WO2019066618A1 - 무선 통신 시스템에서 qcl에 기초하여 데이터를 송수신하기 위한 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 qcl에 기초하여 데이터를 송수신하기 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2019066618A1
WO2019066618A1 PCT/KR2018/011642 KR2018011642W WO2019066618A1 WO 2019066618 A1 WO2019066618 A1 WO 2019066618A1 KR 2018011642 W KR2018011642 W KR 2018011642W WO 2019066618 A1 WO2019066618 A1 WO 2019066618A1
Authority
WO
WIPO (PCT)
Prior art keywords
qcl
slot
indication
pdsch
base station
Prior art date
Application number
PCT/KR2018/011642
Other languages
English (en)
French (fr)
Inventor
박종현
강지원
김기준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/651,484 priority Critical patent/US11323892B2/en
Publication of WO2019066618A1 publication Critical patent/WO2019066618A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/01Reducing phase shift
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present disclosure relates to a wireless communication system, and more particularly to a device for transmitting and receiving data based on a quasi-co location (QCL) and supporting the same.
  • QCL quasi-co location
  • the mobile communication system has been developed to provide voice service while ensuring the user 's activity.
  • the mobile communication system has expanded the area from voice to data service.
  • Due to an explosion of traffic a shortage of resources is caused and users demand a higher speed service. Therefore, a more advanced mobile communication system is required .
  • next-generation mobile communication system largely depend on the acceptance of explosive data traffic, the dramatic increase in the rate per user, the acceptance of a significantly increased number of connected devices, very low end-to-end latency, Should be able to.
  • a dual connectivity a massive multiple input multiple output (MIMO), an in-band full duplex, a non-orthogonal multiple access (NOMA) wideband support, and device networking.
  • MIMO massive multiple input multiple output
  • NOMA non-orthogonal multiple access
  • the present invention also provides a method for defining (or setting) the application delay of a corresponding QCL indication in a UL in case of a cross-CC (or BWP) related QCL indication.
  • a method for receiving data based on a quasi-co location (QCL) in a wireless communication system comprising: receiving a QCL indication for at least one DL downlink reference signal (RS) Receiving transmission configuration indication (TCI) state information associated with a base station from a base station via RRC signaling; Receiving a physical downlink control channel (PDCCH) including downlink control information (DCI) from the base station in a first slot; And receiving from the base station a physical downlink shared channel (PDSCH) that includes the data based on one or more QCL indications, wherein a spatial QCL indication of the QCL indications is generated in the first slot And a QCL indication included in a PDCCH received in the most recent slot before the first slot, and at least one QCL indication of the QCL indications excluding the spatial QCL indication is received in the first slot PDCCH < / RTI >
  • the most recent slot before the first slot is the most recent slot before (the first slot-X symbol).
  • At least one QCL indication excluding the spatial QCL indication includes at least one of a delay spread, an average delay, a Doppler spread, and a Doppler shift. And a control unit.
  • the X symbol is a timing gap related to the reception beam change of the PDSCH and the PDCCH decoding.
  • the method may further include transmitting capability information including the value of X to the base station.
  • the receiving of the data through the PDSCH may further include modifying a reception beam for receiving the PDSCH based on the value of X.
  • the X symbol is set in the time domain in which the PDSCH is received.
  • the present disclosure relates to a method for transmitting data based on a quasi-co location (QCL) in a wireless communication system, the method being performed by a base station comprising the steps of: receiving a QCL indication for at least one DL downlink reference signal transmitting a transmission configuration indication (TCI) state information related to an indication to a terminal through RRC signaling; Transmitting a physical downlink control channel (PDCCH) including downlink control information (DCI) from a first slot to the mobile station; And transmitting a physical downlink shared channel (PDSCH) containing the data based on the one or more QCL indications to the terminal, wherein a spatial QCL indication of the QCL indications is transmitted in the first slot And a QCL indication included in a PDCCH transmitted in the most recent slot before the first slot, and at least one QCL indication of the QCL indications excluding the spatial QCL indication is transmitted in the first slot PDCCH < / RTI >
  • TCI transmission configuration indication
  • the method may further include receiving, from the UE, capability information of the UE including information on a timing gap associated with the reception beam change and the PDCCH decoding of the PDSCH; Determining a value of X based on information about the received time interval; And transmitting information on the determined value of X to the terminal.
  • the present invention also provides a terminal for receiving data based on a quasi-co location (QCL) in a wireless communication system, the terminal comprising: a Radio Frequency (RF) module for transmitting and receiving a radio signal; And a processor operatively coupled to the RF module, wherein the processor is configured to transmit a transmission configuration indication (TCI) state information associated with a QCL indication for at least one DL downlink reference signal Receive from the base station via RRC signaling; Receiving a physical downlink control channel (PDCCH) including downlink control information (DCI) from the base station in a first slot; And a physical downlink shared channel (PDSCH) comprising the data based on one or more QCL indications, wherein a spatial QCL indication of the QCL indications is received in the first slot Wherein the QCL indication is included in a PDCCH received in the most recent slot before the first slot, and at least one QCL indication excluding the spatial QCL indication among the QCL indications is a PDLCH received in a PDC
  • the present invention relates to a base station for transmitting data based on a quasi-co location (QCL) in a wireless communication system
  • the base station comprising: a radio frequency (RF) module for transmitting and receiving radio signals; And a processor operatively coupled to the RF module, wherein the processor is configured to transmit a transmission configuration indication (TCI) state information associated with a QCL indication for at least one DL downlink reference signal RRC signaling; Transmitting a physical downlink control channel (PDCCH) including downlink control information (DCI) from the first slot to the terminal; And a physical downlink shared channel (PDSCH) including the data based on one or more QCL indications, the PDSCH being configured to transmit a physical downlink shared channel (PDSCH)
  • TCI transmission configuration indication
  • PDCH physical downlink control channel
  • DCI downlink control information
  • PDSCH physical downlink shared channel
  • PDSCH physical downlink shared channel
  • PDSCH physical downlink shared channel
  • the present invention has the effect of increasing the implementation flexibility of the terminal in the case of beam switching through the above technical problem.
  • FIG. 1 is a diagram showing an example of the overall system structure of NR to which the method suggested in the present specification can be applied.
  • FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present invention can be applied.
  • FIG. 3 shows an example of a resource grid supported in a wireless communication system to which the method proposed here can be applied.
  • FIG. 4 shows an example of a self-contained subframe structure to which the method proposed herein can be applied.
  • FIG. 5 illustrates a transceiver unit model in a wireless communication system to which the present invention may be applied.
  • FIG. 6 is a diagram showing an example of a Tx beam related to DL BM procedure.
  • FIG. 7 is a flowchart showing an example of DL BM procedure using SSB.
  • FIG. 8 is a diagram illustrating an example of DL BM procedure using CSI-RS.
  • FIG. 9 is a flowchart illustrating an example of a reception beam determining process of the UE.
  • FIG. 10 is a flowchart illustrating an example of a transmission beam determining process of a base station.
  • FIG. 11 is a diagram showing an example of resource allocation in the time and frequency domain associated with the operation of FIG.
  • FIG. 12 is a diagram showing an example of a UL BM procedure using SRS.
  • FIG. 13 is a flowchart showing an example of UL BM procedure using SRS.
  • FIG. 14 is a flowchart showing an example of an operation method of a terminal implementing the method proposed in this specification.
  • 15 is a flowchart showing an example of a method of operation of a base station implementing the method proposed in this specification.
  • FIG. 16 illustrates a block diagram of a wireless communication device to which the methods proposed herein may be applied.
  • FIG. 17 illustrates a block diagram of a communication apparatus according to an embodiment of the present invention.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the particular operation described herein as performed by the base station may be performed by an upper node of the base station, as the case may be. That is, it is apparent that various operations performed for communication with a terminal in a network including a plurality of network nodes including a base station can be performed by a network node other than the base station or the base station.
  • BS base station
  • BS refers to a term such as a fixed station, a Node B, an evolved NodeB, a base transceiver system (BTS), an access point (AP), a gNB (generation NB) Lt; / RTI >
  • a 'terminal' may be fixed or mobile and may be a mobile station (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS) Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC), Machine-to-Machine (M2M), and Device-to-Device (D2D) devices.
  • UE mobile station
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS Subscriber station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • a downlink means communication from a base station to a terminal
  • an uplink means communication from a terminal to a base station.
  • the transmitter may be part of the base station, and the receiver may be part of the terminal.
  • the transmitter may be part of the terminal and the receiver may be part of the base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC- single carrier frequency division multiple access
  • CDMA can be implemented with radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA can be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
  • OFDMA can be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and evolved UTRA (E-UTRA).
  • UTRA is part of the universal mobile telecommunications system (UMTS).
  • 3GPP (3rd Generation Partnership Project) LTE (Long Term Evolution) is part of E-UMTS (evolved UMTS) using E-UTRA, adopting OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • 5G NR new radio
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • V2X vehicle-to-everything
  • the 5G NR standard distinguishes between standalone (SA) and non-standalone (NSA) depending on the co-existence between the NR system and the LTE system.
  • the 5G NR supports various subcarrier spacing, CP-OFDM in the downlink, CP-OFDM in the uplink, and DFT-s-OFDM (SC-OFDM).
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, the steps or portions of the embodiments of the present invention which are not described in order to clearly illustrate the technical idea of the present invention can be supported by the documents. In addition, all terms disclosed in this document may be described by the standard document.
  • 3GPP LTE / LTE-A / NR New RAT
  • the eLTE eNB is an eNB evolution that supports connectivity to EPC and NGC.
  • gNB node that supports NR as well as connection to NGC.
  • New RAN A wireless access network that supports NR or E-UTRA or interacts with NGC.
  • Network slice is a network defined by an operator to provide an optimized solution for a specific market scenario that requires specific requirements with end-to-end coverage.
  • Network function is a logical node within a network infrastructure with well-defined external interfaces and well-defined functional behavior.
  • NG-C Control plane interface used for NG2 reference point between new RAN and NGC.
  • NG-U User plane interface used for NG3 reference points between new RAN and NGC.
  • Non-standalone NR A configuration in which gNB requests an LTE eNB as an anchor for EPC control plane connection or an eLTE eNB as an anchor for control plane connection to NGC.
  • Non-stand-alone E-UTRA A deployment configuration in which the eLTE eNB requires the gNB as an anchor for the control plane connection to the NGC.
  • User plane gateway Endpoint of the NG-U interface.
  • FIG. 1 is a diagram showing an example of the overall system structure of NR to which the method suggested in the present specification can be applied.
  • the NG-RAN comprises gNBs providing a control plane (RRC) protocol termination for the NG-RA user plane (new AS sublayer / PDCP / RLC / MAC / PHY) and UE do.
  • RRC control plane
  • the gNBs are interconnected via the Xn interface.
  • the gNB is also connected to the NGC via the NG interface.
  • the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and a UPF (User Plane Function) through an N3 interface.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • the memoryless can be defined by the subcarrier spacing and the CP (Cyclic Prefix) overhead.
  • the plurality of subcarrier intervals are set to a constant N (or alternatively, ) ≪ / RTI >
  • the utilized memoryless can be chosen independently of the frequency band.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the number of OFDM neuron rolls supported in the NR system can be defined as shown in Table 1.
  • the size of the various fields in the time domain is Lt; / RTI > units of time. From here, ego, to be.
  • the downlink and uplink transmissions are And a radio frame having a duration of.
  • FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present invention can be applied.
  • the transmission of the uplink frame number i from the User Equipment (UE) is shorter than the start of the corresponding downlink frame in the corresponding UE You have to start before.
  • Not all terminals can transmit and receive at the same time, meaning that not all OFDM symbols of a downlink slot or an uplink slot can be used.
  • Table 2 & , And Table 3 shows the number of OFDM symbols per slot for a normal CP Represents the number of OFDM symbols per slot for an extended CP in the slot.
  • An antenna port, a resource grid, a resource element, a resource block, a carrier part, and the like are associated with a physical resource in the NR system. Can be considered.
  • the antenna port is defined such that the channel on which the symbols on the antenna port are carried can be deduced from the channel on which the other symbols on the same antenna port are carried. If a large-scale property of a channel on which a symbol on one antenna port is carried can be deduced from a channel on which symbols on another antenna port are carried, the two antenna ports may be quasi co-located (QC / QCL) quasi co-location relationship.
  • the broad characteristics include at least one of a delay spread, a Doppler spread, a frequency shift, an average received power, and a received timing.
  • Subcarriers if the resource grid is in the frequency domain Subcarriers, and one subframe consists of 14 x 2 u OFDM symbols, but is not limited thereto.
  • antenna port p can be set to one resource grid.
  • a physical resource block is a block in the frequency domain Are defined as consecutive subcarriers. On the frequency domain, .
  • a terminal may be configured to receive or transmit using only a subset of the resource grid. At this time, a set of resource blocks set to be received or transmitted by the UE is set to 0 .
  • FIG. 4 is a diagram illustrating a self-contained subframe structure in a wireless communication system to which the present invention may be applied.
  • the hatched area represents a DL control area and the black area (symbol index 13) represents an UL control area.
  • the area without shadow indication may be used for DL data transmission, or may be used for UL data transmission.
  • This structure is characterized in that DL transmission and UL transmission sequentially proceed in one subframe, DL data is transmitted in a subframe, and UL ACK / NACK can also be received. As a result, it takes less time to retransmit data when a data transmission error occurs, thereby minimizing the latency of final data transmission.
  • a time gap is required between the base station and the UE for switching from the transmission mode to the reception mode or from the reception mode to the transmission mode.
  • some OFDM symbols at the time of switching from DL to UL in the self-contained subframe structure are set as a guard period (GP).
  • the wavelength is shortened so that a plurality of antenna elements can be installed in the same area. That is, in a 30 GHz band, a total of 64 (8 ⁇ 8) antenna elements are arranged in a two-dimensional array at 0.5 lambda (ie, wavelength) intervals on a panel of 4 ⁇ 4 (4 by 4) Installation is possible. Therefore, in the case of mmW, a plurality of antenna elements are used to increase the beamforming (BF) gain to increase the coverage or increase the throughput.
  • BF beamforming
  • TXRU Transceiver Unit
  • TXRU Transceiver Unit
  • independent beamforming is possible for each frequency resource.
  • installing the TXRU on all 100 antenna elements has a problem in terms of cost effectiveness. Therefore, a method of mapping a plurality of antenna elements to one TXRU and adjusting the direction of a beam with an analog phase shifter is considered.
  • This analog BF method has a disadvantage in that it can not perform frequency selective BF since it can make only one beam direction in all bands.
  • Hybrid beamforming (BF) with B TXRUs that are fewer than Q antenna elements in the middle of digital BF and analog BF can be considered.
  • B TXRUs that are fewer than Q antenna elements in the middle of digital BF and analog BF.
  • the direction of the beam that can be transmitted at the same time is limited to B or less.
  • FIG. 5 illustrates a transceiver unit model in a wireless communication system to which the present invention may be applied.
  • the TXRU virtualization model shows the relationship between the output signal of the TXRU and the output signal of the antenna elements.
  • the TXRU virtualization model option -1 the sub-array partition model and the TXRU virtualization model option as shown in FIG. 5 (b) are selected according to the correlation between the antenna element and the TXRU, -2: Full-connection model.
  • q is a transmission signal vector of antenna elements having M co-polarized in one column.
  • w is a wideband TXRU virtualization weight vector
  • W is a phase vector multiplied by an analog phase shifter. That is, the direction of analog beamforming is determined by W.
  • x is a signal vector of M_TXRU TXRUs.
  • mapping between the antenna port and the TXRUs may be one-to-one or one-to-many.
  • CSI feedback Channel status information feedback
  • the terminal receives a pilot signal for channel estimation from the base station and calculates CSI (channel state information) and reports it to the base station.
  • CSI channel state information
  • the base station transmits the data signal based on the received CSI information from the terminal.
  • the CSI information fed back by the UE includes channel quality information (CQI), precoding matrix index (PMI), and rank indicator (RI).
  • CQI channel quality information
  • PMI precoding matrix index
  • RI rank indicator
  • CQI feedback is radio channel quality information provided to a base station for a purpose of link adaptation (hereinafter referred to as " link adaptation ") to provide a guide as to which MCS (modulation and coding scheme)
  • the UE feeds back a high CQI value, and the Node B will transmit the data using a relatively high modulation order and a low channel coding rate. In the opposite case, the UE feeds back a low CQI value, The data will be transmitted using a relatively low modulation order and a high channel coding rate.
  • the PMI feedback is preferred precoding matrix information provided to the base station in order to provide a guide as to which MIMO precoding scheme to apply when the base station has multiple antennas.
  • the MS estimates a downlink MIMO channel between the BS and the MS based on the pilot signal and recommends what MIMO precoding the BS should apply through PMI feedback.
  • the UE minimizes the feedback information amount of the UE by feeding back the index corresponding to the most preferred MIMO precoding matrix in the codebook as PMI.
  • the PMI value does not have to be a single index.
  • the final 8tx MIMO precoding matrix can be derived only by combining two indexes (first PMI and second PMI).
  • RI feedback is the number of preferred transmission layers provided to a base station for the purpose of providing a guide for the number of preferred transmission layers when multi-layer transmission is possible through spatial multiplexing with a base station and a terminal equipped with multiple antennas Information.
  • a UE receives data (e.g., PDSCH)
  • data e.g., PDSCH
  • a method for performing demodulation with a UE-specific RS (reference signal) such as a specific DMRS will be described.
  • the UE-specific DMRS is transmitted together only in the scheduled RB (s) of the corresponding PDSCH, and is transmitted only during the time interval during which the scheduled PDSCH is transmitted.
  • LSP major large-scale parameter / property
  • the DMRS density may be insufficient to acquire only the DMRS existing in the time / frequency region in which the scheduled PDSCH is transmitted.
  • QCL quasi co-location
  • &quot definition " can be used in place of " setting " or " indication "
  • &quot As used herein, the term " expectation " can be used in place of " assumption " or " expectation ".
  • &quot As used herein, " A and / or B " may be interpreted to have the same meaning as " contains at least one of A or B. "
  • BM beam management
  • the BM procedure may include a set of base stations (e.g., gNB, TRP, etc.) and / or terminal (e.g., UE) beams that may be used for downlink (DL) and uplink L1 (layer 1) / L2 (layer 2) procedures for acquiring and maintaining the following procedures and terms.
  • base stations e.g., gNB, TRP, etc.
  • terminal e.g., UE
  • DL downlink
  • L1 layer 1
  • L2 layer 2
  • Beam measurement An operation in which a base station or a UE measures the characteristics of a received beamforming signal.
  • - beam determination the operation of the base station or the UE selecting its own Tx beam / Rx beam.
  • Beam sweeping An operation that covers the spatial region using a transmit and / or receive beam for a predetermined time interval in a predetermined manner.
  • the BM procedure can be divided into (1) a DL BM procedure using a synchronization signal / PBCH (physical broadcast channel) block or a CSI-RS, and (2) a UL BM procedure using a sounding reference signal (SRS).
  • a DL BM procedure using a synchronization signal / PBCH (physical broadcast channel) block or a CSI-RS and (2) a UL BM procedure using a sounding reference signal (SRS).
  • SRS sounding reference signal
  • Each BM procedure may also include Tx beam sweeping to determine the Tx beam and Rx beam sweeping to determine the Rx beam.
  • the DL BM procedure may include (1) transmission to the base station's beamformed DL RSs (eg, CSI-RS or SS Block (SSB)) and (2) beam reporting of the terminal.
  • DL RSs eg, CSI-RS or SS Block (SSB)
  • the beam reporting may include a preferred DL RS ID (s) and a corresponding reference signal received power (RSRP).
  • s preferred DL RS ID
  • RSRP reference signal received power
  • the DL RS ID may be an SSBRI (SSB Resource Indicator) or a CRI (CSI-RS Resource Indicator).
  • SSBRI SSB Resource Indicator
  • CRI CSI-RS Resource Indicator
  • FIG. 6 is a diagram showing an example of a Tx beam related to DL BM procedure.
  • the SSB beam and the CSI-RS beam can be used for beam measurement.
  • the measurement metric is L1-RSRP for each resource / block.
  • SSB is used for coarse beam measurements
  • CSI-RS can be used for fine beam measurements.
  • SSB can be used for both Tx beam sweeping and Rx beam sweeping.
  • Rx beam sweeping using SSB can be performed while the UE is changing the Rx beam for the same SSBRI across multiple SSB bursts.
  • one SS burst includes one or more SSBs
  • one SS burst set includes one or more SSB bursts.
  • FIG. 7 is a flowchart showing an example of DL BM procedure using SSB.
  • the setting of beam report using SSB is performed in CSI / beam configuration in RRC connected state (or RRC connected mode).
  • the BM configuration using SSB is not defined separately but SSB is set as CSI-RS resource.
  • Table 4 shows an example of the CSI-ResourceConfig IE.
  • the csi-SSB-ResourceSetList parameter represents a list of SSB resources used for beam management and reporting in one resource set.
  • the MS receives a CSI-ResourceConfig IE including a CSI-SSB-ResourceSetList including SSB resources used for BM from the BS (S710).
  • the SSB resource set can be set to ⁇ SSBx1, SSBx2, SSBx3, SSBx4, ⁇ .
  • the SSB index can be defined from 0 to 63.
  • the SS receives SSB resources from the BS based on the CSI-SSB-ResourceSetList (S720).
  • the SS reports the best SSBRI and the corresponding L1-RSRP to the base station (S730).
  • the terminal reports the best SSBRI and its corresponding L1-RSRP to the base station.
  • the UE transmits the QCL-TypeD It can be assumed that a quasi co-located.
  • the QCL Type D may mean QCL between antenna ports in terms of spatial Rx parameters.
  • the same reception beam may be applied when receiving a plurality of DL antenna ports having a QCL Type D relationship.
  • the terminal does not expect the CSI-RS to be set in the RE which overlaps with the RE of the SSB.
  • the UE When the UE has set up an NZP-CSI-RS-ResourceSet with a higher layer parameter repetition set to 'ON', the UE transmits at least one CSI-RS resource in the NZP-CSI- filter.
  • At least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through the same Tx beam.
  • At least one CSI-RS resource in the NZP-CSI-RS-ResourceSet may be transmitted in different OFDM symbols or in different frequency domains (i.e., in FDM).
  • the case where the at least one CSI-RS resource is FDM is a multi-panel terminal.
  • the repetition is set to 'ON', it is related to the Rx beam sweeping procedure of the terminal.
  • the UE does not expect to receive different periodicity in periodicityAndOffset in all CSI-RS resources in the NZP-CSI-RS-Resourceset.
  • the UE does not assume that at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted in the same downlink spatial domain transmission filter.
  • At least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through different Tx beams.
  • Repetition is set to 'OFF', it is related to the Tx beam sweeping procedure of the base station.
  • the repetition parameter may be set only for CSI-RS resource sets associated with CSI-ReportConfig having a report of L1 RSRP or 'No Report (or None)'.
  • the CSI-RS is used for beam management when a repetition parameter is set in a specific CSI-RS resource set and TRS_info is not set.
  • the CSI-RS is used for TRS (tracking reference signal).
  • the CSI-RS is used for CSI acquisition.
  • FIG. 8 is a diagram illustrating an example of DL BM procedure using CSI-RS.
  • FIG. 8A shows an Rx beam determination (or refinement) procedure of the UE
  • FIG. 8B shows a Tx beam determination procedure of the BS.
  • the repetition parameter is set to 'ON'
  • the repetition parameter is set to 'OFF'.
  • FIG. 9 is a flowchart illustrating an example of a reception beam determining process of the UE.
  • the MS receives an NZP CSI-RS resource set IE including a higher layer parameter repetition from the BS through RRC signaling (S1110).
  • the repetition parameter is set to 'ON'.
  • step S920 the UE repeatedly receives resource (s) in the CSI-RS resource set set to 'ON' in different OFDM symbols through the same Tx beam (or DL spatial domain transmission filter) of the base station.
  • step S930 the MS determines its own Rx beam.
  • step S940 the MS either omits the CSI report or transmits a CSI report including the CRI / L1-RSRP to the BS.
  • the reportQuantity of the CSI report config can be set to either 'No report (or None)' or 'CRI and L1-RSRP'.
  • the terminal when the terminal is set to 'ON', the terminal may omit the CSI report or report the ID information (CRI) and the quality value (L1-RSRP) for the beam pair related preference beam.
  • CRI ID information
  • L1-RSRP quality value
  • FIG. 10 is a flowchart illustrating an example of a transmission beam determining process of a base station.
  • the MS receives an NZP CSI-RS resource set IE including higher layer parameter repetition from the BS through RRC signaling (S1010).
  • the repetition parameter is set to 'OFF' and is related to the Tx beam sweeping procedure of the base station.
  • step S1020 the UE receives resources in the CSI-RS resource set set to 'OFF' through different Tx beams of the base station (S1020).
  • the terminal selects (or determines) the best beam (S1030), and reports the ID and related quality information (e.g., L1-RSRP) of the selected beam to the base station (S1040).
  • ID and related quality information e.g., L1-RSRP
  • reportQuantity of CSI report config can be set to 'CRI + L1-RSRP'.
  • the UE when the CSI-RS is transmitted for the BM, the UE reports the CRI and the L1-RSRP to the BS.
  • FIG. 11 is a diagram showing an example of resource allocation in the time and frequency domain associated with the operation of FIG.
  • repetition 'ON' is set in the CSI-RS resource set
  • a plurality of CSI-RS resources are repeatedly used by applying the same transmission beam and repetition 'OFF' is set in the CSI-RS resource set
  • -RS resources are transmitted in different transmission beams.
  • the terminal can receive a maximum of M candidate Transmission Configuration Indication (TCI) states for a purpose of at least QCL (Quasi Co-location) indication.
  • TCI Transmission Configuration Indication
  • QCL Quadrature Co-location
