WO2019071366A1 - 一种非烯烃配位的铂孤原子在硅氢加成反应中的应用 - Google Patents

一种非烯烃配位的铂孤原子在硅氢加成反应中的应用 Download PDF

Info

Publication number
WO2019071366A1
WO2019071366A1 PCT/CN2017/000683 CN2017000683W WO2019071366A1 WO 2019071366 A1 WO2019071366 A1 WO 2019071366A1 CN 2017000683 W CN2017000683 W CN 2017000683W WO 2019071366 A1 WO2019071366 A1 WO 2019071366A1
Authority
WO
WIPO (PCT)
Prior art keywords
olefin
hydrosilylation reaction
coordinated platinum
atom
reaction
Prior art date
Application number
PCT/CN2017/000683
Other languages
English (en)
French (fr)
Inventor
张宗超
刘凯瑞
许占威
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2019071366A1 publication Critical patent/WO2019071366A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0825Preparations of compounds not comprising Si-Si or Si-cyano linkages
    • C07F7/0827Syntheses with formation of a Si-C bond
    • C07F7/0829Hydrosilylation reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/323Hydrometalation, e.g. bor-, alumin-, silyl-, zirconation or analoguous reactions like carbometalation, hydrocarbation

Definitions

  • the invention belongs to the field of organic chemistry, and particularly relates to the application of a non-olefin coordinated platinum atom in a hydrosilylation reaction.
  • the hydrosilylation reaction refers to an addition reaction of an organic compound containing a silicon hydrogen bond and an unsaturated compound under certain conditions, and is an important route for synthesizing a silicone coupling agent and a functionalized organosilicon compound and a polymer.
  • the field of silicon chemistry plays an important role (Leslie D. Field, Antony J. Ward, J. Organomet. Chem, 2003, 681, 91-97).
  • the selection and preparation of the catalyst is particularly important, directly affecting the efficiency of the reaction and the selectivity of the product.
  • platinum compounds are the main catalysts for catalyzing the hydrosilylation reaction. It has the highest activity and the widest application. Speier catalyst: chloroplatinic acid and isopropanol solution (John L. Speier, James A. Webster, Garrett H. Barnes. J. Am. Chem. Soc., 1957, 79, 974) and Karstedt platinum catalyst: 1, 3 a complex of divinyl-1,1,3,3,-tetramethyldisiloxane with platinum (Bruce D. Karstedt, Ontario N, General Electric, US Pat.
  • the platinum atoms are coordinated to at least one carbon-carbon double bond.
  • the 195 Pt NMR chemical shift of the Karstedt platinum catalyst is -6130 ppm (Meister, TK et al. ACS Catal., 2016, 6, 1274-1284), the nitrogen heterocyclic carbene ligand modified Karstedt platinum catalyst according to the nitrogen heterocyclic carbene ligand
  • the different types of 195 Pt NMR chemical shifts vary from -5343 to -3258 ppm (Bo, GD et al.
  • the platinum orphan atom has a chemical shift of 195 Pt NMR between -2400 and 3000 ppm.
  • the Karstedt platinum catalyst modified with a nitrogen heterocyclic carbene ligand or a silylene ligand has a lower activity than the Karstedt platinum catalyst, although the selectivity of the addition product is improved. And the nitrogen heterocyclic carbene ligand and the silylene ligand are expensive and the synthesis route is complicated. On the other hand, a nitrogen heterocyclic carbene ligand modified Karstedt catalyst requires a longer lead time. Therefore, the development of a novel platinum-containing hydrosilylation catalyst which is not only highly active and selective, but also easy to prepare has been a research effort of researchers in this field, and is expected to be widely applied to a hydrosilylation reaction in the future.
  • the present invention provides an application of a platinum atom in a hydrosilylation reaction.
  • the catalyst has high activity, and the terminal addition product can be obtained with high selectivity for the terminal unsaturated hydrocarbon, and is easy to prepare.
  • the non-olefin-coordinated platinum orphan atoms are mainly characterized by a 195 Pt nuclear magnetic resonance chemical shift between -2400 and 3000 ppm.
  • the presence of the non-olefin-coordinated platinum ion atom catalyst includes two states in different liquid mediums and solid surfaces.
  • the unsaturated hydrocarbon reaction feedstock in the hydrosilylation reaction includes an olefin and an alkyne.
  • the olefins include alkenes and cyclic olefins.
  • the alkene structure is:
  • the alkyne includes an alkyne and a cycloalkyne.
