WO2019069365A1 - Vibration control structure of vehicle body, and vibration control method for vehicle body - Google Patents

Vibration control structure of vehicle body, and vibration control method for vehicle body Download PDF

Info

Publication number
WO2019069365A1
WO2019069365A1 PCT/JP2017/035959 JP2017035959W WO2019069365A1 WO 2019069365 A1 WO2019069365 A1 WO 2019069365A1 JP 2017035959 W JP2017035959 W JP 2017035959W WO 2019069365 A1 WO2019069365 A1 WO 2019069365A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle body
vehicle
visco
elastic body
skeletal
Prior art date
Application number
PCT/JP2017/035959
Other languages
French (fr)
Japanese (ja)
Inventor
亮 竹添
牧野 孝則
健吾 加藤
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2017/035959 priority Critical patent/WO2019069365A1/en
Publication of WO2019069365A1 publication Critical patent/WO2019069365A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/04Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects formed from more than one section in a side-by-side arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/48Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body

Abstract

In the present invention, a viscoelastic body is directly adhered to at least a part of the surface of a frame member of a vehicle body.

Description

車体の制振構造及び制振方法Vibration control structure of vehicle body and vibration control method
 本発明は、車体の制振構造及び制振方法に関する。 The present invention relates to a damping structure and a damping method of a vehicle body.
 車体の共振は、車両の乗り心地に大きく影響する。共振の発生を抑制する方法として、車体の剛性を高めることで車体の固有振動数を入力振動の振動数からずらすことが行われるが、この方法は車体重量の増加を招く。一方、車体の振動時の変形を、車体の補強装置に油圧緩衝器を設けることで抑制する方法もある。特許文献1は、後者に関連する技術を開示している。 The resonance of the vehicle body greatly affects the ride quality of the vehicle. As a method of suppressing the occurrence of resonance, the natural frequency of the vehicle body is shifted from the frequency of the input vibration by increasing the rigidity of the vehicle body, but this method causes an increase in the weight of the vehicle body. On the other hand, there is also a method of suppressing deformation at the time of vibration of the vehicle body by providing a hydraulic shock absorber in a reinforcement device of the vehicle body. Patent Document 1 discloses a technique related to the latter.
特開2008-2594号公報JP 2008-2594 A
 しかしながら、上記油圧緩衝器付き補強装置は、車体の構成部材によって画成されたスペースを横切るように設置する必要があり、車両の空間利用率を低下させる要因となっていた。 However, the above-described hydraulic shock absorber-equipped reinforcing device needs to be installed across the space defined by the structural members of the vehicle body, which has been a factor in reducing the space utilization rate of the vehicle.
 本発明の目的は、車両の空間利用率を向上させつつ、車体の振動時の変形を抑制して、車両の乗り心地を向上させることにある。 An object of the present invention is to improve the ride comfort of a vehicle by suppressing the deformation at the time of vibration of the vehicle body while improving the space utilization rate of the vehicle.
 本発明の一態様では、車体の骨格部材の表面の少なくとも一部に、粘弾性体が直接接着されている。 In one aspect of the present invention, the visco-elastic body is directly bonded to at least a part of the surface of the frame member of the vehicle body.
 上記態様によれば、車両の空間利用率を向上させつつ、車体の振動時の変形を抑制して、車両の乗り心地を向上させることができる。 According to the above aspect, it is possible to improve the ride comfort of the vehicle by suppressing the deformation at the time of the vibration of the vehicle body while improving the space utilization rate of the vehicle.
