WO2019065065A1 - Soldering system and soldering method - Google Patents

Soldering system and soldering method Download PDF

Info

Publication number
WO2019065065A1
WO2019065065A1 PCT/JP2018/032135 JP2018032135W WO2019065065A1 WO 2019065065 A1 WO2019065065 A1 WO 2019065065A1 JP 2018032135 W JP2018032135 W JP 2018032135W WO 2019065065 A1 WO2019065065 A1 WO 2019065065A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
soldering
holder
laser
semiconductor laser
Prior art date
Application number
PCT/JP2018/032135
Other languages
French (fr)
Japanese (ja)
Inventor
利輝 藤島
茂 田玉
広宣 小林
Original Assignee
株式会社堀内電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀内電機製作所 filed Critical 株式会社堀内電機製作所
Priority to JP2019544458A priority Critical patent/JP6785512B2/en
Publication of WO2019065065A1 publication Critical patent/WO2019065065A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the present invention relates to a soldering system and method using a laser.
  • SMDs surface mount devices
  • the substrate on which the SMD is mounted has a printed pattern formed of copper foil on the front side, and the SMD is mounted on the printed pattern.
  • the cream solder is applied to the contact portion between the SMD and the print pattern, it is heated in a reflow furnace. By raising the temperature to a temperature at which the solder melts in a short time, the solder paste is melted by melting the cream solder.
  • the place to be soldered is also flat. Therefore, when the solder is heated, the solder spreads in a plane with respect to the portion to be soldered.
  • the reflow method may not be able to be used because the place to be soldered is not flat.
  • FIG. 14 is an external perspective view schematically showing a CMOS image sensor 1401 incorporated in a mobile phone, a smartphone or the like.
  • CMOS image sensor 1401 also called a camera module
  • a voice coil motor (not shown) is incorporated in the objective lens 1402, and focus control is performed by drive control of the voice coil motor.
  • the control current applied to the voice coil motor causes noise to other electronic circuits and adversely affects electromagnetic interference (EMI). For this reason, it is necessary to cover parts, such as a lens including a voice coil motor, with a metal cover 1403 and connect the cover 1403 to a ground node.
  • EMI electromagnetic interference
  • the metal cover 1403 is soldered to the ground node terminal 1405 of the flexible printed circuit 1404.
  • the contact portion between the metal cover 1403 and the flexible printed circuit 1404 has an angle of approximately 90 °, and has a three-dimensional positional relationship.
  • An angle of ° is formed.
  • Patent documents 1 and 2 disclose prior art documents in which a technique considered to be close to the present invention is disclosed.
  • Patent Document 1 discloses the technology of a solder ball bonding apparatus (laser soldering apparatus) using a laser.
  • the solder balls are first accurately positioned, and the members to be soldered are positioned substantially in a vertical relation to each other. Place the solder ball in a stable condition. Thereafter, the solder balls are melted by laser irradiation and soldered.
  • Patent Document 2 discloses the technology of a laser irradiation type solder bonding apparatus (laser soldering apparatus).
  • This laser irradiation type solder bonding apparatus supplies a wire solder from the solder supply apparatus to the optical path of the laser beam to form a melted solder ball. Then, compressed gas is supplied from the compressor into the head, and molten solder balls are sprayed from the small holes. The laser beam emitted from the small hole is irradiated to the solder ball sprayed to the joint portion.
  • the present invention has been made in view of such a situation, and a soldering system and a soldering method which can spread fine areas to be soldered without damaging the minute object to be soldered and can achieve good soldering. Intended to be provided.
  • a soldering system of the present invention has a soldering device and a control device.
  • the soldering apparatus comprises a solder holder, a solder supply apparatus for supplying solder to the solder holder, and laser light of a first intensity intermittently for a predetermined time to melt the solder in proximity to the object to be soldered for a predetermined time.
  • a semiconductor laser light source for irradiating, a gas valve for controlling injection of pressure gas for injecting molten solder from the solder holder to the solder holder, and a pressure sensor for detecting pressure of pressure gas in the solder holder .
  • the control device detects from the pressure sensor that the pressure inside the soldering device has reached a predetermined value, performs on control of the semiconductor laser light source, and performs control of closing the gas valve. After being ejected from the solder holder, the solder is continuously irradiated with laser light of a second intensity which is weaker than the first intensity for a predetermined time, and then the semiconductor laser light source is turned off and the gas valve is opened.
  • FIG. 1 is a schematic front view of a laser soldering apparatus according to an embodiment of the present invention. It is an enlarged view of a solder roller. It is a schematic cross section which shows the structure of the front-end
  • FIG. 1 A schematic cross-sectional view enlarging a part of the solder holder and the object to be soldered, showing a state immediately after the semiconductor ball is irradiated with the semiconductor laser and a state immediately after the solder ball is melted by the semiconductor laser and discharged from the discharge port.
  • FIG. 1 The section of the solder holder and part of the object to be soldered is enlarged, in which the irradiation of the semiconductor laser is continued to the molten solder and the molten solder fully wets the soldering portion of the object to be soldered FIG.
  • Solder that shows a state immediately after the semiconductor ball is irradiated to the solder ball and a state immediately after the solder ball is melted by the semiconductor laser and changed to molten solder by using the laser soldering apparatus according to the modification of the present invention It is a schematic cross section which expanded a holder and a part of soldering object. The section of the solder holder and part of the object to be soldered is enlarged, in which the irradiation of the semiconductor laser is continued to the molten solder and the molten solder fully wets the soldering portion of the object to be soldered
  • FIG. It is a block diagram which shows the functional block added to the control apparatus of the laser soldering apparatus based on the 2nd modification of this invention.
  • FIG. 7 is a diagram showing a time chart of a control signal output by a laser control unit, a reference voltage switching signal output by a gate control unit, a voltage waveform of a gate control signal, and a waveform of current flowing in a semiconductor laser light source. It is an appearance perspective view showing roughly a CMOS image sensor built in a mobile phone, a smart phone, etc.
  • FIG. 1 is a schematic front view of a laser soldering apparatus 101 according to an embodiment of the present invention.
  • the laser soldering apparatus 101 has a laser barrel 103 to which a semiconductor laser light source 102 is attached.
  • a first reflecting mirror 104 is incorporated at the tip of the laser barrel 103 at an inclination of 45 ° with respect to the longitudinal direction of the laser barrel 103.
  • the second reflecting mirror 106 is incorporated at the same inclination as the first reflecting mirror 104, and the solder holder 107 at the tip of the main body portion 105 has the laser light reflected by the first reflecting mirror 104.
  • a laser soldering apparatus 101 is a blue semiconductor laser that emits visible light with a wavelength of 500 nm or less, which has a lower output and is suitable for soldering, instead of a high-output solid laser of the prior art. It is adopted.
  • a substantially conical solder holder 107 is provided at the tip of the main body portion 105 of the laser soldering apparatus 101.
  • the solder holder 107 is hollow and its tip has a hole for discharging the molten solder ball 201. Details of the solder holder 107 will be described in detail with reference to FIG.
  • the solder holder 107 is attached to the holder holding portion 108.
  • the holder holder 108 is also generally conical in shape, to which a conduit 110 extending from the solder feeder 109 is connected.
  • a gas inlet 111 to which compressed nitrogen gas (pressure gas) is supplied is provided, and a compressed gas introduction mechanism (not shown) is connected through a nitrogen gas valve (see FIG. 4).
  • a pressure sensor 412 see FIG.
  • Nitrogen gas is used to provide pressure for discharging the molten solder ball 201 from the solder holder 107 and to prevent oxidation of the molten solder.
  • the laser soldering apparatus 101 is provided with a vertical driving mechanism (not shown).
  • a vertical driving mechanism such as a belt conveyor (not shown)
  • the laser soldering apparatus 101 is driven downward to bring the solder holder 107 close to the soldering target portion of the soldering object 415.
  • the laser soldering apparatus 101 is driven upward to separate the solder holder 107 from the object 415 to be soldered.
  • the solder supply device 109 includes a solder ball tank 112, a solder roller 113, and a conduit 110.
  • a solder passage sensor 114 configured of a metal detection sensor is installed in the middle of the conduit 110, and the solder passage sensor 114 detects that the solder ball 201 has passed through the conduit 110.
  • FIG. 2 is an enlarged view of the solder roller 113.
  • the solder ball 201 is also shown for reference.
  • depressions 113a slightly larger than the size of the solder balls 201 are provided at four positions of 90 ° on the circumference of the disk.
  • the solder roller 113 is rotationally driven by a stepping motor (not shown).
  • solder ball 201 fits into the recess 113 a, and when the recess 113 a reaches directly below, the solder ball 201 falls and is led to the conduit 110.
  • the number of depressions 113 a provided in the solder roller 113 is not necessarily four, and is arbitrary.
  • FIG. 3 is a schematic cross-sectional view showing the structure of the tip portion of the solder holder 107.
  • the solder holder 107 is a material such as aluminum alloy, stainless steel, nickel, brass, brass or chrome plated metal, ceramic or the like, which has low solder wettability, is less likely to adhere to solder, and can withstand high temperature of molten solder. It is formed by Inside the substantially conical solder holder 107, a tapered space 107a which is tapered toward the tip is formed. The inner wall of the tapered space 107 a in this space reliably guides the solder ball 201 to the tip of the solder holder 107.
  • the tip end of the tapered space 107a is formed with a cylindrical space 107b having a fixed thickness. Further, the tip of the cylindrical space 107 b is formed with a solder retaining portion 107 c that abuts on the solder ball 201. A discharge port 107d which is a cylindrical hole is opened in the solder retaining portion 107c, and the melted solder is discharged from the discharge port 107d.
  • the diameter of the solder ball 201 is SR
  • the diameter of the discharge port 107d is D1
  • the diameter of the cylindrical space 107b is D2
  • the relationship shown by the following inequality is satisfied. D1 ⁇ SR ⁇ D2 Therefore, the solder ball 201 dropped into the solder holder 107 through the conduit 110 is fitted into the cylindrical space 107b so as to slide in the inner wall in the tapered space 107a in the solder holder 107, and the solder locking portion 107c At the solder holder 107.
  • the discharge port 107 d is closed by the solder ball 201.
  • FIG. 4 is a block diagram showing the overall configuration of the soldering system 401 and the hardware configuration of the control unit 402 that controls the laser soldering apparatus 101.
  • the soldering system 401 comprises a laser soldering apparatus 101 and a controller 402.
  • the control device 402 which is a well-known microcomputer, includes a CPU 404, a ROM 405, a RAM 406, a non-volatile storage 407 such as an electrically rewritable flash memory, an input port 408, an output port 409, and a timer 410 connected to a bus 403. Prepare.
  • the non-volatile storage 407 stores a control program for operating the microcomputer as the control device 402.
  • the flash memory may be used as the ROM 405 and the non-volatile storage 407.
  • the control device 402 is not limited to a microcomputer, and may be a personal computer provided with an appropriate interface.
  • the input port 408 is provided in the vicinity of the laser soldering apparatus 101, and includes an object sensor 411 constituted by a photo interrupter or the like, a solder passage sensor 114 detecting that the solder ball 201 has passed through the conduit 110, and a laser A pressure sensor 412 is connected to measure the pressure of nitrogen gas inside the soldering apparatus 101.
  • the output port 409 includes a stepping motor 413 for rotationally driving the solder roller 113, a nitrogen gas valve 414 (gas valve) for controlling the injection of nitrogen gas into the laser soldering apparatus 101, and a semiconductor incorporated in the laser lens barrel 103.
  • a laser light source 102 is connected.
  • control device 402 detects the presence of the soldering object 415 by the object sensor 411, detects the normal supply of the solder ball 201 by the solder passage sensor 114, and measures the pressure of nitrogen gas by the pressure sensor 412. Do. Further, the control device 402 rotationally drives the stepping motor 413 to supply the solder balls 201 to the solder holder 107, controls the nitrogen gas valve 414, injects nitrogen gas into the laser soldering apparatus 101 at an appropriate timing, and The light source 102 is controlled to melt the solder ball 201 at an appropriate timing.
  • FIG. 5 is a block diagram showing the function of software of the control device 402.
  • the logic signal output from the object sensor 411 is supplied to the Cp input terminal of a D flip flop (hereinafter, abbreviated as “D-FF” and the same as FIG. 5).
  • the logic signal output from the solder passage sensor 114 is supplied to the R input terminal of the D-FF 501.
  • the D input terminal of the D-FF 501 is connected to the logic signal node indicating the logic true, and is always in the logic true state.
  • the D-FF 501 converts the up edge of the output signal of the object sensor 411 into a logic true logic signal and outputs it, and the solder passage sensor 114 outputs a logic true logic signal, thereby causing the logic false. Output logic signal.
  • the up edge of the output signal of the object sensor 411 indicates that the object sensor 411 has detected the arrival of a new soldering object 415.
  • the logic signal output from the Q output terminal of the D-FF 501 is connected to the input of the AND gate 502 together with the logic signal of the timer 410.
  • the timer 410 starts clocking from an output signal of a comparator 503 described later, and outputs a logic signal for turning off a laser control unit 504 described later when a predetermined time is counted. Therefore, the output signal of the AND gate 502 is detected when the object sensor 411 detects that the new soldering object 415 has arrived immediately below the solder holder 107 while the semiconductor laser light source 102 is controlled to be off. Output a signal indicating the logic true.
  • the output signal of the AND gate 502 is input to the motor control unit 505 together with the logic signal output from the solder passage sensor 114.
  • the motor control unit 505 In response to the output signal of the AND gate 502 becoming logical true, the motor control unit 505 outputs a stepping pulse for rotating the stepping motor 413 by 90 °. Then, when the output signal of the solder passage sensor 114 becomes logic true within the time defined by the timer built in the motor control unit 505, the operation is stopped. If the output signal of the solder passage sensor 114 does not become logic true within the time specified by the timer built in the motor control unit 505, it means that the solder roller 113 has failed to put the solder ball 201. Show. Therefore, a stepping pulse for rotating the stepping motor 413 by 90 ° is output again.
  • Data indicative of the pressure of the pressure sensor 412 is input to the digital comparator 503 together with data indicative of the pressure threshold.
  • the comparator 503 outputs logic true when the pressure of nitrogen gas detected by the pressure sensor 412 exceeds the pressure threshold 506.
  • the output signal of the timer 410 is input to the valve control unit 507 together with the logic signal output from the comparator 503.
  • the valve control unit 507 outputs a control signal for opening the nitrogen gas valve 414 in response to the output signal of the timer 410 becoming logic true. Then, in response to the output signal of the comparator 503 becoming logic true, a control signal for closing the nitrogen gas valve 414 is output.
  • the output signal of the comparator 503 is supplied to the timer 410.
  • the timer 410 starts counting a predetermined time in response to the output signal of the comparator 503 becoming logic true. Then, when a predetermined time has elapsed, an output signal indicating the logic true is output. Further, since the output signal of the solder passage sensor 114 is supplied to the reset terminal of the timer 410, the timer 410 is reset when the output signal of the solder passage sensor 114 becomes logical true after measuring a predetermined time.
  • the output signal of the comparator 503 is input to the laser control unit 504 together with the logic signal output from the timer 410.
  • the laser control unit 504 outputs a control signal to turn on the semiconductor laser light source 102 in response to the output signal of the comparator 503 becoming logic true. Then, in response to the output signal of the timer 410 becoming logic true, a control signal for controlling the semiconductor laser light source 102 to turn off is output.
  • the valve control unit 507 opens the nitrogen gas valve 414 when the output signal of the timer 410 becomes logic true and closes the nitrogen gas valve 414 when the output signal of the comparator 503 becomes logic true.
  • the laser control unit 504 turns on the semiconductor laser light source 102 when the output signal of the comparator 503 becomes logic true, and turns off the semiconductor laser light source 102 when the output signal of the timer 410 becomes logic true. That is, the control signals output from the valve control unit 507 to the nitrogen gas valve 414 and the control signals output from the laser control unit 504 to the semiconductor laser light source 102 are in reverse logic.
  • the software functional block diagram shown in FIG. 5 is an example, and for example, instead of resetting the timer 410 by the solder ball 201 detection sensor, using the output signal of the timer 410 itself, the input of the AND gate 502 or the timer 410 is Various variations are conceivable, such as using a latch function for output and the like.
  • FIG. 6 is a time chart showing various states of the laser soldering apparatus 101 controlled by the controller 402. As shown in FIG. The inventors conducted an experiment with the laser soldering apparatus 101 and recorded a time chart when good soldering could be realized.
  • the diameter of the solder ball 201 used in this experiment is 0.5 mm, and the output of the blue semiconductor laser is 6.8 W.
  • a waveform L601 in FIG. 6 is the rotational speed of the solder roller 113.
  • a waveform L602 is a control signal of the stepping motor 413 for rotating the solder roller 113.
  • a waveform L603 is a detection signal of the solder passage sensor 114.
  • a waveform L604 is a waveform indicating the flow rate of nitrogen gas.
  • a waveform L605 is an output signal of the pressure sensor 412 indicating the pressure of nitrogen gas.
  • a waveform L606 is a control signal for on / off controlling the semiconductor laser light source 102.
  • a waveform L 607 is a control signal of the nitrogen gas valve 414 which controls opening and closing of the injection of nitrogen gas.
  • the nitrogen gas valve 414 is open, and the semiconductor laser light source 102 is off.
  • the stepping motor 413 is rotationally driven and the solder roller 113 is rotated.
  • the solder passage sensor 114 detects that the solder ball 201 has passed through the conduit 110.
  • the solder ball 201 fits into the solder retaining portion 107c of the solder holder 107, and the nitrogen gas does not leak from the discharge port 107d.
  • the pressure of nitrogen gas inside the laser soldering apparatus 101 starts to rise.
  • the flow rate of nitrogen gas is slightly smaller than that before time T614 because the discharge port 107d is blocked by the solder ball 201.
  • the valve control unit 507 performs control to close the nitrogen gas valve 414. Then, the injection of nitrogen gas into the laser soldering apparatus 101 is stopped. At the same time, the laser control unit 504 turns on the semiconductor laser light source 102. At time T615, the timer 410 is started and counts a predetermined time. At time T616, the solder ball 201 is melted by the laser beam emitted by the semiconductor laser light source 102. Then, the melted solder is discharged from the discharge port 107 d by the pressure of the nitrogen gas inside the laser soldering apparatus 101.
  • the semiconductor laser continues to be irradiated.
  • the laser control unit 504 performs off control of the semiconductor laser light source 102 in response to the output signal of the timer 410. Then, at the same time as the off control of the semiconductor laser light source 102, the valve control unit 507 performs control to open the nitrogen gas valve 414.
  • FIG. 7A is a schematic cross-sectional view showing a part of the solder holder 107 and the object 415 to be soldered, showing a state immediately after the laser light B 701 is irradiated to the solder ball 201. It is the state of the solder holder 107 and the soldering object 415 in time T615 of FIG.
  • the solder holder 107 is in close proximity to the soldering point 415 a of the object to be soldered 415 by a predetermined distance by a vertical drive mechanism (not shown), and the tip of the solder holder 107 is the object to be soldered Not in touch.
  • the distance between the solder holder 107 and the soldering portion 415a of the object 415 to be soldered is, for example, about 0.5 mm to 3 mm.
  • FIG. 7B is a schematic sectional view enlarging a part of the solder holder 107 and the object to be soldered 415, showing a state immediately after the solder ball 201 is melted by the laser beam B701 and discharged from the discharge port 107d.
  • the solder ball 201 melts to form a molten solder 702, and adheres to the soldering point 415 a of the object 415 to be soldered.
  • the molten solder 702 is only in contact with the metal of the soldering point 415a, and the molten solder 702 has not reached the state of forming (wetting) an alloy with the surface of the metal.
  • FIG. 8 shows that the molten solder 702 continues to be irradiated with the laser beam B 701, and the molten solder 702 is soldered with the solder holder 107, which shows a state in which the molten solder 702 is sufficiently wetted to the soldering portion 415a of the object 415 to be soldered.
  • FIG. 16 is a schematic cross-sectional view in which a part of an object 415 is enlarged. It is the state of the solder holder 107 and the soldering object 415 in time T617 of FIG.
  • the laser soldering apparatus 101 and the controller 402 continue to irradiate the laser beam B 701 even after the molten solder 702 adheres to the soldering portion 415 a.
  • This operation is equivalent to a process step of continuing heating with the soldering iron even after the solder melts so that when the soldering is performed using a soldering iron, the soldering is well adapted to the portion to be soldered. As long as the solder balls 201 are only melted, it is possible only between time T615 and time T616 in FIG.
  • the time for which the heating is continued varies depending on the type of semiconductor laser, the output of the semiconductor laser, the size of the solder ball 201, the size of the soldering portion 415a, etc.
  • the conventional solid-state laser is not suitable for the soldering system 401 according to the embodiment of the present invention because the output of heating is too strong. In particular, it is difficult to continue heating.
  • a blue semiconductor laser is preferable as the type of semiconductor laser.
  • the blue semiconductor laser has a higher heat absorbing property to the solder than semiconductor lasers of other colors such as red. Therefore, good soldering can be realized.
  • FIG. 9A shows a state immediately after the laser beam B 701 is irradiated to the solder ball 201 using the laser soldering apparatus 101 according to the first modified example of the present invention. It is a schematic cross section which expanded a part. The state of the solder holder and the object to be soldered 415 at time T615 in FIG. 6 corresponds to FIG. 7A.
  • the laser soldering apparatus 101 according to the first modification differs from the laser soldering apparatus 101 according to the embodiment described with reference to FIGS. 1 to 8 only in the structure of the solder holder 901, and the other parts, mechanism parts, and functions Since all the blocks and the like are substantially the same, detailed description will be omitted.
  • the cylindrical space 107b becomes the discharge port 107d as it is, so there is no part where the solder ball 201 is locked. That is, if nothing is applied to the tip end portion, the solder ball 201 guided to the solder holder 901 through the conduit 110 will jump out from the discharge port 107 d of the tip end portion as it is.
  • the solder holder 901 is brought into contact with the soldering portion 415a of the object 415 to be soldered. Then, the solder ball 201 is fixed so as to be surrounded by the discharge port 107 d of the solder holder 901 and the soldering portion 415 a.
  • FIG. 9B is a schematic cross-sectional view enlarging a part of the solder holder 901 and the object 415 to be soldered, showing a state immediately after the solder ball 201 is melted by the laser light B 701 and changed to the molten solder 702.
  • the state of the solder holder 901 and the object to be soldered 415 at time T616 in FIG. 6 corresponds to FIG. 7B.
  • the solder ball 201 is fixed so as to be surrounded by the discharge port 107 d of the solder holder 901 and the soldering portion 415 a.
  • FIG. 10 shows that the molten solder 702 continues to be irradiated with the laser beam B 701, and the molten solder 702 is soldered with the solder holder 901, which shows that the soldered portion 415a of the object to be soldered 415 is sufficiently wetted.
  • FIG. 16 is a schematic cross-sectional view in which a part of an object 415 is enlarged. The state of the solder holder 901 and the object to be soldered 415 are on the way from time T616 to time T617 in FIG. In FIG.
  • solder chip obtained by finely cutting a wire solder may be used instead of the solder ball 201.
  • the discharge port 107d is not blocked by the solder ball 201 in the solder holder 901, so that the solder having a uniform shape like the solder ball 201 is not necessarily used. May be
  • the step of melting the solder ball 201 (between time T615 and time T616 in FIG. 6) and the step of heating after the melted solder ball 201 adheres to the soldering portion 415a (FIG. 6) From time T616 to time T617), it is desirable that the heat quantity of heating for the solder ball 201 and the soldering point 415a be different.
  • control is impossible with a soldering iron, but with the laser soldering device 101, control of the power applied to the semiconductor laser light source 102 facilitates control of heating of the solder balls 201 and the soldering point 415a. it can.
  • FIG. 11 is a block diagram showing a functional block added to the control device 402 of the laser soldering apparatus 101 according to the second modified example of the present invention.
  • the control signal that the laser control unit 504 outputs to the semiconductor laser light source 102 is on / off control of the simple laser light B701.
  • a gate control unit 1101 and a laser drive unit 1102 are added to the control signal output from the laser control unit 504.
  • the gate control unit 1101 receives the control signal of the laser control unit 504 and the output signal of the pressure sensor 412 to control the laser drive unit 1102.
  • the laser drive unit 1102 performs drive control on the semiconductor laser light source 102 by constant current control.
  • FIG. 12 is a block diagram and a circuit diagram of a gate control unit 1101 and a laser driving unit 1102 of a laser soldering apparatus 101 according to a second modified example of the present invention.
  • the gate control unit 1101 is realized as a software function of the control device 402 which is a general microcomputer, and therefore the description of the hardware configuration is omitted.
  • An output signal of the pressure sensor 412 is input to the differential operation unit 1201.
  • the differential operation unit 1201 performs a differential operation on the output signal of the pressure sensor 412, thereby converting a sharp decrease of the signal occurring at time T616 in FIG. 6 into a pulse signal and outputting it.
  • the control signal of the laser control unit 504 is input to the sequencer 1202.
  • the sequencer 1202 also receives a pulse signal output from the differential operation unit 1201 and generates a gate control signal of a Pch MOSFET 1203 included in a laser drive unit 1102 described later.
  • the control signal of the laser control unit 504 is also input to the latch 1204.
  • the latch 1204 also receives a pulse signal output from the differential operation unit 1201 and generates a control signal of a changeover switch 1205 included in a laser drive unit 1102 described later.
  • the laser drive unit 1102 is configured by a known buck converter that performs constant current control on a DC power supply V 1206 that supplies power to the semiconductor laser light source 102.
  • the PNP transistor 1207 is a high side switch of the buck converter.
  • the transistor 1207, the diode D1208, and the choke coil L1209 constitute a buck converter.
  • the high side switch of the Pch MOSFET 1203 is connected between the output terminal side of the choke coil L 1209 and the semiconductor laser light source 102.
  • the description of the gate drive circuit of the Pch MOSFET 1203 is omitted.
  • a shunt resistor R1210 for detecting the current flowing to the semiconductor laser light source 102 is connected.
  • the connection point between the cathode of the semiconductor laser light source 102 and the shunt resistor R1210 is connected to the positive terminal of the comparator 1211.
  • the first reference voltage source V1212 and the second reference voltage source V1213 are selectively connected to the negative terminal of the comparator 1211 via the changeover switch 1205.
  • the first reference voltage source V1212 outputs a higher voltage than the second reference voltage source V1213.
  • the output of the comparator 1211 is an open collector and is connected to the base of the transistor 1207 via a base resistor R1214.
  • the resistor R1215 is a resistor for ensuring the switching of the transistor 1207. That is, when the open collector of the comparator 1211 is turned off, the transistor 1207 is turned off, and when the open collector of the comparator 1211 is turned on, the transistor 1207 is turned on.
  • the voltage across terminals of the shunt resistor R 1210 is proportional to the current flowing to the semiconductor laser light source 102.
  • the open collector of the comparator 1211 is turned on, and the transistor 1207 is turned on.
  • the open collector of the comparator 1211 is turned off, and the transistor 1207 is turned off.
  • the intermittent flow of current due to the on / off of the high side switch is smoothed (limited) by the choke coil L1209 and the diode D1208. Therefore, the semiconductor laser light source 102 is controlled at constant current.
  • the current flowing to the semiconductor laser light source 102 can be increased. Therefore, two reference voltage sources are provided and selectively supplied to the comparator 1211 by the changeover switch 1205. If a switch is provided on the output side of the choke coil L1209, on / off control of the current flowing through the semiconductor laser light source 102 can be realized. Therefore, the high side switch of the Pch MOSFET 1203 is provided.
  • FIG. 13 shows a time chart of a control signal output from the laser control unit 504, a reference voltage switching signal output from the gate control unit 1101, a voltage waveform of the gate control signal, and a waveform of current flowing through the semiconductor laser light source 102.
  • FIG. The horizontal axis is time, the vertical axes are (a) and (b) logical values, (c) gate voltage, and (d) current.
  • (A) of FIG. 13 is a control signal which the laser control unit 504 outputs. At time T615, the logic becomes true, and at time T617, the logic returns to false.
  • (B) of FIG. 13 is a reference voltage switching signal output from the latch 1204 of the gate control unit 1101.
  • (C) of FIG. 13 is a gate control signal which the sequencer 1202 of the gate control unit 1101 outputs.
  • the Pch MOSFET 1203 has such a waveform because the source-drain is turned on when the gate voltage is lowered. Note that due to the restriction of the gate-source voltage of the Pch MOSFET 1203, the voltage when the gate voltage is low is not necessarily 0V.
  • a gate control signal having a short on time (irradiation time T1302) is repeatedly output to the Pch MOSFET 1203 from time T615 until time T616 when the pulse signal output from the differential operation unit 1201 is input. From time T616, until the time T617 at which the control signal output from the laser control unit 504 returns to logic false, a continuous gate control signal (irradiation time T1305) is output to the Pch MOSFET 1203 via the laser light pause interval T1304.
  • FIG. 13D is a waveform diagram of the current flowing to the semiconductor laser light source 102. Further, this waveform diagram is also a waveform diagram of the power supplied to the semiconductor laser light source 102.
  • the semiconductor laser light source 102 has a current I1301 in the semiconductor laser light source 102 from time T615 to time T616.
  • the flowing, intense laser light is applied to the solder ball 201 in a pulsed manner.
  • the solder ball 201 is melted, the melted solder is discharged from the discharge port 107 d by the pressure of nitrogen gas in the laser soldering apparatus 101. At that moment, that is, at time T616, the pressure of the nitrogen gas inside the laser soldering apparatus 101 sharply decreases.
  • the gate control unit 1101 When the gate control unit 1101 detects a change in pressure of nitrogen gas from the signal of the pressure sensor 412 by the differential operation unit 1201, the gate control unit 1101 controls the changeover switch 1205 to connect the reference voltage source connected to the negative terminal of the comparator 1211 Switching from one reference voltage source V1212 to a second reference voltage source V1213.
  • the sequencer 1202 receives the pulse signal input from the differential operation unit 1201 at time T616, and switches the gate control signal from the intermittent gate control signal to the continuous gate control signal. Therefore, the Pch MOSFET 1203 is supplied with a continuous gate control signal. As a result, after time T616, a current I1306 smaller than the current I1301 flowing from time T615 to time T616 flows in the semiconductor laser light source 102, and the melted solder and the soldering portion 415a are heated.
  • the step of melting the solder balls 201 (between time T615 and time T616), it is necessary to provide the solder balls 201 with a heat quantity necessary for the solder balls 201 cooled to room temperature to become liquid.
  • a strong laser beam is continuously irradiated to the solder ball 201, unevenness occurs in heat transfer, and a state occurs in which a part of the solder ball 201 is melted but a part is not melted. sell. Therefore, in order to uniformly transmit the heat of the laser beam to the entire solder ball 201, the pulse-like strong laser beam is intermittently (intermittently) applied to the solder ball 201.
  • the irradiation time T1302 of the pulsed laser light is set to 10-50 mmsec
  • the time interval T1303 between pulses and pulses is set to 10-20 mmsec
  • the intensity of the pulsed laser light is set to 15-25 W.
  • the above-mentioned pulse interval, the number of pulses, and the intensity of the pulsed laser light are one example, and may be changed according to various conditions such as the material characteristics of the used solder, the flying distance of the melted solder, and the used laser.
  • the irradiation time T1302 can be narrowed to increase the number of pulses, or the pulse number can be reduced to increase the irradiation time T1302, or the pulse time interval T1303 can be changed accordingly or independently. is there.
  • the heating may be excessive and the printed pattern of the printed circuit board may be damaged.
  • a soldering system 401 comprising a laser soldering apparatus 101 and a controller 402 has been disclosed.
  • the soldering system 401 continues heating the molten solder 702 by continuing to irradiate the molten solder 702 with the laser beam B 701 even after the molten solder 702 adheres to the soldering point 415 a. .
  • an alloy of the soldering point 415a and the molten solder 702 is formed, the molten solder 702 is sufficiently wetted to the soldering point 415a, and the molten solder 702 flows to the soldering point 415a by capillary action. And strong and stable soldering is completed.
  • Bus 404, CPU, 405, ROM, 406, RAM, 407, non-volatile storage, 408, input port, 409, output port, 410, timer, 411, object sensor, 412, pressure sensor, 413, stepping motor, 414: Nitrogen gas valve, 415: object to be soldered, 415a: soldering Reference numeral 501 ... D flip flop, 502 ... AND gate, 503 ... comparator, 504 ... laser control unit, 505 ... motor control unit, 506 ... pressure threshold, 507 ... valve control unit, 901 ... solder holder, 1101 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

