WO2019065461A1 - Silver nanowire production method, silver nanowire, silver nanowire ink, and transparent conductive film - Google Patents

Silver nanowire production method, silver nanowire, silver nanowire ink, and transparent conductive film Download PDF

Info

Publication number
WO2019065461A1
WO2019065461A1 PCT/JP2018/034866 JP2018034866W WO2019065461A1 WO 2019065461 A1 WO2019065461 A1 WO 2019065461A1 JP 2018034866 W JP2018034866 W JP 2018034866W WO 2019065461 A1 WO2019065461 A1 WO 2019065461A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
silver nanowire
silver nanowires
alcohol solvent
average
Prior art date
Application number
PCT/JP2018/034866
Other languages
French (fr)
Japanese (ja)
Inventor
王高 佐藤
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to CN201880051092.2A priority Critical patent/CN111032255A/en
Publication of WO2019065461A1 publication Critical patent/WO2019065461A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a method for producing silver nanowires useful as a conductive material (filler) of a transparent conductive film.
  • the present invention also relates to a silver nanowire, a silver nanowire ink, and a transparent conductive film obtained by the production method.
  • nanowire (s) a fine metal wire having a thickness of about 200 nm or less.
  • Silver nanowires are considered promising as a conductive material for imparting conductivity to transparent substrates.
  • a transparent substrate such as glass, PET (polyethylene terephthalate), PC (polycarbonate), etc.
  • the liquid component is removed by evaporation or the like, the silver nanowires are on the substrate Since a conductive network is formed by contacting each other, a transparent conductive film can be realized.
  • a transparent conductive film used for a touch panel or the like of an electronic device is required to have clear visibility with little haze, in addition to good conductivity.
  • a silver compound is dissolved in a polyol solvent such as ethylene glycol, and in the presence of a halogen compound and an organic protective agent, a linear shape is obtained using the reducing power of the solvent polyol.
  • a method of precipitating metallic silver hereinafter referred to as "alcohol solvent reduction method"
  • organic protective agent PVP (polyvinyl pyrrolidone) has generally been widely used. PVP is a suitable organic protective agent for depositing thin and long silver nanowires.
  • the molecules of the organic protective agent used in the alcohol solvent reduction method adsorb on the surface of the silver nanowire after synthesis, and become a factor governing the dispersibility of the silver nanowire in the liquid medium.
  • Silver nanowires adsorbed with PVP exhibit good dispersibility in water.
  • an organic solvent for example, alcohol
  • PVP is not necessarily a satisfactory organic protective agent.
  • Patent Document 1 is a copolymer having a polymerization composition of vinyl pyrrolidone and Diallyldimethylammonium salt monomer
  • Patent Document 2 is a copolymer of vinyl pyrrolidone and an acrylate based or methacrylate based monomer
  • Patent Document 3 is Vinyl. Copolymers of pyrrolidone and maleimide based monomers are disclosed, respectively. In the alcohol solvent reduction method using these polymers as organic protective agents, it is possible to synthesize thin and long silver nanowires by optimizing the synthesis conditions, as well as or more than using PVP. is there.
  • the silver nanowires used as the conductive material of the transparent conductive coating film have a thin and long form from the viewpoint of achieving both conductivity and visibility at a high level.
  • the wires easily form aggregates in the silver nanowire dispersion liquid, the yield of silver decreases and the handleability in subsequent steps decreases. Not only that, but the aggregates remaining in the final silver nanowire ink cause the reduction in the haze of the transparent conductor and the short circuit in the patterned circuit.
  • the present invention is intended to provide a technology that is particularly effective in stably producing long wires when synthesizing thin silver nanowires by alcohol solvent reduction, and highly effective in suppressing aggregation of the synthesized wires. It is a thing.
  • the above object is achieved in the alcohol solvent reduction method by advancing a precipitation reaction of silver in an environment in which a predetermined concentration of alkyl ether is present in the solvent.
  • the following invention is disclosed in the present specification.
  • a method of producing a silver nanowire the process of reducing and depositing silver in the form of a wire in an alcohol solvent in which a silver compound and an organic protective agent are dissolved, Using a polymer having a vinyl pyrrolidone structural unit as the organic protective agent, A state in which an alkyl ether is dissolved in the alcohol solvent at a concentration of 0.3 to 25.0 mol / L, and the reduction deposition proceeds in the liquid;
  • a M L M / D M (1)
  • L M is a value representing the average length in nm
  • D M is a value representing the average diameter in nm.
  • the polymer is vinyl pyrrolidone, diallyl dimethyl ammonium salt, ethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 4-hydroxybutyl acrylate, N-methyl maleimide, N-ethyl maleimide, N-propyl [1] to [3] having a polymerization composition with one or more monomers selected from maleimide, N-tert-butyl maleimide, 2-dimethylaminoethyl methacrylate, and 2-diethylaminoethyl methacrylate
  • the manufacturing method of the silver nanowire in any one of.
  • the alkyl ether is a compound of the structural formula R—O—R ′ type having an ether bond at one position.
  • R and R ′ mean an alkyl group represented by the general formula C n H 2n + 1 (n is an integer of 1 or more).
  • This alkyl group is a functional group in the form of removing one hydrogen from an alkane, and is linear or has carbon (tertiary carbon) bonded to the other three carbons.
  • the methyl-t-butyl ether mentioned above as an example of the alkyl ether is sometimes called TBME (tert-butyl methyl ether), and is represented by the symbolic formula (CH 3 ) 3 COCH 3 .
  • the average length, average diameter and average aspect ratio of silver nanowires follow the definitions below.
  • Average length L M The trace length from one end of one silver nanowire to the other end of a silver nanowire is defined as the length of the wire on an image observed by a field emission scanning electron microscope (FE-SEM). A value obtained by averaging the lengths of the individual silver nanowires present on the microscopic image is defined as an average length L M. In order to calculate the average length, the total number of wires to be measured is set to 100 or more. Here, the average length in the stage in which the silver nanowires recovered from the solution after the reduction reaction were washed (stage before being supplied to the purification step such as cross flow filtration) is evaluated.
  • FIG. 4 exemplifies a TEM bright-field observation image (hereinafter referred to as “TEM image”) of silver nanowires according to the present invention.
  • TEM image TEM bright-field observation image
  • Each wire can be considered to have a substantially even thickness over its entire length. Therefore, thickness measurement can be performed by selecting a portion that does not overlap other wires.
  • the diameters of all the wires except for the wires completely overlapping with other wires and whose diameter is difficult to measure are measured.
  • the operation is performed on a plurality of randomly selected fields of view, the diameters of a total of 100 or more different silver nanowires are determined, the average value of the diameters of the individual silver nanowires is calculated, and the value is defined as the average diameter D M.
  • the average aspect ratio AM is calculated by substituting the above average diameter D M and the average length L M into the following equation (1). However, it is assumed that D M and L M to be substituted into the equation (1) are both values expressed in nm.
  • a M L M / D M (1)
  • the present invention in the case of thin silver nanowires having an average diameter of, for example, 35 nm or less, particularly long silver nanowires having an average length of 15 nm or more and an average aspect ratio of 800 or more can be stably synthesized. Since long silver nanowires with an average length as described above can be obtained at the stage of completion of washing after synthesis, if the purification operation to adjust the wire length distribution by cross flow filtration etc. is performed thereafter, the average length will be Longer, high aspect ratio silver nanowires can be manufactured with high yield. When it is used as a conductive material of a transparent conductive film, a transparent conductive film excellent in visibility with less haze can be realized while maintaining high conductivity.
  • the polymer molecule of the organic protective agent In order to deposit metallic silver in the form of a wire by alcohol solvent reduction method, it is necessary for the polymer molecule of the organic protective agent to be selectively adsorbed on the ⁇ 100 ⁇ face of the nucleus crystal that is considered to be multiple twins of silver. It is. Thereby, the growth of the ⁇ 100 ⁇ plane is suppressed, the ⁇ 111 ⁇ plane which is the closest surface of the silver crystal is preferentially grown, and a linear structure of metallic silver is formed.
  • the selective adsorptivity of polymer molecules is believed to be caused by the interaction between the surface potential of the polymer molecules and the surface potential of the silver crystal face.
  • Homopolymers (PVP) and copolymers having vinyl pyrrolidone structural units are known as polymers excellent in selective adsorption to the silver crystal ⁇ 100 ⁇ plane.
  • the structural formula of a vinyl pyrrolidone structural unit is shown in FIG.
  • the inventors have variously studied a method for improving the average length of the synthesized wire particularly when synthesizing a thin silver nanowire using a polymer having a vinyl pyrrolidone structural unit as an organic protective agent.
  • an alkyl ether is extremely effective, in addition to the additives such as the halide generally used conventionally.
  • Alkyl ethers have the function of cleaning the ⁇ 111 ⁇ crystal face on which silver preferentially precipitates when synthesizing silver nanowires by the alcohol solvent reduction method, that is, the organic protective agent molecules on the ⁇ 111 ⁇ crystal face. It is thought that it has an effect of suppressing adsorption and activating the exposed ⁇ 111 ⁇ crystal face to promote the deposition of new silver.
  • the action to activate the ⁇ 111 ⁇ crystal face is mainly borne by the conventional additives such as halides, but it is presumed that the alkyl ether also acts in a similar manner.
  • the presence of the alkyl ether in addition to the halogen in the vicinity of the previously deposited linear structure of metallic silver increases the effect of the cleaning, and the thickness direction surface of the linear structure ( ⁇ 100 ⁇ crystal plane)
  • the relative ease of deposition on the lengthwise exposed surface ( ⁇ 111 ⁇ crystal plane) relative to the ease of deposition of silver on silver is further enhanced, resulting in silver nanowires having a large average aspect ratio. It is considered that the synthesis becomes easy.
  • the alkyl ether concentration increases, the effect of improving the average length of the silver nanowires becomes saturated.
  • the amount ratio of the alkyl ether in the liquid is, for example, 1 mol of the polymer having a vinylpyrrolidone structural unit, which is an organic protective agent, in terms of the quantitative ratio to the organic protective agent present in the alcohol solvent at the time of the reductive deposition reaction. It is preferable to adjust in the range of 003 to 0.30 mol. Also, in terms of the amount ratio to silver, it is possible to adjust the existing amount of alkyl ether in the solution in the range of 0.005 to 0.50 mol at the time of reaction disclosure with respect to 1 mol of the total amount of silver used for the reaction. preferable.
  • alkyl ether examples include ethyl methyl ether (CH 3 CH 2 OCH 3 ), methyl t-butyl ether ((CH 3 ) 3 COCH 3 ), ethyl isoamyl ether ((CH 3 ) 2 CHCH 2 CH 2 OC 2 H 5 ), ethyl-t-butyl ether ((CH 3 ) 3 COC 2 H 5 ), diisoamyl ether ((CH 3 ) 2 CHCH 2 CH 2 OCH 2 CH 2 CH (CH 3 ) 2 ), diisopropyl ether ((CH 3 ) 3 ) 2 CHOCH (CH 3 ) 2 ), diethyl ether (C 2 H 5 OC 2 H 5 ), dibutyl ether (C 4 H 9 OC 4 H 9 ), dipropyl ether (C 3 H 7 OC 3 H 7 ) , dimethyl ether (CH 3 OCH 3), ethylene glycol monomethyl ether (CH 3 OCH 2 CH 2 ),
  • PVP polyvinylpyrrolidone
  • a copolymer of vinylpyrrolidone and a hydrophilic monomer is a suitable target.
  • the latter copolymers include, for example, vinyl pyrrolidone and diallyl dimethyl ammonium salt, ethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 4-hydroxybutyl acrylate, N-methyl maleimide, N-ethyl maleimide, N- Examples include copolymers having a polymerization composition with one or more monomers selected from propyl maleimide and N-tert-butyl maleimide.
  • the polymerization composition of the copolymer is preferably 0.1 to 10% by weight of monomers other than vinyl pyrrolidone, with the balance being vinyl pyrrolidone.
  • the weight average molecular weight Mw of the polymer used for the organic protective agent is preferably in the range of 30,000 to 300,000, and more preferably in the range of 30,000 to 150,000. Mw can be determined by GPC (gel permeation chromatography).
  • the silver nanowire is preferably as thin and long as possible from the viewpoint of forming a transparent conductive coating film excellent in conductivity and visibility.
  • an object having an average length of 15 ⁇ m or more, an average diameter of 35 nm or less, and an average aspect ratio of 800 or more according to the equation (1) is suitable. It is more preferable that the average length is 15 ⁇ m or more and the average diameter is 33 nm or less. It is more preferable that the average length is 15 ⁇ m or more and the average diameter is 30 nm or less.
  • silver nanowires having a long average length and a large average aspect ratio can be obtained in the synthesis stage, so that the length distribution can be efficiently adjusted at a high yield, for example, by cross flow purification in the subsequent steps. Can.
  • silver nitrate, silver acetate, silver oxide, silver chloride and the like can be mentioned, but silver nitrate (AgNO 3 ) is easy to use in consideration of the solubility in a solvent and the cost.
  • silver compound the organic protective agent and the alkyl ether
  • reduction deposition may be allowed to proceed in an alcohol solvent in which an alkali metal hydroxide or aluminum salt is dissolved.
  • an alcohol solvent to which an alkyl ether is added can be applied.
  • Comparative Example 1 (Organic protective agent) A copolymer powder was prepared by dissolving 1-vinyldipyrrolidone and diallyldimethylammonium nitrate in a solvent, methyl isobutyl ketone, as a solvent, and copolymerizing by adding a polymerization initiator.
  • the 1 H NMR spectrum of the copolymer powder was measured by nuclear magnetic resonance spectroscopy (NMR) with JNM-LA400 (400 MHz) manufactured by JEOL Ltd., and the components contained in the powder were examined.
  • NMR nuclear magnetic resonance spectroscopy
  • JNM-LA400 400 MHz
  • VP vinyl pyrrolidone
  • ethyl acetate uses the integral value of the peak around 4.1 ppm
  • methyl-t-butyl ether uses the integral value of the peak around 1.2 ppm
  • methyl isobutyl ketone uses the integral value of the peak around 0.9 ppm
  • the mole% of each component was calculated.
  • the residual VP amount was determined by the following equation (2).
  • VP R (mol%) [2 ⁇ (I 1 + I 2 ) / (3 ⁇ I 3 )] ⁇ 100 (2)
  • I 3 is the integral value of the peak (3.0-3.4ppm) derived from the methylene protons adjacent to the N atom of the polymer.
  • the weight average molecular weight Mw of the above copolymer was determined by GPC (gel permeation chromatography) under the following conditions.
  • ⁇ Device HLC-8320GPC EcoSEC (made by Tosoh Corporation)
  • Column TSKgel GMPWXL ( ⁇ 2) + G2500PWXL
  • Flow rate 1.0 mL / min
  • Temperature 40 ° C
  • Injection volume 200 ⁇ L -Multi-angle light scattering detector: DAWN HELEOS II (manufactured by Wyatt Technology) Refractive index (RI) detector: Optilab T-rEX (manufactured by Wyatt Technology)
  • the weight average molecular weight Mw was 89,078.
  • the above solution A is put in a reaction vessel and heated from normal temperature to 95 ° C. with stirring at a rotational speed of 250 rpm, and then the whole solution B is added to solution A using a tube pump from two addition ports. Added over a minute.
  • 4 g of a propylene glycol solution is added using a tube pump in order to wash out the inside of the tube to which solution B adheres, and then it is kept stirring at 95 ° C. for 3.5 hours. Cooled to 0 C over 2.0 hours and held at 85 0 C for 19 hours.
  • the reaction liquid of the stage cooled to normal temperature containing the synthesized silver nanowire is referred to as “post-synthesis reaction liquid” (the same in each of the following examples).
  • the dispersion In measuring the length of silver nanowires, the dispersion is placed on an observation table for SEM, water is volatilized on the observation table, and then a field emission scanning electron microscope (manufactured by Hitachi High-Technologies Corporation; S-4700) The observation was performed at an acceleration voltage of 3 kV and a magnification of 1,500. For three or more randomly selected fields of view, the average length was measured according to the above definition using software (Dr. Kampas) for all wires whose full length can be confirmed within the field of view.
  • the dispersion was placed on an observation table for TEM, and bright field images were observed at an acceleration voltage of 100 kV and a magnification of 40,000 with a transmission electron microscope (manufactured by JEOL Ltd .; JEM-1011).
  • the observation image is taken, and the original image taken to accurately measure the diameter is enlarged to twice the size, and then using software (Motic Image Plus 2.1 S), the average diameter is determined according to the above definition. It was measured.
  • the average aspect ratio was determined by substituting the values of the average length and the average diameter into the equation (1).
  • the average diameter of the silver nanowires was 26.7 nm, and the average length was 20.5 ⁇ m.
  • the average aspect ratio was 20500 (nm) /26.7 (nm) ⁇ 768.
  • Table 1 The results are summarized in Table 1 together with other examples and comparative examples.
  • Example 1 Comparative Example 1 was carried out except that, in addition to each of the substances mixed in Comparative Example 1, 0.0263 g of methyl-t-butyl ether was used as solution A when synthesizing silver nanowires.
  • the experiment was performed under the same conditions as in.
  • the concentration of methyl-t-butyl ether in the alcohol solvent at the initiation of the precipitation reaction of silver (ie, the initiation of the addition of solution B) is 0.598 mmol / L.
  • the average diameter of silver nanowires obtained under this condition was 28.4 nm, and the average length was 23.3 ⁇ m.
  • the average aspect ratio was 23300 (nm) /28.4 (nm) ⁇ 820.
  • Example 2 Comparative Example 1 was carried out except that, in addition to the respective substances mixed in Comparative Example 1, 0.0798 g of methyl-t-butyl ether was further mixed and dissolved as solution A when synthesizing silver nanowires.
  • the experiment was performed under the same conditions as in.
  • the concentration of methyl-t-butyl ether in the alcohol solvent at the initiation of precipitation reaction of silver (ie, the initiation of addition of solution B) is 1.811 mmol / L.
  • the average diameter of the silver nanowire obtained under this condition was 27.8 nm, and the average length was 24.5 ⁇ m.
  • the average aspect ratio was 24500 (nm) /27.8 (nm) ⁇ 881.
  • Comparative Example 1 was carried out except that, in addition to the respective substances mixed in Comparative Example 1, 0.1344 g of methyl-t-butyl ether was used as solution A in synthesizing silver nanowires. The experiment was performed under the same conditions as in.
  • the methyl-t-butyl ether concentration in the alcohol solvent at the initiation of the precipitation reaction of silver (ie, the initiation of the addition of solution B) is 3.049 mmol / L.
  • the average diameter of silver nanowires obtained under this condition was 27.7 nm, and the average length was 22.7 ⁇ m.
  • the average aspect ratio was 22700 (nm) /27.7 (nm) ⁇ 819.
  • Example 4 Comparative Example 1 was carried out except that, as the solution A, 0.4250 g of methyl-t-butyl ether was further mixed and dissolved in addition to the respective materials mixed in Comparative Example 1 when synthesizing silver nanowires.
  • the experiment was performed under the same conditions as in.
  • the concentration of methyl-t-butyl ether in the alcohol solvent at the initiation of the precipitation reaction of silver (ie, the initiation of the addition of solution B) is 9.643 mmol / L.
  • the average diameter of silver nanowires obtained under this condition was 27.0 nm, and the average length was 24.5 ⁇ m.
  • the average aspect ratio was 24500 (nm) /27.0 (nm) 907 907.
  • Comparative Example 1 was carried out except that, in addition to the respective materials mixed in Comparative Example 1, 0.5825 g of methyl-t-butyl ether was further mixed and dissolved as solution A when synthesizing silver nanowires.
  • the experiment was performed under the same conditions as in.
  • the concentration of methyl-t-butyl ether in the alcohol solvent at the initiation of the precipitation reaction of silver (ie, the initiation of the addition of solution B) is 13.215 mmol / L.
  • the average diameter of the silver nanowire obtained under this condition was 27.0 nm, and the average length was 26.2 ⁇ m.
  • the average aspect ratio was 26200 (nm) /27.0 (nm) 970 970.
  • the presence of the alkyl ether in the alcohol solvent at the time of silver nanowire synthesis can significantly improve the average length of the synthesized wire and, accordingly, the average aspect ratio of the wire also improves. Do.
  • FIG. 2 For reference, a SEM photograph of the silver nanowire obtained in Comparative Example 1 is shown in FIG. 2, and a SEM photograph of the silver nanowire obtained in Example 5 is shown in FIG.
  • the measurement conditions were an LPF measurement mode, a quantitative count mode, and 10 repeated measurements. Further, the maximum length limitation range is 10 to 300 ⁇ m, and the average luminance value limitation range is 0 to 40.
  • Ten measured values were integrated, and the number of aggregates per 55 ⁇ L of the silver nanowire-containing solution was taken as the number of aggregates counted in the silver nanowire-containing solution. Table 2 shows the results.
  • the presence of the alkyl ether in the alcohol solvent at the time of silver nanowire synthesis is effective not only to improve the average aspect ratio of the silver nanowires to be synthesized but also to suppress aggregation of the wires.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

