WO2019071536A1 - 一种地震动力参数现场试验系统 - Google Patents

一种地震动力参数现场试验系统 Download PDF

Info

Publication number
WO2019071536A1
WO2019071536A1 PCT/CN2017/105904 CN2017105904W WO2019071536A1 WO 2019071536 A1 WO2019071536 A1 WO 2019071536A1 CN 2017105904 W CN2017105904 W CN 2017105904W WO 2019071536 A1 WO2019071536 A1 WO 2019071536A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical
piston rod
actuator assembly
horizontal
loading
Prior art date
Application number
PCT/CN2017/105904
Other languages
English (en)
French (fr)
Inventor
郭捷
马凤山
赵海军
卢蓉
孙琪皓
段学良
刘帅奇
Original Assignee
中国科学院地质与地球物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院地质与地球物理研究所 filed Critical 中国科学院地质与地球物理研究所
Priority to PCT/CN2017/105904 priority Critical patent/WO2019071536A1/zh
Publication of WO2019071536A1 publication Critical patent/WO2019071536A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress

Definitions

  • the invention relates to the field of seismic technology, and in particular to a field test system for seismic dynamic parameters.
  • seismic parameters are a key parameter that affects engineering design and construction.
  • all kinds of infrastructure construction must consider the geological characteristics of the construction site to ensure that the engineering design and construction can meet the seismic needs.
  • the embodiment of the present invention proposes a seismic power parameter field test system capable of rapid transportation for seismic parameter test.
  • an embodiment of the present invention provides a seismic power parameter field test system, including: a transport platform, an actuator assembly, a power servo loading mechanism, and a measurement control mechanism; wherein the actuator assembly and the power supply a servo loading mechanism is disposed on the transport platform, wherein the actuator assembly is retractable on a transport platform; wherein the actuator assembly includes a "door" shaped reaction frame, Supporting cylinders are arranged on both sides of the reaction frame, and the supporting cylinder is provided with a telescopic piston rod; wherein a vertical loading cylinder is arranged in the middle of the reaction force frame; and the vertical loading cylinder is provided with a vertical force-applying piston rod, and the vertical force-applying piston The bottom of the rod is provided with a loading plate for applying a load to the ground; wherein two sides of the reaction frame are respectively provided with telescopic beams that can be vertically extended and contracted, and the telescopic beams are fixed on the vertical force-applying piston rod
  • the loading plate is provided with a horizontal plus a load cylinder, each of which is provided with a horizontal force-applying piston rod, and two horizontal force-applying piston rods are respectively fixed on a telescopic beam; wherein the vertically-loaded piston rod of the vertical loading cylinder is provided with a vertical force-applying piston rod A vertical force sensor and a damper mechanism, the vertical urging piston rod of the vertical loading cylinder is connected to the loading plate by a vertical force sensor and a damper mechanism; wherein the horizontal urging piston rod of the horizontal loading cylinder is provided with a horizontal force sensor.
  • the transportation platform is a vehicle with a power device.
  • a weight is further included, and the weight is disposed on the top of the actuator assembly when the actuator assembly is in operation.
  • the transport platform is further provided with a lifting mechanism for lifting the actuator assembly.
  • the beneficial effects of the above technical solution of the present invention are as follows:
  • the above technical solution proposes a seismic dynamic parameter field test system, in which the vertical loading cylinder of the actuator assembly applies a vertical force of 100 KN to the loading plate, and the horizontal cylinder applies the maximum to the loading plate.
  • the support cylinders are supported on both sides to stabilize the transport platform and avoid body shake when horizontally loaded.
  • the rubber gas spring is located between the vertical loading cylinder and the loading plate to prevent vibration from being transmitted to the cylinder and affecting the life of the cylinder, and the resistance generated in the horizontal direction is small.
  • the horizontal loading cylinder is built in the loading plate and extends two horizontal force-applying piston rods, and the two horizontal force-applying piston rods are respectively fixed on one side of the telescopic beam.