図1Aは、1自由度の減衰を伴う強制振動のモデルを示す。FIG. 1A shows a model of forced oscillation with damping in one degree of freedom. 図1Bは、図1Aのモデルの、振動数に対するイナータンスの特性を示す。FIG. 1B shows the characteristics of inertance versus frequency for the model of FIG. 1A. 図1Cは、図1Aのモデルの振動波形の例を示す。FIG. 1C shows an example of the vibration waveform of the model of FIG. 1A. 図2Aは、骨格固有振動モードで振動する車体の変形前の状態を示す。FIG. 2A shows a state of the vehicle body vibrating in the skeletal natural vibration mode before deformation. 図2Bは、図2Aの車体がある骨格固有振動モードで振動したときの変形形態を示す。FIG. 2B shows a variant when the vehicle body of FIG. 2A vibrates in certain skeletal natural vibration modes. 図2Cは、図2Aの車体が他の骨格固有振動モードで振動したときの変形形態を示す。FIG. 2C shows a variant when the vehicle body of FIG. 2A vibrates in another skeletal natural vibration mode. 図3は、車幅方向に延在する骨格部材の例を示す。FIG. 3 shows an example of a framework member extending in the vehicle width direction. 図4Aは、いくつかの代表的な骨格固有振動モードにおける車体の変形分布の例を示す。FIG. 4A shows an example of the deformation distribution of the vehicle body in some representative skeletal natural vibration modes. 図4Bは、図4Aにかかる車体モデルの変位測定点の配置を示す。FIG. 4B shows the arrangement of displacement measurement points of the vehicle body model according to FIG. 4A. 図5Aは、実施例にかかる車両の車体前部の斜視図である。FIG. 5A is a perspective view of a front portion of a vehicle body of the vehicle according to the embodiment. 図5Bは、実施例にかかる車両の車体前部の正面図である。FIG. 5B is a front view of the front of the vehicle body of the vehicle according to the embodiment. 図5Cは、図5BのVC-VC線に沿った断面図である。FIG. 5C is a cross-sectional view taken along the line VC-VC of FIG. 5B. 図6Aは、実施例にかかる車両の車体後部の斜視図である。FIG. 6A is a perspective view of the rear portion of the vehicle body according to the embodiment. 図6Bは、実施例にかかる車両の車体後部の正面図である。FIG. 6B is a front view of the rear portion of the vehicle body according to the embodiment. 図6Cは、図6BのVIC-VIC線に沿った断面図である。FIG. 6C is a cross-sectional view taken along the line VIC-VIC of FIG. 6B. 図7は、実施例にかかる制振シートの断面図である。FIG. 7 is a cross-sectional view of a vibration damping sheet according to an embodiment. 図8は、実施例にかかる車両が突起を乗り越えた時の音圧測定結果を模式的に示すグラフである。FIG. 8 is a graph schematically showing the sound pressure measurement results when the vehicle according to the example passes over the protrusion.
 車両の空間利用率の面で有利な制振材としては、制振シートなどの粘弾性体がある。粘弾性体は、入力された振動エネルギーを熱エネルギーに変換することで振動減衰効果を発揮するものであるため、通常、粘弾性体に振動を伝えやすい部材の表面、すなわち、フロアパネルなど比較的曲げ剛性が低い部材の表面に積層されて使用される。 As a damping material advantageous in terms of space utilization of the vehicle, there is a visco-elastic body such as a damping sheet. Since the visco-elastic body exhibits a vibration damping effect by converting the input vibrational energy into thermal energy, the surface of a member which easily transmits the vibration to the visco-elastic body, that is, a floor panel or the like is usually relatively It is used by being laminated on the surface of a member having low bending rigidity.
 このような従来の技術常識に反し、本発明者らは、粘弾性体を骨格部材の表面に接着して走行試験を行った。そして、驚くべきことに、粘弾性体を骨格部材の表面に直接接着することで、車体の振動時の変形が抑制されて、車両の乗り心地が大きく改善することを見出した。これは、式(1)の運動方程式によって表される、減衰を伴う強制振動モデル(図1A参照)において、元々微小(ほぼゼロ)であった減衰係数cを増加させたときに得られる振動減衰効果と同様の効果を得たことによると考えられる。 Contrary to such conventional technical common knowledge, the inventors of the present invention carried out a running test by bonding a visco-elastic body to the surface of a skeletal member. It has been surprisingly found that the direct attachment of the visco-elastic body to the surface of the frame member suppresses deformation during vibration of the vehicle body and greatly improves the ride quality of the vehicle. This is the vibrational damping obtained when the damping coefficient c which was originally small (approximately zero) is increased in the forced vibration model with damping (see FIG. 1A) represented by the equation of motion of equation (1) It is considered that the same effect as the effect was obtained.
Figure JPOXMLDOC01-appb-M000001
 ここで、xは変位、mは質量、cは減衰係数、kはバネ定数、Fは加振力の振幅、ωは角振動数、Xは変位の振幅、αは初期位相である。
Figure JPOXMLDOC01-appb-M000001
Here, x is displacement, m is mass, c is a damping coefficient, k is a spring constant, F is an amplitude of excitation force, ω is an angular frequency, X is an amplitude of displacement, and α is an initial phase.