  • Each TCI state can be set to one RS set.
  • Each ID of the DL RS for at least the spatial QCL purpose (QCL Type D) in the RS set may refer to one of the DL RS types such as SSB, P-CSI RS, SP-CSI RS, A-CSI RS, .
  • Initialization / update of the ID of the DL RS (s) in the RS set used for at least spatial QCL purposes can be performed at least through explicit signaling.
  • Table 5 shows an example of the TCI-State IE.
  • the TCI-State IE associates one or two DL reference signals (RS) with corresponding quasi co-location (QCL) types.
  • RS DL reference signals
  • QCL quasi co-location
  • the bwp-Id parameter represents the DL BWP where the RS is located
  • the cell parameter represents the carrier on which the RS is located
  • the referencesignal parameter is a reference that is the source of the quasi co-location for the target antenna port (s)
  • the target antenna port (s) may be a CSI-RS, a PDCCH DMRS, or a PDSCH DMRS.
  • the corresponding TCI state ID may be indicated in the NZP CSI-RS resource configuration information.
  • the TCI state ID can be assigned to each CORESET configuration to indicate the QCL reference information for the PDCCH DMRS antenna port (s).
  • Another example is to indicate the TCI state ID through the DCI to indicate the QCL reference information for the PDSCH DMRS antenna port (s).
  • An antenna port is defined such that the channel on which the symbol on the antenna port is carried can be deduced from the channel on which another symbol on the same antenna port is carried. If the property of the channel over which a symbol is carried on one antenna port can be deduced from the channel on which the symbol on another antenna port is carried, the two antenna ports can be quasi co-located or quasi co-location ) Relationship.
  • the channel characteristic may be at least one of a delay spread, a Doppler spread, a frequency shift, an average received power, a received timing, and a spatial RX parameter.
  • the Spatial Rx parameter means a spatial (reception) channel characteristic parameter such as an angle of arrival.
  • the UE may be configured with a list of up to M TCI-State configurations in the higher layer parameter PDSCH-Config to decode the PDSCH according to the detected PDCCH with the intended DCI for the UE and a given serving cell.
  • the M depends on the UE capability.
  • Each TCI-State includes parameters for establishing a quasi co-location relationship between one or two DL reference signals and the DM-RS port of the PDSCH.
  • the quasi co-location relationship is set to higher layer parameter qcl-Type1 for the first DL RS and qcl-Type2 (if set) for the second DL RS.
  • the QCL type is not the same whether the reference is the same DL RS or a different DL RS.
  • the quasi co-location type corresponding to each DL RS is given by the higher layer parameter qcl-Type of QCL-Info and can take one of the following values:
  • the UL BM may or may not establish beam reciprocity (or beam correspondence) between Tx beam and Rx beam depending on the terminal implementation.
  • the UL beam pair can be aligned through the DL beam pair.
  • UL BM can be performed through beamformed UL SRS transmission, and the 'SRS-SetUse' parameter is set to 'BeamManagement'.
  • the UL BM procedure can be divided into Tx beam sweeping of the terminal and Rx beam sweeping of the base station.
  • the UE can set one or more Sounding Reference Symbol (SRS) resource sets (higher layer signaling, RRC signaling, etc.) set by a higher layer parameter SRS-ResourceSet.
  • SRS Sounding Reference Symbol
  • K is a natural number, and the maximum value of K is indicated by SRS_capability.
  • the application of the UL BM of the SRS resource set is set by SRS-SetUse (higher layer parameter).
  • SRS-SetUse is set to 'BeamManagement (BM)', only one SRS resource can be transmitted to each of a plurality of SRS resource sets at a given time instant.
  • BM BeamManagement
  • FIG. 12A shows a Rx beam determination procedure of a base station
  • FIG. 12B shows a Tx beam determination procedure of a UE.
  • FIG. 13 is a flowchart showing an example of UL BM procedure using SRS.
  • the UE receives an RRC signaling (e.g., SRS-Config IE) including a usage parameter set to 'beam management' (higher layer parameter) from the base station (S1310).
  • RRC signaling e.g., SRS-Config IE
  • SRS-Config IE a usage parameter set to 'beam management' (higher layer parameter)
  • Table 6 shows an example of an SRS-Config IE (Information Element), and the SRS-Config IE is used for SRS transmission setting.
  • the SRS-Config IE includes a list of SRS-Resources and a list of SRS-ResourceSets.
  • Each SRS resource set represents a set of SRS-resources.
  • the network triggers the transmission of the SRS resource set using the set aperiodicSRS-ResourceTrigger (L1 DCI).
  • usage indicates a higher layer parameter indicating whether the SRS resource set is used for beam management, codebook-based or non-codebook-based transmission.
  • 'spatialRelationInfo' is a parameter indicating the setting of the spatial relation between the reference RS and the target SRS.
  • the reference RS may be SSB, CSI-RS, or SRS corresponding to the L1 parameter 'SRS-SpatialRelationInfo'.
  • the usage is set for each SRS resource set.
  • step S1320 the UE determines a Tx beam for an SRS resource to be transmitted based on the SRS-Spatial Relation Info included in the SRS-Config IE.
  • SRS-SpatialRelation Info is set for each SRS resource, and indicates whether to apply the same beam as that used in SSB, CSI-RS, or SRS for each SRS resource.
  • SRS-SpatialRelationInfo may or may not be set for each SRS resource.
  • SRS-SpatialRelationInfo is set in the SRS resource, the same beam as that used in SSB, CSI-RS, or SRS is transmitted and transmitted.
  • the UE arbitrarily determines the Tx beam and transmits the SRS through the determined Tx beam (S1330).
  • the UE applies the spatial domain transmission filter equal to (or generated from) the spatial domain Rx filter used for receiving the SSB / resource.
  • the UE transmits SRS resources with the same spatial domain transmission filter used for reception of periodic CSI-RS or SP CSI-RS.
  • the UE applies the same spatial domain transmission filter used for transmission of the periodic SRS to transmit the corresponding SRS resource.
  • the MS may receive or not receive the feedback of the SRS from the BS in the following three cases (S1340).
  • the mobile station transmits SRS to the beam indicated by the base station.
  • Spatial_Relation_Info indicates the same SSB, CRI, or SRI
  • the UE repeats the SRS with the same beam.
  • Spatial_Relation_Info may not be set for all SRS resources in the SRS resource set.
  • the UE can freely change the SRS beam and transmit it.
  • FIG. 12B is an application for the terminal to select the Tx beam.
  • Spatial_Relation_Info can only be set for some SRS resources in the SRS resource set.
  • each PQI state is explicitly described by RRC signaling.
  • Proposal 1 supports at least an explicit signaling mechanism for associating a DL RS index (eg, CRI, SSB index) with an indicator state.
  • a DL RS index eg, CRI, SSB index
  • the indicator state can be interpreted to have the same meaning as the TCI state.
  • association is implicitly determined by the UE.
  • the indicator state may or may not include other parameters.
  • the other parameters may be parameters for the purpose of mapping PDSCH to RE similar to PQI in LTE, and other QCL parameters.
  • Joint encoding can be supported similar to LTE to have better trade-offs in DCI overhead and flexibility by properly extending the value of N above [3 bits].
  • PDSCH rate matching information which may include a PDSCH start symbol, is indicated along with a PDSCH beam indication.
  • the PDSCH rate matching information is for providing a beam switching time gap and a DCI decoding time in a specific case, and may include a ZP CSI-RS resource ID for protecting CSI-RS of neighboring beams.
  • Proposal 2 supports joint encoding between PDSCH beam indication and PDSCH rate matching information to reduce DCI overhead.
  • the configuration of the RS set for each state can be performed via higher layer signaling (eg, RRC, RRC + MAC CE).
  • higher layer signaling eg, RRC, RRC + MAC CE.
  • each indicator state can be updated by the MAC CE to have better efficiency and flexibility in network implementation.
  • the configuration of RS set for each state supports that it can be performed through RRC *? * + MAC CE as well as RRC.
  • At least one slot latency or a couple of symbols are used to accurately decode the PDCCH to modify (or apply) the PDSCH beam according to the PDCCH indication Should be allowed for timing gaps.
  • This latency can only be applied for spatial QCL indications, and other QCL parameters such as delay spreads can be applied to the same slot to which the DL grant is delivered.
  • the NR-PDSCH scheduled in slot #n is based on the spatial QCL indication provided in the latest slot carrying the TCI field prior to slot #n And is based on other QCL parameters provided in the same slot #n.
  • At least one QCL parameter (s) other than the spatial QCL is transmitted by the DL grant (due to the TCI field included in the DL grant) received in the # It shall be applied when receiving data in the same slot according to the instruction.
  • the at least one other QCL parameter (s) may include at least one of a delay spread, an average delay, a Doppler spread, and a Doppler shift.
  • the UE only requests that the spatial QCL information not reflect the DCI (TCI included in the DCI) in the #nth slot (this indication is reflected in the # (n + 1) th slot and / ), and a beam indication (by TCI) in the # (n-1) th slot (and / or the most recent slot including its previous times).
  • the latency may depend on the UE capability so that the UE can report the appropriate capability for latency, such as two symbols in one slot.
  • the above behavior can be applied to the granularity of each symbol unit on a UE-by-UE basis based on the capability of the UE, and one symbol gap in the PDSCH to be transmitted is determined by RF switching time due to beam change To be applied.
  • the PDSCH transmission can be transmitted by applying at least one of the following options The terminal makes it receive.
  • the PDSCH transmission enables the PDSCH transmission to be started from the PDSCH starting symbol point indicated after the scheduled DCI reception point (e.g., immediately after the PDCCH area).
  • m may be a positive / negative integer, and the value may be determined explicitly and / or implicitly.
  • the UE can be defined to be able to receive the PDSCH by recognizing it clearly.
  • the PDCCH part before the gap time point is defined as being applied after the gap point
  • the spatial QCL indication information newly instructed by the DCI descending to the n-th slot is defined to be applied after the gap point, May be defined to receive and apply information.
  • the first detailed option is to apply the TCI information indicated by the DCI transmitted in the nth slot to both before the gap time point (and after the gap after the gap).
  • TCI information indicated by the DCI transmitted in the n-th slot is applied to the end of the corresponding slot after the gap point, and before the gap point, the same beam as the beam set in the CORESET to which the corresponding DCI is transmitted To be applied during the transition of the gap point.
  • the former may be more desirable for a system in which the CORESET (PDCCH) beam and the data (PDSCH) beam operate separately.
  • the former can be regarded as a kind of CoMP operation in which the control channel transmission beam and the data channel transmission beam are separated.
  • the CORES (PDCCH) beam and the data (PDSCH) beam are made to be the same until the gap point (a kind of fallback transmission) System. ≪ / RTI >
  • Option 2 can be defined to start transmitting PDSCH starting from the corresponding X-mth symbol position, so that all (other) QCL parameters including spatial QCL parameters are applied from this point.
  • the X-m value itself may be set by the base station (more flexible and directly) (referring to capability signaling from the terminal).
  • This D value itself may be set or indicated directly to the terminal as one of the contents of the DCI transmitted in the nth slot.
  • the actual BS also transmits the PDSCH to the nth slot, and the MS also receives the PDSCH in the same slot.
  • the QCL parameters (including spatial QCL) indicated by the TCI state indicated by the DCI in the nth slot can be applied to the PDSCH transmitted in the same nth slot.
  • the UE can be defined to receive the PDSCH in the (n + D) th slot.
  • the actual base station also transmits the PDSCH to the nth slot, and the terminal also receives the PDSCH in the same slot.
  • QCL parameters (including spatial QCL) indicated by the TCI state indicated by the DCI in the nth slot are all applied to the PDSCH transmitted in the (n + D) th slot.
  • At least one slot latency or two symbols shall be allowed for the timing at which the QCL will be applied relative to the time of the QCL indication.
  • QCL parameters such as the delay spread can be applied to the same slot to which the DL grant is forwarded.
  • the spatial QCL relation between the reference RS and the target RS is an independent feature of the spatial QCL indication for PDSCH reception, so that the two indicators should indeed be separated into independent DCI fields / formats.
  • the indicator for the spatial QCL relation between the reference RS and the target RS should be supported in a separate / independent DCI field / format compared to the indicator for the spatial QCL indication for PDSCH reception.
  • the spatial QCL relation between the reference RS and the target RS is as follows.
  • Signaling the spatial QCL relation between the SS block reference and at least the P (periodic) / SP (semi-persistent) CSI-RS is better than RRC * - + MAC CE.
  • AP CSI-RS for the targeted RS, which means that the beam indication is preset by the RRC + MAC CE, but the actual transmission timing of the AP CSI-RS is controlled by eFD-MIMO It is dictated by the DCI similar to the AP CSI-RS concept of the introduced LTE.
  • the signaling for the spatial QCL relation between the SS block reference and at least the P (periodic) / SP (semi-persistent) CSI-RS is preferably established via RRC *? * + MAC CE as well as RRC.
  • AP CSI-RS for the targeted RS is also allowed.
  • the signaling for the spatial QCL relation between the P / SP CSI-RS resource and another P / SP CSI-RS resource is preferably established via RRC + MAC CE as well as RRC.
  • AP CSI-RS for the targeted RS is also allowed.
  • NR supports NR-PDCCH monitoring using multiple beam pairs to improve robustness.
  • the UE must know in advance which UE beam (s) should be applied to receive the NR-PDCCH for higher link robustness.
  • a serving beam indication is required on which TRP (s) Tx beam is used to decode the NR-PDCCH.
  • a plurality of serving beams for NR-PDCCH monitoring can be set such that the beam direction of each serving beam can be updated by beam reporting information such as CRI.
  • NR For beam indication to monitor UE specific NR-PDCCH, NR uses MAC CE signaling and RRC signaling.
  • the RRC signaling can be used for setting one or more time / frequency domain patterns for each serving beam.
  • the MAC CE signaling may then be used to indicate the correct beam or pattern information for NR-PDCCH reception.
  • MAC CE signaling is not always required to monitor UE specific NR-PDCCH.
  • a base station e.g., gNB may set up multiple SRS resource groups, where different groups may be used for different purposes.
  • the group A SRS resource is set for UL link adaptation
  • the group B SRS resource can be set for UL beam management.
  • the UE can apply different Tx beams for each SRS resource have.
  • the UE applies P different beam directions, each applied to different SRS resources.
  • the value of P or related information needs to be communicated to the gNB initially as UE capability signaling for the appropriate setting on the Group B SRS resource (s).
  • the gNB After measuring the transferred Group B SRS resource, the gNB selects the preferred beam used to apply to the Group A SRS resource by setting / indicating another type of SRI to indicate the SRS Tx beam.
  • the SRI for SRS-resource-level Tx beam indication is preferably signaled by the MAC CE because the payload size limitation is less than DCI.
  • the UL beam information is updated with a relatively long periodicity.
  • the SRS Tx beam is indicated by SRI or *? * CSI-RS resource based indication (eg CRI).
  • the UE may determine the SRS Tx beam from the DL Rx beam corresponding to the CRI in the reverse direction.
  • the MAC CE may be desirable for the MAC CE to signal the CRI for the UE Tx beam.
  • the CRI or *? * SRI indication for the SRS Tx beam may be limited to Group B CSI-RS resources or Group B SRS resources to reduce signaling overhead.
  • NR For beam indication for SRS transmission, NR supports SRI or CRI indication for each SRS resource set through MAC CE.
  • the UE may be configured to transmit multiple SRS resources for UL beam management by a single aperiodic SRS triggering field.
  • the method of controlling the UL beam sweeping operation can be performed through explicit or implicit instructions.
  • an explicit indication may be performed for different SRS transmission instances whether the UE should maintain the same transmission beam or use a different SRS transmission beam.
  • an implicit indication may be performed by defining a default UE behavior such that the UE maintains the same transmit beam in the SRS resource and modifies the beam through different SRS resources.
  • a number of one symbol SRS resources may be set in the UE to transmit different Tx beams with different symbols.
  • multiple N symbol SRS resources may be set to values greater than one.
  • the U-1 procedure refers to a procedure for performing the U-2 procedure and the U-3 procedure jointly.
  • Proposal 10 supports the UE to derive UL beam sweeping behavior for SRS transmissions according to the following options.
  • the UE maintains the same Tx beam within the SRS resource and modifies the beam through different SRS resources.
  • NR supports UL-MIMO scheduling by DCI, which includes at least some of the following:
  • Each set SRS resource is associated with at least one UL Tx beam / precoder.
  • Possible values are up to the number of SRS ports set in the indicated SRI.
  • the codebook-based transmission for the UL is supported by at least the following signaling in the UL grant:
  • the TPMI is used to indicate the preferred precoder via the SRS port in the SRS resource selected by the SRI.
  • the TPMI is used to indicate the preferred precoder over the SRS port in a single set SRS resource.
  • NR applies SRS Tx beam indication (by SRS resource or DL RS).
  • At least the supported DL RS includes CSI-RS and SSB.
  • the AP-SRS-Trigger field is also set to include the DL DCI (and / or a separate DCI that is not related to the UL), then this other type of DCI (eg, no SRI field exists)
  • this other type of DCI eg, no SRI field exists
  • the timeline issue on the application point can be made to follow the "latest indication (before n-X)" rule.
  • the applicable (beam) indication for the "Reference RS to Target RS" If there is a beam indication, follow it.
  • the reference RS for the (beam) indication of the "RS to Target RS" is set from the CC and / or the BWP different from the target RS .
  • the timeline issue can be defined (or set) differently or independently from the case where the reference RS is set from the same CC and / or BWP as described above.
  • the reference RS is set up from the cross CC (or BWP), and the RS is triggered to transmit the specific (SR) SRS to the nth slot, May be followed if there is a corresponding beam indication to the latest slot prior to the (n Y) th slot.
  • the reference RS for the (beam) indication of the "Reference RS to Target RS" is set from the CC and / or the BWP different from the target RS, the same CC and / or BWP (Or set) differently or independently from the case in which the reference RS is set.
  • the reference RS is set up from the cross CC (or BWP) and the reference RS to CSI is applied to measure the specific (AP) CSI-RS in the nth slot
  • the (beam) indication for the Target RS "can be followed if there is a beam indication to the latest slot prior to the (n-Y1) th slot.
  • the UE receives an initial RRC configuration of the TCI-State PDCCH including one or more TCI states but does not receive one of the corresponding TCI states, the UE receives PDCCH in the UE- It is assumed that the associated DM-RS antenna port is located in the quasi-co and UE SS / PBCH blocks identified during the initial access procedure in terms of delay spread, Doppler spread, Doppler shift, average delay and spatial Rx parameters.
  • the UE determines that the DM-RS antenna port associated with PDCCH reception in the UE-specific search space is set by the corresponding TCI state It is assumed that DL RS (s) and quasi-co are located.
  • the RRC (re-) configuration case (s) may mean altering at least one sub RRC parameter for a CORESET that has been maintained in a certain existing state, or after the initial access (in the stable RRC-connected state) to add a new new CORESET.
  • the following methods can be considered between the RRC (re) configuration of the TCI-States PDCCH including multiple TCI states and the MAC CE activation of one of these states.
  • the DL RS in the lowest entry of the TCI-StatesPDCCH is used for the PDCCH beam until a MAC CE activation message is delivered.
  • the most recent DL RS activated by the MAC CE is used for the PDCCH beam until the MAC CE activation message is delivered.
  • the DL RS activated at the lowest CORESET is used.
  • the UE does not expect (or expect) to be scheduled via CORESET until a MAC CE activation message is delivered.
  • the UE does not expect (or assumes) that a specific control message such as data scheduling will come through the specific CORESET configured only with the RRC.
  • FIG. 14 is a flowchart showing an example of an operation method of a terminal implementing the method proposed in this specification.
  • step S1410 the UE receives a transmission configuration indication (TCI) state information associated with a QCL indication for at least one downlink reference signal (DL RS) from the base station through RRC signaling.
  • TCI transmission configuration indication
  • step S1420 the MS receives a physical downlink control channel (PDCCH) including downlink control information (DCI) from the BS in a first slot.
  • PDCCH physical downlink control channel
  • DCI downlink control information
  • step S1430 the UE receives a physical downlink shared channel (PDSCH) including the data based on one or more QCL indications.
  • PDSCH physical downlink shared channel
  • a spatial QCL indication of the QCL indications is a QCL indication included in a PDCCH transmitted in the first slot or in the most recent slot before the first slot, and the spatial (QCL) ) At least one QCL indication other than the QCL indication may be a QCL indication included in the PDCCH transmitted in the first slot.
  • the most recent slot before the first slot may be the most recent slot before (the first slot-X symbol).
  • At least one QCL indication excluding the spatial QCL indication may include at least one of a delay spread, an average delay, a Doppler spread, and a Doppler shift. .
  • the X symbol indicates a timing gap related to the reception beam change and the PDCCH decoding of the PDSCH.
  • the terminal transmits capability information including the value of X to the base station.
  • the step of receiving the data through the PDSCH may further include modifying a reception beam for receiving the PDSCH based on the value of X.
  • the X symbol may be set in the time domain in which the PDSCH is received.
  • 15 is a flowchart showing an example of a method of operation of a base station implementing the method proposed in this specification.
  • the base station transmits TCI (transmission configuration indication) state information related to at least one downlink reference signal (DL RS) indication to the UE through RRC signaling (S1510).
  • TCI transmission configuration indication
  • DL RS downlink reference signal
  • step S1520 the BS transmits a physical downlink control channel (PDCCH) including downlink control information (DCI) from the first slot to the MS.
  • PDCCH physical downlink control channel
  • DCI downlink control information
  • step S1530 the BS transmits a physical downlink shared channel (PDSCH) including the data based on one or more QCL indications to the MS.
  • PDSCH physical downlink shared channel
  • a spatial QCL indication of the QCL indications is a QCL indication included in a PDCCH transmitted in the first slot or in the most recent slot before the first slot, and the spatial (QCL) ) At least one QCL indication other than the QCL indication may be a QCL indication included in the PDCCH transmitted in the first slot.
  • the most recent slot before the first slot may be the most recent slot before (the first slot-X symbol).
  • the QCL indication excluding the spatial QCL indication may include at least one of a delay spread, an average delay, a Doppler spread, and a Doppler shift.
  • the X symbol may refer to a timing gap related to the reception beam change of the PDSCH.
  • the base station receives capability information of the terminal including information on a timing gap associated with the reception beam change of the PDSCH and the PDCCH decoding from the terminal.
  • the base station may determine the value of X based on the information on the received time interval, and may transmit information on the determined value of X to the terminal.
  • the X symbol may be set in the time domain in which the PDSCH is received.
  • FIGS. 14 and 15 can be specifically implemented through the devices described below or the components in each device.
  • FIG. 16 illustrates a block diagram of a wireless communication device to which the methods proposed herein may be applied.
  • a wireless communication system includes a base station 1610 and a plurality of terminals 1620 located in a base station area.
  • the BS and the MS may be represented by wireless devices, respectively.
  • the base station includes a processor 1611, a memory 1612, and a radio frequency module 1613.
  • the processor 1611 implements the functions, processes, and / or methods suggested earlier in FIGS. 1-15.
  • the layers of the air interface protocol may be implemented by a processor.
  • the memory is coupled to the processor and stores various information for driving the processor.
  • the RF module is coupled to the processor to transmit and / or receive wireless signals.
  • the terminal includes a processor 1621, a memory 1622, and an RF module 1623.
  • the processor implements the functions, processes and / or methods suggested in FIGS. 1-15.
  • the layers of the air interface protocol may be implemented by a processor.
  • the memory is coupled to the processor and stores various information for driving the processor.
  • the RF module is coupled to the processor to transmit and / or receive wireless signals.
  • the base station and / or the terminal may have a single antenna or multiple antennas.
  • the antennas 1614 and 1624 function to transmit and receive radio signals.
  • FIG. 17 illustrates a block diagram of a communication apparatus according to an embodiment of the present invention.
  • FIG. 17 is a diagram illustrating the terminal of FIG. 16 in more detail.
  • a terminal includes a processor (or a digital signal processor (DSP) 1710, an RF module (or RF unit) 1735, a power management module 1705 An antenna 1740, a battery 1755, a display 1715, a keypad 1720, a memory 1730, a SIM (Subscriber Identification Module ) card 1725 (this configuration is optional), a speaker 1745 and a microphone 1750.
  • the terminal may also include a single antenna or multiple antennas .
  • Processor 1710 implements the functions, processes, and / or methods suggested earlier in FIGS. 1-15.
  • the layer of the air interface protocol may be implemented by a processor.
  • Memory 1730 is coupled to the processor and stores information related to the operation of the processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by any of a variety of well known means.
  • the user inputs command information such as a telephone number or the like by, for example, pressing (or touching) a button on the keypad 1720 or by voice activation using a microphone 1750.
  • the processor receives such command information and processes it to perform appropriate functions, such as dialing a telephone number. Operational data may be extracted from sim card 1725 or memory 1730. In addition, the processor may display command information or drive information on the display 1715 for the user to recognize and also for convenience.
  • RF module 1735 is coupled to the processor to transmit and / or receive RF signals.
  • the processor communicates command information to the RF module to transmit, for example, a radio signal that constitutes voice communication data, to initiate communication.
  • the RF module consists of a receiver and a transmitter for receiving and transmitting radio signals.
  • the antenna 1740 functions to transmit and receive a radio signal. When receiving a radio signal, the RF module can transmit the signal for processing by the processor and convert the signal to baseband. The processed signal may be converted to audible or readable information output via speaker 1745.
  • Embodiments in accordance with the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs) field programmable gate arrays, processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • an embodiment of the present invention may be implemented in the form of a module, a procedure, a function, or the like which performs the functions or operations described above.
  • the software code can be stored in memory and driven by the processor.
  • the memory is located inside or outside the processor and can exchange data with the processor by various means already known.
  • the present invention can be applied to various wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서는 무선 통신 시스템에서 QCL(quasi-co location)에 기초하여 데이터를 수신하는 방법을 제공한다. 보다 구체적으로, 단말에 의해 수행되는 상기 데이터 수신 방법은, 적어도 하나의 DL RS(downlink reference signal)에 대한 QCL 지시(indication)와 관련된 TCI(transmission configuration indication) 상태(state) 정보를 RRC 시그널링을 통해 기지국으로부터 수신하는 단계; DCI(downlink control information)를 포함하는 PDCCH(physical downlink control channel)를 제 1 슬롯(slot)에서 상기 기지국으로부터 수신하는 단계; 및 하나 또는 그 이상의 QCL indication들에 기초하여 상기 데이터를 포함하는 PDSCH(physical downlink shared channel)를 상기 기지국으로부터 수신하는 단계를 포함한다. 이를 통해, 빔 스위칭 시 단말의 구현 유연성(flexibility)를 높일 수 있는 효과가 있다.

