳极层包括第一阳极、及设于第一阳极外围且与第一阳极间隔的第二阳极,第一阳极、及第二阳极分别与其上方的OLED功能层及阴极构成第一子OLED及第二子OLED,同时对应每一像素区域设有一像素驱动电路,该像素驱动电路分别与第一阳极及第二阳极连接,工作时,像素驱动电路分别向第一阳极和第二阳极通入不相同的第一电流及第二电流,通过控制第一电流及第二电流的电流大小,能够使第一子OLED与第二子OLED发出的光亮度一致,解决了由于采用打印的方式制作OLED功能层时OLED功能层厚度不均匀产生的像素亮度不均的问题,提升了显示的品质。本发 明提供的一种AMOLED显示装置的驱动方法,能够使AMOLED显示装置在显示时每一像素区域内的发光亮度均匀,提升AMOLED显示装置的显示品质。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的AMOLED显示装置的第一实施例的结构示意图;
图2为本发明的AMOLED显示装置的像素驱动电路与第一子OLED及第二子OLED连接的电路图;
图3为本发明的AMOLED显示装置的第二实施例的结构示意图;
图4为本发明的AMOLED显示装置的第三实施例的结构示意图;
图5为本发明的AMOLED显示装置的驱动方法的流程图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
本发明提供一种AMOLED显示装置,请参阅图1及图2,为本发明的AMOLED显示装置的第一实施例,本发明的AMOLED显示装置包括:TFT基板100、设于TFT基板100上的多条像素隔离坝200、设于TFT基板100上的多个OLED功能层300、及设于多个OLED功能层300上的阴极400;所述多条像素隔离坝200在TFT基板100上限定出多个像素区域101,多个OLED功能层300分别位于多个像素区域101内;
所述TFT基板100包括衬底基板110、设于衬底基板110上的TFT阵列层120、及设于TFT阵列层120上且对应位于多个像素区域101内的多个阳极层130;
每一阳极层130均包括:位于对应的像素区域101的中心的第一阳极131、及设于第一阳极131周围且与第一阳极131间隔的第二阳极132;第一阳极131与其上方的OLED功能层300及阴极400构成第一子OLED D1,第二阳极132与其上方的OLED功能层300及阴极400构成第二子OLED D2;
所述AMOLED显示装置对应每一像素区域101设有一像素驱动电路 10,所述像素驱动电路10分别与第一阳极131及第二阳极132电性连接,所述像素驱动电路10用于在AMOLED显示装置显示时,分别向第一阳极131及第二阳极132通入第一电流及第二电流,驱动第一子OLED D1及第二OLED D2发光,且使第一子OLED D1与第二OLED D2发光亮度一致。
具体地,所述OLED功能层300包括由下至上依次层叠设置的空穴注入层、空穴传输层、发光层、电子传输层、及电子注入层。所述OLED功能层300采用打印的方式制作在像素区域101内。
需要说明的是,由于像素隔离坝200具有亲水性或疏水性,使OLED功能层300位于像素区域101的中心的部分的厚度与位于像素区域101的边缘的部分的厚度不同,为此,本发明将对应每一像素区域101的阳极层130设置为包括位于像素区域101的中心的第一阳极131、及设于第一阳极131外围且与第一阳极131间隔的第二阳极132,第一阳极131、及第二阳极132分别与其上方的OLED功能层300及阴极400构成第一子OLED D1及第二子OLED D2,同时对应每一像素区域101设有一像素驱动电路10,该像素驱动电路10分别与第一阳极131及第二阳极132连接,工作时,像素驱动电路10分别向第一阳极131和第二阳极132通入不相同的第一电流及第二电流,通过控制第一电流及第二电流的电流大小,能够使第一子OLED D1与第二子OLED D2发出的光亮度一致,也即虽然OLED功能层300在像素区域101中心和边缘厚度不同,AMOLED显示装置在每个像素区域101内的发光亮度也能保持均匀,解决了由于采用打印的方式制作OLED功能层300时OLED功能层300厚度不均匀产生的像素亮度不均的问题,提升了显示的品质。
具体地,所述衬底基板110的材料为玻璃。
具体地,请参阅图1,所述TFT基板100还包括设于阳极层130与TFT阵列层120之间的平坦化层140,所述多个像素隔离坝200均设置在平坦化层140上。具体地,在本发明的第一实施例中,该平坦化层140的表面平坦。
具体地,所述阴极400可整面覆盖多个OLED功能层300及多个像素隔离坝200,也可如图1所示的本发明的第一实施例,对应设置在多个OLED功能层300上,这均不会影响本发明的实现。