  • a horizontal vibration force is applied, the piston rod does not move and the cylinder reciprocates.
  • the horizontal reaction force is transmitted to the reaction frame through the telescopic beam.
  • the telescopic performance of the telescopic beam increases the adaptability to the test site and can be tested on different working conditions that protrude from the ground or sink below the ground.
  • FIG. 1 is a schematic structural view of a seismic power parameter field test system in an operating state according to an embodiment of the present invention
  • Figure 2 is a side view of Figure 1;
  • Figure 3 is a cross-sectional structural view of the actuator assembly
  • Figure 5 is a side view of Figure 4.
  • the technical solution of the embodiment of the present invention is to adopt a retractable/stretching actuator assembly, which utilizes a transport platform for transportation and work.
  • a retractable/stretching actuator assembly which utilizes a transport platform for transportation and work.
  • vertical and horizontal loads can be provided by the actuator assembly to simulate the parameters of the land during an earthquake.
  • a power servo loading mechanism is provided on the transport platform to power the actuator assembly; and a measurement control mechanism is provided to receive parameters while the actuator assembly is in operation.
  • the seismic power parameter field test system of the embodiment of the present invention includes: a transport platform, an actuator assembly 100, a power servo loading mechanism, and a measurement control mechanism; wherein the actuator assembly The power servo loading mechanism is disposed on the transport platform, wherein the actuator assembly is retractable on the transport platform; wherein the actuator assembly includes a "door" shaped reaction frame 1 A support cylinder 7 is disposed on both sides of the reaction frame 1, and the support cylinder 7 is provided with a telescopic piston rod 8.
  • the middle of the reaction frame 1 is provided with a vertical loading cylinder 2; and the vertical loading cylinder 2 is provided with a vertical force-applying piston rod, and a loading plate 6 for applying a load to the ground is provided at the bottom of the vertical force-applying piston rod;
  • the two sides of the frame 1 are respectively provided with telescopic beams 9 which can be extended and contracted in the vertical direction, and the telescopic beams 9 are fixed on the vertical force-applying piston rods of the vertical loading cylinder 2 for expansion and contraction with respect to the reaction force frame 1;
  • the loading plate 6 is provided with a horizontal loading cylinder 5, and two sides of the horizontal loading cylinder 5 are respectively provided with horizontal force-applying piston rods, and two horizontal force-applying piston rods are respectively fixed on one telescopic beam 9.
  • the vertical force-applying piston rod of the vertical loading cylinder 2 is provided with a vertical force sensor 3 and a damper mechanism 4, and the vertical urging piston rod of the vertical loading cylinder 2 is connected to the loading plate by the vertical force sensor 3 and the damper mechanism 4.
  • the horizontal force-applying piston rod of the horizontal loading cylinder 5 is provided with a horizontal force sensor.
  • the actuator vertical loading cylinder applies a vertical force of 100 KN to the loading plate, and the horizontal cylinder applies a horizontal oscillating force of up to 80 KN to the loading plate.
  • the support cylinders are supported on both sides to stabilize the transport platform and avoid body shake when horizontally loaded.
  • the rubber gas spring is located between the vertical loading cylinder and the loading plate to prevent vibration from being transmitted to the cylinder and affecting the life of the cylinder, and the resistance generated in the horizontal direction is small.
  • the horizontal loading cylinder is built in the loading plate and extends two horizontal force-applying piston rods, and the two horizontal force-applying piston rods are respectively fixed on one side of the telescopic beam. When a horizontal vibration force is applied, the piston rod does not move and the cylinder reciprocates.
  • the horizontal reaction force is transmitted to the reaction frame through the telescopic beam.