Description

무선 통신 시스템에서 QCL에 기초하여 데이터를 송수신하기 위한 방법 및 이를 위한 장치
본 명세서는 무선 통신 시스템에 관한 것으로서, 보다 상세하게 QCL(quasi-co location)에 기초하여 데이터를 송수신하는 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 QCL 파마리터들 간에 QCL 적용 시점을 다르게 제공하는 방법을 제공함에 목적이 있다.
또한, 본 명세서는 cross-CC(또는 BWP) 관련 QCL indication 시, UL에서 해당 QCL indication의 적용 지연(delay)을 정의(또는 설정)하는 방법을 제공함에 목적이 있다.
또한, 본 명세서는 PDCCH beam indication 시, RRC signaling과 MAC CE 수신 간의 모호함(ambiguity)를 해결하는 방법을 제공함에 목적이 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서는 무선 통신 시스템에서 QCL(quasi-co location)에 기초하여 데이터를 수신하는 방법에 있어서, 단말에 의해 수행되는 방법은, 적어도 하나의 DL RS(downlink reference signal)에 대한 QCL 지시(indication)와 관련된 TCI(transmission configuration indication) 상태(state) 정보를 RRC 시그널링을 통해 기지국으로부터 수신하는 단계; DCI(downlink control information)를 포함하는 PDCCH(physical downlink control channel)를 제 1 슬롯(slot)에서 상기 기지국으로부터 수신하는 단계; 및 하나 또는 그 이상의 QCL indication들에 기초하여 상기 데이터를 포함하는 PDSCH(physical downlink shared channel)를 상기 기지국으로부터 수신하는 단계를 포함하되, 상기 QCL indication들 중 공간(spatial) QCL indication은 상기 제 1 슬롯에서 또는 상기 제 1 슬롯 이전의 가장 최신의 슬롯에서 수신되는 PDCCH에 포함되는 QCL indication이며, 상기 QCL indication들 중 상기 공간(spatial) QCL indication을 제외한 적어도 하나의 QCL indication은 상기 제 1 슬롯에서 수신되는 PDCCH에 포함되는 QCL indication인 것을 특징으로 한다.
또한, 본 명세서에서 상기 제 1 슬롯 이전의 가장 최신의 슬롯은 (상기 제 1 슬롯 - X 심볼) 이전의 가장 최신 슬롯인 것을 특징으로 한다.
또한, 본 명세서에서 상기 공간(spatial) QCL indication을 제외한 적어도 하나의 QCL indication은 지연 확산(delay spread), 평균 지연(average delay), 도플러 확산(doppler spread) 또는 도플러 쉬프트(Doppler shift) 중 적어도 하나를 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 X 심볼은 상기 PDSCH의 수신 빔 변경 및 상기 PDCCH 디코딩과 관련된 시간 간격(timing gap)인 것을 특징으로 한다.
또한, 본 명세서에서 상기 방법은 상기 X의 값을 포함하는 능력(capability) 정보를 상기 기지국으로 전송하는 단계를 더 포함할 수 있다.
또한, 본 명세서에서 상기 데이터를 상기 PDSCH를 통해 수신하는 단계는, 상기 X의 값에 기초하여 상기 PDSCH를 수신하기 위한 수신 빔을 변경하는 단계를 더 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 X 심볼은 상기 PDSCH가 수신되는 시간 영역 내에 설정되는 것을 특징으로 한다.
또한, 본 명세서는 무선 통신 시스템에서 QCL(quasi-co location)에 기초하여 데이터를 전송하는 방법에 있어서, 기지국에 의해 수행되는 방법은, 적어도 하나의 DL RS(downlink reference signal)에 대한 QCL 지시(indication)와 관련된 TCI(transmission configuration indication) 상태(state) 정보를 RRC 시그널링을 통해 단말로 전송하는 단계; DCI(downlink control information)를 포함하는 PDCCH(physical downlink control channel)를 제 1 슬롯(slot)에서 상기 단말로 전송하는 단계; 및 하나 또는 그 이상의 QCL indication들에 기초하여 상기 데이터를 포함하는 PDSCH(physical downlink shared channel)를 상기 단말로 전송하는 단계를 포함하되, 상기 QCL indication들 중 공간(spatial) QCL indication은 상기 제 1 슬롯에서 또는 상기 제 1 슬롯 이전의 가장 최신의 슬롯에서 전송되는 PDCCH에 포함되는 QCL indication이며, 상기 QCL indication들 중 상기 공간(spatial) QCL indication을 제외한 적어도 하나의 QCL indication은 상기 제 1 슬롯에서 전송되는 PDCCH에 포함되는 QCL indication인 것을 특징으로 한다.
또한, 본 명세서에서 상기 방법은 상기 PDSCH의 수신 빔 변경 및 상기 PDCCH 디코딩과 관련된 시간 간격(timing gap)에 대한 정보를 포함하는 상기 단말의 능력(capability) 정보를 상기 단말로부터 수신하는 단계; 상기 수신된 시간 간격에 대한 정보에 기초하여 상기 X의 값을 결정하는 단계; 및 상기 결정된 X의 값에 대한 정보를 상기 단말로 전송하는 단계를 더 포함하는 것을 특징으로 한다.
또한, 본 명세서는 무선 통신 시스템에서 QCL(quasi-co location)에 기초하여 데이터를 수신하기 위한 단말에 있어서, 무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는, 적어도 하나의 DL RS(downlink reference signal)에 대한 QCL 지시(indication)와 관련된 TCI(transmission configuration indication) 상태(state) 정보를 RRC 시그널링을 통해 기지국으로부터 수신하며; 하향링크 제어 정보 (downlink control information, DCI)를 포함하는 PDCCH(physical downlink control channel)를 제 1 슬롯(slot)에서 상기 기지국으로부터 수신하며; 및 하나 또는 그 이상의 QCL indication들에 기초하여 상기 데이터를 포함하는 PDSCH(physical downlink shared channel)를 상기 기지국으로부터 수신하도록 설정되되, 상기 QCL indication들 중 공간(spatial) QCL indication은 상기 제 1 슬롯에서 또는 상기 제 1 슬롯 이전의 가장 최신의 슬롯에서 수신되는 PDCCH에 포함되는 QCL indication이며, 상기 QCL indication들 중 상기 공간(spatial) QCL indication을 제외한 적어도 하나의 QCL indication은 상기 제 1 슬롯에서 수신되는 PDCCH에 포함되는 QCL indication인 것을 특징으로 한다.
또한, 본 명세서는 무선 통신 시스템에서 QCL(quasi-co location)에 기초하여 데이터를 전송하기 위한 기지국에 있어서, 무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는, 적어도 하나의 DL RS(downlink reference signal)에 대한 QCL 지시(indication)와 관련된 TCI(transmission configuration indication) 상태(state) 정보를 RRC 시그널링을 통해 단말로 전송하며; 하향링크 제어 정보 (downlink control information, DCI)를 포함하는 PDCCH(physical downlink control channel)를 제 1 슬롯(slot)에서 상기 단말로 전송하며; 및 특정 QCL indication에 기초하여 상기 데이터를 포함하는 PDSCH(physical downlink shared channel)를 상기 단말로 전송하도록 설정되되, 하나 또는 그 이상의 QCL indication들에 기초하여 상기 데이터를 포함하는 PDSCH(physical downlink shared channel)를 상기 단말로 전송하도록 설정되되, 상기 QCL indication들 중 공간(spatial) QCL indication은 상기 제 1 슬롯에서 또는 상기 제 1 슬롯 이전의 가장 최신의 슬롯에서 전송되는 PDCCH에 포함되는 QCL indication이며, 상기 QCL indication들 중 상기 공간(spatial) QCL indication을 제외한 적어도 하나의 QCL indication은 상기 제 1 슬롯에서 전송되는 PDCCH에 포함되는 QCL indication인 것을 특징으로 하는 한다.
본 명세서는 상기의 기술적 과제를 통해 빔 스위칭(beam switching) 시 단말의 구현 유연성(flexibility)을 높일 수 있는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained 서브프레임 구조의 일례를 나타낸다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 트랜스시버 유닛 모델을 예시한다.
도 6은 DL BM 절차 관련 Tx beam의 일례를 나타낸 도이다.
도 7은 SSB를 이용한 DL BM 절차의 일례를 나타낸 흐름도이다.
도 8은 CSI-RS를 이용한 DL BM 절차의 일례를 나타낸 도이다.
도 9는 단말의 수신 빔 결정 과정의 일례를 나타낸 흐름도이다.
도 10은 기지국의 전송 빔 결정 과정의 일례를 나타낸 흐름도이다.
도 11은 도 8의 동작과 관련된 시간 및 주파수 영역에서의 자원 할당의 일례를 나타낸 도이다.
도 12는 SRS를 이용한 UL BM 절차의 일례를 나타낸 도이다.
도 13은 SRS를 이용한 UL BM 절차의 일례를 나타낸 흐름도이다.
도 14는 본 명세서에서 제안하는 방법을 구현하는 단말의 동작 방법의 일례를 나타내는 순서도이다.
도 15는 본 명세서에서 제안하는 방법을 구현하는 기지국의 동작 방법의 일례를 나타내는 순서도이다.
도 16은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.
도 17은 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 통상의 기술자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), gNB(generation NB) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
5G NR(new radio)은 usage scenario에 따라 eMBB(enhanced Mobile Broadband), mMTC(massive Machine Type Communications), URLLC(Ultra-Reliable and Low Latency Communications), V2X(vehicle-to-everything)을 정의한다.
그리고, 5G NR 규격(standard)는 NR 시스템과 LTE 시스템 사이의 공존(co-existence)에 따라 standalone(SA)와 non-standalone(NSA)으로 구분한다.
그리고, 5G NR은 다양한 서브캐리어 간격(subcarrier spacing)을 지원하며, 하향링크에서 CP-OFDM을, 상향링크에서 CP-OFDM 및 DFT-s-OFDM(SC-OFDM)을 지원한다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A/NR(New RAT)를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
용어 정의
eLTE eNB: eLTE eNB는 EPC 및 NGC에 대한 연결을 지원하는 eNB의 진화(evolution)이다.
gNB: NGC와의 연결뿐만 아니라 NR을 지원하는 노드.
새로운 RAN: NR 또는 E-UTRA를 지원하거나 NGC와 상호 작용하는 무선 액세스 네트워크.
네트워크 슬라이스(network slice): 네트워크 슬라이스는 종단 간 범위와 함께 특정 요구 사항을 요구하는 특정 시장 시나리오에 대해 최적화된 솔루션을 제공하도록 operator에 의해 정의된 네트워크.
네트워크 기능(network function): 네트워크 기능은 잘 정의된 외부 인터페이스와 잘 정의된 기능적 동작을 가진 네트워크 인프라 내에서의 논리적 노드.
NG-C: 새로운 RAN과 NGC 사이의 NG2 레퍼런스 포인트(reference point)에 사용되는 제어 평면 인터페이스.
NG-U: 새로운 RAN과 NGC 사이의 NG3 레퍼런스 포인트(reference point)에 사용되는 사용자 평면 인터페이스.
비 독립형(Non-standalone) NR: gNB가 LTE eNB를 EPC로 제어 플레인 연결을 위한 앵커로 요구하거나 또는 eLTE eNB를 NGC로 제어 플레인 연결을 위한 앵커로 요구하는 배치 구성.
비 독립형 E-UTRA: eLTE eNB가 NGC로 제어 플레인 연결을 위한 앵커로 gNB를 요구하는 배치 구성.
사용자 평면 게이트웨이: NG-U 인터페이스의 종단점.
시스템 일반
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 1을 참조하면, NG-RAN은 NG-RA 사용자 평면(새로운 AS sublayer/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다.
상기 gNB는 Xn 인터페이스를 통해 상호 연결된다.
상기 gNB는 또한, NG 인터페이스를 통해 NGC로 연결된다.
보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF (Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF (User Plane Function)로 연결된다.
NR(New Rat) 뉴머롤로지(Numerology) 및 프레임(frame) 구조
NR 시스템에서는 다수의 뉴머롤로지(numerology)들이 지원될 수 있다. 여기에서, 뉴머롤로지는 서브캐리어 간격(subcarrier spacing)과 CP(Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 서브캐리어 간격은 기본 서브캐리어 간격을 정수 N(또는,
Figure PCTKR2018011642-appb-I000001
)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 뉴머롤로지는 주파수 대역과 독립적으로 선택될 수 있다.
또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM(Orthogonal Frequency Division Multiplexing) 뉴머롤로지 및 프레임 구조를 살펴본다.
NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1과 같이 정의될 수 있다.
Figure PCTKR2018011642-appb-T000001
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는
Figure PCTKR2018011642-appb-I000002
의 시간 단위의 배수로 표현된다. 여기에서,
Figure PCTKR2018011642-appb-I000003
이고,
Figure PCTKR2018011642-appb-I000004
이다. 하향링크(downlink) 및 상향링크(uplink) 전송은
Figure PCTKR2018011642-appb-I000005
의 구간을 가지는 무선 프레임(radio frame)으로 구성된다. 여기에서, 무선 프레임은 각각
Figure PCTKR2018011642-appb-I000006
의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 2에 나타난 것과 같이, 단말(User Equipment, UE)로 부터의 상향링크 프레임 번호 i의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다
Figure PCTKR2018011642-appb-I000007
이전에 시작해야 한다.
뉴머롤로지
Figure PCTKR2018011642-appb-I000008
에 대하여, 슬롯(slot)들은 서브프레임 내에서
Figure PCTKR2018011642-appb-I000009
의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서
Figure PCTKR2018011642-appb-I000010
의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은
Figure PCTKR2018011642-appb-I000011
의 연속하는 OFDM 심볼들로 구성되고,
Figure PCTKR2018011642-appb-I000012
는, 이용되는 뉴머롤로지 및 슬롯 설정(slot configuration)에 따라 결정된다. 서브프레임에서 슬롯
Figure PCTKR2018011642-appb-I000013
의 시작은 동일 서브프레임에서 OFDM 심볼
Figure PCTKR2018011642-appb-I000014
의 시작과 시간적으로 정렬된다.
모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.
표 2는 뉴머롤로지
Figure PCTKR2018011642-appb-I000015
에서의 일반(normal) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타내고, 표 3은 뉴머롤로지
Figure PCTKR2018011642-appb-I000016
에서의 확장(extended) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타낸다.
Figure PCTKR2018011642-appb-T000002
Figure PCTKR2018011642-appb-T000003
NR 물리 자원(NR Physical Resource)
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다.
이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 추론될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 3을 참고하면, 자원 그리드가 주파수 영역 상으로
Figure PCTKR2018011642-appb-I000017
서브캐리어들로 구성되고, 하나의 서브프레임이 14 x 2u OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
NR 시스템에서, 전송되는 신호(transmitted signal)는
Figure PCTKR2018011642-appb-I000018
서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및
Figure PCTKR2018011642-appb-I000019
의 OFDM 심볼들에 의해 설명된다. 여기에서,
Figure PCTKR2018011642-appb-I000020
이다. 상기
Figure PCTKR2018011642-appb-I000021
는 최대 전송 대역폭을 나타내고, 이는, 뉴머롤로지들뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다.
이 경우, 도 3과 같이, 뉴머롤로지
Figure PCTKR2018011642-appb-I000022
및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다.
뉴머롤로지
Figure PCTKR2018011642-appb-I000023
및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍
Figure PCTKR2018011642-appb-I000024
에 의해 고유적으로 식별된다. 여기에서,
Figure PCTKR2018011642-appb-I000025
는 주파수 영역 상의 인덱스이고,
Figure PCTKR2018011642-appb-I000026
는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍
Figure PCTKR2018011642-appb-I000027
이 이용된다. 여기에서,
Figure PCTKR2018011642-appb-I000028
이다.
뉴머롤로지
Figure PCTKR2018011642-appb-I000029
및 안테나 포트 p에 대한 자원 요소
Figure PCTKR2018011642-appb-I000030
는 복소 값(complex value)
Figure PCTKR2018011642-appb-I000031
에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 뉴머롤로지가 특정되지 않은 경우에는, 인덱스들 p 및
Figure PCTKR2018011642-appb-I000032
는 드롭(drop)될 수 있으며, 그 결과 복소 값은
Figure PCTKR2018011642-appb-I000033
또는
Figure PCTKR2018011642-appb-I000034
이 될 수 있다.
또한, 물리 자원 블록(physical resource block)은 주파수 영역 상의
Figure PCTKR2018011642-appb-I000035
연속적인 서브캐리어들로 정의된다. 주파수 영역 상에서, 물리 자원 블록들은 0부터
Figure PCTKR2018011642-appb-I000036
까지 번호가 매겨진다. 이 때, 주파수 영역 상의 물리 자원 블록 번호(physical resource block number)
Figure PCTKR2018011642-appb-I000037
와 자원 요소들
Figure PCTKR2018011642-appb-I000038
간의 관계는 수학식 1과 같이 주어진다.
Figure PCTKR2018011642-appb-M000001
또한, 캐리어 파트(carrier part)와 관련하여, 단말은 자원 그리드의 서브셋(subset)만을 이용하여 수신 또는 전송하도록 설정될 수 있다. 이 때, 단말이 수신 또는 전송하도록 설정된 자원 블록의 집합(set)은 주파수 영역 상에서 0부터
Figure PCTKR2018011642-appb-I000039
까지 번호가 매겨진다.
자기 완비(Self-contained) 서브프레임 구조
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 자기 완비(Self-contained) 서브프레임 구조를 예시하는 도면이다.
TDD 시스템에서 데이터 전송 레이턴시(latency)를 최소화하기 위하여 5세대(5G: 5 generation) new RAT에서는 도 4와 같은 자기 완비(self-contained) 서브프레임 구조를 고려하고 있다.
도 4에서 빗금친 영역(심볼 인덱스 0)은 하향링크(DL) 제어 영역을 나타내고, 검정색 부분(심볼 인덱스 13)은 상향링크(UL) 제어 영역을 나타낸다. 음영 표시가 없는 영역은 DL 데이터 전송을 위해 사용될 수도 있고, 또는 UL 데이터 전송을 위해 사용될 수도 있다. 이러한 구조의 특징은 한 개의 서브프레임 내에서 DL 전송과 UL 전송이 순차적으로 진행되어, 서브프레임 내에서 DL 데이터가 전송되고, UL ACK/NACK도 수신될 수 있다. 결과적으로 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 latency를 최소화할 수 있다.
이러한 self-contained 서브프레임 구조에서 기지국과 UE가 송신 모드에서 수신모드로 전환 과정 또는 수신모드에서 송신모드로 전환 과정을 위한 시간 갭(time gap)이 필요하다. 이를 위하여 self-contained 서브프레임 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼이 가드 구간(GP: guard period)으로 설정되게 된다.
아날로그 빔포밍(Analog beamforming)
밀리미터파(Millimeter Wave, mmW)에서는 파장이 짧아져서 동일 면적에 다수개의 안테나 요소(antenna element)의 설치가 가능하다. 즉, 30GHz 대역에서 파장은 1cm로써 4 X 4 (4 by 4) cm의 패널(panel)에 0.5 람다(lambda)(즉, 파장) 간격으로 2-차원 배열 형태로 총 64(8x8)의 antenna element 설치가 가능하다. 그러므로 mmW에서는 다수개의 antenna element를 사용하여 빔포밍(BF: beamforming) 이득을 높여 커버리지를 증가시키거나, 수율(throughput)을 높이려고 한다.
이 경우에 antenna element 별로 전송 파워 및 위상 조절이 가능하도록 트랜시버 유닛(TXRU: Transceiver Unit)을 가지면 주파수 자원 별로 독립적인 빔포밍이 가능하다. 그러나 100여개의 antenna element 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다. 그러므로 하나의 TXRU에 다수개의 antenna element를 매핑하고 아날로그 위상 시프터(analog phase shifter)로 빔(beam)의 방향을 조절하는 방식이 고려되고 있다. 이러한 analog BF 방식은 전 대역에 있어서 하나의 beam 방향만을 만들 수 있어 주파수 선택적 BF을 할 수 없다는 단점이 있다.
디지털(Digital) BF와 analog BF의 중간 형태로 Q개의 antenna element보다 적은 개수인 B개의 TXRU를 갖는 하이브리드 빔포밍(hybrid BF)을 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 antenna element의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 beam의 방향은 B개 이하로 제한되게 된다.
이하, 도면을 참조하여 TXRU와 antenna element의 연결 방식의 대표적인 일례들을 살펴본다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 트랜스시버 유닛 모델을 예시한다.
