WO2019069501A1 - 航空機の健全性診断装置及び航空機の健全性診断方法 - Google Patents
航空機の健全性診断装置及び航空機の健全性診断方法 Download PDFInfo
- Publication number
- WO2019069501A1 WO2019069501A1 PCT/JP2018/018727 JP2018018727W WO2019069501A1 WO 2019069501 A1 WO2019069501 A1 WO 2019069501A1 JP 2018018727 W JP2018018727 W JP 2018018727W WO 2019069501 A1 WO2019069501 A1 WO 2019069501A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- aircraft
- risk
- damage
- unit
- Prior art date
Links
- 238000002405 diagnostic procedure Methods 0.000 title abstract description 11
- 238000005259 measurement Methods 0.000 claims abstract description 114
- 230000008859 change Effects 0.000 claims abstract description 105
- 238000012423 maintenance Methods 0.000 claims abstract description 40
- 238000012502 risk assessment Methods 0.000 claims abstract description 18
- 230000008439 repair process Effects 0.000 claims abstract description 16
- 238000011156 evaluation Methods 0.000 claims description 158
- 238000000034 method Methods 0.000 claims description 39
- 230000036541 health Effects 0.000 claims description 37
- 239000013307 optical fiber Substances 0.000 claims description 36
- 230000007613 environmental effect Effects 0.000 claims description 24
- 238000004891 communication Methods 0.000 claims description 16
- 238000003745 diagnosis Methods 0.000 abstract description 34
- 238000012544 monitoring process Methods 0.000 abstract description 4
- 238000012545 processing Methods 0.000 description 151
- 230000002159 abnormal effect Effects 0.000 description 104
- 238000004364 calculation method Methods 0.000 description 59
- 230000005856 abnormality Effects 0.000 description 40
- 230000002427 irreversible effect Effects 0.000 description 34
- 238000000556 factor analysis Methods 0.000 description 28
- 238000009826 distribution Methods 0.000 description 25
- 230000006870 function Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 20
- 230000006399 behavior Effects 0.000 description 18
- 239000006185 dispersion Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 9
- 238000004299 exfoliation Methods 0.000 description 8
- 239000000284 extract Substances 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000012783 reinforcing fiber Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/08—Testing mechanical properties
- G01M11/083—Testing mechanical properties by using an optical fiber in contact with the device under test [DUT]
- G01M11/085—Testing mechanical properties by using an optical fiber in contact with the device under test [DUT] the optical fiber being on or near the surface of the DUT
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D45/00—Aircraft indicators or protectors not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F5/00—Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
- B64F5/60—Testing or inspecting aircraft components or systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/24—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
- G01L1/242—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0033—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0283—Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
- G05B19/0426—Programming the control sequence
Definitions
- the present invention relates to an aircraft health diagnostic device and an aircraft health diagnostic method.
- the aircraft is operated in various ways, such as flying in the atmosphere at high speed for a long time by a regular route, and repeating departure and arrival many times a day. For this reason, the aircraft travels while constantly receiving any load on various parts of the fuselage, such as the fuselage, wings and tails, so fatigue accumulates on the fuselage in proportion to the flight time. For this reason, the aircraft is inspected and maintained mainly when the aircraft is parked on the ground, with a regular cycle of operation and flight time.
- the present invention has been made in view of the above, and in the case where the airframe of the aircraft is a bonded structure, the soundness of the aircraft which makes it possible to diagnose, for example, the peeling of the bonded structure and the progress of the peeling in the aircraft body. It is an object of the present invention to provide a sex diagnostic device and an aircraft health diagnostic method.
- a soundness diagnostic device for an aircraft is provided on the aircraft, and a measuring instrument for acquiring measurement data regarding the aircraft, and reference data serving as a diagnostic reference of the measurement data.
- a first risk evaluation unit for evaluating a risk of damage occurrence of the vehicle based on a correlation between the first data and the reference data, and the signal data evaluated by the first risk evaluation unit as having a risk of damage occurrence A second risk evaluation unit that evaluates the risk of occurrence of damage to the vehicle based on the behavior of the serial change, and a time series change of the signal data used in the second risk evaluation unit Based on the behavior, the life of the machine body, the timing of repairs, and characterized by having a, and maintenance evaluation unit for evaluating the planning maintenance.
- the first risk evaluation unit evaluates the risk of occurrence of damage to the airframe based on the correlation between the signal data based on the measurement and the reference data serving as the reference, peeling of the adhesion structure in the airframe of the aircraft It is possible to appropriately extract the possibility of irreversible structural changes, such as the development of adhesion and exfoliation.
- the second risk assessment unit assesses the risk of the occurrence of damage to the aircraft based on the behavior of the time-series change of the signal data that the first risk assessment unit assesses that there is a risk of damage occurrence. It can be appropriately diagnosed whether or not the condition evaluated by the evaluation unit as having the risk of damage is an irreversible structural change.
- the maintenance evaluation unit evaluates the life of the airframe, the timing of repair, and the maintenance plan based on the time-series change behavior of the signal data used in the second risk evaluation unit, the life of the airframe with high accuracy. Estimate the timing of repairs, and maintenance plans.
- the control unit is provided in the aircraft, and a first control unit including the first risk evaluation unit, and provided outside the aircraft, the second risk evaluation unit, and the maintenance evaluation unit And a data communication unit that performs data communication between the first control unit and the second control unit.
- the possibility of irreversible structural change by the first risk assessment unit can be extracted in real time during flight of the aircraft, and the first risk assessment unit is at risk of occurrence of damage. Since it is possible to diagnose whether the evaluated condition is an irreversible structural change or not in a period in which data of time-series change between aircraft operations can be processed, the aircraft can be efficient in time. It is possible to diagnose the peeling of the adhesive structure in the airframe of the vehicle and the progress of the peeling.
- the measuring device measures the measurement data at a plurality of positions and times of the body, measures together the position of the body and environmental data at the time, and measures the measurement data and the measurement data.
- Environmental data is linked, and the storage unit stores the reference data set for each environment assumed as the environment data at a plurality of positions of the machine where the measurement data is measured, It is preferable that the control unit calculates the signal data at a plurality of positions and a plurality of times of the machine based on the measurement data in a state in which the control data is linked to the environment data.
- the correlation between the signal data and the reference data can be used to evaluate the risk of occurrence of damage to the airframe in a state where environmental data are combined, so that irreversible structural changes in the airframe of the aircraft can be obtained. Can be diagnosed more accurately.
- the first risk evaluation unit calculates the soundness index value based on the signal data, and evaluates whether or not the range defined in the judgment standard acquired from the storage unit is exceeded. Is preferred.
- the soundness index value which is an index of how much the signal data deviates from normal, is used to evaluate the risk of occurrence of damage to the airframe, and thus the irreversible structural difference in the airframe of the aircraft. The possibility of change can be extracted with high accuracy.
- the second risk evaluation unit determines the storage unit for a time period defined by the judgment standard or more in time series change of the soundness index value. It is preferable to evaluate whether it exceeds the range prescribed in the judgment standard acquired from.
- the soundness index value which is an index of how much the signal data deviates from normal, is used to evaluate the risk of occurrence of damage to the airframe, and thus the irreversible structural difference in the airframe of the aircraft. Changes can be diagnosed with high accuracy.
- the measuring instrument is an optical fiber strained around the airframe, and an optical fiber strain for measuring strain data of the airframe stretched by the optical fiber by measuring strain of the optical fiber. It is preferable to include a measuring instrument. According to this configuration, strain distribution having high spatial resolution can be measured at high speed by using Brillouin light correlation area analysis method by using Brillouin scattered light generated in each part of the optical fiber wound around the airframe. be able to. Thereby, irreversible structural changes in the airframe of the aircraft can be diagnosed at high speed and high spatial resolution.
- the soundness diagnosis method of an aircraft includes a measurement data acquisition step of acquiring measurement data regarding the aircraft, signal data calculated based on the measurement data, and reference data
- a maintenance evaluation step for evaluating a maintenance plan.
- the risk of the occurrence of damage to the airframe is evaluated based on the correlation between the signal data based on the measurement and the reference data that is the reference in the first risk evaluation step. It is possible to appropriately extract the possibility of irreversible structural changes, such as the development of adhesion and exfoliation. Also, in the second risk evaluation step, the risk of the occurrence of damage to the aircraft is evaluated based on the behavior of the time-series change of the signal data evaluated to have the risk of damage occurrence in the first risk evaluation step. It can be appropriately diagnosed whether or not the condition evaluated as being at risk of damage development in the evaluation step is an irreversible structural change.
- the life of the airframe, the timing of repair, and the maintenance plan are evaluated based on the time-series change behavior of the signal data used in the second risk evaluation step in the maintenance evaluation step, the life of the airframe with high accuracy. Estimate the timing of repairs, and maintenance plans.
- the soundness diagnosis device of the aircraft and the soundness diagnosis of the aircraft which make it possible to diagnose the peeling of the bonded structure and the progress of the peeling in the aircraft body We can provide a way.
- FIG. 1 is a schematic block diagram of an aircraft health diagnostic device according to a first embodiment of the present invention.
- FIG. 2 is a block diagram showing an example of the details of the machine of FIG.
- FIG. 3 is a block diagram showing an example of the details of the airframe and measuring instrument of FIG.
- FIG. 4 is a configuration diagram showing an example of details of the first risk evaluation unit and the first storage unit of FIG.
- FIG. 5 is a configuration diagram showing an example of details of the second risk evaluation unit and the second storage unit of FIG.
- FIG. 6 is a flowchart of the method of diagnosing the soundness of an aircraft according to the first embodiment of the present invention.
- FIG. 7 is a view showing an example of the measurement data of FIG.
- FIG. 8 is an explanatory view for explaining the measurement data of FIG. FIG.
- FIG. 9 is a flowchart showing the details of the first risk evaluation step of FIG.
- FIG. 10 is a view showing an example of a damaged portion of the airframe of FIG.
- FIG. 11 is a diagram showing an example of reference data in the part of FIG.
- FIG. 12 is a diagram showing an example of measurement data in the place of FIG.
- FIG. 13 is an explanatory diagram for explaining calculation of characteristic value data from measurement data in the place of FIG.
- FIG. 14 is a diagram showing the characteristic value data and the reference data converted to the characteristic value in the portion of FIG.
- FIG. 15 is a diagram showing an example of the characteristic value data of FIG.
- FIG. 16 is a diagram showing an example of the temporary signal data set of FIG.
- FIG. 17 is an explanatory view for explaining the normal / abnormal judgment step of FIG.
- FIG. 18 is a flowchart showing details of the second risk evaluation step of FIG.
- FIG. 19 is an explanatory view for explaining the damage factor analysis step of FIG. 18;
- FIG. 20 is an explanatory view for explaining the damage information display step of FIG.
- FIG. 1 is a schematic block diagram of an aircraft health diagnostic device 10 according to a first embodiment of the present invention.
- the aircraft health diagnostic device 10 performs structural health monitoring (SHM, Structural Health Monitoring) of the airframe 2 of the aircraft 1. That is, the aircraft health diagnostic device 10 is a device that diagnoses whether or not the structure of the airframe 2 of the aircraft 1 is in a healthy state, and evaluates the risk of occurrence of damage to the airframe 2.
- the airframe 2 refers to a structural portion of the aircraft 1 and includes, for example, a fuselage portion, a wing portion, a tail portion, and a panel-fastener joint of basic components of each structural portion, a bonding portion of reinforcements, etc. including.
- damage refers to physically irreversible structural changes. Specifically, the damage is exemplified by exfoliation which permanently causes structural defects in the airframe 2.
- the soundness diagnosis apparatus 10 for an aircraft includes a measuring instrument 20, a storage unit 30, and a control unit 40.
- the storage unit 30 includes a first storage unit 32 and a second storage unit 34.
- the control unit 40 includes a first control unit 42, a second control unit 44, and an information communication unit 46.
- the first storage unit 32 and the first control unit 42 are provided inside the aircraft 1.
- the second storage unit 34 and the second control unit 44 are provided outside the aircraft 1, for example, at an airport.
- the information communication unit 46 is a pair of communication devices that communicate information mutually, and one is provided inside the aircraft 1 or the outer wall of the fuselage 2 of the aircraft 1, and the other is provided outside the aircraft 1, for example, at an airport There is.
- the first control unit 42 is electrically connected to the measuring instrument 20, the first storage unit 32, and the information communication unit 46 so as to be able to communicate with each other.
- the first control unit 42 controls the operation of the measuring instrument 20.
- the second control unit 44 is electrically connected to the second storage unit 34 and the information communication unit 46 so as to communicate information with each other.
- the information communication unit 46 wirelessly connects the first control unit 42 and the second control unit 44 so as to enable information communication with each other.
- the first control unit 42 includes a first risk evaluation unit 50.
- the second control unit 44 includes a second risk evaluation unit 60 and a maintenance evaluation unit 70.
- FIG. 2 is a block diagram showing an example of the details of the machine 2 of FIG.
- the airframe 2 is exemplified by a semi-monocoque structure in which a body portion has a skin 3, a stringer 4, a frame 5, and a longon 6.
- the skin 3 is disposed to cover the body portion and has a generally cylindrical shape.
- the skin 3 has a lightweight property and high strength, and is exemplified by a composite material in which a reinforcing fiber such as carbon fiber is impregnated with a thermosetting resin such as an epoxy resin and hardened.
- the stringers 4 are arranged on the inside of the skin 3 along the axial direction of the cylindrical shape formed by the skin 3 at predetermined intervals, and support the skin 3 from the inside.
- the frames 5 are arranged on the inner side of the skin 3 and the stringers 4 along the circumferential direction of the cylindrical shape formed by the skin 3 at a distance wider than that of the stringers 4. Supports the stringer 4 from the inside.
- the skin 3, the stringer 4 and the frame 5 are connected using a shear tie and a strap.
- Longerlon 6 is a member that is physically stronger than stringer 4 and is provided inside the skin 3 in a place where the stringer 4 can not be provided by a door or window provided on the body of the fuselage 2 Support the skin 3 from the inside.
- the airframe 2 is not limited to the one in which the semi-monocoque structure is adopted, but other bonding structures such as a truss structure (canvas), a truss structure (wave plate metal plate) and a monocoque structure are adopted. It may be one.
- the measuring instrument 20 is provided inside the aircraft 1 or on the outer wall of the airframe 2 of the aircraft 1. As shown in FIG. 1, the measuring instrument 20 includes an optical fiber 22, an optical fiber strain measuring instrument 24, and an environmental measuring instrument 26. In the measuring device 20, the optical fiber strain measuring device 24 and the environment measuring device 26 are controlled by the first control unit 42. The optical fiber strain gauge 24 receives the control of the first control unit 42, and acquires measurement data 101 (see FIG. 4 and the like) on the aircraft 1 at regular intervals.
- the measurement data 101 is a data set associated with position distribution in the measurement range and time change in each position.
- the environment measuring instrument 26 is environment data 102 (FIG.
- the environmental data 102 is a data set linked by time change.
- the timing at which the optical fiber strain gauge 24 acquires the measurement data 101 and the timing at which the environment measurement instrument 26 acquires the environment data 102 may be different from each other, but are preferably synchronized.
- the optical fiber 22 is provided around the airframe 2.
- the both ends of the optical fiber 22 are connected to the optical fiber strain gauge 24, and the Brillouin Optical Correlation Domain Analysis method (BOCDA) is obtained by using Brillouin scattered light generated in various places of the optical fiber 22.
- BOCDA Brillouin Optical Correlation Domain Analysis method
- the environment measuring instrument 26 is exemplified by a three-dimensional accelerometer, a barometer and the like capable of measuring the flight attitude, acceleration, weight, air pressure and the like of the airframe 2 of the aircraft 1.
- the measuring instrument 20 is not limited to this embodiment, and the optical fiber 22 and the optical fiber strain gauge 24 may measure other strain distribution, an optical sensor, an acoustic sensor, a conductive strain gauge, and the like. It may be a thin film pressure sensor or the like.
- the measuring device 20 is not limited to the form which measures distortion distribution,
- the form which measures the physical quantity relevant to structural damage, such as temperature and pressure (stress) may be sufficient.
- the measuring instrument 20 may be, for example, a thermometer capable of measuring a temperature distribution in the entire region of the airframe 2 in addition to a mode of measuring a strain distribution.
- the measuring instrument 20 is capable of measuring physical quantities related to a plurality of types of structural damage, in which a form of measuring strain distribution and a form of measuring other distributions such as temperature distribution coexist. It may be.
- FIG. 3 is a configuration diagram showing an example of details of the airframe 2 and the measuring instrument 20 of FIG.
- the optical fibers 22 constituting the measuring instrument 20 are provided in a wavelike manner so as to cover the inside of the skin 3 and to avoid the stringers 4 and to include the vicinity of the stringers 4. It is done. Since the optical fiber 22 is provided as described above, it is possible to measure the strain distribution having high spatial resolution over the entire surface of the skin 3 and measure the strain distribution of the bonding portion between the skin 3 and the stringer 4 It is possible.
- FIG. 4 is a configuration diagram showing an example of the details of the first risk evaluation unit 50 and the first storage unit 32 in FIG.
- the first storage unit 32 stores measurement data 101, environment data 102, reference data 105, signal data set 106, normal / abnormal determination reference data 107 and normal / abnormal determination result data 108.
- the measurement data 101 is data on the airframe 2 of the aircraft 1 obtained by measurement by the measuring instrument 20, and in the present embodiment, measurement data of distortion of the airframe 2 measured by the optical fiber 22 and the optical fiber strain gauge 24. 101 is illustrated.
- the measurement data 101 is not limited to this, and may be measurement data of the temperature of the airframe 2, and may include data regarding the airframe 2 of a plurality of aircraft 1.
- the measurement data 101 is a data set associated with position distribution in the measurement range and time change in each position.
- the environment data 102 is data measured by the environment measuring instrument 26 and is data relating to flight such as flight attitude, acceleration, weight, air pressure and the like of the aircraft 2 of the aircraft 1.
- the reference data 105 is data used by the first risk evaluation unit 50 as a diagnostic reference of the measurement data 101.
- the environmental data assumed to be the airframe 2 in which the soundness of the airframe 2 is diagnosed in advance is normal Data based on measurement data 101 obtained by measurement below is adopted and stored in advance in the first storage unit 32.
- the reference data 105 can also be updated with the new reference data 105 a that has been diagnosed as normal by the first risk evaluation unit 50.
- the signal data set 106 is generated by the first risk evaluation unit 50 based on the measurement data 101, the environmental data 102, and the reference data 105, and the first risk evaluation unit 50 generates damage to the airframe 2 based on this.
- the normal / abnormality judgment reference data 107 is data of a judgment reference when the first risk evaluation unit 50 evaluates the risk of occurrence of damage to the airframe 2 based on the signal data set 106.