  • the telescopic performance of the telescopic beam increases the adaptability to the test site and can be used for different work that protrudes from the ground or sinks below the ground. Carry out the test.
  • the transportation platform is a vehicle with a power device.
  • the transportation platform is a special engineering vehicle, which provides power and load reaction force for the system, has a mobile function, and provides necessary protection functions.
  • the transport platform is further provided with a lifting mechanism 300 for lifting the actuator assembly.
  • the power servo loading mechanism is a power source of the entire system and provides power to the actuator assembly.
  • the power servo loading mechanism includes: a fuel tank, an oil pump, an engine, a suction (return) oil filter, a high pressure oil filter, a check valve, a relief valve, a differential pressure relief valve, a reversing valve, a servo valve, a liquid Position meter, air filter, cooler, oil separation module.
  • the oil source has the functions of automatic alarm of liquid level undershoot, alarm of oil filter blockage, automatic control of oil temperature, automatic low-voltage automatic conversion, overload overflow and overload protection.
  • the oil separation module has two similar oil separation channels, and each of the oil separation channels includes a secondary oil filter and a shutoff valve.
  • the system of the embodiment of the invention includes three oil-dividing modules, respectively supplying oil and oil to two servo dynamic and static actuators (cylinders), and the connecting holes of the 1500kN axial cylinders and the 500kN horizontal cylinders are 10mm.
  • the seismic power parameter field test system of the embodiment of the present invention includes the following main institutions:
  • Special engineering vehicle Provides power and load reaction force for the system, has mobile function, and provides necessary protection functions.
  • Actuator assembly Provides vertical and horizontal loads for testing and transmits the loaded reaction force to the vehicle body.
  • Power servo loading mechanism The servo oil source is used as the power source to provide power for the vertical and horizontal loading cylinders of the loading plate, and at the same time to provide power to the supporting cylinder.
  • measurement control system accept computer instructions, control the electro-hydraulic servo loading system loading and unloading, and collect pressure, displacement, deformation sensor signals, after processing and then to the computer.
  • control commands issued by the measurement control system according to Measure the pressure, displacement, and deformation values collected by the control system, and display or output various charts and curves according to the user's instructions.
  • Stability criterion Considering the characteristics of the soil, the test time is long and the deformation is large. To ensure the authenticity of the data, the stability of the whole machine must be considered;
  • the principle of system energy conservation The energy saving of the testing machine is an important part of environmental protection. Reducing energy consumption means reducing environmental pollution, and reducing the power of the power system as much as possible under the premise of loss of power consumption of the testing machine.
  • this design adopts 340 horsepower engineering vehicle modification, and adds dynamic and static actuator assembly system at the tail of the engineering vehicle. It can apply vertical 100KN static and horizontal 80KN dynamic load. The system can rotate a certain angle according to the actual situation. And has an automatic lifting function according to the height of the applied part.
  • the control section is installed in the cabin and the power of the system is provided by the engine of the engineering vehicle.
  • a manual crane is mounted on the upper part of the compartment for placing the counterweight from above the vehicle compartment above the actuator. All components are placed inside the cabin when the system is not working, avoiding the equipment being exposed to the outside and having a longer service life.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明提供一种地震动力参数现场试验系统,包括:运输平台、作动器总成、电源伺服加载机构、测量控制机构;作动器总成可收放的设置在运输平台上;作动器总成包括"门"字形的反力架,反力架的两侧设有支撑缸,支撑缸设有伸缩活塞杆;反力架中部设有垂直加载油缸;且该垂直加载油缸设有垂直加力活塞杆,在垂直加力活塞杆底部设有用于对地面施加载荷的加载板;在反力架的两侧分别设有可沿竖直方向伸缩的伸缩梁,该伸缩梁固定在垂直加载油缸的垂直加力活塞杆上以相对于反力架伸缩;加载板内设有水平加载油缸,该水平加载油缸的两侧各自设有水平加力活塞杆,且两个水平加力活塞杆各自固定在一条伸缩梁上。