Provided are a soldering system and a soldering method, whereby solder can be uniformly spread on a to-be-soldered part without damaging a fine soldering target article, and an excellent solder can be achieved. Even after molten solder attaches to the to-be-soldered part, the molten solder is continuously heated by continuously irradiating the molten solder with a semiconductor laser. As a result of the above treatment, an alloy of the to-be-soldered part and the molten solder is formed, the molten solder sufficiently wets the to-be-soldered part, and the molten solder flows to the to-be-soldered part by means of a capillary action.

Description

はんだ付けシステム及びはんだ付け方法Soldering system and method
 本発明は、レーザを用いたはんだ付けシステム及びはんだ付け方法に関する。 The present invention relates to a soldering system and method using a laser.
 近年、電子デバイスの小型化に伴い、多くの電子回路部品には表面実装部品(SMD:Surface Mount Device)が多用されている。SMDをプリント基板にはんだ付けする際には、リフロー方式が主流となっている。SMDが実装される基板は、銅箔で形成されるプリントパターンが表側に設けられ、そのプリントパターンの上にSMDが載置される。そして、SMDとプリントパターンの接触部分にクリームはんだが塗布された上で、リフロー炉で加熱される。短時間にハンダが溶ける温度にまで温度が上昇することによって、クリームはんだが溶けることで、はんだ付けが完了する。 2. Description of the Related Art In recent years, with the miniaturization of electronic devices, surface mount devices (SMDs) have been widely used for many electronic circuit components. When soldering an SMD to a printed circuit board, the reflow method has become mainstream. The substrate on which the SMD is mounted has a printed pattern formed of copper foil on the front side, and the SMD is mounted on the printed pattern. Then, after the cream solder is applied to the contact portion between the SMD and the print pattern, it is heated in a reflow furnace. By raising the temperature to a temperature at which the solder melts in a short time, the solder paste is melted by melting the cream solder.
 リフロー炉によるリフロー方式はんだ付けは、プリント基板の表面にSMDが平面的に載置されるので、はんだ付けされる箇所も平面的である。よって、はんだは加熱されるとはんだ付けされる箇所に対して平面的に広がる。しかし、部品やモジュール等の形状によっては、はんだ付けされる箇所が平面的でないために、リフロー方式が使えない場合がある。 In the reflow method soldering by the reflow furnace, since the SMD is placed flatly on the surface of the printed circuit board, the place to be soldered is also flat. Therefore, when the solder is heated, the solder spreads in a plane with respect to the portion to be soldered. However, depending on the shape of parts, modules, etc., the reflow method may not be able to be used because the place to be soldered is not flat.
 図14は、携帯電話やスマートフォン等に組み込まれる、CMOSイメージセンサ1401を概略的に示す外観斜視図である。
 カメラモジュールとも呼ばれるCMOSイメージセンサ1401は、対物レンズ1402に図示しないボイスコイルモータが組み込まれており、ボイスコイルモータを駆動制御することで、フォーカス制御が行われる。ボイスコイルモータに印加される制御電流は、他の電子回路にとってノイズとなり、EMI(Electromagnetic Interference)等の悪影響を及ぼす。このため、ボイスコイルモータを含むレンズ等の部品を金属製のカバー1403で覆い、カバー1403を接地ノードに接続する必要がある。
FIG. 14 is an external perspective view schematically showing a CMOS image sensor 1401 incorporated in a mobile phone, a smartphone or the like.
In the CMOS image sensor 1401 also called a camera module, a voice coil motor (not shown) is incorporated in the objective lens 1402, and focus control is performed by drive control of the voice coil motor. The control current applied to the voice coil motor causes noise to other electronic circuits and adversely affects electromagnetic interference (EMI). For this reason, it is necessary to cover parts, such as a lens including a voice coil motor, with a metal cover 1403 and connect the cover 1403 to a ground node.
 図14に示すように、金属製のカバー1403は、フレキシブルプリント基板1404の接地ノード端子1405にはんだ付けされる。しかし、この金属製のカバー1403とフレキシブルプリント基板1404との接触部分は、凡そ90°の角度が形成されており、立体的な位置関係を有する。また、カバー1403内部に形成される回路の信号端子1406とフレキシブルプリント基板1404の信号端子1407との間にも信号線を形成するためのはんだ付けが必要であり、このはんだ付けの箇所も凡そ90°の角度が形成されている。
 このように、はんだ付けされる部材同士に急峻な角度が形成され、立体的な位置関係を有する場合、溶融したはんだがはんだ付けの箇所に均等に広がらないので、リフロー炉を用いたはんだ付けがほぼ不可能である。また、CMOSイメージセンサ1401のようにはんだ付けされる箇所が角度を有する場合でなくとも、はんだ付けしようとする部品やモジュール等の一部に、高温に弱い材料が使用されている場合、リフロー炉を用いるとその材料が高熱で破壊されてしまい、目的とする部品やモジュールを作成することができない。
 こういった、リフロー方式を適用できない部品やモジュールのはんだ付けに、レーザはんだ付け装置が用いられる。
As shown in FIG. 14, the metal cover 1403 is soldered to the ground node terminal 1405 of the flexible printed circuit 1404. However, the contact portion between the metal cover 1403 and the flexible printed circuit 1404 has an angle of approximately 90 °, and has a three-dimensional positional relationship. Also, it is necessary to solder between the signal terminal 1406 of the circuit formed inside the cover 1403 and the signal terminal 1407 of the flexible printed circuit 1404 to form a signal line, and the location of this soldering is also approximately 90. An angle of ° is formed.
As described above, when steep angles are formed between the members to be soldered and the three-dimensional positional relationship is established, the molten solder does not spread evenly to the portions to be soldered, so the soldering using the reflow furnace is It is almost impossible. Also, even if the location to be soldered is not angled as in the CMOS image sensor 1401, if a material susceptible to high temperature is used for a part such as a part or module to be soldered, a reflow furnace When using the material, the material is destroyed by high heat, and it is not possible to create the intended part or module.
A laser soldering apparatus is used to solder parts and modules to which the reflow method can not be applied.
 なお、本発明に近いと思われる技術が開示されている先行技術文献を、特許文献1及び特許文献2に示す。
 特許文献1には、レーザを用いたはんだボール接合装置(レーザはんだ付け装置)の技術が開示されている。このはんだボール接合装置は、ほぼ垂直関係の位置にある二つのはんだ付け対象部材をはんだボール接合によって接合するため、先ずはんだボールを正確に位置決めし、ほぼ互いに垂直関係に位置するはんだ付け対象部材に安定した状態ではんだボールを載置する。しかる後レーザ照射によりはんだボールを溶融して、はんだ付けする。
 特許文献2には、レーザ照射型はんだ接合装置(レーザはんだ付け装置)の技術が開示されている。このレーザ照射型はんだ接合装置は、はんだ供給装置からレーザビームの光路に糸はんだを供給し、溶融したはんだボールを形成する。そしてコンプレッサからヘッド内に圧縮ガスを供給し、小孔から溶融したはんだボールを吹き付ける。接合箇所に吹き付けたはんだボールに対し、小孔から出射したレーザビームを照射する。
Patent documents 1 and 2 disclose prior art documents in which a technique considered to be close to the present invention is disclosed.
Patent Document 1 discloses the technology of a solder ball bonding apparatus (laser soldering apparatus) using a laser. In this solder ball bonding apparatus, in order to bond two members to be soldered in a substantially vertical position by solder ball bonding, the solder balls are first accurately positioned, and the members to be soldered are positioned substantially in a vertical relation to each other. Place the solder ball in a stable condition. Thereafter, the solder balls are melted by laser irradiation and soldered.
Patent Document 2 discloses the technology of a laser irradiation type solder bonding apparatus (laser soldering apparatus). This laser irradiation type solder bonding apparatus supplies a wire solder from the solder supply apparatus to the optical path of the laser beam to form a melted solder ball. Then, compressed gas is supplied from the compressor into the head, and molten solder balls are sprayed from the small holes. The laser beam emitted from the small hole is irradiated to the solder ball sprayed to the joint portion.
特開2002-45962号公報JP, 2002-45962, A 特開平06-23530号公報Japanese Patent Application Laid-Open No. 06-23530
 しかしながら、この特許文献1記載の技術を極小な部品等に適用しようとしたところ、次に記すような現象が発生することが判明した。はんだボールをレーザで溶かすと、レーザによって溶融したはんだが、はんだ付け対象部材の空間部分に垂れたような状態で冷え固まってしまう。このため、はんだ付け対象部材へのはんだの供給が十分でなく、確実な接続に懸念が残る、という問題が生じる。
 また、従来技術のレーザ溶接装置に使用されるYAGレーザ等の固体レーザは、はんだに使用すると熱エネルギーが強すぎる。更に、固体レーザはパワー制御が極めて難しい。このため、微小なはんだ付けの対象物品である部品やプリント基板を損傷する可能性が高い。
However, when the technique described in Patent Document 1 is applied to a minimal part or the like, it has been found that the following phenomenon occurs. When the solder balls are melted by a laser, the solder melted by the laser cools and solidifies in a state of being dropped in the space portion of the member to be soldered. For this reason, the problem that the supply of the solder to a soldering object member is not enough, and a concern remains in a reliable connection arises.
Also, solid-state lasers such as YAG lasers used in prior art laser welding devices have too much thermal energy when used in solder. Furthermore, solid lasers are extremely difficult to control power. For this reason, there is a high possibility of damaging parts and printed circuit boards which are objects to be minutely soldered.
 本発明は係る状況に鑑みてなされたものであり、微小なはんだ付け対象物品を損傷せず、はんだ付けの箇所に均等に広がり、良好なはんだ付けを完遂できる、はんだ付けシステム及びはんだ付け方法を提供することを目的とする。 The present invention has been made in view of such a situation, and a soldering system and a soldering method which can spread fine areas to be soldered without damaging the minute object to be soldered and can achieve good soldering. Intended to be provided.
 上記課題を解決するために、本発明のはんだ付けシステムは、はんだ付け装置と制御装置とを有する。
 はんだ付け装置は、はんだホルダと、はんだホルダにはんだを供給するはんだ供給装置と、はんだ付け対象物に近接したはんだを溶融させるためにはんだに所定時間、第一の強度のレーザ光を間欠的に照射する半導体レーザ光源と、溶融したはんだをはんだホルダから射出するための圧力ガスをはんだホルダに対し注入を制御するためのガスバルブと、はんだホルダにおける圧力ガスの圧力を検出する圧力センサとを具備する。
 制御装置は、はんだがはんだホルダに到達した後、圧力センサからはんだ付け装置内部の圧力が所定の値に達したことを検出して半導体レーザ光源をオン制御すると共にガスバルブを閉じる制御を行い、はんだがはんだホルダから射出された後、はんだに第一の強度よりも弱い第二の強度のレーザ光を所定時間連続して照射し、その後半導体レーザ光源をオフ制御すると共にガスバルブを開く制御を行う。
In order to solve the above-mentioned subject, a soldering system of the present invention has a soldering device and a control device.
The soldering apparatus comprises a solder holder, a solder supply apparatus for supplying solder to the solder holder, and laser light of a first intensity intermittently for a predetermined time to melt the solder in proximity to the object to be soldered for a predetermined time. A semiconductor laser light source for irradiating, a gas valve for controlling injection of pressure gas for injecting molten solder from the solder holder to the solder holder, and a pressure sensor for detecting pressure of pressure gas in the solder holder .
After the solder reaches the solder holder, the control device detects from the pressure sensor that the pressure inside the soldering device has reached a predetermined value, performs on control of the semiconductor laser light source, and performs control of closing the gas valve. After being ejected from the solder holder, the solder is continuously irradiated with laser light of a second intensity which is weaker than the first intensity for a predetermined time, and then the semiconductor laser light source is turned off and the gas valve is opened.
 本発明により、微小なはんだ付け対象物品を損傷せず、良好な濡れ性を以てはんだ付けを完遂できる、はんだ付け装置及びはんだ付け方法を提供することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, it is possible to provide a soldering apparatus and a soldering method that can complete soldering with good wettability without damaging minute objects to be soldered.
Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.
本発明の実施形態に係る、レーザはんだ付け装置の概略的な正面図である。1 is a schematic front view of a laser soldering apparatus according to an embodiment of the present invention. はんだローラの拡大図である。It is an enlarged view of a solder roller. はんだホルダの先端部分の構造を示す模式断面図である。It is a schematic cross section which shows the structure of the front-end | tip part of a solder holder. はんだ付けシステムの全体構成と、レーザはんだ付け装置を制御する制御装置のハードウェアの構成を示すブロック図である。It is a block diagram which shows the whole structure of a soldering system, and the structure of the hardware of the control apparatus which controls a laser soldering apparatus. 制御装置のソフトウェアの機能を示すブロック図である。It is a block diagram which shows the function of the software of a control apparatus. 制御装置によって制御されるレーザはんだ付け装置の、種々の状態を示すタイムチャートである。It is a time chart which shows various states of a laser soldering device controlled by a control device. はんだボールに半導体レーザが照射された直後の状態と、はんだボールが半導体レーザによって溶融し、吐出口から吐出された直後の状態を示す、はんだホルダとはんだ付け対象物の一部を拡大した模式断面図である。A schematic cross-sectional view enlarging a part of the solder holder and the object to be soldered, showing a state immediately after the semiconductor ball is irradiated with the semiconductor laser and a state immediately after the solder ball is melted by the semiconductor laser and discharged from the discharge port. FIG. 溶融はんだに対して半導体レーザの照射が継続され、溶融はんだがはんだ付け対象物のはんだ付け箇所に対して充分に濡れた状態を示す、はんだホルダとはんだ付け対象物の一部を拡大した模式断面図である。The section of the solder holder and part of the object to be soldered is enlarged, in which the irradiation of the semiconductor laser is continued to the molten solder and the molten solder fully wets the soldering portion of the object to be soldered FIG. 本発明の変形例に係るレーザはんだ付け装置を用いて、はんだボールに半導体レーザが照射された直後の状態と、はんだボールが半導体レーザによって溶融して溶融はんだに変化した直後の状態を示す、はんだホルダとはんだ付け対象物の一部を拡大した模式断面図である。Solder that shows a state immediately after the semiconductor ball is irradiated to the solder ball and a state immediately after the solder ball is melted by the semiconductor laser and changed to molten solder by using the laser soldering apparatus according to the modification of the present invention It is a schematic cross section which expanded a holder and a part of soldering object. 溶融はんだに対して半導体レーザの照射が継続され、溶融はんだがはんだ付け対象物のはんだ付け箇所に対して充分に濡れた状態を示す、はんだホルダとはんだ付け対象物の一部を拡大した模式断面図である。The section of the solder holder and part of the object to be soldered is enlarged, in which the irradiation of the semiconductor laser is continued to the molten solder and the molten solder fully wets the soldering portion of the object to be soldered FIG. 本発明の第二の変形例に係るレーザはんだ付け装置の、制御装置に追加される機能ブロックを示すブロック図である。It is a block diagram which shows the functional block added to the control apparatus of the laser soldering apparatus based on the 2nd modification of this invention. 本発明の第二の変形例に係るレーザはんだ付け装置の、ゲート制御部及びレーザ駆動部のブロック図及び回路図である。It is a block diagram and circuit diagram of a gate control part and a laser drive part of laser soldering device concerning the 2nd modification of the present invention. レーザ制御部が出力する制御信号と、ゲート制御部が出力する参照電圧切替信号のタイムチャートと、ゲート制御信号の電圧波形と、半導体レーザ光源に流れる電流の波形を示す図である。FIG. 7 is a diagram showing a time chart of a control signal output by a laser control unit, a reference voltage switching signal output by a gate control unit, a voltage waveform of a gate control signal, and a waveform of current flowing in a semiconductor laser light source. 携帯電話やスマートフォン等に組み込まれる、CMOSイメージセンサを概略的に示す外観斜視図である。It is an appearance perspective view showing roughly a CMOS image sensor built in a mobile phone, a smart phone, etc.