- the normal / abnormal judgment result data 108 is data of the judgment result obtained by the first risk evaluation unit 50 evaluating the risk of damage occurrence of the airframe 2 based on the signal data set 106.
- the first storage unit 32 includes storage devices such as a RAM, a ROM, and a flash memory.
- the first storage unit 32 includes, in addition to the various data described above, the aircraft health diagnostic software processed by the first control unit 42, the aircraft health diagnostic program, and the aircraft health diagnostic software of the aircraft, The data etc. which are referred by the soundness diagnosis program are stored.
- the first storage unit 32 also functions as a storage area in which the first control unit 42 temporarily stores processing results and the like.
- the first risk evaluation unit 50 includes a characteristic value calculation processing unit 51, a signal data set creation processing unit 52, a soundness index value calculation processing unit 53, and a signal data set update processing unit 54. And a normal / abnormal judgment processing unit 55.
- the first risk evaluation unit 50 is electrically connected to the warning notification unit 56 so as to allow information communication.
- the characteristic value calculation processing unit 51 calculates characteristic values by calculating from the measurement data 101 acquired from the optical fiber strain measuring instrument 24 into statistical feature quantities according to the physical model of the sound state of the airframe 2 of the aircraft 1.
- Data 103 is acquired.
- the characteristic value data 103 is, like the measurement data 101, a data set associated with the position distribution in the measurement range and the time change at each position.
- the statistical feature quantities are exemplified by variance values, mean values and median values.
- the characteristic value data 103 is calculated at measurement points or measurement sections in a plurality of measurement ranges, calculated at a plurality of constant time intervals, and each calculated data is a measurement point or measurement in the measurement areas. It is created by being linked with the position information of the section and the time stamp of a fixed time interval.
- the characteristic value calculation processing unit 51 can process the measurement data 101 into the characteristic value data 103 to increase the accuracy of extracting the possibility of damage.
- the signal data set creation processing unit 52 changes the same time of the characteristic value data 103 acquired from the characteristic value arithmetic processing unit 51, the environment data 102 acquired from the environment measuring instrument 26, and the disturbance data 109 (see FIG. 16).
- the temporary signal data set 104 which is a temporary state of the signal data set 106, is created by associating them with each other.
- the disturbance data 109 is data such as temperature as a disturbance physical quantity that affects the measurement data 101.
- the disturbance data 109 one measured by a thermometer provided additionally to the measuring instrument 20 is preferably used.
- the soundness index value arithmetic processing unit 53 performs arithmetic processing based on the temporary signal data set 104 acquired from the signal data set creation processing unit 52 and the reference data 105 acquired from the first storage unit 32, and the soundness indicator Calculate the value. Specifically, the soundness index value calculation processing unit 53 executes predetermined statistical calculation processing to calculate the divergence state of the temporary signal data set 104 from the reference data 105 as a central soundness index value. Do.
- the soundness index value calculation processing unit 53 treats the temporary signal data set 104 and the reference data 105 as multivariate data of N pieces (rows) of data having characteristic item M dimensions (columns), and is based on the theory of quality engineering.
- This multivariate data is processed by the data processing method, Mahalanobis Taguchi Method (hereinafter, referred to as MT method).
- MT method Mahalanobis Taguchi Method
- the soundness index value calculation processing unit 53 uses the reference data 105 as a normal state, that is, the Mahalanobis distance (Mahalanobis Distance, which indicates how much the temporary signal data set 104 deviates from the reference data 105).
- the MD value will be calculated as the soundness index value.
- a T 2 statistic and a Q statistic as an index indicating abnormality.
- the Mahalanobis-Taguchi method and Mahalanobis distance or the T 2 statistic are preferably employed.
- the signal data set update processing unit 54 matches the temporary signal data set 104 acquired from the soundness index value calculation processing unit 53 with the MD value which is the soundness index value so as to be associated with the same time change, A signal data set 106 is created.
- the normal / abnormality judgment processing unit 55 determines the source of the signal data set 106 and Which part of the airframe 2 of the aircraft 1 when the measured data 101 is measured is in a structurally normal state, and which part may be in a structurally abnormal state which is not a structurally normal state Do.
- the normal / abnormal judgment processing unit 55 first determines which part of the signal data set 106 is abnormal and which part is abnormal according to the judgment criteria based on the normal / abnormal judgment reference data 107. evaluate. Next, the normal / abnormal judgment processing unit 55 evaluates that the portion of the aircraft 1 corresponding to the portion in the normal state of the signal data set 106 is in the structurally normal state, and the portion of the signal data set 106 It is evaluated that there is a possibility that the portion of the airframe 2 of the aircraft 1 corresponding to the portion in the abnormal state is a structurally abnormal state. Then, the normal / abnormal judgment processing unit 55 creates normal / abnormal judgment result data 108 based on the judgment result.
- the normal / abnormality judgment processing unit 55 creates new reference data 105 a based on the whole of the signal data set 106 when judging that there is no part that may be in an abnormal state. Further, the normal / abnormality judgment processing unit 55 judges that the second risk evaluation unit 60 does not have to evaluate the risk of the occurrence of damage to the airframe 2. In this case, the second risk assessment unit 60 does not evaluate the risk of damage occurrence of the airframe 2, and the first risk assessment unit 50 only terminates the assessment of risk of damage occurrence by the evaluation of the risk of damage occurrence of the aircraft 2 Do.
- the normal / abnormal determination processing unit 55 determines that there is a portion that may be in an abnormal state, it is determined that the warning notification unit 56 determines that there is a portion that may be in an abnormal state. An alarm is notified, and new reference data 105a is created based on the signal data set 106 of the portion determined to be in the normal state. Further, the normal / abnormality judgment processing unit 55 judges that it is necessary to evaluate the risk of the occurrence of damage to the airframe 2 by the second risk evaluation unit 60. In this case, the second risk assessment unit 60 assesses the risk of the occurrence of damage to the airframe 2.
- the normality / abnormality judgment reference data 107 used by the normality / abnormality judgment processing unit 55 is data indicating the relationship between the calculation method of the soundness index value and the range defined as normality of the soundness index value and the range defined as abnormality. is there.
- the normality / abnormality judgment reference data 107 used by the normality / abnormality judgment processing unit 55 is within a range in which the MD value which is the soundness index value does not exceed the predetermined threshold when the MT method is adopted as the calculation method of the soundness index value. It is data indicating a judgment standard that it is normal if it is contained and abnormal if it is within the range of a predetermined threshold or more.
- the normality / abnormality judgment processing unit 55 determines the possibility of whether or not the airframe 2 of the aircraft 1 is structurally normal based on the signal data set 106 in which the MD value is matched as the soundness index value: If all MD values do not exceed the predetermined threshold, it is judged as normal, and if some MD values are above the predetermined threshold, the part may be abnormal and the other parts are normal. I will judge.
- the first risk evaluation unit 50 can use the airframe 2 of the aircraft 1. By extracting the possibility of being structurally abnormal, that is, the possibility of irreversible structural change, it is evaluated whether the airframe 2 of the aircraft 1 has a risk of damage occurrence.
- the warning notification unit 56 determines that the normal / abnormal determination processing unit 55 has a portion that may be in an abnormal state based on the signal data set 106, there is a portion that may be in an abnormal state.
- the normal / abnormal judgment processing unit 55 acquires a command to notify an alarm indicating that it has been determined, and an alarm to that effect is notified.
- the alarm notifying unit 56 is exemplified by a sound annunciator notifying by sound, a light annunciator notifying by lit or blinking light, and a compound annunciator notifying by both sound and light.
- the first control unit 42 has, for example, a processing device such as a CPU, and reads out and processes the soundness diagnosis software for the aircraft, the soundness diagnosis program for the aircraft, etc. from the first storage unit 32 to obtain the soundness of the aircraft. Demonstrates functions according to diagnostic software and aircraft health diagnostic programs. Specifically, the first control unit 42 has a control function of the measuring device 20, which is a function that enables execution of a part of the aircraft health diagnostic method performed by the first control unit 42, and The processing function or the like of the risk evaluation unit 50 is exhibited.
- a processing device such as a CPU
- the processing function of the first risk evaluation unit 50 includes the processing function of the characteristic value calculation processing unit 51, the processing function of the signal data set creation processing unit 52, the processing function of the soundness index value calculation processing unit 53, and the signal data set update processing unit It includes the processing function of 54 and the processing function of the normal / abnormal judgment processing unit 55 and the like.
- the first storage unit 32 and the first control unit 42 are exemplified by one computer in which a storage device and a processing device are integrated. Note that the first storage unit 32 and the first control unit 42 are not limited to a form realized by one computer, and may be a form realized in a separated state without being integrated. It may be realized by two or more computers.
- FIG. 5 is a block diagram showing an example of the details of the second risk evaluation unit 60 and the second storage unit 34 of FIG. As shown in FIG. 5, the second storage unit 34 stores time-series change data 111, damage determination reference data 112, damage determination result data 113, and damage factor data 114.
- the time-series change data 111 determines that the first risk evaluation unit 50 determines that there is a portion that may be in an abnormal state, that is, the time-series change of the signal data set 106 evaluated as having a risk of damage occurrence. It is data indicating behavior.
- the damage judgment reference data 112 is data of a judgment reference when the second risk evaluation unit 60 evaluates the risk of damage occurrence of the airframe 2 based on the time series change data 111.
- the damage judgment result data 113 is data of the judgment result obtained by the second risk evaluation unit 60 evaluating the risk of damage occurrence of the airframe 2 based on the time series change data 111.
- the damage factor data 114 is data of the analysis result of the damage factor of the airframe 2 obtained by the second risk evaluation unit 60 analyzing the damage factor of the airframe 2 based on the time-series change data 111.
- the second storage unit 34 includes storage devices such as a RAM, a ROM, and a flash memory.
- the second storage unit 34 includes, in addition to the various data described above, the aircraft health diagnostic software processed by the second control unit 44, the aircraft health diagnostic program, and the aircraft health diagnostic software of the aircraft, The data etc. which are referred by the soundness diagnosis program are stored.
- the second storage unit 34 also functions as a storage area in which the second control unit 44 temporarily stores processing results and the like.
- the second risk evaluation unit 60 includes a time-series change calculation processing unit 61, a damage determination processing unit 62, a damage factor analysis processing unit 63, and a damage information display processing unit 64.
- the second risk evaluation unit 60 is electrically connected to the display unit 65 so as to be able to communicate information.
- the time-series change calculation processing unit 61 is based on the signal data set 106 obtained from the first risk evaluation unit 50 via the information communication unit 46 and evaluated by the first risk evaluation unit 50 as having a risk of damage occurrence.
- the time series change data 111 is created. Specifically, the time-series change arithmetic processing unit 61 performs time-series change of at least one of various values and soundness index values included in the characteristic value data 103 included in the signal data set 106. The data which shows the behavior of is made, and this data is made into time series change data 111.
- the damage determination processing unit 62 generates the time series change data 111 based on the time series change data 111 acquired from the time series change arithmetic processing unit 61 and the damage determination reference data 112 acquired from the second storage unit 34. In the normal state in which no irreversible structural change is found in any part of the aircraft 2 of the aircraft 1 when the measured data 101 is measured, and an abnormal part in which the irreversible structural change is observed in any part Determine if it is a state.
- the damage judgment processing unit 62 first evaluates which part of the time-series change data 111 is normal and which part is abnormal according to the judgment criteria based on the damage judgment reference data 112. Do. Next, the damage determination processing unit 62 evaluates that the portion of the aircraft 1 corresponding to the portion in the normal state of the time-series change data 111 is structurally normal, and the time-series change data 111 It is evaluated that the portion of the fuselage 2 of the aircraft 1 corresponding to the portion in the abnormal state is the structurally abnormal state. Then, the damage determination processing unit 62 creates damage determination result data 113 based on the determination result.
- the damage determination processing unit 62 determines that there is no abnormal state part, it causes the damage information display processing unit 64 to create a display screen indicating that there is no abnormal state part.
- the damage information display processing unit 64 causes the display unit 65 to display a display screen indicating that there is no part in an abnormal state, and ends the evaluation of the risk of the occurrence of damage to the vehicle 2 by the second risk evaluation unit 60.
- the damage determination processing unit 62 determines that there is a portion in an abnormal state
- the damage determination processing unit 62 causes the damage factor analysis processing unit 63 to analyze the damage cause in the abnormal state.
- the damage factor refers to a factor when the soundness index changes significantly, that is, a factor in a statistical sense, and refers to a data variable. Since the damage factor analysis processing unit 63 processes using the feature quantity linked to the measurement position as a variable, the damage factor analysis processing section 63 performs a process for specifying the feature quantity linked to the measurement position and simultaneously identifying it as a damaged part. Do.
- the damage factor analysis processing unit 63 acquires the time-series change data 111 and the damage judgment result data 113 from the damage judgment processing unit 62, analyzes the damage in an abnormal state and its factor, and the damage based on the analysis result.
- the factor data 114 is created.
- the damage factor analysis processing unit 63 causes the damage information display processing unit 64 to create a display screen based on the damage factor data 114.
- the damage information display processing unit 64 causes the display unit 65 to display a display screen based on the damage factor data 114, and ends the evaluation of the risk of the occurrence of damage to the vehicle 2 by the second risk evaluation unit 60.
- the damage determination reference data 112 used by the damage determination processing unit 62 includes the value used for the time-series change data 111, the range defined as normal of the value, the range defined as abnormal, and the value as abnormal. Data indicating the relationship between a period of time when it is determined that there is an abnormal state portion by continuing to take the value of the For example, when the damage judgment reference data 112 used by the damage judgment processing unit 62 is an MD value which is a soundness index value calculated by the MT method and is used as the time-series change data 111, the MD value is a range equal to or more than a predetermined threshold It is data showing that there is an abnormal state part, that is, irreversible structural change can be seen if the value of is continuously taken for a predetermined period or longer.
- the damage determination processing unit 62 determines that the MD value is predetermined when determining whether the airframe 2 of the aircraft 1 is structurally normal based on the time-series change data 111 based on the MD value calculated by the MT method. If it is determined that the value of the range above the threshold is not taken continuously for a predetermined period or more, it is judged normal, and if some MD values continue to take values over a predetermined threshold or more for a predetermined period or more Is abnormal and the other parts are judged to be normal.
- the second risk assessment unit 60 determines whether the aircraft 1 of the aircraft 1 is irreversible based on the time-series change behavior of the signal data set 106 that the first risk assessment unit 50 has assessed as being at risk of damage occurrence. By diagnosing various structural changes, it is evaluated whether the airframe 2 of the aircraft 1 has a risk of damage occurrence.
- the maintenance evaluation unit 70 is based on the time-series change data 111 indicating the behavior of the time-series change of the signal data set 106 used by the second risk evaluation unit 60, the lifetime of the airframe 2, the time of repair, the maintenance plan, etc. Evaluate Specifically, the maintenance evaluation unit 70 includes the normal / abnormal judgment result data 108 in the first risk evaluation unit 50, the damage judgment result data 113 in the second risk evaluation unit 60, and the other first risk evaluation unit 50 and the first 2 Based on the result of risk evaluation with the risk evaluation unit 60, etc., the remaining life evaluation algorithm is used to calculate the life of the airframe 2, and the time to approach the calculated life of the airframe 2 by a predetermined ratio is fixed. Calculated as the time, and estimate the maintenance plan based on the calculated repair time.
- the second control unit 44 has, for example, a processing device such as a CPU, and reads out and processes the soundness diagnosis software for the aircraft, the soundness diagnosis program for the aircraft, etc. from the second storage unit 34 to obtain the soundness of the aircraft. Demonstrates functions according to diagnostic software and aircraft health diagnostic programs. Specifically, the second control unit 44 has a processing function of the second risk evaluation unit 60, which is a function that enables execution of a part of the aircraft soundness diagnosis method performed by the second control unit 44, and And the processing function and the like of the maintenance evaluation unit 70.
- a processing device such as a CPU
- the processing function of the second risk evaluation unit 60 includes the processing function of the time-series change calculation processing unit 61, the processing function of the damage determination processing unit 62, the processing function of the damage factor analysis processing unit 63, and the processing function of the damage information display processing unit 64. Etc.
- the second storage unit 34 and the second control unit 44 are exemplified by a single computer in which a storage device and a processing device are integrated. Note that the second storage unit 34 and the second control unit 44 are not limited to the form realized by one computer, but may be realized in a separated state instead of being integrated. It may be realized by two or more computers.
- FIG. 6 is a flowchart of the method of diagnosing the soundness of an aircraft according to the first embodiment of the present invention.
- the aircraft health diagnostic method according to the first embodiment is a processing method executed by the aircraft health diagnostic device 10 according to the first embodiment.
- a method of diagnosing soundness of an aircraft according to the first embodiment will be described with reference to FIG.
- the soundness diagnostic method for an aircraft according to the first embodiment includes a measurement data acquisition step S1, a first risk evaluation step S2, a second risk evaluation step necessity determination step S3, and a first risk evaluation step S3. 2 Risk evaluation step S4 and maintenance evaluation step S5 are included.
- the measurement data acquisition step S1 is a step in which the first control unit 42 controls the measuring instrument 20 during the flight of the aircraft 1 to acquire the measurement data 101 by the measuring instrument 20.
- the first control unit 42 controls the optical fiber strain measuring instrument 24 of the measuring instrument 20 so that the Brillouin scattered light generated at each position of the optical fiber 22 by the optical fiber strain measuring instrument 24.
- measurement data 101 of strain distribution having high spatial resolution over the entire region of the airframe 2 is acquired by using the Brillouin light correlation area analysis method.
- the first control unit 42 controls the measuring instrument 20 during flight of the aircraft 1 to acquire the environmental data 102 by the measuring instrument 20. Specifically, the first control unit 42 controls the environment measuring instrument 26 of the measuring instrument 20 to acquire environment data 102 which is data relating to flight such as flight attitude, acceleration, weight and pressure of the airframe 2 of the aircraft 1 Do.
- FIG. 7 is a view showing an example of the measurement data 101 of FIG. As shown in FIG. 7, the measurement data 101 is linked at positions z1, z2, z3, z4, ... in the measurement range, and at times t1, t2, t3, t4, ... at each position. It is a data set of distortion ⁇ .
- FIG. 8 is an explanatory view for explaining the measurement data 101 of FIG.
- the measurement data 101 is position distribution data ⁇ (z) at time t2, which indicates the dependency at each position z1, z2, z3, z4,... Of the measurement range of strain ⁇ at time t1.
- the position distribution data ⁇ (z), the position distribution data ⁇ (z) at time t3, the position distribution data ⁇ (z) at time t4,... And the position distribution data ⁇ (z) are bundled data sets.