  • n 0-15.
  • the hydrosilane-containing structure is:
  • the molar ratio of the unsaturated hydrocarbon of the reaction raw material to the platinum atom is not less than 1:1.
  • the reaction raw material has a molar ratio of hydrosilane to unsaturated hydrocarbon of not less than 1:1.
  • the reaction temperature is -20 ° C - 200 ° C.
  • the invention adopts a non-olefin-coordinated platinum atom as a catalyst, and uses an unsaturated hydrocarbon and a hydrosilane as a raw material to obtain a terminal addition product for a terminally unsaturated hydrocarbon with high activity and high selectivity.
  • the selection and preparation of the catalyst is particularly important, directly affecting the efficiency of the reaction and the selectivity of the product.
  • the platinum-atomic catalyzed hydrosilylation reaction has mild conditions, safety, and high catalyst activity (for Karestedt).
  • the catalytic activity of the platinum catalyst is 100 times), the selectivity of the terminal addition product is high, and the catalyst is easy to prepare.
  • the reaction system was colorless and clear and transparent during the reaction, and no platinum colloid was formed.
  • Method for preparing non-olefin-coordinated platinum orphan atoms present on a solid surface According to the calculated loading amount, 1.1471 g of silica and 100 ml of a non-olefin-coordinated platinum atomic solution (0.000588 mol/L) are thoroughly stirred and mixed at room temperature. Immerse for 1 hour. The mixture was vacuum-reduced, and ethanol and water were removed, and dried under vacuum at 40 ° C for 24 hours.
  • a non-olefin-coordinated platinum atomic solution present in a liquid medium catalyzes the hydrosilylation reaction:
  • the TOF of the reaction was 1.2 ⁇ 10 7 h -1 (the amount of olefins which can be converted by one platinum single atom per unit time), which is 100 times that of the reported Karestedt Pt catalyst, and selectivity Up to 99%, much higher than the selectivity of the Karestedt Pt catalyst. And during the reaction, the solution was clear and transparent, colorless, and no Pt colloid was formed.
  • the TOF of the reaction was 1.2 ⁇ 10 6 h -1 (the amount of olefins which can be converted by one platinum atom per unit time), which is 10 times the value of the reported Karestedt Pt catalyst, and selectivity Up to 96%, much higher than the selectivity of the Karestedt Pt catalyst. And during the reaction, the solution was clear and transparent, colorless, and no Pt colloid was formed.
  • the TOF of the reaction was 1.2 ⁇ 10 6 h -1 (the amount of olefins which can be converted by one platinum atom per unit time), which is 10 times the value of the reported Karestedt Pt catalyst, but selective general. And during the reaction, the solution was clear and transparent, colorless, and no Pt colloid was formed.
  • the TOF of the reaction was 1.2 ⁇ 10 6 h -1 (the amount of olefins which can be converted by one platinum atom per unit time), which is 30 times that of the reported Karestedt Pt catalyst, but selective general. And during the reaction, the solution was clear and transparent, colorless, and no Pt colloid was formed.
  • a non-olefin-coordinated platinum atomic solution present on a solid surface catalyzes the hydrosilylation reaction:
  • the TOF of the reaction was 1.2 ⁇ 10 7 h -1 (the amount of olefins which can be converted by one platinum single atom per unit time), which is 100 times that of the reported Karestedt Pt catalyst, and selectivity Up to 99%, much higher than the selectivity of the Karestedt Pt catalyst. And during the reaction, the solution was clear and transparent, colorless, and no Pt colloid was formed. The highly active and highly selective surface of the reaction is highly active even on the surface of the supported support.
  • the TOF of the reaction was 2.4 ⁇ 10 5 h -1 (the amount of olefins which can be converted by one platinum single atom per unit time), and the TOF value was comparable to the reported value, and the selectivity was as high as 96%.
  • the solution was clear and clear, colorless, and no Pt colloid was formed.
  • the highly active and highly selective surface of the reaction is highly active even on the surface of the supported support.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种非烯烃配位的铂孤原子在硅氢加成反应中的应用,包括:以不饱和烃和含氢硅烷为原料,以非烯烃配位的铂孤原子为催化剂,催化硅氢加成反应。