 すなわち、式(2)で定義されるイナータンス(アクセレランスともいう)の、式(3)で与えられるピーク値(図1B参照)が、減衰係数cの増加によって急速に収束したことにより、定常振動の振幅A(図1C参照)が低減されたものと考えられる。 That is, the peak value (see FIG. 1B) of the inertance (also referred to as acceleration) defined by the equation (2), which is given by the equation (3), converges rapidly due to the increase of the damping coefficient c. It is considered that the amplitude A (see FIG. 1C) of is reduced.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 しかも、上記の制振構造によれば、粘弾性体は車体の構成部材によって画成されたスペースを横切らず、車両の空間利用率が向上する。また、骨格部材の表面に粘弾性体が接着されるので、周辺のレイアウトを大きく変更したり、取り付け用ブラケットを新たに設置したりする必要が生じない。さらに、車体のクラッシャブルゾーンまたはクランプルゾーンに位置する骨格部材に粘弾性体を設けたとしても、粘弾性体の剛性は無視できるほど小さいので、衝突時の車体のつぶれ変形は阻害されない。 Moreover, according to the above-described vibration damping structure, the viscoelastic body does not cross the space defined by the constituent members of the vehicle body, and the space utilization rate of the vehicle is improved. Further, since the visco-elastic body is adhered to the surface of the skeletal member, it is not necessary to largely change the layout of the periphery or to newly install a mounting bracket. Furthermore, even if a visco-elastic body is provided in the frame member located in the crushable zone or crample zone of the vehicle body, the rigidity of the visco-elastic body is negligibly small, so that the crush deformation of the vehicle body at the time of collision is not inhibited.
 粘弾性体は、骨格部材の表面に密着して振動エネルギーを熱エネルギーなど他のエネルギーに変換できるものであれば、特に限定されず、公知の制振シートに利用されている、アスファルト系、ブチルゴム系、樹脂系などの粘弾性体を採用することができる。公知の制振シートとしては、例えば、パーカーアサヒ株式会社製のサンダインや、イイダ産業株式会社製のゼトロβ、ゼトロγなどがある。 The visco-elastic body is not particularly limited as long as the visco-elastic body is in close contact with the surface of the framework member and can convert vibrational energy into other energy such as thermal energy, and is used for a known damping sheet, asphalt system, butyl rubber Viscoelastic bodies, such as a system and a resin system, are employable. Examples of known vibration damping sheets include Sandine manufactured by Parker Asahi Co., Ltd., Zetro beta manufactured by Ida Sangyo Co., Ltd., Zetro gamma manufactured, and the like.
 車体は、車体の骨格をなす骨格部材と、骨格部材に支持されたパネル材とから構成される。一の骨格部材は、結合部を介して他の骨格部材に結合されている。骨格部材としては、フロントバンパレインフォース、ラジエータコアサポート、カウルトップ、ステアリングメンバー、ウエストリア、リアパネル、フロントクロスメンバー、フロントサイドメンバー、ルーフサイドレール、フロントルーフレール、ルーフボウ、リアルーフレール、フロントピラー、センターピラー、リアピラー、サイドシル、フロントフロアクロスメンバー、センターフロアクロスメンバー、リアフロアクロスメンバー、フロアサイドメンバー、リアサイドメンバー、リアクロスメンバー、リアバンパレインフォース等が挙げられる。 The vehicle body is composed of a framework member which forms a framework of the vehicle body, and a panel material supported by the framework member. One skeletal member is coupled to the other skeletal member through the coupling portion. The frame members include front bumper reinforcement, radiator core support, cowl top, steering member, waist rear, rear panel, front cross member, front side member, roof side rail, front roof rail, roof bow, rear roof rail, front pillar, center pillar , Rear pillars, side sills, front floor cross members, center floor cross members, rear floor cross members, floor side members, rear side members, rear cross members, rear bumper reinforcements, and the like.
 一の車体につき、固有振動モードは無数にある。車体の固有振動モードのなかで、特に車体骨格全体が比較的大きく振動するモードを「骨格固有振動モード」と呼ぶ。骨格固有振動モードは、一般に数十個存在する。図2B及び図2Cは、骨格固有振動モードの一例を示している。 There are innumerable natural vibration modes per car body. Among the natural vibration modes of the vehicle body, a mode in which the entire vehicle body frame vibrates in a relatively large manner is called "skeleton natural vibration mode". In general, there are several tens of skeletal natural vibration modes. 2B and 2C show an example of a skeletal natural vibration mode.
 本発明者らは、骨格固有振動モードの変形形態を観察し、どの骨格部材に粘弾性体を接着すれば、上記振動減衰効果をより確実に発揮できるのかを検討した。そして、多くの骨格固有振動モードにおいて、車幅方向に延在する骨格部材の変形量が、他の方向(車体前後方向または車体上下方向)に延在する骨格部材の変形量より大きくなる傾向があることを見出した。すなわち、車幅方向に延在する骨格部材に粘弾性体を接着することで、より多くの振動エネルギーを散逸させることができることを見出した。なお、骨格部材の変形量とは、その骨格部材の、表面のひずみ量が最大となる点(最大ひずみ点)におけるひずみ量である。また、車幅方向に延在する骨格部材には、図3に例示される、フロントバンパレインフォース1、サポートラジコアアッパー2、カウルトップ3、ステアリングメンバー4、フロントルーフレール5、ルーフボウ6、リアルーフレール7、ウエストリア8、リアパネル9、及びリアバンパレインフォース10が含まれる。フロントフロアクロスメンバー、センターフロアクロスメンバー、リアフロアクロスメンバーなども、車幅方向に延在する骨格部材である。 