TXRU 가상화(virtualization) 모델은 TXRU의 출력 신호와 antenna elements의 출력 신호의 관계를 나타낸다. antenna element와 TXRU와의 상관 관계에 따라 도 5(a)와 같이 TXRU 가상화(virtualization) 모델 옵션-1: 서브-배열 분할 모델(sub-array partition model)과 도 5(b)와 같이 TXRU 가상화 모델 옵션-2: 전역 연결(full-connection) 모델로 구분될 수 있다.
도 5(a)를 참조하면, 서브-배열 분할 모델(sub-array partition model)의 경우, antenna element는 다중의 안테나 요소 그룹으로 분할되고, 각 TXRU는 그룹 중 하나와 연결된다. 이 경우에 antenna element는 하나의 TXRU에만 연결된다.
도 5(b)를 참조하면, 전역 연결(full-connection) 모델의 경우, 다중의 TXRU의 신호가 결합되어 단일의 안테나 요소(또는 안테나 요소의 배열)에 전달된다. 즉, TXRU가 모든 안테나 element에 연결된 방식을 나타낸다. 이 경우에 안테나 element는 모든 TXRU에 연결된다.
도 5에서 q는 하나의 열(column) 내 M개의 같은 편파(co-polarized)를 가지는 안테나 요소들의 송신 신호 벡터이다. w는 광대역 TXRU 가상화 가중치 벡터(wideband TXRU virtualization weight vector)이며, W는 아날로그 위상 시프터(analog phase shifter)에 의해 곱해지는 위상 벡터를 나타낸다. 즉 W에 의해 analog beamforming의 방향이 결정된다. x는 M_TXRU 개의 TXRU들의 신호 벡터이다.
여기서, 안테나 포트와 TXRU들과의 매핑은 일대일(1-to-1) 또는 일대다(1-to-many)일 수 있다.
도 5에서 TXRU와 안테나 요소 간의 매핑(TXRU-to-element mapping)은 하나의 예시를 보여주는 것일 뿐이고, 본 발명이 이에 한정되는 것은 아니며 하드웨어 관점에서 이 밖에 다양한 형태로 구현될 수 있는 TXRU와 안테나 요소 간의 매핑에도 본 발명이 동일하게 적용될 수 있다.
채널 상태 정보 피드백(CSI feedback)
LTE 시스템을 포함한 대부분의 cellular system에서 단말은 채널 추정을 위한 파일럿 신호 (reference signal)를 기지국으로부터 수신하여 CSI(channel state information)을 계산하고 이를 기지국에게 보고한다.
기지국은 단말로부터 피드백 받은 CSI 정보를 토대로 데이터 신호를 전송한다.
LTE 시스템에서 단말이 피드백하는 CSI 정보에는 CQI(channel quality information), PMI(precoding matrix index), RI(rank indicator)가 있다.
CQI 피드백은 기지국이 데이터를 전송할 때 어떤 MCS(modulation & coding scheme)을 적용할 지에 대한 가이드를 제공하려는 목적(link adaptation용도)으로 기지국에게 제공하는 무선 채널 품질 정보이다.
기지국과 단말 사이에 무선 품질이 높으면 단말은 높은 CQI 값을 피드백하여 기지국은 상대적으로 높은 modulation order와 낮은 channel coding rate을 적용하여 데이터를 전송할 것이고, 반대의 경우 단말은 낮은 CQI 값을 피드백하여 기지국은 상대적으로 낮은 modulation order와 높은 channel coding rate을 적용하여 데이터를 전송할 것이다.
PMI 피드백은 기지국이 다중 안테나를 설치한 경우, 어떠한 MIMO precoding scheme을 적용할 지에 대한 가이드를 제공하려는 목적으로 기지국에게 제공하는 preferred precoding matrix 정보이다.
단말은 파일럿 신호로부터 기지국과 단말간의 downlink MIMO channel을 추정하여 기지국이 어떠한 MIMO precoding을 적용하면 좋을 지를 PMI 피드백을 통해 추천한다.
LTE 시스템에서는 PMI 구성에 있어 행렬 형태로 표현 가능한 linear MIMO precoding만 고려한다.
기지국과 단말은 다수의 precoding 행렬들로 구성된 코드북을 공유하고 있고, 코드북 내에 각각의 MIMO precoding 행렬은 고유의 index를 갖고 있다.
따라서, 단말은 코드북 내에서 가장 선호하는 MIMO precoding 행렬에 해당하는 인덱스를 PMI로서 피드백함으로써 단말의 피드백 정보량을 최소화한다.
PMI 값이 꼭 하나의 인덱스로만 이루어져야 하는 것은 아니다. 일례로, LTE 시스템에서 송신 안테나 포트 수가 8개인 경우, 두 개의 인덱스들(first PMI & second PMI)을 결합하여야만 최종적인 8tx MIMO precoding행렬을 도출할 수 있도록 구성되어 있다.
RI 피드백은 기지국과 단말이 다중 안테나를 설치하여 spatial multiplexing을 통한 multi-layer전송이 가능한 경우, 단말이 선호하는 전송 layer의 수에 대한 가이드를 제공하려는 목적으로 기지국에게 제공하는 선호하는 전송 layer수에 대한 정보이다.
이하, 본 명세서에서 제안하는 방법들과 관련된 사항에 대해 살펴본다.
먼저, 단말이 데이터(e.g., PDSCH)를 수신할 때, 특정 DMRS와 같은 UE-specific RS(reference signal)로 demodulation을 하기 위한 방법에 대해 살펴본다.
UE-specific DMRS는 해당 PDSCH의 scheduled RB(resource block)(s)에서만 함께 전송되고, scheduled PDSCH가 전송되는 시간 구간 동안에만 전송된다.
따라서, 단말이 해당 DMRS 자체로만 채널 추정을 수행하는 데는 수신 성능의 한계가 존재할 수 있다.
예를 들어, 채널 추정을 수행하기 위해, 무선 채널의 주요 large-scale parameter/property (LSP)의 추정 값이 요구된다.
이를 상기 scheduled PDSCH가 전송되는 time/frequency 영역에 존재하는 DMRS만으로 획득하기에는 DMRS density가 부족할 수가 있다.
따라서, 이러한 단말의 구현을 지원하기 위하여 LTE-A, NR 표준의 경우, RS port 간의 quasi co-location (QCL) signaling, assumption, behavior 등을 정의하고, 이에 따라 단말을 설정(또는 동작)시킬 수 있는 방법들을 지원하고 있다.
본 명세서에서 사용되는 용어 '정의'는 '설정' 또는 '지시' 또는 '결정' 등으로 대체하여 사용될 수 있다.
그리고, 본 명세서에서 사용되는 용어 '기대'는 '가정' 또는 '예상' 등으로 대체하여 사용될 수 있다.
그리고, 본 명세서에서 사용되는 'A 및/또는 B'는 'A 또는 B 중 적어도 하나를 포함한다'와 동일한 의미로 해석될 수 있다.
이하에서, QCL 관련 내용, 빔 관리(beam management, BM) 등에 대해 보다 구체적으로 살펴본다.
빔 관리(Beam Management, BM) 절차
NR(New Radio)에서 정의하는 빔 관리(beam management, BM) 절차에 대해 살펴본다.
BM 절차는 다운링크(downlink, DL) 및 업링크(uplink, UL) 송/수신에 사용될 수 있는 기지국(예: gNB, TRP 등) 및/또는 단말(예: UE) 빔들의 세트(set)를 획득하고 유지하기 위한 L1(layer 1)/L2(layer 2) 절차들로서, 아래와 같은 절차 및 용어를 포함할 수 있다.
- 빔 측정(beam measurement): 기지국 또는 UE가 수신된 빔 형성 신호의 특성을 측정하는 동작.
- 빔 결정(beam determination): 기지국 또는 UE가 자신의 송신 빔(Tx beam) / 수신 빔(Rx beam)을 선택하는 동작.
- 빔 스위핑 (Beam sweeping): 미리 결정된 방식으로 일정 시간 간격 동안 송신 및/또는 수신 빔을 이용하여 공간 영역을 커버하는 동작.
- 빔 보고(beam report): UE가 빔 측정에 기반하여 빔 형성된 신호의 정보를 보고하는 동작.
BM 절차는 (1) SS(synchronization signal)/PBCH(physical broadcast channel) Block 또는 CSI-RS를 이용하는 DL BM 절차와, (2) SRS(sounding reference signal)을 이용하는 UL BM 절차로 구분할 수 있다.
또한, 각 BM 절차는 Tx beam을 결정하기 위한 Tx beam sweeping과 Rx beam을 결정하기 위한 Rx beam sweeping을 포함할 수 있다.
DL BM 절차
먼저, DL BM 절차에 대해 살펴본다
DL BM 절차는 (1) 기지국의 beamformed DL RS(reference signal)들(예: CSI-RS 또는 SS Block(SSB))에 대한 전송과, (2) 단말의 beam reporting을 포함할 수 있다.
여기서, beam reporting은 선호되는(preferred) DL RS ID(identifier)(s) 및 이에 대응하는 L1-RSRP(Reference Signal Received Power)를 포함할 수 있다.
상기 DL RS ID는 SSBRI(SSB Resource Indicator) 또는 CRI(CSI-RS Resource Indicator)일 수 있다.
도 6은 DL BM 절차 관련 Tx beam의 일례를 나타낸 도이다.
도 6에 도시된 바와 같이, SSB beam과 CSI-RS beam은 beam measurement를 위해 사용될 수 있다.
여기서, 측정 메트릭(measurement metric)은 자원(resource)/블록(block) 별 L1-RSRP이다.
SSB는 coarse한 beam measurement를 위해 사용되며, CSI-RS는 fine한 beam measurement를 위해 사용될 수 있다.
그리고, SSB는 Tx beam sweeping과 Rx beam sweeping 모두에 사용될 수 있다.
SSB를 이용한 Rx beam sweeping은 다수의 SSB bursts에 걸쳐서(across) 동일 SSBRI에 대해 UE가 Rx beam을 변경하면서 수행될 수 있다.
여기서, 하나의 SS burst는 하나 또는 그 이상의 SSB들을 포함하고, 하나의 SS burst set은 하나 또는 그 이상의 SSB burst들을 포함한다.
SSB를 이용한 DL BM 절차
도 7은 SSB를 이용한 DL BM 절차의 일례를 나타낸 흐름도이다.
SSB를 이용한 빔 보고(beam report)에 대한 설정은 RRC connected state(또는 RRC connected mode)에서 CSI/beam configuration 시에 수행된다.
표 4의 CSI-ResourceConfig IE와 같이, SSB를 이용한 BM configuration은 별도로 정의되지 않고, SSB를 CSI-RS resource처럼 설정한다.
표 4는 CSI-ResourceConfig IE의 일례를 나타낸다.
Figure PCTKR2018011642-appb-T000004
표 4에서, csi-SSB-ResourceSetList parameter는 하나의 resource set에서 beam management 및 reporting을 위해 사용되는 SSB resource들의 리스트를 나타낸다.
단말은 BM을 위해 사용되는 SSB resource들을 포함하는 CSI-SSB-ResourceSetList를 포함하는 CSI-ResourceConfig IE를 기지국으로부터 수신한다(S710).
여기서, SSB resource set은 {SSBx1, SSBx2, SSBx3, SSBx4, 쪋}으로 설정될 수 있다.
SSB index는 0부터 63까지 정의될 수 있다.
그리고, 상기 단말은 상기 CSI-SSB-ResourceSetList에 기초하여 SSB resource를 상기 기지국으로부터 수신한다(S720).
그리고, SSBRI 및 L1-RSRP에 대한 보고와 관련된 CSI-RS reportConfig가 설정된 경우, 상기 단말은 best SSBRI 및 이에 대응하는 L1-RSRP를 기지국으로 (빔) report한다(S730).
즉, 상기 CSI-RS reportConfig IE의 reportQuantity가 'ssb-Index-RSRP'로 설정된 경우, 단말은 기지국으로 best SSBRI 및 이에 대응하는 L1-RSRP를 보고한다.
그리고, 단말은 SSB(SS/PBCH Block)와 동일한 OFDM 심볼(들)에서 CSI-RS resource가 설정되고, 'QCL-TypeD'가 적용 가능한 경우, 상기 단말은 CSI-RS와 SSB가 'QCL-TypeD' 관점에서 quasi co-located라고 가정할 수 있다.
여기서, 상기 QCL TypeD는 spatial Rx parameter 관점에서 antenna port들 간에 QCL되어 있음을 의미할 수 있다. 단말이 QCL Type D 관계에 있는 복수의 DL antenna port들을 수신 시에는 동일한 수신 빔을 적용하여도 무방하다.
또한, 단말은 SSB의 RE와 중첩하는 RE에서 CSI-RS가 설정될 것으로 기대하지 않는다.
CSI-RS를 이용한 DL BM 절차
단말은 (higher layer parameter) repetition이 'ON'으로 설정된 NZP-CSI-RS-ResourceSet을 설정받은 경우, 상기 단말은 NZP-CSI-RS-ResourceSet 내 적어도 하나의 CSI-RS resource는 동일한 downlink spatial domain transmission filter로 전송된다고 가정할 수 있다.
즉, NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS resource는 동일한 Tx beam을 통해 전송된다.
여기서, NZP-CSI-RS-ResourceSet 내 적어도 하나의 CSI-RS resource는 서로 다른 OFDM 심볼로 전송되거나 서로 다른 frequency domain에서(즉, FDM으로) 전송될 수 있다.
상기 적어도 하나의 CSI-RS resource가 FDM되는 경우는 multi-panel 단말인 경우이다.
그리고, repetition이 'ON'으로 설정된 경우는 단말의 Rx beam sweeping 절차와 관련된다.
단말은 NZP-CSI-RS-Resourceset 내의 모든 CSI-RS resource들에서 periodicityAndOffset에 서로 다른 주기(periodicity)를 수신할 것으로 기대하지 않는다.
그리고, 상기 repetition이 'OFF'로 설정되면, 단말은 NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS resource가 동일한 downlink spatial domain transmission filter로 전송된다고 가정하지 않는다.
즉, NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS resource는 서로 다른 Tx beam을 통해 전송된다.
Repetition이 'OFF'로 설정된 경우는 기지국의 Tx beam sweeping 절차와 관련된다.
그리고, 상기 repetition parameter는 L1 RSRP 또는 'No Report(또는 None)'의 report를 가지는 CSI-ReportConfig와 연계된 CSI-RS resource set들에 대해서만 설정될 수 있다.
만약 단말이 reportQuantity가 'cri-RSRP' 또는 'none'으로 설정된 CSI-ReportConfig를 설정받고, 채널 측정을 위한 CSI-ResourceConfig (higher layer parameter resourcesForChannelMeasurement)가 higher layer parameter 'trs-Info'를 포함하지 않고, higher layer parameter 'repetition'으로 설정(repetition=ON)된 NZP-CSI-RS-ResourceSet를 포함하는 경우, 상기 단말은 NZP-CSI-RS-ResourceSet 내의 모든 CSI-RS resource들에 대해 higher layer parameter 'nrofPorts'를 가지는 동일한 번호의 포트(1-port 또는 2-port)로만 구성될 수 있다.
보다 구체적으로, CSI-RS 용도에 대해 살펴보면, 특정 CSI-RS resource set에 repetition parameter가 설정되고, TRS_info가 설정되지 않은 경우, CSI-RS는 빔 관리(beam management)를 위해 사용된다.
그리고, repetition parameter가 설정되지 않고, TRS_info가 설정된 경우, CSI-RS는 TRS(tracking reference signal)을 위해 사용된다.
그리고, repetition parameter가 설정되지 않고, TRS_info가 설정되지 않은 경우, CSI-RS는 CSI acquisition을 위해 사용된다.
도 8은 CSI-RS를 이용한 DL BM 절차의 일례를 나타낸 도이다.
도 8a는 단말의 Rx beam 결정(또는 refinement) 절차를 나타내며, 도 8b는 기지국의 Tx beam 결정 절차를 나타낸다.
또한, 도 8a의 경우, repetition parameter가 'ON'으로 설정된 경우이고, 도 8b의 경우, repetition parameter가 'OFF'로 설정된 경우이다.
도 8a 및 도 9를 참고하여, 단말의 Rx beam 결정 과정에 대해 살펴본다.
도 9는 단말의 수신 빔 결정 과정의 일례를 나타낸 흐름도이다.
단말은 higher layer parameter repetition을 포함하는 NZP CSI-RS resource set IE를 RRC signaling을 통해 기지국으로부터 수신한다(S1110).
여기서, 상기 repetition parameter는 'ON'으로 설정된다.
그리고, 상기 단말은 repetition 'ON'으로 설정된 CSI-RS resource set 내의 resource(들)을 기지국의 동일 Tx beam(또는 DL spatial domain transmission filter)을 통해 서로 다른 OFDM 심볼에서 반복 수신한다(S920).
이를 통해, 상기 단말은 자신의 Rx beam을 결정한다(S930).
여기서, 상기 단말은 CSI report를 생략하거나 또는 CRI/L1-RSRP를 포함하는 CSI report를 기지국 전송한다(S940).
이 경우, CSI report config의 reportQuantity는 'No report(또는 None)' 또는 'CRI 및 L1-RSRP'로 설정될 수 있다.
즉, 상기 단말은 repetition 'ON'으로 설정된 경우, CSI report를 생략할 수도 있거나 또는, beam pair 관련 선호 beam에 대한 ID 정보(CRI) 및 이에 대한 품질 값(L1-RSRP)을 보고할 수 있다.
도 8b 및 도 10을 참고하여, 기지국의 Tx beam 결정 과정에 대해 살펴본다.
도 10은 기지국의 전송 빔 결정 과정의 일례를 나타낸 흐름도이다.
단말은 higher layer parameter repetition을 포함하는 NZP CSI-RS resource set IE를 RRC signaling을 통해 기지국으로부터 수신한다(S1010).
여기서, 상기 repetition parameter는 'OFF'로 설정되며, 기지국의 Tx beam sweeping 절차와 관련된다.
그리고, 상기 단말은 repetition 'OFF'로 설정된 CSI-RS resource set 내의 resource들을 기지국의 서로 다른 Tx beam(DL spatial domain transmission filter)을 통해 수신한다(S1020).
그리고, 상기 단말은 최상의(best) beam을 선택(또는 결정)하고(S1030), 선택된 빔에 대한 ID 및 관련 품질 정보(예: L1-RSRP)를 기지국으로 보고한다(S1040).
이 경우, CSI report config의 reportQuantity는 'CRI + L1-RSRP'로 설정될 수 있다.
즉, 상기 단말은 CSI-RS가 BM을 위해 전송되는 경우 CRI와 이에 대한 L1-RSRP를 기지국으로 보고한다.
도 11은 도 8의 동작과 관련된 시간 및 주파수 영역에서의 자원 할당의 일례를 나타낸 도이다.
즉, CSI-RS resource set에 repetition 'ON'이 설정된 경우, 복수의 CSI-RS resource들이 동일한 송신 빔을 적용하여 반복하여 사용되고, CSI-RS resource set에 repetition 'OFF'가 설정된 경우, 서로 다른 CSI-RS resource들이 서로 다른 송신 빔으로 전송되는 것을 볼 수 있다.
DL BM 관련 빔 지시(beam indication)
단말은 적어도 QCL(Quasi Co-location) indication의 목적을 위해 최대 M 개의 후보(candidate) 전송 설정 지시 (Transmission Configuration Indication, TCI) 상태(state)들에 대한 리스트를 RRC 설정받을 수 있다. 여기서, M은 64일 수 있다.
각 TCI state는 하나의 RS set으로 설정될 수 있다.
적어도 RS set 내의 spatial QCL 목적(QCL Type D)을 위한 DL RS의 각각의 ID는 SSB, P-CSI RS, SP-CSI RS, A-CSI RS 등의 DL RS type들 중 하나를 참조할 수 있다.
최소한 spatial QCL 목적을 위해 사용되는 RS set 내의 DL RS(들)의 ID의 초기화(initialization)/업데이트(update)는 적어도 명시적 시그널링(explicit signaling)을 통해 수행될 수 있다.
표 5는 TCI-State IE의 일례를 나타낸다.
TCI-State IE는 하나 또는 두 개의 DL reference signal(RS) 대응하는 quasi co-location (QCL) type과 연관시킨다.
Figure PCTKR2018011642-appb-T000005
표 5에서, bwp-Id parameter는 RS가 위치되는 DL BWP를 나타내며, cell parameter는 RS가 위치되는 carrier를 나타내며, referencesignal parameter는 해당 target antenna port(s)에 대해 quasi co-location 의 source가 되는 reference antenna port(s) 혹은 이를 포함하는reference signal을 나타낸다. 상기 target antenna port(s)는 CSI-RS, PDCCH DMRS, 또는 PDSCH DMRS 일 수 있다. 일례로 NZP CSI-RS에 대한 QCL reference RS정보를 지시하기 위해 NZP CSI-RS 자원 설정 정보에 해당 TCI state ID를 지시할 수 있다. 또 다른 일례로 PDCCH DMRS antenna port(s)에 대한 QCL reference 정보를 지시하기 위해 각 CORESET설정에 TCI state ID를 지시할 수 있다. 또 다른 일례로 PDSCH DMRS antenna port(s)에 대한 QCL reference 정보를 지시하기 위해 DCI를 통해 TCI state ID를 지시할 수 있다.
QCL(Quasi-Co Location)
안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 특성(property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다.
여기서, 상기 채널 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing), Spatial RX parameter 중 하나 이상을 포함한다. 여기서 Spatial Rx parameter는 angle of arrival과 같은 공간적인 (수신) 채널 특성 파라미터를 의미한다.
단말은 해당 단말 및 주어진 serving cell에 대해 의도된 DCI를 가지는 검출된 PDCCH에 따라 PDSCH를 디코딩하기 위해, higher layer parameter PDSCH-Config 내 M 개까지의 TCI-State configuration의 리스트로 설정될 수 있다. 상기 M은 UE capability에 의존한다.
각각의 TCI-State는 하나 또는 두 개의 DL reference signal과 PDSCH의 DM-RS port 사이의 quasi co-location 관계를 설정하기 위한 파라미터를 포함한다.
Quasi co-location 관계는 첫 번째 DL RS에 대한 higher layer parameter qcl-Type1과 두 번째 DL RS에 대한 qcl-Type2 (설정된 경우)로 설정된다.
두 개의 DL RS의 경우, reference가 동일한 DL RS 또는 서로 다른 DL RS인지에 관계없이 QCL type은 동일하지 않다.
각 DL RS에 대응하는 quasi co-location type은 QCL-Info의 higher layer parameter qcl-Type에 의해 주어지며, 다음 값 중 하나를 취할 수 있다:
- 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'QCL-TypeB': {Doppler shift, Doppler spread}
- 'QCL-TypeC': {Doppler shift, average delay}
- 'QCL-TypeD': {Spatial Rx parameter}
예를 들어, target antenna port가 특정 NZP CSI-RS 인 경우, 해당 NZP CSI-RS antenna ports는 QCL-Type A관점에서는 특정 TRS와, QCL-Type D관점에서는 특정 SSB과 QCL되었다고 지시/설정될 수 있다. 이러한 지시/설정을 받은 단말은 QCL-TypeA TRS에서 측정된 Doppler, delay값을 이용해서 해당 NZP CSI-RS를 수신하고, QCL-TypeD SSB 수신에 사용된 수신 빔을 해당 NZP CSI-RS 수신에 적용할 수 있다.
UE는 8개까지의 TCI state들을 DCI 필드 'Transmission Configuration Indication'의 codepoint에 매핑하기 위해 사용되는 activation command를 수신한다.
UL BM 절차
UL BM은 단말 구현에 따라 Tx beam - Rx beam 간 beam reciprocity(또는 beam correspondence)가 성립할 수 있거나 또는, 성립하지 않을 수 있다.