- time series showing the dependency at each time t1, t2, t3, t4,... Of the measurement range of the strain ⁇ at the position z1.
- Time series data ⁇ (t) at position z2 time series data ⁇ (t) at position z3, time series data ⁇ (t) at position z4, ... and time series data ⁇ (t) Is a bundled data set.
- the first risk evaluation unit 50 included in the first control unit 42 may use the measurement data 101 and possibly be in a structurally abnormal state in the airframe 2 of the aircraft 1, that is, irreversibly It is a step which evaluates whether or not the fuselage 2 of the aircraft 1 has a risk of damage occurrence by extracting the possibility of the structural change.
- FIG. 9 is a flowchart showing details of the first risk evaluation step S2 of FIG. Details of the first risk evaluation step S2 will be described with reference to FIG.
- the first risk evaluation step S2 is a measurement data and environment data acquisition step S11, a characteristic value calculation step S12, a signal data set creation step S13, a soundness index value calculation step S14, and a signal It has data set update step S15, normal / abnormal determination step S16, and warning notification step S17.
- the first risk evaluation unit 50 combines the measurement data 101 acquired by the first control unit 42 in the measurement data acquisition step S1 and the measurement data acquisition step S1 with the first control unit 42. Is a step of acquiring the acquired environmental data 102.
- FIG. 10 is a view showing an example of a damaged portion of the airframe 2 of FIG.
- FIG. 11 is a diagram of an example of the reference data 105 at the location of FIG.
- FIG. 12 is a diagram showing an example of the measurement data 101 at the location of FIG.
- the measurement data and environmental data acquisition step S11 will be described in detail with reference to FIGS. 10, 11 and 12.
- the portion of the airframe 2 shown in FIG. 10 includes a skin 3, a stringer 4 of length Ls provided on the skin 3, and an optical fiber 22 provided along the stringer 4 near the stringer 4 on the skin 3. , And a peeling portion 7 of length Ld generated between the skin 3 and the stringer 4.
- the length Ld is shorter than the length Ls.
- the measurement point on the skin 3 is between the position Zs and the position Ze, and the region provided with the stringer 4 is between the position Za and the position Zb.
- the area where the peeling portion 7 is generated is between the position Z1 and the position Z2.
- the exfoliation portion 7 is an abnormality caused by the external impact 8 exemplified by lightning strike and bird impact, and is an irreversible structural change.
- the arrows in the vertical direction shown in FIG. 10 schematically show the load applied to the portion of the airframe 2 shown in FIG. 10, and the load ⁇ is applied along the Z-axis direction. Is shown.
- the load ⁇ is a parameter that changes with time during the flight of the aircraft 1 and is a parameter that is estimated based on the environmental data 102 when not specifically measured by the measuring instrument 20.
- the reference data 105 at the location of the airframe 2 shown in FIG. 10 is the measurement data 101 measured when the load ⁇ is F1, F2, or F3 when the peeling unit 7 is not generated. Note that F3 is a value larger than F2, and F2 is a value larger than F1.
- the reference data 105 at the location of the airframe 2 shown in FIG. 10 is, as shown in FIG. 11, between the position Zs to the position Za and the position Zb, which is an area where the stringer 4 is not provided in the Z axis direction.
- Each of the regions up to the position Ze has a position distribution in which the strain ⁇ is larger than the region between the position Za and the position Zb which is the region where the stringer 4 is provided. Further, as shown in FIG.
- the reference data 105 at the location of the airframe 2 shown in FIG. 10 is that the strain ⁇ has an extremum near the position Za and the position Zb on the boundary of the stringer 4 in the Z-axis direction. It has a tendency to change greatly. Further, as shown in FIG. 11, the reference data 105 at the location of the airframe 2 shown in FIG. 10 has a tendency that the strain ⁇ becomes larger as the load ⁇ becomes larger to F1, F2 and F3. There is.
- the measurement data 101 at the portion of the airframe 2 shown in FIG. 10 is the case where the peeling portion 7 is generated, and the load ⁇ is measured in each of F1, F2, and F3.
- the measurement data 101 at the location of the airframe 2 shown in FIG. 10 is compared with the reference data 105 shown in FIG. It has a position distribution that the strain ⁇ in the region up to is large.
- the measurement data 101 at the location of the airframe 2 shown in FIG. 10 is that the strain ⁇ is an extremum near the position Z1 and the position Z2 which are the boundary of the area where the peeling portion 7 is generated.
- the first risk evaluation unit 50 can compare the measurement data 101 and the reference data 105 in each of the cases where the load ⁇ is F1, F2, and F3, the higher the risk, the higher the risk. By extracting the area where the exfoliation unit 7 has occurred with accuracy, it can be diagnosed as having a risk of damage occurrence. Therefore, the first risk evaluation unit 50 executes the measurement data and environmental data acquisition step S11 to combine the environmental data 102 that enables estimation of the load ⁇ together with the measurement data 101 to be compared with the reference data 105. By acquiring, it becomes possible to divide and compare load (sigma) in each case of F1, F2, and F3.
- the characteristic value calculation processing unit 51 extracts statistical feature quantities matched to the physical model of the sound state of the airframe 2 of the aircraft 1 in the measurement data 101, and uses the measurement data 101 as this feature quantities. This is a step of acquiring the characteristic value data 103 by performing arithmetic processing.
- FIG. 13 is an explanatory view for explaining calculation of the characteristic value data 103 from the measurement data 101 in the part of FIG.
- FIG. 14 is a diagram showing the characteristic value data 103 and the reference data 105 b obtained by converting the reference data 105 into the characteristic values at the location of FIG. 10. Details of the characteristic value calculation step S12 will be described with reference to FIGS. 13 and 14.
- characteristic value calculation processing unit 51 measures a measurement range defined in the Z-axis direction into a plurality of position sections .DELTA.z (slides having a small width in the Z-axis direction). Divided into windows).
- the position section ⁇ z may be set equal to the measurement position interval ⁇ z which is an acquisition interval of the measurement data 101 in the Z-axis direction, or may be set larger than the measurement position interval ⁇ z.
- the position section ⁇ zn is a section having a width of ⁇ z / 2 each in the ⁇ Z direction with respect to the central position zn, and more specifically, is a section of zn ⁇ z / 2 or more and zn + ⁇ z / 2 or less.
- a sliding window method it can be handled as a vector value as a correlation between scalar values in the window section.
- the vector value can be treated as a feature amount of the statistical anomaly detection method, and using the feature amount can be expected to increase the sensitivity of the soundness index value.
- the characteristic value calculation processing unit 51 extracts characteristic values such as, for example, a variance value, an average value, and a median value as statistical feature amounts, and in each divided position segment Calculate the characteristic value of
- characteristic value calculation step S12 in the example shown in FIG. 13, the dispersion value ⁇ a (characteristic value a), the average value ⁇ b (characteristic value b) of the distortion ⁇ in each position section ⁇ z divided by the characteristic value calculation processing unit 51 A median value ⁇ c (characteristic value c) is calculated.
- the characteristic value calculation step S12 if the characteristic value calculation processing unit 51 needs to execute the same calculation processing as the calculation processing performed for the measurement range defined in the Z-axis direction also in other space directions Then, the characteristic value data 103 can be acquired by calculating the characteristic values in the space divided also in the other space directions.
- the reference data 105 converted to the characteristic value acquired by the characteristic value calculation processing unit 51 executing the characteristic value calculation step S12 based on the reference data 105 in the portion of FIG. Has a tendency that the dispersion value ⁇ a, which is the characteristic value (feature amount) of the strain ⁇ , is greatly changed at the extreme value in the position section ⁇ z1 or the like including the position where the extreme value is greatly changed. ing.
- the dispersion value ⁇ a which is the characteristic value (feature amount) of the strain ⁇ is greatly changed by taking the extreme value. ing.
- the dispersion value ⁇ a which is the characteristic value (feature amount) of the strain ⁇ , changes significantly at the extreme value in the position section ⁇ z1 etc. including the position Za and the position Zb on the boundary of the stringer 4.
- the reference data 105b converted to the characteristic value also has a tendency that the dispersion value ⁇ a takes an extreme value and largely changes in the position section ⁇ z1 or the like.
- the dispersion value ⁇ a which is the characteristic value (feature amount) of the strain ⁇ is a pole in the position section ⁇ z10, ⁇ z13 including the position Z1 and the position Z2 which are the boundary of the region where the peeling portion 7 is generated.
- the reference data 105b converted to the characteristic value has a tendency that the dispersion value ⁇ a takes an extreme value and largely changes in the position section ⁇ z10 and ⁇ z13, although it tends to take a value and largely change. There is no tendency. From this, the characteristic value data 103 and the reference data 105b converted to the characteristic value have a common tendency in the position section ⁇ z1 or the like which is not related to the generation of the peeling portion 7, and the relation with the generation of the peeling portion 7 It can be seen that the characteristic value data 103 and the reference data 105b converted to the characteristic values have different tendencies in the position sections ⁇ z10 and ⁇ z13.
- the first risk evaluation unit 50 executes the characteristic value calculation step S12 to arithmetically process the measurement data 101 into the characteristic value data 103 and arithmetically process the reference data 105 into the characteristic value.
- the characteristic value calculation step S12 executes the characteristic value calculation step S12 to arithmetically process the measurement data 101 into the characteristic value data 103 and arithmetically process the reference data 105 into the characteristic value.
- Characteristic value data 103 is a region on the right side of the peak centered on position section ⁇ z10 in the area between position sections ⁇ z10 and ⁇ z13 including position Z1 and position Z2 on the boundary of the area where peeling section 7 is generated.
- the dispersion value ⁇ a which is the characteristic value (feature amount) of the distortion ⁇ , is converted to a characteristic value in a region where there is little change between the foot and the valley to the left of the peak on the left of the peak centered on the position section ⁇ z13.
- the same value as that of the reference data 105 b is shown.
- the precision which extracts the possibility of damage, such as exfoliation part 7 can be raised by adopting the soundness index value computed using a statistical method.
- the superiority or inferiority showing how much those specific values contribute to the damage is quantitatively analyzed by factor analysis, for example, the SN (Signal Noise) ratio is calculated, and the analysis result is
- the SN Synignal Noise
- FIG. 15 is a view showing an example of the characteristic value data 103 of FIG.
- characteristic value data 103 is associated with position sections .DELTA.z1, .DELTA.z2, .DELTA.z3, .DELTA.z4,... In the measurement range, and at times t1, t2, t3, t4,.
- the characteristic value data 103 acquired by the signal data set generation processing unit 52 from the characteristic value calculation processing unit 51, the environmental data 102 acquired from the environment measuring instrument 26, and the disturbance data 109 It is a step of creating a temporary signal data set 104 which is a temporary state of the signal data set 106 by matching them with the same time change.
- FIG. 16 is a diagram showing an example of the temporary signal data set 104 of FIG.
- the temporary signal data set 104 is a data set in which the characteristic value data 103, the environment data 102, and the disturbance data 109 are linked with the same time change as shown in FIG.
- the specific items of the characteristic value data 103, the characteristic items of the environmental data 102, and the disturbance data 109 are arranged in the row direction with the time linked at the same time as the data index. Specific items are illustrated in the column direction, and an organized data set is illustrated.
- the soundness index value calculation step S14 is based on the temporary signal data set 104 acquired from the signal data set creation processing unit 52 and the reference data 105 acquired from the first storage unit 32 by the soundness index value calculation processing unit 53. Calculation processing to calculate the soundness index value.
- the soundness index value calculation processing unit 53 executes a predetermined statistical calculation process, for example, a calculation process based on the MT method, to obtain the temporary signal data set 104.
- a divergence state from the reference data 105 is calculated as a unified soundness index value, for example, an MD value.
- the signal data set update processing unit 54 ties the temporary signal data set 104 acquired from the soundness index value calculation processing unit 53 and the MD value which is the soundness index value with the same time change. Together to create the signal data set 106.
- the normal / abnormal judgment step S16 is based on the signal data set 106 acquired from the signal data set update processing unit 54 by the normal / abnormal judgment processing unit 55 and the normal / abnormal judgment reference data 107 acquired from the first storage unit 32.
- the measurement data 101 that is the source of the signal data set 106 is measured, which part of the airframe 2 of the aircraft 1 is structurally normal and which part is not structurally normal structurally abnormal. It is a step of judging whether there is a possibility and creating normal / abnormal judgment result data 108 based on the judgment result.
- FIG. 17 is an explanatory view for explaining the normal / abnormal judgment step S16 of FIG. 9 and the second risk evaluation step S4 of FIG.
- the threshold MDth for occurrence of abnormality is set to a predetermined threshold which does not change with time as shown in FIG. If the abnormality occurrence threshold MDth exceeds the value (for example, becomes above), the normal / abnormality judgment processing unit 55 determines that there is a possibility of occurrence of an abnormality, and it is below (for example, less than) the value. It is a reference value that the normal / abnormal judgment processing unit 55 judges that the normal state is not abnormal.
- the normal average, as shown in FIG. 17, is a value exemplified by a half value of the threshold value MDth for occurrence of abnormality, and is described in FIG.
- the soundness index value 81 is a time-series change of the MD value calculated from the measurement data 101 measured during the A-th flight of the aircraft 1.
- the soundness index value 82 is a time-series change of the MD value calculated from the measurement data 101 measured during the B-th flight of the aircraft 1.
- the soundness index value 81 is below the threshold value MDth for occurrence of abnormality which is a predetermined threshold value at all times during the flight. For this reason, in the normal / abnormality judgment step S16, the normal / abnormality judgment processing unit 55 judges that there is no portion which may be in an abnormal state, regardless of which time the soundness index value 81 is taken out and judged. After that, the normal / abnormal judgment processing unit 55 creates new reference data 105a based on the entire signal data set 106, and then ends the first risk evaluation step S2 according to the No arrow in the normal / abnormal judgment step S16.
- the soundness index value 82 exceeds the threshold value MDth for abnormal occurrence between time t1 and time t2 during flight and between time t3 and arrival.
- a region between time t1 and time t2 in which the threshold value MDth for occurrence of abnormality is exceeded is referred to as an abnormal region 84.
- a region between time t3 when the threshold value MDth for occurrence of abnormality is exceeded and arrival is referred to as an abnormal region 86. Therefore, in the normal / abnormality judgment step S16, when the normal / abnormality judgment processing unit 55 judges by taking out the soundness index value 82 in the abnormal area 84 and the abnormal area 86, there is a portion that may be an abnormal state. I judge that there is.
- the normal / abnormal judgment processing unit 55 separates the part in the normal state and the part in the possible abnormal state, and based on the part in the normal state in the signal data set 106, a new reference is made.
- the flow of the first risk evaluation step S2 is advanced to the warning notification step S17 in accordance with the Yes arrow in the normal / abnormal determination step S16.
- the warning notification step S17 first, when the normal / abnormal determination processing unit 55 determines that there is a portion having a possibility of being in an abnormal state in the normal / abnormal determination step S16 (Yes in the normal / abnormal determination step S16), The notification unit 56 notifies a warning that it is determined that there is a portion that may be in an abnormal state.
- the warning notification step S17 acquires, from the normal / abnormality determination processing unit 55, a command to the effect that the warning notification unit 56 reports a warning indicating that there is a possibility that there is a portion in an abnormal state. This is a step of informing a warning to that effect.
- the normal / abnormal judgment processing unit 55 ends the first risk evaluation step S2 after the warning notification step S17.
- an alert indicating that there is a possibility that there is a possibility of being in an abnormal state is notified, but the present invention is not limited to this, and in an abnormal state Information that describes a possible part, for example, a sentence or an image, may be displayed on a display unit electrically connected to the first risk evaluation unit 50 of the first control unit 42.
- the second risk evaluation step necessity determination step S3 shown in FIG. 6 is a step to determine whether it is necessary to evaluate the risk of the occurrence of damage to the airframe 2 by the second risk evaluation unit 60.
- the second risk evaluation step necessity judgment step S3 if it is judged in the normal / abnormality judgment step S16 that there is no portion that may be in an abnormal state, the second risk evaluation unit 60 It is judged that it is not necessary to carry out the evaluation, and the second risk evaluation step necessity judgment step S3 follows the arrow No in step S3 and the second risk evaluation step S4 and the maintenance evaluation step S5 in FIG. End the flow of the sex diagnosis method.
- the second risk evaluation step necessity determination step S3 if it is determined in the normal / abnormality determination step S16 that there is a portion having a possibility of being in an abnormal state, damage occurrence of the aircraft 2 by the second risk evaluation unit 60 It is judged that it is necessary to evaluate the risk, and the flow of the method of diagnosing the soundness of the aircraft is advanced to the second risk evaluation step S4 in FIG. 6 in accordance with the Yes arrow in the second risk evaluation step necessity determination step S3.
- the normal abnormality judgment processing unit 55 executing the normal abnormality judgment step S16 is normal
- the second risk evaluation step necessity determination step S3 may be executed in combination with the abnormality determination step S16.
- the temporary signal data set 104 which is temporary signal data calculated based on the measurement data 101, by the first risk evaluation unit 50 included in the first control unit 42;
- the airframe 2 of the aircraft 1 becomes It is a step which evaluates whether it has a risk of damage development.
- the second risk evaluation unit 60 included in the second control unit 44 evaluates the time series of the signal data set 106 that the first risk evaluation unit 50 evaluates that there is a risk of damage occurrence. It is a step of evaluating whether the airframe 2 of the aircraft 1 has a risk of damage occurrence by diagnosing the irreversible structural change in the airframe 2 of the aircraft 1 based on the behavior of the change.
- FIG. 18 is a flowchart showing details of the second risk evaluation step S4 of FIG. Details of the second risk evaluation step S4 will be described with reference to FIG. As shown in FIG. 18, the second risk evaluation step S4 has a time-series change calculation step S21, a damage determination step S22, a damage factor analysis step S23, and a damage information display step S24.
- time-series change calculation step S21 the first risk evaluation unit 50 evaluated that the time-series change calculation processing unit 61 has acquired from the first risk evaluation unit 50 via the information communication unit 46 that there is a risk of damage occurrence.
- This is a step of creating time-series change data 111 based on the signal data set 106. Specifically, in the time-series change calculation step S21, at least at least one of various values and soundness index values included in the characteristic value data 103 included in the signal data set 106 by the time-series change computation processing unit 61. In this step, data indicating the behavior of time-series change of one value is created, and this data is used as time-series change data 111.
- the soundness index value 82 shown in FIG. 17 represents the behavior of time-series change of MD values included in the signal data set 106 created based on the measurement data 101 measured during the B-th flight of the aircraft 1. It is the time-series change data 111 shown, which is generated by the time-series change calculation processing unit 61 in the time-series change calculation step S21.