具体地,请参阅图1,在本发明的第一实施例中,所述像素隔离坝200的材料为亲水性材料,因此在采用打印的方式制作完成OLED功能层300之后,所述OLED功能层300与第一阳极131对应的部分的厚度小于与第二阳极132对应的部分的厚度;对应地,在AMOLED显示装置显示时,所 述像素驱动电路10向第一阳极131通入的所述第一电流小于向第二阳极132通入的第二电流,以使第一子OLED D1与第二子OLED D2发光的亮度相同。
具体地,请参阅图2,每一像素驱动电路10均包括第一薄膜晶体管T1、第二薄膜晶体管T2、第三薄膜晶体管T3、第四薄膜晶体T4、第一电容C1、第二电容C2;
其中,所述第一薄膜晶体管T1、第二薄膜晶体管T2、第三薄膜晶体管T3、第四薄膜晶体T4、第一电容C1、第二电容C2均位于TFT阵列层120中;所述第一薄膜晶体管T1的栅极接入扫描信号scan,源极接入第一数据信号data1,漏极电性连接第二薄膜晶体管T2的栅极;所述第二薄膜晶体管T2的漏极接入电源正电压OVDD,源极电性连接对应像素区域101中的第一阳极131;所述第三薄膜晶体管T3的栅极电性连接第一薄膜晶体管T1的栅极,源极接入第二数据信号data2,漏极电性连接第四薄膜晶体管T4的栅极;所述第四薄膜晶体管T4的漏极接入电源正电压OVDD,源极电性连接对应像素区域101中的第二阳极132;所述第一电容C1的两端分别电性连接第二薄膜晶体管T2的栅极及漏极;所述第二电容C2的两端分别电性连接第四薄膜晶体管T4的栅极及漏极;所述阴极400接入电源负电压OVSS;在AMOLED显示装置进行显示时,扫描信号Scan控制第一薄膜晶体管T1及第三薄膜晶体管T3导通,所述第一数据信号data1、及第二数据信号data2分别写入第二薄膜晶体管T2及第四薄膜晶体管T4的栅极,通过控制第一数据信号data1及第二数据信号data2的电压值,便能调整像素驱动电路10产生第一电流及第二电流的电流值,进而将第一电流与第二电流分别通入第一阳极131及第二阳极132,驱动第一子OLED D1及第二子OLED D2发出亮度一致的光。
具体地,请参阅图3,为本发明的AMOLED显示装置的第二实施例,该实施例与上述第一实施例的区别在于,所述平坦化层140上对应第一阳极131的区域的厚度小于对应第二阳极132的区域的厚度,因而OLED功能层300在像素区域101的中心的部分与在像素区域101边缘部分的厚度差由于平坦化层140的段差而减小,因此,能够减轻由于采用打印的方式制作OLED功能层300时OLED功能层300厚度不均匀的程度,因而能够降低第一电流与第二电流之间的电流差,便于实际应用。其余特征均与第一实施例相同,在此不再赘述。
具体地,请参阅图4,为本发明的AMOLED显示装置的第三实施例,该实施例与上述第一实施例的区别在于,所述像素隔离坝200的材料为疏 水性材料,因此在采用打印的方式制作完成OLED功能层300之后,所述OLED功能层300与第一阳极131对应的部分的厚度大于与第二阳极132对应的部分的厚度;对应地,在AMOLED显示装置显示时,所述像素驱动电路10向第一阳极131通入的所述第一电流大于向第二阳极132通入的第二电流,以使第一子OLED D1与第二子OLED D2发光的亮度相同。其余均与第一实施例相同,在此不再赘述。
值得一提的是,在本发明的第三实施例的基础上,可将平坦化140上对应第一阳极131的区域的厚度设置为大于对应第二阳极132的区域的厚度,以减轻由于采用打印的方式制作OLED功能层300时OLED功能层300厚度不均匀的程度,因而能够降低第一电流与第二电流之间的电流差,便于实际应用。
请参阅图5,基于同一发明构思,本发明还提供一种AMOLED显示装置的驱动方法,包括如下步骤:
步骤S1、请参阅图1、图3、或图4,提供AMOLED显示装置;
所述AMOLED显示装置包括:TFT基板100、设于TFT基板100上的多条像素隔离坝200、设于TFT基板100上的多个OLED功能层300、及设于多个OLED功能层300上的阴极400;所述多条像素隔离坝200在TFT基板100上限定出多个像素区域101,多个OLED功能层300分别位于多个像素区域101内;
所述TFT基板100包括衬底基板110、设于衬底基板110上的TFT阵列层120、及设于TFT阵列层120上且对应位于多个像素区域101内的多个阳极层130;
每一阳极层130均包括:位于对应的像素区域101的中心的第一阳极131、及设于第一阳极131周围且与第一阳极131间隔的第二阳极132;第一阳极131与其上方的OLED功能层300及阴极400构成第一子OLED D1,第二阳极132与其上方的OLED功能层300及阴极400构成第二子OLED D2;