[Problem] To produce wires having a particularly large average length and a large average aspect ratio when synthesizing fine silver nanowires by an alcohol solvent reduction method. [Solution] A silver nanowire production method comprising a step in which silver is reductively precipitated into the form of a wire in an alcohol solvent in which a silver compound and an organic protective agent have been dissolved, said method being characterized in that a polymer having a vinyl pyrrolidone structural unit is used as the organic protective agent and the reductive precipitation is performed in a solution obtained by dissolving methyl-t-butyl ether in the alcohol solvent at a concentration of 0.3-25.0 mmol/L.

Description

銀ナノワイヤの製造法並びに銀ナノワイヤ、銀ナノワイヤインクおよび透明導電膜Method for producing silver nanowire and silver nanowire, silver nanowire ink and transparent conductive film
 本発明は、透明導電膜の導電素材(フィラー)として有用な銀ナノワイヤの製造方法に関する。また、その製造方法によって得られる銀ナノワイヤ、銀ナノワイヤインクおよび透明導電膜に関する。 The present invention relates to a method for producing silver nanowires useful as a conductive material (filler) of a transparent conductive film. The present invention also relates to a silver nanowire, a silver nanowire ink, and a transparent conductive film obtained by the production method.
 本明細書では、太さが200nm程度以下の微細な金属ワイヤを「ナノワイヤ(nanowire(s)」と呼ぶ。 In this specification, a fine metal wire having a thickness of about 200 nm or less is referred to as "nanowire (s)".
 銀ナノワイヤは、透明基材に導電性を付与するための導電素材として有望視されている。銀ナノワイヤを含有する液(銀ナノワイヤインク)をガラス、PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)などの透明基材に塗布したのち、液状成分を蒸発等により除去すると、銀ナノワイヤは当該基材上で互いに接触し合うことにより導電ネットワークを形成するので、透明導電膜を実現することができる。 Silver nanowires are considered promising as a conductive material for imparting conductivity to transparent substrates. After the liquid containing silver nanowires (silver nanowire ink) is applied to a transparent substrate such as glass, PET (polyethylene terephthalate), PC (polycarbonate), etc., the liquid component is removed by evaporation or the like, the silver nanowires are on the substrate Since a conductive network is formed by contacting each other, a transparent conductive film can be realized.
 電子機器のタッチパネル等に使用される透明導電膜には、導電性が良好であることに加え、ヘイズの少ないクリアな視認性が要求される。銀ナノワイヤを導電素材とする透明導電膜において導電性と視認性を高いレベルで両立させるためには、できるだけ細く、かつ長い銀ナノワイヤを適用することが有利となる。 A transparent conductive film used for a touch panel or the like of an electronic device is required to have clear visibility with little haze, in addition to good conductivity. In order to achieve both conductivity and visibility at a high level in a transparent conductive film using silver nanowires as a conductive material, it is advantageous to apply silver nanowires that are as thin and long as possible.
 従来、銀ナノワイヤの合成法として、例えば、エチレングリコール等のポリオール溶媒に銀化合物を溶解させ、ハロゲン化合物と有機保護剤の存在下において、溶媒であるポリオールの還元力を利用して線状形状の金属銀を析出させる手法(以下、「アルコール溶媒還元法」と言う。)が知られている。その有機保護剤として、従来一般的にPVP(ポリビニルピロリドン)が多用されてきた。PVPは細く長い銀ナノワイヤを析出させる上で好適な有機保護剤である。 Conventionally, as a synthesis method of silver nanowires, for example, a silver compound is dissolved in a polyol solvent such as ethylene glycol, and in the presence of a halogen compound and an organic protective agent, a linear shape is obtained using the reducing power of the solvent polyol. A method of precipitating metallic silver (hereinafter referred to as "alcohol solvent reduction method") is known. As the organic protective agent, PVP (polyvinyl pyrrolidone) has generally been widely used. PVP is a suitable organic protective agent for depositing thin and long silver nanowires.
 アルコール溶媒還元法で使用される有機保護剤の分子は、合成後の銀ナノワイヤ表面に吸着し、液状媒体中における銀ナノワイヤの分散性を支配する要因となる。PVPが吸着した銀ナノワイヤは、水に対して良好な分散性を呈する。しかし、PET等の基材に対する濡れ性を改善するためには、水と有機溶媒(例えばアルコール)との混合媒体を用いた銀ナノワイヤインクを適用することが有利となる。また、塗工設備によっては、非水系溶媒を用いた銀ナノワイヤインクを適用することが望ましい場合もある。PVPは、そのような混合媒体や非水系溶媒中での銀ナノワイヤの分散性を考慮した場合、必ずしも満足できる有機保護剤とは言えない。最近では、水以外の液状媒体中での銀ナノワイヤの分散性を改善することができる有機保護剤も種々開発されている。例えば、特許文献1にはビニルピロリドンとジアリルジメチルアンモニウム(Diallyldimethylammonium)塩モノマーとの重合組成を有するコポリマー、特許文献2にはビニルピロリドンとアクリレート系またはメタクリレート系モノマーとのコポリマー、特許文献3にはビニルピロリドンとマレイミド系モノマーとのコポリマーがそれぞれ開示されている。これらのポリマーを有機保護剤に用いたアルコール溶媒還元法では、合成条件を適正化することによって、PVPを用いた場合と同程度あるいはそれ以上に、細くて長い銀ナノワイヤを合成することが可能である。 The molecules of the organic protective agent used in the alcohol solvent reduction method adsorb on the surface of the silver nanowire after synthesis, and become a factor governing the dispersibility of the silver nanowire in the liquid medium. Silver nanowires adsorbed with PVP exhibit good dispersibility in water. However, in order to improve the wettability to a substrate such as PET, it is advantageous to apply a silver nanowire ink using a mixed medium of water and an organic solvent (for example, alcohol). In addition, depending on the coating equipment, it may be desirable to apply a silver nanowire ink using a non-aqueous solvent. When considering the dispersibility of silver nanowires in such mixed media and non-aqueous solvents, PVP is not necessarily a satisfactory organic protective agent. Recently, various organic protective agents have been developed which can improve the dispersibility of silver nanowires in liquid media other than water. For example, Patent Document 1 is a copolymer having a polymerization composition of vinyl pyrrolidone and Diallyldimethylammonium salt monomer, Patent Document 2 is a copolymer of vinyl pyrrolidone and an acrylate based or methacrylate based monomer, and Patent Document 3 is Vinyl. Copolymers of pyrrolidone and maleimide based monomers are disclosed, respectively. In the alcohol solvent reduction method using these polymers as organic protective agents, it is possible to synthesize thin and long silver nanowires by optimizing the synthesis conditions, as well as or more than using PVP. is there.
特開2015-180772号公報JP, 2015-180772, A 特開2017-78207号公報JP, 2017-78207, A 特開2016-135919号公報JP, 2016-135919, A
 上述のように、透明導電塗膜の導電素材として使用する銀ナノワイヤは、導電性と視認性を高レベルで両立させる観点から、細くて長い形態であることが有利となる。ただし、細くて長いワイヤを合成することができても、銀ナノワイヤ分散液中でワイヤ同士が容易に凝集体を形成するようでは、銀の歩留り低下や、その後の工程での取扱い性の低下を招くだけでなく、最終的な銀ナノワイヤインク中に残留した凝集体が、透明導電体のヘイズ低下やパターンニングされた回路内でのショート現象を引き起こす要因となってしまう。 As described above, it is advantageous that the silver nanowires used as the conductive material of the transparent conductive coating film have a thin and long form from the viewpoint of achieving both conductivity and visibility at a high level. However, even if thin and long wires can be synthesized, if the wires easily form aggregates in the silver nanowire dispersion liquid, the yield of silver decreases and the handleability in subsequent steps decreases. Not only that, but the aggregates remaining in the final silver nanowire ink cause the reduction in the haze of the transparent conductor and the short circuit in the patterned circuit.
 本発明は、アルコール溶媒還元法で細い銀ナノワイヤを合成する際に、特に長いワイヤを安定して生成させる効果が高く、かつ合成されたワイヤ同士の凝集を抑制する効果が高い技術を提供しようというものである。 The present invention is intended to provide a technology that is particularly effective in stably producing long wires when synthesizing thin silver nanowires by alcohol solvent reduction, and highly effective in suppressing aggregation of the synthesized wires. It is a thing.
 上記目的は、アルコール溶媒還元法において、所定濃度のアルキルエーテルが溶媒中に存在する環境下で銀の析出反応を進行させることによって達成される。本明細書では以下の発明を開示する。 The above object is achieved in the alcohol solvent reduction method by advancing a precipitation reaction of silver in an environment in which a predetermined concentration of alkyl ether is present in the solvent. The following invention is disclosed in the present specification.
 [1]銀化合物、有機保護剤が溶解しているアルコール溶媒中で、銀をワイヤ状に還元析出させる工程を有する銀ナノワイヤの製造法において、
 前記有機保護剤としてビニルピロリドン構造単位を持つポリマーを使用すること、
 前記アルコール溶媒中にアルキルエーテルが0.3~25.0mol/Lの濃度で溶解している状態とし、その液中で前記還元析出を進行させること、
を特徴とする銀ナノワイヤの製造法。
 [2]平均長さ15μm以上、平均直径35nm以下、かつ下記(1)式で定義される平均アスペクト比Aが800以上である銀ナノワイヤを還元析出させる上記[1]に記載の銀ナノワイヤの製造法。
 A=L/D …(1)
 ここで、Lは上記平均長さをnmの単位で表した値、Dは上記平均直径をnmの単位で表した値である。
 [3]前記アルキルエーテルが、メチル-t-ブチルエーテルである上記[1]または[2]に記載の銀ナノワイヤの製造法。
 [4]前記ポリマーが、PVP(ポリビニルピロリドン)またはビニルピロリドンと親水性モノマーとのコポリマーである上記[1]~[3]のいずれかに記載の銀ナノワイヤの製造法。
 [5]前記ポリマーが、ビニルピロリドンと、ジアリルジメチルアンモニウム塩、エチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、4-ヒドロキシブチルアクリレート、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-tert-ブチルマレイミド、2-ジメチルアミノエチルメタクリレート、および2-ジエチルアミノエチルメタクリレートから選ばれる1種または2種以上のモノマーとの重合組成を有するものである上記[1]~[3]のいずれかに記載の銀ナノワイヤの製造法。
 [6]前記ポリマーは、重量平均分子量Mwが30,000~300,000である上記[1]~[5]のいずれかに記載の銀ナノワイヤの製造法。
 [7]上記[1]~[6]のいずれかに記載の製造法によって得られた銀ナノワイヤ。
 [8]上記[1]~[6]のいずれかに記載の製造法によって得られた銀ナノワイヤが液状媒体中に分散している銀ナノワイヤインク。
 [9]上記[1]~[6]のいずれかに記載の製造法によって得られた銀ナノワイヤを導電素材として含有する透明導電膜。
[1] In a method of producing a silver nanowire, the process of reducing and depositing silver in the form of a wire in an alcohol solvent in which a silver compound and an organic protective agent are dissolved,
Using a polymer having a vinyl pyrrolidone structural unit as the organic protective agent,
A state in which an alkyl ether is dissolved in the alcohol solvent at a concentration of 0.3 to 25.0 mol / L, and the reduction deposition proceeds in the liquid;
A method of producing silver nanowires characterized by
[2] The average length 15μm or more, the average diameter of 35nm or less, and the following (1) to an average aspect ratio A M is the above-mentioned [1] of silver nanowires according to the silver nanowires to reduction precipitation of 800 or more as defined by the equation Manufacturing method.
A M = L M / D M (1)
Here, L M is a value representing the average length in nm, and D M is a value representing the average diameter in nm.
[3] The method for producing silver nanowires according to the above [1] or [2], wherein the alkyl ether is methyl-t-butyl ether.
[4] The method for producing silver nanowires according to any one of the above [1] to [3], wherein the polymer is PVP (polyvinylpyrrolidone) or a copolymer of vinylpyrrolidone and a hydrophilic monomer.
[5] The polymer is vinyl pyrrolidone, diallyl dimethyl ammonium salt, ethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 4-hydroxybutyl acrylate, N-methyl maleimide, N-ethyl maleimide, N-propyl [1] to [3] having a polymerization composition with one or more monomers selected from maleimide, N-tert-butyl maleimide, 2-dimethylaminoethyl methacrylate, and 2-diethylaminoethyl methacrylate The manufacturing method of the silver nanowire in any one of.
[6] The method for producing a silver nanowire according to any one of the above [1] to [5], wherein the polymer has a weight average molecular weight Mw of 30,000 to 300,000.
[7] A silver nanowire obtained by the method according to any one of the above [1] to [6].
[8] A silver nanowires ink, wherein the silver nanowires obtained by the method according to any one of the above [1] to [6] are dispersed in a liquid medium.
[9] A transparent conductive film containing, as a conductive material, the silver nanowire obtained by the method according to any one of the above [1] to [6].
 アルキルエーテルは、エーテル結合を1箇所に持つ構造式R-O-R’型の化合物である。ここで、R、R’は一般式C2n+1(nは1以上の整数)で表されるアルキル基を意味する。このアルキル基はアルカンから1個の水素を取り除いた形の官能基であり、直鎖である場合や、他の3個の炭素と結合している炭素(3級炭素)を有している場合がある。アルキルエーテルの例として上に挙げたメチル-t-ブチルエーテルはTBME(tert-ブチルメチルエーテル)と呼ばれることもあり、示性式(CH)COCHで表される。 The alkyl ether is a compound of the structural formula R—O—R ′ type having an ether bond at one position. Here, R and R ′ mean an alkyl group represented by the general formula C n H 2n + 1 (n is an integer of 1 or more). This alkyl group is a functional group in the form of removing one hydrogen from an alkane, and is linear or has carbon (tertiary carbon) bonded to the other three carbons. There is. The methyl-t-butyl ether mentioned above as an example of the alkyl ether is sometimes called TBME (tert-butyl methyl ether), and is represented by the symbolic formula (CH 3 ) 3 COCH 3 .
 本明細書において、銀ナノワイヤの平均長さ、平均直径、平均アスペクト比は以下の定義に従う。 In the present specification, the average length, average diameter and average aspect ratio of silver nanowires follow the definitions below.
〔平均長さL
 電界放出形走査電子顕微鏡(FE-SEM)による観察画像上で、ある1本の銀ナノワイヤの一端から他端までのトレース長さを、そのワイヤの長さと定義する。顕微鏡画像上に存在する個々の銀ナノワイヤの長さを平均した値を、平均長さLと定義する。平均長さを算出するためには、測定対象のワイヤの総数を100以上とする。ここでは、還元反応を終えた液から回収される銀ナノワイヤを洗浄した段階(クロスフローろ過などの精製工程に供給する前の段階)での平均長さを評価する。
[Average length L M ]
The trace length from one end of one silver nanowire to the other end of a silver nanowire is defined as the length of the wire on an image observed by a field emission scanning electron microscope (FE-SEM). A value obtained by averaging the lengths of the individual silver nanowires present on the microscopic image is defined as an average length L M. In order to calculate the average length, the total number of wires to be measured is set to 100 or more. Here, the average length in the stage in which the silver nanowires recovered from the solution after the reduction reaction were washed (stage before being supplied to the purification step such as cross flow filtration) is evaluated.
〔平均直径D
 透過型電子顕微鏡(TEM)による明視野観察画像上で、ある1本の銀ナノワイヤにおける太さ方向両側の輪郭間距離を、そのワイヤの直径と定義する。図4に本発明に従う銀ナノワイヤについてのTEMによる明視野観察画像(以下「TEM画像」という。)を例示する。各ワイヤは全長にわたってほぼ均等な太さを有しているとみなすことができる。従って、太さの計測は他のワイヤと重なっていない部分を選択して行うことができる。1つの視野を写したTEM画像において、その画像内に観察される銀ナノワイヤのうち、他のワイヤと完全に重なって直径の計測が困難であるワイヤを除く全てのワイヤの直径を測定する、という操作を無作為に選んだ複数の視野について行い、合計100本以上の異なる銀ナノワイヤの直径を求め、個々の銀ナノワイヤの直径の平均値を算出し、その値を平均直径Dと定義する。
[Average diameter D M ]
On a bright field observation image by a transmission electron microscope (TEM), the distance between contours on both sides in the thickness direction of one silver nanowire is defined as the diameter of the wire. FIG. 4 exemplifies a TEM bright-field observation image (hereinafter referred to as “TEM image”) of silver nanowires according to the present invention. Each wire can be considered to have a substantially even thickness over its entire length. Therefore, thickness measurement can be performed by selecting a portion that does not overlap other wires. In the TEM image of one field of view, among the silver nanowires observed in the image, the diameters of all the wires except for the wires completely overlapping with other wires and whose diameter is difficult to measure are measured. The operation is performed on a plurality of randomly selected fields of view, the diameters of a total of 100 or more different silver nanowires are determined, the average value of the diameters of the individual silver nanowires is calculated, and the value is defined as the average diameter D M.
〔平均アスペクト比〕
 上記の平均直径Dおよび平均長さLを下記(1)式に代入することにより平均アスペクト比Aを算出する。ただし、(1)式に代入するD、Lはいずれもnmの単位で表された値とする。
 A=L/D …(1)
[Average aspect ratio]
The average aspect ratio AM is calculated by substituting the above average diameter D M and the average length L M into the following equation (1). However, it is assumed that D M and L M to be substituted into the equation (1) are both values expressed in nm.
A M = L M / D M (1)
 本発明に従えば、平均直径が例えば35nm以下といった細い銀ナノワイヤにおいて、特に平均長さが15nm以上、平均アスペクト比が800以上という長い銀ナノワイヤを安定して合成することができる。合成後に行う洗浄を終えた段階で上記のような平均長さの長い銀ナノワイヤが得られるので、その後にクロスフローろ過などによってワイヤの長さ分布を調整する精製操作を行うと、平均長さが一層長く、アスペクト比の高い銀ナノワイヤを歩留り良く製造することができる。それを透明導電膜の導電素材として使用すると、高い導電性を維持しながら、ヘイズの少ない視認性に優れる透明導電膜が実現できる。 According to the present invention, in the case of thin silver nanowires having an average diameter of, for example, 35 nm or less, particularly long silver nanowires having an average length of 15 nm or more and an average aspect ratio of 800 or more can be stably synthesized. Since long silver nanowires with an average length as described above can be obtained at the stage of completion of washing after synthesis, if the purification operation to adjust the wire length distribution by cross flow filtration etc. is performed thereafter, the average length will be Longer, high aspect ratio silver nanowires can be manufactured with high yield. When it is used as a conductive material of a transparent conductive film, a transparent conductive film excellent in visibility with less haze can be realized while maintaining high conductivity.
ビニルピロリドン構造単位の構造式。Structural formula of vinyl pyrrolidone structural unit. 比較例1で得られた銀ナノワイヤのSEM写真。SEM photograph of the silver nanowire obtained in Comparative Example 1. 実施例5で得られた銀ナノワイヤのSEM写真。SEM photograph of the silver nanowire obtained in Example 5.
 上述のように、銀ナノワイヤの合成法として、銀化合物、有機保護剤が溶解しているアルコール溶媒中で、溶媒であるアルコールの還元力を利用して銀をワイヤ状に析出させる手法が既に実用化されている。この手法を本明細書では「アルコール溶媒還元法」と呼んでいる。 As described above, as a method of synthesizing silver nanowires, a method of precipitating silver in the form of a wire using the reducing power of alcohol as a solvent in an alcohol solvent in which a silver compound and an organic protective agent are dissolved has already been put to practical use It has been This method is called "alcohol solvent reduction method" in the present specification.
 アルコール溶媒還元法で金属銀をワイヤ状に析出させるには、銀の多重双晶であると考えられる核結晶の{100}面に、有機保護剤のポリマー分子が選択的に吸着することが必要である。それにより{100}面の成長が抑制され、銀結晶の最密面である{111}面が優先的に成長し、金属銀の線状構造体が形成される。ポリマー分子の選択吸着性は、ポリマー分子の表面電位と銀の結晶面の表面電位の相互作用によって生じると考えられている。銀結晶{100}面への選択吸着性に優れるポリマーとして、ビニルピロリドン構造単位を有するホモポリマー(PVP)やコポリマーが知られている。図1にビニルピロリドン構造単位の構造式を示す。このようなポリマーを主体とする有機保護剤がアルコール溶媒中に溶解している状況下で銀の還元析出を進行させると、{111}結晶面への銀の析出が優先的に起こり、ロッド状あるいは線状の金属銀構造体が得られる。ただし、銀ナノワイヤを安定して合成するためには、{111}結晶面を活性化させる作用のあるハロゲン化物等を溶媒中に共存させておくことが一般的である。 In order to deposit metallic silver in the form of a wire by alcohol solvent reduction method, it is necessary for the polymer molecule of the organic protective agent to be selectively adsorbed on the {100} face of the nucleus crystal that is considered to be multiple twins of silver. It is. Thereby, the growth of the {100} plane is suppressed, the {111} plane which is the closest surface of the silver crystal is preferentially grown, and a linear structure of metallic silver is formed. The selective adsorptivity of polymer molecules is believed to be caused by the interaction between the surface potential of the polymer molecules and the surface potential of the silver crystal face. Homopolymers (PVP) and copolymers having vinyl pyrrolidone structural units are known as polymers excellent in selective adsorption to the silver crystal {100} plane. The structural formula of a vinyl pyrrolidone structural unit is shown in FIG. When the reduction deposition of silver proceeds under the condition that the organic protective agent mainly composed of such a polymer is dissolved in the alcohol solvent, the deposition of silver on the {111} crystal plane preferentially occurs, resulting in a rod shape. Alternatively, a linear metallic silver structure is obtained. However, in order to stably synthesize silver nanowires, it is general to coexist a halide or the like having the function of activating the {111} crystal plane in a solvent.
 発明者は、ビニルピロリドン構造単位を有するポリマーを有機保護剤に用いて細い銀ナノワイヤを合成するに際し、特に合成されるワイヤの平均長さを向上させる手法について種々検討してきた。その結果、従来一般的に使用されているハロゲン化物等の添加剤の他に、アルキルエーテルを添加することが極めて有効であることを知見した。アルキルエーテルは、アルコール溶媒還元法で銀ナノワイヤを合成する際に、銀が優先的に析出していく{111}結晶面を清浄化する作用、すなわち{111}結晶面への有機保護剤分子の吸着を抑止するとともに露出している{111}結晶面を活性化させて新たな銀の析出を促進させる作用を有すると考えられる。{111}結晶面を活性化させる作用は、従来一般的な添加剤であるハロゲン化物等が主として担うが、アルキルエーテルもこれと類似の働きをするものと推察される。既に析出した金属銀の線状構造体の近傍に、ハロゲンに加えてアルキルエーテルが存在すると、上記清浄化の作用が増大し、線状構造体の太さ方向の表面({100}結晶面)への銀の析出のし易さに対する、長さ方向の露出表面({111}結晶面)への相対的な析出のし易さがより一層高まり、結果的に平均アスペクト比の大きい銀ナノワイヤの合成が容易になるものと考えられる。 The inventors have variously studied a method for improving the average length of the synthesized wire particularly when synthesizing a thin silver nanowire using a polymer having a vinyl pyrrolidone structural unit as an organic protective agent. As a result, it has been found that the addition of an alkyl ether is extremely effective, in addition to the additives such as the halide generally used conventionally. Alkyl ethers have the function of cleaning the {111} crystal face on which silver preferentially precipitates when synthesizing silver nanowires by the alcohol solvent reduction method, that is, the organic protective agent molecules on the {111} crystal face. It is thought that it has an effect of suppressing adsorption and activating the exposed {111} crystal face to promote the deposition of new silver. The action to activate the {111} crystal face is mainly borne by the conventional additives such as halides, but it is presumed that the alkyl ether also acts in a similar manner. The presence of the alkyl ether in addition to the halogen in the vicinity of the previously deposited linear structure of metallic silver increases the effect of the cleaning, and the thickness direction surface of the linear structure ({100} crystal plane) The relative ease of deposition on the lengthwise exposed surface ({111} crystal plane) relative to the ease of deposition of silver on silver is further enhanced, resulting in silver nanowires having a large average aspect ratio. It is considered that the synthesis becomes easy.
 {111}結晶面の活性化作用を強化する目的でハロゲン化物の添加量を増大させることには問題がある。合成された銀ナノワイヤの表面を被覆する有機保護剤には、合成時に添加された塩素等のハロゲン原子が付着しており、そのハロゲン原子は、銀ナノワイヤに随伴して透明導電膜の中に入り込む。発明者の調査によれば、透明導電膜中の塩素濃度が高いと、透明導電膜の経時劣化が促進され、早期に導電性が低下するという問題が生じやすいことが確認されている。この点、アルキルエーテルの添加によって{111}結晶面の清浄化作用を強化する手法では、上記のような透明導電膜の経時劣化の問題は回避される。 There is a problem in increasing the amount of halide added for the purpose of enhancing the activation action of the {111} crystal face. The organic protective agent which coats the surface of the synthesized silver nanowire is attached with a halogen atom such as chlorine added at the time of synthesis, and the halogen atom is entrained into the transparent conductive film in association with the silver nanowire. . According to the inventor's investigation, it is confirmed that when the concentration of chlorine in the transparent conductive film is high, the deterioration with time of the transparent conductive film is promoted, and a problem that the conductivity is deteriorated early tends to occur. In this respect, in the method of strengthening the cleaning action of the {111} crystal face by the addition of the alkyl ether, the problem of the above-mentioned deterioration of the transparent conductive film with time is avoided.
 種々検討の結果、アルコール溶媒中にアルキルエーテルが0.3mmol/L(=0.3×10-3mol/L)以上の濃度で溶解している状態で還元析出を進行させることにより、合成される銀ナノワイヤの平均長さを向上させる効果が顕著に発揮される。アルキルエーテル濃度を1.0mmol/L(=1.0×10-3mol/L)以上とすることがより好ましい。ただし、アルキルエーテル濃度が高くなると銀ナノワイヤの平均長さを向上させる効果は飽和してくる。溶媒中のアルキルエーテル濃度は25.0mmol/L(=25.0×10-3mol/L)以下の範囲で設定すればよく、20.0mmol/L(=20.0×10-3mol/L)以下に管理してもよい。 As a result of various investigations, it is synthesized by proceeding reduction deposition in the state in which alkyl ether is dissolved in alcohol solvent at a concentration of 0.3 mmol / L (= 0.3 × 10 −3 mol / L) or more. The effect of improving the average length of the silver nanowires is remarkable. More preferably, the alkyl ether concentration is 1.0 mmol / L (= 1.0 × 10 −3 mol / L) or more. However, as the alkyl ether concentration increases, the effect of improving the average length of the silver nanowires becomes saturated. The alkyl ether concentration in the solvent may be set in the range of 25.0 mmol / L (= 25.0 × 10 −3 mol / L) or less, and 20.0 mmol / L (= 20.0 × 10 −3 mol / L). L) You may manage as follows.
 還元析出反応時のアルコール溶媒中に存在する有機保護剤との量比で見ると、例えば有機保護剤であるビニルピロリドン構造単位を持つポリマー1モルに対し、アルキルエーテルの液中存在量を0.003~0.30モルの範囲で調整することが好ましい。また、銀との量比で見ると、反応に使用する銀の総量1モルに対し、アルキルエーテルの液中存在量を反応開示時点において0.005~0.50モルの範囲で調整することが好ましい。 The amount ratio of the alkyl ether in the liquid is, for example, 1 mol of the polymer having a vinylpyrrolidone structural unit, which is an organic protective agent, in terms of the quantitative ratio to the organic protective agent present in the alcohol solvent at the time of the reductive deposition reaction. It is preferable to adjust in the range of 003 to 0.30 mol. Also, in terms of the amount ratio to silver, it is possible to adjust the existing amount of alkyl ether in the solution in the range of 0.005 to 0.50 mol at the time of reaction disclosure with respect to 1 mol of the total amount of silver used for the reaction. preferable.
 アルキルエーテルとしては、例えば、エチルメチルエーテル(CHCHOCH)、メチル-t-ブチルエーテル((CH)COCH)、エチルイソアミルエーテル((CH)CHCHCHOC)、エチル-t-ブチルエーテル((CH)COC)、ジイソアミルエーテル((CH)CHCHCHOCHCHCH(CH))、ジイソプロピルエーテル((CH)CHOCH(CH))、ジエチルエーテル(COC)、ジブチルエーテル(COC)、ジプロピルエーテル(COC)、ジメチルエーテル(CHOCH)、エチレングリコールモノメチルエーテル(CHOCHCHOH)等が挙げられる。アルキルエーテルは、1種または2種以上を選択して使用すればよい。 Examples of the alkyl ether include ethyl methyl ether (CH 3 CH 2 OCH 3 ), methyl t-butyl ether ((CH 3 ) 3 COCH 3 ), ethyl isoamyl ether ((CH 3 ) 2 CHCH 2 CH 2 OC 2 H 5 ), ethyl-t-butyl ether ((CH 3 ) 3 COC 2 H 5 ), diisoamyl ether ((CH 3 ) 2 CHCH 2 CH 2 OCH 2 CH 2 CH (CH 3 ) 2 ), diisopropyl ether ((CH 3 ) 3 ) 2 CHOCH (CH 3 ) 2 ), diethyl ether (C 2 H 5 OC 2 H 5 ), dibutyl ether (C 4 H 9 OC 4 H 9 ), dipropyl ether (C 3 H 7 OC 3 H 7 ) , dimethyl ether (CH 3 OCH 3), ethylene glycol monomethyl ether (CH 3 OCH 2 CH 2 OH Etc. The. The alkyl ether may be used alone or in combination of two or more.
 有機保護剤として使用するビニルピロリドン構造単位を持つポリマーとして、PVP(ポリビニルピロリドン)またはビニルピロリドンと親水性モノマーとのコポリマーが好適な対象となる。後者のコポリマーとしては、例えば、ビニルピロリドンと、ジアリルジメチルアンモニウム塩、エチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、4-ヒドロキシブチルアクリレート、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミドおよびN-tert-ブチルマレイミドから選ばれる1種または2種以上のモノマーとの重合組成を有するコポリマーが挙げられる。コポリマーの重合組成は、ビニルピロリドン以外のモノマー0.1~10質量%、残部ビニルピロリドンであることが好ましい。 As a polymer having a vinylpyrrolidone structural unit used as an organic protective agent, PVP (polyvinylpyrrolidone) or a copolymer of vinylpyrrolidone and a hydrophilic monomer is a suitable target. The latter copolymers include, for example, vinyl pyrrolidone and diallyl dimethyl ammonium salt, ethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 4-hydroxybutyl acrylate, N-methyl maleimide, N-ethyl maleimide, N- Examples include copolymers having a polymerization composition with one or more monomers selected from propyl maleimide and N-tert-butyl maleimide. The polymerization composition of the copolymer is preferably 0.1 to 10% by weight of monomers other than vinyl pyrrolidone, with the balance being vinyl pyrrolidone.
 有機保護剤に使用するポリマーの重量平均分子量Mwは30,000~300,000の範囲にあることが好ましく、30,000~150,000の範囲であることがより好ましい。MwはGPC(ゲル浸透クロマトグラフィー)により求めることができる。 The weight average molecular weight Mw of the polymer used for the organic protective agent is preferably in the range of 30,000 to 300,000, and more preferably in the range of 30,000 to 150,000. Mw can be determined by GPC (gel permeation chromatography).
〔銀ナノワイヤの寸法形状〕
 銀ナノワイヤは、導電性と視認性に優れた透明導電塗膜を形成する観点から、できるだけ細くて長い形状であるものが好ましい。本発明では、平均長さが15μm以上、平均直径が35nm以下、かつ前記(1)式による平均アスペクト比が800以上であるものが好適な対象となる。平均長さが15μm以上、平均直径が33nm以下であるものがより好適な対象となる。平均長さが15μm以上、平均直径が30nm以下であるものがさらに好適な対象となる。本発明では、合成段階で平均長さが長く、平均アスペクト比が大きい銀ナノワイヤを得ることができるので、その後の工程で、例えばクロスフロー精製によって長さ分布を高い歩留りで効率的に調整することができる。
[Dimensional shape of silver nanowires]
The silver nanowire is preferably as thin and long as possible from the viewpoint of forming a transparent conductive coating film excellent in conductivity and visibility. In the present invention, an object having an average length of 15 μm or more, an average diameter of 35 nm or less, and an average aspect ratio of 800 or more according to the equation (1) is suitable. It is more preferable that the average length is 15 μm or more and the average diameter is 33 nm or less. It is more preferable that the average length is 15 μm or more and the average diameter is 30 nm or less. In the present invention, silver nanowires having a long average length and a large average aspect ratio can be obtained in the synthesis stage, so that the length distribution can be efficiently adjusted at a high yield, for example, by cross flow purification in the subsequent steps. Can.
〔銀ナノワイヤの合成〕
 アルコール溶媒中にアルキルエーテルを存在させることを除き、従来から開発されているアルコール溶媒還元法の技術を利用することができる。溶媒であるアルコールの種類としては、銀に対して適度な還元力を有し、金属銀をワイヤ状に析出させることができるものが選択される。例えば、エチレングリコール、プロピレングリコール(1,2-プロパンジオール)、1,3-プロパンジオール、1,3ブタンジオール、1,4-ブタンジオール、グリセリンの1種以上からなるアルコール溶媒を使用することができる。これらのアルコールは単独で用いてもよいし、2種以上混合して用いてもよい。銀源として、アルコール溶媒に可溶な銀化合物を使用する。例えば、硝酸銀、酢酸銀、酸化銀、塩化銀などが挙げられるが、溶媒に対する溶解性やコストを考慮すると硝酸銀(AgNO)が使いやすい。銀化合物、有機保護剤、アルキルエーテルの他に、塩化物、臭化物が溶解しているアルコール溶媒中で還元析出を進行させることが好ましい。更にアルカリ金属水酸化物、アルミニウム塩が溶解しているアルコール溶媒中で還元析出を進行させてもよい。例えば、上記特許文献1に開示される手法において、アルキルエーテルを添加したアルコール溶媒を適用することができる。
[Synthesis of silver nanowires]
With the exception of the presence of the alkyl ether in the alcohol solvent, conventionally developed techniques for alcohol solvent reduction can be used. As a kind of alcohol which is a solvent, what has moderate reducing power with respect to silver, and can precipitate metallic silver in a wire form is selected. For example, using an alcohol solvent comprising one or more of ethylene glycol, propylene glycol (1,2-propanediol), 1,3-propanediol, 1,3 butanediol, 1,4-butanediol, and glycerin it can. These alcohols may be used alone or in combination of two or more. As a silver source, a silver compound soluble in alcohol solvent is used. For example, silver nitrate, silver acetate, silver oxide, silver chloride and the like can be mentioned, but silver nitrate (AgNO 3 ) is easy to use in consideration of the solubility in a solvent and the cost. In addition to the silver compound, the organic protective agent and the alkyl ether, it is preferable to proceed the reduction deposition in an alcohol solvent in which a chloride or a bromide is dissolved. Furthermore, reduction deposition may be allowed to proceed in an alcohol solvent in which an alkali metal hydroxide or aluminum salt is dissolved. For example, in the method disclosed in Patent Document 1, an alcohol solvent to which an alkyl ether is added can be applied.
〔比較例1〕
(有機保護剤)
 溶媒であるメチルイソブチルケトンに、1-ビニル2ピロリドンと、ジアリルジメチルアンモニウムナイトレート(diallyldimethylammonium nitrate)を溶解させ、重合開始剤を添加して共重合させる手法で合成されたコポリマー粉体を用意した。重合組成は、モル比で1-ビニル2ピロリドン:ジアリルジメチルアンモニウムナイトレート=99:1である。
Comparative Example 1
(Organic protective agent)
A copolymer powder was prepared by dissolving 1-vinyldipyrrolidone and diallyldimethylammonium nitrate in a solvent, methyl isobutyl ketone, as a solvent, and copolymerizing by adding a polymerization initiator. The polymerization composition is 1-vinyldipyrrolidone: diallyldimethylammonium nitrate = 99: 1 in molar ratio.
 コポリマー粉体について、日本電子社製、JNM-LA400(400MHz)により核磁気共鳴分光法(NMR)で1H NMRスペクトルを測定し、当該粉体に含まれる成分を調べた。その結果、モル比で、ポリマー95.53%、残留VP(ビニルピロリドン):0.62%、酢酸エチル:2.79%、メチル-t-ブチルエーテル:0.00%、メチルイソブチルケトン:1.06%であった。ここで、酢酸エチルは4.1ppm付近のピークの積分値を、メチル-t-ブチルエーテルは1.2ppm付近のピークの積分値を、メチルイソブチルケトンは0.9ppm付近のピークの積分値を用いて各成分のモル%を算出した。残留VP量は下記(2)式により定めた。
 VP(mol%)=[2×(I+I)/(3×I)]×100 …(2)
 ここで、IはVPモノマーのC=C二重結合に関わるメチンプロトンに由来するピーク(7.0-7.2ppm)の積分値、Iは同モノマーのC=C二重結合に関わるメチレンプロトンに由来するピーク(4.3-4.4ppm)の積分値、IはポリマーのN原子に隣接するメチレンプロトンに由来するピーク(3.0-3.4ppm)の積分値である。
The 1 H NMR spectrum of the copolymer powder was measured by nuclear magnetic resonance spectroscopy (NMR) with JNM-LA400 (400 MHz) manufactured by JEOL Ltd., and the components contained in the powder were examined. As a result, in molar ratio, 95.53% of polymer, 0.62% of residual VP (vinyl pyrrolidone), 2.79% of ethyl acetate, 2.79% of methyl acetate, 0.00% of methyl t-butyl ether, and methyl isobutyl ketone: 1. It was 06%. Here, ethyl acetate uses the integral value of the peak around 4.1 ppm, methyl-t-butyl ether uses the integral value of the peak around 1.2 ppm, and methyl isobutyl ketone uses the integral value of the peak around 0.9 ppm The mole% of each component was calculated. The residual VP amount was determined by the following equation (2).
VP R (mol%) = [2 × (I 1 + I 2 ) / (3 × I 3 )] × 100 (2)
Here, I 1 is the integrated value of the peak (7.0-7.2 ppm) derived from the methine proton related to the C = C double bond of the VP monomer, and I 2 is related to the C = C double bond of the same monomer integral value of peaks derived from the methylene protons (4.3-4.4ppm), I 3 is the integral value of the peak (3.0-3.4ppm) derived from the methylene protons adjacent to the N atom of the polymer.
 また、上記コポリマーの重量平均分子量MwをGPC(ゲル浸透クロマトグラフィー)により下記の条件で求めた。
・装置:HLC-8320GPC EcoSEC(東ソー社製)
・カラム:TSKgel GMPWXL(×2)+G2500PWXL
・溶離液:100mM硝酸ナトリウム水溶液/アセトニトリル=80/20
・流速:1.0mL/min
・温度:40℃
・注入量:200μL
・多角度光散乱検出器:DAWN HELEOS II(Wyatt Technology社製)
・屈折率(RI)検出器:Optilab T-rEX(Wyatt Technology社製)
 その結果、重量平均分子量Mwは89,078であった。
Further, the weight average molecular weight Mw of the above copolymer was determined by GPC (gel permeation chromatography) under the following conditions.
・ Device: HLC-8320GPC EcoSEC (made by Tosoh Corporation)
・ Column: TSKgel GMPWXL (× 2) + G2500PWXL
Eluent: 100 mM aqueous sodium nitrate solution / acetonitrile = 80/20
・ Flow rate: 1.0 mL / min
Temperature: 40 ° C
Injection volume: 200 μL
-Multi-angle light scattering detector: DAWN HELEOS II (manufactured by Wyatt Technology)
Refractive index (RI) detector: Optilab T-rEX (manufactured by Wyatt Technology)
As a result, the weight average molecular weight Mw was 89,078.
(銀ナノワイヤの合成)
 常温にて、プロピレングリコール513.5g中に、塩化リチウム含有量が10質量%であるプロピレングリコール溶液0.302g、臭化カリウム含有量が1質量%であるプロピレングリコール溶液0.893g、水酸化リチウム0.0222g、硝酸アルミニウム九水和物含有量が20質量%であるプロピレングリコール溶液0.312g、および有機保護剤の供給源である上記コポリマー粉体5.24g溶解させ、溶液Aとした。この例では溶液A中にアルキルエーテルを添加していない。これとは別の容器中で、プロピレングリコール5.98gと純水0.5gの混合溶液中に硝酸銀4.25gを添加して、35℃で撹拌して溶解させ、銀を含有する溶液Bを得た。
(Synthesis of silver nanowires)
0.302 g of a propylene glycol solution having a lithium chloride content of 10% by mass in 513.5 g of propylene glycol at normal temperature, 0.893 g of a propylene glycol solution having a potassium bromide content of 1% by mass, lithium hydroxide Solution A was prepared by dissolving 0.0222 g, 0.312 g of a propylene glycol solution having an aluminum nitrate nonahydrate content of 20% by mass, and 5.24 g of the above-mentioned copolymer powder as a source of the organic protective agent. In this example, no alkyl ether is added to solution A. In a separate container, 4.25 g of silver nitrate is added to a mixed solution of 5.98 g of propylene glycol and 0.5 g of pure water, and the solution B containing silver is dissolved by stirring at 35 ° C. Obtained.
 上記の溶液Aを反応容器に入れ、常温から95℃まで回転数250rpmで撹拌しながら昇温したのち、溶液Aの中に、溶液Bの全量を2個の添加口からチューブポンプを用いて1分かけて添加した。溶液Bの添加終了後、プロピレングリコール溶液4gを溶液Bが付着したチューブ内を洗い流すため、チューブポンプを用いて添加した後、さらに撹拌状態を維持して95℃で3.5時間保持し、85℃まで2.0時間かけて冷却し、85℃で19時間保持した。その後、反応液を常温まで冷却することで、銀ナノワイヤを合成した。
 合成された銀ナノワイヤを含有する常温まで冷却された段階の上記反応液を「合成後反応液」と呼ぶ(以下の各例において同じ)。
The above solution A is put in a reaction vessel and heated from normal temperature to 95 ° C. with stirring at a rotational speed of 250 rpm, and then the whole solution B is added to solution A using a tube pump from two addition ports. Added over a minute. After the addition of solution B, 4 g of a propylene glycol solution is added using a tube pump in order to wash out the inside of the tube to which solution B adheres, and then it is kept stirring at 95 ° C. for 3.5 hours. Cooled to 0 C over 2.0 hours and held at 85 0 C for 19 hours. Then, the silver nanowire was synthesize | combined by cooling a reaction liquid to normal temperature.
The reaction liquid of the stage cooled to normal temperature containing the synthesized silver nanowire is referred to as “post-synthesis reaction liquid” (the same in each of the following examples).
(銀ナノワイヤの平均直径、平均長さ測定)
 上記の合成後反応液20gを遠沈管に分取し、純水180g添加し、遠心分離機により1500rpmで15分間の遠心分離操作を行った。濃縮物と上澄みが観察されたため、上澄み部分は除去し、濃縮物を回収した。この洗浄操作を更に数回繰り返し、濃縮物を得た。得られた濃縮物を純水に分散させた。銀ナノワイヤの長さ測定においては、その分散液をSEM用の観察台にとり、観察台上で水を揮発させたのち、電界放出形走査電子顕微鏡(株式会社日立ハイテクノロジーズ製;S-4700)により、加速電圧3kV、倍率1,500倍で観察を行った。無作為に選んだ3以上の視野について、視野内で全長が確認できるすべてのワイヤを対象として、ソフトウェア(ドクターカンパス)を用いて、上述の定義に従って平均長さを測定した。直径測定においては、上記分散液をTEM用の観察台にとり、透過型電子顕微鏡(日本電子株式会社製;JEM-1011)により、加速電圧100kV、倍率40,000倍で明視野像の観察を行って観察画像を採取し、正確に直径を測定するために採取された元画像を2倍のサイズに拡大した上で、ソフトウェア(Motic Image Plus2.1S)を用いて、上述の定義に従って平均直径を測定した。この平均長さおよび平均直径の値を前記(1)式に代入することにより平均アスペクト比を求めた。銀ナノワイヤの平均直径は26.7nm、平均長さは20.5μmであった。平均アスペクト比は、20500(nm)/26.7(nm)≒768であった。結果を他の実施例、比較例とともに表1にまとめてある。
(Average diameter of silver nanowires, average length measurement)
20 g of the post-synthesis reaction solution was separated into a centrifuge tube, 180 g of pure water was added, and centrifugation was performed at 1500 rpm for 15 minutes using a centrifuge. Since the concentrate and the supernatant were observed, the supernatant portion was removed and the concentrate was recovered. This washing operation was repeated several more times to obtain a concentrate. The obtained concentrate was dispersed in pure water. In measuring the length of silver nanowires, the dispersion is placed on an observation table for SEM, water is volatilized on the observation table, and then a field emission scanning electron microscope (manufactured by Hitachi High-Technologies Corporation; S-4700) The observation was performed at an acceleration voltage of 3 kV and a magnification of 1,500. For three or more randomly selected fields of view, the average length was measured according to the above definition using software (Dr. Kampas) for all wires whose full length can be confirmed within the field of view. In the diameter measurement, the dispersion was placed on an observation table for TEM, and bright field images were observed at an acceleration voltage of 100 kV and a magnification of 40,000 with a transmission electron microscope (manufactured by JEOL Ltd .; JEM-1011). The observation image is taken, and the original image taken to accurately measure the diameter is enlarged to twice the size, and then using software (Motic Image Plus 2.1 S), the average diameter is determined according to the above definition. It was measured. The average aspect ratio was determined by substituting the values of the average length and the average diameter into the equation (1). The average diameter of the silver nanowires was 26.7 nm, and the average length was 20.5 μm. The average aspect ratio was 20500 (nm) /26.7 (nm) ≒ 768. The results are summarized in Table 1 together with other examples and comparative examples.
〔実施例1〕
 銀ナノワイヤを合成するに際し、溶液Aとして、比較例1で混合した各物質の他に、更にメチル-t-ブチルエーテル0.0263gを混合して溶解させたものを使用したことを除き、比較例1と同様の条件で実験を行った。銀の析出反応開始時点(すなわち溶液Bの添加開始時点)におけるアルコール溶媒中のメチル-t-ブチルエーテル濃度は0.598mmol/Lである。この条件で得られた銀ナノワイヤの平均直径は28.4nm、平均長さは23.3μmであった。平均アスペクト比は、23300(nm)/28.4(nm)≒820であった。
Example 1
Comparative Example 1 was carried out except that, in addition to each of the substances mixed in Comparative Example 1, 0.0263 g of methyl-t-butyl ether was used as solution A when synthesizing silver nanowires. The experiment was performed under the same conditions as in. The concentration of methyl-t-butyl ether in the alcohol solvent at the initiation of the precipitation reaction of silver (ie, the initiation of the addition of solution B) is 0.598 mmol / L. The average diameter of silver nanowires obtained under this condition was 28.4 nm, and the average length was 23.3 μm. The average aspect ratio was 23300 (nm) /28.4 (nm) ≒ 820.
〔実施例2〕
 銀ナノワイヤを合成するに際し、溶液Aとして、比較例1で混合した各物質の他に、更にメチル-t-ブチルエーテル0.0798gを混合して溶解させたものを使用したことを除き、比較例1と同様の条件で実験を行った。銀の析出反応開始時点(すなわち溶液Bの添加開始時点)におけるアルコール溶媒中のメチル-t-ブチルエーテル濃度は1.811mmol/Lである。この条件で得られた銀ナノワイヤの平均直径は27.8nm、平均長さは24.5μmであった。平均アスペクト比は、24500(nm)/27.8(nm)≒881であった。
Example 2
Comparative Example 1 was carried out except that, in addition to the respective substances mixed in Comparative Example 1, 0.0798 g of methyl-t-butyl ether was further mixed and dissolved as solution A when synthesizing silver nanowires. The experiment was performed under the same conditions as in. The concentration of methyl-t-butyl ether in the alcohol solvent at the initiation of precipitation reaction of silver (ie, the initiation of addition of solution B) is 1.811 mmol / L. The average diameter of the silver nanowire obtained under this condition was 27.8 nm, and the average length was 24.5 μm. The average aspect ratio was 24500 (nm) /27.8 (nm) ≒ 881.
〔実施例3〕
 銀ナノワイヤを合成するに際し、溶液Aとして、比較例1で混合した各物質の他に、更にメチル-t-ブチルエーテル0.1344gを混合して溶解させたものを使用したことを除き、比較例1と同様の条件で実験を行った。銀の析出反応開始時点(すなわち溶液Bの添加開始時点)におけるアルコール溶媒中のメチル-t-ブチルエーテル濃度は3.049mmol/Lである。この条件で得られた銀ナノワイヤの平均直径は27.7nm、平均長さは22.7μmであった。平均アスペクト比は、22700(nm)/27.7(nm)≒819であった。
[Example 3]
Comparative Example 1 was carried out except that, in addition to the respective substances mixed in Comparative Example 1, 0.1344 g of methyl-t-butyl ether was used as solution A in synthesizing silver nanowires. The experiment was performed under the same conditions as in. The methyl-t-butyl ether concentration in the alcohol solvent at the initiation of the precipitation reaction of silver (ie, the initiation of the addition of solution B) is 3.049 mmol / L. The average diameter of silver nanowires obtained under this condition was 27.7 nm, and the average length was 22.7 μm. The average aspect ratio was 22700 (nm) /27.7 (nm) ≒ 819.
〔実施例4〕
 銀ナノワイヤを合成するに際し、溶液Aとして、比較例1で混合した各物質の他に、更にメチル-t-ブチルエーテル0.4250gを混合して溶解させたものを使用したことを除き、比較例1と同様の条件で実験を行った。銀の析出反応開始時点(すなわち溶液Bの添加開始時点)におけるアルコール溶媒中のメチル-t-ブチルエーテル濃度は9.643mmol/Lである。この条件で得られた銀ナノワイヤの平均直径は27.0nm、平均長さは24.5μmであった。平均アスペクト比は、24500(nm)/27.0(nm)≒907であった。
Example 4
Comparative Example 1 was carried out except that, as the solution A, 0.4250 g of methyl-t-butyl ether was further mixed and dissolved in addition to the respective materials mixed in Comparative Example 1 when synthesizing silver nanowires. The experiment was performed under the same conditions as in. The concentration of methyl-t-butyl ether in the alcohol solvent at the initiation of the precipitation reaction of silver (ie, the initiation of the addition of solution B) is 9.643 mmol / L. The average diameter of silver nanowires obtained under this condition was 27.0 nm, and the average length was 24.5 μm. The average aspect ratio was 24500 (nm) /27.0 (nm) 907 907.
〔実施例5〕
 銀ナノワイヤを合成するに際し、溶液Aとして、比較例1で混合した各物質の他に、更にメチル-t-ブチルエーテル0.5825gを混合して溶解させたものを使用したことを除き、比較例1と同様の条件で実験を行った。銀の析出反応開始時点(すなわち溶液Bの添加開始時点)におけるアルコール溶媒中のメチル-t-ブチルエーテル濃度は13.215mmol/Lである。この条件で得られた銀ナノワイヤの平均直径は27.0nm、平均長さは26.2μmであった。平均アスペクト比は、26200(nm)/27.0(nm)≒970であった。
[Example 5]
Comparative Example 1 was carried out except that, in addition to the respective materials mixed in Comparative Example 1, 0.5825 g of methyl-t-butyl ether was further mixed and dissolved as solution A when synthesizing silver nanowires. The experiment was performed under the same conditions as in. The concentration of methyl-t-butyl ether in the alcohol solvent at the initiation of the precipitation reaction of silver (ie, the initiation of the addition of solution B) is 13.215 mmol / L. The average diameter of the silver nanowire obtained under this condition was 27.0 nm, and the average length was 26.2 μm. The average aspect ratio was 26200 (nm) /27.0 (nm) 970 970.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、銀ナノワイヤ合成時のアルコール溶媒中にアルキルエーテルを存在させると、合成されるワイヤの平均長さを顕著に向上させることができ、それに伴ってワイヤの平均アスペクト比も向上する。 As can be seen from Table 1, the presence of the alkyl ether in the alcohol solvent at the time of silver nanowire synthesis can significantly improve the average length of the synthesized wire and, accordingly, the average aspect ratio of the wire also improves. Do.
 参考のため、図2に比較例1で得られた銀ナノワイヤのSEM写真、図3に実施例5で得られた銀ナノワイヤのSEM写真を例示する。 For reference, a SEM photograph of the silver nanowire obtained in Comparative Example 1 is shown in FIG. 2, and a SEM photograph of the silver nanowire obtained in Example 5 is shown in FIG.
《凝集物数の測定》
 次に、上記の一部の例(比較例1、実施例2、実施例5)について、凝集粒子の数を以下のようにして調べた。
 上記の合成後反応液を500mL分取し、容量20LのPFAボトルに移液した後、アセトンを10kg添加し15分撹拌した。その後24時間静置した。静置後、濃縮物と上澄みが観察されたため、上澄み部分を除去し、濃縮物を得た。得られた濃縮物に1質量%のPVP(ポリビニルピロリドン)水溶液を適量添加し、3時間撹拌して、銀ナノワイヤが再分散したことを確認した。撹拌後に、アセトンを1kg添加し10分撹拌後、静置した。静置後、新たに濃縮物と上澄みが観察されたため、上澄み部分を除去し、濃縮物を得た。得られた濃縮物に80gの純水を加え、12時間撹拌して、銀ナノワイヤを再分散させた。再分散後の銀ナノワイヤ分散液に対し、アセトンを1kg添加したのち、30分撹拌後、静置した。静置後、新たに濃縮物と上澄みが観察されたため、上澄み部分を除去し、濃縮物を得た。得られた濃縮物に0.5質量%のPVP水溶液を適量添加し、12時間撹拌した。撹拌後の銀ナノワイヤ含有液を純水で希釈し、銀ナノワイヤ含有量が0.05質量%となるように調整した。このようにして、洗浄後の銀ナノワイヤ含有液を得た。
<< Measurement of number of aggregates >>
Next, the number of agglomerated particles was examined as follows for some of the above examples (Comparative Example 1, Example 2, and Example 5).
After 500 mL of the reaction liquid after synthesis was taken and transferred to a PFA bottle with a volume of 20 L, 10 kg of acetone was added and stirred for 15 minutes. Then left to stand for 24 hours. After standing, a concentrate and a supernatant were observed, so the supernatant portion was removed to obtain a concentrate. An appropriate amount of 1% by mass PVP (polyvinylpyrrolidone) aqueous solution was added to the obtained concentrate, and the mixture was stirred for 3 hours to confirm that the silver nanowires were redispersed. After stirring, 1 kg of acetone was added and stirred for 10 minutes and then allowed to stand. After standing, a concentrate and a supernatant were newly observed, so the supernatant portion was removed to obtain a concentrate. To the obtained concentrate, 80 g of pure water was added, and stirred for 12 hours to redisperse the silver nanowires. After 1 kg of acetone was added to the redispersed silver nanowire dispersion, the mixture was stirred for 30 minutes and then allowed to stand. After standing, a concentrate and a supernatant were newly observed, so the supernatant portion was removed to obtain a concentrate. An appropriate amount of 0.5 mass% PVP aqueous solution was added to the obtained concentrate, and stirred for 12 hours. The silver nanowires-containing solution after stirring was diluted with pure water so that the content of silver nanowires was adjusted to 0.05% by mass. Thus, a silver nanowire-containing solution after washing was obtained.
 フロー式粒子像分析装置(シスメックス社製、FPIA-3000S)を用いて、暗視野測定により、上記洗浄後の銀ナノワイヤ含有液中に存在する粒径が10μm以上300μm以下である粒子の数を測定した。この銀ナノワイヤ含有液は媒体が水であるため、測定に際し、シース液には純水を使用した。測定条件は、LPF測定モード、定量カウントモード、繰り返し測定回数10回とした。また、最大長限定範囲を10~300μm、平均輝度値限定範囲を0~40とした。10回の測定値を積算し、銀ナノワイヤ含有液55μL当たりの凝集物数を、銀ナノワイヤ含有液中の凝集物カウント数とした。表2に結果を示す。 Measurement of the number of particles having a particle diameter of 10 μm to 300 μm present in the solution containing silver nanowires after the above washing by dark field measurement using a flow type particle image analyzer (FPIA-3000S manufactured by Sysmex Corporation) did. Since the medium of this silver nanowires-containing liquid is water, pure water was used as the sheath liquid in the measurement. The measurement conditions were an LPF measurement mode, a quantitative count mode, and 10 repeated measurements. Further, the maximum length limitation range is 10 to 300 μm, and the average luminance value limitation range is 0 to 40. Ten measured values were integrated, and the number of aggregates per 55 μL of the silver nanowire-containing solution was taken as the number of aggregates counted in the silver nanowire-containing solution. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、銀ナノワイヤ合成時のアルコール溶媒中にアルキルエーテルを存在させることは、合成される銀ナノワイヤの平均アスペクト比向上に加え、ワイヤ同士の凝集を抑制する上でも有効である。 As can be seen from Table 2, the presence of the alkyl ether in the alcohol solvent at the time of silver nanowire synthesis is effective not only to improve the average aspect ratio of the silver nanowires to be synthesized but also to suppress aggregation of the wires.

Claims (9)

  1.  銀化合物、有機保護剤が溶解しているアルコール溶媒中で、銀をワイヤ状に還元析出させる工程を有する銀ナノワイヤの製造法において、
     前記有機保護剤としてビニルピロリドン構造単位を持つポリマーを使用すること、
     前記アルコール溶媒中にアルキルエーテルが0.3~25.0mmol/Lの濃度で溶解している状態とし、その液中で前記還元析出を進行させること、
    を特徴とする銀ナノワイヤの製造法。
    In a method of producing a silver nanowire, comprising the step of reducing and precipitating silver in the form of a wire in an alcohol solvent in which a silver compound and an organic protective agent are dissolved,
    Using a polymer having a vinyl pyrrolidone structural unit as the organic protective agent,
    A state in which an alkyl ether is dissolved in the alcohol solvent at a concentration of 0.3 to 25.0 mmol / L, and the reduction deposition proceeds in the solution;
    A method of producing silver nanowires characterized by
  2.  平均長さ15μm以上、平均直径35nm以下、かつ下記(1)式で定義される平均アスペクト比Aが800以上である銀ナノワイヤを還元析出させる請求項1に記載の銀ナノワイヤの製造法。
     A=L/D …(1)
     ここで、Lは上記平均長さをnmの単位で表した値、Dは上記平均直径をnmの単位で表した値である。
    Average length 15μm or more, the average diameter of 35nm or less, and the following (1) Silver nanowires method according to claim 1 for the average aspect ratio A M is precipitated reducing silver nanowires 800 or more defined by the equation.
    A M = L M / D M (1)
    Here, L M is a value representing the average length in nm, and D M is a value representing the average diameter in nm.
  3.  前記アルキルエーテルが、メチル-t-ブチルエーテルである請求項1に記載の銀ナノワイヤの製造法。 The method for producing silver nanowires according to claim 1, wherein the alkyl ether is methyl-t-butyl ether.
  4.  前記ポリマーが、PVP(ポリビニルピロリドン)またはビニルピロリドンと親水性モノマーとのコポリマーである請求項1に記載の銀ナノワイヤの製造法。 The method for producing silver nanowires according to claim 1, wherein the polymer is PVP (polyvinyl pyrrolidone) or a copolymer of vinyl pyrrolidone and a hydrophilic monomer.
  5.  前記ポリマーが、ビニルピロリドンと、ジアリルジメチルアンモニウム塩、エチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、4-ヒドロキシブチルアクリレート、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-tert-ブチルマレイミド、2-ジメチルアミノエチルメタクリレート、および2-ジエチルアミノエチルメタクリレートから選ばれる1種または2種以上のモノマーとの重合組成を有するものである請求項1に記載の銀ナノワイヤの製造法。 The polymer is selected from vinyl pyrrolidone, diallyl dimethyl ammonium salt, ethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 4-hydroxybutyl acrylate, N-methyl maleimide, N-ethyl maleimide, N-propyl maleimide, N The method for producing silver nanowires according to claim 1, having a polymerization composition with one or more monomers selected from -tert-butylmaleimide, 2-dimethylaminoethyl methacrylate, and 2-diethylaminoethyl methacrylate. .
  6.  前記ポリマーは、重量平均分子量Mwが30,000~300,000である請求項1に記載の銀ナノワイヤの製造法。 The method according to claim 1, wherein the polymer has a weight average molecular weight Mw of 30,000 to 300,000.
  7.  請求項1に記載の製造法によって得られた銀ナノワイヤ。 The silver nanowire obtained by the manufacturing method of Claim 1.
  8.  請求項1に記載の製造法によって得られた銀ナノワイヤが液状媒体中に分散している銀ナノワイヤインク。 The silver nanowire ink which the silver nanowire obtained by the manufacturing method of Claim 1 is disperse | distributing in a liquid medium.
  9.  請求項1に記載の製造法によって得られた銀ナノワイヤを導電素材として含有する透明導電膜。 A transparent conductive film comprising the silver nanowire obtained by the method according to claim 1 as a conductive material.
PCT/JP2018/034866 2017-09-26 2018-09-20 Silver nanowire production method, silver nanowire, silver nanowire ink, and transparent conductive film WO2019065461A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880051092.2A CN111032255A (en) 2017-09-26 2018-09-20 Method for manufacturing silver nanowire, silver nanowire ink, and transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017184490A JP2019059977A (en) 2017-09-26 2017-09-26 Method for producing silver nanowire, silver nanowire, silver nanowire ink and transparent conductive film
JP2017-184490 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019065461A1 true WO2019065461A1 (en) 2019-04-04

Family

ID=65901831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034866 WO2019065461A1 (en) 2017-09-26 2018-09-20 Silver nanowire production method, silver nanowire, silver nanowire ink, and transparent conductive film

Country Status (4)

Country Link
JP (1) JP2019059977A (en)
CN (1) CN111032255A (en)
TW (1) TWI696669B (en)
WO (1) WO2019065461A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110211725B (en) * 2019-06-11 2020-05-12 湖南大学 Method for improving carrier transmission performance of silver nanowire transparent conductive film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190006A (en) * 2007-02-06 2008-08-21 Achilles Corp Wire-shaped silver particle, and method for synthesizing the same
JP2009215573A (en) * 2008-03-07 2009-09-24 Fujifilm Corp Rod-shaped metal particle, manufacturing method therefor, composition containing rod-shaped metal particle, and antistatic material
US20140251086A1 (en) * 2013-03-08 2014-09-11 Innova Dynamics, Inc. Production of nanostructures
JP2015180772A (en) * 2014-03-07 2015-10-15 Dowaホールディングス株式会社 Production method of silver nanowire, silver nanowire, and ink using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190006A (en) * 2007-02-06 2008-08-21 Achilles Corp Wire-shaped silver particle, and method for synthesizing the same
JP2009215573A (en) * 2008-03-07 2009-09-24 Fujifilm Corp Rod-shaped metal particle, manufacturing method therefor, composition containing rod-shaped metal particle, and antistatic material
US20140251086A1 (en) * 2013-03-08 2014-09-11 Innova Dynamics, Inc. Production of nanostructures
JP2015180772A (en) * 2014-03-07 2015-10-15 Dowaホールディングス株式会社 Production method of silver nanowire, silver nanowire, and ink using the same

Also Published As

Publication number Publication date
JP2019059977A (en) 2019-04-18
TWI696669B (en) 2020-06-21
TW201920518A (en) 2019-06-01
CN111032255A (en) 2020-04-17

Similar Documents

Publication Publication Date Title
JP6703802B2 (en) Silver nanowire, method for producing the same, and ink
TWI648749B (en) Silver nanowire and its manufacturing method, as well as silver nanowire ink and transparent conductive film
JP5827960B2 (en) Metal nanoparticle composite and production method thereof
JP2017078207A (en) Silver nanowire and manufacturing method thereof as well as fluid dispersion and ink
WO2016104359A1 (en) Method for producing silver nanowires, silver nanowires obtained by said method, and ink containing said silver nanowires
TW201941221A (en) Silver nanowire ink and method for producing the same
WO2018105642A1 (en) Silver nanowire, production method therefor, and silver nanowire ink
WO2018164166A1 (en) Method for producing silver nanowire ink, silver nanowire ink and transparent conductive coating film
JP2019147983A (en) Silver nanowire synthesizing organic protection agent, and silver nanowire and method for manufacturing same
TWI686484B (en) Method for producing silver nanowire
WO2019065461A1 (en) Silver nanowire production method, silver nanowire, silver nanowire ink, and transparent conductive film
JP2020158858A (en) Method for producing silver nanowire
JP2020158857A (en) Method for producing silver nanowire
WO2019059296A1 (en) Manufacturing method for silver nanowire, silver nanowire, silver nanowire ink, and transparent conductive film
JP2018070946A (en) Organic protection agent for synthesizing silver nanowire, silver nanowire and manufacturing method therefor
TW202104602A (en) Silver nanowire, method for producing the same, reaction liquid containing silver nanowire, and silver nanowire dispersion liquid
JP2020143341A (en) Alcohol-based silver nanowire dispersion liquid
JP2000110070A (en) Production of cellulosic article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861277

Country of ref document: EP

Kind code of ref document: A1