The inventors of the present invention observed the deformation mode of the skeletal natural vibration mode, and examined which skeletal member the visco-elastic body can be more reliably exhibited by adhering the viscoelastic body. Then, in many skeletal natural vibration modes, the amount of deformation of the skeletal member extending in the vehicle width direction tends to be larger than the amount of deformation of the skeletal member extending in the other direction (vehicle longitudinal direction or vehicle vertical direction). I found that. That is, it has been found that more vibration energy can be dissipated by bonding the visco-elastic body to the frame member extending in the vehicle width direction. The amount of deformation of the skeletal member is the amount of strain at a point (maximum strain point) at which the amount of strain on the surface of the skeletal member becomes maximum. Further, as a frame member extending in the vehicle width direction, the front bumper reinforcement 1, the support radial core upper 2, the cowl top 3, the steering member 4, the front roof rail 5, the roof bow 6, the rear roof rail are exemplified in FIG. 7 includes a waist rear 8, a rear panel 9, and a rear bumper reinforcement 10. Front floor cross members, center floor cross members, rear floor cross members, etc. are also frame members extending in the vehicle width direction.
 さらに、本発明者らは、多くの骨格固有振動モードで、車体前端部または車体後端部に配置された骨格部材の変形量、なかでもバンパレインフォースの変形量が他の骨格部材の変形量より大きくなる傾向があることを見出した。すなわち、車体前端部及び/または車体後端部に配置された骨格部材、なかでもフロントバンパレインフォース及び/またはリアバンパレインフォースに粘弾性体を接着することで、より多くの振動エネルギーを散逸させることができることを見出した。上記傾向の一例を、図4Aに示す。図4Aは、図4Bに示す車体モデルにおいて車幅方向に離間して対をなしている点(A1とA2、B1とB2、C1とC2、D1とD2、E1とE2、F1とF2、G1とG2)同士の間隔が、代表的な骨格固有振動モードにおいてどの程度変動するかを示している。横軸は、骨格部材上の変位測定点A1,A2~G1,G2(図4B参照)の車体前後方向位置を示しており、縦軸は、対をなしている点同士(例えばA1とA2)の間の距離の変化量を示している。ひとつの折れ線が、ひとつの骨格固有振動モードに対応している。図4Aの例では、多くの骨格固有振動モードにおいて、車体後端部の変位測定点(G1、G2)近傍に配置された骨格部材(例えばリアパネルやリアバンパレインフォース)が他の変位測定点近傍の骨格部材より大きく変形する傾向が現れている。 Furthermore, the inventors of the present invention have found that in many skeletal natural vibration modes, the amount of deformation of the frame members disposed at the front end or the rear end of the vehicle, in particular the amount of deformation of the bumper reinforcement is the amount of deformation of the other frame members. I found that I tend to be bigger. That is, more vibrational energy is dissipated by bonding the visco-elastic body to the frame members disposed at the front end of the vehicle and / or the rear end of the vehicle, in particular, the front bumper reinforcement and / or the rear bumper reinforcement. I found that I could do it. An example of the above trend is shown in FIG. 4A. FIG. 4A shows a pair of points separated in the vehicle width direction (A1 and A2, B1 and B2, C1 and C2, D1 and D2, E1 and E2, F1 and F2, G1 in the vehicle model shown in FIG. 4B. And G2) indicate how much the spacing between them fluctuates in a typical skeletal natural vibration mode. The horizontal axis indicates the longitudinal position of the displacement measurement points A1 and A2 to G1 and G2 (see FIG. 4B) on the framework member, and the vertical axes indicate points forming a pair (for example, A1 and A2) Indicates the amount of change in distance between One broken line corresponds to one skeletal natural vibration mode. In the example of FIG. 4A, in many skeletal natural vibration modes, skeletal members (for example, rear panel and rear bumper reinforcement) arranged near displacement measurement points (G1, G2) at the rear end of the vehicle are in the vicinity of other displacement measurement points. There is a tendency to deform more than the skeletal member.