所述AMOLED显示装置对应每一像素区域101设有一像素驱动电路10,所述像素驱动电路10分别与第一阳极131及第二阳极132电性连接。
具体地,所述TFT衬底基板110的材料为玻璃。
具体地,所述阴极400可整面覆盖多个OLED功能层300及多个像素隔离坝200,也可如图1、图2、或图4所示,对应设置在多个OLED功能层300上,这均不会影响本发明的实现。
具体地,所述OLED功能层300包括由下至上依次层叠设置的空穴注 入层、空穴传输层、发光层、电子传输层、及电子注入层。所述OLED功能层300采用打印的方式制作在像素区域101内。
具体地,请参阅图2,每一像素驱动电路10均包括第一薄膜晶体管T1、第二薄膜晶体管T2、第三薄膜晶体管T3、第四薄膜晶体T4、第一电容C1、第二电容C2;
所述第一薄膜晶体管T1、第二薄膜晶体管T2、第三薄膜晶体管T3、第四薄膜晶体T4、第一电容C1、第二电容C2均位于TFT阵列层120中;所述第一薄膜晶体管T1的栅极接入扫描信号scan,源极接入第一数据信号data1,漏极电性连接第二薄膜晶体管T2的栅极;所述第二薄膜晶体管T2的漏极接入电源正电压OVDD,源极电性连接对应像素区域101中的第一阳极131;所述第三薄膜晶体管T3的栅极电性连接第一薄膜晶体管T1的栅极,源极接入第二数据信号data2,漏极电性连接第四薄膜晶体管T4的栅极;所述第四薄膜晶体管T4的漏极接入电源正电压OVDD,源极电性连接对应像素区域101中的第二阳极132;所述第一电容C1的两端分别电性连接第二薄膜晶体管T2的栅极及漏极;所述第二电容C2的两端分别电性连接第四薄膜晶体管T4的栅极及漏极;所述阴极400接入电源负电压OVSS。
可选地,请参阅图1,在本发明的第一实施例中,所述像素隔离坝200的材料为亲水性材料,因此在采用打印的方式制作完成OLED功能层300之后,所述OLED功能层300与第一阳极131对应的部分的厚度小于与第二阳极132对应的部分的厚度。
可选地,请参阅图4,在本发明的第三实施例中,所述像素隔离坝200的材料为疏水性材料,因此在采用打印的方式制作完成OLED功能层300之后,所述OLED功能层300与第一阳极131对应的部分的厚度大于与第二阳极132对应的部分的厚度。
具体地,请参阅图1、图3、或图4,所述TFT基板100还包括设于阳极层130与TFT阵列层120之间的平坦化层140,所述多个像素隔离坝200均设置在平坦化层140上。
进一步地,请参阅图1或图4,该平坦化层140可设置为表面平坦;或者,请参阅图3,当所述像素隔离坝200的材料为亲水性材料时,所述平坦化层140也可设置为对应第一阳极131的区域的厚度小于对应第二阳极132的区域的厚度,以使OLED功能层300在像素区域101的中心的部分与在像素区域101边缘部分的厚度差减小;当所述像素隔离坝200的材料为疏水性材料时,所述平坦化层140也可设置为对应第一阳极131的区域的厚度大于对应第二阳极132的区域的厚度,以使OLED功能层300在像素区 域101的中心的部分与在像素区域101边缘部分的厚度差减小。
步骤S2、AMOLED显示装置进行显示,所述像素驱动电路10分别向第一阳极131及第二阳极132通入第一电流及第二电流,驱动第一子OLED D1及第二OLED D2发光,且使第一子OLED D1与第二OLED D2发光亮度一致。
具体地,所述步骤S2中,扫描信号Scan控制第一薄膜晶体管T1及第三薄膜晶体管T3导通,所述第一数据信号data1、及第二数据信号data2分别写入第二薄膜晶体管T2及第四薄膜晶体管T4的栅极,通过控制第一数据信号data1及第二数据信号data2的电压值,便能调整像素驱动电路10产生第一电流及第二电流的电流值,进而将第一电流与第二电流分别通入第一阳极131及第二阳极132,驱动第一子OLED D1及第二子OLED D2发出亮度一致的光。
具体地,当所述像素隔离坝200的材料为亲水性材料时,所述步骤S2中,所述第一电流小于第二电流;当所述像素隔离坝200的材料为疏水性材料时,所述步骤S2中,所述第一电流大于第二电流。
需要说明的是,由于像素隔离坝200具有亲水性或疏水性,使OLED功能层300位于像素区域101的中心的部分的厚度与位于像素区域101的边缘的部分的厚度不同,为此,本发明的AMOLED显示装置的驱动方法中,AMOLED驱动装置将对应每一像素区域101的阳极层130设置为包括位于像素区域101的中心的第一阳极131、及设于第一阳极131外围且与第一阳极131间隔的第二阳极132,第一阳极131、及第二阳极132分别与其上方的OLED功能层300及阴极400构成第一子OLED D1及第二子OLED D2,同时对应每一像素区域101设有一像素驱动电路10,该像素驱动电路10分别与第一阳极131及第二阳极132连接,因而通过像素驱动电路10分别向第一阳极131和第二阳极132通入不相同的第一电流及第二电流,通过控制第一电流及第二电流的电流大小,能够使第一子OLED D1与第二子OLED D2发出的光亮度一致,也即虽然OLED功能层300在像素区域101中心和边缘厚度不同,AMOLED显示装置在每个像素区域101内的发光亮度也能保持均匀,解决了由于采用打印的方式制作OLED功能层300时OLED功能层300厚度不均匀产生的像素亮度不均的问题,提升了显示的品质。