 [レーザはんだ付け装置の外観]
 図1は、本発明の実施形態に係る、レーザはんだ付け装置101の概略的な正面図である。
 図1に示すように、レーザはんだ付け装置101には、半導体レーザ光源102が取り付けられたレーザ鏡筒103を有する。レーザ鏡筒103の先端には第一反射鏡104がレーザ鏡筒103の長手方向に対して45°の傾きで内蔵されている。更に、本体部105には第二反射鏡106が第一反射鏡104と同じ傾きで内蔵されており、第一反射鏡104によって反射されたレーザ光を本体部105の先端にあるはんだホルダ107が保持するはんだボール201(図2参照)に照射するように構成されている。レーザはんだ付け装置101は、はんだ付け対象物415(図4参照)に均一な量のはんだを与えるために、粒径が均一なはんだボール201を採用する。
 本発明の実施形態に係るレーザはんだ付け装置101は、従来技術の高出力な固体レーザに代えて、より出力が低くはんだ付けに適した、500nm以下の波長の可視光を発光する青色半導体レーザを採用している。
[Appearance of laser soldering apparatus]
FIG. 1 is a schematic front view of a laser soldering apparatus 101 according to an embodiment of the present invention.
As shown in FIG. 1, the laser soldering apparatus 101 has a laser barrel 103 to which a semiconductor laser light source 102 is attached. A first reflecting mirror 104 is incorporated at the tip of the laser barrel 103 at an inclination of 45 ° with respect to the longitudinal direction of the laser barrel 103. Furthermore, in the main body portion 105, the second reflecting mirror 106 is incorporated at the same inclination as the first reflecting mirror 104, and the solder holder 107 at the tip of the main body portion 105 has the laser light reflected by the first reflecting mirror 104. It is comprised so that it may irradiate to the solder ball 201 (refer FIG. 2) to hold | maintain. The laser soldering apparatus 101 employs solder balls 201 having a uniform particle size to provide a uniform amount of solder to the object to be soldered 415 (see FIG. 4).
A laser soldering apparatus 101 according to an embodiment of the present invention is a blue semiconductor laser that emits visible light with a wavelength of 500 nm or less, which has a lower output and is suitable for soldering, instead of a high-output solid laser of the prior art. It is adopted.
 レーザはんだ付け装置101の本体部105の先端には、略円錐形状のはんだホルダ107が設けられている。はんだホルダ107は中空形状であり、その先端は溶融したはんだボール201を吐出するための穴を有する。はんだホルダ107の詳細については図3以降で詳述する。
 はんだホルダ107はホルダ保持部108に取り付けられる。ホルダ保持部108もまた略円錐形状であり、はんだ供給装置109から延びる導管110が接続されている。また、圧縮された窒素ガス(圧力ガス)が供給されるガス導入口111が設けられ、図示しない圧縮ガス導入機構が窒素ガスバルブ(図4参照)を通じて接続される。更に、はんだホルダ107には図示しない圧力センサ412(図4参照)が封入されており、窒素ガスの気圧を計測して、窒素ガスの気圧を示すデジタルデータを出力する。
 窒素ガスは、溶融したはんだボール201をはんだホルダ107から吐出するための圧力を与えると共に、溶融したはんだの酸化を防ぐために用いられる。
A substantially conical solder holder 107 is provided at the tip of the main body portion 105 of the laser soldering apparatus 101. The solder holder 107 is hollow and its tip has a hole for discharging the molten solder ball 201. Details of the solder holder 107 will be described in detail with reference to FIG.
The solder holder 107 is attached to the holder holding portion 108. The holder holder 108 is also generally conical in shape, to which a conduit 110 extending from the solder feeder 109 is connected. Further, a gas inlet 111 to which compressed nitrogen gas (pressure gas) is supplied is provided, and a compressed gas introduction mechanism (not shown) is connected through a nitrogen gas valve (see FIG. 4). Further, a pressure sensor 412 (see FIG. 4) (not shown) is enclosed in the solder holder 107, measures the pressure of nitrogen gas, and outputs digital data indicating the pressure of nitrogen gas.
Nitrogen gas is used to provide pressure for discharging the molten solder ball 201 from the solder holder 107 and to prevent oxidation of the molten solder.
 なお、レーザはんだ付け装置101には、図示しない上下駆動機構が設けられている。上下駆動機構は、図7以降で後述するはんだ付け工程において、図示しないベルトコンベア等の移送機構によってはんだ付け対象物415の、はんだ付け箇所415a(図7参照)がはんだホルダ107の直下に到達したら、レーザはんだ付け装置101を下方向に駆動して、はんだホルダ107をはんだ付け対象物415のはんだ付け対象箇所に近接させる。そして、はんだ付けの処理が完遂したらレーザはんだ付け装置101を上方向に駆動して、はんだホルダ107をはんだ付け対象物415から離間させる。 The laser soldering apparatus 101 is provided with a vertical driving mechanism (not shown). In the upper and lower drive mechanism, when the soldering point 415a (see FIG. 7) of the object 415 to be soldered reaches a position directly below the solder holder 107 by a transfer mechanism such as a belt conveyor (not shown) The laser soldering apparatus 101 is driven downward to bring the solder holder 107 close to the soldering target portion of the soldering object 415. Then, when the soldering process is completed, the laser soldering apparatus 101 is driven upward to separate the solder holder 107 from the object 415 to be soldered.
 [はんだローラ113の構造]
 はんだ供給装置109は、はんだボールタンク112と、はんだローラ113と、導管110を有する。また、導管110の途中には金属検出センサで構成されるはんだ通過センサ114が設置されており、はんだ通過センサ114ははんだボール201が導管110を通過したことを検出する。
 図2は、はんだローラ113の拡大図である。なお、参考のためにはんだボール201も図示している。
 はんだローラ113は、円盤の円周にはんだボール201の大きさより僅かに大きい窪み113aが、90°ずつ4箇所に設けられている。はんだローラ113は図示しないステッピングモータによって回転駆動される。すると、窪み113aにはんだボール201が1個嵌まり込み、窪み113aが真下に到達すると、はんだボール201が落ちて導管110へ導かれる。なお、はんだローラ113に設けられる窪み113aの数は必ずしも4箇所である必要はなく、任意である。
[Structure of Solder Roller 113]
The solder supply device 109 includes a solder ball tank 112, a solder roller 113, and a conduit 110. In addition, a solder passage sensor 114 configured of a metal detection sensor is installed in the middle of the conduit 110, and the solder passage sensor 114 detects that the solder ball 201 has passed through the conduit 110.
FIG. 2 is an enlarged view of the solder roller 113. The solder ball 201 is also shown for reference.
In the solder roller 113, depressions 113a slightly larger than the size of the solder balls 201 are provided at four positions of 90 ° on the circumference of the disk. The solder roller 113 is rotationally driven by a stepping motor (not shown). Then, one solder ball 201 fits into the recess 113 a, and when the recess 113 a reaches directly below, the solder ball 201 falls and is led to the conduit 110. The number of depressions 113 a provided in the solder roller 113 is not necessarily four, and is arbitrary.
 [はんだホルダ107の構造]
 図3は、はんだホルダ107の先端部分の構造を示す模式断面図である。はんだホルダ107はアルミニウム合金、ステンレス、ニッケル、黄銅、真鍮、またはクロムメッキされた金属等、あるいはセラミック等、はんだ濡れ性が低く、はんだが付着しにくく、また溶融したはんだの高温にも耐えうる物質で形成される。
 略円錐形状のはんだホルダ107の内部には、先端に向かって細くなるテーパ状空間107aが形成されている。この空間のテーパ状空間107aの内壁は、はんだボール201を確実にはんだホルダ107の先端へ導く。
 テーパ状空間107aの先端は一定の太さになる円筒状空間107bが形成されている。更に円筒状空間107bの先端ははんだボール201に当接するはんだ係止部107cが形成される。はんだ係止部107cには円筒状の穴である吐出口107dが開けられており、この吐出口107dから溶融したはんだが吐出される。
[Structure of Solder Holder 107]
FIG. 3 is a schematic cross-sectional view showing the structure of the tip portion of the solder holder 107. As shown in FIG. The solder holder 107 is a material such as aluminum alloy, stainless steel, nickel, brass, brass or chrome plated metal, ceramic or the like, which has low solder wettability, is less likely to adhere to solder, and can withstand high temperature of molten solder. It is formed by
Inside the substantially conical solder holder 107, a tapered space 107a which is tapered toward the tip is formed. The inner wall of the tapered space 107 a in this space reliably guides the solder ball 201 to the tip of the solder holder 107.
The tip end of the tapered space 107a is formed with a cylindrical space 107b having a fixed thickness. Further, the tip of the cylindrical space 107 b is formed with a solder retaining portion 107 c that abuts on the solder ball 201. A discharge port 107d which is a cylindrical hole is opened in the solder retaining portion 107c, and the melted solder is discharged from the discharge port 107d.
 はんだボール201の直径をSR、吐出口107dの直径をD1、円筒状空間107bの直径をD2とすると、以下の不等式に示す関係を有する。
 D1<SR<D2
 このため、導管110を通じてはんだホルダ107に落とし込まれたはんだボール201は、はんだホルダ107内のテーパ状空間107aにおいて、その内壁に滑り込むように円筒状空間107bに嵌まり込み、はんだ係止部107cではんだホルダ107に留め置かれる。はんだボール201がはんだ係止部107cに到達すると、吐出口107dははんだボール201によって塞がれる。
Assuming that the diameter of the solder ball 201 is SR, the diameter of the discharge port 107d is D1, and the diameter of the cylindrical space 107b is D2, the relationship shown by the following inequality is satisfied.
D1 <SR <D2
Therefore, the solder ball 201 dropped into the solder holder 107 through the conduit 110 is fitted into the cylindrical space 107b so as to slide in the inner wall in the tapered space 107a in the solder holder 107, and the solder locking portion 107c At the solder holder 107. When the solder ball 201 reaches the solder locking portion 107 c, the discharge port 107 d is closed by the solder ball 201.
 [はんだ付けシステム401の全体構成及び制御装置のハードウェア構成]
 図4は、はんだ付けシステム401の全体構成と、レーザはんだ付け装置101を制御する制御装置402のハードウェアの構成を示すブロック図である。
 はんだ付けシステム401は、レーザはんだ付け装置101と制御装置402で構成される。
 周知のマイコンである制御装置402は、バス403に接続された、CPU404、ROM405、RAM406、電気的に書き換え可能なフラッシュメモリ等の不揮発性ストレージ407、入力ポート408、出力ポート409、そしてタイマ410を備える。不揮発性ストレージ407にはマイコンを制御装置402として稼働させるための制御プログラムが格納されている。なお、フラッシュメモリを用いてROM405と不揮発性ストレージ407を兼用してもよい。
 また、制御装置402はマイコンに限らず、適切なインターフェースを設けたパソコンでもよい。
[Overall Configuration of Soldering System 401 and Hardware Configuration of Control Device]
FIG. 4 is a block diagram showing the overall configuration of the soldering system 401 and the hardware configuration of the control unit 402 that controls the laser soldering apparatus 101. As shown in FIG.
The soldering system 401 comprises a laser soldering apparatus 101 and a controller 402.
The control device 402, which is a well-known microcomputer, includes a CPU 404, a ROM 405, a RAM 406, a non-volatile storage 407 such as an electrically rewritable flash memory, an input port 408, an output port 409, and a timer 410 connected to a bus 403. Prepare. The non-volatile storage 407 stores a control program for operating the microcomputer as the control device 402. Note that the flash memory may be used as the ROM 405 and the non-volatile storage 407.
Further, the control device 402 is not limited to a microcomputer, and may be a personal computer provided with an appropriate interface.
 入力ポート408には、レーザはんだ付け装置101の近傍に設けられ、フォトインタラプタ等で構成される対象物センサ411と、はんだボール201が導管110を通過したことを検出するはんだ通過センサ114と、レーザはんだ付け装置101内部の窒素ガスの圧力を測定する圧力センサ412が接続される。
 出力ポート409には、はんだローラ113を回転駆動するステッピングモータ413と、レーザはんだ付け装置101内部に窒素ガスの注入を制御する窒素ガスバルブ414(ガスバルブ)と、レーザ鏡筒103に組み込まれている半導体レーザ光源102が接続される。
 すなわち制御装置402は、対象物センサ411ではんだ付け対象物415の存在を検出して、はんだ通過センサ114ではんだボール201の正常な供給を検出して、圧力センサ412で窒素ガスの圧力を測定する。
 また制御装置402は、ステッピングモータ413を回転駆動してはんだボール201をはんだホルダ107へ供給し、窒素ガスバルブ414を制御して適切なタイミングでレーザはんだ付け装置101に窒素ガスを注入し、半導体レーザ光源102を制御して適切なタイミングではんだボール201を溶融させる。
The input port 408 is provided in the vicinity of the laser soldering apparatus 101, and includes an object sensor 411 constituted by a photo interrupter or the like, a solder passage sensor 114 detecting that the solder ball 201 has passed through the conduit 110, and a laser A pressure sensor 412 is connected to measure the pressure of nitrogen gas inside the soldering apparatus 101.
The output port 409 includes a stepping motor 413 for rotationally driving the solder roller 113, a nitrogen gas valve 414 (gas valve) for controlling the injection of nitrogen gas into the laser soldering apparatus 101, and a semiconductor incorporated in the laser lens barrel 103. A laser light source 102 is connected.
That is, the control device 402 detects the presence of the soldering object 415 by the object sensor 411, detects the normal supply of the solder ball 201 by the solder passage sensor 114, and measures the pressure of nitrogen gas by the pressure sensor 412. Do.
Further, the control device 402 rotationally drives the stepping motor 413 to supply the solder balls 201 to the solder holder 107, controls the nitrogen gas valve 414, injects nitrogen gas into the laser soldering apparatus 101 at an appropriate timing, and The light source 102 is controlled to melt the solder ball 201 at an appropriate timing.
 [制御装置402のソフトウェア機能]
 図5は、制御装置402のソフトウェアの機能を示すブロック図である。
 対象物センサ411が出力する論理信号は、Dフリップフロップ(以下「D-FF」と略、図5の表記も同じ)501のCp入力端子に供給される。
 はんだ通過センサ114が出力する論理信号は、D-FF501のR入力端子に供給される。
 D-FF501のD入力端子は論理の真を示す論理信号ノードに接続されており、常に論理の真の状態である。
 すなわち、D-FF501は対象物センサ411の出力信号のアップエッジを論理の真の論理信号に変換して出力し、はんだ通過センサ114が論理の真の論理信号を出力したことによって論理の偽の論理信号を出力する。対象物センサ411の出力信号のアップエッジとは、新たなはんだ付け対象物415の到着を対象物センサ411が検出したことを示す。
[Software Function of Controller 402]
FIG. 5 is a block diagram showing the function of software of the control device 402. As shown in FIG.
The logic signal output from the object sensor 411 is supplied to the Cp input terminal of a D flip flop (hereinafter, abbreviated as “D-FF” and the same as FIG. 5).
The logic signal output from the solder passage sensor 114 is supplied to the R input terminal of the D-FF 501.
The D input terminal of the D-FF 501 is connected to the logic signal node indicating the logic true, and is always in the logic true state.
That is, the D-FF 501 converts the up edge of the output signal of the object sensor 411 into a logic true logic signal and outputs it, and the solder passage sensor 114 outputs a logic true logic signal, thereby causing the logic false. Output logic signal. The up edge of the output signal of the object sensor 411 indicates that the object sensor 411 has detected the arrival of a new soldering object 415.
 D-FF501のQ出力端子から出力される論理信号は、タイマ410の論理信号と共にANDゲート502の入力に接続される。
 タイマ410は後述するコンパレータ503の出力信号から計時を始め、所定時間を計時すると後述するレーザ制御部504をオフ制御する論理信号を出力する。したがって、ANDゲート502の出力信号は、半導体レーザ光源102がオフ制御されている状態において、新たなはんだ付け対象物415がはんだホルダ107の直下に到着したことを対象物センサ411が検出した時に、論理の真を示す信号を出力する。
 ANDゲート502の出力信号は、はんだ通過センサ114が出力する論理信号と共にモータ制御部505に入力される。
The logic signal output from the Q output terminal of the D-FF 501 is connected to the input of the AND gate 502 together with the logic signal of the timer 410.
The timer 410 starts clocking from an output signal of a comparator 503 described later, and outputs a logic signal for turning off a laser control unit 504 described later when a predetermined time is counted. Therefore, the output signal of the AND gate 502 is detected when the object sensor 411 detects that the new soldering object 415 has arrived immediately below the solder holder 107 while the semiconductor laser light source 102 is controlled to be off. Output a signal indicating the logic true.