 次に、本発明者らは、車幅方向に延在する骨格部材のどの部位の表面に粘弾性体を接着すれば、振動の減衰効果をより確実に発揮できるのかに着目し、各骨格固有振動モードの変形形態を観察した。そして、多くの骨格固有振動モードにおいて、車幅方向に延在する骨格部材の車幅方向中央部に最大ひずみ点が生じる傾向があることを見出した。すなわち、当該車幅方向中央部の表面に粘弾性体を接着することにより、より効率的に振動エネルギーを散逸させることができることを見出した。なお、骨格部材の表面とは、骨格部材の前後側面、左右側面、及び上下面を含む。また、骨格部材が閉断面構造または開断面構造を有している場合、その表面は、骨格部材の外側面だけでなく、内側面をも含む。 Next, the present inventors pay attention to whether the damping effect of the vibration can be more reliably exhibited if the visco-elastic body is adhered to the surface of any part of the framework member extending in the vehicle width direction. The deformation mode of the vibration mode was observed. Then, it has been found that in many skeletal natural vibration modes, the maximum strain point tends to occur at the center in the vehicle width direction of the framework member extending in the vehicle width direction. That is, it has been found that vibration energy can be dissipated more efficiently by adhering a visco-elastic body to the surface of the central portion in the vehicle width direction. The surface of the skeletal member includes the front and rear side surfaces, the left and right side surfaces, and the upper and lower surfaces of the skeletal member. In addition, when the skeletal member has a closed cross-sectional structure or an open cross-sectional structure, the surface includes not only the outer surface of the skeletal member but also the inner surface.
 骨格部材の表面上において粘弾性体を接着する領域(以下、接着領域と呼ぶ)の大きさ及び形状は、特に限定されない。骨格部材の延在方向における接着領域の長さは、振動減衰効果をより確実に得るために、当該骨格部材の長さの10%以上であることが好ましい。より好ましくは30%以上、さらに好ましくは50%以上、よりさらに好ましくは70%以上である。骨格部材の延在方向と直交する方向における接着領域の幅は、振動減衰効果をより確実に得るために、同方向における骨格部材の最大幅の10%以上であることが好ましい。より好ましくは30%以上、さらに好ましくは50%以上、よりさらに好ましくは70%以上である。 There are no particular limitations on the size and shape of the region to which the visco-elastic body is bonded (hereinafter referred to as a bonded region) on the surface of the skeletal member. The length of the adhesion region in the extending direction of the skeletal member is preferably 10% or more of the length of the skeletal member in order to obtain the vibration damping effect more reliably. More preferably, it is 30% or more, more preferably 50% or more, and still more preferably 70% or more. The width of the adhesion region in the direction orthogonal to the extending direction of the skeletal member is preferably 10% or more of the maximum width of the skeletal member in the same direction in order to obtain the vibration damping effect more reliably. More preferably, it is 30% or more, more preferably 50% or more, and still more preferably 70% or more.
 また、粘弾性体は、骨格部材の表面上に断続的に配置されてもよいし、骨格部材の一端側の結合部から他端側の結合部にかけて連続して配置されてもよい。後者の場合は、骨格部材の最大ひずみ点をより確実に粘弾性体で覆うことができる。粘弾性体の厚さは、特に限定されないが、振動減衰効果をより確実に得るために、2mm以上であることが好ましい。より好ましくは4mm以上、さらに好ましくは6mm以上、よりさらに好ましくは8mm以上である。 Further, the visco-elastic body may be disposed intermittently on the surface of the skeletal member, or may be disposed continuously from the coupling portion on one end side of the skeletal member to the coupling portion on the other end side. In the latter case, the maximum strain point of the skeletal member can be covered with the visco-elastic body more reliably. The thickness of the visco-elastic body is not particularly limited, but is preferably 2 mm or more in order to obtain the vibration damping effect more reliably. More preferably, it is 4 mm or more, more preferably 6 mm or more, and still more preferably 8 mm or more.
 さらに、粘弾性体における骨格部材の表面に接着されている面(以下、接合面と呼ぶ)と反対側の面には、補強シート材を密着して設けてもよい。この構成によれば、接合面と反対側の面近傍の粘弾性体の動きが補強シート材によって拘束されるので、粘弾性体にせん断力が働きやすくなり、骨格部材から接合面を介して粘弾性体に伝播した振動がより効率的に熱エネルギーに変換される。補強シート材は、アルミ箔などの金属箔のほか、ガラスクロスなどの布状シートであってもよい。 Furthermore, a reinforcing sheet material may be provided in close contact with the surface of the viscoelastic body opposite to the surface bonded to the surface of the skeletal member (hereinafter referred to as the bonding surface). According to this configuration, the movement of the visco-elastic body in the vicinity of the surface opposite to the bonding surface is restrained by the reinforcing sheet material, so that the shear force is easily applied to the visco-elastic body. The vibration propagated to the elastic body is more efficiently converted to thermal energy. The reinforcing sheet material may be a metal foil such as aluminum foil or a cloth-like sheet such as glass cloth.