Description

一种非烯烃配位的铂孤原子在硅氢加成反应中的应用 技术领域
本发明属于有机化学领域,具体涉及一种非烯烃配位的铂孤原子在硅氢加成反应中的应用。
背景技术
硅氢加成反应是指含有硅氢键的有机化合物和不饱和化合物在一定条件下进行的加成反应,是合成有机硅偶联剂和功能化有机硅化合物及聚合物的重要途径,在有机硅化学领域占有重要的地位(Leslie D.Field,Antony J.Ward,J.Organomet.Chem,2003,681,91-97)。而在硅氢加成反应中,催化剂的选择和制备是尤为重要的,直接影响反应的效率和产物的选择性。
目前,铂化合物是催化硅氢加成反应的主要催化剂。其活性最高,应用也最广泛。Speier催化剂:氯铂酸和异丙醇溶液(John L.Speier,James A.Webster,Garrett H.Barnes.J.Am.Chem.Soc.,1957,79,974)和Karstedt铂催化剂:1,3-二乙烯基-1,1,3,3,-四甲基二硅氧烷与铂的络合物(Bruce D.Karstedt,Scotia N,General Electric,US Pat.3,715,334,1973),自发现至今,一直是硅氢加成反应中应用广泛的催化剂,其活性高,但加成产物选择性低,反应副产物较多。为了提高其加成反应的选择性,氮杂环卡宾配体(Marko,I.E.et al.Science,2002,298,201-206)和亚甲硅基配体(Troadec,T.et al.Inorganic chemistry,2016 55,8234-8240)被用于修饰Karstedt铂催化剂。然而,无论是Karstedt铂催化剂还是氮杂环卡宾配体或亚甲硅基配体修饰的Karstedt铂催化剂,其中的铂原子都和至少一个碳碳双键配位。Karstedt铂催化剂的195Pt核磁共振化学位移在-6130ppm(Meister,T.K.et al.ACS Catal.,2016,6,1274-1284),氮杂环卡宾配体修饰 的Karstedt铂催化剂根据氮杂环卡宾配体种类的不同195Pt核磁共振化学位移在-5343--3258ppm变化(Bo,G.D.et al.Organometallics,2006,25,1881-1890),亚甲硅基配体修饰的Karstedt铂催化剂根据配体种类的不同,195Pt核磁共振化学位移分别为-5702ppm和-5839ppm(Iimura,T.,Akasaka,N.,Kosai,T.&Iwamoto,Dalton Trans,2017,46,8868-8874.Troadec,T.et al.Inorganic chemistry,2016,55,8234-8240)。其与本专利中使用的非烯烃配位铂孤原子催化剂有本质的区别。本专利中铂孤原子以195Pt核磁共振化学位移在-2400--3000ppm之间。经氮杂环卡宾配体或亚甲硅基配体修饰的Karstedt铂催化剂与Karstedt铂催化剂相比,虽然加成产物选择性得到提高,但活性较低。且氮杂环卡宾配体和亚甲硅基配体价格昂贵,合成路线复杂。另一方面,氮杂环卡宾配体修饰的Karstedt催化剂需要较长的引导期。因此,开发出不仅活性和选择性高,而且易于制备的新型含铂硅氢加成催化剂一直是这一领域研究者努力的方向,有望在未来广泛应用到硅氢加成反应中。
发明内容
为解决目前硅氢加成反应催化剂存在的诸多问题,如选择性低,配体价格昂贵等,本发明提供一种铂孤原子在硅氢加成反应中的应用。该催化剂活性高,对于端位不饱和烃可高选择性地得到端位加成产物,且易于制备。
所述的一种非烯烃配位的铂孤原子在硅氢加成反应中的应用:以不饱烃和含氢硅烷为原料,以非烯烃配位的铂孤原子为催化剂,催化硅氢加成反应。
所述的非烯烃配位的铂孤原子以195Pt核磁共振化学位移在-2400--3000ppm之间为主要特征。
所述的非烯烃配位的铂孤原子催化剂的存在状态包括在不同液体介质中和固体表面两种状态。
所述的硅氢加成反应中不饱和烃反应原料包括烯烃和炔烃。
所述的烯烃包括链烯烃与环烯烃。
所述的链烯烃结构为:
Figure PCTCN2017000683-appb-000001