综上所述,本发明的AMOLED显示装置,像素区域内的阳极层包括第一阳极、及设于第一阳极外围且与第一阳极间隔的第二阳极,第一阳极、及第二阳极分别与其上方的OLED功能层及阴极构成第一子OLED及第二 子OLED,同时对应每一像素区域设有一像素驱动电路,该像素驱动电路分别与第一阳极及第二阳极连接,工作时,像素驱动电路分别向第一阳极和第二阳极通入不相同的第一电流及第二电流,通过控制第一电流及第二电流的电流大小,能够使第一子OLED与第二子OLED发出的光亮度一致,解决了由于采用打印的方式制作OLED功能层时OLED功能层厚度不均匀产生的像素亮度不均的问题,提升了显示的品质。本发明的AMOLED显示装置的驱动方法,能够使AMOLED显示装置在显示时每一像素区域内的发光亮度均匀,提升AMOLED显示装置的显示品质。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (11)

  1. 一种AMOLED显示装置,包括:TFT基板、设于TFT基板上的多条像素隔离坝、设于TFT基板上的多个OLED功能层、及设于多个OLED功能层上的阴极;所述多条像素隔离坝在TFT基板上限定出多个像素区域,多个OLED功能层分别位于多个像素区域内;
    所述TFT基板包括衬底基板、设于衬底基板上的TFT阵列层、及设于TFT阵列层上且对应位于多个像素区域内的多个阳极层;
    每一阳极层均包括:位于对应的像素区域的中心的第一阳极、及设于第一阳极周围且与第一阳极间隔的第二阳极;第一阳极与其上方的OLED功能层及阴极构成第一子OLED,第二阳极与其上方的OLED功能层及阴极构成第二子OLED;
    所述AMOLED显示装置对应每一像素区域设有一像素驱动电路,所述像素驱动电路分别与第一阳极及第二阳极电性连接,所述像素驱动电路用于在AMOLED显示装置显示时,分别向第一阳极及第二阳极通入第一电流及第二电流,驱动第一子OLED及第二OLED发光,且使第一子OLED与第二OLED发光亮度一致。
  2. 如权利要求1所述的AMOLED显示装置,其中,所述像素隔离坝的材料为亲水性材料,所述OLED功能层与第一阳极对应的部分的厚度小于与第二阳极对应的部分的厚度;所述第一电流小于第二电流。
  3. 如权利要求1所述的AMOLED显示装置,其中,所述像素隔离坝的材料为疏水性材料,所述OLED功能层与第一阳极对应的部分的厚度大于与第二阳极对应的部分的厚度;所述第一电流大于第二电流。
  4. 如权利要求1所述的AMOLED显示装置,其中,每一像素驱动电路均包括第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体、第一电容、第二电容;
    所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体、第一电容、第二电容均位于TFT阵列层中;所述第一薄膜晶体管的栅极接入扫描信号,源极接入第一数据信号,漏极电性连接第二薄膜晶体管的栅极;所述第二薄膜晶体管的漏极接入电源正电压,源极电性连接对应像素区域中的第一阳极;所述第三薄膜晶体管的栅极电性连接第一薄膜晶体管的栅极,源极接入第二数据信号,漏极电性连接第四薄膜晶体管的栅极;所述第四薄膜晶体管的漏极接入电源正电压,源极电性连接对应像 素区域中的第二阳极;所述第一电容的两端分别电性连接第二薄膜晶体管的栅极及漏极;所述第二电容的两端分别电性连接第四薄膜晶体管的栅极及漏极;
    所述阴极接入电源负电压;
    在AMOLED显示装置进行显示时,扫描信号控制第一薄膜晶体管及第三薄膜晶体管导通,所述第一数据信号、及第二数据信号分别写入第二薄膜晶体管及第四薄膜晶体管的栅极,对应产生第一电流及第二电流分别通入第一阳极及第二阳极。
  5. 如权利要求2所述的AMOLED显示装置,其中,所述TFT基板还包括设于阳极层与TFT阵列层之间的平坦化层。
  6. 如权利要求5所述的AMOLED显示装置,其中,所述平坦化层上对应第一阳极的区域的厚度小于对应第二阳极的区域的厚度。
  7. 一种AMOLED显示装置的驱动方法,包括如下步骤:
    步骤S1、提供AMOLED显示装置;
    所述AMOLED显示装置包括:TFT基板、设于TFT基板上的多条像素隔离坝、设于TFT基板上的多个OLED功能层、及设于多个OLED功能层上的阴极;所述多条像素隔离坝在TFT基板上限定出多个像素区域,多个OLED功能层分别位于多个像素区域内;
    所述TFT基板包括衬底基板、设于衬底基板上的TFT阵列层、及设于TFT阵列层上且对应位于多个像素区域内的多个阳极层;
    每一阳极层均包括:位于对应的像素区域的中心的第一阳极、及设于第一阳极周围且与第一阳极间隔的第二阳极;第一阳极与其上方的OLED功能层及阴极构成第一子OLED,第二阳极与其上方的OLED功能层及阴极构成第二子OLED;
    所述AMOLED显示装置对应每一像素区域设有一像素驱动电路,所述像素驱动电路分别与第一阳极及第二阳极电性连接;
    步骤S2、AMOLED显示装置进行显示,所述像素驱动电路分别向第一阳极及第二阳极通入第一电流及第二电流,驱动第一子OLED及第二OLED发光,且使第一子OLED与第二OLED发光亮度一致。
  8. 如权利要求7所述的AMOLED显示装置的驱动方法,其中,所述像素隔离坝的材料为亲水性材料,所述OLED功能层与第一阳极对应的部分的厚度小于与第二阳极对应的部分的厚度;所述步骤S2中,所述第一电流小于第二电流。
  9. 如权利要求7所述的AMOLED显示装置的驱动方法,其中,所述 像素隔离坝的材料为疏水性材料,所述OLED功能层与第一阳极对应的部分的厚度大于与第二阳极对应的部分的厚度;所述步骤S2中,所述第一电流大于第二电流。
  10. 如权利要求7所述的AMOLED显示装置的驱动方法,其中,每一像素驱动电路均包括第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体、第一电容、第二电容;
    所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体、第一电容、第二电容均位于TFT阵列层中;所述第一薄膜晶体管的栅极接入扫描信号,源极接入第一数据信号,漏极电性连接第二薄膜晶体管的栅极;所述第二薄膜晶体管的漏极接入电源正电压,源极电性连接对应像素区域中的第一阳极;所述第三薄膜晶体管的栅极电性连接第一薄膜晶体管的栅极,源极接入第二数据信号,漏极电性连接第四薄膜晶体管的栅极;所述第四薄膜晶体管的漏极接入电源正电压,源极电性连接对应像素区域中的第二阳极;所述第一电容的两端分别电性连接第二薄膜晶体管的栅极及漏极;所述第二电容的两端分别电性连接第四薄膜晶体管的栅极及漏极;
    所述阴极接入电源负电压;
    所述步骤S2中,扫描信号控制第一薄膜晶体管及第三薄膜晶体管导通,所述第一数据信号、及第二数据信号分别写入第二薄膜晶体管及第四薄膜晶体管的栅极,对应产生第一电流及第二电流分别通入第一阳极及第二阳极。
  11. 一种AMOLED显示装置,包括:TFT基板、设于TFT基板上的多条像素隔离坝、设于TFT基板上的多个OLED功能层、及设于多个OLED功能层上的阴极;所述多条像素隔离坝在TFT基板上限定出多个像素区域,多个OLED功能层分别位于多个像素区域内;
    所述TFT基板包括衬底基板、设于衬底基板上的TFT阵列层、及设于TFT阵列层上且对应位于多个像素区域内的多个阳极层;
    每一阳极层均包括:位于对应的像素区域的中心的第一阳极、及设于第一阳极周围且与第一阳极间隔的第二阳极;第一阳极与其上方的OLED功能层及阴极构成第一子OLED,第二阳极与其上方的OLED功能层及阴极构成第二子OLED;
    所述AMOLED显示装置对应每一像素区域设有一像素驱动电路,所述像素驱动电路分别与第一阳极及第二阳极电性连接,所述像素驱动电路用于在AMOLED显示装置显示时,分别向第一阳极及第二阳极通入第一电流 及第二电流,驱动第一子OLED及第二OLED发光,且使第一子OLED与第二OLED发光亮度一致;
    其中,所述像素隔离坝的材料为亲水性材料,所述OLED功能层与第一阳极对应的部分的厚度小于与第二阳极对应的部分的厚度;所述第一电流小于第二电流;
    其中,每一像素驱动电路均包括第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体、第一电容、第二电容;