The output signal of the AND gate 502 is input to the motor control unit 505 together with the logic signal output from the solder passage sensor 114.
 モータ制御部505は、ANDゲート502の出力信号が論理の真になったことを受けて、ステッピングモータ413を90°回転させるステッピングパルスを出力する。そして、モータ制御部505に内蔵されているタイマが規定する時間内にはんだ通過センサ114の出力信号が論理の真になったら、動作を停止する。
 もし、モータ制御部505に内蔵されているタイマが規定する時間内にはんだ通過センサ114の出力信号が論理の真にならなかった場合、それははんだローラ113がはんだボール201の投入に失敗したことを示す。そこで、再度、ステッピングモータ413を90°回転させるステッピングパルスを出力する。
In response to the output signal of the AND gate 502 becoming logical true, the motor control unit 505 outputs a stepping pulse for rotating the stepping motor 413 by 90 °. Then, when the output signal of the solder passage sensor 114 becomes logic true within the time defined by the timer built in the motor control unit 505, the operation is stopped.
If the output signal of the solder passage sensor 114 does not become logic true within the time specified by the timer built in the motor control unit 505, it means that the solder roller 113 has failed to put the solder ball 201. Show. Therefore, a stepping pulse for rotating the stepping motor 413 by 90 ° is output again.
 圧力センサ412の圧力を示すデータは、圧力閾値を示すデータと共にデジタルのコンパレータ503に入力される。コンパレータ503は、圧力センサ412が検出する窒素ガスの圧力が圧力閾値506を越えた時に、論理の真を出力する。
 タイマ410の出力信号は、コンパレータ503が出力する論理信号と共にバルブ制御部507に入力される。
 バルブ制御部507は、タイマ410の出力信号が論理の真になったことを受けて、窒素ガスバルブ414を開ける制御信号を出力する。そして、コンパレータ503の出力信号が論理の真になったことを受けて、窒素ガスバルブ414を閉じる制御信号を出力する。
Data indicative of the pressure of the pressure sensor 412 is input to the digital comparator 503 together with data indicative of the pressure threshold. The comparator 503 outputs logic true when the pressure of nitrogen gas detected by the pressure sensor 412 exceeds the pressure threshold 506.
The output signal of the timer 410 is input to the valve control unit 507 together with the logic signal output from the comparator 503.
The valve control unit 507 outputs a control signal for opening the nitrogen gas valve 414 in response to the output signal of the timer 410 becoming logic true. Then, in response to the output signal of the comparator 503 becoming logic true, a control signal for closing the nitrogen gas valve 414 is output.
 コンパレータ503の出力信号は、タイマ410に供給される。タイマ410は、コンパレータ503の出力信号が論理の真になったことを受けて、所定の時間の計時を開始する。そして、所定の時間が経過したら、論理の真を示す出力信号を出力する。
 また、はんだ通過センサ114の出力信号はタイマ410のリセット端子に供給されるので、タイマ410は所定時間を計時した後、はんだ通過センサ114の出力信号が論理の真になったら、リセットされる。
The output signal of the comparator 503 is supplied to the timer 410. The timer 410 starts counting a predetermined time in response to the output signal of the comparator 503 becoming logic true. Then, when a predetermined time has elapsed, an output signal indicating the logic true is output.
Further, since the output signal of the solder passage sensor 114 is supplied to the reset terminal of the timer 410, the timer 410 is reset when the output signal of the solder passage sensor 114 becomes logical true after measuring a predetermined time.
 コンパレータ503の出力信号は、タイマ410が出力する論理信号と共にレーザ制御部504に入力される。
 レーザ制御部504は、コンパレータ503の出力信号が論理の真になったことを受けて、半導体レーザ光源102をオン制御する制御信号を出力する。そして、タイマ410の出力信号が論理の真になったことを受けて、半導体レーザ光源102をオフ制御する制御信号を出力する。
The output signal of the comparator 503 is input to the laser control unit 504 together with the logic signal output from the timer 410.
The laser control unit 504 outputs a control signal to turn on the semiconductor laser light source 102 in response to the output signal of the comparator 503 becoming logic true. Then, in response to the output signal of the timer 410 becoming logic true, a control signal for controlling the semiconductor laser light source 102 to turn off is output.
 バルブ制御部507は、タイマ410の出力信号が論理の真になると窒素ガスバルブ414を開けて、コンパレータ503の出力信号が論理の真になると窒素ガスバルブ414を閉じる。
 レーザ制御部504は、コンパレータ503の出力信号が論理の真になると半導体レーザ光源102をオン制御し、タイマ410の出力信号が論理の真になると半導体レーザ光源102をオフ制御する。
 すなわち、バルブ制御部507が窒素ガスバルブ414へ出力する制御信号と、レーザ制御部504が半導体レーザ光源102へ出力する制御信号とは、論理が逆の関係にある。
The valve control unit 507 opens the nitrogen gas valve 414 when the output signal of the timer 410 becomes logic true and closes the nitrogen gas valve 414 when the output signal of the comparator 503 becomes logic true.
The laser control unit 504 turns on the semiconductor laser light source 102 when the output signal of the comparator 503 becomes logic true, and turns off the semiconductor laser light source 102 when the output signal of the timer 410 becomes logic true.
That is, the control signals output from the valve control unit 507 to the nitrogen gas valve 414 and the control signals output from the laser control unit 504 to the semiconductor laser light source 102 are in reverse logic.
 なお、図5に示すソフトウェア機能ブロック図は一例であり、例えばタイマ410のリセットをはんだボール201検出センサで行う代わりに、タイマ410自身の出力信号を用いて、ANDゲート502の入力やタイマ410の出力等にラッチ機能を用いる等の、様々なバリエーションが考えられる。 The software functional block diagram shown in FIG. 5 is an example, and for example, instead of resetting the timer 410 by the solder ball 201 detection sensor, using the output signal of the timer 410 itself, the input of the AND gate 502 or the timer 410 is Various variations are conceivable, such as using a latch function for output and the like.
 図6は、制御装置402によって制御されるレーザはんだ付け装置101の、種々の状態を示すタイムチャートである。発明者らがレーザはんだ付け装置101で実験を行い、良好なはんだ付けが実現できた際の、タイムチャートを記録したものである。この実験において使用したはんだボール201の直径は0.5mm、青色半導体レーザの出力は6.8Wである。
 図6の波形L601は、はんだローラ113の回転速度である。
 波形L602は、はんだローラ113を回転させるステッピングモータ413の制御信号である。
 波形L603は、はんだ通過センサ114の検出信号である。
 波形L604は、窒素ガスの流量を示す波形である。
 波形L605は、窒素ガスの圧力を示す圧力センサ412の出力信号である。
 波形L606は、半導体レーザ光源102をオン・オフ制御する制御信号である。
 波形L607は、窒素ガスの注入を開閉制御する、窒素ガスバルブ414の制御信号である。
FIG. 6 is a time chart showing various states of the laser soldering apparatus 101 controlled by the controller 402. As shown in FIG. The inventors conducted an experiment with the laser soldering apparatus 101 and recorded a time chart when good soldering could be realized. The diameter of the solder ball 201 used in this experiment is 0.5 mm, and the output of the blue semiconductor laser is 6.8 W.
A waveform L601 in FIG. 6 is the rotational speed of the solder roller 113.
A waveform L602 is a control signal of the stepping motor 413 for rotating the solder roller 113.
A waveform L603 is a detection signal of the solder passage sensor 114.
A waveform L604 is a waveform indicating the flow rate of nitrogen gas.
A waveform L605 is an output signal of the pressure sensor 412 indicating the pressure of nitrogen gas.
A waveform L606 is a control signal for on / off controlling the semiconductor laser light source 102.
A waveform L 607 is a control signal of the nitrogen gas valve 414 which controls opening and closing of the injection of nitrogen gas.
 時刻T611において、窒素ガスバルブ414は開いており、半導体レーザ光源102はオフ制御されている。
 時刻T612において、ANDゲート502が論理の真を出力したことに呼応して、ステッピングモータ413が回転駆動され、はんだローラ113が回転する。
 時刻T613において、はんだ通過センサ114がはんだボール201が導管110を通過したことを検出する。
 時刻T614において、はんだボール201がはんだホルダ107のはんだ係止部107cに嵌まり込み、窒素ガスは吐出口107dから漏れ出なくなる。すると、レーザはんだ付け装置101内部の窒素ガスの圧力が上昇を始める。この時、窒素ガスの流量は吐出口107dがはんだボール201によって塞がれたために、時刻T614以前と比べると僅かに少なくなる。
At time T611, the nitrogen gas valve 414 is open, and the semiconductor laser light source 102 is off.
At time T612, in response to the AND gate 502 outputting logic true, the stepping motor 413 is rotationally driven and the solder roller 113 is rotated.
At time T 613, the solder passage sensor 114 detects that the solder ball 201 has passed through the conduit 110.
At time T614, the solder ball 201 fits into the solder retaining portion 107c of the solder holder 107, and the nitrogen gas does not leak from the discharge port 107d. Then, the pressure of nitrogen gas inside the laser soldering apparatus 101 starts to rise. At this time, the flow rate of nitrogen gas is slightly smaller than that before time T614 because the discharge port 107d is blocked by the solder ball 201.
 時刻T615において、レーザはんだ付け装置101内部の窒素ガスの圧力が圧力閾値506を超えたことをコンパレータ503が検出すると、バルブ制御部507は窒素ガスバルブ414を閉じる制御を行う。すると、レーザはんだ付け装置101内部への窒素ガスの注入は停止される。また、これと同時に、レーザ制御部504は半導体レーザ光源102をオン制御する。この時刻T615において、タイマ410は起動し、所定時間を計時する。
 時刻T616において、半導体レーザ光源102が照射するレーザ光によってはんだボール201は溶融する。すると、レーザはんだ付け装置101内部の窒素ガスの圧力によって、溶融したはんだは吐出口107dから吐出される。その瞬間に、レーザはんだ付け装置101内部の窒素ガスの圧力は急激に減少する。しかし、この時刻T616においても半導体レーザは照射し続けられる。
 時刻T617において、タイマ410が所定時間の経過を検出すると、レーザ制御部504はタイマ410の出力信号に呼応して、半導体レーザ光源102をオフ制御する。そして、半導体レーザ光源102のオフ制御と同時にバルブ制御部507は窒素ガスバルブ414を開ける制御を行う。
At time T615, when the comparator 503 detects that the pressure of nitrogen gas in the laser soldering apparatus 101 exceeds the pressure threshold 506, the valve control unit 507 performs control to close the nitrogen gas valve 414. Then, the injection of nitrogen gas into the laser soldering apparatus 101 is stopped. At the same time, the laser control unit 504 turns on the semiconductor laser light source 102. At time T615, the timer 410 is started and counts a predetermined time.
At time T616, the solder ball 201 is melted by the laser beam emitted by the semiconductor laser light source 102. Then, the melted solder is discharged from the discharge port 107 d by the pressure of the nitrogen gas inside the laser soldering apparatus 101. At that moment, the pressure of nitrogen gas inside the laser soldering apparatus 101 rapidly decreases. However, at time T616, the semiconductor laser continues to be irradiated.
At time T617, when the timer 410 detects that the predetermined time has elapsed, the laser control unit 504 performs off control of the semiconductor laser light source 102 in response to the output signal of the timer 410. Then, at the same time as the off control of the semiconductor laser light source 102, the valve control unit 507 performs control to open the nitrogen gas valve 414.
 [はんだ付けの動作]
 これより、本発明の実施形態に係るレーザはんだ付け装置101における、はんだ付けの動作の流れを説明する。
 図7Aは、はんだボール201にレーザ光B701が照射された直後の状態を示す、はんだホルダ107とはんだ付け対象物415の一部を拡大した模式断面図である。図6の時刻T615における、はんだホルダ107とはんだ付け対象物415の状態である。
 はんだホルダ107は図示しない上下駆動機構によって、はんだ付け対象物415のはんだ付け箇所415aから所定の距離だけ僅かに離れた状態で近接しており、はんだホルダ107の先端ははんだ付け対象物415とは接触していない。はんだホルダ107とはんだ付け対象物415のはんだ付け箇所415aとの離間距離は例えば0.5mm~3mm程度である。
[Soldering behavior]
The flow of the soldering operation in the laser soldering apparatus 101 according to the embodiment of the present invention will now be described.
FIG. 7A is a schematic cross-sectional view showing a part of the solder holder 107 and the object 415 to be soldered, showing a state immediately after the laser light B 701 is irradiated to the solder ball 201. It is the state of the solder holder 107 and the soldering object 415 in time T615 of FIG.
The solder holder 107 is in close proximity to the soldering point 415 a of the object to be soldered 415 by a predetermined distance by a vertical drive mechanism (not shown), and the tip of the solder holder 107 is the object to be soldered Not in touch. The distance between the solder holder 107 and the soldering portion 415a of the object 415 to be soldered is, for example, about 0.5 mm to 3 mm.
 図7Bは、はんだボール201がレーザ光B701によって溶融し、吐出口107dから吐出された直後の状態を示す、はんだホルダ107とはんだ付け対象物415の一部を拡大した模式断面図である。図6の時刻T616における、はんだホルダ107とはんだ付け対象物415の状態である。
 はんだボール201は溶融して溶融はんだ702となり、はんだ付け対象物415のはんだ付け箇所415aに付着している。しかし、この状態では溶融はんだ702がはんだ付け箇所415aの金属と接触しているだけであり、溶融はんだ702が金属の表面と合金を形成する(濡れる)状態には至っていない。
FIG. 7B is a schematic sectional view enlarging a part of the solder holder 107 and the object to be soldered 415, showing a state immediately after the solder ball 201 is melted by the laser beam B701 and discharged from the discharge port 107d. The state of the solder holder 107 and the object 415 to be soldered at time T616 in FIG.
The solder ball 201 melts to form a molten solder 702, and adheres to the soldering point 415 a of the object 415 to be soldered. However, in this state, the molten solder 702 is only in contact with the metal of the soldering point 415a, and the molten solder 702 has not reached the state of forming (wetting) an alloy with the surface of the metal.
 図8は、溶融はんだ702に対してレーザ光B701の照射が継続され、溶融はんだ702がはんだ付け対象物415のはんだ付け箇所415aに対して充分に濡れた状態を示す、はんだホルダ107とはんだ付け対象物415の一部を拡大した模式断面図である。図6の時刻T617における、はんだホルダ107とはんだ付け対象物415の状態である。
 すなわち、本発明の実施形態に係るレーザはんだ付け装置101と制御装置402は、溶融はんだ702がはんだ付け箇所415aに付着した後も、なおレーザ光B701を照射し続ける。この動作は、はんだごてを用いてはんだ付けを行う際、はんだがはんだ付けをしたい箇所によく馴染む様に、はんだが溶けた後もなおはんだごてで加熱し続ける作業工程に等しい。
 はんだボール201を溶融させるだけなら、図6の時刻T615からT616の間だけでも可能である。しかし、溶融はんだ702がはんだ付け箇所415aに付着しても、はんだ付け箇所415aと溶融はんだ702との合金は形成されない。はんだ付け箇所415aと溶融はんだ702との合金が形成され、溶融はんだ702がはんだ付け箇所415aへ十分に濡れて、毛細管現象で溶融はんだ702がはんだ付け箇所415aに流れることで電気的特性が安定するためには、溶融はんだ702とはんだ付け箇所415aを所定時間、所定の温度以上加熱し続ける必要がある。この加熱の継続が、時刻T616からT617の期間である。
FIG. 8 shows that the molten solder 702 continues to be irradiated with the laser beam B 701, and the molten solder 702 is soldered with the solder holder 107, which shows a state in which the molten solder 702 is sufficiently wetted to the soldering portion 415a of the object 415 to be soldered. FIG. 16 is a schematic cross-sectional view in which a part of an object 415 is enlarged. It is the state of the solder holder 107 and the soldering object 415 in time T617 of FIG.
That is, the laser soldering apparatus 101 and the controller 402 according to the embodiment of the present invention continue to irradiate the laser beam B 701 even after the molten solder 702 adheres to the soldering portion 415 a. This operation is equivalent to a process step of continuing heating with the soldering iron even after the solder melts so that when the soldering is performed using a soldering iron, the soldering is well adapted to the portion to be soldered.
As long as the solder balls 201 are only melted, it is possible only between time T615 and time T616 in FIG. However, even if the molten solder 702 adheres to the soldering point 415a, an alloy of the soldering point 415a and the molten solder 702 is not formed. An alloy of the soldering point 415a and the molten solder 702 is formed, the molten solder 702 is sufficiently wetted to the soldering point 415a, and the molten solder 702 flows to the soldering point 415a by capillary action to stabilize the electrical characteristics. For this purpose, it is necessary to continue heating the molten solder 702 and the soldering portion 415a for a predetermined time or more for a predetermined temperature or more. The continuation of this heating is a period from time T616 to time T617.