其中:n=0-15;m=0-15;p=1-100000;q=1-100000;R1,R2,R3,R4=H、CH3
Figure PCTCN2017000683-appb-000002
CH3COO、CH3CO、C2H5O、N(SiMe3)2
Figure PCTCN2017000683-appb-000003
Figure PCTCN2017000683-appb-000004
OH、F、Cl、Br或I。
所述的环烯烃结构为:
Figure PCTCN2017000683-appb-000005
其中:n=0-15;m=0-15。
所述的炔烃包括链炔烃与环炔烃。
所述的链炔烃结构为:
Figure PCTCN2017000683-appb-000006
其中:n=0-15;m=0-15;p=1-100000;R1,R2=H、CH3
Figure PCTCN2017000683-appb-000007
CH3COO、CH3CO、C2H5O、N(SiMe3)2
Figure PCTCN2017000683-appb-000008
OH、F、Cl、Br、I或SiCH3
所述的环炔烃结构为:
Figure PCTCN2017000683-appb-000009
其中:n=0-15。
所述的含氢硅烷结构为:
Figure PCTCN2017000683-appb-000010
Figure PCTCN2017000683-appb-000011
其中:n=0-15;m=0-15;p=0-15;q=0-100000;r=0-100000;s=0- 100000;R1,R2,R3=H、CH3
Figure PCTCN2017000683-appb-000012
OH、F、Cl、Br、I或Si(CH3)3
所述的反应原料不饱和烃与铂孤原子的摩尔比不低于1∶1.
所述的反应原料含氢硅烷和不饱和烃的摩尔比不低于1∶1。
所述的反应温度为-20℃-200℃。
本发明以一种非烯烃配位的铂孤原子为催化剂,以不饱和烃和含氢硅烷为原料,对于端位不饱和烃可高活性高选择性的得到端位加成产物。在硅氢加成反应中,催化剂的选择和制备是尤为重要的,直接影响反应的效率和产物的选择性用铂孤原子催化硅氢加成反应具有条件温和,安全,催化剂活性高(为Karestedt铂催化剂催化活性的100倍),端位加成产物选择性高且催化剂易于制备的特点。与此同时,反应过程中反应体系无色且澄清透明,没有任何铂胶体生成。
具体实施方式
下面以具体反应为例对本发明做进一步的详细说明。
专利201611004958.3和专利201611042175.4中,对非烯烃配位铂孤原子的合成以及成分做了详尽的界定。
非烯烃配位的铂孤原子溶液的制备方法:将0.6465g聚二甲基硅氧烷-聚乙二醇嵌段共聚物,氯铂酸(0.018404mol/L,4.8ml)和乙醇(135ml)、水(10.2ml)充分混合,在105℃下反应3h,得到非烯烃配位的铂孤原子溶液。
存在于固体表面的非烯烃配位的铂孤原子制备方法:按照计算的负载量,将1.1471g二氧化硅与100ml非烯烃配位的铂孤原子溶液(0.000588mol/L)充分搅拌混合,室温浸渍1小时。真空减压处理,除去乙醇和水,在40℃下,真空干燥24小时。
存在于液体介质中的非烯烃配位的铂孤原子溶液催化硅氢加成反应:
烯烃的硅氢加成反应
Figure PCTCN2017000683-appb-000013
实施例1
取0.034ml Pt孤原子溶液(5.88×10-4mol/L,2×10-8mol)加入反应器中,抽真空,除去乙醇和水,然后加入1-辛烯4mmol,室温下搅拌均匀3min,加入(Me3SiO)2MeSiH 4.4mmol,在50℃下反应1min。
如表1所示,反应的TOF为1.2×107h-1(单位时间内一个铂单原子所能转化的烯烃的数量),该TOF值为报道的Karestedt Pt催化剂的100倍,且选择性高达99%,远高于Karestedt Pt催化剂的选择性。且在反应的过程中,溶液澄清透明,无色,没有任何Pt胶体生成。
实施例2
取0.34ml Pt孤原子溶液(5.88×10-4mol/L,2×10-7mol)加入反应器中,抽真空,除去乙醇和水,然后加入1-辛烯4mmol,室温下搅拌均匀3min,加入(CH3CH2O)2CH3SiH 4.4mmol,在70℃下反应1min。