    所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体、第一电容、第二电容均位于TFT阵列层中;所述第一薄膜晶体管的栅极接入扫描信号,源极接入第一数据信号,漏极电性连接第二薄膜晶体管的栅极;所述第二薄膜晶体管的漏极接入电源正电压,源极电性连接对应像素区域中的第一阳极;所述第三薄膜晶体管的栅极电性连接第一薄膜晶体管的栅极,源极接入第二数据信号,漏极电性连接第四薄膜晶体管的栅极;所述第四薄膜晶体管的漏极接入电源正电压,源极电性连接对应像素区域中的第二阳极;所述第一电容的两端分别电性连接第二薄膜晶体管的栅极及漏极;所述第二电容的两端分别电性连接第四薄膜晶体管的栅极及漏极;
    所述阴极接入电源负电压;
    在AMOLED显示装置进行显示时,扫描信号控制第一薄膜晶体管及第三薄膜晶体管导通,所述第一数据信号、及第二数据信号分别写入第二薄膜晶体管及第四薄膜晶体管的栅极,对应产生第一电流及第二电流分别通入第一阳极及第二阳极;
    其中,所述TFT基板还包括设于阳极层与TFT阵列层之间的平坦化层;
    其中,所述平坦化层上对应第一阳极的区域的厚度小于对应第二阳极的区域的厚度。
PCT/CN2017/111972 2017-10-09 2017-11-20 Amoled显示装置及其驱动方法 WO2019071726A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/736,119 US10643530B2 (en) 2017-10-09 2017-11-20 Amoled display device and driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710931773.5 2017-10-09
CN201710931773.5A CN107507573B (zh) 2017-10-09 2017-10-09 Amoled显示装置及其驱动方法

Publications (1)

Publication Number Publication Date
WO2019071726A1 true WO2019071726A1 (zh) 2019-04-18

Family

ID=60701024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111972 WO2019071726A1 (zh) 2017-10-09 2017-11-20 Amoled显示装置及其驱动方法

Country Status (3)

Country Link
US (1) US10643530B2 (zh)
CN (1) CN107507573B (zh)
WO (1) WO2019071726A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258154A (zh) * 2018-01-10 2018-07-06 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置
CN108269529B (zh) * 2018-02-24 2021-01-26 武汉华星光电半导体显示技术有限公司 一种改善amoled面板显示亮度不均的方法及amoled面板
US10803798B2 (en) 2018-02-24 2020-10-13 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. AMOLED panel and method for reducing display luminance unevenness thereof
CN108987258A (zh) * 2018-07-19 2018-12-11 京东方科技集团股份有限公司 氧化物半导体层的制备方法及装置
CN109273500A (zh) * 2018-09-21 2019-01-25 京东方科技集团股份有限公司 一种oled显示基板、显示装置和制作方法
CN111162189A (zh) * 2018-11-07 2020-05-15 广东聚华印刷显示技术有限公司 发光器件及其制备方法和掩膜版
CN109686768B (zh) 2018-12-25 2021-04-30 武汉天马微电子有限公司 一种阵列基板及其制备方法、显示面板
CN109713014B (zh) * 2018-12-29 2021-03-26 上海天马微电子有限公司 有机发光显示面板、装置和有机发光显示面板的制造方法
CN109903723A (zh) * 2019-04-19 2019-06-18 深圳市华星光电半导体显示技术有限公司 异形显示装置
CN110335889A (zh) * 2019-07-01 2019-10-15 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