만약 기지국과 단말 모두에서 Tx beam - Rx beam 간 reciprocity가 성립하는 경우, DL beam pair를 통해 UL beam pair를 맞출 수 있다.
하지만, 기지국과 단말 중 어느 하나라도 Tx beam - Rx beam 간 reciprocity가 성립하지 않는 경우, DL beam pair 결정과 별개로 UL beam pair 결정 과정이 필요하다.
그리고, 기지국과 단말 모두 beam correspondence를 유지하고 있는 경우에도, 단말이 선호(preferred) beam의 보고를 요청하지 않고도 기지국은 DL Tx beam 결정을 위해 UL BM 절차를 사용할 수 있다.
UL BM은 beamformed UL SRS 전송을 통해 수행될 수 있으며, 'SRS-SetUse' parameter가 'BeamManagement'로 설정된다.
마찬가지로, UL BM 절차도 단말의 Tx beam sweeping과 기지국의 Rx beam sweeping으로 구분될 수 있다.
단말은 (higher layer parameter) SRS-ResourceSet에 의해 설정되는 하나 또는 그 이상의 Sounding Reference Symbol (SRS) resource set들을 (higher layer signaling, RRC signaling 등을 통해) 설정받을 수 있다.
각각의 SRS resource set에 대해, UE는 K≥1 SRS resource들 (higher later parameter SRS-resource)이 설정될 수 있다.
여기서, K는 자연수이며, K의 최대 값은 SRS_capability에 의해 지시된다.
SRS resource set의 UL BM의 적용 여부는 (higher layer parameter) SRS-SetUse에 의해 설정된다.
상기 SRS-SetUse가 'BeamManagement(BM)'로 설정되면, 주어진 time instant에 복수의 SRS resource set들 각각에 하나의 SRS resource만 전송될 수 있다.
도 12는 SRS를 이용한 UL BM 절차의 일례를 나타낸 도이다.
구체적으로, 도 12a는 기지국의 Rx beam 결정 절차를 나타내고, 도 12b는 단말의 Tx beam 결정 절차를 나타낸다.
도 13은 SRS를 이용한 UL BM 절차의 일례를 나타낸 흐름도이다.
먼저, 단말은 'beam management'로 설정된 (higher layer parameter) usage parameter를 포함하는 RRC signaling(예: SRS-Config IE)를 기지국으로부터 수신한다(S1310).
표 6은 SRS-Config IE(Information Element)의 일례를 나타내며, SRS-Config IE는 SRS 전송 설정을 위해 사용된다.
상기 SRS-Config IE는 SRS-Resources의 list와 SRS-ResourceSet들의 list를 포함한다.
각 SRS resource set는 SRS-resource들의 set를 의미한다.
네트워크는 설정된 aperiodicSRS-ResourceTrigger (L1 DCI)를 사용하여 SRS resource set의 전송을 트리거한다.
Figure PCTKR2018011642-appb-T000006
표 6에서, usage는 SRS resource set이 beam management를 위해 사용되는지, codebook 기반 또는 non-codebook 기반 전송을 위해 사용되는지를 지시하는 higher layer parameter를 나타낸다.
상기 usage parameter는 L1 parameter 'SRS-SetUse'에 대응한다.
'spatialRelationInfo'는 reference RS와 target SRS 사이의 spatial relation의 설정을 나타내는 parameter이다.
여기서, reference RS는 L1 parameter 'SRS-SpatialRelationInfo'에 해당하는 SSB, CSI-RS 또는 SRS가 될 수 있다.
상기, usage는 SRS resource set 별로 설정된다.
그리고, 상기 단말은 상기 SRS-Config IE에 포함된 SRS-SpatialRelation Info에 기초하여 전송할 SRS resource에 대한 Tx beam을 결정한다(S1320).
여기서, SRS-SpatialRelation Info는 SRS resource 별로 설정되고, SRS resource 별로 SSB, CSI-RS 또는 SRS에서 사용되는 beam과 동일한 beam을 적용할지를 나타낸다.
또한, 각 SRS resource에 SRS-SpatialRelationInfo가 설정되거나 또는 설정되지 않을 수 있다.
만약 SRS resource에 SRS-SpatialRelationInfo가 설정되면 SSB, CSI-RS 또는 SRS에서 사용되는 beam과 동일한 beam을 적용하여 전송한다.
하지만, SRS resource에 SRS-SpatialRelationInfo가 설정되지 않으면, 상기 단말은 임의로 Tx beam을 결정하여 결정된 Tx beam을 통해 SRS를 전송한다(S1330).
보다 구체적으로, 'SRS-ResourceConfigType'가 'periodic'으로 설정된 P-SRS에 대해,
(1) SRS-SpatialRelationInfo가 'SSB/PBCH'로 설정되는 경우, UE는 SSB/PBCH의 수신을 위해 사용한 spatial domain Rx filter와 동일한 (혹은 해당 filter로부터 생성된) spatial domain transmission filter를 적용하여 해당 SRS resource를 전송한다.
또는, (2) SRS-SpatialRelationInfo가 'CSI-RS'로 설정되는 경우, UE는 periodic CSI-RS 또는 SP CSI-RS의 수신을 위해 사용되는 동일한 spatial domain transmission filter를 가지는 SRS resource를 전송한다.
또는, (3) SRS-SpatialRelationInfo가 'SRS'로 설정되는 경우, UE는 periodic SRS의 전송을 위해 사용되는 동일한 spatial domain transmission filter를 적용하여 해당 SRS resource를 전송한다.
'SRS-ResourceConfigType'이 'SP-SRS' 또는 'AP-SRS'로 설정된 경우에도 위와 동일하게 적용될 수 있다.
추가적으로, 상기 단말은 기지국으로부터 SRS에 대한 feedback을 다음 3가지 경우와 같이, 수신받거나 또는 수신받지 않을 수 있다(S1340).
첫 번째로, SRS resource set 내의 모든 SRS resource들에 대해 Spatial_Relation_Info가 설정되는 경우, 단말은 기지국이 지시한 빔으로 SRS를 전송한다.
예를 들어, Spatial_Relation_Info가 모두 동일한 SSB, CRI 또는 SRI를 지시하는 경우, 단말은 동일 빔으로 SRS를 반복 전송한다.
이 경우는, 기지국이 Rx beam을 selection하는 용도로서 도 12a에 대응한다.
두 번째로, SRS resource set 내의 모든 SRS resource들에 대해 Spatial_Relation_Info가 설정되지 않을 수 있다.
이 경우, 단말은 자유롭게 SRS beam을 바꾸어가면서 전송할 수 있다.
즉, 이 경우는 단말이 Tx beam을 selection하는 용도로서, 도 12b에 대응한다.
마지막으로, SRS resource set 내의 일부 SRS resource들에 대해서만 Spatial_Relation_Info가 설정될 수 있다.
이 경우, 설정된 SRS resource에 대해서는 지시된 빔으로 SRS를 전송하고, Spatial_Relation_Info가 설정되지 않은 SRS resource에 대해서는 단말이 임의로 Tx beam을 적용해서 전송할 수 있다.
다음으로, DCI(downlink control information)의 TCI에 대해 보다 구체적으로 살펴본다.
DL RS index (예: CRI, SSB index)와 indicator state의 연관을 위한 signaling mechanism에서, LTE PQI(PDSCH RE Mapping and Quasi-Co Location Indicator field, DCI format 2D에 포함됨)와 유사한 명시적인 signaling이 정의될 필요가 있다.
여기서, 각각의 PQI state는 RRC signaling에 의해 명시적으로 기술된다.
또한, PDCCH DMRS와 PDSCH DMRS 간에 동일한 spatial QCL 가정을 갖도록 기재되어야 한다.
이와 관련된 다양한 제안들에 대해 살펴보기로 한다.
(제안 1)
제안 1은 DL RS index (예: CRI, SSB index)와 indicator state의 연관을 위한 적어도 explicit signaling mechanism을 지원하는 것이다.
여기서, 상기 indicator state는 앞서 살핀 TCI state와 동일한 의미로 해석될 수 있다.
해당 연관이 UE에 의해 암시적으로 결정되는 것은 추후 지원될 수도 있다.
여기서, indicator state는 다른 parameter들을 포함할 수도 있거나 또는 포함하지 않을 수도 있다.
여기서, 상기 다른 parameter들은 LTE에서의 PQI와 유사한 PDSCH에서 RE로의 매핑 목적을 위한 parameter, 다른 QCL parameter들일 수 있다.
Joint encoding은 [3 bits]보다 큰 N의 값을 적절하게 확장함으로써 DCI 오버헤드 및 유연성에서 더 좋은 trade-off를 가지도록 LTE와 유사하게 지원될 수 있다.
즉, PDSCH 빔 지시(beam indication)과 함께, PDSCH 시작 심볼을 포함할 수 있는 PDSCH rate matching 정보가 indication되는 것이 또한 요구될 수 있다.
여기서, PDSCH rate matching 정보는 특정 case에서 beam switching time gap 및 DCI decoding time을 제공하기 위한 것이고, neighboring beams의 CSI-RS를 보호하기 위한 ZP CSI-RS resource ID를 포함할 수 있다.
(제안 2)
제안 2는 DCI 오버헤드를 줄이기 위해, PDSCH 빔 지시와 PDSCH rate matching 정보 간의 joint encoding이 지원되는 것이다.
각 state에 대한 RS set의 configuration은 상위 계층 시그널링(higher layer signaling)(예: RRC, RRC+MAC CE)을 통해 수행될 수 있다.
그리고, 각 indicator state는 네트워크 구현에서 보다 좋은 효율성과 유연성을 가지도록 MAC CE에 의해 업데이트될 수 있다.
(제안 3)
제안 3의 경우, 각 state에 대한 RS set의 configuration은 RRC 뿐만 아니라 RRC *?*+ MAC CE를 통해 수행될 수 있는 것을 지원한다.
QCL이 QCL indication의 시간에 상대적으로 적용되는 타이밍과 관련하여, 적어도 1 slot latency 또는 2개의(a couple of) symbol들이 PDCCH indication에 따라 PDSCH 빔을 변경(또는 적용)하기 위해 PDCCH를 정확하게 디코딩하기 위한 타이밍 갭(timing gap)을 위해 허용되어야 한다.
이러한 latency는 공간(spatial) QCL indication을 위해서만 적용될 수 있으며, delay spread 등과 같은 다른 QCL parameter들은 DL grant가 전달되는 동일한 슬롯에 적용될 수 있다.
설명한 바와 같이, spatial QCL indication을 위한 1 slot latency를 가정하면, slot #n에서 스케쥴되고, 전송되는 NR-PDSCH는 slot #n 이전의 TCI 필드를 운반하는 최신의 slot에서 제공되는 spatial QCL indication에 기초하며, 동일한 slot #n에서 제공되는 다른 QCL parameter들에 기초하게 된다.
즉, 이러한 동작은 단말이 해당 PDSCH를 수신할 때, spatial QCL을 제외한 다른 적어도 하나의 QCL parameter(s)는 #n번째 slot에서 수신된 DL grant에 의한 (DL grant에 포함되는 TCI field에 의한) 지시에 따라 동일 slot에서 데이터를 수신할 때 적용하도록 한다.
여기서, 다른 적어도 하나의 QCL parameter(s)는 delay spread, average delay, Doppler spread 또는 Doppler shift 중 적어도 하나를 포함할 수 있다.
그리고, 단말은 오직 spatial QCL 정보만 해당 #n 번째 slot에서의 DCI (DCI에 포함된 TCI)의 지시를 따르지 않고(이 지시는 #(n+1) 번째 slot 및/또는 그 이후에 반영하도록 함), #(n-1) 번째 slot (및/또는 그 이전 시점들을 포함하여 가장 최신의 slot)에서의 beam indication (TCI에 의한)을 적용하도록 한다.
또한, UE가 1 slot 내의 2개의 심볼들과 같이 latency에 대한 적절한 capability를 보고할 수 있도록, 상기 latency는 UE capability에 의존할 수 있다.
이 경우, 상기와 같은 behavior는 UE의 capability에 기초하여 UE 별로 심볼 단위의 미세 단위(granularity)에 적용할 수 있으며, 전송되는 PDSCH 내 하나의 심볼 갭은 빔 변화(beam change)로 인한 RF 스위칭 시간을 고려하여 적용되어야 할 필요가 있다.
즉, 보다 특징적으로, 위와 같은 동작이 symbol-level에서 발생하게 되면(즉, X-symbol latency를 가지고 spatial QCL 지시를 적용하도록 함) 해당 PDSCH 전송은 다음 중 적어도 하나의 옵션을 적용하여 전송할 수 있으며 단말은 이를 수신하도록 한다.
(옵션 1)
PDSCH 전송은 해당 scheduled DCI 수신 시점 이후에 지시된 PDSCH starting symbol 시점(e.g., PDCCH 영역 직후일 수도 있음)부터 PDSCH 전송이 개시될 수 있도록 한다.
그리고, 해당 PDSCH를 수신하는 UE가 사전에 capability signalling 등을 통해 자신에게 필요한 상기 latency 값 X(e.g., X=5)를 기지국에 보고한 경우(및/또는 기지국이 이 값을 confirm해준 경우), 상기 PDSCH 전송이 총 Y symbols(e.g., Y=10)에 걸쳐 매핑되어 전송되는 경우를 예로 들어 살펴본다.
이 경우, 해당 Y=10 symbols에 걸쳐 span하여 전송되는 PDSCH의 중간 특정 위치(e.g., X=5번째 심볼, 혹은 X-m번째 심볼 등 위치)에 Z-symbol (e.g., Z=1 symbol) gap이 적용됨이 정의될 수 있다.
이 때, m은 양의/음의 정수일 수 있으며, 해당 값이 explicit 및/또는 implicit하게 결정될 수 있다.
즉, Y=10, X=5, m=0, Z=1인 경우, 해당 PDSCH는 Y=10 심볼들 중 앞에서 4번째 심볼까지는 매핑되되, 5번째 심볼 하나는 완전히 비우고 다시 6번째 심볼부터 10번째 심볼까지 데이터 매핑되는 형태로 RE mapping되어 전송될 수 있다.
그리고, 단말은 이를 명확히 인지하여 해당 PDSCH를 수신할 수 있도록 정의될 수 있다.
이 경우, 해당 n번째 slot에 내려온 DCI가, 새롭게 지시한 spatial QCL 지시정보는 해당 gap 시점 이후에 적용되는 것으로, 정의되고, 해당 gap 시점 이전까지의 PDSCH part는 그 이전 "latest" valid spatial QCL 지시 정보를 적용하여 수신하도록 정의될 수 있다.
Spatial QCL parameter 이외의 (모든) 다른 QCL parameter들의 적용 시점에 관해서는 다음의 두 가지 세부 옵션들이 가능하다.
첫 번째 세부 옵션은, 해당 n번째 slot에서 전송되는 DCI가 지시한 TCI 정보가 상기 gap 시점이전까지도(그리고 gap 이후 해당 slot 끝까지) 모두 적용하도록 하는 방법이다.
그리고, 두 번째 세부 옵션은 해당 n번째 slot에서 전송되는 DCI가 지시한 TCI 정보는 상기 gap 시점 이후 해당 slot 끝까지 모두 적용하도록 하고, 상기 gap 시점 이전까지는 해당 DCI가 전송되는 CORESET에 설정된 beam과 동일한 beam으로 상기 gap 시점 이전 동안에 적용하도록 하는 방법이다.
전자(첫 번째 세부 옵션)은 CORESET(PDCCH) beam과 data (PDSCH) beam이 분리되어 동작하는 시스템에 보다 바람직할 수 있다.
예를 들어, 전자는 control channel 전송 빔과 data channel 전송 빔이 분리된 일종의 CoMP 동작으로 볼 수도 있다.
이에 반해, 후자(두 번째 세부 옵션)은 CORESET(PDCCH) beam과 data (PDSCH) beam이 해당 gap 시점 이전까지는 동일하도록 (일종의 fallback전송) 하다가, 상기 gap 이후에 상기 CoMP와 유사 동작이 적용되도록 하는 시스템에 보다 바람직할 수 있다.
(옵션 2)
PDSCH 전송은, 해당 PDSCH를 수신하는 UE가 사전에 capability signaling 등을 통해 자신에게 필요한 상기 latency 값 X(e.g., X=5)를 기지국에 보고한 경우(및/또는 기지국이 이 값을 confirm해준 경우), 상기 scheduled DCI 수신 시점 이후에 특정 위치 (e.g., X=5번째 심볼, 혹은 X-m번째 심볼 등 위치)부터 상기 PDSCH 전송이 개시되어 해당 slot의 끝까지는 계속 RE mapping되는 형태로 정의될 수 있다.
옵션 2는, 해당 X-m번째 심볼 위치부터 PDSCH 전송이 개시되는 것이므로 spatial QCL parameter를 포함한 (모든) 다른 QCL parameters들이 함께 이 시점부터 적용되는 것으로 동작이 정의될 수 있다.
상기 제안 동작들에 있어서, 상기 X-m값 자체를 기지국이 (단말로부터의 capability signaling 등은 참조하되) (보다 flexible하게 직접) 설정하도록 할 수도 있다.
이상에서의 설명은, 일종에 암묵적으로 n번째 slot(slot #n)에서 전송되는 DL grant는 PDSCH를 동일한 (n+D)번째 slot (with D=0)에 전송하는 상황을 가정한 것으로 볼 수 있다.
이를, D>1 상황도 포함하여 고려해보면 즉, "n번째 slot에서 전송되는 DL grant에 의해 PDSCH를 (n+D)번째 slot (with D=1)에 전송하는 동작"은 일종에 inter-slot scheduling으로 해석될 수도 있다.
이러한 D값 자체가 해당 n번째 slot에 전송되는 DCI의 content들 중 하나로 직접 단말에 설정 또는 지시될 수도 있다.
만일 이와 같이 D=1이 직접 해당 DCI를 통해 지시된 경우라면, 위에서 설명한 내용들이 모두 (n+1)번째 slot에 delay되어 적용되면 되기 때문에 문제가 없다.
즉, spatial QCL indication뿐만 아니라 그 밖의 다른 QCL parameters(including delay spread)가 모두 (n+1)번째 slot에서 전송되는 PDSCH에 적용되는 형태이다.
따라서, 본 명세서에서 제안하는 추가 동작으로서, 동작을 보다 단순화하기 위해, n번째 slot에 전송된 DCI에 포함되는 TCI field 등의 content들에 따라 지시된 특정 spatial QCLed beam이 해당 DCI가 전송된 NR-PDCCH에 설정된 spatial QCL beam과 같다면(e.g., same CSI-RS resource ID (혹은 same SS-block time index)로 동일하게 설정된 상태 등) implicit하게 D=0이 지시된 것으로 UE는 인식하고, 그에 따라서 동일한 n번째 slot에 PDSCH를 수신하도록 정의될 수 있다.
실제 기지국도 n번째 slot에 PDSCH를 전송하는 것이고, 단말도 동일 slot에서 PDSCH를 수신하는 것이다.
이 때, n번째 slot에서 DCI로 지시된 TCI state가 지시하는 QCL parameter들(including spatial QCL)은 모두 동일한 n번째 slot에 전송되는 PDSCH에 적용될 수 있다.
또는, n번째 slot에 전송된 DCI에 포함되는 상기 TCI field 등의 contents에 따라 지시된 특정 spatial QCLed beam이 해당 DCI가 전송된 NR-PDCCH에 설정된 spatial QCL beam과 다르면(e.g., different CSI-RS resource ID (혹은 different SS-block time index)로 상이하게 설정된 상태 등) implicit하게 non-zero D (e.g., D=1 등으로 사전에 설정된 특정 non-zero D값을 적용하도록 할 수 있음)이 지시된 것으로 UE는 인식하고, (n+D)번째 slot에 PDSCH를 수신하도록 정의될 수 있다.
실제 기지국도 n번째 slot에 PDSCH를 전송하는 것이고, 단말도 동일 slot에 PDSCH를 수신한다.
이 때, 당연히 n번째 slot에 DCI로 지시된 TCI state가 지시하는 QCL parameters(including spatial QCL)는 모두 (n+D)번째 slot에 전송되는 PDSCH에 적용된다.
(제안 4)
적어도 1 slot latency 또는 2개의 심볼들은 QCL이 QCL indication의 시간에 상대적으로 적용될 타이밍에 대해 허용되어야 한다.
Delay spread와 같은 다른 QCL parameter들은 DL grant가 전달되는 동일한 슬롯에 적용될 수 있다.
앞서 언급된, reference RS와 target RS 사이의 spatial QCL relation은 PDSCH 수신을 위한 spatial QCL indication의 독립적인 특징이어서, 2개의 indicator들은 실제로 독립적인 DCI 필드/포맷으로 분리되어야 한다.
(제안 5)
Reference RS와 target RS 사이의 spatial QCL relation에 대한 indicator는 PDSCH 수신을 위한 spatial QCL indication을 위한 indicator와 비교하여 분리된/독립된 DCI 필드/포맷으로 지원되어야 한다.
Reference RS와 target RS 사이의 spatial QCL relation에 관해 아래와 같이 살펴본다.
SS block(reference)과 적어도 P(periodic)/SP(semi-persistent) CSI-RS 사이의 spatial QCL relation에 대한 signaling은 beam control에서 보다 좋은 효율성과 유연성을 가지도록 RRC 뿐만 아니라 RRC *?*+ MAC CE를 통해 설정되는 것이 바람직하다.
또한, target된 RS에 대해 AP CSI-RS를 허용하는 것이 지원될 수 있는데, 이는 빔 지시가 RRC + MAC CE에 의해 사전 설정됨을 의미하지만, AP CSI-RS의 실제 전송 타이밍은 eFD-MIMO에 의해 소개된 LTE의 AP CSI-RS 개념과 유사하게 DCI로 지시된다.
P/SP CSI-RS resource (reference)와 또 다른 적어도 P/SP CSI-RS resource 사이의 spatial QCL relation에 대한 signaling 또한 beam control에서 보다 좋은 효율성과 유연성을 가지도록 RRC 뿐만 아니라 RRC *?*+ MAC CE로 설정되는 것이 바람직하다.
또한, 위와 같은 이유로 target된 RS에 대한 AP CSI-RS를 허용하는 것이 지원될 수 있다.
(제안 6)
SS block(reference)과 적어도 P(periodic)/SP(semi-persistent) CSI-RS 사이의 spatial QCL relation에 대한 signaling은 RRC뿐만 아니라 RRC *?*+ MAC CE를 통해 설정되는 것이 바람직하다.
Target된 RS에 대한 AP CSI-RS도 허용된다.
(제안 7)
P/SP CSI-RS resource (reference)와 또 다른 P/SP CSI-RS resource 사이의 spatial QCL relation"에 대한 signaling은 RRC 뿐만 아니라 RRC + MAC CE를 통해서도 설정되는 것이 바람직하다.
타겟된 RS에 대한 AP CSI-RS도 허용된다.
이하, NR-PDCCH 빔 지시(beam indication)에 대해 보다 구체적으로 살펴본다.
NR은 견고성(robustness)를 향상시키기 위해 다수의 빔 쌍(multiple beam pair)들을 이용하여 NR-PDCCH 모니터링을 지원한다.
그런 다음, UE에서 좁은 Rx 빔을 사용하는 경우, UE는 더 높은 링크 견고성을 위해 NR-PDCCH를 수신하기 위해 어느 UE 빔(들)이 적용되어야 하는지를 미리 알아야 한다.
이를 위해, NR-PDCCH를 디코딩하기 위해 어떤 TRP(s) Tx 빔이 사용되는지에 대한 서빙 빔 지시(serving beam indication)이 요구된다.
앞서 언급 한 바와 같이, NR-PDCCH 모니터링을 위한 다수의 서빙 빔들은 각 서빙 빔의 빔 방향이 CRI와 같은 빔 보고 정보에 의해 업데이트될 수 있도록 설정될 수 있다.
UE 특정 NR-PDCCH를 모니터링 하기 위한 beam indication에 대해, NR은 MAC CE signaling과 RRC signaling을 사용한다.
예를 들어, RRC signaling은 각 서빙 빔에 대한 하나 또는 그 이상의 시간/주파수 영역 패턴에 대한 설정을 위해 사용될 수 있다.
그리고, MAC CE signaling은 NR-PDCCH 수신에 대한 정확한 빔 또는 패턴 정보를 나타내기 위해 사용될 수 있다.
그리고, UE 특정 NR-PDCCH를 모니터링하기 위해 MAC CE signaling이 항상 필요한 것은 아니다.
(제안 8)
NR-PDCCH 빔 지시에 대해, RRC signaling은 각 서빙 빔에 대한 하나 또는 그 이상의 시간/주파수 영역 패턴에 대한 설정에 사용될 수 있으며, MAC CE signaling은 정확한 빔 또는 패턴 정보를 나타내기 위해 사용될 수 있다.
다음으로, UL 빔 관리에 대해 보다 구체적으로 살펴본다.
기지국(예:gNB)는 서로 다른 그룹들이 서로 다른 목적을 위해 사용될 수 있는 다수의 SRS resource 그룹들을 설정할 수 있다.