- the damage determination processing unit 62 In the damage determination step S22, based on the time-series change data 111 acquired from the time-series change calculation processing unit 61 and the damage determination reference data 112 acquired from the second storage unit 34, the damage determination processing unit 62 In the normal state where no irreversible structural change is found in any part of the aircraft 2 of the aircraft 1 when the measurement data 101 which is the source of the change data 111 is measured, which part is irreversible It is a step of judging whether it is an abnormal state in which a change can be seen and creating damage judgment result data 113 based on the judgment result.
- the soundness index value 82 which is the time-series change data 111, exceeds the threshold value MDth for occurrence of abnormality during the time ⁇ T1 which is the time between time t1 and time t2 in the abnormal area 84, as shown in FIG. ing. Further, as shown in FIG. 17, the soundness index value 82, which is the time-series change data 111, has a threshold value MDth for occurrence of abnormality during the time ⁇ T2 which is the time from time t3 to arrival in the abnormal area 86. It is over.
- the damage determination reference data 112 when the time exceeding the threshold value MDth for occurrence of abnormality is less than the threshold value ⁇ Tth, it is determined that the irreversible structural change is not seen and the normal state is found, and the occurrence of abnormality occurs. It is defined that it is determined that the abnormal state in which irreversible structural change can be seen if the time exceeding the threshold MDth of H is equal to or greater than the threshold ⁇ Tth.
- the threshold value ⁇ Tth is a period longer than the time ⁇ T1 and shorter than the time ⁇ T2.
- the damage determination processing unit 62 determines that the abnormal area 84 of the soundness index value 82 is in a normal state where irreversible structural changes can not be seen, and the soundness index The abnormal area 86 of the value 82 is determined to be an abnormal state in which irreversible structural changes can be seen.
- the soundness index value 82 is calculated in the abnormal area 86 of the soundness index value 82 in which the damage judgment processing unit 62 judges that the abnormal state is such that an irreversible structural change can be seen.
- the peak time tx is recognized as a parameter associated with this abnormal state.
- the damage determination processing unit 62 determines that there is no portion in an abnormal state, it causes the damage information display processing unit 64 to create a display screen indicating that there is no portion in an abnormal state.
- the damage information display processing unit 64 causes the display unit 65 to display a display screen indicating that there is no abnormal state, and the second risk evaluation is performed according to the No arrow in the damage determination step S22.
- the flow of step S4 is ended.
- it is determined that the maintenance evaluation step S5 is not required to be performed, and the flow of the aircraft soundness diagnosis method is ended without performing the maintenance evaluation step S5 in FIG.
- the damage determination processing unit 62 determines that there is a portion of an abnormal state such as the abnormal area 86 in the soundness index value 82 in the damage determination step S22
- the damage factor analysis processing unit 63 Analyze the abnormal condition damage and its causes. Then, the flow of the second risk evaluation step S4 is advanced to the damage factor analysis step S23 in accordance with the Yes arrow in the damage judgment step S22.
- the damage factor analysis processing unit 63 acquires the time-series change data 111 and the damage judgment result data 113 from the damage judgment processing unit 62, analyzes the damage factor in an abnormal state, This is a step of creating damage factor data 114 based on the analysis result. After the damage factor analysis step S23, the damage factor analysis processing unit 63 advances the flow of the second risk evaluation step S4 to the damage information display step S24.
- the damage factor analysis processing unit 63 extracts the characteristic value that greatly contributes to the soundness index value 82 in the abnormal area 86, thereby the damage in the abnormal state and the factor thereof. analyse. Specifically, since the soundness index value 82 is an MD value, a characteristic value having a high SN ratio gain is extracted as a characteristic value that largely contributes to raising the MD value in the abnormal area 86. And analyze the damage that is in abnormal condition and its factor.
- FIG. 19 is an explanatory view for explaining the damage factor analysis step S23 of FIG. FIG. 19 shows position section ⁇ z distribution data of the characteristic value which largely contributes to raising the MD value in the abnormal area 86.
- the position section ⁇ z distribution data of this characteristic value as shown in FIG. 19, has characteristic values in which the gain of the SN ratio is remarkably high in the position sections ⁇ z10, ⁇ z11, ⁇ z12, ⁇ z13.
- the damage factor analysis processing unit 63 extracts position sections ⁇ z10, ⁇ z11, ⁇ z12, ⁇ z13 in which the gain of the SN ratio has a remarkably high characteristic value, and the extracted characteristic values Is identified as an abnormal state and in which the damage is occurring.
- the damage factor analysis processing unit 63 is in an abnormal state, and the damage factor in the damage occurrence section 88 identified as the section in which the damage is occurring is, for example, skin 3 and It is specified that it is the peeling part 7 with the stringer 4. Furthermore, in the damage factor analysis step S23, information that the damage factor analysis processing unit 63 is a section that specifies the damage occurrence section 88 as a section where damage is occurring, and that the factor is the peeling section 7 Information of the damage factor data 114.
- the damage factor analysis processing unit 63 causes the damage information display processing unit 64 to create a display screen based on the damage factor data 114.
- the damage information display processing unit 64 creates a display screen based on the damage factor data 114 and causes the display unit 65 to display a display screen based on the damage factor data 114.
- the damage factor analysis processing unit 63 ends the flow of the second risk evaluation step S4.
- FIG. 20 is an explanatory view for explaining the damage information display step S24 of FIG.
- the damage information 89 is a display screen created by the damage information display processing unit 64 in the damage information display step S24 and displayed by the display unit 65, and as shown in FIG.
- the information on appearance and the information on the damage occurring section 88 identified as the section in which the damage is occurring are included.
- the damage information 89 thus enables easy understanding of the damage factor and the section in which the damage is occurring, by simply looking at it.
- the time series change data 111 indicating the behavior of the time series change of the signal data set 106 used by the second risk evaluation unit 60 by the maintenance evaluation unit 70 included in the second control unit 44. It is a step which evaluates the life of the fuselage 2, the time of repair, the plan of maintenance, etc. based on it.
- the maintenance evaluation unit 70 performs normal / abnormal judgment result data 108 in the first risk evaluation unit 50, damage judgment result data 113 in the second risk evaluation unit 60, and the other first
- the remaining life evaluation algorithm is used to calculate the life of the airframe 2, and a predetermined ratio with respect to the calculated life of the airframe 2. It is a step which calculates the time of only approaching as a time of repair, and estimates a maintenance plan based on the calculated time of repair.
- the length Ld of the peeling portion 7 shown in FIGS. 10 and 12 may become longer due to time-series change.
- the progress degree of the damage can be calculated by the length Ld of the peeling portion 7, and the life of the airframe 2 can be evaluated and calculated.
- the first risk assessment unit 50 uses the signal data set 106 based on the measurement and the standard. To assess the risk of damage to the airframe 2 on the basis of the correlation with the reference data 105, the possibility of irreversible structural changes such as the peeling of the adhesive structure and the progress of the peeling on the airframe 2 of the aircraft 1 Can be extracted appropriately. Further, according to the soundness diagnosis method of the aircraft by the soundness diagnosis device 10 of the aircraft and the soundness diagnosis device 10 of the aircraft, the second risk evaluation unit 60 evaluates that the first risk evaluation unit 50 has a risk of damage occurrence.
- the state evaluated by the first risk assessment unit 50 as being at risk of damage occurrence is irreversible in structural terms. It can be appropriately diagnosed whether it is a change of Further, according to the soundness diagnosis method of the aircraft by the soundness diagnosis device 10 of the aircraft and the soundness diagnosis device 10 of the aircraft, the maintenance evaluation unit 70 changes the time series change of the signal data set 106 used by the second risk evaluation unit 60. Since the life of the airframe 2, the timing of repair, and the maintenance plan are evaluated based on the behavior, the life of the airframe 2, the timing of repair, and the maintenance plan can be estimated with high accuracy.
- a control unit 40 is provided to the aircraft 1, and a first control unit 42 including a first risk evaluation unit 50; Information provided between the first control unit 42 and the second control unit 44 that is provided outside the aircraft 1 and includes the second risk evaluation unit 60 and the maintenance evaluation unit 70, and the first control unit 42 and the second control unit 44 And a communication unit 46.
- the soundness diagnosis method of the aircraft by the soundness diagnosis device 10 of the aircraft and the soundness diagnosis device 10 of the aircraft includes the possibility of the irreversible structural change by the first risk assessment unit 50, the flight of the aircraft 1.
- the first risk assessment unit 50 assesses that there is a risk of damage, whether it is an irreversible structural change or not, during the interval between operations of the aircraft 1 Since diagnosis can be performed in a period in which data of series change can be processed, it is possible to efficiently diagnose, for example, the exfoliation and the progress of the exfoliation of the adhesive structure in the airframe 2 of the aircraft 1 efficiently.
- the measuring instrument 20 measures measurement data 101 at a plurality of positions of the airframe 2 and at plural times.
- the environmental data 102 at the position and time are measured together, and the measured data 101 and the environmental data 102 are linked, and the storage unit 30 displays the environmental data 102 at a plurality of positions of the machine 2 where the measured data 101 is measured.