CN110634932B (zh) * 2019-09-27 2022-08-16 京东方科技集团股份有限公司 一种可弯曲显示面板的设计方法及可弯曲显示面板
CN111292683B (zh) * 2020-02-13 2021-05-18 鄂尔多斯市源盛光电有限责任公司 阵列基板及其制备方法、显示装置
CN113013357B (zh) * 2021-02-23 2022-04-26 深圳市华星光电半导体显示技术有限公司 一种显示面板及显示装置
CN113990900B (zh) * 2021-10-12 2023-05-30 武汉华星光电半导体显示技术有限公司 显示面板和移动终端
CN115862540B (zh) * 2023-03-02 2023-05-26 惠科股份有限公司 像素驱动电路、像素驱动方法和显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102044554A (zh) * 2009-10-16 2011-05-04 上海天马微电子有限公司 用于双面显示的有机发光二极管显示器
US20130119352A1 (en) * 2011-11-14 2013-05-16 Deeder Mohammad Aurongzeb Multi-structure cathode for flexible organic light emitting diode (oled) device and method of making same
CN105932166A (zh) * 2016-05-03 2016-09-07 深圳市华星光电技术有限公司 自发光型显示装置及其制作方法
CN106328679A (zh) * 2015-06-30 2017-01-11 乐金显示有限公司 有机发光二极管显示装置
US20170207281A1 (en) * 2013-01-18 2017-07-20 Universal Display Corporation High resolution low power consumption oled display with extended lifetime
CN206947383U (zh) * 2017-10-09 2018-01-30 深圳市华星光电半导体显示技术有限公司 Amoled显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2391686B (en) * 2002-07-31 2006-03-22 Dainippon Printing Co Ltd Electroluminescent display and process for producing the same
KR100565674B1 (ko) * 2004-05-21 2006-03-30 엘지전자 주식회사 양방향 유기 el 디스플레이 패널 및 그 제조 방법
KR100699997B1 (ko) * 2004-09-21 2007-03-26 삼성에스디아이 주식회사 다수개의 구동 트랜지스터와 다수개의 애노드 또는캐소드전극을 갖는 유기 전계 발광 표시장치
US20070236428A1 (en) * 2006-03-28 2007-10-11 Toppoly Optoelectronics Corp. Organic electroluminescent device and fabrication methods thereof
CN105810852B (zh) * 2012-12-13 2018-06-22 京东方科技集团股份有限公司 一种有机发光显示面板的制作方法
CN103413519B (zh) * 2013-07-18 2016-05-11 京东方科技集团股份有限公司 一种像素电路及其驱动方法、阵列基板和显示装置
CN106910761B (zh) * 2015-12-22 2019-12-13 昆山工研院新型平板显示技术中心有限公司 一种具有较长发光寿命的显示装置
CN106783913B (zh) * 2016-11-17 2019-12-27 武汉华星光电技术有限公司 Amoled双面显示器
CN107068063A (zh) * 2017-04-21 2017-08-18 京东方科技集团股份有限公司 显示装置、像素单元及其驱动方法
CN107706209B (zh) * 2017-08-09 2019-06-25 武汉华星光电半导体显示技术有限公司 有机电致发光显示面板及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102044554A (zh) * 2009-10-16 2011-05-04 上海天马微电子有限公司 用于双面显示的有机发光二极管显示器