Description

一种地震动力参数现场试验系统 技术领域
本发明涉及地震技术领域,具体涉及一种地震动力参数现场试验系统。
背景技术
在工程领域,地震参数是影响工程设计及施工至关重要的一个参数。特别是在地震带或是临近地震带的位置,各种基础设施建设时都必须要考虑施工位置的地质特性,确保工程设计和施工能够满足抗震需求。
由于地质的复杂性和多样性,因此必须实地利用地震测试仪器进行实测,才能够确保获取的地质特性参数是准确的。现有技术中通常需要利用大型测试仪器进行测试,而运输时则需要吊装机械和运输机械的配合,导致地震动力参数现场试验非常耗时耗力。
发明内容
针对现有技术中用于进行地震参数测试的地震测试仪器体积大不易于运输的问题,本发明实施例提出了一种能够快速运输以进行地震参数测试的地震动力参数现场试验系统。
为了解决上述问题,本发明实施例提出了一种地震动力参数现场试验系统,包括:运输平台、作动器总成、电源伺服加载机构、测量控制机构;其中所述作动器总成、电源伺服加载机构都设置在所述运输平台上,其中所述作动器总成可收放的设置在运输平台上;其中所述作动器总成包括“门”字形的反力架,所述反力架的两侧设有支撑缸,所述支撑缸设有伸缩活塞杆;其中反力架中部设有垂直加载油缸;且该垂直加载油缸设有垂直加力活塞杆,在垂直加力活塞杆底部设有用于对地面施加载荷的加载板;其中在反力架的两侧分别设有可沿竖直方向伸缩的伸缩梁,该伸缩梁固定在垂直加载油缸的垂直加力活塞杆上以相对于所述反力架伸缩;其中所述加载板内设有水平加 载油缸,该水平加载油缸的两侧各自设有水平加力活塞杆,且两个水平加力活塞杆各自固定在一条伸缩梁上;其中所述垂直加载油缸的垂直加力活塞杆上设有垂直力传感器和减震机构,该垂直加载油缸的垂直加力活塞杆通过垂直力传感器和减震机构连接加载板;其中该水平加载油缸的水平加力活塞杆上设有水平力传感器。
其中,所述运输平台为具有动力装置的车辆。
其中,还包括配重块,在所述作动器总成工作时所述配重块设置于所述作动器总成顶部。
其中,所述运输平台上还设有吊装机构以吊装所述作动器总成。
本发明的上述技术方案的有益效果如下:上述技术方案提出了一种地震动力参数现场试验系统,作动器总成的垂直加载油缸对加载板施加100KN的垂直力,水平油缸对加载板施加最大80KN的水平震荡力。支撑缸支撑在两侧以起到稳定运输平台的的作用,避免水平加载时车身摇晃。橡胶气弹簧位于垂直加载油缸和加载板中间,避免振动传递到油缸而影响油缸寿命,并且在水平方向产生的阻力很小。其中水平加载油缸内置于加载板内,并伸出两条水平加力活塞杆,这两条水平加力活塞杆各自固定在一侧的伸缩梁上。当施加水平振动力时,活塞杆不动,油缸做往复移动。水平反力通过伸缩梁传递到反力架。伸缩梁的伸缩性能,加大了对试验场地的适应性,可对突出地面或下沉到地面以下的不同工况进行试验。
附图说明
图1为本发明实施例的地震动力参数现场试验系统在工作状态下的结构示意图;
图2为图1的侧视图;
图3为作动器总成的剖视结构示意图;
图4为分油模块的结构示意图;
图5为图4的侧视图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明实施例的技术方案是采用可收起/伸展的作动器总成,利用运输平台来进行运输和工作。在伸展状态下时,可以通过作动器总成提供垂直和水平方向的载荷,以模拟土地在地震时的参数。同时,在运输平台上设有电源伺服加载机构以对作动器总成提供动力;还设有测量控制机构以在作动器总成工作时接收参数。
如图1、图2所示的,本发明实施例的地震动力参数现场试验系统包括:运输平台、作动器总成100、电源伺服加载机构、测量控制机构;其中所述作动器总成、电源伺服加载机构都设置在所述运输平台上,其中所述作动器总成可收放的设置在运输平台上;其中所述作动器总成包括“门”字形的反力架1,所述反力架1的两侧设有支撑缸7,所述支撑缸7设有伸缩活塞杆8。其中反力架1中部设有垂直加载油缸2;且该垂直加载油缸2设有垂直加力活塞杆,在垂直加力活塞杆底部设有用于对地面施加载荷的加载板6;其中在反力架1的两侧分别设有可沿竖直方向伸缩的伸缩梁9,该伸缩梁9固定在垂直加载油缸2的垂直加力活塞杆上以相对于所述反力架1伸缩;其中所述加载板6内设有水平加载油缸5,该水平加载油缸5的两侧各自设有水平加力活塞杆,且两个水平加力活塞杆各自固定在一条伸缩梁9上。其中所述垂直加载油缸2的垂直加力活塞杆上设有垂直力传感器3和减震机构4,该垂直加载油缸2的垂直加力活塞杆通过垂直力传感器3和减震机构4连接加载板;其中该水平加载油缸5的水平加力活塞杆上设有水平力传感器。
