WO2019064900A1 - Control device, motor, and electric power steering device - Google Patents

Control device, motor, and electric power steering device Download PDF

Info

Publication number
WO2019064900A1
WO2019064900A1 PCT/JP2018/028640 JP2018028640W WO2019064900A1 WO 2019064900 A1 WO2019064900 A1 WO 2019064900A1 JP 2018028640 W JP2018028640 W JP 2018028640W WO 2019064900 A1 WO2019064900 A1 WO 2019064900A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
power
power element
control device
circuit
Prior art date
Application number
PCT/JP2018/028640
Other languages
French (fr)
Japanese (ja)
Inventor
佳明 山下
小川 裕史
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2019544356A priority Critical patent/JPWO2019064900A1/en
Priority to CN201880050805.3A priority patent/CN111034003A/en
Publication of WO2019064900A1 publication Critical patent/WO2019064900A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a control device, a motor, and an electric power steering device.
  • a motor is known in which a substrate on which an electronic component is mounted is accommodated in a housing together with a rotor and a stator (see, for example, Patent Document 1).
  • An object of the present invention is to provide a control device that can be miniaturized while maintaining heat dissipation, a motor including the control device, and an electric power steering device.
  • a control device including a three-phase inverter for driving a motor, comprising: a circuit board; and a plurality of power elements mounted on the circuit board and constituting the three-phase inverter; A first power element mounted on a first mounting surface on one side of the substrate; a second power element mounted on a second mounting surface opposite to the first mounting surface; the first power element; The first power element and the second power mounted in a position where at least a part of them is overlapped when viewed from the direction orthogonal to the plane direction of the circuit board, and a heat sink in thermal contact with two power elements; A control device is provided having an element pair of elements.
  • a control device capable of downsizing while maintaining heat dissipation, a motor including the control device, and an electric power steering device are provided.
  • FIG. 1 is a cross-sectional view of the motor of the embodiment.
  • FIG. 2 is a diagram showing a control circuit of the motor of the embodiment.
  • FIG. 3 is a partial cross-sectional view showing the arrangement of power elements in the control device 80 of the embodiment.
  • FIG. 4 is a cross-sectional view of the control device showing the arrangement of power elements in the first modification.
  • FIG. 5 is a cross-sectional view of the control device showing the arrangement of power elements in the second modification.
  • FIG. 6 is a cross-sectional view of the control device showing the arrangement of power elements in the third modification.
  • FIG. 7 is a diagram showing a circuit configuration of a three-phase inverter in the third modification.
  • FIG. 8 is a view showing the electric power steering apparatus 2 of the embodiment.
  • the direction in which the central axis J extends is the vertical direction.
  • the vertical direction in the present specification is a name merely used for explanation, and does not limit the actual positional relationship or direction.
  • a direction parallel to the central axis J is simply referred to as “axial direction”
  • a radial direction centered on the central axis J is simply referred to as “radial direction”
  • a circumferential direction centered on the central axis J The circumferential direction of the central axis J is simply referred to as “circumferential direction”.
  • extending axially includes not only extending strictly in the axial direction but also extending in a direction inclined at an angle of less than 45 ° with respect to the axial direction.
  • extending radially means tilting in a range of less than 45 ° with respect to the radial direction, in addition to the case of extending in the radial direction strictly, that is, perpendicular to the axial direction. It also includes the case of extending in the opposite direction.
  • FIG. 1 is a cross-sectional view of a motor of the present embodiment.
  • FIG. 2 is a diagram showing a control circuit of the motor of the present embodiment.
  • the motor 1 includes a housing 20, a rotor 30, a stator 40, a bearing holder 70, and a control device 80.
  • the control device 80, the bearing holder 70, and the stator 40 are arranged in this order from the upper side to the lower side.
  • the stator 40 has a stator main body 40A including a coil 43, and a first support member 51 and a second support member 52 supporting the coil wire 45 drawn from the stator main body 40A.
  • the housing 20 has a cylindrical portion 21 extending in the vertical direction, a bottom wall portion 23 located at the lower end of the cylindrical portion 21, and an opening 20a opening on the upper side.
  • the stator main body 40A is fixed to the inner surface of the housing 20.
  • the bearing holder 70 is inserted into the opening 20 a of the housing 20.
  • a controller 80 is disposed on the top surface of the bearing holder 70.
  • the control device 80 is connected to the coil wire 45 exposed from the holder penetrating portion 77 of the bearing holder 70.
  • the cylindrical portion 21 is cylindrical with the central axis J as a center.
  • the shape of the cylindrical portion 21 is not limited to a cylindrical shape, and may be, for example, a polygonal cylindrical shape.
  • the bottom wall portion 23 is disposed below the stator 40.
  • the bottom wall portion 23 has a bearing holding portion 23 a that holds the lower bearing 34, and an output shaft hole 22 axially penetrating the bottom wall portion 23.
  • the rotor 30 has a shaft 31.
  • the shaft 31 is centered on a central axis J extending in the vertical direction.
  • the rotor 30 rotates around the central axis J together with the shaft 31.
  • the lower end of the shaft 31 protrudes to the lower side of the housing 20 through the output shaft hole 22.
  • the upper bearing 33 and the lower bearing 34 rotatably support the shaft 31 around a central axis.
  • the lower bearing 34 is held by the bearing holding portion 23 a at the lower side of the stator 40.
  • the upper bearing 33 is held by the bearing holder 70 on the upper side of the stator 40.
  • the stator main body 40A is located radially outward of the rotor 30.
  • the stator main body 40A has a stator core 41, an insulator 42, and a coil 43.
  • the insulator 42 is attached to the teeth of the stator core 41.
  • the coil 43 is constituted by a coil wire wound around the insulator 42, and is disposed on the teeth of the stator core 41.
  • the outer peripheral surface of the stator 40 is fixed to the inner peripheral surface of the housing 20.
  • the first support member 51 is a member made of resin and disposed on the top surface of the stator main body 40A.
  • a second support member 52 made of resin is disposed on the top surface of the first support member 51.
  • the coil wire 45 drawn out from the coil 43 is guided by the first support member 51 to the lower part of the holder penetrating part 77 and drawn out by the second support member 52 to the upper side of the holder penetrating part 77.
  • the stator 40 of the present embodiment has a configuration in which two sets of three-phase winding sets of six coils 43 are arranged in the circumferential direction.
  • the stator 40 has a first winding set 141 and a second winding set 142, as shown in FIG.
  • the first winding set 141 has three coils U1, V1 and W1 each consisting of a coil 43.
  • the second winding set 142 has three coils U2, V2, W2 each consisting of a coil 43.
  • the control device 80 includes a circuit board 80A, a plurality of elements mounted on the circuit board 80A, a first heat sink 75 disposed on the upper surface of the circuit board 80A, and a lower surface of the circuit board 80A. And a second heat sink 76 disposed at the The control device 80 is connected to the coil wire 45 drawn upward through the holder penetrating portion 77 of the bearing holder 70.
  • the bearing holder 70 has the function of a heat sink. That is, the bearing holder may be the second heat sink.
  • control device 80 includes control unit 100, first three-phase inverter 111, second three-phase inverter 112, capacitors 121 and 122, choke coil 123, and first relay unit 131. , And the second relay portion 132, and shunt resistors 151 to 153 and 161 to 163.
  • the first three-phase inverter 111 has six power elements 11UH, 11UL, 11VH, 11VL, 11WH and 11WL.
  • the first three-phase inverter 111 is a U-phase circuit using the power device 11UH as an upper arm device and a power device 11UL as a lower arm device, a V-phase circuit using the power device 11VH as an upper arm device, and the power device 11VL as a lower arm device.
  • a W-phase circuit using the power element 11WH as the upper arm element and the power element 11WL as the lower arm element.
  • the output terminal of the U-phase circuit is connected to the coil U1.
  • the output terminal of the V-phase circuit is connected to the coil V1.
  • the output terminal of the W-phase circuit is connected to the coil W1.
  • the U-phase circuit, the V-phase circuit, and the W-phase circuit are any one of a first phase circuit, a second phase circuit, and a third phase circuit for each phase constituting a three-phase inverter.
  • the second three-phase inverter 112 has six power devices 12UH, 12UL, 12VH, 12VL, 12WH, 12WL.
  • the second three-phase inverter 112 is a U-phase circuit in which the power element 12UH is an upper arm element and the power element 12UL is a lower arm element, a V phase circuit in which the power element 12VH is an upper arm element, and the power element 12VL is a lower arm element And a W-phase circuit using the power element 12WH as an upper arm element and the power element 12WL as a lower arm element.
  • the output terminal of the U-phase circuit is connected to the coil U2
  • the output terminal of the V-phase circuit is connected to the coil V2
  • the output terminal of the W-phase circuit is connected to the coil W2.
  • Each power element of the first three-phase inverter 111 and the second three-phase inverter 112 is a MOSFET (metal oxide semiconductor insulation effect transistor), but may be an IGBT (insulated gate bipolar transistor) or the like.
  • MOSFET metal oxide semiconductor insulation effect transistor
  • IGBT insulated gate bipolar transistor
  • the capacitors 121 and 122 and the choke coil 123 are connected between the first three-phase inverter 111 and the second three-phase inverter 112 and the power supply 3.
  • the shunt resistors 151 to 153 are connected to terminals on the low potential side of the power elements 11UL, 11VL, and 11WL.
  • the shunt resistors 161 to 163 are connected to the terminals on the low potential side of the power elements 12UL, 12VL, and 12WL.
  • the first relay unit 131 is connected between the power supply 3 and the first three-phase inverter 111.
  • the first relay unit 131 has a power supply relay 131a and a reverse connection protection relay 131b.
  • Power supply relay 131 a conducts or cuts off the current to first three-phase inverter 111.
  • the reverse connection protection relay 131 b is a protection circuit when the power supply 3 is connected in the reverse direction.
  • the second relay unit 132 is connected between the power supply 3 and the second three-phase inverter 112.
  • the second relay unit 132 has a power supply relay 132a and a reverse connection protection relay 132b.
  • the power supply relay 132 a conducts or cuts off the current to the second three-phase inverter 112.
  • the reverse connection protection relay 132 b is a protection circuit when the power supply 3 is connected in the reverse direction.
  • the first winding set 141, the first three-phase inverter 111 on the control device 80, the shunt resistors 151 to 153, the capacitor 121, and the first relay unit 131 constitute a first system 101.
  • the second winding set 142, the second three-phase inverter 112 on the control device 80, the shunt resistors 161 to 163, the capacitor 122, and the second relay unit 132 constitute a second system 102.
  • the control unit 100 drives and controls each power element of the first three-phase inverter 111 and the second three-phase inverter 112 based on the speed command input from the external controller 4.
  • the control unit 100 generates a PWM signal as a drive signal based on the speed command, and outputs the PWM signal to an input terminal of an inverter of each phase of the first three-phase inverter 111 and the second three-phase inverter 112.
  • a plurality of elements are mounted on both sides of the circuit board 80A.
  • Power devices 11UH, 11VH, 11WH, 12UH, 12VH, 12WH, capacitors 121 and 122, and a first relay portion 131 and a second relay portion 132 are mounted on the top surface of the circuit board 80A.
  • Power elements 11UL, 11VL, 11WL, 12UL, 12VL, and 12WL, and shunt resistors 151 to 153 and shunt resistors 161 to 163 are mounted on the lower surface of the circuit board 80A.
  • a first heat sink 75 in contact with the power element is disposed on the power elements 11UH, 11VH, 11WH, 12UH, 12VH and 12WH on the upper surface of the circuit board 80A.
  • a second heat sink 76 in contact with the power element and the shunt resistor is disposed below the power elements 11UL, 11VL, 11WL, 12UL, 12VL, 12WL and the shunt resistors 151 to 153, 161 to 163 on the lower surface of the circuit board 80A.
  • Ru Each of the first heat sink 75 and the second heat sink 76 is made of, for example, an aluminum alloy.
  • FIG. 3 is a partial cross-sectional view showing the arrangement of power elements in the control device 80 of the present embodiment.
  • the six power elements of the first three-phase inverter 111 are mounted at positions facing each other in the thickness direction across the circuit board 80A, as shown in FIG.
  • the power device 11UH which is the upper arm device of the U-phase circuit is mounted on the upper surface which is the first mounting surface of the circuit board 80A.
  • Power element 11UL which is a lower arm element of the U-phase circuit is mounted on the lower surface which is the second mounting surface of circuit board 80A.
  • the power elements 11UH and the power elements 11UL are mounted at overlapping positions when viewed from the direction orthogonal to the plane direction of the circuit board 80A.
  • control device 80 includes an element pair in which the power element 11UH is a first power element and the power element 11UL is a second power element.
  • the power elements 11UH and 11UL constitute an in-phase element pair EP11 formed of in-phase power elements.
  • the power elements 11VH and 11VL as upper and lower arm elements of the V-phase circuit constitute an in-phase element pair EP12 opposed in the thickness direction of the circuit board 80A.
  • the power elements 11WH and 11WL as upper and lower arm elements of the W-phase circuit constitute an in-phase element pair EP13 opposed in the thickness direction of the circuit board 80A.
  • the power devices 11UH, 11VH, 11WH on the upper surface of the circuit board 80A are in thermal contact with the lower surface of the first heat sink 75 installed on the upper surface of the control device 80.
  • the power elements 11UL, 11VL, and 11WL on the lower surface of the circuit board 80A are in thermal contact with the upper surface of the second heat sink 76.
  • the second heat sink 76 and the bearing holder 70 may be a single member.
  • the first heat sink 75 and the second heat sink 76 may be configured as a single heat sink.
  • the power elements can be arranged at high density by arranging the power elements 11UH and 11UL on the upper and lower surfaces of the circuit board 80A so as to overlap in the thickness direction.
  • the circuit board 80A can be miniaturized.
  • the power elements 11UH and 11UL are in contact with the first heat sink 75 and the second heat sink 76, so that the heat dissipation is ensured.
  • the in-phase power elements 11UH and 11UL are vertically overlapped with the circuit board 80A interposed therebetween. Since the in-phase power elements 11UH and 112 do not simultaneously turn on at the time of operation of the U-phase circuit, the power elements 11UH and 11UL are unlikely to be in the overheated state.
  • the power elements 11UH, 11VH and 11WH which are upper arm elements of the first three-phase inverter 111 are all mounted on the upper surface of the circuit board 80A, and the power elements 11UL, 11VL and 11WL which are lower arm elements are all mounted. Are also mounted on the lower surface of the circuit board 80A.
  • the power elements connected to the high potential side of the power supply 3 are mounted on the same side, and the power elements connected to the low potential side of the power supply 3 are mounted on the same side. It is possible.
  • the first relay unit 131 and the second relay unit 132 are mounted on the same plane as the power devices 11UH, 11VH, 11WH which are upper arm devices.
  • the high potential side of the first three-phase inverter 111 and the power supply 3 and the high potential side of the second three-phase inverter 112 and the power supply Since the circuit is disposed between the circuit 3 and the above, the above configuration can reduce the wiring via vias, and the power supply wiring can be efficiently arranged.
  • the shunt resistors 151 to 153 and 161 to 163 are mounted on the same plane as the power devices 11UL, 11VL, and 11WL which are lower arm devices. As shown in FIG. 2, the shunt resistors 151-153 are disposed between the low potential side of the first three-phase inverter 111 and the power supply 3, and the shunt resistors 161-163 are low in the second three-phase inverter 112. It is disposed between the potential side and the power supply 3. According to the above configuration, the number of wiring via vias can be reduced, and the power supply wiring can be efficiently arranged.
  • the circuit board 80A of the present embodiment has a metal member 81 which extends in the thickness direction of the circuit board 80A and is in thermal contact between the power elements 11UH and 11UL of the in-phase element pair EP11.
  • Metal member 81 is also provided between the power elements of in-phase element pair EP12 and in-phase element pair EP13.
  • Metal member 81 may be a member electrically connecting power elements 11UH and 11UL of in-phase element pair EP11. According to this configuration, since the power elements can be electrically connected within the planar area of the power elements 11UH and 11UL, the occupied area of the wiring can be reduced, and the circuit board 80A can be miniaturized. Also in the in-phase element pair EP12 and the in-phase element pair EP13, the metal members 81 may electrically connect the power elements to each other.
  • the case where the power elements 11UH and 11UL constituting the in-phase element pair EP11 are all overlapped in the thickness direction of the circuit board 80A has been described, but at least a part of the power elements 11UH and 11UL are overlapped. Just do it.
  • the metal members 81 are disposed at positions where the power elements 11UH and 11UL overlap with each other as viewed in the thickness direction of the circuit board 80A.
  • the second three-phase inverter 112 can also have the same configuration as that of the first three-phase inverter 111.
  • FIG. 4 is a cross-sectional view of the control device showing the arrangement of power elements in the first modification.
  • power element 11VH of in-phase element pair EP12 forming the U-phase circuit is mounted on the lower surface of circuit board 80A
  • power element 11VL is mounted on the upper surface of circuit board 80A.
  • the in-phase element pair EP12 of the first modification includes the power element 11VL on the upper surface side of the circuit board 80A as a lower arm element and the power element 11VH on the lower surface side as an upper arm element.
  • sufficient heat dissipation can be performed while arranging the power elements at a high density, and the circuit board 80A can be miniaturized.
  • FIG. 5 is a cross-sectional view of the control device showing the arrangement of power elements in the second modification.
  • control device 80 has element pairs EP21 and EP22, and in-phase element pair EP13.
  • the element pair EP21 includes a power element 11UH which is an upper arm element of the U-phase circuit and a power element 11VH which is an upper arm element of the V-phase circuit.
  • the element pair EP22 includes a power element 11UL which is a lower arm element of the U-phase circuit and a power element 11VL which is a lower arm element of the V-phase circuit.
  • two power elements belonging to one element pair constitute circuits for different phases. Also in the configuration of the second modification, as in the embodiment, sufficient heat dissipation can be performed while arranging the power elements at a high density, and the circuit board 80A can be miniaturized.
  • no metal members are provided between the power elements of element pair EP21 and between the power elements of element pair EP22. Since the element pairs EP21 and EP22 are power elements of different phases, no metal member may be provided if conduction between the power elements is unnecessary.
  • FIG. 6 is a cross-sectional view of the control device showing the arrangement of power elements in the third modification.
  • FIG. 7 is a diagram showing a circuit configuration of a three-phase inverter in the third modification.
  • the control device 180 of the third modification has a three-phase inverter 113 including a U-phase circuit 13U, a V-phase circuit 13V, and a W-phase circuit 13W.
  • Control device 180 is the same as control device 80 shown in FIG. 2 except for the configuration of the three-phase inverter.
  • the output terminals of U-phase circuit 13U, V-phase circuit 13V, and W-phase circuit 13W are connected to the coils of the motor. Therefore, the three-phase inverter 113 is used instead of the first three-phase inverter 111 and the second three-phase inverter 112 shown in FIG.
  • U-phase circuit 13U has four power elements 13UH1, 13UH2, 13UL1, 13UL2.
  • the two power elements 13UH1 and 13UH2 are connected in parallel to form an upper arm element of the U-phase circuit 13U.
  • Two power elements 13UL1 and 13UL2 are connected in parallel to form a lower arm element of U-phase circuit 13U.
  • V-phase circuit 13V includes four power elements 13VH1, 13VH2, 13VL1, and 13VL2.
  • the two power elements 13VH1 and 13VH2 are connected in parallel to form an upper arm element of the V-phase circuit 13V.
  • the two power elements 13VL1 and 13VL2 are connected in parallel to form a lower arm element of the V-phase circuit 13V.
  • W-phase circuit 13W has four power elements 13WH1, 13WH2, 13WL1, and 13WL2.
  • the two power elements 13WH1 and 13WH2 are connected in parallel to form an upper arm element of the W-phase circuit 13W.
  • the two power elements 13WL1 and 13WL2 are connected in parallel to form a lower arm element of the W-phase circuit 13W.
  • control device 180 has four in-phase element pairs EP31 to EP34.
  • the in-phase element pair EP31 includes one power element 13UH1 of the upper arm element of the U-phase circuit 13U and the other power element 13UH2 of the upper arm element of the U-phase circuit 13U.
  • Power elements 13UH1 and 13UH2 are electrically connected via metal member 81 provided on circuit board 80A.
  • the in-phase element pair EP32 includes one power element 13UL1 of the lower arm element of the U-phase circuit 13U and the other power element 13UL2 of the lower arm element of the U-phase circuit 13U.
  • Power elements 13UL1 and 13UL2 are electrically connected via metal member 81 of circuit board 80A.
  • the in-phase element pair EP33 includes one power element 13VH1 of the upper arm element of the V-phase circuit 13V and the other power element 13VH2 of the upper arm element of the V-phase circuit 13V. Power elements 13VH1 and 13VH2 are electrically connected via metal member 81 of circuit board 80A.
  • the in-phase element pair EP34 includes one power element 13VL1 of the lower arm element of the V-phase circuit 13V and the other power element 13VL2 of the lower arm element of the V-phase circuit 13V. Power elements 13VL1 and 13VL2 are electrically connected via metal member 81 of circuit board 80A.
  • the third modification since the upper arm element and the lower arm element of the inverter of each phase are formed of power elements connected in parallel, the amount of current per power element is suppressed and the amount of heat generation is reduced. . Thus, the amount of heat generation of the motor 1 can be reduced.
  • the number of power elements is increased.
  • the circuit board Power elements are efficiently arranged on 80A. Thus, the increase in size of the circuit board 80A is suppressed. With the configuration in which the power elements are electrically connected by the metal members 81, the area occupied by the wirings is reduced, and the enlargement of the circuit board 80A is further suppressed.
  • FIG. 6 shows the arrangement of power elements of U-phase circuit 13U and V-phase circuit 13V, but W-phase circuit 13W also has a configuration having two in-phase element pairs of four power elements. It is also good.
  • one in-phase element pair is configured to include two power elements connected in parallel, but another configuration may be employed.
  • the in-phase element pair EP31 may be configured to include one power element 13UH1 of the upper arm element of the U-phase circuit 13U and one power element 13UL1 of the lower arm element of the U-phase circuit 13U.
  • the in-phase element pair EP32 may be configured to include the other power element 13UH2 of the upper arm element of the U-phase circuit 13U and the other power element 13UL2 of the lower arm element of the U-phase circuit 13U.
  • FIG. 8 is a schematic view showing the electric power steering apparatus 2 of the present embodiment.
  • the electric power steering device 2 is mounted on a steering mechanism of a wheel of a car.
  • the electric power steering device 2 of the present embodiment is a rack type power steering device which directly reduces the steering force by the power of the motor 1.
  • the electric power steering apparatus 2 includes a motor 1, a steering shaft 914, and an axle 913.
  • the steering shaft 914 transmits an input from the steering 911 to an axle 913 having wheels 912.
  • the power of the motor 1 is transmitted to the axle 913 via a ball screw (not shown).
  • the motor 1 employed in the rack-type electric power steering device 2 is attached to the axle 913 and exposed to the outside, and therefore requires a waterproof structure.
  • the electric power steering apparatus 2 of the present embodiment includes the motor 1 of the present embodiment. For this reason, the electric power steering device 2 having the same effect as the present embodiment can be obtained.
  • the electric power steering apparatus 2 was mentioned as an example of the usage method of the motor 1 of this embodiment, the usage method of the motor 1 is not limited.
  • the rack-type electric power steering device is exemplified, but a column-type electric power steering device may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inverter Devices (AREA)
  • Power Steering Mechanism (AREA)

Abstract

A control device which comprises a three-phase inverter that drives a motor, and which is provided with a circuit board and a plurality of power elements that are mounted on the circuit board and constitute the three-phase inverter. This control device comprises: a first power element which is mounted on a first mounting surface of the circuit board, said first mounting surface being on one side of the circuit board; a second power element which is mounted on a second mounting surface that is on the reverse side of the first mounting surface; and a heat sink which is thermally in contact with the first power element and the second power element. This control device has an element pair that is composed of the first power element and the second power element, which are mounted in positions where the power elements overlap with each other at least partially when viewed from a direction that is perpendicular to the plane direction of the circuit board.

Description

制御装置、モータ、電動パワーステアリング装置Control device, motor, electric power steering device
本発明は、制御装置、モータ、電動パワーステアリング装置に関する。 The present invention relates to a control device, a motor, and an electric power steering device.
電子部品が実装された基板を、ロータやステータとともにハウジングに収容したモータが知られている(例えば特許文献1参照)。 A motor is known in which a substrate on which an electronic component is mounted is accommodated in a housing together with a rotor and a stator (see, for example, Patent Document 1).
特開2016-119799号公報JP, 2016-119799, A
インバータやコンデンサが実装された基板をハウジングに収容する場合、収容空間が限られるため、基板の小型化が要求される。一方、小型化のために基板上に電子部品を密集させて配置すると、放熱が困難になる。  When a substrate on which an inverter or a capacitor is mounted is housed in a housing, the housing space is limited, and therefore, miniaturization of the substrate is required. On the other hand, if electronic components are densely arranged on a substrate for miniaturization, heat radiation becomes difficult.
本発明の一態様は、放熱性を維持しつつ小型化を可能とした制御装置、および上記制御装置を備えたモータ並びに電動パワーステアリング装置を提供することを目的の一つとする。 An object of the present invention is to provide a control device that can be miniaturized while maintaining heat dissipation, a motor including the control device, and an electric power steering device.
本発明の一態様によれば、モータを駆動する三相インバータを含む制御装置であって、回路基板と、前記回路基板に実装され前記三相インバータを構成する複数のパワー素子を備え、前記回路基板の一方側の第1実装面に実装される第1パワー素子と、前記第1実装面と反対側の第2実装面に実装される第2パワー素子と、前記第1パワー素子および前記第2パワー素子と熱的に接触するヒートシンクと、を有し、前記回路基板の平面方向と直交する方向から見て、少なくとも一部が重なり合う位置に実装される前記第1パワー素子および前記第2パワー素子からなる素子対を有する、制御装置が提供される。 According to one aspect of the present invention, there is provided a control device including a three-phase inverter for driving a motor, comprising: a circuit board; and a plurality of power elements mounted on the circuit board and constituting the three-phase inverter; A first power element mounted on a first mounting surface on one side of the substrate; a second power element mounted on a second mounting surface opposite to the first mounting surface; the first power element; The first power element and the second power mounted in a position where at least a part of them is overlapped when viewed from the direction orthogonal to the plane direction of the circuit board, and a heat sink in thermal contact with two power elements; A control device is provided having an element pair of elements.
本発明の一態様によれば、放熱性を維持しつつ小型化を可能とした制御装置、および上記制御装置を備えたモータ並びに電動パワーステアリング装置が提供される。 According to an aspect of the present invention, a control device capable of downsizing while maintaining heat dissipation, a motor including the control device, and an electric power steering device are provided.
図1は、実施形態のモータの断面図である。FIG. 1 is a cross-sectional view of the motor of the embodiment. 図2は、実施形態のモータの制御回路を示す図である。FIG. 2 is a diagram showing a control circuit of the motor of the embodiment. 図3は、実施形態の制御装置80におけるパワー素子の配置を示す部分断面図である。FIG. 3 is a partial cross-sectional view showing the arrangement of power elements in the control device 80 of the embodiment. 図4は、変形例1におけるパワー素子の配置を示す制御装置の断面図である。FIG. 4 is a cross-sectional view of the control device showing the arrangement of power elements in the first modification. 図5は、変形例2におけるパワー素子の配置を示す制御装置の断面図である。FIG. 5 is a cross-sectional view of the control device showing the arrangement of power elements in the second modification. 図6は、変形例3におけるパワー素子の配置を示す制御装置の断面図である。FIG. 6 is a cross-sectional view of the control device showing the arrangement of power elements in the third modification. 図7は、変形例3における三相インバータの回路構成を示す図である。FIG. 7 is a diagram showing a circuit configuration of a three-phase inverter in the third modification. 図8は、実施形態の電動パワーステアリング装置2を示す図である。FIG. 8 is a view showing the electric power steering apparatus 2 of the embodiment.
図面を用いて本発明の実施の形態について説明する。以下の説明においては、中心軸Jの延びる方向を上下方向とする。ただし、本明細書における上下方向は、単に説明のために用いられる名称であって、実際の位置関係や方向を限定しない。特に断りのない限り、中心軸Jに平行な方向を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向(中心軸Jの軸周り)を単に「周方向」と呼ぶ。  Embodiments of the present invention will be described with reference to the drawings. In the following description, the direction in which the central axis J extends is the vertical direction. However, the vertical direction in the present specification is a name merely used for explanation, and does not limit the actual positional relationship or direction. Unless otherwise noted, a direction parallel to the central axis J is simply referred to as “axial direction”, a radial direction centered on the central axis J is simply referred to as “radial direction”, and a circumferential direction centered on the central axis J The circumferential direction of the central axis J is simply referred to as “circumferential direction”.
なお、本明細書において、軸方向に延びる、とは、厳密に軸方向に延びる場合に加えて、軸方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。また、本明細書において、径方向に延びる、とは、厳密に径方向、すなわち、軸方向に対して垂直な方向に延びる場合に加えて、径方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。  In the present specification, “extending axially” includes not only extending strictly in the axial direction but also extending in a direction inclined at an angle of less than 45 ° with respect to the axial direction. Furthermore, in the present specification, “extending radially” means tilting in a range of less than 45 ° with respect to the radial direction, in addition to the case of extending in the radial direction strictly, that is, perpendicular to the axial direction. It also includes the case of extending in the opposite direction.
<モータ>



 図1は、本実施形態のモータの断面図である。図2は、本実施形態のモータの制御回路を示す図である。 モータ1は、ハウジング20と、ロータ30と、ステータ40と、ベアリングホルダ70と、制御装置80と、を備える。モータ1では、制御装置80と、ベアリングホルダ70と、ステータ40とが、上側から下側に向かって、この順に配置される。 ステータ40は、コイル43を含むステータ本体40Aと、ステータ本体40Aから引き出されるコイル線45を支持する第1サポート部材51および第2サポート部材52と、を有する。 
<Motor>



FIG. 1 is a cross-sectional view of a motor of the present embodiment. FIG. 2 is a diagram showing a control circuit of the motor of the present embodiment. The motor 1 includes a housing 20, a rotor 30, a stator 40, a bearing holder 70, and a control device 80. In the motor 1, the control device 80, the bearing holder 70, and the stator 40 are arranged in this order from the upper side to the lower side. The stator 40 has a stator main body 40A including a coil 43, and a first support member 51 and a second support member 52 supporting the coil wire 45 drawn from the stator main body 40A.
ハウジング20は、上下方向に延びる筒部21と、筒部21の下端に位置する底壁部23と、上側に開口する開口部20aと、を有する。ハウジング20の内面には、ステータ本体40Aが固定される。ハウジング20の開口部20aには、ベアリングホルダ70が挿入される。ベアリングホルダ70の上面に制御装置80が配置される。制御装置80は、ベアリングホルダ70のホルダ貫通部77から露出するコイル線45と接続される。  The housing 20 has a cylindrical portion 21 extending in the vertical direction, a bottom wall portion 23 located at the lower end of the cylindrical portion 21, and an opening 20a opening on the upper side. The stator main body 40A is fixed to the inner surface of the housing 20. The bearing holder 70 is inserted into the opening 20 a of the housing 20. A controller 80 is disposed on the top surface of the bearing holder 70. The control device 80 is connected to the coil wire 45 exposed from the holder penetrating portion 77 of the bearing holder 70.
筒部21は、本実施形態の場合、中心軸Jを中心とする円筒状である。筒部21の形状は、円筒状に限られず、例えば、多角形の筒形としてもよい。 底壁部23は、ステータ40の下側に配置される。底壁部23は、下側ベアリング34を保持するベアリング保持部23aと、底壁部23を軸方向に貫通する出力軸孔22と、を有する。  In the case of the present embodiment, the cylindrical portion 21 is cylindrical with the central axis J as a center. The shape of the cylindrical portion 21 is not limited to a cylindrical shape, and may be, for example, a polygonal cylindrical shape. The bottom wall portion 23 is disposed below the stator 40. The bottom wall portion 23 has a bearing holding portion 23 a that holds the lower bearing 34, and an output shaft hole 22 axially penetrating the bottom wall portion 23.
ロータ30は、シャフト31を有する。シャフト31は、上下方向に延びる中心軸Jを中心とする。ロータ30は、シャフト31とともに中心軸J周りに回転する。シャフト31の下側の端部は、出力軸孔22を通じてハウジング20の下側へ突出する。  The rotor 30 has a shaft 31. The shaft 31 is centered on a central axis J extending in the vertical direction. The rotor 30 rotates around the central axis J together with the shaft 31. The lower end of the shaft 31 protrudes to the lower side of the housing 20 through the output shaft hole 22.
上側ベアリング33および下側ベアリング34は、シャフト31を、中心軸周りに回転可能に支持する。下側ベアリング34は、ステータ40の下側において、ベアリング保持部23aに保持される。上側ベアリング33は、ステータ40の上側において、ベアリングホルダ70に保持される。  The upper bearing 33 and the lower bearing 34 rotatably support the shaft 31 around a central axis. The lower bearing 34 is held by the bearing holding portion 23 a at the lower side of the stator 40. The upper bearing 33 is held by the bearing holder 70 on the upper side of the stator 40.
ステータ本体40Aは、ロータ30の径方向外側に位置する。ステータ本体40Aは、ステータコア41と、インシュレータ42と、コイル43と、を有する。インシュレータ42は、ステータコア41のティースに取り付けられる。コイル43は、インシュレータ42に巻き回されるコイル線により構成され、ステータコア41のティースに配置される。ステータ40の外周面は、ハウジング20の内周面に固定される。  The stator main body 40A is located radially outward of the rotor 30. The stator main body 40A has a stator core 41, an insulator 42, and a coil 43. The insulator 42 is attached to the teeth of the stator core 41. The coil 43 is constituted by a coil wire wound around the insulator 42, and is disposed on the teeth of the stator core 41. The outer peripheral surface of the stator 40 is fixed to the inner peripheral surface of the housing 20.
第1サポート部材51は樹脂製の部材であり、ステータ本体40Aの上面に配置される。第1サポート部材51の上面には、樹脂製の第2サポート部材52が配置される。本実施形態では、コイル43から引き出されるコイル線45は、第1サポート部材51によりホルダ貫通部77の下部に案内され、第2サポート部材52によってホルダ貫通部77の上側へ引き出される。  The first support member 51 is a member made of resin and disposed on the top surface of the stator main body 40A. A second support member 52 made of resin is disposed on the top surface of the first support member 51. In the present embodiment, the coil wire 45 drawn out from the coil 43 is guided by the first support member 51 to the lower part of the holder penetrating part 77 and drawn out by the second support member 52 to the upper side of the holder penetrating part 77.
本実施形態のステータ40は、6個のコイル43からなる三相巻線組を、周方向に2組配置した構成を有する。ステータ40は、図2に示すように、第1巻線組141と第2巻線組142とを有する。第1巻線組141は、それぞれコイル43からなる3つのコイルU1、V1、W1を有する。第2巻線組142は、それぞれコイル43からなる3つのコイルU2、V2、W2を有する。  The stator 40 of the present embodiment has a configuration in which two sets of three-phase winding sets of six coils 43 are arranged in the circumferential direction. The stator 40 has a first winding set 141 and a second winding set 142, as shown in FIG. The first winding set 141 has three coils U1, V1 and W1 each consisting of a coil 43. The second winding set 142 has three coils U2, V2, W2 each consisting of a coil 43.
制御装置80は、図1に示すように、回路基板80Aと、回路基板80A上に実装される複数の素子と、回路基板80Aの上面に配置される第1ヒートシンク75と、回路基板80Aの下面に配置される第2ヒートシンク76と、を有する。制御装置80は、ベアリングホルダ70のホルダ貫通部77を介して上側へ引き出されるコイル線45と接続される。また、本実施形態では、ベアリングホルダ70はヒートシンクの機能を備える。つまり、ベアリングホルダが第2ヒートシンクであってもよい。  As shown in FIG. 1, the control device 80 includes a circuit board 80A, a plurality of elements mounted on the circuit board 80A, a first heat sink 75 disposed on the upper surface of the circuit board 80A, and a lower surface of the circuit board 80A. And a second heat sink 76 disposed at the The control device 80 is connected to the coil wire 45 drawn upward through the holder penetrating portion 77 of the bearing holder 70. Further, in the present embodiment, the bearing holder 70 has the function of a heat sink. That is, the bearing holder may be the second heat sink.
制御装置80は、図2に示すように、制御部100と、第1三相インバータ111と、第2三相インバータ112と、コンデンサ121、122と、チョークコイル123と、第1リレー部131と、第2リレー部132と、シャント抵抗151~153、161~163と、を有する。  As shown in FIG. 2, control device 80 includes control unit 100, first three-phase inverter 111, second three-phase inverter 112, capacitors 121 and 122, choke coil 123, and first relay unit 131. , And the second relay portion 132, and shunt resistors 151 to 153 and 161 to 163.
第1三相インバータ111は、6つのパワー素子11UH、11UL、11VH、11VL、11WH、11WLを有する。第1三相インバータ111は、パワー素子11UHを上アーム素子、パワー素子11ULを下アーム素子とするU相回路と、パワー素子11VHを上アーム素子、パワー素子11VLを下アーム素子とするV相回路と、パワー素子11WHを上アーム素子、パワー素子11WLを下アーム素子とするW相回路と、を有する。  The first three-phase inverter 111 has six power elements 11UH, 11UL, 11VH, 11VL, 11WH and 11WL. The first three-phase inverter 111 is a U-phase circuit using the power device 11UH as an upper arm device and a power device 11UL as a lower arm device, a V-phase circuit using the power device 11VH as an upper arm device, and the power device 11VL as a lower arm device. And a W-phase circuit using the power element 11WH as the upper arm element and the power element 11WL as the lower arm element.
U相回路の出力端子はコイルU1に接続される。V相回路の出力端子はコイルV1に接続される。W相回路の出力端子はコイルW1に接続される。 本明細書において、U相回路、V相回路、W相回路は、三相インバータを構成する各相用の第1相回路、第2相回路、第3相回路のいずれかである。  The output terminal of the U-phase circuit is connected to the coil U1. The output terminal of the V-phase circuit is connected to the coil V1. The output terminal of the W-phase circuit is connected to the coil W1. In the present specification, the U-phase circuit, the V-phase circuit, and the W-phase circuit are any one of a first phase circuit, a second phase circuit, and a third phase circuit for each phase constituting a three-phase inverter.
第2三相インバータ112は、6つのパワー素子12UH、12UL、12VH、12VL、12WH、12WLを有する。第2三相インバータ112は、パワー素子12UHを上アーム素子、パワー素子12ULを下アーム素子とするU相回路と、パワー素子12VHを上アーム素子、パワー素子12VLを下アーム素子とするV相回路と、パワー素子12WHを上アーム素子、パワー素子12WLを下アーム素子とするW相回路と、を有する。 第2三相インバータ112において、U相回路の出力端子はコイルU2に接続され、V相回路の出力端子はコイルV2に接続され、W相回路の出力端子はコイルW2に接続される。  The second three-phase inverter 112 has six power devices 12UH, 12UL, 12VH, 12VL, 12WH, 12WL. The second three-phase inverter 112 is a U-phase circuit in which the power element 12UH is an upper arm element and the power element 12UL is a lower arm element, a V phase circuit in which the power element 12VH is an upper arm element, and the power element 12VL is a lower arm element And a W-phase circuit using the power element 12WH as an upper arm element and the power element 12WL as a lower arm element. In the second three-phase inverter 112, the output terminal of the U-phase circuit is connected to the coil U2, the output terminal of the V-phase circuit is connected to the coil V2, and the output terminal of the W-phase circuit is connected to the coil W2.
第1三相インバータ111および第2三相インバータ112の各パワー素子は、MOSFET(金属酸化物半導体絶縁効果トランジスタ)であるが、IGBT(絶縁ゲートバイポーラトランジスタ)等であってもよい。  Each power element of the first three-phase inverter 111 and the second three-phase inverter 112 is a MOSFET (metal oxide semiconductor insulation effect transistor), but may be an IGBT (insulated gate bipolar transistor) or the like.
コンデンサ121、122およびチョークコイル123は、第1三相インバータ111および第2三相インバータ112と電源3との間に接続される。 シャント抵抗151~153は、パワー素子11UL、11VL、11WLの低電位側の端子に接続される。シャント抵抗161~163は、パワー素子12UL、12VL、12WLの低電位側の端子に接続される。  The capacitors 121 and 122 and the choke coil 123 are connected between the first three-phase inverter 111 and the second three-phase inverter 112 and the power supply 3. The shunt resistors 151 to 153 are connected to terminals on the low potential side of the power elements 11UL, 11VL, and 11WL. The shunt resistors 161 to 163 are connected to the terminals on the low potential side of the power elements 12UL, 12VL, and 12WL.
第1リレー部131は、電源3と第1三相インバータ111との間に接続される。第1リレー部131は、電源リレー131aおよび逆接保護リレー131bを有する。電源リレー131aは、第1三相インバータ111への電流を導通または遮断する。逆接保護リレー131bは、電源3が逆向きに接続された場合の保護回路である。  The first relay unit 131 is connected between the power supply 3 and the first three-phase inverter 111. The first relay unit 131 has a power supply relay 131a and a reverse connection protection relay 131b. Power supply relay 131 a conducts or cuts off the current to first three-phase inverter 111. The reverse connection protection relay 131 b is a protection circuit when the power supply 3 is connected in the reverse direction.
第2リレー部132は、電源3と第2三相インバータ112との間に接続される。第2リレー部132は、電源リレー132aおよび逆接保護リレー132bを有する。電源リレー132aは、第2三相インバータ112への電流を導通または遮断する。逆接保護リレー132bは、電源3が逆向きに接続された場合の保護回路である。  The second relay unit 132 is connected between the power supply 3 and the second three-phase inverter 112. The second relay unit 132 has a power supply relay 132a and a reverse connection protection relay 132b. The power supply relay 132 a conducts or cuts off the current to the second three-phase inverter 112. The reverse connection protection relay 132 b is a protection circuit when the power supply 3 is connected in the reverse direction.
モータ1では、第1巻線組141と、制御装置80上の第1三相インバータ111、シャント抵抗151~153、コンデンサ121、および第1リレー部131とが、第1系統101を構成する。第2巻線組142と、制御装置80上の第2三相インバータ112、シャント抵抗161~163、コンデンサ122、および第2リレー部132とが、第2系統102を構成する。  In the motor 1, the first winding set 141, the first three-phase inverter 111 on the control device 80, the shunt resistors 151 to 153, the capacitor 121, and the first relay unit 131 constitute a first system 101. The second winding set 142, the second three-phase inverter 112 on the control device 80, the shunt resistors 161 to 163, the capacitor 122, and the second relay unit 132 constitute a second system 102.
制御部100は、第1三相インバータ111および第2三相インバータ112の各パワー素子を、外部コントローラ4から入力される速度指令に基づいて駆動制御する。制御部100は、上記速度指令に基づいて駆動信号としてのPWM信号を生成し、第1三相インバータ111および第2三相インバータ112の各相のインバータの入力端子に出力する。  The control unit 100 drives and controls each power element of the first three-phase inverter 111 and the second three-phase inverter 112 based on the speed command input from the external controller 4. The control unit 100 generates a PWM signal as a drive signal based on the speed command, and outputs the PWM signal to an input terminal of an inverter of each phase of the first three-phase inverter 111 and the second three-phase inverter 112.
図1に示すように、本実施形態の制御装置80では、回路基板80Aの両面に複数の素子が実装される。回路基板80Aの上面には、パワー素子11UH、11VH、11WH、12UH、12VH、12WHと、コンデンサ121、122と、第1リレー部131および第2リレー部132と、が実装される。回路基板80Aの下面には、パワー素子11UL、11VL、11WL、12UL、12VL、12WLと、シャント抵抗151~153およびシャント抵抗161~163と、が実装される。


As shown in FIG. 1, in the control device 80 of the present embodiment, a plurality of elements are mounted on both sides of the circuit board 80A. Power devices 11UH, 11VH, 11WH, 12UH, 12VH, 12WH, capacitors 121 and 122, and a first relay portion 131 and a second relay portion 132 are mounted on the top surface of the circuit board 80A. Power elements 11UL, 11VL, 11WL, 12UL, 12VL, and 12WL, and shunt resistors 151 to 153 and shunt resistors 161 to 163 are mounted on the lower surface of the circuit board 80A.


回路基板80Aの上面のパワー素子11UH、11VH、11WH、12UH、12VH、12WH上に、上記パワー素子と接触する第1ヒートシンク75が配置される。回路基板80Aの下面のパワー素子11UL、11VL、11WL、12UL、12VL、12WL、およびシャント抵抗151~153、161~163の下方に、上記パワー素子およびシャント抵抗と接触する第2ヒートシンク76が配置される。第1ヒートシンク75および第2ヒートシンク76は、いずれも例えばアルミニウム合金からなる。  A first heat sink 75 in contact with the power element is disposed on the power elements 11UH, 11VH, 11WH, 12UH, 12VH and 12WH on the upper surface of the circuit board 80A. A second heat sink 76 in contact with the power element and the shunt resistor is disposed below the power elements 11UL, 11VL, 11WL, 12UL, 12VL, 12WL and the shunt resistors 151 to 153, 161 to 163 on the lower surface of the circuit board 80A. Ru. Each of the first heat sink 75 and the second heat sink 76 is made of, for example, an aluminum alloy.
図3は、本実施形態の制御装置80におけるパワー素子の配置を示す部分断面図である。 制御装置80において、第1三相インバータ111の6つパワー素子は、図3に示すように、回路基板80Aを挟んで厚さ方向に対向する位置に実装される。本実施形態において、U相回路の上アーム素子であるパワー素子11UHは、回路基板80Aの第1実装面である上面に実装される。U相回路の下アーム素子であるパワー素子11ULは、回路基板80Aの第2実装面である下面に実装される。パワー素子11UHとパワー素子11ULとは、回路基板80Aの平面方向と直交する方向から見て重なり合う位置に実装される。すなわち制御装置80は、パワー素子11UHを第1パワー素子、パワー素子11ULを第2パワー素子とする素子対を有する。本実施形態では、パワー素子11UH、11ULは、同相のパワー素子からなる同相素子対EP11を構成する。  FIG. 3 is a partial cross-sectional view showing the arrangement of power elements in the control device 80 of the present embodiment. In the control device 80, the six power elements of the first three-phase inverter 111 are mounted at positions facing each other in the thickness direction across the circuit board 80A, as shown in FIG. In the present embodiment, the power device 11UH which is the upper arm device of the U-phase circuit is mounted on the upper surface which is the first mounting surface of the circuit board 80A. Power element 11UL which is a lower arm element of the U-phase circuit is mounted on the lower surface which is the second mounting surface of circuit board 80A. The power elements 11UH and the power elements 11UL are mounted at overlapping positions when viewed from the direction orthogonal to the plane direction of the circuit board 80A. That is, the control device 80 includes an element pair in which the power element 11UH is a first power element and the power element 11UL is a second power element. In the present embodiment, the power elements 11UH and 11UL constitute an in-phase element pair EP11 formed of in-phase power elements.
U相回路と同様に、V相回路の上アーム素子および下アーム素子であるパワー素子11VH、11VLが、回路基板80Aの厚さ方向に対向する同相素子対EP12を構成する。W相回路の上アーム素子および下アーム素子であるパワー素子11WH、11WLが、回路基板80Aの厚さ方向に対向する同相素子対EP13を構成する。  Similar to the U-phase circuit, the power elements 11VH and 11VL as upper and lower arm elements of the V-phase circuit constitute an in-phase element pair EP12 opposed in the thickness direction of the circuit board 80A. The power elements 11WH and 11WL as upper and lower arm elements of the W-phase circuit constitute an in-phase element pair EP13 opposed in the thickness direction of the circuit board 80A.
本実施形態において、回路基板80Aの上面のパワー素子11UH、11VH、11WHは、制御装置80の上面に設置される第1ヒートシンク75の下面と熱的に接触する。回路基板80Aの下面のパワー素子11UL、11VL、11WLは、第2ヒートシンク76の上面と熱的に接触する。 本実施形態において、第2ヒートシンク76とベアリングホルダ70とは単一の部材であってもよい。また、第1ヒートシンク75と第2ヒートシンク76とが単一のヒートシンクからなる構成であってもよい。  In the present embodiment, the power devices 11UH, 11VH, 11WH on the upper surface of the circuit board 80A are in thermal contact with the lower surface of the first heat sink 75 installed on the upper surface of the control device 80. The power elements 11UL, 11VL, and 11WL on the lower surface of the circuit board 80A are in thermal contact with the upper surface of the second heat sink 76. In the present embodiment, the second heat sink 76 and the bearing holder 70 may be a single member. In addition, the first heat sink 75 and the second heat sink 76 may be configured as a single heat sink.
本実施形態の制御装置80では、パワー素子11UH、11ULが回路基板80Aの上下面に、厚さ方向に見て重なり合うように配置されていることで、パワー素子を高密度に配置できる。これにより、回路基板80Aの小型化が図れる。パワー素子11UH、11ULは、それぞれが第1ヒートシンク75、第2ヒートシンク76に接触するので、放熱性が確保される。また本実施形態では、同相のパワー素子11UH、11ULが、回路基板80Aを挟んで上下に重なり合っている。同相のパワー素子11UH、112は、U相回路の動作時に同時にオンすることはないため、パワー素子11UH、11ULは過熱状態となりにくい。  In the control device 80 of the present embodiment, the power elements can be arranged at high density by arranging the power elements 11UH and 11UL on the upper and lower surfaces of the circuit board 80A so as to overlap in the thickness direction. Thereby, the circuit board 80A can be miniaturized. The power elements 11UH and 11UL are in contact with the first heat sink 75 and the second heat sink 76, so that the heat dissipation is ensured. Further, in the present embodiment, the in-phase power elements 11UH and 11UL are vertically overlapped with the circuit board 80A interposed therebetween. Since the in-phase power elements 11UH and 112 do not simultaneously turn on at the time of operation of the U-phase circuit, the power elements 11UH and 11UL are unlikely to be in the overheated state.
本実施形態では、第1三相インバータ111の上アーム素子であるパワー素子11UH、11VH、11WHがいずれも回路基板80Aの上面に実装され、下アーム素子であるパワー素子11UL、11VL、11WLがいずれも回路基板80Aの下面に実装される。これより、電源3の高電位側に接続されるパワー素子が同じ面に実装され、電源3の低電位側に接続されるパワー素子が同じ面に実装されるため、電源配線を効率的に配置可能である。  In the present embodiment, the power elements 11UH, 11VH and 11WH which are upper arm elements of the first three-phase inverter 111 are all mounted on the upper surface of the circuit board 80A, and the power elements 11UL, 11VL and 11WL which are lower arm elements are all mounted. Are also mounted on the lower surface of the circuit board 80A. As a result, the power elements connected to the high potential side of the power supply 3 are mounted on the same side, and the power elements connected to the low potential side of the power supply 3 are mounted on the same side. It is possible.
本実施形態では、第1リレー部131および第2リレー部132が、上アーム素子であるパワー素子11UH、11VH、11WHと同じ面に実装される。図2に示したように、第1リレー部131および第2リレー部132は第1三相インバータ111の高電位側と電源3との間、および第2三相インバータ112の高電位側と電源3との間に配置されるため、上記構成によりビアを介した配線を少なくでき、電源配線を効率的に配置可能である。  In the present embodiment, the first relay unit 131 and the second relay unit 132 are mounted on the same plane as the power devices 11UH, 11VH, 11WH which are upper arm devices. As shown in FIG. 2, in the first relay unit 131 and the second relay unit 132, the high potential side of the first three-phase inverter 111 and the power supply 3, and the high potential side of the second three-phase inverter 112 and the power supply Since the circuit is disposed between the circuit 3 and the above, the above configuration can reduce the wiring via vias, and the power supply wiring can be efficiently arranged.
本実施形態では、シャント抵抗151~153、161~163が、下アーム素子であるパワー素子11UL、11VL、11WLと同じ面に実装される。図2に示したように、シャント抵抗151~153は、第1三相インバータ111の低電位側と電源3との間に配置され、シャント抵抗161~163は、第2三相インバータ112の低電位側と電源3との間に配置される。上記構成により、ビアを介した配線を少なくでき、電源配線を効率的に配置可能である。  In the present embodiment, the shunt resistors 151 to 153 and 161 to 163 are mounted on the same plane as the power devices 11UL, 11VL, and 11WL which are lower arm devices. As shown in FIG. 2, the shunt resistors 151-153 are disposed between the low potential side of the first three-phase inverter 111 and the power supply 3, and the shunt resistors 161-163 are low in the second three-phase inverter 112. It is disposed between the potential side and the power supply 3. According to the above configuration, the number of wiring via vias can be reduced, and the power supply wiring can be efficiently arranged.
本実施形態の回路基板80Aは、回路基板80Aの厚さ方向に延び、同相素子対EP11のパワー素子11UH、11ULの間に熱的に接触する金属部材81を有する。金属部材81は、同相素子対EP12および同相素子対EP13のパワー素子同士の間にも設けられる。金属部材81を備えることで、上下面のパワー素子11UHとパワー素子11ULとが熱的に接続されるため、パワー素子11UHとパワー素子11ULの動作時の温度が互いに近づく。これにより、動作時の特性ばらつきが抑制される。  The circuit board 80A of the present embodiment has a metal member 81 which extends in the thickness direction of the circuit board 80A and is in thermal contact between the power elements 11UH and 11UL of the in-phase element pair EP11. Metal member 81 is also provided between the power elements of in-phase element pair EP12 and in-phase element pair EP13. By providing the metal member 81, the power elements 11UH on the upper and lower surfaces and the power elements 11UL are thermally connected, so the temperatures of the power elements 11UH and 11UL in operation approach each other. Thereby, the characteristic variation at the time of operation is suppressed.
金属部材81は、同相素子対EP11のパワー素子11UH、11ULを電気的に接続する部材であってもよい。この構成によれば、パワー素子11UH、11ULの平面領域内でパワー素子同士を電気的に接続できるため、配線の占有面積が低減され、回路基板80Aの小型化が図れる。同相素子対EP12および同相素子対EP13においても、金属部材81がパワー素子同士を電気的に接続する構成としてもよい。  Metal member 81 may be a member electrically connecting power elements 11UH and 11UL of in-phase element pair EP11. According to this configuration, since the power elements can be electrically connected within the planar area of the power elements 11UH and 11UL, the occupied area of the wiring can be reduced, and the circuit board 80A can be miniaturized. Also in the in-phase element pair EP12 and the in-phase element pair EP13, the metal members 81 may electrically connect the power elements to each other.
本実施形態では、同相素子対EP11を構成するパワー素子11UH、11ULが、回路基板80Aの厚さ方向に見て全て重なり合う場合について説明したが、パワー素子11UH、11ULは、少なくとも一部が重なり合っていればよい。金属部材81は、回路基板80Aの厚さ方向に見て、パワー素子11UH、11ULが重なり合う位置に配置される。  In the present embodiment, the case where the power elements 11UH and 11UL constituting the in-phase element pair EP11 are all overlapped in the thickness direction of the circuit board 80A has been described, but at least a part of the power elements 11UH and 11UL are overlapped. Just do it. The metal members 81 are disposed at positions where the power elements 11UH and 11UL overlap with each other as viewed in the thickness direction of the circuit board 80A.
なお、図3では、第1三相インバータ111のみを図示して説明したが、第2三相インバータ112についても第1三相インバータ111と同様の構成とすることができる。  Although only the first three-phase inverter 111 is illustrated and described in FIG. 3, the second three-phase inverter 112 can also have the same configuration as that of the first three-phase inverter 111.
(変形例1)



 図4は、変形例1におけるパワー素子の配置を示す制御装置の断面図である。 変形例1の構成では、U相回路を構成する同相素子対EP12のパワー素子11VHが回路基板80Aの下面に実装され、パワー素子11VLが回路基板80Aの上面に実装される。変形例1の同相素子対EP12は、回路基板80Aの上面側のパワー素子11VLを下アーム素子、下面側のパワー素子11VHを上アーム素子として含む。 変形例1の構成においても、実施形態と同様に、パワー素子を高密度に配置しつつ十分な放熱が可能であり、回路基板80Aを小型化できる。 
(Modification 1)



FIG. 4 is a cross-sectional view of the control device showing the arrangement of power elements in the first modification. In the configuration of the first modification, power element 11VH of in-phase element pair EP12 forming the U-phase circuit is mounted on the lower surface of circuit board 80A, and power element 11VL is mounted on the upper surface of circuit board 80A. The in-phase element pair EP12 of the first modification includes the power element 11VL on the upper surface side of the circuit board 80A as a lower arm element and the power element 11VH on the lower surface side as an upper arm element. Also in the configuration of the first modification, as in the embodiment, sufficient heat dissipation can be performed while arranging the power elements at a high density, and the circuit board 80A can be miniaturized.
(変形例2)



 図5は、変形例2におけるパワー素子の配置を示す制御装置の断面図である。変形例2の構成では、制御装置80は、素子対EP21、EP22と、同相素子対EP13とを有する。素子対EP21は、U相回路の上アーム素子であるパワー素子11UHと、V相回路の上アーム素子であるパワー素子11VHとからなる。素子対EP22は、U相回路の下アーム素子であるパワー素子11ULと、V相回路の下アーム素子であるパワー素子11VLとからなる。 
(Modification 2)



FIG. 5 is a cross-sectional view of the control device showing the arrangement of power elements in the second modification. In the configuration of the second modification, control device 80 has element pairs EP21 and EP22, and in-phase element pair EP13. The element pair EP21 includes a power element 11UH which is an upper arm element of the U-phase circuit and a power element 11VH which is an upper arm element of the V-phase circuit. The element pair EP22 includes a power element 11UL which is a lower arm element of the U-phase circuit and a power element 11VL which is a lower arm element of the V-phase circuit.
すなわち、変形例2では、1つの素子対に属する2つのパワー素子が、それぞれ異なる相用の回路を構成する。変形例2の構成においても、実施形態と同様に、パワー素子を高密度に配置しつつ十分な放熱が可能であり、回路基板80Aを小型化できる。  That is, in the second modification, two power elements belonging to one element pair constitute circuits for different phases. Also in the configuration of the second modification, as in the embodiment, sufficient heat dissipation can be performed while arranging the power elements at a high density, and the circuit board 80A can be miniaturized.
変形例2においては、素子対EP21のパワー素子の間、および素子対EP22のパワー素子の間には、金属部材は設けられない。素子対EP21、EP22は、異なる相のパワー素子であるため、パワー素子間の導通が不要であれば、金属部材が設けられていなくてもよい。  In the second modification, no metal members are provided between the power elements of element pair EP21 and between the power elements of element pair EP22. Since the element pairs EP21 and EP22 are power elements of different phases, no metal member may be provided if conduction between the power elements is unnecessary.
(変形例3)



図6は、変形例3におけるパワー素子の配置を示す制御装置の断面図である。図7は、変形例3における三相インバータの回路構成を示す図である。 
(Modification 3)



FIG. 6 is a cross-sectional view of the control device showing the arrangement of power elements in the third modification. FIG. 7 is a diagram showing a circuit configuration of a three-phase inverter in the third modification.
変形例3の制御装置180は、図7に示すように、U相回路13U、V相回路13V、W相回路13Wからなる三相インバータ113を有する。制御装置180は、三相インバータの構成以外は、図2に示した制御装置80と共通である。U相回路13U、V相回路13V、W相回路13Wの出力端子はモータのコイルに接続される。したがって、三相インバータ113は、図2に示した第1三相インバータ111および第2三相インバータ112に代えて用いられる。  As shown in FIG. 7, the control device 180 of the third modification has a three-phase inverter 113 including a U-phase circuit 13U, a V-phase circuit 13V, and a W-phase circuit 13W. Control device 180 is the same as control device 80 shown in FIG. 2 except for the configuration of the three-phase inverter. The output terminals of U-phase circuit 13U, V-phase circuit 13V, and W-phase circuit 13W are connected to the coils of the motor. Therefore, the three-phase inverter 113 is used instead of the first three-phase inverter 111 and the second three-phase inverter 112 shown in FIG.
U相回路13Uは、4つのパワー素子13UH1、13UH2、13UL1、13UL2を有する。2つのパワー素子13UH1、13UH2は並列接続され、U相回路13Uの上アーム素子を構成する。2つのパワー素子13UL1、13UL2は並列接続され、U相回路13Uの下アーム素子を構成する。 V相回路13Vは、4つのパワー素子13VH1、13VH2、13VL1、13VL2を有する。2つのパワー素子13VH1、13VH2は並列接続され、V相回路13Vの上アーム素子を構成する。2つのパワー素子13VL1、13VL2は並列接続され、V相回路13Vの下アーム素子を構成する。 W相回路13Wは、4つのパワー素子13WH1、13WH2、13WL1、13WL2を有する。2つのパワー素子13WH1、13WH2は並列接続され、W相回路13Wの上アーム素子を構成する。2つのパワー素子13WL1、13WL2は並列接続され、W相回路13Wの下アーム素子を構成する。  U-phase circuit 13U has four power elements 13UH1, 13UH2, 13UL1, 13UL2. The two power elements 13UH1 and 13UH2 are connected in parallel to form an upper arm element of the U-phase circuit 13U. Two power elements 13UL1 and 13UL2 are connected in parallel to form a lower arm element of U-phase circuit 13U. V-phase circuit 13V includes four power elements 13VH1, 13VH2, 13VL1, and 13VL2. The two power elements 13VH1 and 13VH2 are connected in parallel to form an upper arm element of the V-phase circuit 13V. The two power elements 13VL1 and 13VL2 are connected in parallel to form a lower arm element of the V-phase circuit 13V. W-phase circuit 13W has four power elements 13WH1, 13WH2, 13WL1, and 13WL2. The two power elements 13WH1 and 13WH2 are connected in parallel to form an upper arm element of the W-phase circuit 13W. The two power elements 13WL1 and 13WL2 are connected in parallel to form a lower arm element of the W-phase circuit 13W.
図6に示すように、制御装置180は、4つの同相素子対EP31~EP34を有する。同相素子対EP31は、U相回路13Uの上アーム素子の一方のパワー素子13UH1と、U相回路13Uの上アーム素子の他方のパワー素子13UH2とからなる。パワー素子13UH1、13UH2は、回路基板80Aに設けられる金属部材81を介して電気的に接続される。 同相素子対EP32は、U相回路13Uの下アーム素子の一方のパワー素子13UL1と、U相回路13Uの下アーム素子の他方のパワー素子13UL2とからなる。パワー素子13UL1、13UL2は、回路基板80Aの金属部材81を介して電気的に接続される。  As shown in FIG. 6, control device 180 has four in-phase element pairs EP31 to EP34. The in-phase element pair EP31 includes one power element 13UH1 of the upper arm element of the U-phase circuit 13U and the other power element 13UH2 of the upper arm element of the U-phase circuit 13U. Power elements 13UH1 and 13UH2 are electrically connected via metal member 81 provided on circuit board 80A. The in-phase element pair EP32 includes one power element 13UL1 of the lower arm element of the U-phase circuit 13U and the other power element 13UL2 of the lower arm element of the U-phase circuit 13U. Power elements 13UL1 and 13UL2 are electrically connected via metal member 81 of circuit board 80A.
同相素子対EP33は、V相回路13Vの上アーム素子の一方のパワー素子13VH1と、V相回路13Vの上アーム素子の他方のパワー素子13VH2とからなる。パワー素子13VH1、13VH2は、回路基板80Aの金属部材81を介して電気的に接続される。 同相素子対EP34は、V相回路13Vの下アーム素子の一方のパワー素子13VL1と、V相回路13Vの下アーム素子の他方のパワー素子13VL2とからなる。パワー素子13VL1、13VL2は、回路基板80Aの金属部材81を介して電気的に接続される。  The in-phase element pair EP33 includes one power element 13VH1 of the upper arm element of the V-phase circuit 13V and the other power element 13VH2 of the upper arm element of the V-phase circuit 13V. Power elements 13VH1 and 13VH2 are electrically connected via metal member 81 of circuit board 80A. The in-phase element pair EP34 includes one power element 13VL1 of the lower arm element of the V-phase circuit 13V and the other power element 13VL2 of the lower arm element of the V-phase circuit 13V. Power elements 13VL1 and 13VL2 are electrically connected via metal member 81 of circuit board 80A.
変形例3によれば、各相のインバータの上アーム素子および下アーム素子が、並列接続されたパワー素子により構成されるため、パワー素子1つ当たりの電流量が抑制され発熱量が低減される。これより、モータ1の発熱量を低減できる。一方、1つのアーム素子に2つのパワー素子を用いるため、パワー素子の個数が増えるが、変形例3の構成では、2つずつのパワー素子により同相素子対EP31~EP34を構成するため、回路基板80A上にパワー素子が効率よく配置される。これより、回路基板80Aの大型化が抑制される。金属部材81によりパワー素子間を電気的に接続する構成により、配線の専有面積が低減され、回路基板80Aの大型化が一層抑制される。  According to the third modification, since the upper arm element and the lower arm element of the inverter of each phase are formed of power elements connected in parallel, the amount of current per power element is suppressed and the amount of heat generation is reduced. . Thus, the amount of heat generation of the motor 1 can be reduced. On the other hand, although two power elements are used for one arm element, the number of power elements is increased. However, in the configuration of the third modification, since two in-phase element pairs EP31 to EP34 are formed by two power elements, the circuit board Power elements are efficiently arranged on 80A. Thus, the increase in size of the circuit board 80A is suppressed. With the configuration in which the power elements are electrically connected by the metal members 81, the area occupied by the wirings is reduced, and the enlargement of the circuit board 80A is further suppressed.
なお、変形例3では、図6にU相回路13UおよびV相回路13Vのパワー素子配置を示したが、W相回路13Wについても、4つのパワー素子からなる2つの同相素子対を有する構成としてもよい。また変形例3では、1つの同相素子対が、並列接続された2つのパワー素子からなる構成としたが、他の構成としてもよい。例えば、同相素子対EP31を、U相回路13Uの上アーム素子の一方のパワー素子13UH1と、U相回路13Uの下アーム素子の一方のパワー素子13UL1とからなる構成としてもよい。同相素子対EP32を、U相回路13Uの上アーム素子の他方のパワー素子13UH2と、U相回路13Uの下アーム素子の他方のパワー素子13UL2とからなる構成としてもよい。


In the third modification, FIG. 6 shows the arrangement of power elements of U-phase circuit 13U and V-phase circuit 13V, but W-phase circuit 13W also has a configuration having two in-phase element pairs of four power elements. It is also good. Further, in the third modification, one in-phase element pair is configured to include two power elements connected in parallel, but another configuration may be employed. For example, the in-phase element pair EP31 may be configured to include one power element 13UH1 of the upper arm element of the U-phase circuit 13U and one power element 13UL1 of the lower arm element of the U-phase circuit 13U. The in-phase element pair EP32 may be configured to include the other power element 13UH2 of the upper arm element of the U-phase circuit 13U and the other power element 13UL2 of the lower arm element of the U-phase circuit 13U.


<電動パワーステアリング装置>



 次に、本実施形態のモータ1を搭載する装置の実施形態について説明する。本実施形態においては、モータ1を電動パワーステアリング装置に搭載した例について説明する。図8は、本実施形態の電動パワーステアリング装置2を示す模式図である。 
<Electric power steering device>



Next, an embodiment of a device on which the motor 1 of the present embodiment is mounted will be described. In the present embodiment, an example in which the motor 1 is mounted on an electric power steering apparatus will be described. FIG. 8 is a schematic view showing the electric power steering apparatus 2 of the present embodiment.
電動パワーステアリング装置2は、自動車の車輪の操舵機構に搭載される。本実施形態の電動パワーステアリング装置2は、モータ1の動力により操舵力を直接的に軽減するラック式のパワーステアリング装置である。電動パワーステアリング装置2は、モータ1と、操舵軸914と、車軸913と、を備える。  The electric power steering device 2 is mounted on a steering mechanism of a wheel of a car. The electric power steering device 2 of the present embodiment is a rack type power steering device which directly reduces the steering force by the power of the motor 1. The electric power steering apparatus 2 includes a motor 1, a steering shaft 914, and an axle 913.
操舵軸914は、ステアリング911からの入力を、車輪912を有する車軸913に伝える。モータ1の動力は、図示略のボールねじを介して、車軸913に伝えられる。ラック式の電動パワーステアリング装置2に採用されるモータ1は、車軸913に取り付けられ外部に露出しているため、防水構造を必要とする。  The steering shaft 914 transmits an input from the steering 911 to an axle 913 having wheels 912. The power of the motor 1 is transmitted to the axle 913 via a ball screw (not shown). The motor 1 employed in the rack-type electric power steering device 2 is attached to the axle 913 and exposed to the outside, and therefore requires a waterproof structure.
本実施形態の電動パワーステアリング装置2は、本実施形態のモータ1を備える。このため、本実施形態と同様の効果を奏する電動パワーステアリング装置2が得られる。ここでは、本実施形態のモータ1の使用方法の一例として電動パワーステアリング装置2を挙げたが、モータ1の使用方法は限定されない。また、本実施形態では、ラック式の電動パワーステアリング装置を例示したが、コラム式の電動パワーステアリング装置であってもよい。 The electric power steering apparatus 2 of the present embodiment includes the motor 1 of the present embodiment. For this reason, the electric power steering device 2 having the same effect as the present embodiment can be obtained. Here, although the electric power steering apparatus 2 was mentioned as an example of the usage method of the motor 1 of this embodiment, the usage method of the motor 1 is not limited. Further, in the present embodiment, the rack-type electric power steering device is exemplified, but a column-type electric power steering device may be used.
1…モータ、2…電動パワーステアリング装置、80,180…制御装置、80A…回路基板、81…金属部材、113…三相インバータ、11UH,11VH,11WH,11UL,11VL,11WL,12UH,12VH,12WH,12UL,12VL,12WL,13UH1,13VH1,13WH1,13UH2,13VH2,13UL1,13VL1,13WL1,13UL2,13VL2…パワー素子、911…ステアリング、EP11,EP12,EP13,EP31,EP32,EP33,EP34…同相素子対、EP21,EP22…素子対 DESCRIPTION OF SYMBOLS 1 ... Motor, 2 ... Electric power steering apparatus, 80, 180 ... Control apparatus, 80A ... Circuit board, 81 ... Metal member, 113 ... Three-phase inverter, 11 UH, 11 VH, 11 WH, 11 UL, 11 VL, 11 WL, 12 UH, 12 VH, 12WH, 12UL, 12VL, 12WL, 13UH1, 13VH1, 13WH1, 13UH2, 13VH1, 13VL1, 13WL1, 13UL2, 13VL2 ... power elements, 911 ... steering, EP11, EP12, EP13, EP31, EP32, EP33, EP34 ... in phase Element pair, EP21, EP22 ... Element pair

Claims (15)

  1. モータを駆動する三相インバータを含む制御装置であって、



     回路基板と、前記回路基板に実装され前記三相インバータを構成する複数のパワー素子を備え、



     前記回路基板の一方側の第1実装面に実装される第1パワー素子と、



     前記第1実装面と反対側の第2実装面に実装される第2パワー素子と、



     前記第1パワー素子および前記第2パワー素子と熱的に接触するヒートシンクと、



     を有し、



     前記回路基板の平面方向と直交する方向から見て、少なくとも一部が重なり合う位置に実装される前記第1パワー素子および前記第2パワー素子からなる素子対を有する、制御装置。
    A control device including a three-phase inverter for driving a motor, wherein



    A circuit board, and a plurality of power elements mounted on the circuit board and constituting the three-phase inverter;



    A first power element mounted on a first mounting surface on one side of the circuit board;



    A second power element mounted on a second mounting surface opposite to the first mounting surface;



    A heat sink in thermal contact with the first power element and the second power element;



    Have



    A control device, comprising: an element pair including the first power element and the second power element mounted at a position where at least a portion overlaps with each other as viewed in a direction orthogonal to a planar direction of the circuit board.
  2. 前記回路基板は、前記回路基板の厚さ方向に延びる金属部材を有し、



     前記金属部材は、前記素子対の第1パワー素子と第2パワー素子との間に熱的に接触する、



     請求項1に記載の制御装置。
    The circuit board includes a metal member extending in a thickness direction of the circuit board,



    The metal member is in thermal contact between the first power element and the second power element of the element pair.



    The control device according to claim 1.
  3. 前記回路基板は、前記回路基板の厚さ方向に延びる金属部材を有し、



     前記金属部材は、前記素子対の第1パワー素子と第2パワー素子とを電気的に接続する、



     請求項1に記載の制御装置。
    The circuit board includes a metal member extending in a thickness direction of the circuit board,



    The metal member electrically connects the first power element and the second power element of the element pair.



    The control device according to claim 1.
  4. 前記素子対の少なくとも一つは、同相の前記パワー素子が重なり合う同相素子対であり、



     前記同相素子対は、第1パワー素子を上アーム素子、第2パワー素子を下アーム素子として含む、



     請求項1から3のいずれか1項に記載の制御装置。
    At least one of the element pairs is an in-phase element pair in which the power elements of the in-phase overlap.



    The in-phase element pair includes a first power element as an upper arm element and a second power element as a lower arm element.



    The control device according to any one of claims 1 to 3.
  5. 前記三相インバータは、各相用の第1相回路および第2相回路を含み、



     複数の前記同相素子対を有し、



     第1の前記同相素子対は、第1パワー素子を前記第1相回路の上アーム素子、第2パワー素子を前記第1相回路の下アーム素子として含み、



     第2の前記同相素子対は、第1パワー素子を前記第2相回路の上アーム素子、第2パワー素子を前記第2相回路の下アーム素子として含む、



     請求項4に記載の制御装置。
    The three-phase inverter includes a first phase circuit and a second phase circuit for each phase,



    Having a plurality of the in-phase element pairs,



    The first in-phase element pair includes a first power element as an upper arm element of the first phase circuit and a second power element as a lower arm element of the first phase circuit,



    The second in-phase element pair includes a first power element as an upper arm element of the second phase circuit and a second power element as a lower arm element of the second phase circuit.



    The control device according to claim 4.
  6. 前記三相インバータは、各相用の第1相回路および第2相回路を含み、



     複数の前記同相素子対を有し、



     第1の前記同相素子対は、第1パワー素子を前記第1相回路の上アーム素子、第2パワー素子を前記第1相回路の下アーム素子として含み、



     第2の前記同相素子対は、第1パワー素子を前記第2相回路の下アーム素子、第2パワー素子を前記第2相回路の上アーム素子として含む、



     請求項4に記載の制御装置。
    The three-phase inverter includes a first phase circuit and a second phase circuit for each phase,



    Having a plurality of the in-phase element pairs,



    The first in-phase element pair includes a first power element as an upper arm element of the first phase circuit and a second power element as a lower arm element of the first phase circuit,



    The second in-phase element pair includes a first power element as a lower arm element of the second phase circuit and a second power element as an upper arm element of the second phase circuit.



    The control device according to claim 4.
  7. 前記三相インバータは、各相用の第1相回路および第2相回路を含み、



     前記素子対は、第1パワー素子を前記第1相回路の上アーム素子として含み、第2パワー素子を前記第2相回路の下アーム素子として含む、



     請求項1から3のいずれか1項に記載の制御装置。
    The three-phase inverter includes a first phase circuit and a second phase circuit for each phase,



    The element pair includes a first power element as an upper arm element of the first phase circuit, and includes a second power element as a lower arm element of the second phase circuit.



    The control device according to any one of claims 1 to 3.
  8. 複数の前記素子対を有し、



     第1の前記素子対は、第1パワー素子を前記第1相回路の上アーム素子、第2パワー素子を前記第2相回路の下アーム素子として含み、



     第2の前記素子対は、第1パワー素子を前記第2相回路の上アーム素子、第2パワー素子を前記第1相回路の下アーム素子として含む、



     請求項7に記載の制御装置。
    Having a plurality of said element pairs,



    The first pair of elements includes a first power element as an upper arm element of the first phase circuit and a second power element as a lower arm element of the second phase circuit,



    The second pair of elements includes a first power element as an upper arm element of the second phase circuit and a second power element as a lower arm element of the first phase circuit.



    The control device according to claim 7.
  9. 第3の前記素子対を有し、



     前記三相インバータは、第3相回路を有し、



     前記第3の素子対は、第1パワー素子および第2パワー素子を、前記第3相回路の上アーム素子および下アーム素子として含む、



     請求項8に記載の制御装置。 
    Having a third pair of elements,



    The three-phase inverter has a third phase circuit,



    The third element pair includes a first power element and a second power element as upper and lower arm elements of the third phase circuit,



    The control device according to claim 8.
  10. 前記三相インバータは、並列接続される複数の前記パワー素子からなる上アーム素子および下アーム素子を含み、



     複数の前記素子対を有し、



     第1の前記素子対は、第1パワー素子を前記上アーム素子の一方のパワー素子、第2パワー素子を前記上アーム素子の他方のパワー素子として含み、



     第2の前記素子対は、第1パワー素子を前記下アーム素子の一方のパワー素子、第2パワー素子を前記下アーム素子の他方のパワー素子として含む、



     請求項1から3のいずれか1項に記載の制御装置。
    The three-phase inverter includes an upper arm element and a lower arm element consisting of a plurality of the power elements connected in parallel;



    Having a plurality of said element pairs,



    The first pair of elements includes a first power element as one power element of the upper arm element, and a second power element as the other power element of the upper arm element.



    The second pair of elements includes a first power element as one power element of the lower arm element and a second power element as the other power element of the lower arm element.



    The control device according to any one of claims 1 to 3.
  11. 前記三相インバータは、並列接続される複数の前記パワー素子からなる上アーム素子および下アーム素子を含み、



     複数の前記素子対を有し、



     第1の前記素子対は、第1パワー素子を前記上アーム素子の一方のパワー素子、第2パワー素子を前記下アーム素子の一方のパワー素子として含み、



     第2の前記素子対は、第1パワー素子を前記上アーム素子の他方のパワー素子、第2パワー素子を前記下アーム素子の他方のパワー素子として含む、



     請求項1から3のいずれか1項に記載の制御装置。 
    The three-phase inverter includes an upper arm element and a lower arm element consisting of a plurality of the power elements connected in parallel;



    Having a plurality of said element pairs,



    The first pair of elements includes a first power element as one power element of the upper arm element and a second power element as one power element of the lower arm element,



    The second pair of elements includes a first power element as the other power element of the upper arm element and a second power element as the other power element of the lower arm element.



    The control device according to any one of claims 1 to 3.
  12. 前記第1パワー素子と熱的に接触する第1ヒートシンクと、前記第2パワー素子と熱的に接触する第2ヒートシンクとを有する、



     請求項1から11のいずれか1項に記載の制御装置。
    A first heat sink in thermal contact with the first power element; and a second heat sink in thermal contact with the second power element.



    The control device according to any one of claims 1 to 11.
  13. 複数の前記三相インバータを有し、



     前記複数の三相インバータは、モータの互いに異なる巻線組に接続される、



     請求項1から12のいずれか1項に記載の制御装置。
    Having a plurality of said three-phase inverters,



    The plurality of three-phase inverters are connected to different winding sets of a motor,



    The control device according to any one of claims 1 to 12.
  14. 請求項1から13のいずれか1項に記載の制御装置を備える、モータ。 A motor comprising the control device according to any one of claims 1 to 13.
  15. 請求項14に記載のモータを備える、電動パワーステアリング装置。 An electric power steering apparatus comprising the motor according to claim 14.
PCT/JP2018/028640 2017-09-29 2018-07-31 Control device, motor, and electric power steering device WO2019064900A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019544356A JPWO2019064900A1 (en) 2017-09-29 2018-07-31 Control device, motor, electric power steering device
CN201880050805.3A CN111034003A (en) 2017-09-29 2018-07-31 Control device, motor, and electric power steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017191154 2017-09-29
JP2017-191154 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019064900A1 true WO2019064900A1 (en) 2019-04-04

Family

ID=65903808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028640 WO2019064900A1 (en) 2017-09-29 2018-07-31 Control device, motor, and electric power steering device

Country Status (3)

Country Link
JP (1) JPWO2019064900A1 (en)
CN (1) CN111034003A (en)
WO (1) WO2019064900A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016947A (en) * 2008-07-02 2010-01-21 Fuji Electric Device Technology Co Ltd Power module of power conversion apparatus
JP2013021878A (en) * 2011-07-14 2013-01-31 Honda Motor Co Ltd Semiconductor device
JP2016076563A (en) * 2014-10-06 2016-05-12 日立オートモティブシステムズ株式会社 Power module and power converter
JP2017131058A (en) * 2016-01-21 2017-07-27 株式会社デンソー Motor, and, electric power steering device using the same
WO2017154075A1 (en) * 2016-03-07 2017-09-14 三菱電機株式会社 Electronic control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5206732B2 (en) * 2010-05-21 2013-06-12 株式会社デンソー Inverter device and drive device using the same
JP6221542B2 (en) * 2013-09-16 2017-11-01 株式会社デンソー Semiconductor device
JP2017130985A (en) * 2016-01-18 2017-07-27 株式会社明電舎 Semiconductor element driving device
JP6368763B2 (en) * 2016-12-05 2018-08-01 日立オートモティブシステムズ株式会社 Power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016947A (en) * 2008-07-02 2010-01-21 Fuji Electric Device Technology Co Ltd Power module of power conversion apparatus
JP2013021878A (en) * 2011-07-14 2013-01-31 Honda Motor Co Ltd Semiconductor device
JP2016076563A (en) * 2014-10-06 2016-05-12 日立オートモティブシステムズ株式会社 Power module and power converter
JP2017131058A (en) * 2016-01-21 2017-07-27 株式会社デンソー Motor, and, electric power steering device using the same
WO2017154075A1 (en) * 2016-03-07 2017-09-14 三菱電機株式会社 Electronic control device

Also Published As

Publication number Publication date
JPWO2019064900A1 (en) 2020-11-26
CN111034003A (en) 2020-04-17

Similar Documents

Publication Publication Date Title
JP6680054B2 (en) Drive device and electric power steering device using the same
JP6680053B2 (en) Drive device and electric power steering device using the same
JP6056827B2 (en) Rotating electrical machine control device
JP6407446B2 (en) Integrated electric power steering system
JP6582568B2 (en) DRIVE DEVICE AND ELECTRIC POWER STEERING DEVICE USING THE SAME
JP5201171B2 (en) Semiconductor module and driving device using the same
JP5067679B2 (en) Semiconductor module and driving device using the same
WO2017068636A1 (en) Integrated electric power steering device and method for manufacturing same
JP5655694B2 (en) Drive device
WO2010150529A1 (en) Drive device
WO2011142050A1 (en) Electric driving device and electric power steering device equipped with same
JP7136399B1 (en) Method for manufacturing electric drive device, electric power steering device, and electronic control device
EP3261230B1 (en) Electromechanical motor unit
JP2017017975A (en) Electric compressor
WO2018096596A1 (en) Rotary electric motor
WO2016174704A1 (en) Control device
JP7264315B2 (en) Electric driving device and electric power steering device
JP2014183615A (en) Rotary electric machine
WO2019064423A1 (en) Electric power steering device
JP5601396B2 (en) Electric device
JP5485591B2 (en) Drive device and semiconductor module
WO2019064900A1 (en) Control device, motor, and electric power steering device
WO2017002693A1 (en) Electric compressor
JP7283638B2 (en) Electric driving device and electric power steering device
WO2022097320A1 (en) Motor drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863017

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544356

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863017

Country of ref document: EP

Kind code of ref document: A1