- the reference data 105 set for each assumed environment is stored, and in a state where the control unit 40 is associated with the environment data 102, a plurality of positions and a plurality of positions of the aircraft 2 are obtained based on the measurement data 101.
- a signal data set 106 is calculated at time.
- the soundness diagnosis method of the aircraft by the soundness diagnosis device 10 of the aircraft and the soundness diagnosis device 10 of the aircraft comprises the correlation between the signal data set 106 and the reference data 105 with the environmental data 102 combined. It can be used to evaluate the risk of the occurrence of the damage, so that irreversible structural changes in the airframe 2 of the aircraft 1 can be diagnosed more accurately.
- the first risk assessment unit 50 calculates a health index value based on the signal data set 106 according to the aircraft health diagnostic device 10 and the aircraft health diagnostic device 10, and stores the memory index 30. Assess whether the range specified in the judgment criteria obtained from is not exceeded. For this reason, the soundness diagnosis method of the aircraft by the soundness diagnosis device 10 of the aircraft and the soundness diagnosis device 10 of the aircraft uses a soundness index value which is an index of how far the signal data set 106 deviates from normal. Since the risk of occurrence of damage to the airframe 2 is evaluated, the possibility of irreversible structural changes in the airframe 2 of the aircraft 1 can be extracted with high accuracy.
- the soundness diagnostic method of the aircraft by the soundness diagnostic device 10 of the aircraft and the soundness diagnostic device 10 of the aircraft according to the present invention further comprises the second risk assessment unit 60 defining the judgment standard in the time series change of the soundness index value. It is evaluated whether or not the range defined by the determination standard acquired from the storage unit 30 is exceeded for a period of time or more. For this reason, the soundness diagnosis method of the aircraft by the soundness diagnosis device 10 of the aircraft and the soundness diagnosis device 10 of the aircraft uses a soundness index value which is an index of how far the signal data set 106 deviates from normal. Since the risk of occurrence of damage to the aircraft 2 is evaluated, irreversible structural changes in the aircraft 2 of the aircraft 1 can be diagnosed with high accuracy.
- the measuring instrument 20 measures the distortion of the optical fiber 22 and the optical fiber 22 distributed around the airframe 2. And an optical fiber strain gauge 24 for measuring strain data of the airframe 2 in which the optical fiber 22 is stretched.
- the soundness diagnosis method of the aircraft by the soundness diagnosis device 10 of the aircraft and the soundness diagnosis device 10 of the aircraft utilizes Brillouin scattered light generated in each part of the optical fiber 22 stretched around the airframe 2.
- strain distribution having high spatial resolution can be measured at high speed.
- the aircraft health diagnostic method using the aircraft health diagnostic device 10 and the aircraft health diagnostic device 10 diagnoses irreversible structural changes in the airframe 2 of the aircraft 1 with high speed and high spatial resolution. can do.
- Aircraft health diagnostic device 20 Measuring instrument 22 Optical fiber 24 Optical fiber strain measuring instrument 26 Environmental measuring instrument 30 Memory section 32 First memory section 34 2 storage unit 40 control unit 42 first control unit 44 second control unit 46 information communication unit 50 first risk evaluation unit 51 characteristic value calculation processing unit 52 signal data set creation processing unit 53 soundness index value calculation processing unit 54 signal data Set update processing unit 55 normal abnormality judgment processing unit 56 warning notification unit 60 second risk evaluation unit 61 time series change calculation processing unit 62 damage judgment processing unit 63 damage factor analysis processing unit 64 damage information display processing unit 65 display unit 70 maintenance evaluation Part 81, 82 Integrity index value 84, 86 Anomalous area 88 Damaged section 89 Damage information 101 Measurement data 102 Environmental data 103 Characteristic value data 104 Temporary signal data set 105, 105a, 105b Reference data 106 Signal data set 107 Normality judgment reference data 108 Normality judgment result data 109 Dist
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Transportation (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
航空機の機体における接着構造の剥離及び剥離の進展等を診断することを可能にする航空機の健全性診断装置及びその方法を提供する。航空機の健全性診断装置10は、航空機1の機体2の構造健全性モニタリングを行う制御部40を備える。制御部40は、計測器20が計測した計測データ101に基づく信号データセット106と記憶部30に記憶された基準データ105との相関関係に基づいて、機体2の損傷発生のリスクを評価する第1リスク評価部50と、信号データセット106の時系列変化の挙動に基づいて、機体2の損傷発生のリスクを評価する第2リスク評価部60と、信号データセット106の時系列変化の挙動に基づいて、機体2の寿命、修理の時期、及びメンテナンスの計画を評価するメンテナンス評価部70と、を有する。
Description
本発明は、航空機の健全性診断装置及び航空機の健全性診断方法に関する。
航空機は、定期航路によって大気中を長時間高速で飛行したり、一日に何回も離発着を繰り返したりする等、多種多様の運航がされている。このため、航空機は、胴体、主翼、尾翼等といった機体の様々な部位に常時あらゆる荷重を受けながら航行しているので、機体には、飛行時間に比例して疲労が蓄積する。このため、航空機は、運航ごと、飛行時間ごとの定期的サイクルで、主に航空機が地上に駐機しているとき点検保守が行われる。
従来、航空機は、熟練した整備員の巨視的または微視的な目視検査や超音波探傷装置、磁粉損傷装置、渦電流探傷装置、X線検査等の装置により、機体の凸凹の歪み及びき裂等の損傷及び破損が検査されていた。また、航空機は、単純に飛行時間と離発着回数により、金属疲労についての管理がされてきた(例えば、特許文献1参照)。
ところで、近年、航空機は、機体の更なる軽量化を図るために、機体に、強化繊維に樹脂を含浸させた複合材料の接着構造が用いられるようになってきている。航空機は、機体が接着構造である場合、機体があらゆる荷重を受けることで、接着構造に剥離が発生する可能性がある。しかしながら、特許文献1の装置及び方法は、航空機の機体が接着構造である場合を想定しておらず、航空機の機体における接着構造の剥離及び剥離の進展等を診断することができないという問題があった。
本発明は、上記に鑑みてなされたものであって、航空機の機体が接着構造である場合において、航空機の機体における接着構造の剥離及び剥離の進展等を診断することを可能にする航空機の健全性診断装置及び航空機の健全性診断方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、航空機の健全性診断装置は、航空機に設けられ、前記航空機に関する計測データを取得する計測器と、前記計測データの診断基準となる基準データを記憶する記憶部と、前記計測データ及び前記基準データに基づいて前記航空機の機体の構造健全性モニタリングを行う制御部と、を備え、前記制御部は、前記計測データに基づいて算出される信号データと前記基準データとの相関関係に基づいて、前記機体の損傷発生のリスクを評価する第1リスク評価部と、前記第1リスク評価部が損傷発生のリスクがあると評価した前記信号データの時系列変化の挙動に基づいて、前記機体の損傷発生のリスクを評価する第2リスク評価部と、前記第2リスク評価部で用いた前記信号データの時系列変化の挙動に基づいて、前記機体の寿命、修理の時期、及びメンテナンスの計画を評価するメンテナンス評価部と、を有することを特徴とする。
この構成によれば、第1リスク評価部が計測に基づく信号データと基準となる基準データとの相関関係に基づいて機体の損傷の発生のリスクを評価するので、航空機の機体における接着構造の剥離及び剥離の進展等といった不可逆的な構造上の変化の可能性を適切に抽出することができる。また、第2リスク評価部が、第1リスク評価部が損傷発生のリスクがあると評価した信号データの時系列変化の挙動に基づいて、機体の損傷発生のリスクを評価するので、第1リスク評価部が損傷発生のリスクがあると評価した状態が、不可逆的な構造上の変化であるか否かを適切に診断することができる。また、メンテナンス評価部が、第2リスク評価部で用いた信号データの時系列変化の挙動に基づいて、機体の寿命、修理の時期、及びメンテナンスの計画を評価するので、高い精度で機体の寿命、修理の時期、及びメンテナンスの計画を見積もることができる。
この構成において、前記制御部は、前記航空機に設けられ、前記第1リスク評価部を含む第1制御部と、前記航空機の外部に設けられ、前記第2リスク評価部と、前記メンテナンス評価部と、を含む第2制御部と、前記第1制御部と前記第2制御部との間で情報通信する情報通信部と、を有することが好ましい。この構成によれば、第1リスク評価部による不可逆的な構造上の変化の可能性を、航空機の飛行中にリアルタイムで抽出することができ、第1リスク評価部が損傷発生のリスクがあると評価した状態が不可逆的な構造上の変化であるか否かを、航空機の運航の合間の時系列変化のデータの処理が可能な期間に診断することができるので、時間的に効率よく、航空機の機体における接着構造の剥離及び剥離の進展等を診断することができる。
これらの構成において、前記計測器は、前記機体の複数の位置及び複数の時間において前記計測データを計測し、前記機体の前記位置及び前記時間における環境データを併せて計測し、前記計測データと前記環境データとを紐付けし、前記記憶部は、前記計測データが計測される前記機体の複数の位置において、前記環境データと想定される環境ごとに設定された前記基準データを記憶しており、前記制御部は、前記環境データと紐付けされた状態で、前記計測データに基づいて、前記機体の複数の位置及び複数の時間において前記信号データを算出することが好ましい。この構成によれば、環境データを合わせた状態で信号データと基準データとの相関関係を機体の損傷の発生のリスクの評価に用いることができるので、航空機の機体における不可逆的な構造上の変化をより正確に診断することができる。
これらの構成において、前記第1リスク評価部は、前記信号データに基づいて健全性指標値を算出し、前記記憶部から取得した判断基準に規定される範囲を超えていないかどうかを評価することが好ましい。この構成によれば、信号データが正常からどの程度乖離しているかという指標である健全性指標値を用いて機体の損傷の発生のリスクを評価するので、航空機の機体における不可逆的な構造上の変化の可能性を高い精度で抽出することができる。
第1リスク評価部が健全性指標値を用いて評価する構成において、前記第2リスク評価部は、前記健全性指標値の時系列変化において、前記判断基準に規定される期間以上、前記記憶部から取得した判断基準に規定される範囲を超えていないかどうかを評価することが好ましい。この構成によれば、信号データが正常からどの程度乖離しているかという指標である健全性指標値を用いて機体の損傷の発生のリスクを評価するので、航空機の機体における不可逆的な構造上の変化を高い精度で診断することができる。
これらの構成において、前記計測器は、前記機体に張り巡らされた光ファイバと、前記光ファイバの歪みを計測することで前記光ファイバが張り巡らされた前記機体の歪みデータを計測する光ファイバ歪み計測器と、を含むことが好ましい。この構成によれば、機体に張り巡らされた光ファイバの各所で生じるブリルアン散乱光を利用して、ブリルアン光相関領域解析法を用いることで、高速で、高空間分解能を有する歪み分布を計測することができる。これにより、航空機の機体における不可逆的な構造上の変化を、高速かつ高空間分解能で、診断することができる。
上述した課題を解決し、目的を達成するために、航空機の健全性診断方法は、航空機に関する計測データを取得する計測データ取得ステップと、前記計測データに基づいて算出される信号データと基準データとの相関関係に基づいて、前記航空機の機体の損傷発生のリスクを評価する第1リスク評価ステップと、前記第1リスク評価ステップで損傷発生のリスクがあると評価した前記信号データの時系列変化の挙動に基づいて、前記機体の損傷発生のリスクを評価する第2リスク評価ステップと、前記第2リスク評価ステップで用いた前記信号データの時系列変化の挙動に基づいて、前記機体の寿命、修理の時期、及びメンテナンスの計画を評価するメンテナンス評価ステップと、を有することを特徴とする。
この構成によれば、第1リスク評価ステップで計測に基づく信号データと基準となる基準データとの相関関係に基づいて機体の損傷の発生のリスクを評価するので、航空機の機体における接着構造の剥離及び剥離の進展等といった不可逆的な構造上の変化の可能性を適切に抽出することができる。また、第2リスク評価ステップで、第1リスク評価ステップで損傷発生のリスクがあると評価した信号データの時系列変化の挙動に基づいて、機体の損傷発生のリスクを評価するので、第1リスク評価ステップで損傷発生のリスクがあると評価した状態が、不可逆的な構造上の変化であるか否かを適切に診断することができる。また、メンテナンス評価ステップで、第2リスク評価ステップで用いた信号データの時系列変化の挙動に基づいて、機体の寿命、修理の時期、及びメンテナンスの計画を評価するので、高い精度で機体の寿命、修理の時期、及びメンテナンスの計画を見積もることができる。
本発明によれば、航空機の機体が接着構造である場合において、航空機の機体における接着構造の剥離及び剥離の進展等を診断することを可能にする航空機の健全性診断装置及び航空機の健全性診断方法を提供することができる。
以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。
[第1の実施形態]
図1は、本発明の第1の実施形態に係る航空機の健全性診断装置10の概略構成図である。航空機の健全性診断装置10は、航空機1の機体2の構造健全性モニタリング(SHM、Structural Health Monitoring)を行う。すなわち、航空機の健全性診断装置10は、航空機1の機体2の構造が健全な状態であるか否かを診断する装置であり、機体2の損傷の発生のリスクを評価する。ここで、機体2は、航空機1の構造部分のことを言い、例えば、胴体部分、主翼部分、尾翼部分、及び、各構造部分の基本構成要素のパネル-ファスナ結合部、補強材の接着部等を含む。また、損傷は、物理的に不可逆な構造上の変化のことを言う。具体的には、損傷は、機体2において恒常的に構造上の欠点をもたらす剥離が例示される。
図1は、本発明の第1の実施形態に係る航空機の健全性診断装置10の概略構成図である。航空機の健全性診断装置10は、航空機1の機体2の構造健全性モニタリング(SHM、Structural Health Monitoring)を行う。すなわち、航空機の健全性診断装置10は、航空機1の機体2の構造が健全な状態であるか否かを診断する装置であり、機体2の損傷の発生のリスクを評価する。ここで、機体2は、航空機1の構造部分のことを言い、例えば、胴体部分、主翼部分、尾翼部分、及び、各構造部分の基本構成要素のパネル-ファスナ結合部、補強材の接着部等を含む。また、損傷は、物理的に不可逆な構造上の変化のことを言う。具体的には、損傷は、機体2において恒常的に構造上の欠点をもたらす剥離が例示される。
航空機の健全性診断装置10は、図1に示すように、計測器20と、記憶部30と、制御部40と、を備える。記憶部30は、第1記憶部32と、第2記憶部34と、を有する。制御部40は、第1制御部42と、第2制御部44と、情報通信部46と、を有する。第1記憶部32及び第1制御部42は、航空機1の内部に設けられている。第2記憶部34及び第2制御部44は、航空機1の外部、例えば、空港に設けられている。情報通信部46は、相互に情報通信する一対の通信機器であり、一方が航空機1の内部または航空機1の機体2の外壁に設けられ、他方が航空機1の外部、例えば、空港に設けられている。
第1制御部42は、計測器20、第1記憶部32及び情報通信部46と互いに情報通信可能に電気的に接続されている。第1制御部42は、計測器20の動作を制御する。第2制御部44は、第2記憶部34及び情報通信部46と互いに情報通信可能に電気的に接続されている。情報通信部46は、無線で第1制御部42と第2制御部44とを互いに情報通信可能に接続している。第1制御部42は、第1リスク評価部50を含む。第2制御部44は、第2リスク評価部60と、メンテナンス評価部70と、を含む。
図2は、図1の機体2の詳細の一例を示す構成図である。機体2は、図2に示すように、胴体部分が、スキン3と、ストリンガ4と、フレーム5と、ロンジロン6と、を有するセミモノコック構造が採用されたものが例示される。スキン3は、胴体部分を覆うように配置され、概ね円筒形状を形成している。スキン3は、軽量性及び高い強度を有し、炭素繊維等の強化繊維に、エポキシ系樹脂等の熱硬化性樹脂を含浸させて硬化させた複合材料が例示される。
ストリンガ4は、スキン3の内側に、スキン3が形成する円筒形状の軸方向に沿って、所定の間隔を開けて配列して設けられており、スキン3を内側から支えている。フレーム5は、スキン3及びストリンガ4の内側に、スキン3が形成する円筒形状の円周方向に沿って、ストリンガ4の間隔よりも広い間隔を開けて配列して設けられており、スキン3及びストリンガ4を内側から支えている。スキン3、ストリンガ4及びフレーム5の間は、シェアタイ(Shear Tie)とストラップ(Strap、帯板)とを用いて結合されている。ロンジロン6は、ストリンガ4よりも物理的に強力な部材が用いられ、スキン3の内側のうち、機体2の胴体部分に設けられた扉や窓によってストリンガ4を設けることができない箇所に設けられており、スキン3を内側から支えている。
なお、本発明では、機体2は、セミモノコック構造が採用されたものに限定されず、トラス構造(帆布)、トラス構造(波板金属板)、モノコック構造等のその他の接着構造が採用されたものであってもよい。
計測器20は、航空機1の内部または航空機1の機体2の外壁に設けられている。計測器20は、図1に示すように、光ファイバ22と、光ファイバ歪み計測器24と、環境計測器26と、を含む。計測器20は、光ファイバ歪み計測器24と環境計測器26とが、第1制御部42により制御されている。光ファイバ歪み計測器24は、第1制御部42の制御を受けて、一定時間ごとに、航空機1に関する計測データ101(図4等参照)を取得する。計測データ101は、計測範囲における位置分布及び各位置における時間変化で紐付けされたデータセットである。環境計測器26は、第1制御部42の制御を受けて、一定時間ごとに、航空機1の機体2の飛行姿勢、加速度、重量及び気圧等のフライトに関するデータである環境データ102(図4等参照)を取得する。環境データ102は、時間変化で紐付けされたデータセットである。光ファイバ歪み計測器24が計測データ101を取得するタイミングと、環境計測器26が環境データ102を取得するタイミングとは、互いに異なっていてもよいが、同期していることが好ましい。