作动器垂直加载油缸对加载板施加100KN的垂直力,水平油缸对加载板施加最大80KN的水平震荡力。支撑缸支撑在两侧以起到稳定运输平台的的作用,避免水平加载时车身摇晃。橡胶气弹簧位于垂直加载油缸和加载板中间,避免振动传递到油缸而影响油缸寿命,并且在水平方向产生的阻力很小。其中水平加载油缸内置于加载板内,并伸出两条水平加力活塞杆,这两条水平加力活塞杆各自固定在一侧的伸缩梁上。当施加水平振动力时,活塞杆不动,油缸做往复移动。水平反力通过伸缩梁传递到反力架。伸缩梁的伸缩性能,加大了对试验场地的适应性,可对突出地面或下沉到地面以下的不同工 况进行试验。
其中,所述运输平台为具有动力装置的车辆。具体的,该运输平台为特种工程车,其为系统提供动力和加载用的反作用力,具备移动功能,并提供必要的防护功能。
其中,还包括配重块200,在所述作动器总成工作时所述配重块设置于所述作动器总成顶部。如图1、图2所示的,所述运输平台上还设有吊装机构300以吊装所述作动器总成。
其中,该电源伺服加载机构为整个系统的动力源,为作动器总成提供动力。其中该电源伺服加载机构包括:油箱、油泵、发动机、吸(回)油滤油器、高压滤油器、单向阀、溢流阀、差压溢流阀、换向阀、伺服阀、液位计、空气滤清器、冷却器、分油模块。其中油源具有液位欠位自动报警、滤油器堵塞报警、油温自动控制、启动低高压自动转换、过载溢流、过载保护等完善功能。
如图4、图5所示的,分油模块有两个相似的分油通道,每一包含分油通道都包括二级滤油器、截止阀。本发明实施例的系统中包括3个分油模块,分别向两支伺服动静作动器(油缸)供油与回油,1500kN轴向油缸和500kN水平油缸连接胶管通径10mm。
如图1-图3所示的,本发明实施例的地震动力参数现场试验系统包括以下几个主要机构:
1、特种工程车:为系统提供动力和加载用的反作用力,具备移动功能,并提供必要的防护功能。
2、作动器总成:提供试验用的垂直和水平载荷,并将加载的反作用力传递到车体。
3、电源伺服加载机构:伺服油源作为动力源为加载板进行垂直及水平加载油缸提供动力,同时给支撑油缸提供动力。
4、测量控制系统:接受计算机指令,控制电液伺服加载系统加卸载,并采集压力、位移、变形传感器信号,经处理后输给计算机。
5、计算机控制和数据处理系统:对测量控制系统发出的控制指令,按受 测量控制系统采集的压力、位移、变形数值,依照用户的指令显示或输出各种图表与曲线。
在本发明实施例的地震动力参数现场试验系统在设计时遵循了以下几个重要的准则:
1、稳定性准则:考虑到土壤的特性,试验时间长,变形量大,为保证数据的真实性,须考虑整机的稳定性;
2、可靠性准则:为保证此项实验过程持续进行的特点,电器、液压、测控系统的设计与元件选择都须以此为原则。设计须用成熟的设技术作基础,元件须是国内外认可的名牌厂家;
3、降低整机振动与噪声的准则:采用静音式电液伺服油源设计方法,使其整机噪声不超过65dB;
4、系统节能的准则:试验机的节能是环境保护的重要一环,减少能源消耗即意味着减少对环境的污染,考虑到试验机功耗损失的前提下尽可能降低动力系统的功率。
5、外观美学设计准则:本机在设计时注重外观美学和整机造型设计,尽可能使设备造型美观。
根据系统技术要求,本设计方案采用340马力工程车改装,在工程车尾部增加动静作动器总成系统,可施加垂直100KN静态的和水平80KN的动态载荷,该系统可根据实际情况旋转一定角度并根据施加部位高度的不同具有自动升降功能。控制部分安装在车厢内,系统的动力由工程车发动机提供。车厢上部安装有手动吊车,用于将配重块从车厢内部放置于作动器上方。所有部件在系统不工作时都放置于车厢内部,避免设备暴露在室外,使用寿命更长。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

  1. 一种地震动力参数现场试验系统,其特征在于,包括:运输平台、作动器总成、电源伺服加载机构、测量控制机构;其中所述作动器总成、电源伺服加载机构都设置在所述运输平台上,其中所述作动器总成可收放的设置在运输平台上;其中所述作动器总成包括“门”字形的反力架,所述反力架的两侧设有支撑缸,所述支撑缸设有伸缩活塞杆;其中反力架中部设有垂直加载油缸;且该垂直加载油缸设有垂直加力活塞杆,在垂直加力活塞杆底部设有用于对地面施加载荷的加载板;其中在反力架的两侧分别设有可沿竖直方向伸缩的伸缩梁,该伸缩梁固定在垂直加载油缸的垂直加力活塞杆上以相对于所述反力架伸缩;其中所述加载板内设有水平加载油缸,该水平加载油缸的两侧各自设有水平加力活塞杆,且两个水平加力活塞杆各自固定在一条伸缩梁上;其中所述垂直加载油缸的垂直加力活塞杆上设有垂直力传感器和减震机构,该垂直加载油缸的垂直加力活塞杆通过垂直力传感器和减震机构连接加载板;其中该水平加载油缸的水平加力活塞杆上设有水平力传感器。
  2. 根据权利要求1所述的地震动力参数现场试验系统,其特征在于,所述运输平台为具有动力装置的车辆。
  3. 根据权利要求1所述的地震动力参数现场试验系统,其特征在于,还包括配重块,在所述作动器总成工作时所述配重块设置于所述作动器总成顶部。
  4. 根据权利要求1所述的地震动力参数现场试验系统,其特征在于,所述运输平台上还设有吊装机构以吊装所述作动器总成。
  5. 根据权利要求1所述的地震动力参数现场试验系统,其特征在于,所述运输平台上还设有吊装机构以吊装所述作动器总成。
PCT/CN2017/105904 2017-10-12 2017-10-12 一种地震动力参数现场试验系统 WO2019071536A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/105904 WO2019071536A1 (zh) 2017-10-12 2017-10-12 一种地震动力参数现场试验系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/105904 WO2019071536A1 (zh) 2017-10-12 2017-10-12 一种地震动力参数现场试验系统

Publications (1)

Publication Number Publication Date
WO2019071536A1 true WO2019071536A1 (zh) 2019-04-18

Family

ID=66101100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105904 WO2019071536A1 (zh) 2017-10-12 2017-10-12 一种地震动力参数现场试验系统

Country Status (1)

Country Link
WO (1) WO2019071536A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793769A (zh) * 2019-12-16 2020-02-14 兰州理工大学 一种土木工程框架结构的试验装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103398138A (zh) * 2013-07-01 2013-11-20 西安交通大学 一种阻尼刚度可控的双自由度振动主动控制平台
CN103792133A (zh) * 2014-03-05 2014-05-14 中国科学院地质与地球物理研究所 一种用于岩体结构面性能测试的试验系统及试验方法
CN104062189A (zh) * 2014-04-14 2014-09-24 绍兴文理学院 结构面抗剪强度尺寸效应试验机
CN105002938A (zh) * 2015-07-29 2015-10-28 浙江大学 一种一维水平循环荷载加载装置及其实验方法
CN206020194U (zh) * 2016-08-25 2017-03-15 绍兴文理学院 考虑岩石节理剪切过程中thmc耦合作用的试验系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103398138A (zh) * 2013-07-01 2013-11-20 西安交通大学 一种阻尼刚度可控的双自由度振动主动控制平台
CN103792133A (zh) * 2014-03-05 2014-05-14 中国科学院地质与地球物理研究所 一种用于岩体结构面性能测试的试验系统及试验方法
CN104062189A (zh) * 2014-04-14 2014-09-24 绍兴文理学院 结构面抗剪强度尺寸效应试验机
CN105002938A (zh) * 2015-07-29 2015-10-28 浙江大学 一种一维水平循环荷载加载装置及其实验方法
CN206020194U (zh) * 2016-08-25 2017-03-15 绍兴文理学院 考虑岩石节理剪切过程中thmc耦合作用的试验系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793769A (zh) * 2019-12-16 2020-02-14 兰州理工大学 一种土木工程框架结构的试验装置
CN110793769B (zh) * 2019-12-16 2021-07-13 兰州理工大学 一种土木工程框架结构的试验装置

Similar Documents

Publication Publication Date Title
CN102943636B (zh) 海洋浮式钻井平台绞车升沉补偿装置
CN103359645B (zh) 柔索悬吊平台导向绳张力自动调节系统及方法
CN103512740B (zh) 一种对支座进行静动力多功能测试的装置
CN103499487A (zh) 一种复杂荷载试验机
CN102680264B (zh) 一种车载桅杆升降系统风载荷测试装置及其方法
CN204512069U (zh) 节能型挖掘机液压缸测试试验台液压控制系统
CN103308263B (zh) 大型结构件模态测试用激励装置
CN102140917A (zh) 深海采矿升沉补偿模拟试验装置
CN105203301A (zh) 一种天车主被动联合升沉补偿试验装置
CN109827722A (zh) 固定翼飞机全机强度及模态试验框架系统
CN203037342U (zh) 液压叠加复合式力标准机
WO2019071536A1 (zh) 一种地震动力参数现场试验系统
CN103523684B (zh) 多起重机协作吊装联接装置及检测方法
CN104062191B (zh) 一种自动控制的直剪、压缩两用仪
CN109696305A (zh) 一种电液伺服控制软钢阻尼器耗能试验系统
CN208043558U (zh) 基于常规岩石试验机的动态扰动伺服三轴加载装置和系统
CN107380344B (zh) 一种多功能浮体模型静水自由衰减试验加载装置
CN108760511A (zh) 基于常规岩石试验机的动态扰动伺服三轴加载装置和系统
CN206800220U (zh) 一种用于跨高速公路旧桥拆除快速安装可调支架
CN205786075U (zh) 外部加载式盾构管片力学性能试验机的液压动力系统
CN205170238U (zh) 一种船载升沉补偿系统
CN202916111U (zh) 一种双向多通道工事静力液压加载试验装置
CN203981514U (zh) 一种新型自动控制的直剪、压缩两用仪
CN203534894U (zh) 一种复杂荷载试验机
CN212077657U (zh) 一种步履顶推装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928769

Country of ref document: EP

Kind code of ref document: A1