如表1所示,反应的TOF为1.2×106h-1(单位时间内一个铂单原子所能转化的烯烃的数量),该TOF值为报道的Karestedt Pt催化剂的10倍,且选择性高达96%,远高于Karestedt Pt催化剂的选择性。且在反应的过程中,溶液澄清透明,无色,没有任何Pt胶体生成。
表1
Figure PCTCN2017000683-appb-000014
炔烃的硅氢加成反应
Figure PCTCN2017000683-appb-000015
实施例3
取0.34ml Pt孤原子溶液(5.88×10-4mol/L,2×10-7mol)加入反应器中,抽真空,除去乙醇和水,然后加入1-辛炔4mmol,室温下搅拌均匀3min,加入(Me3SiO)2MeSiH 4.4mmol,在70℃下反应20min。
如表2所示,反应的TOF为1.2×106h-1(单位时间内一个铂单原子所能转化的烯烃的数量),该TOF值为报道的Karestedt Pt催化剂的10倍,但选择性一般。且在反应的过程中,溶液澄清透明,无色,没有任何Pt胶体生成。
实施例4
取0.34ml Pt孤原子溶液(5.88×10-4mol/L,2×10-7mol)加入反应器中,抽真空,除去乙醇和水,然后加入1-辛炔4mmol,室温下搅拌均匀3min,加入(CH3CH2O)2CH3SiH 4.4mmol,在70℃下反应10min。
如表2所示,反应的TOF为1.2×106h-1(单位时间内一个铂单原子所能转化的烯烃的数量),该TOF值为报道的Karestedt Pt催化剂的30倍,但选择 性一般。且在反应的过程中,溶液澄清透明,无色,没有任何Pt胶体生成。
表2
Figure PCTCN2017000683-appb-000016
存在于固体表面的非烯烃配位的铂孤原子溶液催化硅氢加成反应:
烯烃的硅氢加成反应
Figure PCTCN2017000683-appb-000017
实施例5
取7.8mg 0.5wt%Pt@PDMS-PEG/SiO2催化剂(2×10-7mol)加入反应器中,再加入1-辛烯4mmol,室温下搅拌均匀3min,加入(Me3SiO)2MeSiH 4.4mmol,在50℃下反应1min。
如表3所示,反应的TOF为1.2×107h-1(单位时间内一个铂单原子所能转化的烯烃的数量),该TOF值为报道的Karestedt Pt催化剂的100倍,且选择性高达99%,远高于Karestedt Pt催化剂的选择性。且在反应的过程中,溶液澄清透明,无色,没有任何Pt胶体生成。反应的高活性和高选择性表面即使是负载载体表面,催化剂仍具有很高的活性。
实施例6
取7.8mg 0.5wt%Pt@PDMS-PEG/SiO2催化剂(2×10-7mol)加入反应器中,再加入苯乙烯4mmol,室温下搅拌均匀3min,加入(CH3CH2O)3SiH 4.4mmol,在70℃下反应50min。
如表3所示,反应的TOF为2.4×105h-1(单位时间内一个铂单原子所能转化的烯烃的数量),该TOF值与报道值相当,且选择性高达96%。在反应的过程中,溶液澄清透明,无色,没有任何Pt胶体生成。反应的高活性和高选择性表面即使是负载载体表面,催化剂仍具有很高的活性。
表3
Figure PCTCN2017000683-appb-000018
炔烃的硅氢加成反应
Figure PCTCN2017000683-appb-000019
实施例7
取7.8mg 0.5wt%Pt@PDMS-PEG/SiO2催化剂(2×10-7mol)加入反应器中,再加入1-辛炔4mmol,室温下搅拌均匀3min,加入(Me3SiO)2MeSiH 4.4mmol,在70℃下反应20min。如表4所示,从催化的结果来看,负载在载体上之后,催化效果保持不变。
实施例8
取7.8mg 0.5wt%Pt@PDMS-PEG/SiO2催化剂(2×10-7mol)加入反应器中,再加入1-辛炔4mmol,室温下搅拌均匀3min,加入(CH3CH2O)3SiH 4.4mmol,在70℃下反应10min。如表4所示,从催化的结果来看,负载在载体上之后,催化效果保持不变。
表4
Figure PCTCN2017000683-appb-000020

