WO2019062671A1 - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
WO2019062671A1
WO2019062671A1 PCT/CN2018/107020 CN2018107020W WO2019062671A1 WO 2019062671 A1 WO2019062671 A1 WO 2019062671A1 CN 2018107020 W CN2018107020 W CN 2018107020W WO 2019062671 A1 WO2019062671 A1 WO 2019062671A1
Authority
WO
WIPO (PCT)
Prior art keywords
dehumidifier
condenser
air
evaporator
outlet
Prior art date
Application number
PCT/CN2018/107020
Other languages
French (fr)
Inventor
Jiayao Cui
Original Assignee
Foshan Naibao Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Naibao Electric Co., Ltd. filed Critical Foshan Naibao Electric Co., Ltd.
Priority to US16/469,978 priority Critical patent/US20190323714A1/en
Publication of WO2019062671A1 publication Critical patent/WO2019062671A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • F24F2003/1446Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only by condensing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • F24F2003/1446Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only by condensing
    • F24F2003/1452Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only by condensing heat extracted from the humid air for condensing is returned to the dried air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature

Definitions

  • the present disclosure relates to the technical field of refrigeration dehumidifiers, and more particularly, to a dehumidifier with high energy efficiency ratio for dehumidification.
  • Dehumidifier is a device for removing moisture in the air to regulate air humidity, and it is widely used in industrial manufacture and daily life. During the use of a refrigeration dehumidifier, the refrigerant vaporizes and absorbs heat in the evaporator to reduce the temperature of the evaporator, consequently causing the moisture in the air to condense into liquid due to the temperature reduction, so that the effect of reducing air humidity can be realized.
  • the heat released from the refrigerant in the condenser is equal to the sum of the heat absorbed by the refrigerant in the evaporator and the work done by the compressor in compressing the refrigerant. Therefore, in the process of the air passing through the dehumidifier, the amount of heat absorbed at the condenser is higher than the amount of heat released at the evaporator. That is, when the air flows through the evaporator and the condenser, the amount of heat exchange at the evaporator is lower than the amount of heat exchange at the condenser.
  • the amount of heat exchange of the air at the condenser will be constant, which results in a small reduction of air temperature at the evaporator, and in turn a lower liquefaction rate of the moisture. If the air flow is too small, the amount of heat exchange of the air at the evaporator will be constant, which results in an elevation of the temperature of the air passing through the condenser, and in turn an increase in the condensing pressure and in the energy consumption of the compressor, reducing the effective power ratio. Therefore, the dehumidification energy efficiency of the existing dehumidifier is low.
  • a dehumidifier comprising:
  • a housing provided with at least one air inlet and at least one air outlet, wherein an air channel connecting the air inlet and the air outlet is formed in the housing;
  • a throttle valve connected to an outlet of the condensing assembly
  • an evaporator provided between the condensing assembly and the air inlet; and provided opposite to the second condenser in an axial direction of the air channel;
  • an outlet of the compressor is communicated with an inlet of the condensing assembly, wherein an inlet of the compressor is communicated with an outlet of the evaporator, and the compressor, the condensing assembly, the throttle valve and the evaporator are sequentially connected in series to form a refrigerant circuit.
  • the condensing assembly comprises a first condenser and a second condenser connected in series, wherein the first condenser and the second condenser are provided in a parallel arrangement in a radial direction of the air channel and may be spaced apart from each other.
  • the condensing assembly may further comprise a third condenser connected in series between the second condenser and the throttle valve.
  • the third condenser may be disposed in a parallel arrangement with the second condenser in the axial direction of the air channel, and may be located between the second condenser and the evaporator.
  • the throttle valve may be a capillary tube, wherein the number of the capillary tubes may be a plurality, and the plurality of the capillary tubes may be connected in parallel.
  • the dehumidifier may further comprise a liquid collecting assembly provided corresponding to the evaporator and used to collect a liquid condensed on the evaporator, wherein the liquid collecting assembly may comprise a liquid collecting tray, a conduit and a liquid collecting tank, and the liquid collecting tray may be provided corresponding to the evaporator and communicated with the liquid collecting tank through the conduit.
  • the liquid collecting assembly may comprise a liquid collecting tray, a conduit and a liquid collecting tank, and the liquid collecting tray may be provided corresponding to the evaporator and communicated with the liquid collecting tank through the conduit.
  • the dehumidifier may further comprise an air guiding device for driving air flowing along the air channel, wherein the air guiding device may be a blower disposed along the air channel at a position behind the condensing assembly and close to the air outlet.
  • the air guiding device may be a blower disposed along the air channel at a position behind the condensing assembly and close to the air outlet.
  • it may further comprise a clapboard provided in the air channel, the clapboard being connected to an inner wall of the housing, so that a first flow channel and a second flow channel isolated from each other can be formed in the air channel; and wherein, the first condenser is accommodated in the first flow channel, and the second condenser and the evaporator are accommodated in the second flow channel.
  • a filtration device is further provided on the air inlet and a protective device is further provided on the air outlet, which can effectively prevent foreign substances from entering the dehumidifier without affecting the ventilation effect.
  • it further comprises a foldable handle assembly attachable to the housing of the dehumidifier.
  • a dehumidifier is provided herein with a condensing assembly comprising comprises a first condenser and a second condenser.
  • the first condenser and the second condenser are provided in a parallel arrangement, while an evaporator is provided opposite to the second condenser. Therefore, during use, a part of air passes through the evaporator before passing through the second condenser, while another part of the air passes through the first condenser directly without passing through the evaporator.
  • the temperature difference of the air between the evaporator and the condenser is reduced, so that the difference of the amount of air heat exchange between the evaporator and the condenser is decreased. Therefore, the temperature of the condenser and the evaporator can be in a relative stable state regardless of magnitude of air flow, which improves the dehumidification energy efficiency of the dehumidifier.
  • FIG. 1 is a structural schematic diagram illustrating a dehumidifier according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram illustrating a relationship between condensing pressure and enthalpy change in the dehumidifier of FIG. 1;
  • FIG. 3 is a structural schematic diagram illustrating a dehumidifier according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram illustrating a relationship between condensing pressure and enthalpy change in the dehumidifier of FIG. 3;
  • FIG. 5 is a structural schematic diagram illustrating a dehumidifier having a foldable handle assembly according to an embodiment of the present disclosure
  • FIG. 6 is an exploded diagram illustrating the foldable handle assembly of the dehumidifier of FIG. 5;
  • FIG. 7 is a structural schematic diagram illustrating a handle joint of the foldable handle assembly of FIG. 6;
  • FIG. 8 is a schematic diagram illustrating the deployed position and the folded position of the foldable handle assembly of the dehumidifier of FIG. 5.
  • the present disclosure provides a dehumidifier 100.
  • the dehumidifier 100 comprises a housing 110, a condensing assembly 120, a throttle valve 130, an evaporator 140 and a compressor 150.
  • the compressor 150, the condensing assembly 120, the throttle valve 130 and the evaporator 140 are sequentially connected in series, and an output end of the evaporator 141 is connected to an input end of the compressor 150 to form a circulation circuit of refrigerant.
  • the housing 110 is provided with at least one air inlet 111 and at least one air outlet 112, and an air channel 113 connecting the air inlet 111 to the air outlet 112 is formed inside the housing 110. It should be noted that the number of air inlet 111 and air outlet 112 is not limited, and may be any other suitable quantity.
  • the housing 110 may be a cube or a cylinder, and may be designed in other optional shapes, which are not limited in the present embodiment.
  • the housing 110 is a rectangular housing 110 as an example for illustration.