<実施例>
 骨格部材の表面に粘弾性体を接着した実施例に係る車両Vと、粘弾性体を接着していない比較例にかかる車両とを用意し、比較走行試験を行った。車両Vは、図5A乃至図6Cに示すように、フロントバンパレインフォース1及びリアバンパレインフォース10の表面に制振シートSを接着した。制振シートSは、パーカーアサヒ株式会社製のサンダインを用いた。この制振シートSは、図7に示すように、粘弾性体であるブチルゴムからなる粘着層21と、粘着層21の片面に密着して設けられた補強シート材であるアルミ箔22とを備えている。粘着層21の、アルミ箔22に密着している面と反対側の面が、骨格部材であるフロントバンパレインフォース1またはリアバンパレインフォース10の表面に接着されている。
<Example>
The vehicle V according to the example in which the visco-elastic body was adhered to the surface of the frame member and the vehicle according to the comparative example in which the visco-elastic body was not adhered were prepared and subjected to the comparative traveling test. As shown in FIGS. 5A to 6C, the vehicle V has a damping sheet S bonded to the surfaces of the front bumper reinforcement 1 and the rear bumper reinforcement 10. As the vibration damping sheet S, Sandine manufactured by Parker Asahi Co., Ltd. was used. As shown in FIG. 7, this vibration damping sheet S includes an adhesive layer 21 made of butyl rubber which is a visco-elastic body, and an aluminum foil 22 which is a reinforcing sheet material provided in close contact with one surface of the adhesive layer 21. ing. The surface of the adhesive layer 21 opposite to the surface in close contact with the aluminum foil 22 is bonded to the surface of the front bumper reinforcement 1 or the rear bumper reinforcement 10 which is a frame member.
 走行試験では、所定の車速で突起を乗り越えた時の、乗員の耳の位置における音圧を測定した。測定結果を模式的に図8に示す。図8において、実線は実施例にかかる車両Vのグラフであり、破線は比較例にかかる車両のグラフである。図8に示すように、実施例の音圧レベルは比較例のそれよりも低下している。 In the running test, the sound pressure at the position of the occupant's ear was measured when the projection was crossed at a predetermined vehicle speed. The measurement results are schematically shown in FIG. In FIG. 8, the solid line is a graph of the vehicle V according to the example, and the broken line is a graph of the vehicle according to the comparative example. As shown in FIG. 8, the sound pressure level of the example is lower than that of the comparative example.
 また、乗り心地に関する官能評価試験も行った。その結果、各評価項目において、実施例が比較例より優れた評価を得た。 In addition, a sensory evaluation test on ride comfort was also conducted. As a result, in each evaluation item, the example obtained an evaluation superior to the comparative example.
 上記実施形態は発明の理解を容易にするために記載された単なる例示に過ぎない。発明の技術的範囲は、上記実施形態で開示した具体的な技術事項に限らず、そこから容易に導きうる様々な変形、変更、代替技術なども含むものである。 The above embodiments are merely exemplary described to facilitate the understanding of the invention. The technical scope of the invention is not limited to the specific technical matters disclosed in the above embodiment, but also includes various modifications, alterations, and alternative technologies that can be easily derived therefrom.
 例えば、上記実施形態では、セダンの車体を例にとって説明したが、車体の骨格部材の表面に粘弾性体を直接接着した構成は、コンパクトカー、ワゴン、SUV、バン、トラック、バス、自動二輪車など、他の型の車体にも適用できる。また、上記実施形態の構成は、内燃機関を動力源とする内燃機関車の車体のほか、電気自動車、ハイブリッド車、燃料電池車など電動機を動力源とする電動車両の車体にも適用できる。 For example, in the above embodiment, the vehicle body of the sedan has been described as an example, but the configuration in which the visco-elastic body is directly adhered to the surface of the frame member of the vehicle body is a compact car, wagon, SUV, van, truck, bus, motorcycle, etc. Applicable to other types of car bodies. Further, the configuration of the above embodiment can be applied not only to the vehicle body of an internal combustion engine powered by an internal combustion engine but also to the vehicle body of an electric vehicle such as an electric vehicle, a hybrid vehicle and a fuel cell vehicle powered by an electric motor.
 本発明の車体の制振構造及び制振方法は、自動車等車両の車体の制振に利用できる。 The damping structure and the damping method of a vehicle body according to the present invention can be used for damping a vehicle body of a vehicle such as an automobile.
 21 粘着層(粘弾性体)
 22 アルミ箔(補強シート材)
 1  フロントバンパレインフォース
 10 リアバンパレインフォース
21 Adhesive layer (viscoelastic body)
22 Aluminum foil (reinforcement sheet material)
1 Front bumper reinforcement 10 Rear bumper reinforcement