US20130119352A1 (en) * 2011-11-14 2013-05-16 Deeder Mohammad Aurongzeb Multi-structure cathode for flexible organic light emitting diode (oled) device and method of making same
US20170207281A1 (en) * 2013-01-18 2017-07-20 Universal Display Corporation High resolution low power consumption oled display with extended lifetime
CN106328679A (zh) * 2015-06-30 2017-01-11 乐金显示有限公司 有机发光二极管显示装置
CN105932166A (zh) * 2016-05-03 2016-09-07 深圳市华星光电技术有限公司 自发光型显示装置及其制作方法
CN206947383U (zh) * 2017-10-09 2018-01-30 深圳市华星光电半导体显示技术有限公司 Amoled显示装置

Also Published As

Publication number Publication date
CN107507573A (zh) 2017-12-22
US10643530B2 (en) 2020-05-05
CN107507573B (zh) 2023-07-04
US20190385518A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
WO2019071726A1 (zh) Amoled显示装置及其驱动方法
KR101990116B1 (ko) 유기발광장치 및 그것의 제조방법
US9219087B2 (en) Display, display drive method, method of manufacturing display, and electronic apparatus
US7626199B2 (en) Organic light emitting diode display
CN108091672B (zh) 具有高孔径比的大面积超高密度平板显示器
KR20190076093A (ko) 표시 장치 및 그것의 제조 방법
WO2019071711A1 (zh) Oled面板的制作方法及oled面板
US20150236082A1 (en) Dual-side display, device for controlling the dual-side display and method for manufacturing the same
WO2016050015A1 (zh) 有机电致发光显示器件、其驱动方法及显示装置
CN110246850B (zh) 显示装置
JP2015125366A (ja) 表示装置
US10304918B2 (en) Organic light emitting display device
KR20120134222A (ko) 백색 유기발광다이오드 표시소자
WO2019179058A1 (zh) Oled器件及其制作方法
WO2021115045A1 (zh) 显示用基板及显示装置
JP2017120376A (ja) 表示装置および表示装置の製造方法
US7315293B2 (en) Organic light-emitting diode display device
JP2019061777A (ja) 有機el表示装置
KR102318382B1 (ko) 표시 장치
KR101450887B1 (ko) 유기전계발광표시장치
KR100941591B1 (ko) 적층형 액티브 매트릭스형 유기발광 소자, 이를 배열한적층형 액티브 매트릭스형 유기발광 소자 어레이 및 그구동방법
KR102324765B1 (ko) 유기 발광 표시 장치 및 이의 제조 방법
TW201419608A (zh) 有機發光電晶體以及有機發光顯示器
WO2019229854A1 (ja) 表示装置
KR20090072782A (ko) 유기전계발광표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928665

Country of ref document: EP

Kind code of ref document: A1