  • the air channel 113 should have a certain length. Therefore, in the present embodiment, the air inlet 111 is provided on a side surface of the housing 110, while the air outlet 112 is provided on the top of the housing 110, and the air outlet 112 is close to the side surface opposite to the air inlet 111. It should be understood that, in the present embodiment, the side surface and the top refer to the side surface and the top, respectively, of the dehumidifier 100 being placed in a normal working state.
  • the positions of the air inlet 111 and the air outlet 112 in this embodiment are only exemplary.
  • the air inlet 111 and the air outlet 112 may also be disposed at other suitable positions on the housing 110, such as a set of opposite inner walls of the housing 110 in another specific embodiment.
  • both of the air inlet 111 and the air outlet 112 are openings in an open state, and specific shapes of both may be circular, rectangular or any other optional shapes.
  • a protective screen 114 is further provided on the air inlet 111 and the air outlet 112, which can effectively prevent dust or other foreign substances from entering the dehumidifier 100 on the premise of ensuring the ventilation effect.
  • a clapboard 115 is further provided inside the housing 110, the clapboard 115 separates the housing 110 into two parts, one part is the air channel 113 accommodating the condensing assembly 120 and the evaporator 140, and the other part is a receiving chamber 116 for accommodating the compressor 150.
  • the condensing assembly 120 comprises a first condenser 121 and a second condenser 122 connected in series.
  • the first condenser 121 and the second condenser 122 are provided in a parallel arrangement in the air channel 113 along the direction of the air channel 113.
  • the description of “provided in a parallel arrangement in the air channel 113 along the direction of the air channel 113” means that the first condenser 121 and the second condenser 122 are located on the same plane perpendicular or approximately perpendicular to the direction of the air channel 113, so that when air passes through the air channel 13, it can only flow through the first condenser 121 or the second condenser 122, instead of passing through the first condenser 121 and the second condenser 122 in sequence.
  • the first condenser 121 is provided above the second condenser 122, wherein the term “above” herein refers to the upward side relative to the dehumidifier 100 being placed in the normal working state.
  • the first condenser 121 may also be provided in other directions of the second condenser 122, for example, downward or sideward.
  • the fins of the first condenser 121 and the fins of the second condenser 122 are spaced apart from each other to avoid direct contact between the fins of the first condenser 121 and the fins of the second condenser 122, preventing a reduction of temperature difference between the first condenser 121 and the second condenser 122 due to conduction of heat among the fins.
  • first condenser 121 and the second condenser 122 are each made of a material having good thermal conductivity such as metal. Therefore, if the fins of the first condenser 121 and the second condenser 122 are contacted with each other, the temperature of the first condenser 121 and the second condenser 122 will tend to be the same.
  • the fins of the first condenser 121 and the fins of the second condenser 122 are spaced apart from each other, which can reduce the heat transfer between the first condenser 121 and the second condenser 122 to increase the temperature difference between the first condenser 121 and the second condenser 122.
  • the refrigerant evaporates and absorbs heat in the evaporator 140 to decrease the temperature of the evaporator 140. Then the moisture in the air condenses into water droplets due to cooling, so that the purpose of dehumidification can be achieved.
  • the evaporator 140 is provided between the second condenser 122 and the air inlet 111, and opposite to second condenser 122 along the direction of the air channel 113. Accordingly, air passing through the air channel 113, when flowing through the evaporator 140, will further flow through the second condenser 122 without flowing through the first condenser 121.
  • the inlet of the evaporator 140 is communicated with the outlet of the condensing assembly 120 through a throttle valve 130.
  • the throttle valve 130 has an effect of throttling and depressurizing of the refrigerant, and may adjust the flow rate of the refrigerant entering the evaporator 140.
  • the throttle valve 130 may be a capillary tube, in particular a flow choking capillary tube or a thermal capillary tube and the like. Obviously, other types of capillary tubes may be used. In order to further increase the flow velocity, a plurality of capillary tubes parallel to each other may be provided.
  • the compressor 150 is used for compressing and conveying the refrigerant.
  • the outlet of the compressor 150 is communicated with the inlet of the condensing assembly 120, and the inlet of the compressor 150 is communicated with the outlet of the evaporator 140.
  • the compressor 150 is an adiabatic compressor to further reduce the energy loss.
  • the air guiding device for guiding air flow along the air channel 113
  • the air guiding device is a blower 160.
  • the air flows into the air channel 113 and flows out therefrom, passing through the evaporator 140 and the condensing assembly 120 to achieve dehumidification effect.
  • the blower 160 may be a centrifugal blower.
  • the blower 160 may be any other air blower, which can also achieve the effect for driving air flow.
  • the blower 160 is disposed along the air channel 113 at a position behind the condensing assembly 120 and close to the air outlet 112, that is, the blower 160 is disposed at a downstream position of the air channel 113, so that the air flowing through the blower 160 is dehumidified air with less moisture content, which can prevent the blower 160 from rusting and contribute to improve the service life of the blower 160.
  • the blower 160 may also be provided on any other location as long as it can drive the air flow along the air channel 113.
  • the temperature of the refrigerant sequentially decreases in the flow direction.
  • the fins and pipes of the condenser are usually made of a metal with good thermal conductivity, such as aluminum, copper, and the like. Therefore, in the condenser, the heat will be transmitted from a region with higher temperature to a region with lower temperature region, so that the temperature field of the entire condenser tends to be in an equilibrium state.
  • the temperature difference between the inlet and outlet of the condenser pipe is decreased, so that the saturated refrigerant vapor cannot be further cooled to form subcooled liquid after being condensed into the saturated liquid through the air-liquid mixed state. Therefore, the liquid refrigerant in the throttle valve 130 is partially vaporized, and the proportion of the liquid refrigerant entering the evaporator 140 is decreased, resulting in a decrease of the absorbing heat ability of the evaporator 140, and in turn a decrease of the cooling capacity. Consequently, the dehumidification capacity is decreased, so is the energy efficiency ratio of the dehumidifier 100 for dehumidifying.
  • the part of air with a higher humidity passes through the evaporator 140, and the refrigerant vaporizes and absorbs heat in the evaporator 140, so that the humid air is liquefied by condensing into water droplets due to the temperature reduction.
  • the cold air after cooling passes through the second condenser 122 and absorbs heat during its passage through the second condenser 122, thereby increasing the air temperature. While the other part of the air still passes through the first condenser 121 directly.
  • FIG. 2 is a pressure-enthalpy diagram, showing a cycle process of the refrigerant of the dehumidifier provided with a single condenser, represented by a process from state points 1 to 2, 2 to 3, 3 to 4, 4 to 5, 5 to 6, and then 6 to 1.
  • the horizontal axis h represents an enthalpy change (kJ/kg) of the refrigerant
  • the vertical axis P represents a condensing pressure (MPa) .
  • the process from state points 1 to 2 represents a process in which the refrigerant changes from a low-temperature and low-pressure steam to high-temperature and high-pressure steam through the compressor; and the process from state points 2 to 5 represents a process of cooling and condensing of refrigerant in the condenser.
  • the process from state points 2 to 3 represents a process in which an overheated refrigerant air is cooled into a saturated steam through an exhaust pipe into the condenser in the ideal condition.
  • the process from state points 3 to 4 represents a process in which the saturated steam releases heat and condenses to a saturated liquid in the ideal condition.
  • the process from state points 4 to 5 represents a process in which the saturated liquid further cools down to become a subcooled liquid.
  • the process from state points 5 to 6 represents a throttling process of the refrigerant in the throttle valve.
  • the process from state points 6 to 1 represents a vaporization process of the refrigerant in the evaporator, wherein the refrigerant absorbs heat of the cooled air and continues to vaporize until becoming the saturated steam, so that the state of the refrigerant is restored again to the state point 1 before entering the compressor, thereby completing a cycle.
  • the process from state points 1 to 2’, 2’to 3’, 3’to 4’, 4’to 5’, 5’to 6, and then 6’to 1 is a pressure-enthalpy diagram of the refrigerant cycle process of the dehumidifier comprising the first condenser 121 and the second condenser 122 of the present embodiment. Since the first condenser 121 is provided in the present embodiment and is ventilated separately, the air flowing through the first condenser 121 may not flow through the evaporator 140 in advance, and thus the ventilation quantity of the condensing assembly 120 is higher than that of the evaporator 140.
  • the condensing temperature is lower and the air directly flows through the first condenser 121 to reduce the condensing temperature. That is, the enthalpy value is also relatively lower, and the condensing pressure is also decreased from P 2 to P 2 'accordingly, so as to reduce the condensing pressure.
  • the difference value between the condensing pressure and the evaporating pressure is reduced, so that when the refrigerant enters the throttling valve 130, the vaporization proportion of the refrigerant is reduced.
  • the ventilation quantity of the evaporator 140 is lower than that of the condensing assembly 120, the sensible heat load of the evaporator 140 may be reduced, thereby increasing the humidity load, dehumidification depth and the dehumidification energy efficiency of the evaporator 140. In this way, the energy efficiency ratio of the dehumidifier 100 can be improved while maintain the dehumidification effect.
  • it also comprises a storage tank 170 provided between the compressor 150 and the condensing assembly 120 and used to store the refrigerant.
  • a liquid collecting assembly 180 is further provided to recycle the condensed water. It should be understood that moisture in the air is condensed into water droplets on the evaporator 140, and therefore, the liquid collecting assembly 180 of the present embodiment is provided corresponding to the evaporator 140 for achieving the recycle of condensed water droplets.
  • the liquid collection assembly 180 comprises a liquid collection tray 181, a conduit 182, and a liquid collection tank 183, wherein the liquid collection tray 181 is provided on the bottom of the evaporator 140 corresponding to the evaporator 140, and with the action of gravity, the condensed water droplets drip from the evaporator 140 into the liquid collecting tray 181.
  • the liquid collecting tray 181 is communicated with the liquid collecting tank 183 through the conduit 182, so that the water flowing into the liquid collecting tray 181 is collected in the liquid collecting tank 183 along the conduit 182.
  • a clapboard 190 is further provided inside the air channel and connected to the inner wall of the housing.
  • a first flow channel 191 and a second flow channel 192 isolated from each other are formed in the air channel, wherein the first condenser 121 is accommodated in the first flow channel 191, while the second condenser 122 and the evaporator 140 are accommodated in the second flow channel 192.
  • the mutual interference between the air flowing through the first condenser 121 and the air flowing through the evaporator 140 and the second condenser 122 may be further reduced to further decrease the temperature difference of the air between the state entering the dehumidifier 100 and the state leaving the dehumidifier 100.
  • FIG. 3 shows yet another embodiment based on the above embodiment with the only difference in that the condensing assembly 120 further comprises a third condenser 123.
  • the third condenser 123 is connected in series between the second condenser 122 and the throttle valve 130. That is, the inlet of the third condenser 123 is communicated with the outlet of the second condenser 122, and the outlet of the third condenser 123 is communicated with the inlet of the evaporator 140 through the throttle valve 130.
  • the position of the third condenser 123 is preferably provided between the second condenser 122 and the evaporator 140, so that a part of the air in the air channel 113, after flowing through the evaporator 140, flows through the third condenser 123 prior to through the second condenser 122, while the other part of air still flows through the first condenser 121 directly.
  • the part of air with a higher humidity passes through the evaporator 140, and the refrigerant vaporizes and absorbs heat in the evaporator 140, so that the humid air is liquefied by condensing into water droplets due to the temperature reduction.
  • the cold air after cooling passes through the third condenser 123 and the second condenser 122 in sequence, and absorbs heat in the process of passing through the third condenser 123 and the second condenser 122, thereby increasing the temperature of the air. While the other part of the air still passes through the first condenser 121 directly.
  • FIG. 4 shows a pressure-enthalpy diagram of the refrigerant cycle process of the dehumidifier of the present embodiment comprising the first condenser 121, the second condenser 122 and the third condenser 123, represented by a process from state point 1 to 2', 2'to 3', 3'to 4', 4'to 5” , 5” to 6” , and then 6” to 1.
  • the horizontal axis h represents an enthalpy change (kJ/kg) of the refrigerant
  • the vertical axis P represents a condensing pressure (MPa) .
  • a part of the air flows through the evaporator 140. And when flowing through the evaporator 140, this part of air release heat and reduces its temperature as a result, so that the moisture in the air is condensed into water droplets, thus reducing the air humidity.
  • the cold air after cooling passes through the third condenser 123 and the second condenser 122 in sequences and absorbs heat in the meanwhile. Since the temperature of the condenser gradually decreases along the flow direction of the refrigerant, the temperature of the refrigerant in the second condenser 122 is higher than the temperature of the refrigerant in the third condenser 123. When the air gradually flows towards the direction of the second condenser 122, reverse graded heat absorption can be realized.
  • the third condenser 123 and the second condenser 122 are spaced apart from each other, which avoids the direct contact and thus heat conduction between the refrigerant in the second condenser 122 and the refrigerant in the third condenser 123. Therefore, the temperature of the third condensers 123 is reduced and the temperature difference between the inlet and the outlet of the condensing assembly 120 is improved, so that the vaporization proportion of the refrigerant liquid after passing through the throttling device can be reduced and the liquid proportion of the refrigerant at the outlet of the throttle valve 130 can be improved.
  • FIG. 5 illustrates a dehumidifier 100 having a foldable handle assembly 200 according to an embodiment of the present disclosure.
  • the dehumidifier 100 is provided with a foldable handle assembly 200 attachable to the housing 110 of the dehumidifier 100 by a socket head cap screw 300.
  • the socket head cap screw 300 is merely exemplary and the foldable handle assembly 200 can be connected to the housing 100 by any suitable means, as long as the connection is detachable.
  • FIG. 6 and 7 illustrate the structure of the foldable handle assembly 200 in the embodiment in detail.
  • the foldable handle assembly 200 comprises a handle joint 210, a rivet 220, a push rod 230, and a push rod sleeve 240.
  • the handle joint 210 comprises a snap mechanism 211, for example, the snap mechanism 211 is a pair of convex structures that are made of rubber material and can be elastically deformed.
  • the convex structure is elastically deformed (i.e., the convex structure is opened) , thus, the push rod 230 can be pivoted about the rivet 220.
  • the convex structure When the push rod is pushed into the deployed position or the folded position, the convex structure is not pressed by the outer diameter of the push rod 230, thus, the convex structure returns to its original shape (i.e., the convex structure is closed) , as a result, the distance between the pair of the convex structure is less than the outer diameter of the push rod 230, therefore, the push rod 230 is engaged in the deployed position or the folded position, and cannot continue to pivot. A certain amount of external force must be applied to the push rod 230 to force the push rod away from the deployed position or the folded position.
  • the convex structure is merely exemplary, the number and structure of the convex structure can be any suitable number and structure.
  • the snap mechanism 211 can be any suitable type of snap mechanism, as long as the following technical effects can be ensured: when the foldable handle assembly 200 is in the deployed position or the folded position shown in FIG. 8, the foldable handle assembly 200 can be snap-fitted in the deployed position or the folded position, and a certain amount of external force needs to be applied to force the foldable handle assembly 200 away from the deployed position or the folded position.
  • the foldable handle assembly 200 when an operator moves the dehumidifier 100 by means of the foldable handle assembly 200 in the deployed position, the foldable handle assembly 200 can remain in the deployed position, which is convenient for operator to grab and can prevent the operator's hand from being pinched by undesired folding; when the foldable handle assembly 200 is in the folded position, the foldable handle assembly 200 is secured in the folded position, so that the foldable handle assembly 200 cannot frequently impact the dehumidifier 100 even if there is continuous operating vibration of the dehumidifier 100, thus, the foldable handle assembly 200 will not generate vibration noise.

Abstract

A dehumidifier (100) and a method of dehumidification(100) are provided. The dehumidifier (100) comprises: a housing (110) provided with at least one air inlet(111) and at least one air outlet (112), wherein an air channel (113) connecting the air inlet (111) to the air outlet (112) is formed inside the housing (110); a condensing (120) assembly disposed in the housing (110); a throttle valve (130) connected to an outlet of the condensing (120) assembly; an evaporator (140) provided between the condensing (120) assembly and the air inlet (111); and a compressor (150), an outlet of the compressor (150) is communicated with an inlet of the condensing (120) assembly, wherein an inlet of the compressor (150) is communicated with an outlet of the evaporator (140), and the compressor (150), the condensing (120) assembly, the throttle valve (130) and the evaporator (140) are sequentially connected in series to form a refrigerant circuit. As a result, the temperature difference of the air between the evaporator and the condenser is reduced, so that the difference of the amount of air heat exchange between the evaporator and the condenser is decreased. Therefore, the temperature of the condenser and the evaporator can be in a relative stable state regardless of magnitude of air flow, which improves the dehumidification energy efficiency of the dehumidifier.

Description

Dehumidifier Technical Field
The present disclosure relates to the technical field of refrigeration dehumidifiers, and more particularly, to a dehumidifier with high energy efficiency ratio for dehumidification.
Background
Dehumidifier is a device for removing moisture in the air to regulate air humidity, and it is widely used in industrial manufacture and daily life. During the use of a refrigeration dehumidifier, the refrigerant vaporizes and absorbs heat in the evaporator to reduce the temperature of the evaporator, consequently causing the moisture in the air to condense into liquid due to the temperature reduction, so that the effect of reducing air humidity can be realized.
According to the law of conservation of energy, under the assumption that heat loss is minimal and neglectable, when the dehumidifier is operating, the heat released from the refrigerant in the condenser is equal to the sum of the heat absorbed by the refrigerant in the evaporator and the work done by the compressor in compressing the refrigerant. Therefore, in the process of the air passing through the dehumidifier, the amount of heat absorbed at the condenser is higher than the amount of heat released at the evaporator. That is, when the air flows through the evaporator and the condenser, the amount of heat exchange at the evaporator is lower than the amount of heat exchange at the condenser. Therefore, if the air flow is too large, then the amount of heat exchange of the air at the condenser will be constant, which results in a small reduction of air temperature at the evaporator, and in turn a lower liquefaction rate of the moisture. If the air flow is too small, the amount of heat exchange of the air at the evaporator will be constant, which results in an elevation of the temperature of the air passing through the condenser, and in turn an increase in the condensing pressure and in the energy consumption of the compressor, reducing the effective power ratio. Therefore, the dehumidification energy efficiency of the existing dehumidifier is low.
Summary
In view of the above, it is necessary to develop a dehumidifier and a method of dehumidification for addressing the problem of low energy efficiency ratio of existing dehumidifiers.
a dehumidifier, comprising:
a housing provided with at least one air inlet and at least one air outlet, wherein an air channel connecting the air inlet and the air outlet is formed in the housing;
a condensing assembly disposed in the housing;
a throttle valve connected to an outlet of the condensing assembly;
an evaporator provided between the condensing assembly and the air inlet; and provided opposite to the second condenser in an axial direction of the air channel; and
a compressor, an outlet of the compressor is communicated with an inlet of the condensing assembly, wherein an inlet of the compressor is communicated with an outlet of the evaporator, and the compressor, the condensing assembly, the throttle valve and the evaporator are sequentially connected in series to form a refrigerant circuit.
In one embodiment, the condensing assembly comprises a first condenser and a second condenser connected in series, wherein the first condenser and the second condenser are provided in a parallel arrangement in a radial direction of the air channel and may be spaced apart from each other. The condensing assembly may further comprise a third condenser connected in series between the second condenser and the throttle valve. The third condenser may be disposed in a parallel arrangement with the second condenser in the axial direction of the air channel, and may be located between the second condenser and the evaporator.
In one embodiment, the throttle valve may be a capillary tube, wherein the number of the capillary tubes may be a plurality, and the plurality of the capillary tubes may be connected in parallel.
According to one aspect of the disclosure, the dehumidifier may further comprise a liquid collecting assembly provided corresponding to the evaporator and used to collect a liquid condensed on the evaporator, wherein the liquid collecting assembly may comprise a liquid collecting tray, a conduit and a liquid collecting tank, and the liquid collecting tray may be provided corresponding to the evaporator and communicated with the liquid collecting tank through the conduit.
According to other aspect of the disclosure, the dehumidifier may further comprise an air guiding device for driving air flowing along the air channel, wherein the air guiding device may be a blower disposed along the air channel at a position behind the condensing assembly and close to the air outlet.
In one embodiment, it may further comprise a clapboard provided in the air channel, the clapboard being connected to an inner wall of the housing, so that a first flow channel and a second flow channel isolated from each other can be formed in the air channel; and wherein, the first condenser is accommodated in the first flow channel, and the second condenser and the evaporator are accommodated in the second flow channel.
In one embodiment, a filtration device is further provided on the air inlet and a protective device is further provided on the air outlet, which can effectively prevent foreign substances from entering the dehumidifier without affecting the ventilation effect.
In one embodiment, it further comprises a foldable handle assembly attachable to the housing of the dehumidifier.
A dehumidifier is provided herein with a condensing assembly comprising comprises a first condenser and a second condenser. The first condenser and the second condenser are provided in a parallel arrangement, while an evaporator is provided opposite to the second condenser. Therefore, during use, a part of air passes through the evaporator before passing through the second condenser, while another part of the air passes through the first condenser directly without passing through the evaporator. As a result, the temperature difference of the air between the evaporator and the condenser is reduced, so that the difference of the amount of air heat exchange between the evaporator and the condenser is decreased. Therefore, the temperature of the condenser and the evaporator can be in a relative stable state regardless of magnitude of air flow, which improves the dehumidification energy efficiency of the dehumidifier.
Brief Description of Drawings
FIG. 1 is a structural schematic diagram illustrating a dehumidifier according to an embodiment of the present disclosure;
FIG. 2 is a schematic diagram illustrating a relationship between condensing pressure and enthalpy change in the dehumidifier of FIG. 1;
FIG. 3 is a structural schematic diagram illustrating a dehumidifier according to another embodiment of the present disclosure;
FIG. 4 is a schematic diagram illustrating a relationship between condensing pressure and enthalpy change in the dehumidifier of FIG. 3;
FIG. 5 is a structural schematic diagram illustrating a dehumidifier having a foldable handle assembly according to an embodiment of the present disclosure;
FIG. 6 is an exploded diagram illustrating the foldable handle assembly of the dehumidifier of FIG. 5;
FIG. 7 is a structural schematic diagram illustrating a handle joint of the foldable handle assembly of FIG. 6;
FIG. 8 is a schematic diagram illustrating the deployed position and the folded position of the foldable handle assembly of the dehumidifier of FIG. 5.
Detailed Description
Reference will now be made to the drawings to describe, in detail, embodiments of the present disclosure, so that the above objects, features and advantages of the present disclosure will be more apparent and understandable. Although the disclosure is illustrated and described herein with reference to specific embodiments, however, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the disclosure. Therefore, the disclosure is not intended to be limited to the details shown.
It should be understood that when an element is defined as “fixed to” another element, it is either directly on an element or indirectly on an element with a mediating element in between. When an element is considered as being “connected” to another element, it is either directly connected to an element or indirectly connected to an element with a mediating element in between.
Unless otherwise specified, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The terms used herein is for the purpose of describing embodiments only and is not intended to be limiting of the present disclosure. As used herein, the term “and /or" comprises any and all combinations of one or more of the associated listed items.
The present disclosure provides a dehumidifier 100.
As shown in FIG. 1, in an embodiment, the dehumidifier 100 comprises a housing 110, a condensing assembly 120, a throttle valve 130, an evaporator 140 and a compressor 150. The compressor 150, the condensing assembly 120, the throttle valve 130 and the evaporator 140 are sequentially connected in series, and an output end of the evaporator 141 is connected to an input end  of the compressor 150 to form a circulation circuit of refrigerant.
In the present embodiment, the housing 110 is provided with at least one air inlet 111 and at least one air outlet 112, and an air channel 113 connecting the air inlet 111 to the air outlet 112 is formed inside the housing 110. It should be noted that the number of air inlet 111 and air outlet 112 is not limited, and may be any other suitable quantity.
In the present embodiment, the housing 110 may be a cube or a cylinder, and may be designed in other optional shapes, which are not limited in the present embodiment. In an embodiment, the housing 110 is a rectangular housing 110 as an example for illustration. During use, air flows into the dehumidifier 100 via the air inlet 111, through the air channel 113, and then out of the dehumidifier 100 via the air outlet 112.
It should be understood that in order to ensure the dehumidification effect, the air channel 113 should have a certain length. Therefore, in the present embodiment, the air inlet 111 is provided on a side surface of the housing 110, while the air outlet 112 is provided on the top of the housing 110, and the air outlet 112 is close to the side surface opposite to the air inlet 111. It should be understood that, in the present embodiment, the side surface and the top refer to the side surface and the top, respectively, of the dehumidifier 100 being placed in a normal working state.
The positions of the air inlet 111 and the air outlet 112 in this embodiment are only exemplary. The air inlet 111 and the air outlet 112 may also be disposed at other suitable positions on the housing 110, such as a set of opposite inner walls of the housing 110 in another specific embodiment.
As shown in FIG. 1, in a specific embodiment, both of the air inlet 111 and the air outlet 112 are openings in an open state, and specific shapes of both may be circular, rectangular or any other optional shapes. Furthermore, in yet another specific embodiment, a protective screen 114 is further provided on the air inlet 111 and the air outlet 112, which can effectively prevent dust or other foreign substances from entering the dehumidifier 100 on the premise of ensuring the ventilation effect.
In yet another embodiment, a clapboard 115 is further provided inside the housing 110, the clapboard 115 separates the housing 110 into two parts, one part is the air channel 113 accommodating the condensing assembly 120 and the evaporator 140, and the other part is a receiving chamber 116 for accommodating the compressor 150.
Referring to FIG. 1, in the present embodiment, the condensing assembly 120 comprises a first  condenser 121 and a second condenser 122 connected in series. The first condenser 121 and the second condenser 122 are provided in a parallel arrangement in the air channel 113 along the direction of the air channel 113. In the present embodiment, the description of “provided in a parallel arrangement in the air channel 113 along the direction of the air channel 113” means that the first condenser 121 and the second condenser 122 are located on the same plane perpendicular or approximately perpendicular to the direction of the air channel 113, so that when air passes through the air channel 13, it can only flow through the first condenser 121 or the second condenser 122, instead of passing through the first condenser 121 and the second condenser 122 in sequence. In a specific embodiment, the first condenser 121 is provided above the second condenser 122, wherein the term “above” herein refers to the upward side relative to the dehumidifier 100 being placed in the normal working state. Obviously, in some other embodiments, the first condenser 121 may also be provided in other directions of the second condenser 122, for example, downward or sideward.
Furthermore, in a specific embodiment, the fins of the first condenser 121 and the fins of the second condenser 122 are spaced apart from each other to avoid direct contact between the fins of the first condenser 121 and the fins of the second condenser 122, preventing a reduction of temperature difference between the first condenser 121 and the second condenser 122 due to conduction of heat among the fins.
It should be understood that since the first condenser 121 and the second condenser 122 are each made of a material having good thermal conductivity such as metal. Therefore, if the fins of the first condenser 121 and the second condenser 122 are contacted with each other, the temperature of the first condenser 121 and the second condenser 122 will tend to be the same. The fins of the first condenser 121 and the fins of the second condenser 122 are spaced apart from each other, which can reduce the heat transfer between the first condenser 121 and the second condenser 122 to increase the temperature difference between the first condenser 121 and the second condenser 122.
During use, the refrigerant evaporates and absorbs heat in the evaporator 140 to decrease the temperature of the evaporator 140. Then the moisture in the air condenses into water droplets due to cooling, so that the purpose of dehumidification can be achieved. In the present embodiment, the evaporator 140 is provided between the second condenser 122 and the air inlet 111, and opposite to second condenser 122 along the direction of the air channel 113. Accordingly, air passing through the air channel 113, when flowing through the evaporator 140, will further flow through the second  condenser 122 without flowing through the first condenser 121.
The inlet of the evaporator 140 is communicated with the outlet of the condensing assembly 120 through a throttle valve 130. The throttle valve 130 has an effect of throttling and depressurizing of the refrigerant, and may adjust the flow rate of the refrigerant entering the evaporator 140. In the present embodiment, the throttle valve 130 may be a capillary tube, in particular a flow choking capillary tube or a thermal capillary tube and the like. Obviously, other types of capillary tubes may be used. In order to further increase the flow velocity, a plurality of capillary tubes parallel to each other may be provided.
In the present embodiment, the compressor 150 is used for compressing and conveying the refrigerant. The outlet of the compressor 150 is communicated with the inlet of the condensing assembly 120, and the inlet of the compressor 150 is communicated with the outlet of the evaporator 140. In one of embodiments, in particular, the compressor 150 is an adiabatic compressor to further reduce the energy loss.
In the present embodiment, it further comprises an air guiding device for guiding air flow along the air channel 113, and the air guiding device is a blower 160. Driven by the blower 160, the air flows into the air channel 113 and flows out therefrom, passing through the evaporator 140 and the condensing assembly 120 to achieve dehumidification effect. In a specific embodiment, the blower 160 may be a centrifugal blower. In other specific embodiments, the blower 160 may be any other air blower, which can also achieve the effect for driving air flow.
In the present embodiment, the blower 160 is disposed along the air channel 113 at a position behind the condensing assembly 120 and close to the air outlet 112, that is, the blower 160 is disposed at a downstream position of the air channel 113, so that the air flowing through the blower 160 is dehumidified air with less moisture content, which can prevent the blower 160 from rusting and contribute to improve the service life of the blower 160. In other embodiments, obviously, the blower 160 may also be provided on any other location as long as it can drive the air flow along the air channel 113.
It should be understood that, as the refrigerant flows in the condenser and as the heat exchange progresses, the temperature of the refrigerant sequentially decreases in the flow direction. According to the second law of thermodynamics, the heat will be spontaneously transmitted from the object with higher temperature to the object with lower temperature. The fins and pipes of the condenser are  usually made of a metal with good thermal conductivity, such as aluminum, copper, and the like. Therefore, in the condenser, the heat will be transmitted from a region with higher temperature to a region with lower temperature region, so that the temperature field of the entire condenser tends to be in an equilibrium state. As a result, the temperature difference between the inlet and outlet of the condenser pipe is decreased, so that the saturated refrigerant vapor cannot be further cooled to form subcooled liquid after being condensed into the saturated liquid through the air-liquid mixed state. Therefore, the liquid refrigerant in the throttle valve 130 is partially vaporized, and the proportion of the liquid refrigerant entering the evaporator 140 is decreased, resulting in a decrease of the absorbing heat ability of the evaporator 140, and in turn a decrease of the cooling capacity. Consequently, the dehumidification capacity is decreased, so is the energy efficiency ratio of the dehumidifier 100 for dehumidifying.
During use, under the action of the blower 160, the part of air with a higher humidity passes through the evaporator 140, and the refrigerant vaporizes and absorbs heat in the evaporator 140, so that the humid air is liquefied by condensing into water droplets due to the temperature reduction. The cold air after cooling passes through the second condenser 122 and absorbs heat during its passage through the second condenser 122, thereby increasing the air temperature. While the other part of the air still passes through the first condenser 121 directly.
Further referring to FIG. 2, which is a pressure-enthalpy diagram, showing a cycle process of the refrigerant of the dehumidifier provided with a single condenser, represented by a process from state points 1 to 2, 2 to 3, 3 to 4, 4 to 5, 5 to 6, and then 6 to 1. The horizontal axis h represents an enthalpy change (kJ/kg) of the refrigerant, and the vertical axis P represents a condensing pressure (MPa) . As shown, the process from state points 1 to 2represent a process in which the refrigerant changes from a low-temperature and low-pressure steam to high-temperature and high-pressure steam through the compressor; and the process from state points 2 to 5 represents a process of cooling and condensing of refrigerant in the condenser. The process from state points 2 to 3 represents a process in which an overheated refrigerant air is cooled into a saturated steam through an exhaust pipe into the condenser in the ideal condition. The process from state points 3 to 4 represents a process in which the saturated steam releases heat and condenses to a saturated liquid in the ideal condition. The process from state points 4 to 5 represents a process in which the saturated liquid further cools down to become a subcooled liquid. The process from state points 5 to 6  represents a throttling process of the refrigerant in the throttle valve. The process from state points 6 to 1 represents a vaporization process of the refrigerant in the evaporator, wherein the refrigerant absorbs heat of the cooled air and continues to vaporize until becoming the saturated steam, so that the state of the refrigerant is restored again to the state point 1 before entering the compressor, thereby completing a cycle.
In Fig. 2, the process from state points 1 to 2’, 2’to 3’, 3’to 4’, 4’to 5’, 5’to 6, and then 6’to 1 is a pressure-enthalpy diagram of the refrigerant cycle process of the dehumidifier comprising the first condenser 121 and the second condenser 122 of the present embodiment. Since the first condenser 121 is provided in the present embodiment and is ventilated separately, the air flowing through the first condenser 121 may not flow through the evaporator 140 in advance, and thus the ventilation quantity of the condensing assembly 120 is higher than that of the evaporator 140. Therefore, in the present embodiment, during the process of cooling and condensing of the refrigerant in the condenser, the condensing temperature is lower and the air directly flows through the first condenser 121 to reduce the condensing temperature. That is, the enthalpy value is also relatively lower, and the condensing pressure is also decreased from P 2 to P 2'accordingly, so as to reduce the condensing pressure. In case of a constant evaporating pressure, the difference value between the condensing pressure and the evaporating pressure is reduced, so that when the refrigerant enters the throttling valve 130, the vaporization proportion of the refrigerant is reduced. Furthermore, since the ventilation quantity of the evaporator 140 is lower than that of the condensing assembly 120, the sensible heat load of the evaporator 140 may be reduced, thereby increasing the humidity load, dehumidification depth and the dehumidification energy efficiency of the evaporator 140. In this way, the energy efficiency ratio of the dehumidifier 100 can be improved while maintain the dehumidification effect.
In an embodiment, it also comprises a storage tank 170 provided between the compressor 150 and the condensing assembly 120 and used to store the refrigerant.
In an embodiment, a liquid collecting assembly 180 is further provided to recycle the condensed water. It should be understood that moisture in the air is condensed into water droplets on the evaporator 140, and therefore, the liquid collecting assembly 180 of the present embodiment is provided corresponding to the evaporator 140 for achieving the recycle of condensed water droplets.
In an embodiment, in particular, the liquid collection assembly 180 comprises a liquid collection  tray 181, a conduit 182, and a liquid collection tank 183, wherein the liquid collection tray 181 is provided on the bottom of the evaporator 140 corresponding to the evaporator 140, and with the action of gravity, the condensed water droplets drip from the evaporator 140 into the liquid collecting tray 181. The liquid collecting tray 181 is communicated with the liquid collecting tank 183 through the conduit 182, so that the water flowing into the liquid collecting tray 181 is collected in the liquid collecting tank 183 along the conduit 182.
Furthermore, in yet another embodiment, a clapboard 190 is further provided inside the air channel and connected to the inner wall of the housing. A first flow channel 191 and a second flow channel 192 isolated from each other are formed in the air channel, wherein the first condenser 121 is accommodated in the first flow channel 191, while the second condenser 122 and the evaporator 140 are accommodated in the second flow channel 192. The mutual interference between the air flowing through the first condenser 121 and the air flowing through the evaporator 140 and the second condenser 122 may be further reduced to further decrease the temperature difference of the air between the state entering the dehumidifier 100 and the state leaving the dehumidifier 100.
Further referring to FIG. 3, which shows yet another embodiment based on the above embodiment with the only difference in that the condensing assembly 120 further comprises a third condenser 123.
In the connection structure, the third condenser 123 is connected in series between the second condenser 122 and the throttle valve 130. That is, the inlet of the third condenser 123 is communicated with the outlet of the second condenser 122, and the outlet of the third condenser 123 is communicated with the inlet of the evaporator 140 through the throttle valve 130. In the present embodiment, the position of the third condenser 123 is preferably provided between the second condenser 122 and the evaporator 140, so that a part of the air in the air channel 113, after flowing through the evaporator 140, flows through the third condenser 123 prior to through the second condenser 122, while the other part of air still flows through the first condenser 121 directly.
During use, with the action of the blower 160, the part of air with a higher humidity passes through the evaporator 140, and the refrigerant vaporizes and absorbs heat in the evaporator 140, so that the humid air is liquefied by condensing into water droplets due to the temperature reduction. The cold air after cooling passes through the third condenser 123 and the second condenser 122 in sequence, and absorbs heat in the process of passing through the third condenser 123 and the second  condenser 122, thereby increasing the temperature of the air. While the other part of the air still passes through the first condenser 121 directly.
Further referring to FIG. 4, which shows a pressure-enthalpy diagram of the refrigerant cycle process of the dehumidifier of the present embodiment comprising the first condenser 121, the second condenser 122 and the third condenser 123, represented by a process from state point 1 to 2', 2'to 3', 3'to 4', 4'to 5” , 5” to 6” , and then 6” to 1. In FIG. 4, the horizontal axis h represents an enthalpy change (kJ/kg) of the refrigerant, while the vertical axis P represents a condensing pressure (MPa) .
In the present embodiment, a part of the air flows through the evaporator 140. And when flowing through the evaporator 140, this part of air release heat and reduces its temperature as a result, so that the moisture in the air is condensed into water droplets, thus reducing the air humidity. The cold air after cooling passes through the third condenser 123 and the second condenser 122 in sequences and absorbs heat in the meanwhile. Since the temperature of the condenser gradually decreases along the flow direction of the refrigerant, the temperature of the refrigerant in the second condenser 122 is higher than the temperature of the refrigerant in the third condenser 123. When the air gradually flows towards the direction of the second condenser 122, reverse graded heat absorption can be realized.
Meanwhile, the third condenser 123 and the second condenser 122 are spaced apart from each other, which avoids the direct contact and thus heat conduction between the refrigerant in the second condenser 122 and the refrigerant in the third condenser 123. Therefore, the temperature of the third condensers 123 is reduced and the temperature difference between the inlet and the outlet of the condensing assembly 120 is improved, so that the vaporization proportion of the refrigerant liquid after passing through the throttling device can be reduced and the liquid proportion of the refrigerant at the outlet of the throttle valve 130 can be improved. That is, when the refrigerant flows into the evaporator through the throttle valve 130, the temperature difference between the inlet and the outlet of the condensing assembly 120 is increased. Therefore, after the third condenser 123 is added, the enthalpy value of the refrigerant is reduced from h 5'to h 5", and the refrigerant is more sufficiently liquefied and cooled. Point 6'and point 6"in FIG. 4 represent a state of the refrigerant when flowing into the evaporator 140. Point 6'and point 6"correspond to the same enthalpy values are the same as those of point 5'and point 5", i.e., h 5'> h 5". Therefore, when the compression is performed again, a  unit of refrigerant in the dehumidifier may absorb more heat from the air, which can further improve the dehumidifier energy efficiency ratio.
Referring to FIG. 5-8, FIG. 5 illustrates a dehumidifier 100 having a foldable handle assembly 200 according to an embodiment of the present disclosure. In the embodiment, the dehumidifier 100 is provided with a foldable handle assembly 200 attachable to the housing 110 of the dehumidifier 100 by a socket head cap screw 300. It should be understood that the socket head cap screw 300 is merely exemplary and the foldable handle assembly 200 can be connected to the housing 100 by any suitable means, as long as the connection is detachable. FIG. 6 and 7 illustrate the structure of the foldable handle assembly 200 in the embodiment in detail. The foldable handle assembly 200 comprises a handle joint 210, a rivet 220, a push rod 230, and a push rod sleeve 240. The handle joint 210 comprises a snap mechanism 211, for example, the snap mechanism 211 is a pair of convex structures that are made of rubber material and can be elastically deformed. When the push rod 230 is in the non-deployed position or the non-folded position, due to the compression of the outer diameter of the push rod 230, the convex structure is elastically deformed (i.e., the convex structure is opened) , thus, the push rod 230 can be pivoted about the rivet 220. When the push rod is pushed into the deployed position or the folded position, the convex structure is not pressed by the outer diameter of the push rod 230, thus, the convex structure returns to its original shape (i.e., the convex structure is closed) , as a result, the distance between the pair of the convex structure is less than the outer diameter of the push rod 230, therefore, the push rod 230 is engaged in the deployed position or the folded position, and cannot continue to pivot. A certain amount of external force must be applied to the push rod 230 to force the push rod away from the deployed position or the folded position.
It should be noted that the convex structure is merely exemplary, the number and structure of the convex structure can be any suitable number and structure. Furthermore, the snap mechanism 211 can be any suitable type of snap mechanism, as long as the following technical effects can be ensured: when the foldable handle assembly 200 is in the deployed position or the folded position shown in FIG. 8, the foldable handle assembly 200 can be snap-fitted in the deployed position or the folded position, and a certain amount of external force needs to be applied to force the foldable handle assembly 200 away from the deployed position or the folded position. As a result, when an operator moves the dehumidifier 100 by means of the foldable handle assembly 200 in the deployed position, the foldable handle assembly 200 can remain in the deployed position, which is convenient for  operator to grab and can prevent the operator's hand from being pinched by undesired folding; when the foldable handle assembly 200 is in the folded position, the foldable handle assembly 200 is secured in the folded position, so that the foldable handle assembly 200 cannot frequently impact the dehumidifier 100 even if there is continuous operating vibration of the dehumidifier 100, thus, the foldable handle assembly 200 will not generate vibration noise.
Although the disclosure is illustrated and described herein with reference to specific and detailed embodiments, the disclosure is not intended to be limited to the details shown. It should be noted that any variation or replacement readily figured out by persons skilled in the art within the technical scope disclosed in the present disclosure shall all fall within the protection scope of the present disclosure. Therefore, the scope of the present disclosure shall be defined by the appended claims.

Claims (19)

  1. A dehumidifier, comprising:
    a housing provided with at least one air inlet and at least one air outlet, wherein an air channel connecting the air inlet to the air outlet is formed inside the housing;
    a condensing assembly disposed in the housing;
    a throttle valve connected to an outlet of the condensing assembly;
    an evaporator provided between the condensing assembly and the air inlet; and
    a compressor, an outlet of the compressor is communicated with an inlet of the condensing assembly, wherein an inlet of the compressor is communicated with an outlet of the evaporator, and
    the compressor, the condensing assembly, the throttle valve and the evaporator are sequentially connected in series to form a refrigerant circuit.
  2. The dehumidifier of claim 1, wherein the condensing assembly comprises a first condenser and a second condenser connected in series, wherein the first condenser and the second condenser are provided in a parallel arrangement in a radial direction of the air channel.
  3. The dehumidifier of claim 2, wherein the evaporator provided opposite to the second condenser in an axial direction of the air channel
  4. The dehumidifier of claim 2, wherein the condensing assembly further comprises a third condenser connected in series between the second condenser and the throttle valve.
  5. The dehumidifier of claim 4, wherein the third condenser is in parallel arrangement with the second condenser in the axial direction of the air channel, and is located between the second condenser and the evaporator.
  6. The dehumidifier of claim 2, wherein the first condenser and the second condenser are spaced apart from each other.
  7. The dehumidifier of claim 1, wherein the throttle valve is a capillary tube.
  8. The dehumidifier of claim 7, wherein the number of the capillary tubes is a plurality, and the plurality of the capillary tubes is connected in parallel.
  9. The dehumidifier of claim 1, wherein it further comprises a liquid collecting assembly provided corresponding to the evaporator and used to collect a liquid condensed on the evaporator.
  10. The dehumidifier of claim 9, wherein the liquid collecting assembly comprises a liquid collecting tray, a conduit and a liquid collecting tank.
  11. The dehumidifier of claim 10, wherein the liquid collecting tray is provided corresponding to the evaporator and is communicated with the liquid collecting tank through the conduit.
  12. The dehumidifier of claim 1, wherein it further comprises an air guiding device for driving air flowing along the air channel.
  13. The dehumidifier of claim 12, wherein the air guiding device comprises a blower disposed along the air channel at a position behind the condensing assembly and close to the air outlet.
  14. The dehumidifier of claim 1, wherein it further comprises a clapboard provided in the air channel, the clapboard being connected to an inner wall of the housing to form a first flow channel and a second flow channel isolated from each other in the air channel.
  15. The dehumidifier of claim 14, wherein and wherein, the first condenser is accommodated in the first flow channel, and the second condenser and the evaporator are accommodated in the second flow channel.
  16. The dehumidifier of claim 1, wherein a filtration device is further provided on the air inlet and a protective device is further provided on the air outlet.
  17. The dehumidifier of claim 1, wherein it further comprises a foldable handle assembly attachable to the housing of the dehumidifier.
  18. A method of dehumidification, comprising:
    obtaining a dehumidifier comprising
    a housing provided with at least one air inlet and at least one air outlet, wherein an air channel connecting the air inlet to the air outlet is formed inside the housing,
    a condensing assembly disposed in the housing,
    a throttle valve connected to an outlet of the condensing assembly,
    an evaporator provided between the condensing assembly and the air inlet, and
    a compressor, an outlet of the compressor is communicated with an inlet of the condensing assembly, wherein an inlet of the compressor is communicated with an outlet of the evaporator;
    placing the dehumidifier in a working position;
    powering the dehumidifier to start operating.
  19. A method of claim 18, wherein the step of placing the dehumidifier in a working position comprises moving the dehumidifier to a desired location.
PCT/CN2018/107020 2017-09-30 2018-09-21 Dehumidifier WO2019062671A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/469,978 US20190323714A1 (en) 2017-09-30 2018-09-21 Dehumidifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710940612.2A CN107560019A (en) 2017-09-30 2017-09-30 Dehumidifier
CN201710940612.2 2017-09-30

Publications (1)

Publication Number Publication Date
WO2019062671A1 true WO2019062671A1 (en) 2019-04-04

Family

ID=60985349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107020 WO2019062671A1 (en) 2017-09-30 2018-09-21 Dehumidifier

Country Status (3)

Country Link
US (1) US20190323714A1 (en)
CN (1) CN107560019A (en)
WO (1) WO2019062671A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115355573A (en) * 2022-08-25 2022-11-18 伊岛电器(宁波)有限公司 Novel dehumidifier of air inlet mode

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102435202B1 (en) * 2015-09-30 2022-08-24 삼성전자주식회사 Dehumidifier
CN107560019A (en) * 2017-09-30 2018-01-09 佛山市耐堡电气有限公司 Dehumidifier
CN108224595A (en) * 2018-03-20 2018-06-29 广东美的制冷设备有限公司 Dehumidifier
CN108445925A (en) * 2018-04-28 2018-08-24 合肥聚马工程技术有限公司 Electric panel room dehumidification system
US11441797B1 (en) * 2019-09-04 2022-09-13 Altaire Systems LLC Systems and methods for commercial airstream pretreatment
US20220389691A1 (en) * 2019-09-30 2022-12-08 Water Harvesting, Inc. Refrigerator Integrated With An Atmospheric Water Harvesting Unit, And Methods Of Using Thereof
WO2021117199A1 (en) * 2019-12-12 2021-06-17 三菱電機株式会社 Dehumidifier
US11815284B2 (en) * 2020-04-24 2023-11-14 Midea Group Co., Ltd. Dehumidifier with condensate tank
EP3929495A1 (en) * 2020-06-26 2021-12-29 Panasonic Intellectual Property Management Co., Ltd. Humidifying device
CN112378001A (en) * 2020-11-06 2021-02-19 广州菲亚兰德科技有限公司 Frequency conversion swimming pool dehumidifier
CN113091241B (en) * 2021-03-11 2022-10-28 青岛海尔空调器有限总公司 Control method and device for dehumidifier and dehumidifier
CN117479998A (en) * 2021-06-17 2024-01-30 三菱电机株式会社 Dehumidifying device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201917015U (en) * 2010-12-09 2011-08-03 珠海格力电器股份有限公司 Dehumidifier
CN102563763A (en) * 2010-12-09 2012-07-11 珠海格力电器股份有限公司 Dehumidifier
JP2013519066A (en) * 2011-04-12 2013-05-23 ツィンファ ユニバーシティ Heat source and cold source of air conditioning system with independent control of temperature and humidity
CN103234238A (en) * 2013-05-15 2013-08-07 南通宁普电器有限公司 Multi-functional dehumidifier
CN203274058U (en) * 2013-05-15 2013-11-06 南通宁普电器有限公司 Multifunctional dehumidifier
CN104532524A (en) * 2014-11-28 2015-04-22 上海伯涵热能科技有限公司 Laterally-arranged heat pump clothes drying cabinet of deep dehumidification device
CN204385515U (en) * 2014-11-28 2015-06-10 上海伯涵热能科技有限公司 A kind of degree of depth dehumidification equipment side direction settles heat pump clothes-drying cabinet
CN107560019A (en) * 2017-09-30 2018-01-09 佛山市耐堡电气有限公司 Dehumidifier
CN207438774U (en) * 2017-09-30 2018-06-01 佛山市耐堡电气有限公司 Dehumidifier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090205354A1 (en) * 2008-02-20 2009-08-20 Applied Comfort Products Inc. Frosting dehumidifier with enhanced defrost
CN104019574B (en) * 2014-05-16 2017-10-31 浙江普林艾尔电器工业有限公司 A kind of low condensing pressure deeply undercooling high-efficiency dehumidifier
CN205717592U (en) * 2016-06-16 2016-11-23 浙江欧伦电气有限公司 A kind of high-temperature dehumidifier

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201917015U (en) * 2010-12-09 2011-08-03 珠海格力电器股份有限公司 Dehumidifier
CN102563763A (en) * 2010-12-09 2012-07-11 珠海格力电器股份有限公司 Dehumidifier
JP2013519066A (en) * 2011-04-12 2013-05-23 ツィンファ ユニバーシティ Heat source and cold source of air conditioning system with independent control of temperature and humidity
CN103234238A (en) * 2013-05-15 2013-08-07 南通宁普电器有限公司 Multi-functional dehumidifier
CN203274058U (en) * 2013-05-15 2013-11-06 南通宁普电器有限公司 Multifunctional dehumidifier
CN104532524A (en) * 2014-11-28 2015-04-22 上海伯涵热能科技有限公司 Laterally-arranged heat pump clothes drying cabinet of deep dehumidification device
CN204385515U (en) * 2014-11-28 2015-06-10 上海伯涵热能科技有限公司 A kind of degree of depth dehumidification equipment side direction settles heat pump clothes-drying cabinet
CN107560019A (en) * 2017-09-30 2018-01-09 佛山市耐堡电气有限公司 Dehumidifier
CN207438774U (en) * 2017-09-30 2018-06-01 佛山市耐堡电气有限公司 Dehumidifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115355573A (en) * 2022-08-25 2022-11-18 伊岛电器(宁波)有限公司 Novel dehumidifier of air inlet mode
CN115355573B (en) * 2022-08-25 2024-02-23 伊岛电器(宁波)有限公司 Novel dehumidifier of air inlet mode

Also Published As

Publication number Publication date
US20190323714A1 (en) 2019-10-24
CN107560019A (en) 2018-01-09

Similar Documents

Publication Publication Date Title
US20190323714A1 (en) Dehumidifier
JP4604909B2 (en) Ejector type cycle
US6070423A (en) Building exhaust and air conditioner condenstate (and/or other water source) evaporative refrigerant subcool/precool system and method therefor
JP6008206B2 (en) Refrigeration cycle equipment
US8006503B2 (en) Energy recovery system and method for a refrigerated dehumidification process
US20050028545A1 (en) Building exhaust and air conditioner condensate (and/or other water source) evaporative refrigerant subcool/precool system and method therefor
US20130061615A1 (en) Condensate-free outdoor air cooling unit
US20190041069A1 (en) An air conditioner
US20030159458A1 (en) Dual phase condenser system
TW201719082A (en) Energy-saving air-conditioner system comprising a condenser, a throttle element, an evaporator, a coolant pipe, a chassis, and a water-absorbing fibrous member enclosing a subcooling section of the coolant pipe to help improving COP and thus saving energy
TWI635244B (en) Energy-saving compressor
CN107120860A (en) Step evaporation of water formula aircraft floor air conditioner group
CN208475492U (en) A kind of pulsating heat pipe heat-exchanger rig with tapered tube configuration
CN207438774U (en) Dehumidifier
KR101590194B1 (en) Condenser having integrated receiver drier
CN209431703U (en) Air-conditioning system
CN105841259A (en) Energy-saving dehumidifier additionally provided with pulsating heat pipe
CN205505203U (en) Air -conditioner
KR100436935B1 (en) One Body Type Evaporator Havng The Sub-Cooling Condensor
CN109442778A (en) Air-conditioning system
KR200351613Y1 (en) Heat pump for liquid preheater
CN206670132U (en) A kind of condenser assembly
KR200375016Y1 (en) Vaporizing apparatus of heat pump type air conditioning equipment
Dixit et al. Improving efficiency of air conditioner by cellulose pad
KR0120035Y1 (en) Refrigerant separating apparatus for airconditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863239

Country of ref document: EP

Kind code of ref document: A1