Claims (14)

  1. 一种非烯烃配位的铂孤原子在硅氢加成反应中的应用,其特征在于该应用具体为:以不饱烃和含氢硅烷为原料,以非烯烃配位的铂孤原子为催化剂,催化硅氢加成反应。
  2. 按照权利要求1所述的一种非烯烃配位的铂孤原子在硅氢加成反应中的应用,其特征在于所述的非烯烃配位的铂孤原子以195Pt核磁共振化学位移在-2400- -3000ppm之间为主要特征。
  3. 按照权利要求1所述的一种非烯烃配位的铂孤原子在硅氢加成反应中的应用,其特征在于所述的非烯烃配位的铂孤原子催化剂的存在状态包括在不同液体介质中和固体表面两种状态。
  4. 按照权利要求1所述的一种非烯烃配位的铂孤原子在硅氢加成反应中的应用,其特征在于所述的硅氢加成反应中不饱和烃反应原料包括烯烃和炔烃。
  5. 按照权利要求4所述的一种非烯烃配位的铂孤原子在硅氢加成反应中的应用,其特征在于所述的烯烃包括链烯烃与环烯烃。
  6. 按照权利要求5所述的一种非烯烃配位的铂孤原子在硅氢加成反应中的应用,其特征在于所述的链烯烃结构为:
    Figure PCTCN2017000683-appb-100001
    其中:n=0-15;m=0-15;p=1-100000;q=1-100000;
    R1,R2,R3,R4=H、CH3
    Figure PCTCN2017000683-appb-100002
    CH3COO、CH3CO、C2H5O、N(SiMe3)2
    Figure PCTCN2017000683-appb-100003
    OH、F、Cl、Br或I。。
  7. 按照权利要求5所述的一种非烯烃配位的铂孤原子在硅氢加成反应中的 应用,其特征在于所述的环烯烃结构为:
    Figure PCTCN2017000683-appb-100004
    其中:n=0-15;m=0-15。
  8. 按照权利要求4所述的一种非烯烃配位的铂孤原子在硅氢加成反应中的应用,其特征在于所述的炔烃包括链炔烃与环炔烃。
  9. 按照权利要求8所述的一种非烯烃配位的铂孤原子在硅氢加成反应中的应用,其特征在于所述的链炔烃结构为:
    Figure PCTCN2017000683-appb-100005
    其中:n=0-15;m=0-15;p=1-100000;R1,R2=H、CH3
    Figure PCTCN2017000683-appb-100006
    CH3COO、CH3CO、C2H5O、N(SiMe3)2
    Figure PCTCN2017000683-appb-100007
    OH、F、Cl、Br、I或SiCH3
  10. 按照权利要求8所述的一种非烯烃配位的铂孤原子在硅氢加成反应中的应用,其特征在于所述的环炔烃结构为:
    Figure PCTCN2017000683-appb-100008
    其中:n=0-15。
  11. 按照权利要求1所述的一种非烯烃配位的铂孤原子在硅氢加成反应中的应用,其特征在于所述的含氢硅烷结构为:
    Figure PCTCN2017000683-appb-100009
    Figure PCTCN2017000683-appb-100010
    其中:n=0-15;m=0-15;p=0-15;q=0-100000;r=0-100000;s=0-100000;R1,R2,R3=H、CH3
    Figure PCTCN2017000683-appb-100011
    OH、F、Cl、Br、I或Si(CH3)3
  12. 按照权利要求1所述的一种非烯烃配位的铂孤原子在硅氢加成反应中的应用,其特征在于所述的反应原料不饱和烃与非烯烃配位的铂孤原子的摩尔 比不低于1∶1。
  13. 按照权利要求1所述的一种非烯烃配位的铂孤原子在硅氢加成反应中的应用,其特征在于所述的反应原料含氢硅烷和不饱和烃的摩尔比不低于1∶1。
  14. 按照权利要求1所述的一种非烯烃配位的铂孤原子在硅氢加成反应中的应用,其特征在于所述的反应温度为-20℃-200℃。
PCT/CN2017/000683 2017-10-11 2017-11-13 一种非烯烃配位的铂孤原子在硅氢加成反应中的应用 WO2019071366A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710940174.XA CN109647532B (zh) 2017-10-11 2017-10-11 一种非烯烃配位的铂孤原子在硅氢加成反应中的应用
CN201710940174.X 2017-10-11

Publications (1)

Publication Number Publication Date
WO2019071366A1 true WO2019071366A1 (zh) 2019-04-18

Family

ID=66100269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000683 WO2019071366A1 (zh) 2017-10-11 2017-11-13 一种非烯烃配位的铂孤原子在硅氢加成反应中的应用

Country Status (2)