Claims (7)

  1.  骨格部材の表面の少なくとも一部に、粘弾性体が直接接着された、車体の制振構造。 A damping structure of a vehicle body, wherein a visco-elastic body is directly bonded to at least a part of a surface of a framework member.
  2.  前記骨格部材は、車幅方向に延在する骨格部材である、請求項1に記載された車体の制振構造。 The vehicle body damping structure according to claim 1, wherein the frame member is a frame member extending in a vehicle width direction.
  3.  前記骨格部材は、車体前端部または車体後端部に配置された骨格部材である、請求項2に記載された車体の制振構造。 The vehicle body damping structure according to claim 2, wherein the framework member is a framework member disposed at a front end or a rear end of the vehicle body.
  4.  前記骨格部材は、フロントバンパレインフォース及びリアバンパレインフォースの少なくともいずれか一方である、請求項3に記載された車体の制振構造。 The vehicle body damping structure according to claim 3, wherein the frame member is at least one of a front bumper reinforcement and a rear bumper reinforcement.
  5.  前記粘弾性体は、前記骨格部材の車幅方向中央部の表面に接着されている、請求項2乃至4のいずれか一項に記載された車体の制振構造。 The vehicle body damping structure according to any one of claims 2 to 4, wherein the visco-elastic body is adhered to a surface of a central portion in a vehicle width direction of the frame member.
  6.  前記粘弾性体における、前記骨格部材の表面に接着されている面と反対側の面に、補強シート材が密着して設けられている、請求項1乃至5のいずれか一項に記載された車体の制振構造。 The reinforcing sheet material according to any one of claims 1 to 5, wherein a reinforcing sheet material is provided in close contact with the surface of the visco-elastic body opposite to the surface bonded to the surface of the frame member. Vibration control structure of the car body.
  7.  骨格部材の表面の少なくとも一部に、粘弾性体を直接接着する、車体の制振方法。 A damping method of a vehicle body, wherein a visco-elastic body is directly bonded to at least a part of a surface of a framework member.
PCT/JP2017/035959 2017-10-03 2017-10-03 Vibration control structure of vehicle body, and vibration control method for vehicle body WO2019069365A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035959 WO2019069365A1 (en) 2017-10-03 2017-10-03 Vibration control structure of vehicle body, and vibration control method for vehicle body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035959 WO2019069365A1 (en) 2017-10-03 2017-10-03 Vibration control structure of vehicle body, and vibration control method for vehicle body