光ファイバ22は、機体2に張り巡らされて設けられている。光ファイバ歪み計測器24は、光ファイバ22の両端が接続されており、光ファイバ22の各所で生じるブリルアン散乱光を利用して、ブリルアン光相関領域解析法(BOCDA、 Brillouin Optical Correlation Domain Analysis)を用いることで、高速で、機体2の全域について高空間分解能を有する歪み分布を計測することができる。環境計測器26は、航空機1の機体2の飛行姿勢、加速度、重量、気圧等の計測が可能な3次元加速度計及び気圧計等が例示される。
計測器20は、光ファイバ22と光ファイバ歪み計測器24とが、この形態に限定されることなく、その他の歪み分布を計測することが可能な光学的手段、音響センサ、導電性歪みゲージ及び薄膜式圧力センサ等であってもよい。また、計測器20は、歪み分布を計測する形態に限定されることなく、例えば、温度、圧力(応力)等の構造的な損傷に関係する物理量を計測する形態であってもよい。計測器20は、具体的には、歪み分布を計測する形態の他に、例えば、機体2の全域について温度分布を計測することができる温度計であってもよい。また、計測器20は、例えば、歪み分布を計測する形態と温度分布等のその他の分布を計測する形態とが共存した、複数種類の構造的な損傷に関係する物理量の計測が可能な形態であってもよい。
図3は、図1の機体2及び計測器20の詳細の一例を示す構成図である。計測器20を構成する光ファイバ22は、図3に示すように、スキン3の内側を網羅するように、ストリンガ4を避けて、ストリンガ4の付近を含むように、波状に張り巡らされて設けられている。光ファイバ22は、このように設けられているため、スキン3の全面について高空間分解能を有する歪み分布を計測することを可能とし、スキン3とストリンガ4との接着部分の歪み分布を計測することを可能にしている。
図4は、図1の第1リスク評価部50及び第1記憶部32の詳細の一例を示す構成図である。第1記憶部32は、図4に示すように、計測データ101、環境データ102、基準データ105、信号データセット106、正常異常判断基準データ107及び正常異常判断結果データ108を記憶する。
計測データ101は、計測器20が計測して得られる航空機1の機体2に関するデータであり、本実施形態では、光ファイバ22及び光ファイバ歪み計測器24によって計測される機体2の歪みの計測データ101が例示される。計測データ101は、これに限定されず、機体2の温度の計測データであってもよく、複数の航空機1の機体2に関するデータを含んでいてもよい。計測データ101は、計測範囲における位置分布及び各位置における時間変化で紐付けされたデータセットである。
環境データ102は、環境計測器26によって計測されるデータであり、航空機1の機体2の飛行姿勢、加速度、重量、気圧等のフライトに関するデータである。基準データ105は、第1リスク評価部50が計測データ101の診断基準として用いるデータであり、例えば、事前に機体2の健全性が正常であると診断された機体2を、想定される環境データ下で測定することで得られる計測データ101に基づくデータが採用され、予め第1記憶部32に記憶されている。また、基準データ105は、第1リスク評価部50によって正常であると診断された新たな基準データ105aで更新することもできる。
信号データセット106は、計測データ101、環境データ102及び基準データ105に基づいて第1リスク評価部50が作成したものであり、第1リスク評価部50が、これに基づいて機体2の損傷発生のリスクを評価する。正常異常判断基準データ107は、第1リスク評価部50が信号データセット106に基づいて機体2の損傷発生のリスクを評価する際の判断基準のデータである。正常異常判断結果データ108は、第1リスク評価部50が信号データセット106に基づいて機体2の損傷発生のリスクを評価したことで得られた判断結果のデータである。
第1記憶部32は、例えばRAM、ROM及びフラッシュメモリー等の記憶装置を有する。第1記憶部32は、上記した種々のデータに加え、第1制御部42により処理される航空機の健全性診断ソフトウェア、航空機の健全性診断プログラム、及び、この航空機の健全性診断ソフトウェア、航空機の健全性診断プログラムにより参照されるデータ等を記憶する。また、第1記憶部32は、第1制御部42が処理結果等を一時的に記憶する記憶領域としても機能する。
第1リスク評価部50は、図4に示すように、特性値演算処理部51と、信号データセット作成処理部52と、健全性指標値演算処理部53と、信号データセット更新処理部54と、正常異常判断処理部55と、を含む。第1リスク評価部50は、警告報知部56と情報通信可能に電気的に接続されている。
特性値演算処理部51は、光ファイバ歪み計測器24から取得した計測データ101から、航空機1の機体2の健全状態の物理モデルに合わせた統計的な特徴量に演算加工することで、特性値データ103を取得する。特性値データ103は、計測データ101と同様に、計測範囲における位置分布及び各位置における時間変化で紐付けされたデータセットである。ここで、統計的な特徴量は、分散値、平均値及び中央値が例示される。特性値データ103は、具体的には、複数の計測範囲における計測箇所または計測区間において算出され、複数の一定の時間間隔において算出され、算出されたそれぞれのデータが、計測範囲における計測箇所または計測区間の位置情報、及び、一定の時間間隔のタイムスタンプで紐付けされて作成される。特性値演算処理部51は、計測データ101を特性値データ103に演算加工することで、損傷の可能性を抽出する精度を高めることができる。
信号データセット作成処理部52は、特性値演算処理部51から取得した特性値データ103と、環境計測器26から取得した環境データ102と、外乱データ109(図16参照)とを、同じ時間変化で紐付けするように合わせることで、信号データセット106の仮の状態である仮信号データセット104を作成する。ここで、外乱データ109は、計測データ101に影響を与える外乱物理量としての温度等のデータである。外乱データ109は、計測器20に追加して設けられた温度計によって測定されたものが好適に用いられる。
健全性指標値演算処理部53は、信号データセット作成処理部52から取得した仮信号データセット104と、第1記憶部32から取得した基準データ105とに基づいて演算処理をし、健全性指標値を算出する。具体的には、健全性指標値演算処理部53は、所定の統計的な演算処理を実行して、仮信号データセット104の基準データ105からの乖離状態を一元的な健全性指標値として算出する。
健全性指標値演算処理部53は、仮信号データセット104及び基準データ105を、特性項目M次元(列)を有するデータ数N個(行)の多変量データとして扱い、品質工学の理論に基づくデータ処理方法であるマハラノビス・タグチメソッド(Mahalanobis Taguchi Method、以下、MT法と称する。)でこの多変量データを処理する。詳細には、健全性指標値演算処理部53は、基準データ105を正常な状態、すなわち基準として、基準データ105から仮信号データセット104がどれだけ乖離しているかを表すマハラノビス距離(Mahalanobis Distance、以下、MD値と称する。)を、健全性指標値として算出する。なお、MD値は、小さければ小さいほど正常な状態に近いことを表し、大きければ大きいほど正常な状態からは遠ざかっていて異常性が高いことを表す値である。MT法以外にも、異常性を示す指標として、T2統計量およびQ統計量のいずれか一つまたは、両方を用いる方法がある。なお、マハラノビス・タグチメソッド及びマハラノビス距離、またはT2統計量、Q統計量についての算出方法の詳細については、「入門 機械学習による異常検知、井手剛 著、コロナ社出版」、「ソフトセンサー入門」、船津公人 金子弘昌 共著、コロナ社出版」等に記載されているものが好適に採用される。
信号データセット更新処理部54は、健全性指標値演算処理部53から取得した仮信号データセット104と健全性指標値であるMD値とを、同じ時間変化で紐付けするように合わせることで、信号データセット106を作成する。
正常異常判断処理部55は、信号データセット更新処理部54から取得した信号データセット106と、第1記憶部32から取得した正常異常判断基準データ107とに基づいて、信号データセット106の元となる計測データ101が計測された際の航空機1の機体2のどの部分が構造上正常な状態で、どの部分が構造上正常な状態ではない構造上異常な状態である可能性があるかを判断する。
具体的には、正常異常判断処理部55は、まず、正常異常判断基準データ107に基づく判断基準により、信号データセット106のどの部分が正常な状態で、どの部分が異常な状態であるかを評価する。正常異常判断処理部55は、次に、信号データセット106のうち正常な状態にある部分が対応する航空機1の機体2の部分が構造上正常な状態であると評価し、信号データセット106のうち異常な状態にある部分が対応する航空機1の機体2の部分が構造上異常な状態である可能性があると評価する。そして、正常異常判断処理部55は、この判断結果に基づく正常異常判断結果データ108を作成する。
正常異常判断処理部55は、異常な状態である可能性のある部分がないと判断した場合には、信号データセット106の全部に基づいて新たな基準データ105aを作成する。また、正常異常判断処理部55は、第2リスク評価部60による機体2の損傷発生のリスクの評価を行う必要がないと判断する。この場合、第2リスク評価部60による機体2の損傷発生のリスクの評価が行われず、第1リスク評価部50による機体2の損傷発生のリスクの評価のみで、損傷発生のリスクの評価を終了する。
正常異常判断処理部55は、異常な状態である可能性のある部分があると判断した場合には、警告報知部56に異常な状態である可能性のある部分があると判断された旨の警報を報知させ、正常な状態と判断された部分の信号データセット106に基づいて新たな基準データ105aを作成する。また、正常異常判断処理部55は、第2リスク評価部60による機体2の損傷発生のリスクの評価を行う必要があると判断する。この場合、第2リスク評価部60による機体2の損傷発生のリスクの評価が行われる。
正常異常判断処理部55が用いる正常異常判断基準データ107は、健全性指標値の算出方法と、健全性指標値の正常と規定される範囲及び異常と規定される範囲との関係を示すデータである。例えば、正常異常判断処理部55が用いる正常異常判断基準データ107は、健全性指標値の算出方法としてMT法を採用する場合、健全性指標値であるMD値が所定の閾値を超えない範囲に入っていれば正常であり、所定の閾値以上の範囲に入っていれば異常であるという判断基準を示すデータである。
正常異常判断処理部55は、健全性指標値としてMD値が合わせられた信号データセット106に基づいて航空機1の機体2が構造上正常な状態であるか否かの可能性を判断する場合、全てのMD値が所定の閾値を超えなければ正常であると判断し、一部のMD値が所定の閾値以上であればその部分が異常である可能性があり、その他の部分が正常であると判断する。
このように、第1リスク評価部50は、計測データ101に基づいて算出される仮の信号データである仮信号データセット104と、基準データ105との相関関係に基づいて、航空機1の機体2における構造上異常な状態である可能性、すなわち不可逆的な構造上の変化の可能性を抽出することで、航空機1の機体2が損傷発生のリスクを有するか否かを評価する。
警告報知部56は、正常異常判断処理部55が信号データセット106に基づいて異常な状態である可能性のある部分があると判断した場合に、異常な状態である可能性のある部分があると判断された旨の警報を報知する旨の指令を正常異常判断処理部55より取得し、その旨の警報を報知する。警告報知部56は、音で報知する音報知器、点灯または点滅した光で報知する光報知器、及び音と光との両方で報知する複合報知器等が例示される。
第1制御部42は、例えば、CPU等の処理装置を有し、第1記憶部32から航空機の健全性診断ソフトウェア、航空機の健全性診断プログラム等を読み出して処理することで、航空機の健全性診断ソフトウェア、航空機の健全性診断プログラムに応じた機能を発揮する。具体的には、第1制御部42は、第1制御部42によって実行される航空機の健全性診断方法の一部の実行を可能にする機能である計測器20の制御機能、及び、第1リスク評価部50の処理機能等を発揮する。第1リスク評価部50の処理機能は、特性値演算処理部51の処理機能、信号データセット作成処理部52の処理機能、健全性指標値演算処理部53の処理機能、信号データセット更新処理部54の処理機能及び正常異常判断処理部55の処理機能等を含む。
第1記憶部32及び第1制御部42は、記憶装置と処理装置とが一体となった1台のコンピュータが例示される。なお、第1記憶部32及び第1制御部42は、1台のコンピュータによって実現されている形態に限定されることなく、一体とならずに分離した状態で実現されている形態でもよいし、2台以上のコンピュータによって実現されている形態でもよい。
図5は、図1の第2リスク評価部60及び第2記憶部34の詳細の一例を示す構成図である。第2記憶部34は、図5に示すように、時系列変化データ111、損傷判断基準データ112、損傷判断結果データ113及び損傷要因データ114を記憶する。
時系列変化データ111は、第1リスク評価部50が異常な状態である可能性のある部分があると判断した、すなわち損傷発生のリスクがあると評価した信号データセット106についての時系列変化の挙動を示すデータである。損傷判断基準データ112は、第2リスク評価部60が時系列変化データ111に基づいて機体2の損傷発生のリスクを評価する際の判断基準のデータである。損傷判断結果データ113は、第2リスク評価部60が時系列変化データ111に基づいて機体2の損傷発生のリスクを評価したことで得られた判断結果のデータである。損傷要因データ114は、第2リスク評価部60が時系列変化データ111に基づいて機体2の損傷の要因を分析したことで得られた機体2の損傷の要因の分析結果のデータである。
第2記憶部34は、例えばRAM、ROM及びフラッシュメモリー等の記憶装置を有する。第2記憶部34は、上記した種々のデータに加え、第2制御部44により処理される航空機の健全性診断ソフトウェア、航空機の健全性診断プログラム、及び、この航空機の健全性診断ソフトウェア、航空機の健全性診断プログラムにより参照されるデータ等を記憶する。また、第2記憶部34は、第2制御部44が処理結果等を一時的に記憶する記憶領域としても機能する。
第2リスク評価部60は、図5に示すように、時系列変化演算処理部61と、損傷判断処理部62と、損傷要因分析処理部63と、損傷情報表示処理部64と、を含む。第2リスク評価部60は、表示部65と情報通信可能に電気的に接続されている。
時系列変化演算処理部61は、第1リスク評価部50から情報通信部46を介して取得した、第1リスク評価部50が損傷発生のリスクがあると評価した信号データセット106に基づいて、時系列変化データ111を作成する。具体的には、時系列変化演算処理部61は、信号データセット106に含まれている、特性値データ103に含まれる種々の値及び健全性指標値のうち少なくとも1つの値についての時系列変化の挙動を示すデータを作成し、このデータを時系列変化データ111とする。
損傷判断処理部62は、時系列変化演算処理部61から取得した時系列変化データ111と、第2記憶部34から取得した損傷判断基準データ112とに基づいて、時系列変化データ111の元となる計測データ101が計測された際の航空機1の機体2のどの部分が不可逆的な構造上の変化が見られない正常な状態で、どの部分が不可逆的な構造上の変化が見られる異常な状態であるかを判断する。
具体的には、損傷判断処理部62は、まず、損傷判断基準データ112に基づく判断基準により、時系列変化データ111のどの部分が正常な状態で、どの部分が異常な状態であるかを評価する。損傷判断処理部62は、次に、時系列変化データ111のうち正常な状態にある部分が対応する航空機1の機体2の部分が構造上正常な状態であると評価し、時系列変化データ111のうち異常な状態にある部分が対応する航空機1の機体2の部分が構造上異常な状態であると評価する。そして、損傷判断処理部62は、この判断結果に基づく損傷判断結果データ113を作成する。
損傷判断処理部62は、異常な状態の部分がないと判断した場合には、損傷情報表示処理部64に、異常な状態の部分がない旨の表示画面を作成させる。損傷情報表示処理部64は、表示部65に異常な状態の部分がない旨の表示画面を表示させて、第2リスク評価部60による機体2の損傷発生のリスクの評価を終了する。
損傷判断処理部62は、異常な状態の部分があると判断した場合には、損傷要因分析処理部63に、異常な状態となっている損傷要因を分析させる。ここで、損傷要因とは、健全性指標が大きく変更した時の要因、すなわち、統計的な意味での要因を指し、データ変数を指す。損傷要因分析処理部63は、計測位置に紐付けされた特徴量を変数として処理をするので、計測位置に紐付けされた特徴量を特定し同時に損傷箇所と特定するための解析をする処理を行う。
損傷要因分析処理部63は、損傷判断処理部62から時系列変化データ111及び損傷判断結果データ113を取得し、異常な状態となっている損傷及びその要因を分析し、その分析結果に基づく損傷要因データ114を作成する。そして、損傷要因分析処理部63は、損傷情報表示処理部64に、損傷要因データ114に基づく表示画面を作成させる。損傷情報表示処理部64は、表示部65に損傷要因データ114に基づく表示画面を表示させて、第2リスク評価部60による機体2の損傷発生のリスクの評価を終了する。
損傷判断処理部62が用いる損傷判断基準データ112は、時系列変化データ111に用いた値と、その値の正常と規定される範囲及び異常と規定される範囲と、その値が異常と規定される範囲の値を取り続けることで異常な状態の部分があると規定される期間と、の関係を示すデータである。例えば、損傷判断処理部62が用いる損傷判断基準データ112は、MT法で算出された健全性指標値であるMD値を時系列変化データ111に用いた場合、MD値が所定の閾値以上の範囲の値を所定の期間以上取り続ければ異常な状態の部分がある、すなわち、不可逆な構造上の変化が見られるということを示すデータである。
損傷判断処理部62は、MT法で算出されたMD値を時系列変化データ111に基づいて、航空機1の機体2が構造上正常な状態であるか否かを判断する場合、MD値が所定の閾値以上の範囲の値を所定の期間以上取り続けることがなければ正常であると判断し、一部のMD値が所定の閾値以上の範囲の値を所定の期間以上取り続けることがあればその部分が異常であり、その他の部分が正常であると判断する。
このように、第2リスク評価部60は、第1リスク評価部50が損傷発生のリスクがあると評価した信号データセット106の時系列変化の挙動に基づいて、航空機1の機体2における不可逆的な構造上の変化を診断することで、航空機1の機体2が損傷発生のリスクを有するか否かを評価する。
メンテナンス評価部70は、第2リスク評価部60で用いた信号データセット106の時系列変化の挙動を示す時系列変化データ111に基づいて、機体2の寿命、修理の時期、及びメンテナンスの計画等を評価する。具体的には、メンテナンス評価部70は、第1リスク評価部50における正常異常判断結果データ108、第2リスク評価部60における損傷判断結果データ113、及び、その他の第1リスク評価部50と第2リスク評価部60とのリスクの評価の結果等に基づき、余寿命評価アルゴリズムを用いて、機体2の寿命を算出し、算出した機体2の寿命に対して所定の割合だけ近づく時期を修理の時期として算出し、算出した修理の時期に基づいてメンテナンスの計画を見積もる。
第2制御部44は、例えば、CPU等の処理装置を有し、第2記憶部34から航空機の健全性診断ソフトウェア、航空機の健全性診断プログラム等を読み出して処理することで、航空機の健全性診断ソフトウェア、航空機の健全性診断プログラムに応じた機能を発揮する。具体的には、第2制御部44は、第2制御部44によって実行される航空機の健全性診断方法の一部の実行を可能にする機能である第2リスク評価部60の処理機能、及び、メンテナンス評価部70の処理機能等を発揮する。第2リスク評価部60の処理機能は、時系列変化演算処理部61の処理機能、損傷判断処理部62の処理機能、損傷要因分析処理部63の処理機能及び損傷情報表示処理部64の処理機能等を含む。
第2記憶部34及び第2制御部44は、記憶装置と処理装置とが一体となった1台のコンピュータが例示される。なお、第2記憶部34及び第2制御部44は、1台のコンピュータによって実現されている形態に限定されることなく、一体とならずに分離した状態で実現されている形態でもよいし、2台以上のコンピュータによって実現されている形態でもよい。
以上のような構成を有する第1の実施形態に係る航空機の健全性診断装置10の作用について以下に説明する。図6は、本発明の第1の実施形態に係る航空機の健全性診断方法のフローチャートである。第1の実施形態に係る航空機の健全性診断方法は、第1の実施形態に係る航空機の健全性診断装置10によって実行される処理方法である。第1の実施形態に係る航空機の健全性診断方法について、図6を用いて説明する。第1の実施形態に係る航空機の健全性診断方法は、図6に示すように、計測データ取得ステップS1と、第1リスク評価ステップS2と、第2リスク評価ステップ要否判断ステップS3と、第2リスク評価ステップS4と、メンテナンス評価ステップS5と、を有する。
計測データ取得ステップS1は、航空機1の飛行中に、第1制御部42が計測器20を制御して、計測器20により計測データ101を取得するステップである。計測データ取得ステップS1では、具体的には、第1制御部42が計測器20の光ファイバ歪み計測器24を制御して、光ファイバ歪み計測器24により光ファイバ22の各所で生じるブリルアン散乱光に対してブリルアン光相関領域解析法を用いることで、機体2の全域について高空間分解能を有する歪み分布の計測データ101を取得する。
また、計測データ取得ステップS1に併せて、航空機1の飛行中に、第1制御部42が計測器20を制御して、計測器20により環境データ102を取得する。具体的には、第1制御部42が計測器20の環境計測器26を制御して、航空機1の機体2の飛行姿勢、加速度、重量及び気圧等のフライトに関するデータである環境データ102を取得する。
図7は、図4の計測データ101の一例を示す図である。計測データ101は、図7に示すように、計測範囲における位置z1,z2,z3,z4,・・・、及び、各位置における時間t1,t2,t3,t4,・・・で紐付けされた歪みεのデータセットである。
図8は、図4の計測データ101を説明する説明図である。計測データ101は、図8に示すように、時間t1における歪みεの計測範囲の各位置z1,z2,z3,z4,・・・における依存性を示す位置分布データε(z)、時間t2における位置分布データε(z)、時間t3における位置分布データε(z)、時間t4における位置分布データε(z)、・・・と位置分布データε(z)が束ねられたデータセットである。また、計測データ101は、角度を変えて見れば、図8に示すように、位置z1における歪みεの計測範囲の各時間t1,t2,t3,t4,・・・における依存性を示す時系列データε(t)、位置z2における時系列データε(t)、位置z3における時系列データε(t)、位置z4における時系列データε(t)、・・・と時系列データε(t)が束ねられたデータセットである。
第1リスク評価ステップS2は、第1制御部42に含まれる第1リスク評価部50が、計測データ101を用いて、航空機1の機体2における構造上異常な状態である可能性、すなわち不可逆的な構造上の変化の可能性を抽出することで、航空機1の機体2が損傷発生のリスクを有するか否かを評価するステップである。
図9は、図6の第1リスク評価ステップS2の詳細を示すフローチャートである。第1リスク評価ステップS2について、図9を用いて詳細を説明する。第1リスク評価ステップS2は、図9に示すように、計測データ及び環境データ取得ステップS11と、特性値演算ステップS12と、信号データセット作成ステップS13と、健全性指標値演算ステップS14と、信号データセット更新ステップS15と、正常異常判断ステップS16と、警告報知ステップS17と、を有する。
計測データ及び環境データ取得ステップS11は、第1リスク評価部50が、計測データ取得ステップS1で第1制御部42が取得した計測データ101と、計測データ取得ステップS1に併せて第1制御部42が取得した環境データ102と、を取得するステップである。
図10は、図1の機体2の破損箇所の一例を示す図である。図11は、図10の箇所における基準データ105の一例を示す図である。図12は、図10の箇所における計測データ101の一例を示す図である。計測データ及び環境データ取得ステップS11について、図10、図11及び図12を用いて詳細を説明する。
図10に示された機体2の箇所は、スキン3と、スキン3に設けられた長さLsのストリンガ4と、スキン3におけるストリンガ4の近傍にストリンガ4に沿って設けられた光ファイバ22と、スキン3とストリンガ4との間に発生した長さLdの剥離部7と、を有する。なお、長さLdは、長さLsよりも短い。機体2の図10に示された箇所は、スキン3における計測箇所が位置Zsから位置Zeまでの間となっており、ストリンガ4が設けられた領域が位置Zaから位置Zbまでの間となっており、剥離部7が発生した領域が位置Z1から位置Z2までの間となっている。剥離部7は、落雷及び鳥の衝撃に例示される外的な衝撃8によって発生した異常であり、不可逆な構造上の変化である。図10に示された上下方向の矢印は、図10に示された機体2の箇所に加えられる荷重を模式的に図示したものであり、Z軸方向に沿って荷重σが印加されていることを示している。荷重σは、航空機1の飛行中に時間的に変化するパラメータであり、計測器20で特に測定していない場合、環境データ102に基づいて推測されるパラメータである。