즉, 그룹 A SRS resource는 UL 링크 적응을 위해 설정되며, 그룹 B SRS resource는 UL 빔 관리를 위해 설정될 수 있다.
UL 빔 관리를 위해 다수의 그룹 B SRS 자원들이 UE로 설정되고, 각각의 SRS 자원 내에서 단일(single) SRS 포트가 설정될 때, UE는 각각의 SRS 자원에 대해 서로 다른 Tx 빔을 적용할 수 있다.
예를 들어, UE가 P개의 그룹 B SRS resource들을 설정한다고 가정하면, UE는 서로 다른 SRS resource에 각각 적용되는 P 개의 서로 다른 빔 방향을 적용한다.
여기서, UE는 서로 다른 Tx 빔을 갖는 것으로 가정되므로, P의 값 또는 관련된 정보는 그룹 B SRS resource(들) 상의 적절한 설정에 대한 UE capability signaling으로서 초기에 gNB에 전달될 필요가 있다.
전송된 그룹 B SRS 자원을 측정한 후, gNB는 SRS Tx 빔을 나타내기 위해 다른 유형의 SRI를 설정/지시함으로써 그룹 A SRS 자원에 적용하기 위해 사용되는 선호 빔(preferred beam)을 선택한다.
SRS-resource-level Tx 빔 지시를 위한 SRI는 DCI보다 페이로드 크기의 제한이 적기 때문에 MAC CE에 의해 signaling되는 것이 바람직하다.
또한, UE로부터 ACK를 수신함으로써 가능한 모든 error propagation을 피하고, UL 빔 정보는 비교적 긴 주기(long periodicity)로 업데이트된다.
또한, DL/UL 빔 대응(beam correspondence)가 유지될 때, SRS Tx 빔은 SRI 또는 *?*CSI-RS resource 기반 indication(예: CRI)에 의해 지시된다.
후자(CRI 기반)의 경우, UE는 역방향으로 CRI에 대응하는 DL Rx 빔으로부터 SRS Tx 빔을 결정할 수 있다.
SRS Tx 빔에 대한 SRI와 유사한 방식으로, MAC CE는 UE Tx 빔에 대한 CRI를 signaling하는 것이 바람직할 수 있다.
또한, SRS Tx 빔에 대한 CRI 또는 *?*SRI indication은 시그널링 오버 헤드를 줄이기 위해 그룹 B CSI-RS resource 또는 그룹 B SRS resource로 제한될 수 있다.
(제안 9)
SRS 전송을 위한 빔 지시에 대해, NR은 MAC CE를 통해 설정된 SRS 자원 별로 SRI 또는 CRI indication을 지원한다.
단일 비주기적 SRS 트리거링 필드에 의해 UL 빔 관리를 위해 다수의 SRS resource들을 전송하도록 UE가 설정될 수 있다.
UL beam sweeping 동작을 제어하는 방법은 명시적 또는 암시적 지시를 통해 수행될 수 있다.
첫 번째, 명시적 지시는 서로 다른 SRS 전송 instance들에 UE가 동일한 송신 빔을 유지해야 하는지 또는 서로 다른 SRS 송신 빔을 사용해야 하는지를 위해 수행될 수 있다.
이에 반해, 암시적 지시는 UE가 SRS resource 내에서 동일한 송신 빔을 유지하고, 서로 다른 SRS 자원을 통해 빔을 변경하도록 디폴트(default) UE behavior를 정의함으로써 수행될 수 있다.
(UE) Tx beam sweeping에 대해(or U-3 절차에 대해), UE는 SRS 전송 동안 UE가 동일한 Tx 빔을 유지하는 다수의 OFDM 심볼들에 걸친 단일 SRS 리소스를 전송하도록 설정될 수 있다.
(기지국) Rx beam sweeping에 대해(U-2 절차에 대해), 상이한 심볼로 상이한 Tx 빔을 송신하기 위해 다수의 1 symbol SRS resource들이 UE에 설정될 수 있다.
U-1 절차에 대해, 다수의 N symbol SRS resource들이 N이 1보다 큰 값으로 설정될 수 있다.
여기서, U-1 절차는 U-2 절차와 U-3 절차를 동시에 (joint) 수행하는 절차를 의미한다.
(제안 10)
제안 10은 아래 옵션들에 따라 SRS 전송에 대한 UL beam sweeping behavior를 유도하도록 UE를 지원하는 것이다.
(옵션 1): 명시적 indication (예 : DCI 및 / 또는 MAC-CE를 통해)
(옵션 2): SRS 구성에 기반한 implicit indication
- UE는 SRS resource 내에 동일한 Tx 빔을 유지하고, 서로 다른 SRS resource를 통해 빔을 변경한다.
추가적으로, UL-MIMO 관련 사항에 대해 살펴본다.
NR은 DCI에 의한 UL-MIMO 스케줄링을 지원하며, 이는 아래 사항들 중 적어도 일부를 포함한다.
- 이전의 시간 인스턴스(time instance)에서 해당 UE에 의해 전송된 SRS resource (SRI)의 indication
설정된 각 SRS resource는 적어도 하나의 UL Tx 빔/프리코더와 연관된다.
- 전송 랭크 지시자 (transmit rank indicator, TRI)
가능한 값들은 지시된 SRI에서 설정된 SRS port들 수까지이다.
- 광대역 전송 PMI (TPMI)
- UL MCS indication
- UL HARQ 관련 정보
- UL 자원 할당
UL에 대한 코드북 기반 전송은 UL grant에서 적어도 아래 signaling에 의해 지원된다:
- SRI + TPMI + TRI, 여기서
TPMI는 SRI에 의해 선택된 SRS 자원에서 SRS 포트를 통해 선호되는 프리 코더를 지시하기 위해 사용된다.
단일 SRS 자원이 설정된 경우 SRI는 없다.
TPMI는 설정된 단일 SRS 자원에서 SRS 포트를 통해 선호되는 프리 코더를 나타내는데 사용된다.
- 다수의 SRS 자원들의 선택에 대한 indication을 지원한다.
또한, 아래 표 7과 같은 P(peridoic)/SP(semi-persistent)/AP(aperiodic) CSI-RS signaling 옵션들이 지원된다.
Figure PCTKR2018011642-appb-T000007
또한, NR은 (SRS resource 또는 DL RS에 의한) SRS Tx beam indication을 적용한다.
그리고, 적어도 지원되는 DL RS는 CSI-RS 및 SSB를 포함한다.
그리고, NR은 적어도 아래 표 8의 메커니즘을 통해 DL RS와 UL SRS Tx beam 사이의 적어도 spatial relation의 indication을 지원한다.
Figure PCTKR2018011642-appb-T000008
CC(s) 및/또는 BWP(s)에서 spatial relation의 용도는 추후 고려될 수 있다.
표 8에서, Target RS = 'AP SRS'인 경우에 대하여, 이는 UL grant에 SRI field, TRI/TPMI field가 포함된다.
그리고, 별도로 AP-SRS-Trigger field (similar to LTE)가 있는데, 상기 target AP SRS의 "(beam) indication with DCI"는 이 AP-SRS-Trigger field에 의한 DCI를 의미하는 것으로 해석될 수 있다.
즉, 상기 SRI field는 "PUSCH beam indication" 용도이므로, 위 Target RS (= 'AP SRS')에 대한 beam indication과는 무관하다.
그리고, 이 때의 각 Trigger state의 description을 설정할 때에 "configuration에 대한 RRC 또는 RRC+MAC CE"로서 동작 적용되는 것으로 해석될 수 있다.
만일, DL DCI (및/또는 UL와 무관한 별도의 DCI)에도 상기 AP-SRS-Trigger field가 포함되는 것으로 설정되는 경우, 이러한 또 다른 type의 DCI(e.g., SRI field가 존재하지 않음)와의 align을 위해서라도 위와 같이 동작이 공통 적용되도록 할 수 있다.
이 때, 이러한 "(AP)-CSI-RS to (AP) SRS"와 같은 (beam) 지시에서 적용 시점에 관한 timeline 이슈는 "latest indication (before n-X)" rule을 따르도록 할 수 있다.
예를 들어, n번째 slot에 상기 특정 (AP) SRS를 전송하도록 트리거된 경우, 적용 가능한 위와 같은 "Reference RS to Target RS"에 관한 (beam) indication은 (n-X)번째 slot 이전의 latest slot에 내려온 해당 (beam) indication이 있는 경우, 이를 따르도록 하는 것이다.
결국, 이는 X(>=0) slot들만큼의 적용시점 "buffer"를 제공함으로써, 단말 구현 시 해당 beam 지시에 따른 beam change/switching을 적용할 구현 flexibility (including complexity reduction)를 확보할 수 있다는 효과가 있다.
그리고, 상기 CCs 및/또는 BWPs에서 spatial relation의 용도와 관련하여, 만일 상기 "Reference RS to Target RS"에 관한 (beam) indication에 대한 Reference RS가 Target RS와 다른 CC 및/또는 BWP로부터 설정되는 경우라면, 상기 timeline 이슈를 위와 같이 same CC 및/또는 BWP로부터 reference RS가 설정되는 경우와 상이하게 또는 독립적으로 규정(또는 설정)하도록 할 수 있다.
예를 들어, 이와 같이 cross CC(또는 BWP)로부터 Reference RS가 설정 제공되는 경우, 그리고 n번째 slot에 상기 특정 (AP) SRS를 전송하도록 트리거된 경우에 적용 가능한 위와 같은 "Reference RS to Target RS"에 관한 (beam) indication은 (n-Y)번째 slot 이전의 latest slot에 내려온 해당 (beam) indication이 있는 경우, 이를 따르도록 할 수 있다.
결국 Y(e.g., Y>X) slots만큼의 적용시점 "buffer"를 위 same CC/BWP의 경우보다 상이하게 (e.g., 더 크게) 제공함으로써 단말 구현 시 해당 beam 지시에 따른 beam change/switching을 적용할 구현 flexibility (including complexity reduction)를 (보다 더 크게) 확보할 수 있다는 효과가 있다.
이는 cross CC(또는 BWP)간 다른 numerology를 따르는 상황 등에 더 효과적일 수 있다.
왜냐하면, numerology에 따른 적용 시점의 차이가 발생할 수 있기 때문이다.
이상의 설명은 상기 Target RS가 'SRS'인 경우를 중심으로 설명하였으나, 상기 DL Reference RS to DL Target RS의 경우에도, (위와 유사하게,) "(AP)-CSI-RS to (AP) CSI-RS"와 같은 (beam) 지시에서 적용 시점에 관한 timeline 이슈는 "latest indication (before n-X1)" rule을 따르도록 할 수 있다.
예를 들어, n번째 slot에 상기 특정 (AP) CSI-RS를 measure하도록 트리거된 경우에 적용 가능한 위와 같은 "Reference RS to Target RS"에 관한 (beam) indication은 (n-X1)번째 slot 이전의 latest slot에 내려온 해당 (beam) indication이 있는 경우, 이를 따르도록 할 수 있다.
결국 X1(>=0) slots만큼의 적용시점 "buffer"를 제공함으로써 단말 구현 시 해당 beam 지시에 따른 beam change/switching을 적용할 구현 flexibility (including complexity reduction)를 확보할 수 있다는 효과가 있다.
이 때, 만일 상기 "Reference RS to Target RS"에 관한 (beam) indication에 대한 Reference RS가 Target RS와 다른 CC 및/또는 BWP로부터 설정되는 경우라면, 상기 timeline 이슈를 위와 같이 same CC 및/또는 BWP로부터 reference RS가 설정되는 경우와 상이하게 또는 독립적으로 규정(또는 설정)하도록 할 수 있다.
예를 들어, 이와 같이 cross CC(또는 BWP)로부터 Reference RS가 설정 제공되는 경우에는, 그리고 n번째 slot에 상기 특정 (AP) CSI-RS를 measure하도록 트리거된 경우에 적용 가능한 위와 같은 "Reference RS to Target RS"에 관한 (beam) indication은 (n-Y1)번째 slot 이전의 latest slot에 내려온 해당 (beam) indication이 있는 경우, 이를 따르도록 할 수 있다.
결국 Y1(e.g., Y1>X1) slots만큼의 적용시점 "buffer"를 위 same CC(또는 BWP)의 경우보다 상이하게 (e.g., 더 크게) 제공함으로써 단말 구현 시 해당 beam 지시에 따른 beam change/switching을 적용할 구현 flexibility (including complexity reduction)를 (보다 더 크게) 확보할 수 있다는 효과가 있다.
이는 cross CC(또는 BWP)간 다른 numerology를 따르는 상황 등에 더 효과적일 수 있다.
그 이유는, numerology에 따른 적용시점의 차이가 발생할 수 있기 때문이다.
본 명세서에서 제안하는 또 다른 실시 예에 대해 살펴본다.
먼저 아래 spatial QCL 가정을 고려한다.
만약 UE가 하나 이상의 TCI state들을 포함하는 TCI-StatePDCCH의 초기(initial) RRC configuration을 수신하였으나, 해당 TCI state들 중 하나의 MAC CE activation을 수신하지 못한 경우, UE는 UE-specific search space에서 PDCCH 수신과 연관된 DM-RS 안테나 포트가 delay spread, Doppler spread, Doppler shift, average delay 및 spatial Rx parameter 관점에서 initial access 절차 동안 식별되는 UE SS/PBCH block과 quasi-co locate 되어 있다고 가정한다.
그리고, 만일 UE가 단일의(single) TCI state를 포함하는 TCI-StatesPDCCH의 RRC configuration을 수신한 경우, UE는 UE-specific search space에서 PDCCH 수신과 연관된 DM-RS 안테나 포트가 해당 TCI state에 의해 설정된 DL RS(s)과 quasi-co locate 되어 있다고 가정한다.
위의 가정에서, initial access 이후 바로 수행되는 "initial RRC"만 기재하고 있으며, RRC (re-)configuration case(들)에 대해서는 명확히 정의하고 있지 않다.
여기서, RRC (re-)configuration case(들)이라는 것은 특정 기존에 유지되고 있던 CORESET에 대하여 적어도 하나의 sub RRC parameter를 변경하는 것을 의미할 수도 있거나 또는, 상기 initial access 이후 (특정 충분한 시간이 지난 후에(stable RRC-connected 상태에서) 새로운 new CORESET을 추가하는 경우를 의미할 수도 있다.
이에 대해 아래와 같은 내용들을 제안한다.
다수의(multiple) TCI state들을 포함하는 TCI-StatesPDCCH의 RRC (re)configuration과 이들 상태 중 하나의 MAC CE activation 사이에서 다음과 같은 방법들이 고려될 수 있다.
(방법 1)
TCI-StatesPDCCH의 최하위 엔트리에 있는 DL RS는 MAC CE activation message가 전달될 때까지 PDCCH 빔에 사용된다.
(방법 2)
기존의 모든 CORESET들에서 MAC CE에 의해 활성화된 가장 최근의 DL RS는 MAC CE activation message가 전달될 때까지 PDCCH 빔에 사용된다.
가장 최근에 활성화된 DL RS가 여러 개의 CORESET들에서 하나 이상인 경우, 가장 낮은 CORESET에서 활성화된 DL RS가 사용된다.
(방법 3)
UE는 MAC CE activation message가 전달될 때까지 CORESET을 통해 스케줄될 것으로 예상(또는)가정하지 않는다.
즉, 이와 같이 MAC CE control이 정상적으로 완료되지 전까지, UE는 이와 같이 RRC만 configure된 상기 특정 CORESET을 통해서 데이터 스케줄링 등 특정 control message가 올 것을 기대(또는 가정)하지 않는다.
앞서 살핀 다양한 제안들(제안 1 내지 제안 10)과 실시 예들은 각각 별개로 실시될 수도 있으나, 하나 이상의 제안 또는 실시 예들이 조합되어 실시될 수도 있다.
이하 앞서 살핀 내용들을 기초로 본 명세서에서 제안하는 방법을 구현하기 위한 단말 및 기지국의 동작 방법에 대해 살펴본다.
도 14는 본 명세서에서 제안하는 방법을 구현하는 단말의 동작 방법의 일례를 나타내는 순서도이다.
먼저, 단말은 적어도 하나의 DL RS(downlink reference signal)에 대한 QCL 지시(indication)와 관련된 TCI(transmission configuration indication) 상태(state) 정보를 RRC 시그널링을 통해 기지국으로부터 수신한다(S1410).
그리고, 상기 단말은 DCI(downlink control information)를 포함하는 PDCCH(physical downlink control channel)를 제 1 슬롯(slot)에서 상기 기지국으로부터 수신한다(S1420).
그리고, 상기 단말은 하나 또는 그 이상의 QCL indication들에 기초하여 상기 데이터를 포함하는 PDSCH(physical downlink shared channel)를 상기 기지국으로부터 수신한다(S1430).
여기서, 상기 QCL indication들 중 공간(spatial) QCL indication은 상기 제 1 슬롯에서 또는 상기 제 1 슬롯 이전의 가장 최신의 슬롯에서 전송되는 PDCCH에 포함되는 QCL indication이며, 상기 QCL indication들 중 상기 공간(spatial) QCL indication을 제외한 적어도 하나의 QCL indication은 상기 제 1 슬롯에서 전송되는 PDCCH에 포함되는 QCL indication일 수 있다.
여기서, 상기 제 1 슬롯 이전의 가장 최신의 슬롯은 (상기 제 1 슬롯 - X 심볼) 이전의 가장 최신 슬롯일 수 있다.
그리고, 상기 공간(spatial) QCL indication을 제외한 적어도 하나의 QCL indication은 지연 확산(delay spread), 평균 지연(average delay), 도플러 확산(doppler spread) 또는 도플러 쉬프트(Doppler shift) 중 적어도 하나를 포함할 수 있다.
상기 X 심볼은 상기 PDSCH의 수신 빔 변경 및 상기 PDCCH 디코딩과 관련된 시간 간격(timing gap)을 의미한다.
추가적으로, 상기 단말은 상기 X의 값을 포함하는 능력(capability) 정보를 상기 기지국으로 전송한다.
여기서, 상기 데이터를 상기 PDSCH를 통해 수신하는 단계는, 상기 X의 값에 기초하여 상기 PDSCH를 수신하기 위한 수신 빔을 변경하는 단계를 더 포함할 수 있다.
상기 X 심볼은 상기 PDSCH가 수신되는 시간 영역 내에 설정될 수 있다.
도 15는 본 명세서에서 제안하는 방법을 구현하는 기지국의 동작 방법의 일례를 나타내는 순서도이다.
먼저, 기지국은 적어도 하나의 DL RS(downlink reference signal)에 대한 QCL 지시(indication)와 관련된 TCI(transmission configuration indication) 상태(state) 정보를 RRC 시그널링을 통해 단말로 전송한다(S1510).
그리고, 상기 기지국은 DCI(downlink control information)를 포함하는 PDCCH(physical downlink control channel)를 제 1 슬롯(slot)에서 상기 단말로 전송한다(S1520).
그리고, 상기 기지국은 하나 또는 그 이상의 QCL indication들에 기초하여 상기 데이터를 포함하는 PDSCH(physical downlink shared channel)를 상기 단말로 전송한다(S1530).
여기서, 상기 QCL indication들 중 공간(spatial) QCL indication은 상기 제 1 슬롯에서 또는 상기 제 1 슬롯 이전의 가장 최신의 슬롯에서 전송되는 PDCCH에 포함되는 QCL indication이며, 상기 QCL indication들 중 상기 공간(spatial) QCL indication을 제외한 적어도 하나의 QCL indication은 상기 제 1 슬롯에서 전송되는 PDCCH에 포함되는 QCL indication일 수 있다.
상기 제 1 슬롯 이전의 가장 최신의 슬롯은 (상기 제 1 슬롯 - X 심볼) 이전의 가장 최신 슬롯일 수 있다.
여기서, 상기 공간(spatial) QCL indication을 제외한 QCL indication은 지연 확산(delay spread), 평균 지연(average delay), 도플러 확산(doppler spread) 또는 도플러 쉬프트(Doppler shift) 중 적어도 하나를 포함할 수 있다.
상기 X 심볼은 상기 PDSCH의 수신 빔 변경과 관련된 시간 간격(timing gap)을 의미할 수 있다.
추가적으로, 상기 기지국은 상기 PDSCH의 수신 빔 변경 및 상기 PDCCH 디코딩과 관련된 시간 간격(timing gap)에 대한 정보를 포함하는 상기 단말의 능력(capability) 정보를 상기 단말로부터 수신한다.
그리고, 상기 기지국은 상기 수신된 시간 간격에 대한 정보에 기초하여 상기 X의 값을 결정하고, 상기 결정된 X의 값에 대한 정보를 상기 단말로 전송할 수 있다.
상기 X 심볼은 상기 PDSCH가 수신되는 시간 영역 내에 설정될 수 있다.
앞서 살핀 도 14 및 도 15의 방법들은 후술하는 장치 또는 각 장치 내 구성 요소를 통해 구체적으로 구현될 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 16은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.
도 16을 참조하면, 무선 통신 시스템은 기지국(1610)과 기지국 영역 내에 위치한 다수의 단말(1620)을 포함한다.
상기 기지국과 단말은 각각 무선 장치로 표현될 수도 있다.
기지국은 프로세서(processor, 1611), 메모리(memory, 1612) 및 RF 모듈(radio frequency module, 1613)을 포함한다. 프로세서(1611)는 앞서 도 1 내지 도 15에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서에 의해 구현될 수 있다. 메모리는 프로세서와 연결되어, 프로세서를 구동하기 위한 다양한 정보를 저장한다. RF 모듈은 프로세서와 연결되어, 무선 신호를 송신 및/또는 수신한다.
단말은 프로세서(1621), 메모리(1622) 및 RF 모듈(1623)을 포함한다.
프로세서는 앞서 도 1 내지 도 15에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서에 의해 구현될 수 있다. 메모리는 프로세서와 연결되어, 프로세서를 구동하기 위한 다양한 정보를 저장한다. RF 모듈은 프로세서와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(1612, 1122)는 프로세서(1611, 1621) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
또한, 기지국 및/또는 단말은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
안테나(1614, 1624)는 무선 신호를 송신 및 수신하는 기능을 한다.
도 17은 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 17은 앞서 도 16의 단말을 보다 상세히 예시하는 도면이다.
도 17를 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(1710), RF 모듈(RF module)(또는 RF 유닛)(1735), 파워 관리 모듈(power management module)(1705), 안테나(antenna)(1740), 배터리(battery)(1755), 디스플레이(display)(1715), 키패드(keypad)(1720), 메모리(memory)(1730), 심카드(SIM(Subscriber Identification Module) card)(1725)(이 구성은 선택적임), 스피커(speaker)(1745) 및 마이크로폰(microphone)(1750)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(1710)는 앞서 도 1 내지 도 15에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서에 의해 구현될 수 있다.
메모리(1730)는 프로세서와 연결되고, 프로세서의 동작과 관련된 정보를 저장한다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
사용자는 예를 들어, 키패드(1720)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(1750)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(1725) 또는 메모리(1730)로부터 추출할 수 있다. 또한, 프로세서는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(1715) 상에 디스플레이할 수 있다.
RF 모듈(1735)는 프로세서에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈에 전달한다. RF 모듈은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(1740)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈은 프로세서에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(1745)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 데이터를 송수신하는 방법은 3GPP LTE/LTE-A 시스템, 5G 시스템(New RAT 시스템)에 적용되는 예를 중심으로 설명하였으나, 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (15)