 加熱を継続する時間は、半導体レーザの種類、半導体レーザの出力、はんだボール201の大きさ、はんだ付け箇所415aの大きさ等で変化するので、はんだ付け対象物415に応じて適宜調整される。一方、従来の固体レーザは加熱の出力が強すぎるため、本発明の実施形態に係るはんだ付けシステム401には適さない。特に、加熱の継続が困難である。
 特に、半導体レーザの種類は青色半導体レーザが好適であることが、発明者らの実験によって判明した。青色半導体レーザは、赤色等の他の色の半導体レーザよりもはんだに対する熱吸収特性が高い。このため、良好なはんだ付けが実現できる。
The time for which the heating is continued varies depending on the type of semiconductor laser, the output of the semiconductor laser, the size of the solder ball 201, the size of the soldering portion 415a, etc. On the other hand, the conventional solid-state laser is not suitable for the soldering system 401 according to the embodiment of the present invention because the output of heating is too strong. In particular, it is difficult to continue heating.
In particular, it has been found by experiments of the inventors that a blue semiconductor laser is preferable as the type of semiconductor laser. The blue semiconductor laser has a higher heat absorbing property to the solder than semiconductor lasers of other colors such as red. Therefore, good soldering can be realized.
 以上説明した実施形態には、以下に記す変形例が可能である。
 (1)以上に説明した本発明の実施形態に係るレーザはんだ付け装置101では、はんだボール201を内部に保持するはんだホルダ107を使用していた。吐出口107dの直径ははんだボール201より小さいため、はんだボール201が溶融しない限りははんだボール201ははんだホルダ107から出られない。
 上述のはんだホルダ107に対し、より簡素な構造のはんだホルダを用いても、半導体レーザを用いたはんだ付けは実現可能である。
 図9Aは、本発明の第一の変形例に係るレーザはんだ付け装置101を用いて、はんだボール201にレーザ光B701が照射された直後の状態を示す、はんだホルダ901とはんだ付け対象物415の一部を拡大した模式断面図である。図6の時刻T615における、はんだホルダとはんだ付け対象物415の状態であり、図7Aに対応する。
The following modifications can be made to the embodiment described above.
(1) The laser soldering apparatus 101 according to the embodiment of the present invention described above uses the solder holder 107 that holds the solder ball 201 inside. Since the diameter of the discharge port 107 d is smaller than the solder ball 201, the solder ball 201 can not come out of the solder holder 107 unless the solder ball 201 is melted.
Soldering using a semiconductor laser can be realized even if a solder holder having a simpler structure is used for the solder holder 107 described above.
FIG. 9A shows a state immediately after the laser beam B 701 is irradiated to the solder ball 201 using the laser soldering apparatus 101 according to the first modified example of the present invention. It is a schematic cross section which expanded a part. The state of the solder holder and the object to be soldered 415 at time T615 in FIG. 6 corresponds to FIG. 7A.
 第一の変形例に係るレーザはんだ付け装置101は、図1から図8にかけて説明した実施形態に係るレーザはんだ付け装置101と、はんだホルダ901の構造のみ異なり、それ以外の部品、機構部分、機能ブロック等は全て実質的に同一であるので、詳細な説明は省略する。
 図9A、図9B及び図10に示すはんだホルダ901は、円筒状空間107bがそのまま吐出口107dとなっており、故にはんだボール201が係止される部位が存在しない。つまり、先端部分に何もあてがわなければ、導管110を通じてはんだホルダ901に導かれたはんだボール201は、先端部分の吐出口107dからそのまま外に飛び出てしまう。
 そこで、図9Aに示すように、はんだホルダ901をはんだ付け対象物415のはんだ付け箇所415aに当接させる。すると、はんだボール201ははんだホルダ901の吐出口107dとはんだ付け箇所415aに囲まれるように固定される。
The laser soldering apparatus 101 according to the first modification differs from the laser soldering apparatus 101 according to the embodiment described with reference to FIGS. 1 to 8 only in the structure of the solder holder 901, and the other parts, mechanism parts, and functions Since all the blocks and the like are substantially the same, detailed description will be omitted.
In the solder holder 901 shown in FIG. 9A, FIG. 9B and FIG. 10, the cylindrical space 107b becomes the discharge port 107d as it is, so there is no part where the solder ball 201 is locked. That is, if nothing is applied to the tip end portion, the solder ball 201 guided to the solder holder 901 through the conduit 110 will jump out from the discharge port 107 d of the tip end portion as it is.
Therefore, as shown in FIG. 9A, the solder holder 901 is brought into contact with the soldering portion 415a of the object 415 to be soldered. Then, the solder ball 201 is fixed so as to be surrounded by the discharge port 107 d of the solder holder 901 and the soldering portion 415 a.
 図9Bは、はんだボール201がレーザ光B701によって溶融して溶融はんだ702に変化した直後の状態を示す、はんだホルダ901とはんだ付け対象物415の一部を拡大した模式断面図である。図6の時刻T616における、はんだホルダ901とはんだ付け対象物415の状態であり、図7Bに対応する。
 図9Aにおいて、はんだボール201ははんだホルダ901の吐出口107dとはんだ付け箇所415aに囲まれるように固定されていた。その状態で、はんだボール201にレーザ光B701を照射すると、はんだボール201は溶融して溶融はんだ702に変化し、はんだ付け箇所415aに付着する。この時、溶融したはんだは自重によってはんだ付け箇所415aに付着するので、窒素ガスで圧力を与える必要はない。
FIG. 9B is a schematic cross-sectional view enlarging a part of the solder holder 901 and the object 415 to be soldered, showing a state immediately after the solder ball 201 is melted by the laser light B 701 and changed to the molten solder 702. The state of the solder holder 901 and the object to be soldered 415 at time T616 in FIG. 6 corresponds to FIG. 7B.
In FIG. 9A, the solder ball 201 is fixed so as to be surrounded by the discharge port 107 d of the solder holder 901 and the soldering portion 415 a. In this state, when the solder ball 201 is irradiated with the laser beam B701, the solder ball 201 is melted to be changed into the molten solder 702, and adheres to the soldering point 415a. At this time, since the molten solder adheres to the soldering portion 415a by its own weight, it is not necessary to apply a pressure with nitrogen gas.
 図10は、溶融はんだ702に対してレーザ光B701の照射が継続され、溶融はんだ702がはんだ付け対象物415のはんだ付け箇所415aに対して充分に濡れた状態を示す、はんだホルダ901とはんだ付け対象物415の一部を拡大した模式断面図である。図6の時刻T616から時刻T617に至る途中における、はんだホルダ901とはんだ付け対象物415の状態である。
 図9Bにおいて、はんだボール201にレーザ光B701を照射したことによってはんだボール201は溶融して溶融はんだ702に変化し、はんだ付け箇所415aに付着した。はんだボール201が溶融したらすぐにレーザはんだ付け装置101を引き上げ、はんだホルダ901をはんだ付け箇所415aから離間させる。その間、レーザ光B701ははんだ付け箇所415aに付着した溶融はんだ702に照射し続ける。
 以上説明したように、はんだホルダ901をはんだ付け箇所415aに当接する構成であっても、本発明に掛かるレーザはんだ付け装置101を実現することが可能である。
FIG. 10 shows that the molten solder 702 continues to be irradiated with the laser beam B 701, and the molten solder 702 is soldered with the solder holder 901, which shows that the soldered portion 415a of the object to be soldered 415 is sufficiently wetted. FIG. 16 is a schematic cross-sectional view in which a part of an object 415 is enlarged. The state of the solder holder 901 and the object to be soldered 415 are on the way from time T616 to time T617 in FIG.
In FIG. 9B, by irradiating the solder ball 201 with the laser beam B701, the solder ball 201 is melted and changed to the molten solder 702, and adheres to the soldering point 415a. As soon as the solder balls 201 melt, the laser soldering apparatus 101 is pulled up to separate the solder holder 901 from the soldering point 415a. Meanwhile, the laser beam B 701 continues to irradiate the molten solder 702 attached to the soldering point 415 a.
As described above, even with the configuration in which the solder holder 901 is in contact with the soldering portion 415a, it is possible to realize the laser soldering apparatus 101 according to the present invention.
 (2)前述のはんだホルダ901がはんだボール201を素通しする構成のレーザはんだ付け装置101では、はんだボール201に代えて、糸はんだを細かく切断したはんだチップを用いてもよい。はんだボール201を素通しする構成のはんだホルダ901を使用する場合、はんだホルダ901がはんだボール201によって吐出口107dが塞がれないので、必ずしもはんだボール201のように均一な形状のはんだを使用しなくてもよい。 (2) In the laser soldering apparatus 101 in which the solder holder 901 described above passes through the solder ball 201, instead of the solder ball 201, a solder chip obtained by finely cutting a wire solder may be used. When using the solder holder 901 configured to pass through the solder ball 201, the discharge port 107d is not blocked by the solder ball 201 in the solder holder 901, so that the solder having a uniform shape like the solder ball 201 is not necessarily used. May be
 (3)理想的には、はんだボール201を溶融させる工程(図6の時刻T615から時刻T616の間)と、溶融したはんだボール201がはんだ付け箇所415aに付着した後に加熱する工程(図6の時刻T616から時刻T617の間)とで、はんだボール201及びはんだ付け箇所415aに対する加熱の熱量は異なっていることが望ましい。はんだごてではそのような制御は不可能だが、レーザはんだ付け装置101なら、半導体レーザ光源102に投入する電力を制御することで、容易にはんだボール201及びはんだ付け箇所415aに対する加熱の制御を実現できる。 (3) Ideally, the step of melting the solder ball 201 (between time T615 and time T616 in FIG. 6) and the step of heating after the melted solder ball 201 adheres to the soldering portion 415a (FIG. 6) From time T616 to time T617), it is desirable that the heat quantity of heating for the solder ball 201 and the soldering point 415a be different. Such control is impossible with a soldering iron, but with the laser soldering device 101, control of the power applied to the semiconductor laser light source 102 facilitates control of heating of the solder balls 201 and the soldering point 415a. it can.
 図11は、本発明の第二の変形例に係るレーザはんだ付け装置101の、制御装置402に追加される機能ブロックを示すブロック図である。
 図5では、レーザ制御部504が半導体レーザ光源102へ出力する制御信号は、単純なレーザ光B701のオン・オフ制御であった。
 図11では、レーザ制御部504が出力する制御信号に対し、ゲート制御部1101とレーザ駆動部1102が追加されている。
 ゲート制御部1101は、レーザ制御部504の制御信号と、圧力センサ412の出力信号を受けて、レーザ駆動部1102を制御する。
 レーザ駆動部1102は、半導体レーザ光源102に対し、定電流制御による駆動制御を行う。
FIG. 11 is a block diagram showing a functional block added to the control device 402 of the laser soldering apparatus 101 according to the second modified example of the present invention.
In FIG. 5, the control signal that the laser control unit 504 outputs to the semiconductor laser light source 102 is on / off control of the simple laser light B701.
In FIG. 11, a gate control unit 1101 and a laser drive unit 1102 are added to the control signal output from the laser control unit 504.
The gate control unit 1101 receives the control signal of the laser control unit 504 and the output signal of the pressure sensor 412 to control the laser drive unit 1102.
The laser drive unit 1102 performs drive control on the semiconductor laser light source 102 by constant current control.
 図12は、本発明の第二の変形例に係るレーザはんだ付け装置101の、ゲート制御部1101及びレーザ駆動部1102のブロック図及び回路図である。
 ゲート制御部1101は一般的なマイコンである制御装置402のソフトウェア機能として実現されるので、ハードウェア構成については記載を省略する。
 圧力センサ412の出力信号は微分演算部1201に入力される。微分演算部1201は圧力センサ412の出力信号に微分演算を行うことで、図6の時刻T616に生じる、信号の急峻な減少をパルス信号に変換して出力する。
 レーザ制御部504の制御信号はシーケンサ1202に入力される。シーケンサ1202は微分演算部1201から出力されるパルス信号も受けて、後述するレーザ駆動部1102に含まれるPchMOSFET1203のゲート制御信号を生成する。
 レーザ制御部504の制御信号はラッチ1204にも入力される。ラッチ1204は微分演算部1201から出力されるパルス信号も受けて、後述するレーザ駆動部1102に含まれる切替スイッチ1205の制御信号を生成する。
FIG. 12 is a block diagram and a circuit diagram of a gate control unit 1101 and a laser driving unit 1102 of a laser soldering apparatus 101 according to a second modified example of the present invention.
The gate control unit 1101 is realized as a software function of the control device 402 which is a general microcomputer, and therefore the description of the hardware configuration is omitted.
An output signal of the pressure sensor 412 is input to the differential operation unit 1201. The differential operation unit 1201 performs a differential operation on the output signal of the pressure sensor 412, thereby converting a sharp decrease of the signal occurring at time T616 in FIG. 6 into a pulse signal and outputting it.
The control signal of the laser control unit 504 is input to the sequencer 1202. The sequencer 1202 also receives a pulse signal output from the differential operation unit 1201 and generates a gate control signal of a Pch MOSFET 1203 included in a laser drive unit 1102 described later.
The control signal of the laser control unit 504 is also input to the latch 1204. The latch 1204 also receives a pulse signal output from the differential operation unit 1201 and generates a control signal of a changeover switch 1205 included in a laser drive unit 1102 described later.
 レーザ駆動部1102は、半導体レーザ光源102に電力を供給する直流電源V1206に、定電流制御を行う周知のバックコンバータで構成される。
 PNPのトランジスタ1207はバックコンバータのハイサイドスイッチである。トランジスタ1207とダイオードD1208とチョークコイルL1209は、バックコンバータを構成する。
 チョークコイルL1209の出力端子側と半導体レーザ光源102との間にはPchMOSFET1203のハイサイドスイッチが接続されている。なお、PchMOSFET1203のゲートドライブ回路については記載を省略している。
 半導体レーザ光源102のカソードと接地ノードとの間には半導体レーザ光源102に流れる電流を検出するためのシャント抵抗R1210が接続されている。
 半導体レーザ光源102のカソードとシャント抵抗R1210との接続点はコンパレータ1211のプラス側端子に接続される。一方、コンパレータ1211のマイナス側端子には、切替スイッチ1205を介して第一参照電圧源V1212と第二参照電圧源V1213が選択的に接続される。第一参照電圧源V1212は第二参照電圧源V1213より高い電圧を出力する。コンパレータ1211の出力はオープンコレクタであり、ベース抵抗R1214を介してトランジスタ1207のベースに接続されている。なお、抵抗R1215はトランジスタ1207のスイッチングを確実にするための抵抗である。すなわち、コンパレータ1211のオープンコレクタがオフ状態になるとトランジスタ1207はオフになり、コンパレータ1211のオープンコレクタがオン状態になるとトランジスタ1207はオンになる。
The laser drive unit 1102 is configured by a known buck converter that performs constant current control on a DC power supply V 1206 that supplies power to the semiconductor laser light source 102.
The PNP transistor 1207 is a high side switch of the buck converter. The transistor 1207, the diode D1208, and the choke coil L1209 constitute a buck converter.
The high side switch of the Pch MOSFET 1203 is connected between the output terminal side of the choke coil L 1209 and the semiconductor laser light source 102. The description of the gate drive circuit of the Pch MOSFET 1203 is omitted.
Between the cathode of the semiconductor laser light source 102 and the ground node, a shunt resistor R1210 for detecting the current flowing to the semiconductor laser light source 102 is connected.
The connection point between the cathode of the semiconductor laser light source 102 and the shunt resistor R1210 is connected to the positive terminal of the comparator 1211. On the other hand, the first reference voltage source V1212 and the second reference voltage source V1213 are selectively connected to the negative terminal of the comparator 1211 via the changeover switch 1205. The first reference voltage source V1212 outputs a higher voltage than the second reference voltage source V1213. The output of the comparator 1211 is an open collector and is connected to the base of the transistor 1207 via a base resistor R1214. The resistor R1215 is a resistor for ensuring the switching of the transistor 1207. That is, when the open collector of the comparator 1211 is turned off, the transistor 1207 is turned off, and when the open collector of the comparator 1211 is turned on, the transistor 1207 is turned on.
 シャント抵抗R1210の端子間電圧は、半導体レーザ光源102に流れる電流に比例する。
 シャント抵抗R1210の電圧が、第一参照電圧源V1212の電圧より低くなると、コンパレータ1211のオープンコレクタはオン状態になり、トランジスタ1207はオンになる。
 シャント抵抗R1210の電圧が、第一参照電圧源V1212の電圧より高くなると、コンパレータ1211のオープンコレクタはオフ状態になり、トランジスタ1207はオフになる。
 この、ハイサイドスイッチのオンオフによる電流の間欠的な流れは、チョークコイルL1209とダイオードD1208によって平滑(制限)される。したがって、半導体レーザ光源102は定電流制御される。
 参照電圧を大きくすれば、半導体レーザ光源102に流れる電流を大きくすることができる。このため、参照電圧源を2個設け、切替スイッチ1205によって選択的にコンパレータ1211に供給している。
 チョークコイルL1209の出力側にスイッチを設ければ、半導体レーザ光源102に流す電流のオン・オフ制御を実現できる。このため、PchMOSFET1203のハイサイドスイッチが設けられている。
The voltage across terminals of the shunt resistor R 1210 is proportional to the current flowing to the semiconductor laser light source 102.
When the voltage of the shunt resistor R1210 becomes lower than the voltage of the first reference voltage source V1212, the open collector of the comparator 1211 is turned on, and the transistor 1207 is turned on.
When the voltage of the shunt resistor R1210 becomes higher than the voltage of the first reference voltage source V1212, the open collector of the comparator 1211 is turned off, and the transistor 1207 is turned off.
The intermittent flow of current due to the on / off of the high side switch is smoothed (limited) by the choke coil L1209 and the diode D1208. Therefore, the semiconductor laser light source 102 is controlled at constant current.
If the reference voltage is increased, the current flowing to the semiconductor laser light source 102 can be increased. Therefore, two reference voltage sources are provided and selectively supplied to the comparator 1211 by the changeover switch 1205.
If a switch is provided on the output side of the choke coil L1209, on / off control of the current flowing through the semiconductor laser light source 102 can be realized. Therefore, the high side switch of the Pch MOSFET 1203 is provided.
 図13は、レーザ制御部504が出力する制御信号と、ゲート制御部1101が出力する参照電圧切替信号のタイムチャートと、ゲート制御信号の電圧波形と、半導体レーザ光源102に流れる電流の波形を示す図である。横軸は時間であり、縦軸は(a)及び(b)が論理値、(c)がゲート電圧、(d)が電流である。
 図13の(a)は、レーザ制御部504が出力する制御信号である。時刻T615で論理の真になり、時刻T617で論理の偽に戻る。
 図13の(b)は、ゲート制御部1101のラッチ1204が出力する参照電圧切替信号である。微分演算部1201が圧力センサ412の出力信号の変化をパルス信号に変換することで、ラッチ1204からは時刻T615で論理の真になり、時刻T616で論理の偽に戻る制御信号が切替スイッチ1205へ出力される。
 図13の(c)は、ゲート制御部1101のシーケンサ1202が出力するゲート制御信号である。PchMOSFET1203はゲート電圧が下がるとソース-ドレイン間がオンになるので、このような波形になる。なお、PchMOSFET1203のゲート-ソース間電圧の制約により、ゲート電圧が低い時の電圧は必ずしも0Vではない。時刻T615から微分演算部1201が出力するパルス信号が入力される時刻T616までは、オン時間(照射時間T1302)の短いゲート制御信号をPchMOSFET1203へ繰り返し出力する。時刻T616から、レーザ制御部504が出力する制御信号が論理の偽に戻る時刻T617までは、レーザ光休止間隔T1304を経て、連続したゲート制御信号(照射時間T1305)をPchMOSFET1203へ出力する。
FIG. 13 shows a time chart of a control signal output from the laser control unit 504, a reference voltage switching signal output from the gate control unit 1101, a voltage waveform of the gate control signal, and a waveform of current flowing through the semiconductor laser light source 102. FIG. The horizontal axis is time, the vertical axes are (a) and (b) logical values, (c) gate voltage, and (d) current.
(A) of FIG. 13 is a control signal which the laser control unit 504 outputs. At time T615, the logic becomes true, and at time T617, the logic returns to false.
(B) of FIG. 13 is a reference voltage switching signal output from the latch 1204 of the gate control unit 1101. Since the differential operation unit 1201 converts the change in the output signal of the pressure sensor 412 into a pulse signal, the control signal from the latch 1204 becomes logic true at time T615 and returns to logic false at time T616 to the changeover switch 1205 It is output.
(C) of FIG. 13 is a gate control signal which the sequencer 1202 of the gate control unit 1101 outputs. The Pch MOSFET 1203 has such a waveform because the source-drain is turned on when the gate voltage is lowered. Note that due to the restriction of the gate-source voltage of the Pch MOSFET 1203, the voltage when the gate voltage is low is not necessarily 0V. A gate control signal having a short on time (irradiation time T1302) is repeatedly output to the Pch MOSFET 1203 from time T615 until time T616 when the pulse signal output from the differential operation unit 1201 is input. From time T616, until the time T617 at which the control signal output from the laser control unit 504 returns to logic false, a continuous gate control signal (irradiation time T1305) is output to the Pch MOSFET 1203 via the laser light pause interval T1304.
 図13の(d)は、半導体レーザ光源102に流れる電流の波形図である。また、この波形図は半導体レーザ光源102に投入される電力の波形図でもある。
 参照電圧の切替とPchMOSFET1203のゲート制御信号を生成することで、図13の(d)に示すように、半導体レーザ光源102には時刻T615から時刻T616までは、半導体レーザ光源102には電流I1301が流れ、強いレーザ光がパルス状にはんだボール201に照射される。
 はんだボール201が溶融すると、レーザはんだ付け装置101内部の窒素ガスの圧力によって、溶融したはんだは吐出口107dから吐出される。その瞬間、すなわち時刻T616に、レーザはんだ付け装置101内部の窒素ガスの圧力は急激に減少する。
FIG. 13D is a waveform diagram of the current flowing to the semiconductor laser light source 102. Further, this waveform diagram is also a waveform diagram of the power supplied to the semiconductor laser light source 102.
By switching the reference voltage and generating a gate control signal for the Pch MOSFET 1203, as shown in (d) of FIG. 13, the semiconductor laser light source 102 has a current I1301 in the semiconductor laser light source 102 from time T615 to time T616. The flowing, intense laser light is applied to the solder ball 201 in a pulsed manner.
When the solder ball 201 is melted, the melted solder is discharged from the discharge port 107 d by the pressure of nitrogen gas in the laser soldering apparatus 101. At that moment, that is, at time T616, the pressure of the nitrogen gas inside the laser soldering apparatus 101 sharply decreases.
 ゲート制御部1101は、窒素ガスの圧力の変化を圧力センサ412の信号から微分演算部1201で検出すると、切替スイッチ1205を制御して、コンパレータ1211のマイナス側端子に接続する参照電圧源を、第一参照電圧源V1212から第二参照電圧源V1213に切り替える。シーケンサ1202は、時刻T616において微分演算部1201から入力されるパルス信号を受けて、断続的なゲート制御信号から連続的なゲート制御信号に、ゲート制御信号を切り替える。このため、PchMOSFET1203には連続的なゲート制御信号が与えられる。この結果、時刻T616以降になると、半導体レーザ光源102には時刻T615から時刻T616までに流れた電流I1301よりも少ない電流I1306が流れ、溶融したはんだとはんだ付け箇所415aが加熱される。 When the gate control unit 1101 detects a change in pressure of nitrogen gas from the signal of the pressure sensor 412 by the differential operation unit 1201, the gate control unit 1101 controls the changeover switch 1205 to connect the reference voltage source connected to the negative terminal of the comparator 1211 Switching from one reference voltage source V1212 to a second reference voltage source V1213. The sequencer 1202 receives the pulse signal input from the differential operation unit 1201 at time T616, and switches the gate control signal from the intermittent gate control signal to the continuous gate control signal. Therefore, the Pch MOSFET 1203 is supplied with a continuous gate control signal. As a result, after time T616, a current I1306 smaller than the current I1301 flowing from time T615 to time T616 flows in the semiconductor laser light source 102, and the melted solder and the soldering portion 415a are heated.
 はんだボール201を溶融させる工程(時刻T615から時刻T616の間)では、室温に冷えたはんだボール201が液状になるまでに必要な熱量をはんだボール201に与える必要がある。しかし、強いレーザ光を連続的にはんだボール201へ照射すると、熱の伝達にムラが生じてしまい、はんだボール201の一部は溶融しているが一部は溶融していない、という状態が生じうる。そこで、はんだボール201の全体にレーザ光の熱が万遍なく伝達するように、パルス状の強いレーザ光を断続的(間欠的)にはんだボール201へ照射する。例えば、パルス状レーザ光の照射時間T1302は10-50mmsec、パルスとパルスの時間間隔T1303は10-20mmsec、パルス状レーザ光の強度は15-25Wに設定する。
 なお、上記のパルス間隔、パルスの数、パルス状レーザ光の強度は一例であって、使用するはんだの物質的特性や溶融したはんだの飛ぶ距離、使用するレーザ等様々の条件によって変更し得る。例えば照射時間T1302を狭くしてパルス数を増加させることや、あるいはパルス数を減らして照射時間T1302を広くすること、またそれに応じてあるいは独立してパルスの時間間隔T1303を変更することも可能である。
In the step of melting the solder balls 201 (between time T615 and time T616), it is necessary to provide the solder balls 201 with a heat quantity necessary for the solder balls 201 cooled to room temperature to become liquid. However, when a strong laser beam is continuously irradiated to the solder ball 201, unevenness occurs in heat transfer, and a state occurs in which a part of the solder ball 201 is melted but a part is not melted. sell. Therefore, in order to uniformly transmit the heat of the laser beam to the entire solder ball 201, the pulse-like strong laser beam is intermittently (intermittently) applied to the solder ball 201. For example, the irradiation time T1302 of the pulsed laser light is set to 10-50 mmsec, the time interval T1303 between pulses and pulses is set to 10-20 mmsec, and the intensity of the pulsed laser light is set to 15-25 W.
The above-mentioned pulse interval, the number of pulses, and the intensity of the pulsed laser light are one example, and may be changed according to various conditions such as the material characteristics of the used solder, the flying distance of the melted solder, and the used laser. For example, the irradiation time T1302 can be narrowed to increase the number of pulses, or the pulse number can be reduced to increase the irradiation time T1302, or the pulse time interval T1303 can be changed accordingly or independently. is there.
 溶融したはんだがはんだ付け箇所415aに付着した後に加熱する工程(時刻T616から時刻T617の間)では、はんだ付け箇所415aと溶融したはんだとの合金が形成され、溶融はんだ702がはんだ付け箇所415aへ十分に濡れて、毛細管現象で溶融したはんだがはんだ付け箇所415aに流れることで電気的特性が安定するために、溶融はんだ702とはんだ付け箇所415aを所定時間、所定の温度以上加熱し続ける必要がある。しかし、溶融したはんだは既に相応の熱量を有している。このため、はんだボール201を溶融させる工程で用いた、強力なレーザ光のままで溶融したはんだとはんだ付け箇所415aを熱すると、加熱し過ぎてしまい、プリント基板のプリントパターンを損傷する虞がある。はんだ付け箇所415aと溶融したはんだとの合金を形成するのであるならば、はんだボール201を溶融させる工程の時よりも弱くしたレーザ光を連続的に照射することが望ましい。 In the step of heating after the molten solder adheres to the soldering point 415a (between time T616 and time T617), an alloy of the soldering point 415a and the molten solder is formed, and the molten solder 702 goes to the soldering point 415a. It is necessary to keep the molten solder 702 and the soldering point 415a heated for a predetermined time or more for a predetermined time, in order to stabilize the electrical characteristics by sufficiently wetting and flowing the molten solder to the soldering point 415a by capillary action. is there. However, the melted solder already has a corresponding amount of heat. For this reason, if the molten solder and the soldering point 415a are heated with a strong laser beam used in the step of melting the solder ball 201, the heating may be excessive and the printed pattern of the printed circuit board may be damaged. . In order to form an alloy of the soldering portion 415a and the molten solder, it is desirable to continuously irradiate a laser beam which is weaker than in the step of melting the solder ball 201.
 本実施形態では、レーザはんだ付け装置101と制御装置402からなるはんだ付けシステム401を開示した。
 本発明の実施形態に係るはんだ付けシステム401は、溶融はんだ702がはんだ付け箇所415aに付着した後も、なおレーザ光B701を溶融はんだ702に照射し続けることで、溶融はんだ702に対する加熱を継続する。この処理により、はんだ付け箇所415aと溶融はんだ702との合金が形成され、溶融はんだ702がはんだ付け箇所415aへ十分に濡れて、毛細管現象で溶融はんだ702がはんだ付け箇所415aに流れる。そして強固かつ安定したなはんだ付けが完遂する。
In the present embodiment, a soldering system 401 comprising a laser soldering apparatus 101 and a controller 402 has been disclosed.
The soldering system 401 according to the embodiment of the present invention continues heating the molten solder 702 by continuing to irradiate the molten solder 702 with the laser beam B 701 even after the molten solder 702 adheres to the soldering point 415 a. . By this treatment, an alloy of the soldering point 415a and the molten solder 702 is formed, the molten solder 702 is sufficiently wetted to the soldering point 415a, and the molten solder 702 flows to the soldering point 415a by capillary action. And strong and stable soldering is completed.
 以上、本発明の実施形態例について説明したが、本発明は上記実施形態例に限定されるものではなく、請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、他の変形例、応用例を含む。 As mentioned above, although the embodiment of the present invention was described, the present invention is not limited to the above-mentioned embodiment, and other modifications and applications can be made without departing from the gist of the present invention described in the claims. Includes an example.
 101…レーザはんだ付け装置、102…半導体レーザ光源、103…レーザ鏡筒、104…第一反射鏡、105…本体部、106…第二反射鏡、107…はんだホルダ、108…ホルダ保持部、109…はんだ供給装置、110…導管、111…ガス導入口、112…はんだボールタンク、113…はんだローラ、114…はんだ通過センサ、201…はんだボール、401…はんだ付けシステム、402…制御装置、403…バス、404…CPU、405…ROM、406…RAM、407…不揮発性ストレージ、408…入力ポート、409…出力ポート、410…タイマ、411…対象物センサ、412…圧力センサ、413…ステッピングモータ、414…窒素ガスバルブ、415…はんだ付け対象物、415a…はんだ付け箇所、501…Dフリップフロップ、502…ANDゲート、503…コンパレータ、504…レーザ制御部、505…モータ制御部、506…圧力閾値、507…バルブ制御部、901…はんだホルダ、1101…ゲート制御部、1102…レーザ駆動部、1201…微分演算部、1202…シーケンサ、1203…PchMOSFET、1204…ラッチ、1205…切替スイッチ、1207…トランジスタ、1211…コンパレータ、D1208…ダイオード、L1209…チョークコイル、R1210…シャント抵抗、R1214…ベース抵抗、R1215…抵抗、V1206…直流電源、V1212…第一参照電圧源、V1213…第二参照電圧源、1401…CMOSイメージセンサ、1402…対物レンズ、1403…カバー、1404…フレキシブルプリント基板、1405…接地ノード端子、1406…信号端子、1407…信号端子 101 ... laser soldering apparatus, 102 ... semiconductor laser light source, 103 ... laser lens barrel, 104 ... first reflecting mirror, 105 ... main body, 106 ... second reflecting mirror, 107 ... solder holder, 108 ... holder holding section, 109 ... Solder supply device, 110 ... Conduit, 111 ... Gas inlet, 112 ... Solder ball tank, 113 ... Solder roller, 114 ... Solder passage sensor, 201 ... Solder ball, 401 ... Soldering system, 402 ... Control device, 403 ... Bus, 404, CPU, 405, ROM, 406, RAM, 407, non-volatile storage, 408, input port, 409, output port, 410, timer, 411, object sensor, 412, pressure sensor, 413, stepping motor, 414: Nitrogen gas valve, 415: object to be soldered, 415a: soldering Reference numeral 501 ... D flip flop, 502 ... AND gate, 503 ... comparator, 504 ... laser control unit, 505 ... motor control unit, 506 ... pressure threshold, 507 ... valve control unit, 901 ... solder holder, 1101 ... gate control unit 1102 Laser drive unit 1201 Differential operation unit 1202 Sequencer 1203 Pch MOSFET 1204 Latch 1205 Selector switch 1207 Transistor 1211 Comparator D1208 Diode L1209 Choke coil R1210 Shunt Resistance, R1214: Base resistance, R1215: Resistance, V1206: DC power supply, V1212: First reference voltage source, V1213: Second reference voltage source, 1401: CMOS image sensor, 1402: Objective lens, 1403: Cover 1404 ... flexible printed circuit board, 1405 ... ground node terminal, 1406 ... signal terminals, 1407 ... signal terminal

Claims (6)

  1.  はんだホルダと、
     前記はんだホルダにはんだを供給するはんだ供給装置と、
     はんだ付け対象物に所定の距離だけ離間している前記はんだホルダに保持されたはんだを溶融させるために前記はんだに所定時間、第一の強度のレーザ光を間欠的に照射する半導体レーザ光源と、
     溶融したはんだを前記はんだホルダから射出するための圧力ガスを前記はんだホルダに対し注入を制御するためのガスバルブと、
     前記はんだホルダにおける前記圧力ガスの圧力を検出する圧力センサと
    を具備するはんだ付け装置と、
     前記はんだが前記はんだホルダに到達した後、前記圧力センサから前記はんだ付け装置内部の圧力が所定の値に達したことを検出して前記半導体レーザ光源をオン制御すると共に前記ガスバルブを閉じる制御を行い、前記はんだが前記はんだホルダから射出された後、前記はんだに前記第一の強度よりも弱い第二の強度のレーザ光を所定時間連続して照射し、その後前記半導体レーザ光源をオフ制御すると共に前記ガスバルブを開く制御を行う、制御装置と
    を有するはんだ付けシステム。
    Solder holder,
    A solder supply device for supplying solder to the solder holder;
    A semiconductor laser light source which intermittently irradiates a laser beam of a first intensity for a predetermined time to the solder for melting the solder held by the solder holder which is separated by a predetermined distance from the object to be soldered;
    A gas valve for controlling the injection of pressure gas into the solder holder for injecting molten solder from the solder holder;
    A soldering apparatus comprising: a pressure sensor for detecting the pressure of the pressure gas in the solder holder;
    After the solder reaches the solder holder, the pressure sensor detects that the pressure in the soldering apparatus has reached a predetermined value, and turns on the semiconductor laser light source and controls the gas valve to close. After the solder is ejected from the solder holder, the solder is continuously irradiated with laser light of a second intensity which is weaker than the first intensity for a predetermined time, and then the semiconductor laser light source is controlled to be off. A control system for controlling the opening of the gas valve.
  2.  前記半導体レーザ光源は青色レーザを発光する、
    請求項1に記載のはんだ付けシステム。
    The semiconductor laser light source emits a blue laser.
    The soldering system according to claim 1.
  3.  前記はんだははんだボールである、
    請求項2に記載のはんだ付けシステム。
    The solder is a solder ball,
    The soldering system according to claim 2.
  4.  はんだホルダにはんだを供給するステップと、
     溶融したはんだを前記はんだホルダから射出するための圧力ガスを前記はんだホルダに対し注入するステップと、
     前記はんだに対し、半導体レーザ光源から所定時間、第一の強度のレーザ光を間欠的に照射して前記はんだを溶融して溶融はんだに変化させることで、前記はんだホルダから前記溶融はんだを吐出してはんだ付け対象物に付着させるステップと、
     前記はんだ付け対象物に付着した前記溶融はんだに対し、前記半導体レーザ光源から前記第一の強度よりも弱い第二の強度のレーザ光を所定時間連続して照射するステップと
    からなる、はんだ付け方法。
    Supplying solder to the solder holder;
    Injecting a pressure gas into the solder holder for injecting molten solder from the solder holder;
    A laser beam of a first intensity is intermittently applied to the solder for a predetermined time from a semiconductor laser light source to melt the solder and change it into molten solder, thereby discharging the molten solder from the solder holder Attaching to the object to be soldered;
    A step of continuously irradiating a laser beam of a second intensity weaker than the first intensity from the semiconductor laser light source continuously for a predetermined time to the molten solder attached to the object to be soldered .
  5.  前記半導体レーザは青色レーザである、
    請求項4に記載のはんだ付け方法。
    The semiconductor laser is a blue laser.
    The soldering method according to claim 4.
  6.  前記はんだははんだボールである、
    請求項5に記載のはんだ付け方法。
    The solder is a solder ball,
    The soldering method according to claim 5.
PCT/JP2018/032135 2017-09-27 2018-08-30 Soldering system and soldering method WO2019065065A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019544458A JP6785512B2 (en) 2017-09-27 2018-08-30 Soldering system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-186691 2017-09-27
JP2017186691 2017-09-27
JP2018128091 2018-07-05
JP2018-128091 2018-07-05

Publications (1)

Publication Number Publication Date
WO2019065065A1 true WO2019065065A1 (en) 2019-04-04

Family

ID=65901339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032135 WO2019065065A1 (en) 2017-09-27 2018-08-30 Soldering system and soldering method

Country Status (2)

Country Link
JP (1) JP6785512B2 (en)
WO (1) WO2019065065A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016899A (en) * 2019-07-17 2021-02-15 株式会社堀内電機製作所 Solder holder and automatic soldering device
JP7013063B1 (en) 2021-12-13 2022-01-31 アポロソルダーテック株式会社 Soldering equipment and soldering method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11514933A (en) * 1995-11-10 1999-12-21 フィン,ダーヴィト Bonding material welding equipment
JP2007118072A (en) * 2005-10-31 2007-05-17 Shinka Jitsugyo Kk Soldering method and apparatus
JP2009028781A (en) * 2007-06-26 2009-02-12 Tdk Corp Bonding method and bonding apparatus
JP2013103264A (en) * 2011-11-16 2013-05-30 Panasonic Corp Laser soldering apparatus and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013114453A1 (en) * 2013-12-19 2015-06-25 Pac Tech-Packaging Technologies Gmbh Device for isolated application of solder material depots

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11514933A (en) * 1995-11-10 1999-12-21 フィン,ダーヴィト Bonding material welding equipment
JP2007118072A (en) * 2005-10-31 2007-05-17 Shinka Jitsugyo Kk Soldering method and apparatus
JP2009028781A (en) * 2007-06-26 2009-02-12 Tdk Corp Bonding method and bonding apparatus
JP2013103264A (en) * 2011-11-16 2013-05-30 Panasonic Corp Laser soldering apparatus and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016899A (en) * 2019-07-17 2021-02-15 株式会社堀内電機製作所 Solder holder and automatic soldering device
JP7123352B2 (en) 2019-07-17 2022-08-23 株式会社堀内電機製作所 Solder holders and automatic soldering equipment
JP7013063B1 (en) 2021-12-13 2022-01-31 アポロソルダーテック株式会社 Soldering equipment and soldering method
JP2023087465A (en) * 2021-12-13 2023-06-23 アポロソルダーテック株式会社 Soldering device and soldering method

Also Published As

Publication number Publication date
JP6785512B2 (en) 2020-11-18
JPWO2019065065A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP5043764B2 (en) Laser type soldering method and apparatus
JP6785512B2 (en) Soldering system
JP6913350B2 (en) Laser soldering method and equipment
WO2021059456A1 (en) Laser soldering method and device
US6333483B1 (en) Method of manufacturing circuit modules
KR101853847B1 (en) Unit for dischanging solder ball and laser soldering apparatus using the same
JP2001252762A (en) Method and device for gas injection system soldering
KR102208679B1 (en) Laser device and method for melting solder material deposits using laser energy
JP4450578B2 (en) Joining method and joining apparatus
JP5393235B2 (en) Soldering apparatus and soldering method
JP2000334563A (en) Soldering iron
DE19639993C2 (en) Device for contactless, selective soldering or desoldering of components
EP0936018A2 (en) Parts soldering apparatus and method
JPH05208258A (en) Soldering device
KR102212679B1 (en) Arrangement and method for the reproducible application of small amounts of liquid
JP4457369B1 (en) Soldering apparatus, soldering method, and method of manufacturing soldered product
JP2007073661A (en) Laser soldering method and laser soldering device
TWM611047U (en) Soldering device
JP6832004B2 (en) Manual laser welding device
JPH0556237B2 (en)
JP2001071125A (en) Soldering method and device therefor
US12028987B2 (en) Method for soldering an electronic component to a circuit board by jetting liquefied solder into a through hole
US20220369473A1 (en) Method for Soldering an Electronic Component to a Circuit Board by Jetting Liquefied Solder into a Through Hole
Fuji Types of microwelding processes and their applications–Light-beam microsoldering applications
JP3345722B2 (en) Non-contact soldering iron capable of intermittent soldering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860094

Country of ref document: EP

Kind code of ref document: A1