Country Link
CN (1) CN109647532B (zh)
WO (1) WO2019071366A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110465313A (zh) * 2018-05-10 2019-11-19 中国科学院大连化学物理研究所 含氯零价铂化合物及其制备方法与其在硅氢加成中的应用
CN110302831B (zh) * 2019-05-23 2021-12-21 杭州师范大学 一种硅基修饰的有机羧酸金属盐催化剂及应用
CN112820916A (zh) * 2019-11-18 2021-05-18 坤艾新材料科技(上海)有限公司 一种用于膜电极组件的电解液或分散液
CN112820884A (zh) * 2019-11-18 2021-05-18 坤艾新材料科技(上海)有限公司 用于制备电极的多有机配体单原子铂溶液以及电极
CN111363253A (zh) * 2020-04-24 2020-07-03 界首市宏利塑料有限公司 一种耐腐蚀塑料绳
CN111363254A (zh) * 2020-04-24 2020-07-03 界首市宏利塑料有限公司 一种高耐磨pp绳

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140179946A1 (en) * 2012-12-21 2014-06-26 Governors Of The University Of Alberta Transition metal catalysts for hydrogenation and hydrosilylation
CN105665014A (zh) * 2015-12-31 2016-06-15 中国工程物理研究院化工材料研究所 负载型硅氢加成铂催化剂及其制备方法
CN107159287A (zh) * 2017-05-22 2017-09-15 北京大学 Pt/α‑MoC1‑x负载型催化剂在催化加氢反应中的应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101322946B (zh) * 2008-06-24 2010-12-08 杭州师范大学 一种硅氢加成反应催化剂、制备方法及其应用
CN101850269B (zh) * 2010-05-27 2011-09-14 杭州师范大学 烯烃硅氢加成铂催化剂的促进剂、其制备方法及其应用
CN102179266B (zh) * 2011-03-18 2012-11-28 杭州师范大学 一种硅氢加成反应用负载型催化剂及其制备方法
CN104324751B (zh) * 2014-08-18 2016-08-24 杭州师范大学 一种用于烯烃硅氢加成反应的催化剂、其制备方法及采用该催化剂的烯烃硅氢加成反应
CN106380488B (zh) * 2016-07-22 2019-03-29 杭州师范大学 一种Si-O-Si链桥连的N-杂环卡宾铂配合物及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140179946A1 (en) * 2012-12-21 2014-06-26 Governors Of The University Of Alberta Transition metal catalysts for hydrogenation and hydrosilylation
CN105665014A (zh) * 2015-12-31 2016-06-15 中国工程物理研究院化工材料研究所 负载型硅氢加成铂催化剂及其制备方法
CN107159287A (zh) * 2017-05-22 2017-09-15 北京大学 Pt/α‑MoC1‑x负载型催化剂在催化加氢反应中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BING HAN: "Highlights of the major progress in single-atom catalysis in 2015 and 2016", CHINESE JOURNAL OF CATALYSIS, vol. 38, no. 9, 15 September 2017 (2017-09-15), pages 1501 - 1502, XP055592202, ISSN: 0253-9837 *
XINJIANG CUI: "Synthesis of Single Atom Based Heterogeneous Platinum Catalysts:High Selectivity and Activity for Hydrosilylation Reactions", ACS CENTRAL SCIENCE, vol. 3, no. 6, 17 May 2017 (2017-05-17), pages 580 - 585, XP055592199 *

Also Published As

Publication number Publication date
CN109647532A (zh) 2019-04-19
CN109647532B (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
WO2019071366A1 (zh) 一种非烯烃配位的铂孤原子在硅氢加成反应中的应用
JP6486925B2 (ja) コバルト触媒並びにヒドロシリル化及び脱水素シリル化のためのその使用
JP6327426B2 (ja) ヒドロシリル化反応触媒
US9381506B2 (en) Cobalt catalysts and their use for hydrosilylation and dehydrogenative silylation
EP3406616B1 (en) Novel isocyanide compound and hydrosilylation reaction catalyst
WO2016027819A1 (ja) ヒドロシリル化鉄触媒
EP3590596B1 (en) Catalyst for hydrosilylation reaction, hydrogenation reaction, and hydrosilane reduction reaction
US9381505B2 (en) Cobalt catalysts and their use for hydrosilylation and dehydrogenative silylation
US20180334470A1 (en) Dialkyl cobalt catalysts and their use for hydrosilylation and dehydrogenative silylation
JP6515930B2 (ja) ヒドロシリル化反応触媒
Jiménez et al. The activity of Pt/SiO2 catalysts obtained by the sol-gel method in the hydrosilylation of 1-alkynes
JP6806299B2 (ja) ヒドロシリル化鉄触媒の調製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928465

Country of ref document: EP

Kind code of ref document: A1