Publications (1)

Publication Number Publication Date
WO2019069365A1 true WO2019069365A1 (en) 2019-04-11

Family

ID=65994478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035959 WO2019069365A1 (en) 2017-10-03 2017-10-03 Vibration control structure of vehicle body, and vibration control method for vehicle body

Country Status (1)

Country Link
WO (1) WO2019069365A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170270A (en) * 2003-12-12 2005-06-30 Mazda Motor Corp Vehicle body structure for vehicle
JP2009056813A (en) * 2007-08-29 2009-03-19 Toyota Motor Corp Vehicle skeleton structure
JP2010099867A (en) * 2008-10-21 2010-05-06 Nitto Denko Corp Reinforcing sheet
JP2012017084A (en) * 2010-06-10 2012-01-26 Mazda Motor Corp Mounting structure of vehicle seat
JP2013049377A (en) * 2011-08-31 2013-03-14 Mazda Motor Corp Vehicle body structure of vehicle and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170270A (en) * 2003-12-12 2005-06-30 Mazda Motor Corp Vehicle body structure for vehicle
JP2009056813A (en) * 2007-08-29 2009-03-19 Toyota Motor Corp Vehicle skeleton structure
JP2010099867A (en) * 2008-10-21 2010-05-06 Nitto Denko Corp Reinforcing sheet
JP2012017084A (en) * 2010-06-10 2012-01-26 Mazda Motor Corp Mounting structure of vehicle seat
JP2013049377A (en) * 2011-08-31 2013-03-14 Mazda Motor Corp Vehicle body structure of vehicle and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US9242675B2 (en) Automobile vehicle-body front structure
JP5163083B2 (en) Front body structure of automobile
WO2013108353A1 (en) Structure for front section of vehicle body
JP2009137378A (en) Front part vehicle body structure for automobile
JP3445651B2 (en) Car
EP2559610B1 (en) Windshield glass pane support structure
JPH11124055A (en) Auxilirary frame of automobile
WO2015119054A1 (en) Vehicle-body structure for vehicle
JP5915562B2 (en) Front body structure of the vehicle
JP5223573B2 (en) Automobile roof structure
WO2019082829A1 (en) Work vehicle
JP5531705B2 (en) Instrument panel mounting structure
WO2019069365A1 (en) Vibration control structure of vehicle body, and vibration control method for vehicle body
JP6350899B2 (en) Front structure of cab-over type vehicle
JP2009137379A (en) Front body structure of automobile
JP5061067B2 (en) Dynamic damper for vehicles
JP2010006275A (en) Vibration control device in vehicle body front part of vehicle
JP2009137381A (en) Front part vehicle body structure for automobile
JP2005170269A (en) Vehicle body structure
KR20110136524A (en) Sub-frame for front suspension of automobile device for vehicle
JP2005170270A (en) Vehicle body structure for vehicle
JP2014129070A (en) Steering column shaft fitting structure of automobile
JP6048184B2 (en) Front body structure of the vehicle
JP7251110B2 (en) structural member
KR20120019958A (en) Sub-frame for suspension of vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP