WO2019062882A1 - 混合动力汽车及其用电控制方法和装置 - Google Patents

混合动力汽车及其用电控制方法和装置 Download PDF

Info

Publication number
WO2019062882A1
WO2019062882A1 PCT/CN2018/108540 CN2018108540W WO2019062882A1 WO 2019062882 A1 WO2019062882 A1 WO 2019062882A1 CN 2018108540 W CN2018108540 W CN 2018108540W WO 2019062882 A1 WO2019062882 A1 WO 2019062882A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
current
level
hybrid vehicle
power consumption
Prior art date
Application number
PCT/CN2018/108540
Other languages
English (en)
French (fr)
Inventor
王春生
郭治昊
许伯良
郝宾
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP18860080.3A priority Critical patent/EP3677483A4/en
Publication of WO2019062882A1 publication Critical patent/WO2019062882A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1886Controlling power supply to auxiliary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1886Controlling power supply to auxiliary devices
    • B60W30/1888Control of power take off [PTO]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0666Engine power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/085Power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/30Auxiliary equipments
    • B60W2510/305Power absorbed by auxiliaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power

Definitions

  • the present disclosure relates to the field of automotive technology, and in particular, to a power control method for a hybrid vehicle, a power control device for a hybrid vehicle, and a hybrid vehicle.
  • the value of the state of charge (Soc) of the battery is usually used as a reference point for the change of the power policy. For example, when the Soc value is greater than the preset power, the battery is fully charged and powered. Most of the output is output by the motor. When the Soc value is less than the preset power, the battery is identified as insufficient, and the power output is mostly output by the engine.
  • Soc state of charge
  • the related art has the problem that since the Soc value is used as the standard when driving the power, the engine may be operated in a non-economic area, the fuel consumption is increased, the overall fuel consumption of the vehicle is high, and the Soc value is low. At the time, the power consumption cannot be minimized, resulting in poor power conservation capability of the entire vehicle.
  • the present disclosure aims to solve at least one of the technical problems in the related art to some extent.
  • the first object of the present disclosure is to propose a power control method for a hybrid vehicle, which can reduce the overall fuel consumption and enhance the power conservation capability.
  • a second object of the present disclosure is to provide a power control device for a hybrid vehicle.
  • a third object of the present disclosure is to propose a hybrid vehicle.
  • a power control method for a hybrid vehicle includes the steps of: acquiring a current gradient of the hybrid vehicle, a current throttle depth, and a current operating power of the powered device. Determining a current power consumption level of the hybrid vehicle according to the current slope, the current throttle depth, and a current operating power of the powered device; acquiring a current power generation level of the hybrid vehicle, wherein the mixing The power car has a plurality of power generation levels and a plurality of power consumption levels, the plurality of power generation levels respectively corresponding to the plurality of power consumption levels; controlling the hybrid vehicle according to the current power consumption level and the current power generation level The final power level is used, and the power consumption of the hybrid vehicle is controlled according to the final power level.
  • the electric power control method of the hybrid vehicle obtains the current gradient of the hybrid vehicle, the current throttle depth, and the current working power of the electric equipment, and according to the current slope, the current throttle depth, and the power equipment.
  • the current working power determines the current power level of the hybrid vehicle, obtains the current power generation level of the hybrid vehicle, and then controls the final power level of the hybrid vehicle according to the current power level and the current power generation level, and mixes according to the final power level.
  • the power consumption of the power car is controlled.
  • the power control method of the embodiment of the present disclosure determines the final power level by the current slope of the hybrid vehicle, the current throttle depth, the current power of the power equipment, and the current power generation level, and then adjusts the power equipment according to the final power level. Therefore, it is possible to control the power consumption of the whole vehicle in a more comprehensive working mode, so that the engine works as much as possible in the economic zone while driving, reduces the overall fuel consumption, and can also minimize the power consumption of the whole vehicle and improve the power conservation capability.
  • a power control device for a hybrid vehicle includes a controller and a memory, the memory storing a plurality of instructions, the instructions being adapted to be controlled by the control Loading and executing: obtaining a current gradient of the hybrid vehicle, a current throttle depth, and a current operating power of the powered device, and determining, according to the current slope, the current throttle depth, and a current operating power of the powered device Determining a current power level of the hybrid vehicle; and obtaining a current power generation level of the hybrid vehicle, and controlling a final power level of the hybrid vehicle according to the current power level and the current power generation level, and according to The final power usage level controls power usage of the hybrid vehicle, wherein the hybrid vehicle has a plurality of power generation levels and a plurality of power usage levels, and the plurality of power generation levels are respectively associated with the plurality of power generation levels The electrical level corresponds.
  • the power control device of the hybrid vehicle obtains the current gradient of the hybrid vehicle, the current throttle depth, and the current working power of the powered device, according to the current slope, the current throttle depth, and the current state of the powered device.
  • the working power determines the current power level of the hybrid vehicle; and obtains the current power generation level of the hybrid vehicle, and controls the final power level of the hybrid vehicle according to the current power level and the current power generation level, and mixes according to the final power level.
  • the power consumption of the power car is controlled.
  • the hybrid vehicle has a plurality of power generation levels and a plurality of power consumption levels, and the plurality of power generation levels respectively correspond to the plurality of power consumption levels.
  • the power control device of the hybrid vehicle of the embodiment of the present disclosure determines the final power level by the current gradient of the hybrid vehicle, the current throttle depth, the current power of the powered device, and the current power generation level, and then according to the final power level. Adjusting the electrical equipment, so that it can control the power consumption of the whole vehicle in a more comprehensive working mode, so that the engine works as much as possible in the economic zone while driving, reducing the overall fuel consumption, and also minimizing the power consumption of the whole vehicle and improving the power conservation. ability.
  • a hybrid vehicle proposed by an embodiment of the third aspect of the present disclosure includes an electric power control device of the hybrid vehicle.
  • the electric power control device of the hybrid vehicle can adjust the electric power device according to the final electric power level, so that the electric vehicle can be controlled in a more comprehensive operation mode, so that the engine is driven.
  • the electric power control device of the hybrid vehicle can adjust the electric power device according to the final electric power level, so that the electric vehicle can be controlled in a more comprehensive operation mode, so that the engine is driven.
  • FIG. 1 is a block schematic diagram of a hybrid vehicle in accordance with an embodiment of the present disclosure
  • FIG. 2a is a schematic structural view of a power system of a hybrid vehicle according to an embodiment of the present disclosure
  • FIG. 2b is a schematic structural view of a power system of a hybrid vehicle according to another embodiment of the present disclosure
  • FIG. 3 is a block schematic diagram of a power system of a hybrid vehicle in accordance with another embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a power control method of a hybrid vehicle according to an embodiment of the present disclosure
  • FIG. 5 is a block schematic diagram of a power control device of a hybrid vehicle according to an embodiment of the present disclosure
  • FIG. 6 is a block schematic diagram of a hybrid vehicle in accordance with an embodiment of the present disclosure.
  • the powertrain 200 of the hybrid vehicle includes an engine 1, a power motor 2, a power battery 3, a DC-DC converter 4, and a sub-motor 5.
  • the engine 1 outputs power to the wheels 7 of the hybrid vehicle through the clutch 6; the power motor 2 is used to output the driving force to the wheels 7 of the hybrid vehicle.
  • the power system of the embodiment of the present disclosure can provide power for the hybrid vehicle to normally travel through the engine 1 and/or the power motor 2.
  • the power source of the power system 200 may be the engine 1 and the power motor 2, that is, any one of the engine 1 and the power motor 2 may separately output power to the wheel 7, or the engine 1 And the power motor 2 can simultaneously output power to the wheel 7.
  • the power battery 3 is used to supply power to the power motor 2; the sub motor 5 is connected to the engine 1, for example, the sub motor 5 can be connected to the engine 1 through the train wheel end of the engine 1.
  • the sub-motors 5 are respectively connected to the power motor 2, the DC-DC converter 4, and the power battery 3, and the sub-motor 5 performs power generation by the engine 1 to charge the power battery 3, supply power to the power motor 2, and supply DC- At least one of the DC converter 4 power supply.
  • the engine 1 can drive the secondary motor 5 to generate electricity, and the electric energy generated by the secondary motor 5 can be supplied to at least one of the power battery 3, the power motor 2, and the DC-DC converter 4.
  • the engine 1 can drive the sub-motor 5 to generate electricity while outputting power to the wheel 7, or can separately drive the sub-motor 5 to generate electricity.
  • the power motor 2 and the sub-motor 5 respectively serve as a drive motor and a generator, and the sub-motor 5 has a high power generation and power generation efficiency at a low speed, thereby meeting the power demand of the low-speed travel, and maintaining the low speed of the whole vehicle.
  • the electric balance maintains the low speed smoothness of the whole vehicle and improves the dynamic performance of the whole vehicle.
  • the secondary motor 5 may be a BSG (Belt-driven Starter Generator) motor.
  • the sub-motor 5 belongs to a high-voltage motor.
  • the power generation voltage of the sub-motor 5 is equivalent to the voltage of the power battery 3, so that the electric energy generated by the sub-motor 5 can directly charge the power battery 3 without voltage conversion, and can also directly Power motor 2 and/or DC-DC converter 4 are powered.
  • the sub-motor 5 is also a high-efficiency generator. For example, when the sub-motor 5 is driven by the engine 1 at an idle speed, the power generation efficiency of 97% or more can be achieved.
  • the sub-motor 5 may be used to start the engine 1, that is, the sub-motor 5 may have a function of enabling the engine 1 to be started, for example, when the engine 1 is started, the sub-motor 5 may drive the crankshaft of the engine 1. In order to bring the piston of the engine 1 to the ignition position, the starting of the engine 1 is achieved, whereby the sub-motor 5 can realize the function of the starter in the related art.
  • both the engine 1 and the power motor 2 can be used to drive the wheels 7 of the hybrid vehicle.
  • the engine 1 and the power motor 2 jointly drive the same wheel of the hybrid vehicle, such as a pair of front wheels 71 (including the left front wheel and the right front wheel); as another example, as shown in FIG. 2b, the engine 1
  • the first wheel of the hybrid vehicle can be driven, for example, a pair of front wheels 71 (including a left front wheel and a right front wheel), and the power motor 2 can drive a force to a second wheel of the hybrid vehicle, such as a pair of rear wheels 72 (including the left rear Wheel and right rear wheel).
  • the driving force of the power system 200 is output to a pair of front wheels 71, and the whole vehicle can adopt a driving mode of two drives; when the engine 1 drives a pair of front wheels 71
  • the power motor 2 drives the pair of rear wheels 72, the driving force of the power system 200 is output to the pair of front wheels 71 and the pair of rear wheels 72, respectively, and the entire vehicle can be driven by a four-wheel drive.
  • the powertrain 200 of the hybrid vehicle further includes a final drive 8 and a transmission 90, wherein the engine 1 passes through the clutch 6, the transmission 90, and the final drive.
  • the power is output to the first wheel of the hybrid vehicle, for example, a pair of front wheels 71, and the power motor 2 outputs a driving force to the first wheel of the hybrid vehicle such as the pair of front wheels 71 through the final drive 8.
  • the clutch 6 and the transmission 90 can be integrated.
  • the powertrain 200 of the hybrid vehicle further includes a first transmission 91 and a second transmission 92, wherein the engine 1 passes the clutch 6 and
  • the first transmission 91 outputs power to a first wheel of the hybrid vehicle, such as a pair of front wheels 71, and the power motor 2 outputs a driving force to a second wheel of the hybrid vehicle, such as a pair of rear wheels 72, through the second transmission 92.
  • the clutch 6 and the first transmission 91 can be integrated.
  • the sub-motor 5 further includes a first controller 51
  • the power motor 2 further includes a second controller 21, and the sub-motor 5 passes through the first controller 51 respectively. It is connected to the power battery 3 and the DC-DC converter 4, and is connected to the power motor 2 through the first controller 51 and the second controller 21.
  • the first controller 51 is connected to the second controller 21, the power battery 3, and the DC-DC converter 4, respectively, and the first controller 51 may have an AC-DC conversion unit, and the secondary motor 5 generates AC power when generating electricity.
  • the AC-DC conversion unit converts the alternating current generated by the high-voltage motor 2 into a high-voltage direct current such as 600V high-voltage direct current to realize at least one of charging the power battery 3, supplying power to the power motor 2, and supplying power to the DC-DC converter 4. .
  • the second controller 21 may have a DC-AC conversion unit, the first controller 51 may convert the alternating current generated by the secondary motor 5 into high-voltage direct current, and the DC-AC conversion unit may further convert the high-voltage direct current generated by the first controller 51. It is converted to alternating current to supply power to the power motor 2.
  • the sub-motor 5 when the sub-motor 5 performs power generation, the sub-motor 5 can charge the power battery 3 through the first controller 51 and/or supply power to the DC-DC converter 4. Further, the sub motor 5 can also supply power to the power motor 2 through the first controller 51 and the second controller 21.
  • the DC-DC converter 4 is also connected to the power battery 3.
  • the DC-DC converter 4 is also connected to the power motor 2 via a second controller 21.
  • the first controller 51 has a first DC terminal DC1
  • the second controller 21 has a second DC terminal DC2
  • the DC-DC converter 4 has a third DC terminal DC3.
  • the third DC terminal DC3 of the DC-DC converter 4 can be connected to the first DC terminal DC1 of the first controller 51 to perform DC-DC on the high voltage DC power output by the first controller 51 through the first DC terminal DC1. Transform.
  • the third DC terminal DC3 of the DC-DC converter 4 can also be connected to the power battery 3, and the first DC terminal DC1 of the first controller 51 can be connected to the power battery 3 to pass the first controller 51.
  • the first DC terminal DC1 outputs high voltage direct current to the power battery 3 to charge the power battery 3.
  • the third DC terminal DC3 of the DC-DC converter 4 can also be connected to the second DC terminal DC2 of the second controller 21, and the first DC terminal DC1 of the first controller 51 can be connected to the second controller.
  • the second DC terminal DC2 of 21 is connected such that the first controller 51 outputs high voltage direct current to the second controller 21 through the first DC terminal DC1 to supply power to the power motor 2.
  • the DC-DC converter 4 is also respectively connected to the first electrical device 10 and the low-voltage battery 20 in the hybrid vehicle to supply power to the first electrical device 10 and the low-voltage battery 20, and the low-voltage battery 20 is also An electrical device 10 is connected.
  • the DC-DC converter 4 further has a fourth DC terminal DC4, and the DC-DC converter 4 can pass the high voltage DC power and/or the sub motor 5 output from the power battery 3 through the first
  • the high voltage direct current outputted by the controller 51 is converted into low voltage direct current, and the low voltage direct current is output through the fourth direct current terminal DC4.
  • the fourth DC terminal DC4 of the DC-DC converter 4 can be connected to the first electrical device 10 to supply power to the first electrical device 10, wherein the first electrical device 10 can be a low-voltage electrical device, including but not Limited to car lights, radios, etc.
  • the fourth DC terminal DC4 of the DC-DC converter 4 can also be coupled to the low voltage battery 20 to charge the low voltage battery 20.
  • the low voltage battery 20 is connected to the first electrical device 10 to supply power to the first electrical device 10.
  • the low voltage battery 20 can be the first electrical device. 10 power supply, thus ensuring the low-voltage power consumption of the whole vehicle, ensuring that the whole vehicle can be driven in pure fuel mode, which helps to meet the user's mileage requirements for the whole vehicle.
  • the third DC terminal DC3 of the DC-DC converter 4 is connected to the first controller 51
  • the fourth DC terminal DC4 of the DC-DC converter 4 is connected to the first electrical device 10 and the low voltage battery 20, respectively, when the power motor 2.
  • the sub-motor 5 can generate power to supply power to the first electric device 10 and/or charge the low-voltage battery 20 through the first controller 51 and the DC-DC converter 4. In order to make the hybrid car run in pure fuel mode.
  • the first controller 51 can convert the alternating current generated by the secondary motor 5 into high voltage direct current, and the DC-DC converter 4 can set the first controller 50.
  • the converted high voltage direct current is converted to low voltage direct current to power the first electrical device 10 and/or to charge the low voltage battery 20.
  • the sub motor 5 and the DC-DC converter 4 have a separate power supply path.
  • the power motor 2, the second controller 21, and the power battery 3 fail, the electric drive cannot be realized.
  • the sub motor 5 and the DC are passed.
  • the separate power supply channel of the DC converter 4 can ensure the low-voltage power consumption of the whole vehicle, ensuring that the whole vehicle can be driven in the pure fuel mode, and helps to meet the user's mileage requirements for the whole vehicle.
  • the first controller 51, the second controller 21, and the power battery 3 are also respectively coupled to the second electrical device 30 in the hybrid vehicle.
  • the first DC terminal DC1 of the first controller 51 can be connected to the second electrical device 30, and when the secondary motor 5 performs power generation, the secondary motor 5 can pass through the first controller. 51 directly supplies power to the second electrical device 30.
  • the AC-DC conversion unit of the first controller 51 can also convert the alternating current generated by the secondary motor 5 into high-voltage direct current and directly supply power to the second electrical device 30.
  • the power battery 3 can also be coupled to the second electrical device 30 to power the second electrical device 30. That is to say, the high voltage direct current output from the power battery 3 can be directly supplied to the second electric device 30.
  • the second electrical device 30 can be a high-voltage electrical device, and can include, but is not limited to, an air conditioner compressor, a PTC (Positive Temperature Coefficient) heater, and the like.
  • power generation by the sub-motor 5 makes it possible to charge the power battery 3, or supply power to the power motor 2, or supply power to the first electric device 10 and the second electric device 30.
  • the power battery 3 can supply power to the power motor 2 through the second controller 21, or supply power to the second electric device 30, and can also supply power to the first electric device 10 and/or the low-voltage battery 20 through the DC-DC converter 4. This enriches the power supply mode of the whole vehicle, meets the power demand of the whole vehicle under different working conditions, and improves the performance of the whole vehicle.
  • the low voltage may refer to a voltage of 12V (volts) or 24V
  • the high voltage may refer to a voltage of 600V, but is not limited thereto.
  • the engine can be prevented from participating in driving at a low speed, thereby eliminating the use of the clutch, reducing clutch wear or slip, while reducing the sense of frustration and improving comfort, and At low speeds, the engine can be operated in an economical area, and only power generation is not driven, fuel consumption is reduced, engine noise is reduced, low-speed electric balance and low-speed smoothness of the vehicle are maintained, and overall vehicle performance is improved.
  • the secondary motor can directly charge the power battery, and can also supply power for low-voltage devices such as low-voltage batteries, first electrical equipment, etc., and can also be used as a starter.
  • the embodiment of the present disclosure also proposes a power control method for the hybrid vehicle.
  • the power control method of the hybrid vehicle of the embodiment of the present disclosure includes the following steps:
  • S1 Obtain the current gradient of the hybrid vehicle, the current throttle depth, and the current working power of the powered device, and determine the current power consumption level of the hybrid vehicle according to the current slope, the current throttle depth, and the current operating power of the powered device.
  • the slope may be the ratio of the vertical height of the slope to the horizontal length
  • the depth of the throttle is the depth at which the accelerator pedal is depressed
  • the current working power of the powered device is the total power of all current powered devices.
  • the electric equipment can be an air conditioner, a radio, or the like.
  • S2 Acquire a current power generation level of the hybrid vehicle, wherein the hybrid vehicle has a plurality of power generation levels and a plurality of power consumption levels, and the plurality of power generation levels respectively correspond to the plurality of power consumption levels.
  • the power generation level may be divided into three power consumption levels, that is, a high power generation level, a medium power generation level, and a low power generation level.
  • the power level may also be divided into three.
  • the power consumption level that is, the maximum power level, the standard power level and the economic power level, wherein the high power generation level corresponds to the maximum power level, that is, the high power generation level and the maximum power level are the same level
  • the power generation level corresponds to the standard power consumption level, that is, the medium power generation level is the same level as the standard power consumption level
  • the low power generation level corresponds to the economic power level, that is, the medium power generation level is the same level as the standard power consumption level.
  • the maximum power consumption level is higher than the standard power consumption level, and the standard power consumption level is higher than the economic power consumption level.
  • the high power generation level is higher than the medium power generation level, and the medium power generation level is higher than the low power generation level.
  • S3 Control the final power consumption level of the hybrid vehicle according to the current power consumption level and the current power generation level, and control the power consumption of the hybrid vehicle according to the final power consumption level.
  • the final power level is determined, and the power consumption of the hybrid vehicle is controlled according to the final power level, thereby driving , so that the generator works as much as possible in the economic zone, reducing the overall fuel consumption.
  • determining the current power consumption level of the hybrid vehicle according to the current slope, the current throttle depth, and the current working power of the powered device includes: acquiring a slope interval to which the current slope belongs, and acquiring a slope to which the current slope belongs. The power level of the slope corresponding to the interval; obtaining the throttle depth interval to which the current throttle depth belongs, and obtaining the power level of the throttle depth corresponding to the throttle depth interval to which the current throttle depth belongs; acquiring the power interval of the current working power of the power device, and acquiring The power consumption level corresponding to the power interval to which the current working power belongs; the highest level among the gradient power level, the throttle depth power level, and the power power level is used as the current power level.
  • the slope is positively correlated with the grade of the slope target. That is to say, the higher the slope target power level, the higher the slope in the corresponding slope interval, and the throttle depth is positively correlated with the throttle depth target power level, that is, The higher the throttle depth target power level, the higher the throttle depth in the corresponding throttle depth interval, the working power of the power equipment is positively correlated with the power target power level, that is, the higher the power target power level, the corresponding The higher the operating power of the powered device in the power interval.
  • the current power consumption level can be initially determined from the three dimensions of the current slope, the current throttle depth, and the current operating power of the powered device.
  • each of the gradient of the hybrid vehicle, the throttle depth, and the operating power of the electric equipment can be divided into three sections, and the three sections respectively correspond to the maximum power level, the standard power level, and the economic power level.
  • the three slope intervals correspond to the maximum gradient power grade, the slope standard power grade, and the slope economic power grade
  • the three throttle depth intervals correspond to the throttle depth maximum power level, the throttle depth standard power level, and the throttle depth economy.
  • Power consumption level; the three power intervals correspond to the maximum power consumption level, the power standard power level, and the power economy power level.
  • the maximum power level is higher than the standard power level
  • the standard power level is higher than the economic power level.
  • the slope of the hybrid vehicle can be divided into a first slope interval, a second slope interval, and a third slope interval, the first slope interval is greater than A1%, and the second slope interval is greater than or equal to A2. % is less than or equal to A1%, and the third slope interval is greater than 0 and less than A2%.
  • the slope power level corresponding to the first slope interval is the maximum power consumption level
  • the current slope is greater than or equal to A2% and less than or equal to A1%
  • the current slope belongs to the second slope interval, and the slope power level corresponding to the second slope interval is the standard power level
  • the current slope is greater than 0 and less than A2%
  • the current slope is determined to belong to the third slope interval, and the slope corresponding to the third slope interval is determined.
  • the power level is the economic power level, where A1>A2>0.
  • the throttle depth of the hybrid vehicle may be divided into a first depth interval, a second depth interval, and a third depth interval, where the first depth interval is greater than B1%, and the second depth interval is greater than B2% less than or equal to B1%, the third depth The interval is greater than 0 and less than or equal to B2%.
  • the throttle depth power level corresponding to the first throttle depth interval is the maximum power consumption level
  • the current throttle depth is greater than B2% is less than or equal to B1
  • the throttle depth power consumption level corresponding to the second throttle depth interval is the standard power consumption level
  • the throttle depth power level corresponding to the third throttle depth interval is the economic power level, where B1>B2>0.
  • the current working power of the powered device of the hybrid vehicle may be divided into a first power interval, a second power interval, and a third power interval, where the first power interval is greater than C1kw, and the second power interval is greater than or equal to C2kw and less than or equal to C1kw, The third power interval is less than C2kw.
  • the power power level corresponding to the first power interval is the maximum power consumption level; when the current working power is greater than or equal to C2kw and less than or equal to C1kw
  • the power level corresponding to the second power interval is the standard power level; when the current working power is less than C2kw, the current working power is determined to belong to the third power interval, and the third power interval
  • the corresponding power consumption level is the economic power level, where C1>C2>0.
  • the maximum power level and the standard power level may be used.
  • the current power consumption level is determined in the order of decreasing the priority of the economic power level, and the highest level among the power level of the slope, the power level of the throttle depth, and the power level of the power can be used as the current power level.
  • the current power level is the maximum power level, if there is no maximum power consumption. Level, and there is at least one standard power level, then the current power level is the standard power level. If there is neither the maximum power level nor the standard power level, and only at least one economic power level, the current power level is Economic electricity grade.
  • the power consumption level corresponding to the current power generation level is used as the final power consumption level.
  • the current power generation level when the current power generation level is lower than the current power consumption level, if the current power consumption level does not match the slope power consumption level, that is, the slope power consumption level is not the slope power consumption level, the throttle depth power level, and the power power level.
  • the highest power level the current power level of the vehicle will be reduced to the current power generation level priority, that is, the current power generation level limits the upper limit of the current power level.
  • the power generation capacity of the vehicle limits the power consumption of the vehicle.
  • the current power generation level is medium power generation and the current power consumption level is the maximum power consumption level
  • the slope power consumption level is one of the standard power consumption level or the economic power consumption level
  • the current power consumption level is not caused by the slope.
  • the power level is determined, and the final power level is the standard power level corresponding to the medium power generation.
  • the grade power level is used as the final power level.
  • the current power generation level is lower than the current power consumption level
  • the gradient power consumption level is the highest power consumption level among the slope power consumption level, the throttle depth power level, and the power power level
  • the slope power level is used. That is, the current power level is the final power level.
  • the vehicle power generation capacity is no longer a factor that restricts the power level, and the grade power level is directly used as the final power level.
  • the current power consumption level when the current power generation level is higher than or equal to the current power consumption level, the current power consumption level is taken as the final power consumption level.
  • the final power consumption level may be determined according to the current power generation level and the lower one of the current power consumption levels, for example, When the current power generation level is the medium power generation level and the current power consumption level is the maximum power consumption level, it is determined that the final power consumption level is the standard power consumption level; for example, when the current power generation level is the high power generation level and the current power consumption level When the standard power level is used, it is determined that the final power level is the standard power level. In special cases, when the gradient power level is the highest power level, the grade power level is used as the final power level.
  • the working mode can be more comprehensively determined.
  • the engine When driving, the engine can be operated as much as possible in the economic zone, and the overall fuel consumption can be reduced.
  • the power is insufficient, the power consumption of the entire vehicle can be reduced, and the power conservation capability can be enhanced.
  • controlling the power consumption of the hybrid vehicle according to the final power consumption level includes: selecting a corresponding throttle depth-motor target torque curve according to the final power consumption level, wherein the hybrid vehicle has multiple throttles Depth-motor target torque curve, multiple power levels correspond to multiple throttle depth-motor target torque curves respectively; current motor target torque is obtained according to current throttle depth and corresponding throttle depth-motor target torque curve, and according to current motor target The torque controls the output torque of the hybrid motor's power motor.
  • the ratio of the motor target torque to the total driving torque of the plurality of throttle depth-motor target torque curves at the same throttle depth gradually decreases.
  • the plurality of power levels respectively correspond to the plurality of throttle depth-motor target torque curves, that is, the plurality of throttle depth-motor target torque curves may be calibrated according to the plurality of power levels. More specifically, the three throttle depth-motor target torque curves may be respectively calibrated according to the maximum power consumption level, the standard power consumption level, and the economic power consumption level, wherein when the throttle depth is the same, the total driving torque m is a fixed value, and the maximum value is used.
  • the electric grade, the ratio of the motor target torque n to the total driving torque m is a1%.
  • the ratio of the motor target torque n to the total driving torque m is a2%, and at the economical power level, the electrode target torque n station The ratio of the total driving torque m is a3%, where a1>a2>a3.
  • the corresponding throttle depth-motor target torque curve may be selected according to the final power consumption level, for example, when the final power consumption level is the maximum power consumption level, the first throttle depth-motor target torque curve is selected, and when the final power consumption level is Select the second throttle depth - motor target torque curve for the standard power level, and select the third throttle depth - motor target torque curve when the final power level is the economic power level; then according to the current throttle depth and the corresponding throttle depth - motor
  • the target torque curve acquires the current motor target torque n, and controls the output torque of the hybrid motor's power motor according to the current motor target torque.
  • the power conservation performance can be enhanced while satisfying the power.
  • controlling the power consumption of the hybrid vehicle according to the final power consumption level includes: obtaining the lowest power consumption and the rated power power of the power equipment; and obtaining the deviation according to the difference between the rated power power and the lowest power power. Power; selecting a corresponding power coefficient according to the final power level, wherein the hybrid vehicle has multiple power coefficients, and the plurality of power levels respectively correspond to the plurality of power coefficients; adjusting according to the rated power, the deviation power, and the corresponding power coefficient The working power of the electrical equipment.
  • the operating power of the powered device is adjusted according to the following formula:
  • P is the operating power of the adjusted electrical equipment
  • P2 is the rated electrical power
  • a is the power coefficient
  • ⁇ P is the bias power; wherein, the plurality of power coefficients are gradually increased according to the order of the plurality of power levels. Increase.
  • the plurality of power coefficients may be calibrated according to the plurality of power levels, and more specifically, the three power coefficients may be respectively calibrated according to the maximum power level, the standard power level, and the economic power level, that is, a may be 0, respectively.
  • a At the maximum power level, a is 0.
  • the final power consumption level has a power coefficient corresponding to one of the ones, and the power consumption of the hybrid vehicle can be controlled according to the power coefficient corresponding to the final power consumption level.
  • the engine When driving, the engine can be operated as much as possible in the economic zone, and the overall fuel consumption can be reduced. When the power is insufficient, the power consumption of the vehicle's electrical equipment is reduced, and the engine economy zone is adjusted for the BSG. Power generation to enhance power protection.
  • the power control method of the hybrid vehicle obtains the current gradient of the hybrid vehicle, the current throttle depth, and the current working power of the powered device, and according to the current slope, the current throttle depth, and the use.
  • the current working power of the electric equipment determines the current power consumption level of the hybrid vehicle, obtains the current power generation level of the hybrid vehicle, and then controls the final power consumption level of the hybrid vehicle according to the current power consumption level and the current power generation level, and according to the final power consumption.
  • the level controls the power consumption of the hybrid vehicle.
  • the power control method of the embodiment of the present disclosure determines the final power level by the current slope of the hybrid vehicle, the current throttle depth, the current power of the power equipment, and the current power generation level, and then adjusts the power equipment according to the final power level. Therefore, it is possible to control the power consumption of the whole vehicle in a more comprehensive working mode, so that the engine works as much as possible in the economic zone while driving, reduces the overall fuel consumption, and can also minimize the power consumption of the whole vehicle and improve the power conservation capability.
  • FIG. 5 is a block schematic diagram of a power control device of a hybrid vehicle according to an embodiment of the present disclosure.
  • the power control apparatus 100 of the hybrid vehicle of the embodiment of the present disclosure includes a controller 500 and a memory 300.
  • the memory 300 stores a plurality of instructions 400 adapted to be loaded and executed by the controller 500: Obtaining the current gradient of the hybrid vehicle, the current throttle depth, and the current operating power of the powered device, determining the current power usage level of the hybrid vehicle based on the current slope, the current throttle depth, and the current operating power of the powered device; and obtaining the hybrid vehicle Current power generation level, and control the final power consumption level of the hybrid vehicle according to the current power consumption level and the current power generation level, and control the power consumption of the hybrid vehicle according to the final power consumption level, wherein the hybrid vehicle has multiple power generation The level and the plurality of power levels, the plurality of power generation levels respectively correspond to the plurality of power levels.
  • the controller 500 further performs: acquiring a slope interval to which the current slope belongs, and acquiring a slope power level corresponding to the slope interval to which the current slope belongs; acquiring a throttle depth interval to which the current throttle depth belongs, and acquiring the current The power level of the throttle depth corresponding to the throttle depth interval to which the throttle depth belongs; the power interval of the current working power of the power device, and the power power level corresponding to the power range to which the current working power belongs; and the power level of the slope, The highest level of the throttle depth power level and the power power level is used as the current power level.
  • the controller 500 further performs: when the current power generation level is lower than the current power consumption level and the current power consumption level does not match the grade power consumption level, the power consumption level corresponding to the current power generation level is used as the final power consumption.
  • the grade and when the current power generation level is lower than the current power level and the current power level is consistent with the grade power level, the grade power level is used as the final power level.
  • the controller 500 further performs: when the current power generation level is higher than or equal to the current power consumption level, the current power consumption level is used as the final power consumption level.
  • the controller 500 further performs: selecting a corresponding throttle depth-motor target torque curve according to the final power consumption level, and acquiring a current motor target torque according to the current throttle depth and the corresponding throttle depth-motor target torque curve. And controlling the output torque of the hybrid electric vehicle's power motor according to the current motor target torque, wherein the hybrid vehicle has multiple throttle depth-motor target torque curves, multiple power levels and multiple throttle depths - motor targets The torque curve corresponds.
  • the ratio of the motor target torque to the total drive torque of the plurality of throttle depth-motor target torque curves at the same throttle depth is gradually decreased in accordance with the order of the plurality of power levels from high to low.
  • the controller 500 further performs: acquiring the lowest power and rated power of the power device, obtaining the deviation power according to the difference between the rated power and the lowest power, and selecting the corresponding power according to the final power level.
  • the controller 500 further performs: adjusting the operating power of the powered device according to the following formula:
  • P is the operating power of the adjusted electrical equipment
  • P2 is the rated electrical power
  • a is the power factor
  • ⁇ P is the bias power
  • the plurality of power coefficients are gradually increased in order of a plurality of power levels from high to low.
  • the power control device of the hybrid vehicle obtains the current slope of the hybrid vehicle, the current throttle depth, and the current working power of the powered device, according to the current slope, the current throttle depth, and the power consumption.
  • the current operating power of the device determines the current power level of the hybrid vehicle; and obtains the current power generation level of the hybrid vehicle, and controls the final power level of the hybrid vehicle based on the current power level and the current power generation level, and based on the final power consumption
  • the level controls the power consumption of the hybrid vehicle, wherein the hybrid vehicle has a plurality of power generation levels and a plurality of power levels, and the plurality of power generation levels respectively correspond to the plurality of power levels.
  • the power control device of the hybrid vehicle of the embodiment of the present disclosure determines the final power level by the current gradient of the hybrid vehicle, the current throttle depth, the current power of the powered device, and the current power generation level, and then according to the final power level. Adjusting the electrical equipment, so that it can control the power consumption of the whole vehicle in a more comprehensive working mode, so that the engine works as much as possible in the economic zone while driving, reducing the overall fuel consumption, and also minimizing the power consumption of the whole vehicle and improving the power conservation. ability.
  • Embodiments of the present disclosure also propose a hybrid vehicle.
  • the hybrid vehicle 1000 includes a power control device 100 for a hybrid vehicle.
  • the electric power control device of the hybrid vehicle can adjust the electric power device according to the final electric power level, so that the electric vehicle can be controlled in a more comprehensive operation mode, so that the engine is driven.
  • the electric power control device of the hybrid vehicle can adjust the electric power device according to the final electric power level, so that the electric vehicle can be controlled in a more comprehensive operation mode, so that the engine is driven.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed”, and the like, are to be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated or defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本公开公开了一种混合动力汽车及其用电控制方法和装置,控制方法包括:获取所述混合动力汽车的当前坡度、当前油门深度和用电设备的当前工作功率,根据所述当前坡度、所述当前油门深度和所述用电设备的当前工作功率确定所述混合动力汽车的当前用电等级;获取所述混合动力汽车的当前发电等级,其中,所述混合动力汽车具有多个发电等级和多个用电等级,所述多个发电等级分别与所述多个用电等级对应;根据所述当前用电等级和所述当前发电等级控制所述混合动力汽车的最终用电等级,并根据所述最终用电等级对所述混合动力汽车的用电进行控制。从而能够在更全面的工作模式下控制整车用电,降低综合油耗,增强保电能力。

Description

混合动力汽车及其用电控制方法和装置
相关申请的交叉引用
本申请基于申请号为201710911851.5,申请日为2017年09月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及汽车技术领域,特别涉及一种混合动力汽车的用电控制方法、一种混合动力汽车的用电控制装置以及一种混合动力汽车。
背景技术
相关混合动力系统的用电策略中,通常把电池的Soc(State of Charge,荷电状态)值作为用电策略变化的参考点,例如当Soc值大于预设电量时,识别电池电量充足,动力输出大部分由电动机输出,当Soc值小于预设电量时,识别电量不足,动力输出大部分由发动机输出。
但是,相关技术存在的问题是,由于驱动用电时仅以Soc值作为标准,所以可能会导致发动机工作在非经济区,增加了油耗,使整车综合油耗较高,而且在Soc值较低时,不能最大程度降低用电消耗,造成整车保电能力较差。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的第一个目的在于提出一种混合动力汽车的用电控制方法,能够降低综合油耗,增强保电能力。
本公开的第二个目的在于提出一种混合动力汽车的用电控制装置。
本公开的第三个目的在于提出一种混合动力汽车。
为达到上述目的,本公开第一方面实施例提出的一种混合动力汽车的用电控制方法,包括以下步骤:获取所述混合动力汽车的当前坡度、当前油门深度和用电设备的当前工作功率,根据所述当前坡度、所述当前油门深度和所述用电设备的当前工作功率确定所述混合动力汽车的当前用电等级;获取所述混合动力汽车的当前发电等级,其中,所述混合动力汽车具有多个发电等级和多个用电等级,所述多个发电等级分别与所述多个用电等级对应;根据所述当前用电等级和所述当前发电等级控制所述混合动力汽车的最终用电等级,并根据所述最终用电等级对所述混合动力汽车的用电进行控制。
根据本公开实施例提出的混合动力汽车的用电控制方法,通过获取混合动力汽车的当前坡度、当前油门深度和用电设备的当前工作功率,并根据当前坡度、当前油门深度和用电设备的当前工作功率确定混合动力汽车的当前用电等级,获取混合动力汽车的当前发电等级,然后根据当前用电等级和当前发电等级控制混合动力汽车的最终用电等级,并根据最终用电等级对混合动力汽车的用电进行控制。由此,本公开实施例的用电控制方法通过混合动力汽车的当前坡度、当前油门深度、用电设备的当前功率和当前发电等级确定最终用电等级,再根据最终用电等级调节用电设备,从而能够在更全面的工作模式下控制整车用电,使得发动机在驱动时尽量工作在经济区内,降低综合油耗,还能够最大程度地降低整车用电,提高保电能力。
为达到上述目的,本公开第二方面实施例提出的一种混合动力汽车的用电控制装置,其包括控制器和存储器,所述存储器存储有多条指令,所述指令适于由所述控制器加载并执行:获取所述混合动力汽车的当前坡度、当前油门深度和用电设备的当前工作功率,根据所述当前坡度、所述当前油门深度和所述用电设备的当前工作功率确定所述混合动力汽车的当前用电等级;以及获取所述混合动力汽车的当前发电等级,以及根据所述当前用电等级和所述当前发电等级控制所述混合动力汽车的最终用电等级,并根据所述最终用电等级对所述混合动力汽车的用电进行控制,其中,所述混合动力汽车具有多个发电等级和多个用电等级,所述多个发电等级分别与所述多个用电等级对应。
根据本公开实施例提出的混合动力汽车的用电控制装置,通过获取混合动力汽车的当前坡度、当前油门深度和用电设备的当前工作功率,根据当前坡度、当前油门深度和用电设备的当前工作功率确定混合动力汽车的当前用电等级;以及获取混合动力汽车的当前发电等级,以及根据当前用电等级和当前发电等级控制混合动力汽车的最终用电等级,并根据最终用电等级对混合动力汽车的用电进行控制,其中,混合动力汽车具有多个发电等级和多个用电等级,多个发电等级分别与多个用电等级对应。由此,本公开实施例的混合动力汽车的用电控制装置通过混合动力汽车的当前坡度、当前油门深度、用电设备的当前功率和当前发电等级确定最终用电等级,再根据最终用电等级调节用电设备,从而能够在更全面的工作模式下控制整车用电,使得发动机在驱动时尽量工作在经济区内,降低综合油耗,还能够最大程度地降低整车用电,提高保电能力。
为达到上述目的,本公开第三方面实施例提出的混合动力汽车,包括所述混合动力汽车的用电控制装置。
根据本公开实施例的混合动力汽车,通过混合动力汽车的用电控制装置,能够根据最终用电等级调节用电设备,从而能够在更全面的工作模式下控制整车用电,使得发动机在 驱动时尽量工作在经济区内,降低综合油耗,还能够最大程度地降低整车用电,提高保电能力。
附图说明
图1是根据本公开一个实施例的混合动力汽车的的方框示意图;
图2a是根据本公开一个实施例的混合动力汽车的动力系统的结构示意图;
图2b是根据本公开另一个实施例的混合动力汽车的动力系统的结构示意图;
图3是根据本公开另一个实施例的混合动力汽车的动力系统的方框示意图;
图4是根据本公开实施例的混合动力汽车的用电控制方法的流程图;
图5是根据本公开实施例的混合动力汽车的用电控制装置的方框示意图;以及
图6是根据本公开实施例的混合动力汽车的方框示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图描述本公开实施例的混合动力汽车的用电控制方法、混合动力汽车的动力系统和混合动力汽车。
根据图1-3的实施例,该混合动力汽车的动力系统200包括:发动机1、动力电机2、动力电池3、DC-DC变换器4和副电机5。
结合图1至图3所示,发动机1通过离合器6将动力输出到混合动力汽车的车轮7;动力电机2用于输出驱动力至混合动力汽车的车轮7。也就是说,本公开实施例的动力系统可通过发动机1和/或动力电机2为混合动力汽车正常行驶提供动力。在本公开的一些实施例中,动力系统200的动力源可以是发动机1和动力电机2,也就是说,发动机1和动力电机2中的任一个可单独输出动力至车轮7,或者,发动机1和动力电机2可同时输出动力至车轮7。
动力电池3用于给动力电机2供电;副电机5与发动机1相连,例如,副电机5可通过发动机1的轮系端与发动机1相连。副电机5分别与动力电机2、DC-DC变换器4和动力电池3相连,副电机5在发动机1的带动下进行发电时以实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。换言之,发动机1可带动副电机5发电,副电机5产生的电能可提供至动力电池3、动力电机2和DC-DC变换器4中的至少一个。应当理解的是,发动机1可在输出动力到车轮7的同时带动副电机5发电,也可在 单独带动副电机5发电。
由此,动力电机2和副电机5分别对应充当驱动电机和发电机,由于低速时副电机5具有较高的发电功率和发电效率,从而可以满足低速行驶的用电需求,可以维持整车低速电平衡,维持整车低速平顺性,提升整车的动力性能。
在一些实施例中,副电机5可为BSG(Belt-driven Starter Generator,皮带传动启动/发电一体化电机)电机。需要说明的是,副电机5属于高压电机,例如副电机5的发电电压与动力电池3的电压相当,从而副电机5产生的电能可以不经过电压变换直接给动力电池3充电,还可直接给动力电机2和/或DC-DC变换器4供电。并且副电机5也属于高效发电机,例如在发动机1怠速转速下带动副电机5发电即可实现97%以上的发电效率。
另外,在本公开的一些实施例中,副电机5可用于启动发动机1,即副电机5可具有实现启动发动机1的功能,例如当启动发动机1时,副电机5可带动发动机1的曲轴转动,以使发动机1的活塞达到点火位置,从而实现发动机1的启动,由此副电机5可实现相关技术中启动机的功能。
如上所述,发动机1和动力电机2均可用于驱动混合动力汽车的车轮7。例如,如图2a所示,发动机1和动力电机2共同驱动混合动力汽车的同一车轮例如一对前轮71(包括左前轮和右前轮);又如,如图2b所示,发动机1可驱动混合动力汽车的第一车轮例如一对前轮71(包括左前轮和右前轮),动力电机2可驱动力至混合动力汽车的第二车轮例如一对后轮72(包括左后轮和右后轮)。
当发动机1和动力电机2共同驱动一对前轮71时,动力系统200的驱动力均输出至一对前轮71,整车可采用两驱的驱动方式;当发动机1驱动一对前轮71且动力电机2驱动一对后轮72时,动力系统200的驱动力分别输出至一对前轮71和一对后轮72,整车可采用四驱的驱动方式。
在发动机1和动力电机2共同驱动同一车轮时,结合图2a所示,混合动力汽车的动力系统200还包括主减速器8和变速器90,其中,发动机1通过离合器6、变速器90以及主减速器8将动力输出到混合动力汽车的第一车轮例如一对前轮71,动力电机2通过主减速器8输出驱动力至混合动力汽车的第一车轮例如一对前轮71。其中,离合器6与变速器90可集成设置。
在发动机1驱动第一车轮且动力电机2驱动第二车轮时,结合图2b所示,混合动力汽车的动力系统200还包括第一变速器91和第二变速器92,其中,发动机1通过离合器6和第一变速器91将动力输出到混合动力汽车的第一车轮例如一对前轮71,动力电机2通过第二变速器92输出驱动力至混合动力汽车的第二车轮例如一对后轮72。其中,离合器6与第一变速器91可集成设置。
在本公开的一些实施例中,如图1至图3所示,副电机5还包括第一控制器51,动力电机2还包括第二控制器21,副电机5通过第一控制器51分别连接到动力电池3和所述DC-DC变换器4,并通过第一控制器51和第二控制器21连接到动力电机2。
具体来说,第一控制器51分别与第二控制器21、动力电池3和DC-DC变换器4相连,第一控制器51可具有AC-DC变换单元,副电机5发电时可产生交流电,AC-DC变换单元可将高压电机2发电产生的交流电变换为高压直流电例如600V高压直流电,以实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。
第二控制器21可具有DC-AC变换单元,第一控制器51可将副电机5发电产生的交流电变换为高压直流电,DC-AC变换单元可再将第一控制器51变换出的高压直流电变换为交流电,以给动力电机2供电。
如图3所示,在副电机5进行发电时,副电机5可通过第一控制器51给动力电池3充电和/或给DC-DC变换器4供电。此外,副电机5还可通过第一控制器51和第二控制器21给动力电机2供电。
如图1至图3所示,DC-DC变换器4还与动力电池3相连。DC-DC变换器4还通过第二控制器21与动力电机2相连。
在一些实施例中,如图3所示,第一控制器51具有第一直流端DC1,第二控制器21具有第二直流端DC2,DC-DC变换器4具有第三直流端DC3,DC-DC变换器4的第三直流端DC3可与第一控制器51的第一直流端DC1相连,以对第一控制器51通过第一直流端DC1输出的高压直流电进行DC-DC变换。并且,DC-DC变换器4的第三直流端DC3还可与动力电池3相连,进而第一控制器51的第一直流端DC1可与动力电池3相连,以使第一控制器51通过第一直流端DC1输出高压直流电至动力电池3以给动力电池3充电。进一步地,DC-DC变换器4的第三直流端DC3还可与第二控制器21的第二直流端DC2相连,进而第一控制器51的第一直流端DC1可与第二控制器21的第二直流端DC2相连,以使第一控制器51通过第一直流端DC1输出高压直流电至第二控制器21以给动力电机2供电。
如图3所示,DC-DC变换器4还分别与混合动力汽车中的第一电器设备10和低压蓄电池20相连以给第一电器设备10和低压蓄电池20供电,且低压蓄电池20还与第一电器设备10相连。
在一些实施例中,如图3所示,DC-DC变换器4还具有第四直流端DC4,DC-DC变换器4可将动力电池3输出的高压直流电和/或副电机5通过第一控制器51输出的高压直流电转换为低压直流电,并通过第四直流端DC4输出该低压直流电。进一步地,DC-DC变换器4的第四直流端DC4可与第一电器设备10相连,以给第一电器设备10供电,其中, 第一电器设备10可为低压用电设备,包括但不限于车灯、收音机等。DC-DC变换器4的第四直流端DC4还可与低压蓄电池20相连,以给低压蓄电池20充电。
并且,低压蓄电池20与第一电器设备10相连,以给第一电器设备10供电,特别地,在副电机5停止发电且动力电池3故障或电量不足时,低压蓄电池20可为第一电器设备10供电,从而保证整车的低压用电,确保整车可实现纯燃油模式行驶,有助于满足用户对整车的行驶里程需求。
如上,DC-DC变换器4的第三直流端DC3与第一控制器51相连,DC-DC变换器4的第四直流端DC4分别与第一电器设备10和低压蓄电池20相连,当动力电机2、第二控制器21和动力电池3发生故障时,副电机5可进行发电以通过第一控制器51和DC-DC变换器4给第一电器设备10供电和/或给低压蓄电池20充电,以使混合动力汽车以纯燃油模式行驶。
当动力电机2、第二控制器21和动力电池3发生故障时,第一控制器51可将副电机5发电产生的交流电变换为高压直流电,DC-DC变换器4可将第一控制器50变换出的高压直流电变换为低压直流电,以给第一电器设备10供电和/或给低压蓄电池20充电。
由此,副电机5和DC-DC变换器4有一路单独供电通道,当动力电机2、第二控制器21和动力电池3发生故障时,无法实现电动驱动,此时通过副电机5和DC-DC变换器4的单独供电通道,可以保证整车的低压用电,确保整车可实现纯燃油模式行驶,有助于满足用户对整车的行驶里程需求。
进一步结合图3的实施例,第一控制器51、第二控制器21和动力电池3还分别与混合动力汽车中的第二电器设备30相连。
在一些实施例中,如图3所示,第一控制器51的第一直流端DC1可与第二电器设备30相连,当副电机5进行发电时,副电机5可通过第一控制器51直接给第二电器设备30供电。换言之,第一控制器51的AC-DC变换单元还可将副电机5发电产生的交流电变换为高压直流电,并直接给第二电器设备30供电。
动力电池3还可与第二电器设备30相连,以给第二电器设备30供电。即言,动力电池3输出的高压直流电可直接供给第二电器设备30。
其中,第二电器设备30可为高压电器设备,可包括但不限于空调压缩机、PTC(Positive Temperature Coefficient,正的温度系数)加热器等。
如上,通过副电机5发电,可实现为动力电池3充电、或为动力电机2供电、或为第一电器设备10和第二电器设备30供电。并且,动力电池3可通过第二控制器21为动力电机2供电,或为第二电器设备30供电,也可通过DC-DC变换器4为第一电器设备10和/或低压蓄电池20供电。由此丰富了整车供电方式,满足整车在不同工况下的用电需求,提 升了整车的性能。
需要说明的是,在本公开实施例中,低压可指12V(伏)或24V的电压,高压可指600V的电压,但不限于此。
由此,本公开实施例的混合动力汽车的动力系统中,能够使发动机在低速时不参与驱动,进而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且在低速时能够使发动机工作在经济区域,只发电不驱动,减少油耗,降低发动机噪音,维持整车低速电平衡及低速平顺性,提升整车性能。而且,副电机能够直接为动力电池充电,同时也可为低压器件例如低压蓄电池、第一电器设备等供电,还可作启动机用。
基于上述混合动力汽车的动力系统的结构,本公开实施例还提出了一种混合动力汽车的用电控制方法。
图4是根据本公开实施例混合动力汽车的用电控制方法的流程图。如图4所示,本公开实施例的混合动力汽车的用电控制方法包括以下步骤:
S1:获取混合动力汽车的当前坡度、当前油门深度和用电设备的当前工作功率,根据当前坡度、当前油门深度和用电设备的当前工作功率确定混合动力汽车的当前用电等级。
需要说明的是,坡度可为坡面的铅直高度与水平长度的比,油门深度为油门踏板被踩下的深度,用电设备的当前工作功率为当前所有用电设备的总功率。其中,用电设备可为空调器、收音机等。
S2:获取混合动力汽车的当前发电等级,其中,混合动力汽车具有多个发电等级和多个用电等级,多个发电等级分别与多个用电等级对应。
在本公开的一个具体实施例中,可将发电等级划分为三个用电等级,即高功率发电等级、中功率发电等级和低功率发电等级,同样地,也可将用电等级划分为三个用电等级,即最大用电等级、标准用电等级和经济用电等级,其中,高功率发电等级与最大用电等级对应,即高功率发电等级与最大用电等级为相同的等级,中功率发电等级与标准用电等级对应,即中功率发电等级与标准用电等级为相同的等级,低功率发电等级与经济用电等级对应,即中功率发电等级与标准用电等级为相同的等级。并且,最大用电等级高于标准用电等级,标准用电等级高于经济用电等级,同样地,高功率发电等级高于中功率发电等级,中功率发电等级高于低功率发电等级。
S3:根据当前用电等级和当前发电等级控制混合动力汽车的最终用电等级,并根据最终用电等级对混合动力汽车的用电进行控制。
由此,通过检测当前坡度、当前油门深度、用电设备的当前工作功率和整车发电能力,确定最终用电等级,根据最终用电等级对混合动力汽车的用电进行控制,从而在驱动时, 使发电机尽量工作在经济区内,降低综合油耗。
根据本公开的一个实施例,根据当前坡度、当前油门深度和用电设备的当前工作功率确定混合动力汽车的当前用电等级,包括:获取当前坡度所属的坡度区间,并获取当前坡度所属的坡度区间对应的坡度用电等级;获取当前油门深度所属的油门深度区间,并获取当前油门深度所属的油门深度区间对应的油门深度用电等级;获取用电设备的当前工作功率的功率区间,并获取当前工作功率所属的功率区间对应的功率用电等级;将坡度用电等级、油门深度用电等级和功率用电等级中的最高等级作为当前用电等级。
其中,坡度与坡度目标用电等级正相关,也就是说,坡度目标用电等级越高,对应的坡度区间内的坡度越高,油门深度与油门深度目标用电等级正相关,也就是说,油门深度目标用电等级越高,对应的油门深度区间内的油门深度越高,用电设备的工作功率与功率目标用电等级正相关,也就是说,功率目标用电等级越高,对应的功率区间内的用电设备的工作功率越高。
也就是说,如表1所示,可从当前坡度、当前油门深度和用电设备的当前工作功率三个维度初步判断当前用电等级。具体地,可将混合动力汽车的坡度、油门深度和用电设备的工作功率中的每个均划分为三个区间,三个区间分别对应最大用电等级、标准用电等级和经济用电等级,即三个坡度区间分别对应坡度最大用电等级、坡度标准用电等级和坡度经济用电等级;三个油门深度区间分别对应油门深度最大用电等级、油门深度标准用电等级和油门深度经济用电等级;三个功率区间分别对应功率最大用电等级、功率标准用电等级和功率经济用电等级。其中,最大用电等级高于标准用电等级,标准用电等级高于经济用电等级。
表1
Figure PCTCN2018108540-appb-000001
具体而言,如表1所示,可将混合动力汽车的坡度划分第一坡度区间、第二坡度区间 和第三坡度区间,第一坡度区间为大于A1%,第二坡度区间为大于等于A2%且小于等于A1%,以及第三坡度区间为大于0小于A2%。其中,当当前坡度大于A1%时,判断当前坡度属于第一坡度区间,第一坡度区间对应的坡度用电等级为最大用电等级;当当前坡度大于等于A2%且小于等于A1%时,判断当前坡度属于第二坡度区间,第二坡度区间对应的坡度用电等级为标准用电等级;当当前坡度大于0小于A2%时,判断当前坡度属于第三坡度区间,第三坡度区间对应的坡度用电等级为经济用电等级,其中,A1>A2>0。
可将混合动力汽车的油门深度划分为第一深度区间、第二深度区间和第三深度区间,第一深度区间为大于B1%,第二深度区间为大于B2%小于等于B1%,第三深度区间为大于0小于等于B2%。其中,当当前油门深度大于B1%时,判断当前油门深度属于第一油门深度区间,第一油门深度区间对应的油门深度用电等级为最大用电等级;当当前油门深度大于B2%小于等于B1%时,判断当前油门深度属于第二油门深度区间,第二油门深度区间对应的油门深度用电等级为标准用电等级;当当前油门深度大于0小于等于B2%时,判断当前油门深度属于第三油门深度区间,第三油门深度区间对应的油门深度用电等级为经济用电等级,其中,B1>B2>0。
可将混合动力汽车的用电设备的当前工作功率划分为第一功率区间、第二功率区间和第三功率区间,第一功率区间为大于C1kw,第二功率区间为大于等于C2kw小于等于C1kw,第三功率区间为小于C2kw。其中,当用电设备的当前工作功率大于C1kw时,判断当前工作功率属于第一功率区间,第一功率区间对应的功率用电等级为最大用电等级;当当前工作功率大于等于C2kw小于等于C1kw时,判断当前工作功率属于第二功率区间,第二功率区间对应的功率用电等级为标准用电等级;当当前工作功率小于C2kw时,判断当前工作功率属于第三功率区间,第三功率区间对应的功率用电等级为经济用电等级,其中,C1>C2>0。
进一步地,在根据当前坡度、当前油门深度和用电设备的当前工作功率单独判断出坡度用电等级、油门深度用电等级和功率用电等级之后,可按照最大用电等级、标准用电等级、经济用电等级优先级递减的顺序判断出当前用电等级,即可将坡度用电等级、油门深度用电等级和功率用电等级中的最高等级作为当前用电等级。
也就是说,坡度用电等级、油门深度用电等级和功率用电等级中如果有任一个的用电等级为最大用电等级,则当前用电等级为最大用电等级,如果没有最大用电等级,而有至少一个标准用电等级,则当前用电等级为标准用电等级,如果既没有最大用电等级也没有标准用电等级,只有至少一个经济用电等级,则当前用电等级为经济用电等级。
根据本公开的一个实施例,当当前发电等级低于当前用电等级且当前用电等级与坡度用电等级不一致时,将当前发电等级对应的用电等级作为最终用电等级。
也就是说,当当前发电等级低于当前用电等级时,如果当前用电等级与坡度用电等级不一致,即坡度用电等级不是坡度用电等级、油门深度用电等级和功率用电等级中的最高用电等级,则整车的当前用电等级会降低至当前发电等级的优先级,即当前发电等级限制当前用电等级的上限。换言之,当当前用电等级不是由坡度用电等级确定的,整车发电能力限制整车用电。例如,如果当前发电等级为中功率发电且当前用电等级为最大用电等级,此时,坡度用电等级为标准用电等级或经济用电等级中的一个,则当前用电等级不是由坡度用电等级确定,最终用电等级为中功率发电对应的标准用电等级。
进一步地,当当前发电等级低于当前用电等级且当前用电等级与坡度用电等级相一致时,将坡度用电等级作为最终用电等级。
也就是说,当当前发电等级低于当前用电等级时,如果坡度用电等级为坡度用电等级、油门深度用电等级和功率用电等级中的最高用电等级,则将坡度用电等级即当前用电等级为最终用电等级。换言之,当当前用电等级是由坡度用电等级确定的,则整车发电能力不再是制约用电等级的因素,坡度用电等级直接作为最终用电等级。
根据本公开的一个实施例,当当前发电等级高于或等于当前用电等级时,将当前用电等级作为最终用电等级。
表2
Figure PCTCN2018108540-appb-000002
也就是说,当当前发电等级和当前用电等级不相同时,普通情况下,如表2所示,可根据当前发电等级和当前用电等级中较低的等级确定最终用电等级,例如,当当前发电等级为中功率发电等级且当前用电等级为最大用电等级时,则确定最终用电等级为标准用电等级;又如,当当前发电等级为高功率发电等级且当前用电等级为标准用电等级时,则确定最终用电等级为标准用电等级。特殊情况下,当坡度用电等级为最高用电等级时,则将 坡度用电等级作为最终用电等级。
由此,能够更全面的判断工作模式,驱动时,能够使发动机尽量工作在经济区内,降低综合油耗,电量不足时,降低整车的用电功耗,可以增强保电能力。
根据本公开的一个实施例,根据最终用电等级对混合动力汽车的用电进行控制,包括:根据最终用电等级选择对应的油门深度-电机目标扭矩曲线,其中,混合动力汽车具有多个油门深度-电机目标扭矩曲线,多个用电等级分别与多个油门深度-电机目标扭矩曲线对应;根据当前油门深度和对应的油门深度-电机目标扭矩曲线获取当前电机目标扭矩,并根据当前电机目标扭矩对混合动力汽车的动力电机的输出扭矩进行控制。
其中,按照多个用电等级由高到低的顺序,多个油门深度-电机目标扭矩曲线在同一油门深度下的电机目标扭矩占驱动总扭矩的比例逐渐降低。
具体地,多个用电等级分别与多个油门深度-电机目标扭矩曲线对应,即根据多个用电等级可以标定多个油门深度-电机目标扭矩曲线。更具体地,可根据最大用电等级、标准用电等级和经济用电等级分别标定三条油门深度-电机目标扭矩曲线,其中,当油门深度相同时,驱动总扭矩m为定值,在最大用电等级,电机目标扭矩n占驱动总扭矩m的比例为a1%,在标准用电等级,电机目标扭矩n占驱动总扭矩m的比例为a2%,在经济用电等级,电极目标扭矩n站驱动总扭矩m的比例为a3%,其中,a1>a2>a3。
具体而言,可根据最终用电等级选择对应的油门深度-电机目标扭矩曲线,例如当最终用电等级为最大用电等级时选择第一油门深度-电机目标扭矩曲线,当最终用电等级为标准用电等级时选择第二油门深度-电机目标扭矩曲线,当最终用电等级为经济用电等级时选择第三油门深度-电机目标扭矩曲线;然后根据当前油门深度和对应的油门深度-电机目标扭矩曲线获取当前电机目标扭矩n,并根据当前电机目标扭矩对混合动力汽车的动力电机的输出扭矩进行控制。
由此,通过在低用电等级时减少电机驱动扭矩的输出,能在满足动力的前提下增强保电性能。
根据本公开的一个实施例,根据最终用电等级对混合动力汽车的用电进行控制,包括:获取用电设备的最低用电功率和额定用电功率;根据额定用电功率与最低用电功率之差获取偏差功率;根据最终用电等级选择对应的功率系数,其中,混合动力汽车具有多个功率系数,多个用电等级分别与多个功率系数对应;根据额定用电功率、偏差功率和对应的功率系数调整用电设备的工作功率。
具体地,根据以下公式调整用电设备的工作功率:
P=P2-a×△P
其中,P为调整后的用电设备的工作功率,P2为额定用电功率,a为功率系数,△P为偏差功率;其中,多个功率系数按照多个用电等级由高到低的顺序逐渐增大。
需要说明的是,偏差功率为额定用电功率P2与最低用电功率P1之差,即△P=P2-P1。
具体而言,根据多个用电等级可以标定多个功率系数,更具体地,可根据最大用电等级、标准用电等级和经济用电等级分别标定三功率系数,即a可分别为0、0.5和1。在最大用电等级时,a为0,此时,用电设备的工作功率为P=P2,即言,用电设备的工作功率P为额定用电功率P2;在标准用电等级时,a为0.5,用电设备的工作功率为P=P2-0.5×△P;在经济用电等级时,a为1,用电设备的工作功率为P=P2-1×△P=P1,即言用电设备的工作功率P为最低用电功率P1。
也就是说,最终用电等级有与之一一对应的功率系数,即可根据最终用电等级对应的功率系数对混合动力汽车的用电进行控制。例如,在最大用电等级时控制用电设备的功率系数为额定功率系数P2;又如,在标准用电等级时控制用电设备的功率系数为P=P2-0.5×△P;再如,在经济用电等级时控制用电设备的功率系数为最低用电功率P1。由此,在保证用电设备满足需求的情况下,根据用电需求,调整设备用电功率,降低整车用电设备的功耗。
由此,能够更全面的判断工作模式,驱动时,能够使发动机尽量工作在经济区内,降低综合油耗,电量不足时,降低整车的用电设备的功耗,调节发动机经济区用于BSG发电,以增强保电能力。
综上,根据本公开实施例提出的混合动力汽车的用电控制方法,通过获取混合动力汽车的当前坡度、当前油门深度和用电设备的当前工作功率,并根据当前坡度、当前油门深度和用电设备的当前工作功率确定混合动力汽车的当前用电等级,获取混合动力汽车的当前发电等级,然后根据当前用电等级和当前发电等级控制混合动力汽车的最终用电等级,并根据最终用电等级对混合动力汽车的用电进行控制。由此,本公开实施例的用电控制方法通过混合动力汽车的当前坡度、当前油门深度、用电设备的当前功率和当前发电等级确定最终用电等级,再根据最终用电等级调节用电设备,从而能够在更全面的工作模式下控制整车用电,使得发动机在驱动时尽量工作在经济区内,降低综合油耗,还能够最大程度地降低整车用电,提高保电能力。
图5是根据本公开实施例的混合动力汽车的用电控制装置的方框示意图。如图5所示,本公开实施例的混合动力汽车的用电控制装置100,包括控制器500和存储器300,存储器 300存储有多条指令400,指令400适于由控制器500加载并执行:获取混合动力汽车的当前坡度、当前油门深度和用电设备的当前工作功率,根据当前坡度、当前油门深度和用电设备的当前工作功率确定混合动力汽车的当前用电等级;以及获取混合动力汽车的当前发电等级,以及根据当前用电等级和当前发电等级控制混合动力汽车的最终用电等级,并根据最终用电等级对混合动力汽车的用电进行控制,其中,混合动力汽车具有多个发电等级和多个用电等级,多个发电等级分别与多个用电等级对应。
根据本公开的一个实施例,控制器500进一步执行:获取当前坡度所属的坡度区间,并获取当前坡度所属的坡度区间对应的坡度用电等级;获取当前油门深度所属的油门深度区间,并获取当前油门深度所属的油门深度区间对应的油门深度用电等级;获取用电设备的当前工作功率的功率区间,并获取当前工作功率所属的功率区间对应的功率用电等级;以及将坡度用电等级、油门深度用电等级和功率用电等级中的最高等级作为当前用电等级。
根据本公开的一个实施例,控制器500进一步执行:当当前发电等级低于当前用电等级且当前用电等级与坡度用电等级不一致时,将当前发电等级对应的用电等级作为最终用电等级,以及当当前发电等级低于当前用电等级且当前用电等级与坡度用电等级相一致时,将坡度用电等级作为最终用电等级。
根据本公开的一个实施例,控制器500进一步执行:当当前发电等级高于或等于当前用电等级时,将当前用电等级作为最终用电等级。
根据本公开的一个实施例,控制器500进一步执行:根据最终用电等级选择对应的油门深度-电机目标扭矩曲线,并根据当前油门深度和对应的油门深度-电机目标扭矩曲线获取当前电机目标扭矩,以及根据当前电机目标扭矩对混合动力汽车的动力电机的输出扭矩进行控制,其中,混合动力汽车具有多个油门深度-电机目标扭矩曲线,多个用电等级分别与多个油门深度-电机目标扭矩曲线对应。
根据本公开的一个实施例,按照多个用电等级由高到低的顺序,多个油门深度-电机目标扭矩曲线在同一油门深度下的电机目标扭矩占驱动总扭矩的比例逐渐降低。
根据本公开的一个实施例,控制器500进一步执行:获取用电设备的最低用电功率和额定用电功率,根据额定用电功率与最低用电功率之差获取偏差功率,根据最终用电等级选择对应的功率系数,并根据额定用电功率、偏差功率和对应的功率系数调整用电设备的工作功率,其中,混合动力汽车具有多个功率系数,多个用电等级分别与多个功率系数对应。
根据本公开的一个实施例,控制器500进一步执行:根据以下公式调整用电设备的工作功率:
P=P2-a×△P
其中,P为调整后的用电设备的工作功率,P2为额定用电功率,a为功率系数,△P为偏差功率;
根据本公开的一个实施例,多个功率系数按照多个用电等级由高到低的顺序逐渐增大。
综上,根据本公开实施例提出的混合动力汽车的用电控制装置,通过获取混合动力汽车的当前坡度、当前油门深度和用电设备的当前工作功率,根据当前坡度、当前油门深度和用电设备的当前工作功率确定混合动力汽车的当前用电等级;以及获取混合动力汽车的当前发电等级,以及根据当前用电等级和当前发电等级控制混合动力汽车的最终用电等级,并根据最终用电等级对混合动力汽车的用电进行控制,其中,混合动力汽车具有多个发电等级和多个用电等级,多个发电等级分别与多个用电等级对应。由此,本公开实施例的混合动力汽车的用电控制装置通过混合动力汽车的当前坡度、当前油门深度、用电设备的当前功率和当前发电等级确定最终用电等级,再根据最终用电等级调节用电设备,从而能够在更全面的工作模式下控制整车用电,使得发动机在驱动时尽量工作在经济区内,降低综合油耗,还能够最大程度地降低整车用电,提高保电能力。
本公开实施例还提出了一种混合动力汽车。
图6为根据本公开实施例的混合动力汽车的方框示意图。如图6所示,混合动力汽车1000包括混合动力汽车的用电控制装置100。
根据本公开实施例的混合动力汽车,通过混合动力汽车的用电控制装置,能够根据最终用电等级调节用电设备,从而能够在更全面的工作模式下控制整车用电,使得发动机在驱动时尽量工作在经济区内,降低综合油耗,还能够最大程度降低整车用电,提高保电能力。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (19)

  1. 一种混合动力汽车的用电控制方法,其特征在于,包括以下步骤:
    获取所述混合动力汽车的当前坡度、当前油门深度和用电设备的当前工作功率,根据所述当前坡度、所述当前油门深度和所述用电设备的当前工作功率确定所述混合动力汽车的当前用电等级;
    获取所述混合动力汽车的当前发电等级,其中,所述混合动力汽车具有多个发电等级和多个用电等级,所述多个发电等级分别与所述多个用电等级对应;
    根据所述当前用电等级和所述当前发电等级控制所述混合动力汽车的最终用电等级,并根据所述最终用电等级对所述混合动力汽车的用电进行控制。
  2. 根据权利要求1所述的混合动力汽车的用电控制方法,其特征在于,所述根据所述当前坡度、所述当前油门深度和所述用电设备的当前工作功率确定所述混合动力汽车的当前用电等级,包括:
    获取所述当前坡度所属的坡度区间,并获取所述当前坡度所属的坡度区间对应的坡度用电等级;
    获取所述当前油门深度所属的油门深度区间,并获取所述当前油门深度所属的油门深度区间对应的油门深度用电等级;
    获取所述用电设备的当前工作功率的功率区间,并获取所述当前工作功率所属的功率区间对应的功率用电等级;
    将所述坡度用电等级、所述油门深度用电等级和所述功率用电等级中的最高等级作为所述当前用电等级。
  3. 根据权利要求2所述的混合动力汽车的用电控制方法,其特征在于,
    当所述当前发电等级低于所述当前用电等级且所述当前用电等级与所述坡度用电等级不一致时,将所述当前发电等级对应的用电等级作为所述最终用电等级;
    当所述当前发电等级低于所述当前用电等级且所述当前用电等级与所述坡度用电等级相一致时,将所述坡度用电等级作为所述最终用电等级。
  4. 根据权利要求1至3中任意一项所述的混合动力汽车的用电控制方法,其特征在于,
    当所述当前发电等级高于或等于所述当前用电等级时,将所述当前用电等级作为所述最终用电等级。
  5. 根据权利要求1至4中任意一项所述的混合动力汽车的用电控制方法,其特征在于, 所述根据所述最终用电等级对所述混合动力汽车的用电进行控制,包括:
    根据所述最终用电等级选择对应的油门深度-电机目标扭矩曲线,其中,所述混合动力汽车具有多个油门深度-电机目标扭矩曲线,所述多个用电等级分别与所述多个油门深度-电机目标扭矩曲线对应;
    根据所述当前油门深度和对应的油门深度-电机目标扭矩曲线获取当前电机目标扭矩,并根据所述当前电机目标扭矩对所述混合动力汽车的动力电机的输出扭矩进行控制。
  6. 根据权利要求5所述的混合动力汽车的用电控制方法,其特征在于,其中,按照所述多个用电等级由高到低的顺序,所述多个油门深度-电机目标扭矩曲线在同一油门深度下的电机目标扭矩占驱动总扭矩的比例逐渐降低。
  7. 根据权利要求1至6中任意一项所述的混合动力汽车的用电控制方法,其特征在于,所述根据所述最终用电等级对所述混合动力汽车的用电进行控制,包括:
    获取所述用电设备的最低用电功率和额定用电功率;
    根据所述额定用电功率与所述最低用电功率之差获取偏差功率;
    根据所述最终用电等级选择对应的功率系数,其中,所述混合动力汽车具有多个功率系数,所述多个用电等级分别与所述多个功率系数对应;
    根据所述额定用电功率、所述偏差功率和对应的功率系数调整所述用电设备的工作功率。
  8. 根据权利要求7所述的混合动力汽车的用电控制方法,其特征在于,根据以下公式调整所述用电设备的工作功率:
    P=P2-a×△P
    其中,P为调整后的用电设备的工作功率,P2为所述额定用电功率,a为所述功率系数,△P为偏差功率;
  9. 根据权利要求8所述的混合动力汽车的用电控制方法,其特征在于,其中,所述多个功率系数按照所述多个用电等级由高到低的顺序逐渐增大。
  10. 一种混合动力汽车的用电控制装置,其特征在于,包括控制器和存储器,所述存储器存储有多条指令,所述指令适于由所述控制器加载并执行:
    获取所述混合动力汽车的当前坡度、当前油门深度和用电设备的当前工作功率,根据所述当前坡度、所述当前油门深度和所述用电设备的当前工作功率确定所述混合动力汽车的当前用电等级;以及
    获取所述混合动力汽车的当前发电等级,以及根据所述当前用电等级和所述当前发电 等级控制所述混合动力汽车的最终用电等级,并根据所述最终用电等级对所述混合动力汽车的用电进行控制,其中,所述混合动力汽车具有多个发电等级和多个用电等级,所述多个发电等级分别与所述多个用电等级对应。
  11. 根据权利要求10所述的混合动力汽车的用电控制装置,其特征在于,所述控制器进一步执行:
    获取所述当前坡度所属的坡度区间,并获取所述当前坡度所属的坡度区间对应的坡度用电等级;
    获取所述当前油门深度所属的油门深度区间,并获取所述当前油门深度所属的油门深度区间对应的油门深度用电等级;
    获取所述用电设备的当前工作功率的功率区间,并获取所述当前工作功率所属的功率区间对应的功率用电等级;以及
    将所述坡度用电等级、所述油门深度用电等级和所述功率用电等级中的最高等级作为所述当前用电等级。
  12. 根据权利要求11所述的混合动力汽车的用电控制装置,其特征在于,所述控制器进一步执行:
    当所述当前发电等级低于所述当前用电等级且所述当前用电等级与所述坡度用电等级不一致时,将所述当前发电等级对应的用电等级作为所述最终用电等级,以及当所述当前发电等级低于所述当前用电等级且所述当前用电等级与所述坡度用电等级相一致时,将所述坡度用电等级作为所述最终用电等级。
  13. 根据权利要求10至12中任意一项所述的混合动力汽车的用电控制装置,其特征在于,所述控制器进一步执行:
    当所述当前发电等级高于或等于所述当前用电等级时,将所述当前用电等级作为所述最终用电等级。
  14. 根据权利要求10至13中任意一项所述的混合动力汽车的用电控制装置,其特征在于,所述控制器进一步执行:
    根据所述最终用电等级选择对应的油门深度-电机目标扭矩曲线,并根据所述当前油门深度和对应的油门深度-电机目标扭矩曲线获取当前电机目标扭矩,以及根据所述当前电机目标扭矩对所述混合动力汽车的动力电机的输出扭矩进行控制,其中,所述混合动力汽车具有多个油门深度-电机目标扭矩曲线,所述多个用电等级分别与所述多个油门深度-电机目标扭矩曲线对应。
  15. 根据权利要求14所述的混合动力汽车的用电控制装置,其特征在于,其中,按照所述多个用电等级由高到低的顺序,所述多个油门深度-电机目标扭矩曲线在同一油门深度下的电机目标扭矩占驱动总扭矩的比例逐渐降低。
  16. 根据权利要求10至15中任意一项所述的混合动力汽车的用电控制装置,其特征在于,所述控制器进一步执行:
    获取所述用电设备的最低用电功率和额定用电功率,根据所述额定用电功率与所述最低用电功率之差获取偏差功率,根据所述最终用电等级选择对应的功率系数,并根据所述额定用电功率、所述偏差功率和对应的功率系数调整所述用电设备的工作功率,其中,所述混合动力汽车具有多个功率系数,所述多个用电等级分别与所述多个功率系数对应。
  17. 根据权利要求16所述的混合动力汽车的用电控制装置,其特征在于,所述控制器进一步执行:
    根据以下公式调整所述用电设备的工作功率:
    P=P2-a×△P
    其中,P为调整后的用电设备的工作功率,P2为所述额定用电功率,a为所述功率系数,△P为偏差功率;
  18. 根据权利要求17所述的混合动力汽车的用电控制装置,其特征在于,其中,所述多个功率系数按照所述多个用电等级由高到低的顺序逐渐增大。
  19. 一种混合动力汽车,其特征在于,包括:
    如权利要求10-18中任一项所述的混合动力汽车的用电控制装置。
PCT/CN2018/108540 2017-09-29 2018-09-29 混合动力汽车及其用电控制方法和装置 WO2019062882A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18860080.3A EP3677483A4 (en) 2017-09-29 2018-09-29 HYBRID VEHICLE AND ITS PROCESS AND ITS ENERGY CONSUMPTION CONTROL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710911851.5A CN109572676B (zh) 2017-09-29 2017-09-29 混合动力汽车及其用电控制方法和装置
CN201710911851.5 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019062882A1 true WO2019062882A1 (zh) 2019-04-04

Family

ID=65900690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108540 WO2019062882A1 (zh) 2017-09-29 2018-09-29 混合动力汽车及其用电控制方法和装置

Country Status (4)

Country Link
EP (1) EP3677483A4 (zh)
CN (1) CN109572676B (zh)
TW (1) TWI667162B (zh)
WO (1) WO2019062882A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112557794A (zh) * 2020-12-08 2021-03-26 安徽江淮汽车集团股份有限公司 整车电平衡的评价方法、装置和计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445044A (zh) * 2008-10-11 2009-06-03 比亚迪股份有限公司 一种混合动力系统及控制方法和采用该系统的车辆
EP2990284A1 (en) * 2014-08-27 2016-03-02 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Regenerative control device for hybrid vehicle
CN106379313A (zh) * 2016-11-02 2017-02-08 天津市松正电动汽车技术股份有限公司 一种混合动力汽车发电方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161364A (ja) * 2001-11-27 2003-06-06 Hitachi Ltd ハイブリッド車両の制御装置
JP2007074765A (ja) * 2004-01-16 2007-03-22 Yamaha Motor Co Ltd ハイブリッド車両
US7696719B2 (en) * 2006-03-07 2010-04-13 Fujitsu Ten Limited Power control apparatus, power control method
KR100859662B1 (ko) * 2007-09-28 2008-09-23 콘티넨탈 오토모티브 시스템 주식회사 하이브리드 차량의 경사 도로 제어 장치 및 방법
JP2010143310A (ja) * 2008-12-17 2010-07-01 Nissan Motor Co Ltd シリーズハイブリッド電気自動車の発電制御装置
EP2774802B1 (en) * 2011-11-04 2018-04-25 Toyota Jidosha Kabushiki Kaisha Vehicle and vehicle control method
CN104417544B (zh) * 2013-09-09 2017-08-22 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
CN104787027B (zh) * 2014-01-17 2019-01-25 舍弗勒技术股份两合公司 一种车辆的动力控制方法和装置
CN104973057A (zh) * 2014-04-03 2015-10-14 李治良 智能预测控制系统
CN105667498B (zh) * 2014-11-18 2018-03-30 上海汽车集团股份有限公司 混合动力汽车串联模式下发电功率的分配方法与装置
KR101755976B1 (ko) * 2016-01-07 2017-07-07 현대자동차주식회사 배터리 과 방전 방어방법과 컨트롤러 및 하이브리드 차량
CN106945658A (zh) * 2017-03-31 2017-07-14 德州富路汽车智能化研究有限公司 一种混合动力车的整车控制方法、设备以及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445044A (zh) * 2008-10-11 2009-06-03 比亚迪股份有限公司 一种混合动力系统及控制方法和采用该系统的车辆
EP2990284A1 (en) * 2014-08-27 2016-03-02 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Regenerative control device for hybrid vehicle
CN106379313A (zh) * 2016-11-02 2017-02-08 天津市松正电动汽车技术股份有限公司 一种混合动力汽车发电方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3677483A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112557794A (zh) * 2020-12-08 2021-03-26 安徽江淮汽车集团股份有限公司 整车电平衡的评价方法、装置和计算机可读存储介质
CN112557794B (zh) * 2020-12-08 2022-02-25 安徽江淮汽车集团股份有限公司 整车电平衡的评价方法、装置和计算机可读存储介质

Also Published As

Publication number Publication date
TWI667162B (zh) 2019-08-01
CN109572676A (zh) 2019-04-05
EP3677483A4 (en) 2020-09-09
TW201914873A (zh) 2019-04-16
CN109572676B (zh) 2020-07-10
EP3677483A1 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
TWI716701B (zh) 混合動力汽車及其發電控制方法和裝置及電腦可讀儲存媒體
KR101628516B1 (ko) 하이브리드 차량의 직류변환장치 전압 가변제어 방법
KR101776723B1 (ko) 하이브리드 차량의 주행 모드 변환 제어 방법 및 그 제어 장치
US20190241171A1 (en) Hybrid-Electric Vehicle Plug-Out Mode Energy Management
KR102186032B1 (ko) 하이브리드 차량의 에너지 관리 방법 및 장치
WO2018177361A1 (zh) 混合动力汽车的动力系统和发电控制方法及混合动力汽车
US9421846B2 (en) Vehicle control system
US9162671B2 (en) Hybrid vehicle control unit
KR101688343B1 (ko) 발전 제어 장치
KR101360051B1 (ko) 친환경 자동차의 토크 중재장치 및 방법
CN111873983B (zh) 一种混合动力汽车扭矩控制的方法、装置及混合动力汽车
US9252630B2 (en) Battery charge control apparatus
TW201914848A (zh) 混合動力汽車及其發電控制方法和發電控制器
CN108656919B (zh) 混合动力汽车及其动力系统和发电控制方法
CN108656929B (zh) 混合动力汽车的动力系统和发电控制方法及混合动力汽车
KR101694023B1 (ko) 하이브리드 차량의 엔진 제어 장치 및 방법
CN109591579B (zh) 混合动力汽车及其动力系统
WO2019062882A1 (zh) 混合动力汽车及其用电控制方法和装置
WO2018177362A1 (zh) 混合动力汽车及其动力系统
CN108657165B (zh) 混合动力汽车及其动力系统和发电控制方法
CN108656927B (zh) 混合动力汽车及其动力系统
CN108656921B (zh) 混合动力汽车的动力系统和发电控制方法及混合动力汽车
JP5310384B2 (ja) ハイブリッド車両の制御装置
CN108656931B (zh) 混合动力汽车及其动力系统和发电控制方法
CN108656923B (zh) 混合动力汽车及其动力系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018860080

Country of ref document: EP

Effective date: 20200330