図10に示された機体2の箇所における基準データ105は、剥離部7が発生していない場合で、荷重σがF1,F2,F3のそれぞれの場合に計測された計測データ101である。なお、F3はF2より大きい値であり、F2はF1より大きい値である。図10に示された機体2の箇所における基準データ105は、図11に示すように、Z軸方向において、ストリンガ4が設けられていない領域である位置Zsから位置Zaまでの間及び位置Zbから位置Zeまでの間の各領域の方が、ストリンガ4が設けられた領域である位置Zaから位置Zbまでの間の領域よりも、歪みεが大きいという位置分布を有している。また、図10に示された機体2の箇所における基準データ105は、図11に示すように、Z軸方向におけるストリンガ4の境界線上である位置Za及び位置Zbの付近で歪みεが極値を取って大きく変化しているという傾向を有している。また、図10に示された機体2の箇所における基準データ105は、図11に示すように、荷重σがF1,F2,F3と大きくなるにつれて、歪みεが大きくなっている傾向を有している。
図10に示された機体2の箇所における計測データ101は、剥離部7が発生している場合で、荷重σがF1,F2,F3のそれぞれの場合に計測されたものである。図10に示された機体2の箇所における計測データ101は、図12に示すように、図11に示した基準データ105と比較して、剥離部7が発生した領域である位置Z1から位置Z2までの間の領域における歪みεが大きいという位置分布を有している。また、図10に示された機体2の箇所における計測データ101は、図12に示すように、剥離部7が発生した領域の境界線上である位置Z1及び位置Z2の付近で歪みεが極値を取って大きく変化しているという、図11に示した基準データ105にはない傾向を有している。
第1リスク評価部50は、図11及び図12に示すように、荷重σがF1,F2,F3のそれぞれの場合に分けて計測データ101と基準データ105とを比較することができれば、より高い精度で、剥離部7が発生した領域を抽出することを以って、損傷発生のリスクを有すると診断することができる。そこで、第1リスク評価部50は、計測データ及び環境データ取得ステップS11を実行して、基準データ105と比較するための計測データ101と併せて、荷重σの推測を可能にする環境データ102を取得することで、荷重σがF1,F2,F3のそれぞれの場合に分けて比較することが可能になる。
特性値演算ステップS12は、特性値演算処理部51が、計測データ101において航空機1の機体2の健全状態の物理モデルに合わせた統計的な特徴量を抽出し、計測データ101をこの特徴量に演算加工することで、特性値データ103を取得するステップである。
図13は、図10の箇所における計測データ101から特性値データ103を算出することを説明する説明図である。図14は、図10の箇所における特性値データ103と基準データ105を特性値に換算した基準データ105bとを示す図である。特性値演算ステップS12について、図13及び図14を用いて詳細を説明する。
特性値演算ステップS12では、まず、特性値演算処理部51が、図13に示すように、Z軸方向に規定される計測範囲を、Z軸方向の幅が微小な複数の位置区間Δz(スライド窓区画)に分割する。位置区間Δzは、Z軸方向の計測データ101の取得間隔である計測位置間隔δzと同じに設定してもよいし、計測位置間隔δzよりも大きく設定してもよい。以下において、位置区間Δzをそれぞれ区別する場合、Z軸方向に順に位置区間Δz1,Δz2,・・・と称する。すなわち、位置区間Δzn(n=1,2,・・・)と称する。位置区間Δznは、中心位置znに対して±Z方向にそれぞれΔz/2ずつ幅を持つ区間であり、具体的には、zn-Δz/2以上zn+Δz/2以下の区間である。ここで、スライド窓の手法を用いるとその窓区間内のスカラー値同士の相関関係としてベクトル値として扱える。そのベクトル値は、統計的異常検知手法の特徴量として扱うことができ、その特徴量を用いると健全性指標値の感度が高くする事が期待できる。特性値演算ステップS12では、次に、特性値演算処理部51が、統計的な特徴量として、例えば、分散値、平均値及び中央値といった特性値を抽出し、分割した各位置区間において、これらの特性値を算出する。特性値演算ステップS12では、図13に示す例では、特性値演算処理部51が、分割した各位置区間Δzにおける歪みεの分散値εa(特性値a)、平均値εb(特性値b)及び中央値εc(特性値c)を算出する。
特性値演算ステップS12では、そして、特性値演算処理部51が、Z軸方向に規定される計測範囲についてした演算処理と同様の演算処理を、その他の空間方向についても実行する必要があれば実行して、その他の空間方向についても分割した空間における特性値を算出することで、特性値データ103を取得することができる。
図10の箇所における基準データ105に基づいて特性値演算処理部51が特性値演算ステップS12を実行することで取得される特性値に換算した基準データ105は、図14に示すように、歪みεが極値を取って大きく変化している位置を含む位置区間Δz1等において、歪みεの特性値(特徴量)である分散値εaが極値を取って大きく変化しているという傾向を有している。
図10の箇所における計測データ101に基づいて特性値演算処理部51が特性値演算ステップS12を実行することで取得された特性値データ103は、図14に示すように、歪みεが極値を取って大きく変化している位置を含む位置区間Δz1,Δz10,Δz13等において、歪みεの特性値(特徴量)である分散値εaが極値を取って大きく変化しているという傾向を有している。
特性値データ103は、ストリンガ4の境界線上である位置Za及び位置Zbを含む位置区間Δz1等において、歪みεの特性値(特徴量)である分散値εaが極値を取って大きく変化しているという傾向を有しているが、特性値に換算した基準データ105bも同様に、位置区間Δz1等において、分散値εaが極値を取って大きく変化しているという傾向を有している。一方、特性値データ103は、剥離部7が発生した領域の境界線上である位置Z1及び位置Z2を含む位置区間Δz10,Δz13において、歪みεの特性値(特徴量)である分散値εaが極値を取って大きく変化しているという傾向を有しているが、特性値に換算した基準データ105bは、位置区間Δz10,Δz13において、分散値εaが極値を取って大きく変化しているという傾向を有さない。このことから、剥離部7の発生とは関係のない位置区間Δz1等においては、特性値データ103と特性値に換算した基準データ105bとが共通の傾向を有し、剥離部7の発生と関係のある位置区間Δz10,Δz13においては、特性値データ103と特性値に換算した基準データ105bとが異なる傾向を有するものとなっていることがわかる。
そこで、第1リスク評価部50は、特性値演算ステップS12を実行して、計測データ101を特性値データ103に演算加工し、基準データ105を特性値に換算した基準データ105bに演算加工することで、剥離部7などの損傷の可能性を抽出する精度を高めることができる。
なお、特性値データ103は、剥離部7が発生した領域の境界線上である位置Z1及び位置Z2を含む位置区間Δz10,Δz13の間の領域のうち、位置区間Δz10を中心としたピークの右側の裾野と位置区間Δz13を中心としたピークの左側の裾野との間の谷となっている変化の少ない領域において、歪みεの特性値(特徴量)である分散値εaが、特性値に換算した基準データ105bと同様の値を示している。しかし、剥離部7が発生した領域の境界線上である位置Z1及び位置Z2を含む位置区間Δz10,Δz13の間の領域においては、歪みεの特性値(特徴量)として平均値εb及び中央値εcを用いることで、特性値データ103と特性値に換算した基準データ105bとの間の差異を見出すことができる。すなわち、特性値データ103は、損傷している部分が存在する場合、その損傷している部分において、分散値εa、平均値εb及び中央値εcの少なくともいずれか1つにおいて、特性値に換算した基準データ105bは異なるデータを示す。ここでは、特性値演算ステップS12の処理を説明するために分散値εaのみを例示しており、平均値εb及び中央値εcの例示を省略している。
このように、複数種類の特定値を用いることで、特性値データ103と特性値に換算した基準データ105bとの差異を見出すことができる。このため、統計的な手法を用いて算出する健全性指標値を採用することで、剥離部7などの損傷の可能性を抽出する精度を高めることができる。具体的には、それらの特定値がどの程度その損傷に寄与しているかを示す優劣を要因分析により定量的に分析して、例えば、SN(Signal Noise)比を算出して、この分析結果に基づいて特定値を適切に組み合わせた値を用いることで、剥離部7などの損傷の可能性を抽出する精度を高めることができる。
図15は、図4の特性値データ103の一例を示す図である。特性値データ103は、図15に示すように、計測範囲における位置区間Δz1,Δz2,Δz3,Δz4,・・・、及び、各位置における時間t1,t2,t3,t4,・・・で紐付けされた歪みεの分散値εa(特性値a)、平均値εb(特性値b)及び中央値εc(特性値c)のデータセットである。
信号データセット作成ステップS13は、信号データセット作成処理部52が、特性値演算処理部51から取得した特性値データ103と、環境計測器26から取得した環境データ102と、外乱データ109とを、同じ時間変化で紐付けするように合わせることで、信号データセット106の仮の状態である仮信号データセット104を作成するステップである。
図16は、図4の仮信号データセット104の一例を示す図である。仮信号データセット104は、図16に示すように、特性値データ103と、環境データ102と、外乱データ109と、が同じ時間変化で紐付けされたデータセットである。仮信号データセット104は、図16に示すように、同じ時間で紐付けされた時間をデータindexとして行方向に、特性値データ103の特定項目、環境データ102の特性項目及び外乱データ109の各特定項目が列方向に、整理されたデータセットが例示される。
健全性指標値演算ステップS14は、健全性指標値演算処理部53が、信号データセット作成処理部52から取得した仮信号データセット104と、第1記憶部32から取得した基準データ105とに基づいて演算処理をし、健全性指標値を算出するステップである。健全性指標値演算ステップS14では、具体的には、健全性指標値演算処理部53が、所定の統計的な演算処理、例えばMT法に基づく演算処理を実行して、仮信号データセット104の基準データ105からの乖離状態を一元的な健全性指標値、例えばMD値として算出する。
信号データセット更新ステップS15は、信号データセット更新処理部54が、健全性指標値演算処理部53から取得した仮信号データセット104と健全性指標値であるMD値とを、同じ時間変化で紐付けするように合わせることで、信号データセット106を作成するステップである。
正常異常判断ステップS16は、正常異常判断処理部55が、信号データセット更新処理部54から取得した信号データセット106と、第1記憶部32から取得した正常異常判断基準データ107とに基づいて、信号データセット106の元となる計測データ101が計測された際の航空機1の機体2のどの部分が構造上正常な状態で、どの部分が構造上正常な状態ではない構造上異常な状態である可能性があるかを判断し、この判断結果に基づく正常異常判断結果データ108を作成するステップである。
図17は、図9の正常異常判断ステップS16及び図6の第2リスク評価ステップS4を説明する説明図である。異常発生の閾値MDthは、図17に示すように、時間によって変化しない所定の閾値に設定されている。異常発生の閾値MDthは、その値を上回る(例えば、以上となる)と、異常発生の可能性があると正常異常判断処理部55が判断し、その値を下回る(例えば、未満となる)と、異常ではない正常な状態であると正常異常判断処理部55が判断する、基準値である。正常平均は、図17に示すように、異常発生の閾値MDthの1/2の値が例示される値であり、異常ではない正常な状態の平均値の目安として図17に記載されている。健全性指標値81は、航空機1のA回目の飛行中に計測した計測データ101から算出されたMD値の時系列変化である。健全性指標値82は、航空機1のB回目の飛行中に計測した計測データ101から算出されたMD値の時系列変化である。
健全性指標値81は、図17に示すように、全ての飛行中の時間において、所定の閾値である異常発生の閾値MDthを下回っている。このため、正常異常判断ステップS16では、正常異常判断処理部55が、どの時間における健全性指標値81を取り出して判断しても、異常な状態である可能性のある部分がないと判断する。その後、正常異常判断処理部55は、信号データセット106の全部に基づいて新たな基準データ105aを作成した後、正常異常判断ステップS16におけるNoの矢印に従い、第1リスク評価ステップS2を終了させる。
健全性指標値82は、図17に示すように、飛行中の時間t1から時間t2までの間と、時間t3から到着までの間とにおいて、異常発生の閾値MDthを上回っている。ここで、異常発生の閾値MDthを上回っている時間t1から時間t2までの間の領域を、異常領域84と称する。また、異常発生の閾値MDthを上回っている時間t3から到着までの間の領域を、異常領域86と称する。このため、正常異常判断ステップS16では、正常異常判断処理部55が、異常領域84と異常領域86とにおける健全性指標値82を取り出して判断した場合、異常な状態である可能性のある部分があると判断する。その後、正常異常判断処理部55は、正常な状態である部分と、異常な状態である可能性のある部分とを切り分け、信号データセット106のうち正常な状態である部分に基づいて新たな基準データ105aを作成した後、正常異常判断ステップS16におけるYesの矢印に従い、第1リスク評価ステップS2のフローを警告報知ステップS17へ進める。
警告報知ステップS17は、まず、正常異常判断処理部55が、正常異常判断ステップS16で、異常な状態である可能性のある部分があると判断した場合(正常異常判断ステップS16でYes)、警告報知部56に異常な状態である可能性のある部分があると判断された旨の警報を報知させる。警告報知ステップS17は、次に、警告報知部56が、異常な状態である可能性のある部分があると判断された旨の警報を報知する旨の指令を正常異常判断処理部55より取得し、その旨の警報を報知するステップである。正常異常判断処理部55は、警告報知ステップS17の後、第1リスク評価ステップS2を終了させる。
本実施形態では、警告報知ステップS17では、異常な状態である可能性のある部分があると判断された旨の警報を報知しているが、本発明はこれに限定されず、異常な状態である可能性のある部分を説明する情報、例えば文章や画像等を、第1制御部42の第1リスク評価部50と電気的に接続された表示部に表示させてもよい。
図6に示す第2リスク評価ステップ要否判断ステップS3は、第2リスク評価部60による機体2の損傷発生のリスクの評価を行う必要があるか否かを判断するステップである。第2リスク評価ステップ要否判断ステップS3では、正常異常判断ステップS16において異常な状態である可能性のある部分がないと判断した場合、第2リスク評価部60による機体2の損傷発生のリスクの評価を行う必要がないと判断し、第2リスク評価ステップ要否判断ステップS3におけるNoの矢印に従い、図6における第2リスク評価ステップS4及びメンテナンス評価ステップS5が実行されることなく、航空機の健全性診断方法のフローを終了させる。
一方、第2リスク評価ステップ要否判断ステップS3では、正常異常判断ステップS16において異常な状態である可能性のある部分があると判断した場合、第2リスク評価部60による機体2の損傷発生のリスクの評価を行う必要があると判断し、第2リスク評価ステップ要否判断ステップS3におけるYesの矢印に従い、航空機の健全性診断方法のフローを図6における第2リスク評価ステップS4へ進める。
なお、第2リスク評価ステップ要否判断ステップS3の判断結果は、正常異常判断ステップS16の判断結果と一対一で対応するため、正常異常判断ステップS16を実行する正常異常判断処理部55が、正常異常判断ステップS16と併せて第2リスク評価ステップ要否判断ステップS3を実行してもよい。
このように、第1リスク評価ステップS2は、第1制御部42に含まれる第1リスク評価部50が、計測データ101に基づいて算出される仮の信号データである仮信号データセット104と、基準データ105との相関関係に基づいて、航空機1の機体2における構造上異常な状態である可能性、すなわち不可逆的な構造上の変化の可能性を抽出することで、航空機1の機体2が損傷発生のリスクを有するか否かを評価するステップである。
図6の第2リスク評価ステップS4は、第2制御部44に含まれる第2リスク評価部60が、第1リスク評価部50が損傷発生のリスクがあると評価した信号データセット106の時系列変化の挙動に基づいて、航空機1の機体2における不可逆的な構造上の変化を診断することで、航空機1の機体2が損傷発生のリスクを有するか否かを評価するステップである。
図18は、図6の第2リスク評価ステップS4の詳細を示すフローチャートである。第2リスク評価ステップS4について、図18を用いて詳細を説明する。第2リスク評価ステップS4は、図18に示すように、時系列変化演算ステップS21と、損傷判断ステップS22と、損傷要因分析ステップS23と、損傷情報表示ステップS24と、を有する。
時系列変化演算ステップS21は、時系列変化演算処理部61が、第1リスク評価部50から情報通信部46を介して取得した、第1リスク評価部50が損傷発生のリスクがあると評価した信号データセット106に基づいて、時系列変化データ111を作成するステップである。具体的には、時系列変化演算ステップS21は、時系列変化演算処理部61が、信号データセット106に含まれている、特性値データ103に含まれる種々の値及び健全性指標値のうち少なくとも1つの値についての時系列変化の挙動を示すデータを作成し、このデータを時系列変化データ111とするステップである。
図17に示す健全性指標値82は、航空機1のB回目の飛行中に計測した計測データ101に基づいて作成された信号データセット106に含まれているMD値についての時系列変化の挙動を示す時系列変化データ111であり、時系列変化演算ステップS21において時系列変化演算処理部61が作成したものである。
損傷判断ステップS22は、損傷判断処理部62が、時系列変化演算処理部61から取得した時系列変化データ111と、第2記憶部34から取得した損傷判断基準データ112とに基づいて、時系列変化データ111の元となる計測データ101が計測された際の航空機1の機体2のどの部分が不可逆的な構造上の変化が見られない正常な状態で、どの部分が不可逆的な構造上の変化が見られる異常な状態であるかを判断し、この判断結果に基づく損傷判断結果データ113を作成するステップである。
時系列変化データ111である健全性指標値82は、図17に示すように、異常領域84において、時間t1から時間t2までの間の時間である時間ΔT1の間、異常発生の閾値MDthを上回っている。また、時系列変化データ111である健全性指標値82は、図17に示すように、異常領域86において、時間t3から到着までの間の時間である時間ΔT2の間、異常発生の閾値MDthを上回っている。ここで、損傷判断基準データ112では、異常発生の閾値MDthを上回っている時間が閾値ΔTth未満である場合、不可逆的な構造上の変化が見られない正常な状態であると判断し、異常発生の閾値MDthを上回っている時間が閾値ΔTth以上である場合、不可逆的な構造上の変化が見られる異常な状態であると判断するように規定されている。また、閾値ΔTthは、時間ΔT1よりも長く、時間ΔT2よりも短い期間である。このため、損傷判断ステップS22では、損傷判断処理部62が、健全性指標値82の異常領域84については不可逆的な構造上の変化が見られない正常な状態であると判断し、健全性指標値82の異常領域86については不可逆的な構造上の変化が見られる異常な状態であると判断する。また、損傷判断ステップS22では、損傷判断処理部62が、不可逆的な構造上の変化が見られる異常な状態であると判断した健全性指標値82の異常領域86において、健全性指標値82のピークとなっている時間txを、この異常な状態と関連のあるパラメータとして認識する。
損傷判断ステップS22では、損傷判断処理部62が、異常な状態の部分がないと判断した場合には、損傷情報表示処理部64に、異常な状態の部分がない旨の表示画面を作成させる。また、損傷判断ステップS22では、損傷情報表示処理部64が、表示部65に異常な状態の部分がない旨の表示画面を表示させて、損傷判断ステップS22におけるNoの矢印に従い、第2リスク評価ステップS4のフローを終了させる。また、損傷判断ステップS22では、メンテナンス評価ステップS5を実行する必要がないと判断し、図6におけるメンテナンス評価ステップS5が実行されることなく、航空機の健全性診断方法のフローを終了させる。
一方、損傷判断ステップS22では、損傷判断処理部62が、健全性指標値82における異常領域86のような、異常な状態の部分があると判断した場合には、損傷要因分析処理部63に、異常な状態となっている損傷及びその要因を分析させる。そして、第2リスク評価ステップS4のフローを、損傷判断ステップS22におけるYesの矢印に従い、損傷要因分析ステップS23へ進める。
損傷要因分析ステップS23は、損傷要因分析処理部63が、損傷判断処理部62から時系列変化データ111及び損傷判断結果データ113を取得し、異常な状態となっている損傷要因を分析し、その分析結果に基づく損傷要因データ114を作成するステップである。損傷要因分析ステップS23の後、損傷要因分析処理部63は、第2リスク評価ステップS4のフローを損傷情報表示ステップS24へ進める。
損傷要因分析ステップS23では、損傷要因分析処理部63が、異常領域86における健全性指標値82に大きく寄与している特性値を抽出することで、異常な状態となっている損傷及びその要因を分析する。具体的には、健全性指標値82がMD値であることから、異常領域86においてMD値を高くすることに大きく寄与している特性値として、SN比の利得が高い特性値を抽出することで、異常な状態となっている損傷及びその要因を分析する。
図19は、図18の損傷要因分析ステップS23を説明する説明図である。図19には、異常領域86においてMD値を高くすることに大きく寄与している特性値の位置区間Δz分布データが示されている。この特性値の位置区間Δz分布データは、図19に示すように、位置区間Δz10,Δz11,Δz12,Δz13において、SN比の利得が顕著に高い特性値を有している。損傷要因分析ステップS23では、損傷要因分析処理部63が、このSN比の利得が顕著に高い特性値を有している位置区間Δz10,Δz11,Δz12,Δz13を抽出し、この抽出された特性値が連続している損傷発生区間88を、異常な状態となっており、損傷が発生している区間として特定する。そして、損傷要因分析ステップS23では、損傷要因分析処理部63が、異常な状態となっており、損傷が発生している区間として特定された損傷発生区間88における損傷要因を、例えば、スキン3とストリンガ4との剥離部7であるという風に、特定する。さらに、損傷要因分析ステップS23では、損傷要因分析処理部63が、損傷発生区間88を損傷が発生している区間として特定した区間であるという情報、及び、その要因が剥離部7であるという旨の情報を、損傷要因データ114とする。
損傷情報表示ステップS24は、まず、損傷要因分析処理部63が、損傷情報表示処理部64に、損傷要因データ114に基づく表示画面を作成させる。損傷情報表示ステップS24は、次に、損傷情報表示処理部64が、損傷要因データ114に基づく表示画面を作成し、損傷要因データ114に基づく表示画面を表示部65に表示させるステップである。損傷情報表示ステップS24では、損傷要因分析処理部63が、第2リスク評価ステップS4のフローを終了させる。
図20は、図18の損傷情報表示ステップS24を説明する説明図である。損傷情報89は、損傷情報表示ステップS24で損傷情報表示処理部64により作成され、表示部65により表示される表示画面であり、図20に示すように、剥離部7を含む図10の箇所における外観の情報と、損傷が発生している区間として特定された損傷発生区間88の情報と、を含む。損傷情報89は、このため、損傷要因と、損傷が発生している区間とを一瞥するだけで容易に理解することを可能にする。
図6のメンテナンス評価ステップS5は、第2制御部44に含まれるメンテナンス評価部70が、第2リスク評価部60で用いた信号データセット106の時系列変化の挙動を示す時系列変化データ111に基づいて、機体2の寿命、修理の時期、及びメンテナンスの計画等を評価するステップである。具体的には、メンテナンス評価ステップS5は、メンテナンス評価部70が、第1リスク評価部50における正常異常判断結果データ108、第2リスク評価部60における損傷判断結果データ113、及び、その他の第1リスク評価部50と第2リスク評価部60とのリスクの評価の結果等に基づき、余寿命評価アルゴリズムを用いて、機体2の寿命を算出し、算出した機体2の寿命に対して所定の割合だけ近づく時期を修理の時期として算出し、算出した修理の時期に基づいてメンテナンスの計画を見積もるステップである。
本発明の第1の実施形態のように、損傷の要因が剥離部7である場合、図10及び図12に示した剥離部7の長さLdは、時系列変化により長くなる場合がある。このような場合、剥離部7の長さLdにより、損傷の進行具合を算出することができ、機体2の寿命などを評価、算出することができる。