  1. 무선 통신 시스템에서 QCL(quasi-co location)에 기초하여 데이터를 수신하는 방법에 있어서, 단말에 의해 수행되는 방법은,
    적어도 하나의 DL RS(downlink reference signal)에 대한 QCL 지시(indication)와 관련된 TCI(transmission configuration indication) 상태(state) 정보를 RRC 시그널링을 통해 기지국으로부터 수신하는 단계;
    하향링크 제어 정보(downlink control information, DCI)를 포함하는 PDCCH(physical downlink control channel)를 제 1 슬롯(slot)에서 상기 기지국으로부터 수신하는 단계; 및
    하나 또는 그 이상의 QCL indication들에 기초하여 상기 데이터를 포함하는 PDSCH(physical downlink shared channel)를 상기 기지국으로부터 수신하는 단계를 포함하되,
    상기 QCL indication들 중 공간(spatial) QCL indication은 상기 제 1 슬롯에서 또는 상기 제 1 슬롯 이전의 가장 최신의 슬롯에서 수신되는 PDCCH에 포함되는 QCL indication이며,
    상기 QCL indication들 중 상기 공간(spatial) QCL indication을 제외한 적어도 하나의 QCL indication은 상기 제 1 슬롯에서 수신되는 PDCCH에 포함되는 QCL indication인 것을 특징으로 하는 데이터 수신 방법.
  2. 제 1항에 있어서,
    상기 제 1 슬롯 이전의 가장 최신의 슬롯은 (상기 제 1 슬롯 - X 심볼) 이전의 가장 최신 슬롯인 것을 특징으로 하는 데이터 수신 방법.
  3. 제 2항에 있어서,
    상기 공간(spatial) QCL indication을 제외한 적어도 하나의 QCL indication은 지연 확산(delay spread), 평균 지연(average delay), 도플러 확산(doppler spread) 또는 도플러 쉬프트(Doppler shift) 중 적어도 하나를 포함하는 것을 특징으로 하는 데이터 수신 방법.
  4. 제 2항에 있어서,
    상기 X 심볼은 상기 PDSCH의 수신 빔 변경 및 상기 PDCCH 디코딩과 관련된 시간 간격(timing gap)인 것을 특징으로 하는 데이터 수신 방법.
  5. 제 4항에 있어서,
    상기 X의 값을 포함하는 능력(capability) 정보를 상기 기지국으로 전송하는 단계를 더 포함하는 것을 특징으로 하는 데이터 수신 방법.
  6. 제 5항에 있어서,
    상기 데이터를 상기 PDSCH를 통해 수신하는 단계는,
    상기 X의 값에 기초하여 상기 PDSCH를 수신하기 위한 수신 빔을 변경하는 단계를 더 포함하는 것을 특징으로 하는 데이터 수신 방법.
  7. 제 6항에 있어서,
    상기 X 심볼은 상기 PDSCH가 수신되는 시간 영역 내에 설정되는 것을 특징으로 하는 데이터 수신 방법.
  8. 무선 통신 시스템에서 QCL(quasi-co location)에 기초하여 데이터를 전송하는 방법에 있어서, 기지국에 의해 수행되는 방법은,
    적어도 하나의 DL RS(downlink reference signal)에 대한 QCL 지시(indication)와 관련된 TCI(transmission configuration indication) 상태(state) 정보를 RRC 시그널링을 통해 단말로 전송하는 단계;
    하향링크 제어 정보(downlink control information, DCI)를 포함하는 PDCCH(physical downlink control channel)를 제 1 슬롯(slot)에서 상기 단말로 전송하는 단계; 및
    하나 또는 그 이상의 QCL indication들에 기초하여 상기 데이터를 포함하는 PDSCH(physical downlink shared channel)를 상기 단말로 전송하는 단계를 포함하되,
    상기 QCL indication들 중 공간(spatial) QCL indication은 상기 제 1 슬롯에서 또는 상기 제 1 슬롯 이전의 가장 최신의 슬롯에서 전송되는 PDCCH에 포함되는 QCL indication이며,
    상기 QCL indication들 중 상기 공간(spatial) QCL indication을 제외한 적어도 하나의 QCL indication은 상기 제 1 슬롯에서 전송되는 PDCCH에 포함되는 QCL indication인 것을 특징으로 하는 데이터 전송 방법.
  9. 제 8항에 있어서,
    상기 제 1 슬롯 이전의 가장 최신의 슬롯은 (상기 제 1 슬롯 - X 심볼) 이전의 가장 최신 슬롯인 것을 특징으로 하는 데이터 전송 방법.
  10. 제 9항에 있어서,
    상기 공간(spatial) QCL indication을 제외한 적어도 하나의 QCL indication은 지연 확산(delay spread), 평균 지연(average delay), 도플러 확산(doppler spread) 또는 도플러 쉬프트(Doppler shift) 중 적어도 하나를 포함하는 것을 특징으로 하는 데이터 전송 방법.
  11. 제 9항에 있어서,
    상기 X 심볼은 상기 PDSCH의 수신 빔 변경 및 상기 PDCCH 디코딩과 관련된 시간 간격(timing gap)인 것을 특징으로 하는 데이터 전송 방법.
  12. 제 11항에 있어서,
    상기 PDSCH의 수신 빔 변경과 관련된 시간 간격(timing gap)에 대한 정보를 포함하는 상기 단말의 능력(capability) 정보를 상기 단말로부터 수신하는 단계;
    상기 수신된 시간 간격에 대한 정보에 기초하여 상기 X의 값을 결정하는 단계; 및
    상기 결정된 X의 값에 대한 정보를 상기 단말로 전송하는 단계를 더 포함하는 것을 특징으로 하는 데이터 전송 방법.
  13. 제 11항에 있어서,
    상기 X 심볼은 상기 PDSCH가 수신되는 시간 영역 내에 설정되는 것을 특징으로 하는 데이터 전송 방법.
  14. 무선 통신 시스템에서 QCL(quasi-co location)에 기초하여 데이터를 수신하기 위한 단말에 있어서,
    무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및
    상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는,
    적어도 하나의 DL RS(downlink reference signal)에 대한 QCL 지시(indication)와 관련된 TCI(transmission configuration indication) 상태(state) 정보를 RRC 시그널링을 통해 기지국으로부터 수신하며;
    하향링크 제어 정보 (downlink control information, DCI)를 포함하는 PDCCH(physical downlink control channel)를 제 1 슬롯(slot)에서 상기 기지국으로부터 수신하며; 및
    하나 또는 그 이상의 QCL indication들에 기초하여 상기 데이터를 포함하는 PDSCH(physical downlink shared channel)를 상기 기지국으로부터 수신하도록 설정되되,
    상기 QCL indication들 중 공간(spatial) QCL indication은 상기 제 1 슬롯에서 또는 상기 제 1 슬롯 이전의 가장 최신의 슬롯에서 수신되는 PDCCH에 포함되는 QCL indication이며,
    상기 QCL indication들 중 상기 공간(spatial) QCL indication을 제외한 적어도 하나의 QCL indication은 상기 제 1 슬롯에서 수신되는 PDCCH에 포함되는 QCL indication인 것을 특징으로 하는 단말.
  15. 무선 통신 시스템에서 QCL(quasi-co location)에 기초하여 데이터를 전송하기 위한 기지국에 있어서,
    무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및
    상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는,
    적어도 하나의 DL RS(downlink reference signal)에 대한 QCL 지시(indication)와 관련된 TCI(transmission configuration indication) 상태(state) 정보를 RRC 시그널링을 통해 단말로 전송하며;
    하향링크 제어 정보 (downlink control information, DCI)를 포함하는 PDCCH(physical downlink control channel)를 제 1 슬롯(slot)에서 상기 단말로 전송하며; 및
    하나 또는 그 이상의 QCL indication들에 기초하여 상기 데이터를 포함하는 PDSCH(physical downlink shared channel)를 상기 단말로 전송하도록 설정되되,
    상기 QCL indication들 중 공간(spatial) QCL indication은 상기 제 1 슬롯에서 또는 상기 제 1 슬롯 이전의 가장 최신의 슬롯에서 전송되는 PDCCH에 포함되는 QCL indication이며,
    상기 QCL indication들 중 상기 공간(spatial) QCL indication을 제외한 적어도 하나의 QCL indication은 상기 제 1 슬롯에서 전송되는 PDCCH에 포함되는 QCL indication인 것을 특징으로 하는 기지국.
PCT/KR2018/011642 2017-09-29 2018-10-01 무선 통신 시스템에서 qcl에 기초하여 데이터를 송수신하기 위한 방법 및 이를 위한 장치 WO2019066618A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/651,484 US11323892B2 (en) 2017-09-29 2018-10-01 Method for transmitting and receiving data on basis of QCL in wireless communication system, and device therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201762565126P 2017-09-29 2017-09-29
US62/565,126 2017-09-29
US201762587435P 2017-11-16 2017-11-16
US62/587,435 2017-11-16
US201862621553P 2018-01-24 2018-01-24
US62/621,553 2018-01-24

Publications (1)

Publication Number Publication Date
WO2019066618A1 true WO2019066618A1 (ko) 2019-04-04

Family

ID=65902692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011642 WO2019066618A1 (ko) 2017-09-29 2018-10-01 무선 통신 시스템에서 qcl에 기초하여 데이터를 송수신하기 위한 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US11323892B2 (ko)
WO (1) WO2019066618A1 (ko)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111615195A (zh) * 2019-04-08 2020-09-01 维沃移动通信有限公司 确定波束信息的方法及装置、通信设备
CN111865531A (zh) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 一种传输指示方法、网络侧设备及终端
WO2021030839A1 (en) * 2019-08-12 2021-02-18 Qualcomm Incorporated Rate matching at a ue for multi-transmitter communication based on indicated tci states
KR20210020844A (ko) * 2019-08-14 2021-02-24 엘지전자 주식회사 무선 통신 시스템에서 하향링크 데이터를 송수신 하는 방법 및 이에 대한 장치
KR20210020840A (ko) * 2019-08-14 2021-02-24 엘지전자 주식회사 무선 통신 시스템에서 하향링크 데이터를 송수신 하는 방법 및 이에 대한 장치
US20210112560A1 (en) * 2019-10-11 2021-04-15 Qualcomm Incorporated Default quasi-colocation for single downlink control information-based multiple transmission reception points
WO2021126401A1 (en) * 2019-12-20 2021-06-24 Qualcomm Incorporated Qcl-type-d sounding reference signal
WO2021145752A1 (en) * 2020-01-16 2021-07-22 Samsung Electronics Co., Ltd. Method and apparatus for beam indication in a wireless communication system
CN113225801A (zh) * 2020-02-06 2021-08-06 维沃移动通信有限公司 同步信号传输方法和设备
CN113259953A (zh) * 2020-02-12 2021-08-13 联发科技(新加坡)私人有限公司 空间关系切换方法和用户设备
CN113748701A (zh) * 2019-05-01 2021-12-03 株式会社Ntt都科摩 用户装置以及通信方法
CN113767594A (zh) * 2019-05-02 2021-12-07 Lg电子株式会社 在无线通信系统中发送和接收相位跟踪参考信号的方法及其设备
CN113940107A (zh) * 2019-04-09 2022-01-14 株式会社Ntt都科摩 用户终端以及无线通信方法
CN114097198A (zh) * 2019-05-10 2022-02-25 苹果公司 用于多trp操作的coreset和pucch资源分组上的机制和信令
CN114128340A (zh) * 2019-05-17 2022-03-01 株式会社Ntt都科摩 用户终端以及无线通信方法
CN114285501A (zh) * 2019-06-14 2022-04-05 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN114337972A (zh) * 2019-07-25 2022-04-12 Oppo广东移动通信有限公司 用于传输数据的方法和终端设备
WO2022087392A1 (en) * 2020-10-22 2022-04-28 Convida Wireless, Llc Beam management enhancements
EP3961953A4 (en) * 2019-06-14 2022-05-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND DEVICE FOR DISPLAYING A REFERENCE SIGNAL, TERMINAL AND NETWORK DEVICE
CN114514718A (zh) * 2019-10-03 2022-05-17 高通股份有限公司 对定位参考信号的准共址定时参考的源参考信号的约束
WO2022103151A1 (ko) * 2020-11-13 2022-05-19 삼성전자 주식회사 무선 통신 시스템에서 pdcch 반복 송수신을 위한 방법 및 장치
CN114556999A (zh) * 2019-08-15 2022-05-27 株式会社Ntt都科摩 终端以及无线通信方法
CN114762283A (zh) * 2019-12-13 2022-07-15 高通股份有限公司 用于上行链路传输配置指示符状态的准共处参考信号
CN114902598A (zh) * 2020-01-21 2022-08-12 中兴通讯股份有限公司 无线通信系统中的波束指示方法
CN115004621A (zh) * 2020-02-07 2022-09-02 高通股份有限公司 开环杂波干扰减轻
CN115053489A (zh) * 2020-02-13 2022-09-13 艾普拉控股有限公司 Pdcch的可靠性增强
CN115244875A (zh) * 2020-03-06 2022-10-25 Lg 电子株式会社 在无线通信系统中基于空间参数发送或接收信号的方法和设备
EP4040702A4 (en) * 2019-09-30 2022-11-23 ZTE Corporation METHODS AND APPARATUS FOR RECEIVING AND TRANSMITTING REFERENCE SIGNALS
CN115443631A (zh) * 2020-04-30 2022-12-06 高通股份有限公司 用于启用多发送和接收点(trp)的侧行链路通信的准共址(qcl)指示

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034798A (zh) 2018-01-11 2019-07-19 索尼公司 电子设备、无线通信方法和计算机可读存储介质
CN110061768B (zh) * 2018-01-19 2021-01-29 成都华为技术有限公司 一种波束配置方法和装置
US10999036B2 (en) * 2018-02-14 2021-05-04 Electronics And Telecommunications Research Institute Method and apparatus for downlink communication in communication system
KR102495977B1 (ko) * 2018-04-12 2023-02-03 삼성전자 주식회사 무선 통신 시스템에서 단말 및 이의 제어 방법
EP3782298B1 (en) * 2018-04-20 2021-10-20 Telefonaktiebolaget LM Ericsson (publ) Cross-carrier spatial relation indication for semi-persistent sounding reference signal (sp-srs) resources
US11617195B2 (en) * 2018-05-04 2023-03-28 Asustek Computer Inc. Method and apparatus for downlink control information (DCI) content processing considering active downlink (DL) bandwidth part (BWP) change in a wireless communication system
CN110690950B (zh) * 2018-07-06 2020-08-11 维沃移动通信有限公司 定位参考信号配置、接收方法和设备
US11057876B2 (en) * 2018-07-20 2021-07-06 Qualcomm Incorporated Downlink control for multiple transmit receive point configurations
EP3857947A4 (en) * 2018-09-26 2022-05-11 Lenovo (Beijing) Limited CHANNEL STATE INFORMATION REPORT CALCULATION
US20200137741A1 (en) * 2018-10-26 2020-04-30 Qualcomm Incorporated Spatial quasi co-location indication for control resource set and downlink bandwidth part
CN111148268B (zh) * 2018-11-02 2022-02-01 维沃移动通信有限公司 随机接入资源确定方法、终端及网络设备
US11251931B2 (en) * 2018-11-07 2022-02-15 Qualcomm Incorporated Active transmission configuration indication states
CN111436126A (zh) * 2019-01-11 2020-07-21 中兴通讯股份有限公司 一种信息的发送方法及装置、存储介质和电子装置
CN115276852A (zh) * 2019-01-11 2022-11-01 中兴通讯股份有限公司 一种信息确定方法和装置、信息元素的处理方法和装置
US11510082B2 (en) 2019-03-29 2022-11-22 Qualcomm Incorporated Beam indication reuse
US11277185B2 (en) * 2019-05-10 2022-03-15 Qualcomm Incorporated Multi-beam operation with a single TCI state
US11265879B2 (en) * 2019-07-05 2022-03-01 Qualcomm Incorporated Group component carrier based updates
WO2021032300A1 (en) * 2019-08-21 2021-02-25 Nokia Solutions And Networks Oy Apparatus, method and computer program for determining beamforming direction
US11758556B2 (en) * 2020-05-22 2023-09-12 Qualcomm Incorporated Uplink beam refinement based on sounding reference signal (SRS) with dynamic parameters
WO2022061544A1 (zh) * 2020-09-22 2022-03-31 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
CN116326006A (zh) * 2020-10-16 2023-06-23 苹果公司 毫米波系统中的波束切换方法
CN114745786A (zh) * 2021-01-08 2022-07-12 维沃移动通信有限公司 准共址信息的确定、获取方法及通信设备
US20220231807A1 (en) * 2021-01-15 2022-07-21 Mediatek Inc. Apparatus and method for configuring application of tci state to reference signal
WO2022262949A1 (en) * 2021-06-15 2022-12-22 Nokia Technologies Oy Beam management
US11909496B2 (en) * 2021-11-23 2024-02-20 Qualcomm Incorporated Beam switching in near-field operations

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159673A1 (ko) * 2015-04-03 2016-10-06 엘지전자 주식회사 무선 통신 시스템에서 비면허 대역을 통하여 하향링크 신호를 수신하는 방법 및 이를 위한 장치

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101995430B1 (ko) * 2012-01-20 2019-07-02 엘지전자 주식회사 제어 정보 송수신 방법 및 이를 위한 장치
KR102186240B1 (ko) * 2012-08-31 2020-12-03 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호 수신 방법 및 장치
WO2014042378A2 (ko) * 2012-09-12 2014-03-20 엘지전자 주식회사 무선 통신 시스템에서 간섭 제거 기법을 이용한 신호 수신 방법 및 이를 위한 장치
WO2014046502A1 (ko) * 2012-09-21 2014-03-27 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호를 송수신하는 방법 및 이를 위한 장치
US9769807B2 (en) * 2012-09-28 2017-09-19 Telefonaktiebolaget Lm Ericsson (Publ) User equipment, radio network node and methods therein
WO2014054903A1 (ko) * 2012-10-04 2014-04-10 엘지전자 주식회사 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
US9307521B2 (en) * 2012-11-01 2016-04-05 Samsung Electronics Co., Ltd. Transmission scheme and quasi co-location assumption of antenna ports for PDSCH of transmission mode 10 for LTE advanced
US9521664B2 (en) * 2012-11-02 2016-12-13 Qualcomm Incorporated EPDCCH resource and quasi-co-location management in LTE
CN104956611B (zh) * 2013-01-18 2018-10-26 Lg电子株式会社 在无线接入系统中执行准协同定位的方法和设备
WO2014129716A1 (en) * 2013-02-21 2014-08-28 Lg Electronics Inc. Method and apparatus for configuring qcl between antenna ports for massive mimo in a wireless communication system
US9755800B2 (en) * 2013-03-19 2017-09-05 Lg Electronics Inc. Method and device for canceling interference and receiving data in wireless communication system
JP6531102B2 (ja) * 2013-09-03 2019-06-12 サムスン エレクトロニクス カンパニー リミテッド ダウンリンク伝送方法及びユーザ端末装置
US10506587B2 (en) * 2017-05-26 2019-12-10 Samsung Electronics Co., Ltd. Method and apparatus for beam indication in next generation wireless systems
JP7056017B2 (ja) * 2017-06-15 2022-04-19 ソニーグループ株式会社 通信装置、通信方法、及びプログラム
US20190069285A1 (en) * 2017-08-24 2019-02-28 Samsung Electronics Co., Ltd. Configuration of beam indication in a next generation mmwave system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159673A1 (ko) * 2015-04-03 2016-10-06 엘지전자 주식회사 무선 통신 시스템에서 비면허 대역을 통하여 하향링크 신호를 수신하는 방법 및 이를 위한 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"General views on QCL design for NR', R1-1703926", 3GPP TSG RAN WG1 MEETING #90, 12 August 2017 (2017-08-12), Prague, Czech, XP051236707 *
NOKIA: "On QCL framework and configurations in NR", R1-1714261, 3GPP TSG RAN WG1 #90, 11 August 2017 (2017-08-11), Prague, Czech Republic, XP051317047 *
NOKIA: "Summary of offline QCL discussion", R1-1715293, 3GPP TSG RAN WG1 #90, 26 August 2017 (2017-08-26), Prague, Czech Republic, XP051328765 *
SAMSUNG: "On QCL for NR", R1-1713609, 3GPP TSG RAN WG1 #90, 11 August 2017 (2017-08-11), Prague, Czech Republic, XP051316409 *

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111615195A (zh) * 2019-04-08 2020-09-01 维沃移动通信有限公司 确定波束信息的方法及装置、通信设备
CN111615195B (zh) * 2019-04-08 2023-08-25 维沃移动通信有限公司 确定波束信息的方法及装置、通信设备
EP3955673A4 (en) * 2019-04-08 2022-06-08 Vivo Mobile Communication Co., Ltd. METHOD AND DEVICE FOR DETERMINING BEAM INFORMATION AND COMMUNICATION DEVICE
CN113940107A (zh) * 2019-04-09 2022-01-14 株式会社Ntt都科摩 用户终端以及无线通信方法
CN113940107B (zh) * 2019-04-09 2023-12-19 株式会社Ntt都科摩 终端、无线通信方法以及系统
CN111865531A (zh) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 一种传输指示方法、网络侧设备及终端
CN111865531B (zh) * 2019-04-30 2021-10-29 大唐移动通信设备有限公司 一种传输指示方法、网络侧设备及终端
CN113748701A (zh) * 2019-05-01 2021-12-03 株式会社Ntt都科摩 用户装置以及通信方法
CN113748701B (zh) * 2019-05-01 2024-03-15 株式会社Ntt都科摩 终端、基站、通信方法以及系统
CN113767594B (zh) * 2019-05-02 2023-10-20 Lg电子株式会社 在无线通信系统中发送和接收相位跟踪参考信号的方法及其设备
CN113767594A (zh) * 2019-05-02 2021-12-07 Lg电子株式会社 在无线通信系统中发送和接收相位跟踪参考信号的方法及其设备
CN114097198A (zh) * 2019-05-10 2022-02-25 苹果公司 用于多trp操作的coreset和pucch资源分组上的机制和信令
CN114128340A (zh) * 2019-05-17 2022-03-01 株式会社Ntt都科摩 用户终端以及无线通信方法
CN114128340B (zh) * 2019-05-17 2023-12-26 株式会社Ntt都科摩 用户终端以及无线通信方法
EP3972159A4 (en) * 2019-06-14 2022-06-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
CN114285501A (zh) * 2019-06-14 2022-04-05 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
EP3961953A4 (en) * 2019-06-14 2022-05-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND DEVICE FOR DISPLAYING A REFERENCE SIGNAL, TERMINAL AND NETWORK DEVICE
CN114337972A (zh) * 2019-07-25 2022-04-12 Oppo广东移动通信有限公司 用于传输数据的方法和终端设备
US11323202B2 (en) 2019-08-12 2022-05-03 Qualcomm Incorporated Rate matching for multi-transmitter communication
WO2021030839A1 (en) * 2019-08-12 2021-02-18 Qualcomm Incorporated Rate matching at a ue for multi-transmitter communication based on indicated tci states
KR20210020844A (ko) * 2019-08-14 2021-02-24 엘지전자 주식회사 무선 통신 시스템에서 하향링크 데이터를 송수신 하는 방법 및 이에 대한 장치
KR20210020840A (ko) * 2019-08-14 2021-02-24 엘지전자 주식회사 무선 통신 시스템에서 하향링크 데이터를 송수신 하는 방법 및 이에 대한 장치
KR102251727B1 (ko) 2019-08-14 2021-05-14 엘지전자 주식회사 무선 통신 시스템에서 하향링크 데이터를 송수신 하는 방법 및 이에 대한 장치
KR102251731B1 (ko) 2019-08-14 2021-05-14 엘지전자 주식회사 무선 통신 시스템에서 하향링크 데이터를 송수신 하는 방법 및 이에 대한 장치
CN114556999B (zh) * 2019-08-15 2024-02-23 株式会社Ntt都科摩 终端以及无线通信方法
CN114556999A (zh) * 2019-08-15 2022-05-27 株式会社Ntt都科摩 终端以及无线通信方法
EP4040702A4 (en) * 2019-09-30 2022-11-23 ZTE Corporation METHODS AND APPARATUS FOR RECEIVING AND TRANSMITTING REFERENCE SIGNALS
CN114514718A (zh) * 2019-10-03 2022-05-17 高通股份有限公司 对定位参考信号的准共址定时参考的源参考信号的约束
US11910416B2 (en) * 2019-10-11 2024-02-20 Qualcomm Incorporated Default quasi-colocation for single downlink control information-based multiple transmission reception points
US20210112560A1 (en) * 2019-10-11 2021-04-15 Qualcomm Incorporated Default quasi-colocation for single downlink control information-based multiple transmission reception points
CN114762283A (zh) * 2019-12-13 2022-07-15 高通股份有限公司 用于上行链路传输配置指示符状态的准共处参考信号
WO2021126401A1 (en) * 2019-12-20 2021-06-24 Qualcomm Incorporated Qcl-type-d sounding reference signal
US11723050B2 (en) 2019-12-20 2023-08-08 Qualcomm Incorporated QCL-type-D sounding reference signal
WO2021145752A1 (en) * 2020-01-16 2021-07-22 Samsung Electronics Co., Ltd. Method and apparatus for beam indication in a wireless communication system
US11665692B2 (en) 2020-01-16 2023-05-30 Samsung Electronics Co., Ltd. Method and apparatus for beam indication in a multi-beam system
US11974281B2 (en) 2020-01-16 2024-04-30 Samsung Electronics Co., Ltd. Method and apparatus for beam indication in a multi-beam system
CN114902598A (zh) * 2020-01-21 2022-08-12 中兴通讯股份有限公司 无线通信系统中的波束指示方法
CN114902598B (zh) * 2020-01-21 2024-03-29 中兴通讯股份有限公司 无线通信系统中的波束指示方法
CN113225801B (zh) * 2020-02-06 2023-07-21 维沃移动通信有限公司 同步信号传输方法和设备
CN113225801A (zh) * 2020-02-06 2021-08-06 维沃移动通信有限公司 同步信号传输方法和设备
CN115004621A (zh) * 2020-02-07 2022-09-02 高通股份有限公司 开环杂波干扰减轻
CN113259953A (zh) * 2020-02-12 2021-08-13 联发科技(新加坡)私人有限公司 空间关系切换方法和用户设备
CN113259953B (zh) * 2020-02-12 2024-05-10 联发科技(新加坡)私人有限公司 空间关系切换方法和用户设备
CN115053489A (zh) * 2020-02-13 2022-09-13 艾普拉控股有限公司 Pdcch的可靠性增强
CN115244875B (zh) * 2020-03-06 2023-11-10 Lg 电子株式会社 在无线通信系统中基于空间参数发送或接收信号的方法和设备
CN115244875A (zh) * 2020-03-06 2022-10-25 Lg 电子株式会社 在无线通信系统中基于空间参数发送或接收信号的方法和设备
CN115443631A (zh) * 2020-04-30 2022-12-06 高通股份有限公司 用于启用多发送和接收点(trp)的侧行链路通信的准共址(qcl)指示
WO2022087392A1 (en) * 2020-10-22 2022-04-28 Convida Wireless, Llc Beam management enhancements
WO2022103151A1 (ko) * 2020-11-13 2022-05-19 삼성전자 주식회사 무선 통신 시스템에서 pdcch 반복 송수신을 위한 방법 및 장치

Also Published As

Publication number Publication date
US20200267571A1 (en) 2020-08-20
US11323892B2 (en) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2019066618A1 (ko) 무선 통신 시스템에서 qcl에 기초하여 데이터를 송수신하기 위한 방법 및 이를 위한 장치
WO2019107873A1 (en) Method for reporting channel state information in wireless communication system and apparatus for the same
WO2019103562A1 (en) Method for reporting channel state information in wireless communication system and apparatus for the same
WO2018199704A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
WO2018164332A1 (ko) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치
WO2019098762A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치
WO2018203704A1 (ko) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치
WO2018174413A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치
WO2018203680A1 (ko) 무선 통신 시스템에서 빔을 통해 신호를 송수신하는 방법 및 이를 위한 장치
WO2018128376A1 (ko) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2018128365A1 (ko) 무선 통신 시스템에서 물리 상향링크 제어 채널 전송 방법 및 이를 위한 장치
WO2019098798A1 (ko) 무선 통신 시스템에서 빔 실패 복구를 수행하는 방법 및 이를 위한 장치
WO2018143665A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치
WO2018230975A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
WO2019017751A1 (ko) 무선 통신 시스템에서 채널 상태 정보 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2019139288A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
WO2018147676A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치
WO2018212530A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치
WO2018128351A1 (ko) 무선 통신 시스템에서 빔을 이용하여 신호를 송수신하는 방법 및 이를 위한 장치
WO2018203679A1 (ko) 무선 통신 시스템에서 빔을 이용하여 신호를 송수신하는 방법 및 이를 위한 장치
WO2018199703A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
WO2019164363A1 (ko) 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2018203728A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
WO2018143721A1 (ko) 무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치
WO2019050380A1 (ko) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860770

Country of ref document: EP

Kind code of ref document: A1