航空機の健全性診断装置10及び航空機の健全性診断装置10による航空機の健全性診断方法は、以上のような構成を有するので、第1リスク評価部50が計測に基づく信号データセット106と基準となる基準データ105との相関関係に基づいて機体2の損傷の発生のリスクを評価するため、航空機1の機体2における接着構造の剥離及び剥離の進展等といった不可逆的な構造上の変化の可能性を適切に抽出することができる。また、航空機の健全性診断装置10及び航空機の健全性診断装置10による航空機の健全性診断方法は、第2リスク評価部60が、第1リスク評価部50が損傷発生のリスクがあると評価した信号データセット106の時系列変化の挙動に基づいて、機体2の損傷発生のリスクを評価するので、第1リスク評価部50が損傷発生のリスクがあると評価した状態が、不可逆的な構造上の変化であるか否かを適切に診断することができる。また、航空機の健全性診断装置10及び航空機の健全性診断装置10による航空機の健全性診断方法は、メンテナンス評価部70が、第2リスク評価部60で用いた信号データセット106の時系列変化の挙動に基づいて、機体2の寿命、修理の時期、及びメンテナンスの計画を評価するので、高い精度で機体2の寿命、修理の時期、及びメンテナンスの計画を見積もることができる。
航空機の健全性診断装置10及び航空機の健全性診断装置10による航空機の健全性診断方法は、制御部40が、航空機1に設けられ、第1リスク評価部50を含む第1制御部42と、航空機1の外部に設けられ、第2リスク評価部60と、メンテナンス評価部70と、を含む第2制御部44と、第1制御部42と第2制御部44との間で情報通信する情報通信部46と、を有する。このため、航空機の健全性診断装置10及び航空機の健全性診断装置10による航空機の健全性診断方法は、第1リスク評価部50による不可逆的な構造上の変化の可能性を、航空機1の飛行中にリアルタイムで抽出することができ、第1リスク評価部50が損傷発生のリスクがあると評価した状態が不可逆的な構造上の変化であるか否かを、航空機1の運航の合間の時系列変化のデータの処理が可能な期間に診断することができるので、時間的に効率よく、航空機1の機体2における接着構造の剥離及び剥離の進展等を診断することができる。
航空機の健全性診断装置10及び航空機の健全性診断装置10による航空機の健全性診断方法は、計測器20が、機体2の複数の位置及び複数の時間において計測データ101を計測し、機体2の位置及び時間における環境データ102を併せて計測し、計測データ101と環境データ102とを紐付けし、記憶部30が、計測データ101が計測される機体2の複数の位置において、環境データ102と想定される環境ごとに設定された基準データ105を記憶しており、制御部40が、環境データ102と紐付けされた状態で、計測データ101に基づいて、機体2の複数の位置及び複数の時間において信号データセット106を算出する。このため、航空機の健全性診断装置10及び航空機の健全性診断装置10による航空機の健全性診断方法は、環境データ102を合わせた状態で信号データセット106と基準データ105との相関関係を機体2の損傷の発生のリスクの評価に用いることができるので、航空機1の機体2における不可逆的な構造上の変化をより正確に診断することができる。
航空機の健全性診断装置10及び航空機の健全性診断装置10による航空機の健全性診断方法は、第1リスク評価部50が、信号データセット106に基づいて健全性指標値を算出し、記憶部30から取得した判断基準に規定される範囲を超えていないかどうかを評価する。このため、航空機の健全性診断装置10及び航空機の健全性診断装置10による航空機の健全性診断方法は、信号データセット106が正常からどの程度乖離しているかという指標である健全性指標値を用いて機体2の損傷の発生のリスクを評価するので、航空機1の機体2における不可逆的な構造上の変化の可能性を高い精度で抽出することができる。
航空機の健全性診断装置10及び航空機の健全性診断装置10による航空機の健全性診断方法は、さらに、第2リスク評価部60が、健全性指標値の時系列変化において、判断基準に規定される期間以上、記憶部30から取得した判断基準に規定される範囲を超えていないかどうかを評価する。このため、航空機の健全性診断装置10及び航空機の健全性診断装置10による航空機の健全性診断方法は、信号データセット106が正常からどの程度乖離しているかという指標である健全性指標値を用いて機体2の損傷の発生のリスクを評価するので、航空機1の機体2における不可逆的な構造上の変化を高い精度で診断することができる。
航空機の健全性診断装置10及び航空機の健全性診断装置10による航空機の健全性診断方法は、計測器20が、機体2に張り巡らされた光ファイバ22と、光ファイバ22の歪みを計測することで光ファイバ22が張り巡らされた機体2の歪みデータを計測する光ファイバ歪み計測器24と、を含む。このため、航空機の健全性診断装置10及び航空機の健全性診断装置10による航空機の健全性診断方法は、機体2に張り巡らされた光ファイバ22の各所で生じるブリルアン散乱光を利用して、ブリルアン光相関領域解析法を用いることで、高速で、高空間分解能を有する歪み分布を計測することができる。これにより、航空機の健全性診断装置10及び航空機の健全性診断装置10による航空機の健全性診断方法は、航空機1の機体2における不可逆的な構造上の変化を、高速かつ高空間分解能で、診断することができる。
1 航空機
2 機体
3 スキン
4 ストリンガ
5 フレーム
6 ロンジロン
7 剥離部
8 衝撃
10 航空機の健全性診断装置
20 計測器
22 光ファイバ
24 光ファイバ歪み計測器
26 環境計測器
30 記憶部
32 第1記憶部
34 第2記憶部
40 制御部
42 第1制御部
44 第2制御部
46 情報通信部
50 第1リスク評価部
51 特性値演算処理部
52 信号データセット作成処理部
53 健全性指標値演算処理部
54 信号データセット更新処理部
55 正常異常判断処理部
56 警告報知部
60 第2リスク評価部
61 時系列変化演算処理部
62 損傷判断処理部
63 損傷要因分析処理部
64 損傷情報表示処理部
65 表示部
70 メンテナンス評価部
81,82 健全性指標値
84,86 異常領域
88 損傷発生区間
89 損傷情報
101 計測データ
102 環境データ
103 特性値データ
104 仮信号データセット
105,105a,105b 基準データ
106 信号データセット
107 正常異常判断基準データ
108 正常異常判断結果データ
109 外乱データ
111 時系列変化データ
112 損傷判断基準データ
113 損傷判断結果データ
114 損傷要因データ
2 機体
3 スキン
4 ストリンガ
5 フレーム
6 ロンジロン
7 剥離部
8 衝撃
10 航空機の健全性診断装置
20 計測器
22 光ファイバ
24 光ファイバ歪み計測器
26 環境計測器
30 記憶部
32 第1記憶部
34 第2記憶部
40 制御部
42 第1制御部
44 第2制御部
46 情報通信部
50 第1リスク評価部
51 特性値演算処理部
52 信号データセット作成処理部
53 健全性指標値演算処理部
54 信号データセット更新処理部
55 正常異常判断処理部
56 警告報知部
60 第2リスク評価部
61 時系列変化演算処理部
62 損傷判断処理部
63 損傷要因分析処理部
64 損傷情報表示処理部
65 表示部
70 メンテナンス評価部
81,82 健全性指標値
84,86 異常領域
88 損傷発生区間
89 損傷情報
101 計測データ
102 環境データ
103 特性値データ
104 仮信号データセット
105,105a,105b 基準データ
106 信号データセット
107 正常異常判断基準データ
108 正常異常判断結果データ
109 外乱データ
111 時系列変化データ
112 損傷判断基準データ
113 損傷判断結果データ
114 損傷要因データ
Claims (7)
- 航空機に設けられ、前記航空機に関する計測データを取得する計測器と、
前記計測データの診断基準となる基準データを記憶する記憶部と、
前記計測データ及び前記基準データに基づいて前記航空機の機体の構造健全性モニタリングを行う制御部と、
を備え、
前記制御部は、
前記計測データに基づいて算出される信号データと前記基準データとの相関関係に基づいて、前記機体の損傷発生のリスクを評価する第1リスク評価部と、
前記第1リスク評価部が損傷発生のリスクがあると評価した前記信号データの時系列変化の挙動に基づいて、前記機体の損傷発生のリスクを評価する第2リスク評価部と、
前記第2リスク評価部で用いた前記信号データの時系列変化の挙動に基づいて、前記機体の寿命、修理の時期、及びメンテナンスの計画を評価するメンテナンス評価部と、
を有することを特徴とする航空機の健全性診断装置。 - 前記制御部は、
前記航空機に設けられ、前記第1リスク評価部を含む第1制御部と、
前記航空機の外部に設けられ、前記第2リスク評価部と、前記メンテナンス評価部と、を含む第2制御部と、
前記第1制御部と前記第2制御部との間で情報通信する情報通信部と、
を有することを特徴とする請求項1に記載の航空機の健全性診断装置。 - 前記計測器は、前記機体の複数の位置及び複数の時間において前記計測データを計測し、前記機体の前記位置及び前記時間における環境データを併せて計測し、前記計測データと前記環境データとを紐付けし、
前記記憶部は、前記計測データが計測される前記機体の複数の位置において、前記環境データと想定される環境ごとに設定された前記基準データを記憶しており、
前記制御部は、前記環境データと紐付けされた状態で、前記計測データに基づいて、前記機体の複数の位置及び複数の時間において前記信号データを算出することを特徴とする請求項1または請求項2に記載の航空機の健全性診断装置。 - 前記第1リスク評価部は、前記信号データに基づいて健全性指標値を算出し、前記記憶部から取得した判断基準に規定される範囲を超えていないかどうかを評価することを特徴とする請求項1から請求項3のいずれか1項に記載の航空機の健全性診断装置。
- 前記第2リスク評価部は、前記健全性指標値の時系列変化において、前記判断基準に規定される期間以上、前記記憶部から取得した判断基準に規定される範囲を超えていないかどうかを評価することを特徴とする請求項4に記載の航空機の健全性診断装置。
- 前記計測器は、
前記機体に張り巡らされた光ファイバと、
前記光ファイバの歪みを計測することで前記光ファイバが張り巡らされた前記機体の歪みデータを計測する光ファイバ歪み計測器と、
を含むことを特徴とする請求項1から請求項5のいずれか1項に記載の航空機の健全性診断装置。 - 航空機に関する計測データを取得する計測データ取得ステップと、
前記計測データに基づいて算出される信号データと基準データとの相関関係に基づいて、前記航空機の機体の損傷発生のリスクを評価する第1リスク評価ステップと、
前記第1リスク評価ステップで損傷発生のリスクがあると評価した前記信号データの時系列変化の挙動に基づいて、前記機体の損傷発生のリスクを評価する第2リスク評価ステップと、
前記第2リスク評価ステップで用いた前記信号データの時系列変化の挙動に基づいて、前記機体の寿命、修理の時期、及びメンテナンスの計画を評価するメンテナンス評価ステップと、
を有することを特徴とする航空機の健全性診断方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18864151.8A EP3674221A4 (en) | 2017-10-06 | 2018-05-15 | AIRCRAFT SOLIDITY DIAGNOSIS DEVICE AND AIRCRAFT SOLIDITY DIAGNOSIS PROCESS |
US16/652,689 US20200239162A1 (en) | 2017-10-06 | 2018-05-15 | Aircraft health diagnostic device and aircraft health diagnostic method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-196140 | 2017-10-06 | ||
JP2017196140A JP6983027B2 (ja) | 2017-10-06 | 2017-10-06 | 航空機の健全性診断装置及び航空機の健全性診断方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019069501A1 true WO2019069501A1 (ja) | 2019-04-11 |
Family
ID=65995101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/018727 WO2019069501A1 (ja) | 2017-10-06 | 2018-05-15 | 航空機の健全性診断装置及び航空機の健全性診断方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200239162A1 (ja) |
EP (1) | EP3674221A4 (ja) |
JP (1) | JP6983027B2 (ja) |
WO (1) | WO2019069501A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112541008A (zh) * | 2020-12-09 | 2021-03-23 | 中国航空工业集团公司沈阳飞机设计研究所 | 一种飞机健康诊断判据方法 |
EP3862277A1 (en) * | 2020-02-10 | 2021-08-11 | The Boeing Company | Composite laminate damage detection method using an in-situ thermal gradient and expansion differences across the damage |
CN114608466A (zh) * | 2022-03-14 | 2022-06-10 | 成都航空职业技术学院 | 一种用于大型薄壁零件的形变检测装置及方法 |
CN118246819A (zh) * | 2024-05-28 | 2024-06-25 | 民航成都电子技术有限责任公司 | 一种飞行区运行态势评估方法、装置、设备及介质 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6720101B2 (ja) * | 2017-02-27 | 2020-07-08 | 三菱重工業株式会社 | 航空機管理装置及び方法並びにプログラム |
KR102376362B1 (ko) * | 2020-06-18 | 2022-03-18 | 주식회사 디지트로그 | 항공기 구조물의 건전성 판단을 위한 최적화 알고리즘 설계 시스템 및 방법 |
CN112182783B (zh) * | 2020-11-02 | 2024-05-10 | 中国运载火箭技术研究院 | 航天飞行器系统的风险识别方法、设备及存储介质 |
CN112528483A (zh) * | 2020-12-04 | 2021-03-19 | 中国航空工业集团公司沈阳飞机设计研究所 | 一种飞参数据诊断方法 |
CN112660417B (zh) * | 2020-12-25 | 2022-03-25 | 湖南航天机电设备与特种材料研究所 | 一种用于飞行器结构部件的结构损伤诊断方法及诊断系统 |
US20230145226A1 (en) * | 2021-11-11 | 2023-05-11 | Rohr, Inc. | Detecting fluid leakage at aircraft hatch |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4875661B2 (ja) | 2008-05-14 | 2012-02-15 | 三菱重工業株式会社 | 航空機の健全性診断装置及び方法並びにプログラム |
JP2014102158A (ja) * | 2012-11-20 | 2014-06-05 | Mitsubishi Heavy Ind Ltd | 構造体及び構造体の剥離検出方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160371957A1 (en) * | 2015-06-22 | 2016-12-22 | Mc10, Inc. | Method and system for structural health monitoring |
-
2017
- 2017-10-06 JP JP2017196140A patent/JP6983027B2/ja active Active
-
2018
- 2018-05-15 EP EP18864151.8A patent/EP3674221A4/en not_active Withdrawn
- 2018-05-15 WO PCT/JP2018/018727 patent/WO2019069501A1/ja unknown
- 2018-05-15 US US16/652,689 patent/US20200239162A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4875661B2 (ja) | 2008-05-14 | 2012-02-15 | 三菱重工業株式会社 | 航空機の健全性診断装置及び方法並びにプログラム |
JP2014102158A (ja) * | 2012-11-20 | 2014-06-05 | Mitsubishi Heavy Ind Ltd | 構造体及び構造体の剥離検出方法 |
Non-Patent Citations (2)
Title |
---|
KIMITO FUNATSU: "Introduction, Anomaly Detection by Machine Learning", CORONA PUBLISHING |
See also references of EP3674221A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3862277A1 (en) * | 2020-02-10 | 2021-08-11 | The Boeing Company | Composite laminate damage detection method using an in-situ thermal gradient and expansion differences across the damage |
US11618591B2 (en) | 2020-02-10 | 2023-04-04 | The Boeing Company | Composite laminate damage detection method using an in-situ thermal gradient and expansion differences across the damage |
CN112541008A (zh) * | 2020-12-09 | 2021-03-23 | 中国航空工业集团公司沈阳飞机设计研究所 | 一种飞机健康诊断判据方法 |
CN114608466A (zh) * | 2022-03-14 | 2022-06-10 | 成都航空职业技术学院 | 一种用于大型薄壁零件的形变检测装置及方法 |
CN118246819A (zh) * | 2024-05-28 | 2024-06-25 | 民航成都电子技术有限责任公司 | 一种飞行区运行态势评估方法、装置、设备及介质 |
Also Published As
Publication number | Publication date |
---|---|
EP3674221A4 (en) | 2020-10-28 |
EP3674221A1 (en) | 2020-07-01 |
JP6983027B2 (ja) | 2021-12-17 |
JP2019069661A (ja) | 2019-05-09 |
US20200239162A1 (en) | 2020-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019069501A1 (ja) | 航空機の健全性診断装置及び航空機の健全性診断方法 | |
JP6937173B2 (ja) | 航空機の重整備における構造体修理のための予測方法及びシステム | |
Worden et al. | Experimental validation of a structural health monitoring methodology: Part I. Novelty detection on a laboratory structure | |
US10364050B2 (en) | System and method for health assessment of aircraft structure | |
JP4875661B2 (ja) | 航空機の健全性診断装置及び方法並びにプログラム | |
CA2862382C (en) | Load estimation system for aerodynamic structures | |
CN105716814B (zh) | 一种评估桁架结构损伤的实时监测系统及其方法 | |
US20140058709A1 (en) | Structural health management system and method based on combined physical and simulated data | |
CN106428617A (zh) | 用于运载工具管理和监测的集成系统和方法 | |
Yanez-Borjas et al. | Statistical time features for global corrosion assessment in a truss bridge from vibration signals | |
Gupta et al. | Structural health monitoring of composite aircraft structures using fiber Bragg grating sensors | |
CN109541022A (zh) | 一种桥梁结构裂缝健康监测分析方法 | |
Ksica et al. | Integration and test of piezocomposite sensors for structure health monitoring in aerospace | |
CN117994728B (zh) | 基于数字孪生的高铁动车智能运维管理系统 | |
CN110411686A (zh) | 桥梁静动影像全息性态健康监测诊断方法及系统 | |
EP2957883A2 (en) | Method for prognostics of an aircraft structure based on structural testing | |
Kosova et al. | Structural health monitoring in aviation: a comprehensive review and future directions for machine learning | |
WO2018155536A1 (ja) | 位置決定装置、それを備えた位置決定システム、及び位置決定方法並びに位置決定プログラム | |
Zeferino et al. | Monitoring system of an industrial steel tower structure | |
Alfredo et al. | Simulation Tools for a Fiber-Optic Based Structural Health Monitoring System | |
Díaz-Maroto Fernández et al. | Dynamic distributed fibre optic sensing for environmental and operational aircraft monitoring | |
Memmolo et al. | Design of Multi-level Structural Health Monitoring for Data Fusion in Real Scale Aerostructures | |
Wang et al. | Analysing Structural Deformation Monitoring of Flight Vehicles Based on Optical Fibre Sensing Technology | |
Faraco et al. | Structural Health Monitoring by Accelerometric Data of a Continuously Monitored Structure with Induced Damages. | |
Gunther | Loads monitoring and HUMS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18864151 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018864151 Country of ref document: EP Effective date: 20200324 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |