JP2013519066A - Heat source and cold source of air conditioning system with independent control of temperature and humidity - Google Patents

Heat source and cold source of air conditioning system with independent control of temperature and humidity Download PDF

Info

Publication number
JP2013519066A
JP2013519066A JP2013509427A JP2013509427A JP2013519066A JP 2013519066 A JP2013519066 A JP 2013519066A JP 2013509427 A JP2013509427 A JP 2013509427A JP 2013509427 A JP2013509427 A JP 2013509427A JP 2013519066 A JP2013519066 A JP 2013519066A
Authority
JP
Japan
Prior art keywords
compressor
evaporator
condenser
expansion valve
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013509427A
Other languages
Japanese (ja)
Inventor
ション ワン
タオ ジャン
デハイ ジョウ
シエンティン リ
ウェンシン シ
シャオフア リウ
ダ ヤン
バオロン ワン
陽一郎 入谷
憲治 上田
潤之助 仲谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JP2013519066A publication Critical patent/JP2013519066A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator

Abstract

本発明は、圧縮機(1)と、連続して接続された第1の凝縮器(2)及び第2の凝縮器(3)と、それぞれが第2の凝縮器(3)に接続された第1の膨張弁(4)及び第2の膨張弁(5)と、それぞれが圧縮機(1)に接続された第1の蒸発器(6)及び第2の蒸発器(7)とを備えた、THIC空調システムの熱源及び冷熱源を開示する。第1の蒸発器(6)は第1の膨張弁(4)に接続されて第1の循環支流を形成し、第2の蒸発器(7)は第2の膨張弁(5)に接続されて第2の循環支流を形成し、並列に接続された第1の循環支流と前記第2の循環支流とが、第2の凝縮器(3)と圧縮機(1)とを接続している。本発明のTHIC空調システムの熱源及び冷熱源は、比較的高い冷凍効率を有し、それにより、エネルギー消費を著しく低減し、且つ、大気環境を保護する。  The present invention comprises a compressor (1), a first condenser (2) and a second condenser (3) connected in series, each connected to a second condenser (3). A first expansion valve (4) and a second expansion valve (5), and a first evaporator (6) and a second evaporator (7) each connected to the compressor (1). Further, a heat source and a cold heat source of the THIC air conditioning system are disclosed. The first evaporator (6) is connected to the first expansion valve (4) to form a first circulation tributary, and the second evaporator (7) is connected to the second expansion valve (5). The second circulation tributary and the first circulation tributary connected in parallel and the second circulation tributary connect the second condenser (3) and the compressor (1). . The heat and cold sources of the THIC air conditioning system of the present invention have a relatively high refrigeration efficiency, thereby significantly reducing energy consumption and protecting the atmospheric environment.

Description

本発明は、概して、冷凍及び空調設備の技術分野に関するものであり、より詳細には、温度及び湿度を独立して制御可能な(Temperature and Humidity Independent Control:THIC)空調システムの熱源及び冷熱源に関する。   The present invention relates generally to the technical field of refrigeration and air conditioning equipment, and more particularly to heat and cold sources of an air conditioning system with independent control of temperature and humidity (THIC). .

THIC空調システムは、屋内の温度制御のための独立した顕熱処理システム、及び屋内の湿度制御のための独立した潜熱処理システムから成る空調システムを対象としている。THIC空調システムは、空調システムの性能を改善し、エネルギー消費量を低減し、屋内の空気の質を高め、且つ、大気環境を保護するという利点により、近年益々広く用いられている。特許文献1は、ヒートポンプにより駆動される、液体乾燥剤を用いた高効率なフレッシュエア処理ユニットを提示している。   The THIC air conditioning system is intended for an air conditioning system consisting of an independent sensible heat treatment system for indoor temperature control and an independent latent heat treatment system for indoor humidity control. THIC air conditioning systems are increasingly used in recent years due to the advantages of improving the performance of air conditioning systems, reducing energy consumption, improving indoor air quality, and protecting the air environment. Patent Document 1 presents a high-efficiency fresh air processing unit using a liquid desiccant driven by a heat pump.

このフレッシュエアユニットは、乾燥剤濃縮溶液をヒートポンプの蒸発器(エバポレータ)により冷却して溶液の吸湿能力を高めるとともに、吸湿プロセス中に放出される潜熱を除去する。また、このフレッシュエアユニットは、再生された希薄溶液を同一のヒートポンプの凝縮器により加熱する。この溶液は、全熱回収の排気を用いた全熱交換を実行することにより濃縮され、再生された溶液となる。   This fresh air unit cools the desiccant concentrated solution by an evaporator (evaporator) of a heat pump to increase the moisture absorption capacity of the solution and remove latent heat released during the moisture absorption process. Moreover, this fresh air unit heats the regenerated diluted solution by the condenser of the same heat pump. This solution is concentrated and regenerated by performing a total heat exchange using exhaust from total heat recovery.

特許文献1に提示されているヒートポンプ駆動式液体乾燥剤フレッシュエアユニットのエネルギー効率比(EER)は比較的高く、このフレッシュエアユニットの実用性は非常に有望である。以下に記載するTHIC空調システムにおいて、液体乾燥剤フレッシュエアユニットとは、特許文献1に提示されたヒートポンプ駆動式液体乾燥剤フレッシュエアユニットを示す。   The energy efficiency ratio (EER) of the heat pump driven liquid desiccant fresh air unit presented in Patent Document 1 is relatively high, and the practicality of this fresh air unit is very promising. In the THIC air conditioning system described below, the liquid desiccant fresh air unit refers to the heat pump-driven liquid desiccant fresh air unit presented in Patent Document 1.

図1は、先行技術におけるTHIC空調システムの動作原理を示す概略図である。屋内の顕熱が冷凍機1からの高温(約18℃)冷水により除去され、屋内の潜熱が液体乾燥剤フレッシュエアユニットからの乾燥した冷たいフレッシュエアにより除去される。液体乾燥剤フレッシュエアユニットにおいて、液体除湿器により要求される冷却能力、及び、液体再生器により要求される加熱能力が冷凍機2により提供される。冷凍機1及び冷凍機2は、THIC空調システムの熱源及び冷熱源と見なすことができる。   FIG. 1 is a schematic diagram showing the operating principle of a THIC air conditioning system in the prior art. Indoor sensible heat is removed by high temperature (about 18 ° C.) cold water from the refrigerator 1 and indoor latent heat is removed by dry cold fresh air from the liquid desiccant fresh air unit. In the liquid desiccant fresh air unit, the refrigerator 2 provides the cooling capacity required by the liquid dehumidifier and the heating capacity required by the liquid regenerator. The refrigerator 1 and the refrigerator 2 can be regarded as a heat source and a cold heat source of the THIC air conditioning system.

先行技術におけるTHIC空調システムの熱源及び冷熱源に関し、冷凍機1は、通常、比較的大きい冷却能力を有するターボ冷凍機又はスクリュー冷凍機であり、冷凍機2は、通常、比較的小さい冷却能力を有する渦流冷凍機である。冷凍機2として、ターボ冷凍機は用いられない。なぜなら、慣用のターボ冷凍機の冷却能力は数千キロワットであり、冷凍機2により要求される冷却能力は、通常のフレッシュエアの必要条件(18000m/時未満)によれば通常200kw未満であるからである。 Regarding the heat source and cooling source of the THIC air conditioning system in the prior art, the refrigerator 1 is usually a turbo refrigerator or a screw refrigerator having a relatively large cooling capacity, and the refrigerator 2 usually has a relatively small cooling capacity. It is an eddy current refrigerator. A turbo refrigerator is not used as the refrigerator 2. Because the cooling capacity of a conventional turbo refrigerator is several thousand kilowatts, the cooling capacity required by the refrigerator 2 is usually less than 200 kW according to the normal fresh air requirements (less than 18000 m 3 / hour) Because.

しかし、渦流冷凍機の冷凍効率は、通常、ターボ冷凍機の冷凍効率よりも低い(渦流冷凍機の定格値は通常3〜4であるのに対し、ターボ冷凍機の冷凍効率の定格値は5〜6である)。ターボ冷凍機を、渦流冷凍機の冷却能力レベルを有する程度に十分に小さくすることができるならば、渦流冷凍機をターボ冷凍機に置き替えることが可能である。   However, the refrigeration efficiency of the vortex refrigerator is usually lower than the refrigeration efficiency of the turbo chiller (the rated value of the vortex refrigerator is usually 3 to 4, whereas the rated value of the refrigeration efficiency of the turbo refrigerator is 5). ~ 6). If the turbo refrigerator can be made small enough to have the cooling capacity level of the vortex refrigerator, the vortex refrigerator can be replaced by a turbo refrigerator.

要約すると、先行技術のTHIC空調システムの熱源及び冷熱源の冷凍効率は比較的低く、エネルギー消費量を低減して大気環境を保護することには不利である。 In summary, the refrigeration efficiency of the heat and cold sources of the prior art THIC air conditioning system is relatively low, which is disadvantageous for reducing energy consumption and protecting the atmospheric environment.

中国特許出願公開第1862123号明細書Chinese Patent Application Publication No. 1862123

本発明により解決されるべき技術的課題は、上記の欠点に対して、エネルギー消費量を低減し且つ大気環境を保護するために、冷凍効率が高められたTHIC空調システムの熱源及び冷熱源を提供することにある。   The technical problem to be solved by the present invention is to provide a heat source and a cold heat source of a THIC air conditioning system with an increased refrigeration efficiency in order to reduce energy consumption and protect the atmospheric environment, against the above drawbacks. There is to do.

上記の技術的課題を解決するために、本発明は、THIC空調システムの熱源及び冷熱源であって圧縮機1と、連続して接続された第1の凝縮器2及び第2の凝縮器3と、前記第2の凝縮器3に接続された第1の膨張弁4と、前記第2の凝縮器3に接続された前記第2の膨張弁5と、前記圧縮機1に接続された第1の蒸発器6と、前記圧縮機1に接続された第2の蒸発器7とを備えた熱源及び冷熱源を提供する。前記第1の蒸発器6は前記第1の膨張弁4に接続されて第1の循環支流を形成し、前記第2の蒸発器7は第2の膨張弁5に接続されて第2の循環支流を形成し、並列に接続された前記第1の循環支流と前記第2の循環支流とが、前記第2の凝縮器3と前記圧縮機1とを接続している。   In order to solve the above technical problem, the present invention is a heat source and a cold heat source of a THIC air conditioning system, which is a compressor 1 and a first condenser 2 and a second condenser 3 connected in series. The first expansion valve 4 connected to the second condenser 3, the second expansion valve 5 connected to the second condenser 3, and the first expansion valve connected to the compressor 1. A heat source and a cold source provided with one evaporator 6 and a second evaporator 7 connected to the compressor 1 are provided. The first evaporator 6 is connected to the first expansion valve 4 to form a first circulation branch, and the second evaporator 7 is connected to the second expansion valve 5 to be connected to the second circulation valve. The first circulation tributary and the second circulation tributary that form a tributary and are connected in parallel connect the second condenser 3 and the compressor 1.

前記圧縮機1が遠心圧縮機であるのが好ましい。前記第1の膨張弁4が、前記第1の蒸発器6の出口冷水の温度を調節するために用いられるのが好ましい。前記第2の膨張弁5が、前記第2の蒸発器7の出口希釈溶液の温度を調節するために用いられるのが好ましい。   The compressor 1 is preferably a centrifugal compressor. The first expansion valve 4 is preferably used to adjust the temperature of the outlet cold water of the first evaporator 6. The second expansion valve 5 is preferably used to adjust the temperature of the outlet diluted solution of the second evaporator 7.

本発明は、さらに、THIC空調システムの熱及び冷熱源であって、1以上の冷凍機aと、1以上の冷凍機bを備え、前記冷凍機aが、環を形成するように互いに接続された、第1の圧縮機1aと、第1の凝縮器2aと、第1の膨張弁3aと、第1の蒸発器4aとを含み、前記冷凍機bが、環を形成するように互いに接続された、第2の圧縮機1bと、第2の凝縮器2bと、第2の膨張弁3bと、第2の蒸発器4bとを含む熱源及び冷熱源を提供する。   The present invention is further a heat and cold source of a THIC air conditioning system, comprising one or more refrigerators a and one or more refrigerators b, wherein the refrigerators a are connected to each other so as to form a ring. The first compressor 1a, the first condenser 2a, the first expansion valve 3a, and the first evaporator 4a are connected to each other so that the refrigerator b forms a ring. Thus, a heat source and a cold source including the second compressor 1b, the second condenser 2b, the second expansion valve 3b, and the second evaporator 4b are provided.

前記第1の圧縮機1a及び前記第2の圧縮機1bが遠心圧縮機であるのが好ましい。
前記1以上の冷凍機aがそれぞれ独立に制御され、前記1以上の冷凍機bがそれぞれ独立に制御されるのが好ましい。
The first compressor 1a and the second compressor 1b are preferably centrifugal compressors.
Preferably, the one or more refrigerators a are controlled independently, and the one or more refrigerators b are controlled independently.

本発明は、屋内の顕熱及び屋内の潜熱を除去するための圧縮機として1つのターボ冷凍機が用いられるTHIC空調システムの熱源及び冷熱源を提供することにより、小規模なTHIC空調システム(全冷却能力が250kW未満)の熱源及び冷熱源に求められる要件を満たすことができる。   The present invention provides a heat source and a cold source of a THIC air conditioning system in which one turbo chiller is used as a compressor for removing indoor sensible heat and indoor latent heat. The requirements for a heat source having a cooling capacity of less than 250 kW) and a cold heat source can be satisfied.

本発明は、さらに、屋内の顕熱及び屋内の潜熱をそれぞれ独立に除去するために少なくとも2つのターボ冷凍機が圧縮機として用いられる他のTHIC空調システムの熱源及び冷熱源を提供することにより、大規模なTHIC空調システム(全冷却能力が500kWよりも大きい)の熱源及び冷熱源に求められる要件を満たすことができる。   The present invention further provides heat and cold sources for other THIC air conditioning systems in which at least two turbo chillers are used as compressors to independently remove indoor sensible heat and indoor latent heat, respectively. The requirements for heat and cold sources of large scale THIC air conditioning systems (total cooling capacity greater than 500 kW) can be met.

従来の渦流冷凍機と比較して、ターボ冷凍機は、冷凍効率に関する明確な利点を有するので、ターボ冷凍機をTHIC空調システムの熱源及び冷熱源として用いることにより、全冷凍効率が高められ得る。従って、エネルギー消費を著しく低減し、且つ大気環境を保護することが可能である。   Compared to conventional vortex chillers, turbo chillers have distinct advantages with respect to refrigeration efficiency, so the total refrigeration efficiency can be increased by using turbo chillers as heat and cold sources for THIC air conditioning systems. Therefore, it is possible to significantly reduce energy consumption and protect the atmospheric environment.

従来技術におけるTHIC空調システムの動作原理を示す概略図である。It is the schematic which shows the operation principle of the THIC air conditioning system in a prior art. 本発明の第1の実施形態に係るTHIC空調システムの熱源及び冷熱源を示す構造概略図である。1 is a structural schematic diagram showing a heat source and a cold heat source of a THIC air conditioning system according to a first embodiment of the present invention. 本発明の第2の実施形態に係るTHIC空調システムの熱源及び冷熱源を示す構造概略図である。FIG. 5 is a structural schematic diagram showing a heat source and a cold heat source of a THIC air conditioning system according to a second embodiment of the present invention.

以下に、本発明を実施するための特定の実施形態について、図面及び実施形態を参照しつつ詳細に説明する。以下の実施形態は、本発明の説明として提示されるものであり、本発明の範囲を限定するものではない。   Hereinafter, specific embodiments for carrying out the present invention will be described in detail with reference to the drawings and embodiments. The following embodiments are presented as explanations of the present invention and are not intended to limit the scope of the present invention.

<第1の実施形態>
図2は、本発明の第1の実施形態に係るTHIC空調システムの熱源及び冷熱源を示す構造概略図である。図2に示されているように、THIC空調システムの熱源及び冷熱源は、圧縮機1と、連続して接続された第1の凝縮器2及び第2の凝縮器3と、第2の凝縮器3に接続された第1の膨張弁4と、第2の凝縮器3に接続された第2の膨張弁5と、圧縮器1に接続された第1の蒸発器6と、圧縮機1に接続された第2の蒸発器7とを備えている。
<First Embodiment>
FIG. 2 is a structural schematic diagram showing a heat source and a cold heat source of the THIC air conditioning system according to the first embodiment of the present invention. As shown in FIG. 2, the heat source and the cold source of the THIC air conditioning system are the compressor 1, the first condenser 2 and the second condenser 3 connected in series, and the second condensation. A first expansion valve 4 connected to the compressor 3, a second expansion valve 5 connected to the second condenser 3, a first evaporator 6 connected to the compressor 1, and the compressor 1 And a second evaporator 7 connected to the.

第1の蒸発器6は第1の膨張弁4に接続されて第1の循環支流を形成し、第2の蒸発器7は第2の膨張弁5に接続されて第2の循環支流を形成している。並列に接続された第1の循環支流と第2の循環支流とが、第2の凝縮器3と圧縮機1とを接続している。   The first evaporator 6 is connected to the first expansion valve 4 to form a first circulation tributary, and the second evaporator 7 is connected to the second expansion valve 5 to form a second circulation tributary. doing. The first circulation tributary and the second circulation tributary connected in parallel connect the second condenser 3 and the compressor 1.

最初に、圧縮機1からの高温(45℃よりも高温)の出口冷媒が第1の凝縮器2に流入し、出口冷媒とは逆方向に第1の凝縮器2の他方を流れる濃縮溶液を加熱する。次に、第1の凝縮器2からの出口冷媒が第2の凝縮器3に流入し、出口冷媒とは逆方向に第2の凝縮器3の他方を流れる冷却水により余剰凝縮熱が除去される。   First, a high-temperature (higher than 45 ° C.) outlet refrigerant from the compressor 1 flows into the first condenser 2, and a concentrated solution that flows through the other side of the first condenser 2 in the opposite direction to the outlet refrigerant. Heat. Next, the outlet refrigerant from the first condenser 2 flows into the second condenser 3, and excess condensation heat is removed by the cooling water flowing in the other direction of the second condenser 3 in the opposite direction to the outlet refrigerant. The

第2の凝縮器3の出口冷媒は、第1の膨張弁4及び第2の膨張弁5によりそれぞれ調節される2つの流れに分岐される。これらの流れの一方が、第1の循環支流に入って第1の膨張弁4を通過してから第1の蒸発器6に流入することにより、出口冷媒とは逆方向に第1の蒸発器6の他方を流れる高温(18〜21℃)の冷水を冷却する。   The outlet refrigerant of the second condenser 3 is branched into two flows respectively adjusted by the first expansion valve 4 and the second expansion valve 5. One of these flows enters the first circulation branch, passes through the first expansion valve 4 and then flows into the first evaporator 6, whereby the first evaporator is in the direction opposite to the outlet refrigerant. The cold water of high temperature (18-21 degreeC) which flows through the other of 6 is cooled.

他方の流れは、第2の循環支流に入って第2の膨張弁5を通過してから第2の蒸発器7に流入することにより、出口冷媒とは逆方向に第2の蒸発器7の他方を流れる希釈溶液を冷却する。第1の循環支流及び第2の循環支流の(すなわち、第1の蒸発器6及び第2の蒸発器7の)出口冷媒は、混合されて1つの冷媒流となって圧縮機1に戻る。そして、冷媒は、処理された後に次のサイクルに入る。   The other flow enters the second circulation tributary, passes through the second expansion valve 5 and then flows into the second evaporator 7, thereby causing the second evaporator 7 to flow in the direction opposite to the outlet refrigerant. Cool the diluted solution flowing through the other. The outlet refrigerant of the first circulation tributary and the second circulation tributary (that is, the first evaporator 6 and the second evaporator 7) is mixed and returned to the compressor 1 as one refrigerant stream. The refrigerant then enters the next cycle after being processed.

この実施形態において、THIC空調システムの熱源及び冷熱源の圧縮機1は、遠心圧縮機、例えば、175kWの冷却能力を有する遠心圧縮機である(ワン ジアら(Wang Jia et al.)、「マイクロターボ冷凍機の性能分析(Performance analysis on micro centrifugal chillers)」、中国暖通空調HV&AC、空気調和・衛生工学会論文、2009年、第39巻、第5期、104〜108頁)。   In this embodiment, the THIC air conditioning system heat source and cold source compressor 1 is a centrifugal compressor, eg, a centrifugal compressor having a cooling capacity of 175 kW (Wang Jia et al., “Micro “Performance analysis on micro centrifugal chillers”, China Hyundai Air Conditioning HV & AC, Air Conditioning and Sanitary Engineering Society, 2009, Vol. 39, No. 5, pp. 104-108).

この実施形態においては、濃縮溶液入口9を通って第1の凝縮器2に入る濃縮溶液が、冷媒により約45℃に加熱され、濃縮溶液出口8を通って再生器に送られる。冷水入口12を通って第1の蒸発器6に入った冷水が、冷媒により約18℃に冷却され、冷水出口13を通って屋内の顕熱部に送られる。希釈溶液入口14を通って第2の蒸発器7に入った希釈溶液が、冷媒により約14℃に冷却され、希釈溶液出口15を通って除湿器に送られる。   In this embodiment, the concentrated solution entering the first condenser 2 through the concentrated solution inlet 9 is heated to about 45 ° C. by the refrigerant and sent to the regenerator through the concentrated solution outlet 8. The cold water that has entered the first evaporator 6 through the cold water inlet 12 is cooled to about 18 ° C. by the refrigerant, and is sent to the indoor sensible heat section through the cold water outlet 13. The diluted solution that has entered the second evaporator 7 through the diluted solution inlet 14 is cooled to about 14 ° C. by the refrigerant, and is sent to the dehumidifier through the diluted solution outlet 15.

この実施形態においては、第1の蒸発器6の出口冷水の温度、及び、第2の蒸発器7の出口希釈溶液の温度が、それぞれ、第1の膨張弁4及び第2の膨張弁5により調節され、第1の蒸発器6及び第2の蒸発器7の冷却能力がそれぞれ蒸発器としての必要条件を満たすものとされる。   In this embodiment, the temperature of the outlet cold water of the first evaporator 6 and the temperature of the outlet diluted solution of the second evaporator 7 are changed by the first expansion valve 4 and the second expansion valve 5, respectively. The cooling capacity of the first evaporator 6 and the second evaporator 7 is adjusted so as to satisfy the requirements as an evaporator.

この実施形態においては、圧縮機1の周波数又はガイドベーン(案内羽根)の角度が、第1の蒸発器6及び第2の蒸発器7の出口冷媒の過熱度に応じて全冷媒流を調節するように調節され、冷凍機の全冷却能力が顕熱及び潜熱を除去する必要条件を満たすものとされる。   In this embodiment, the frequency of the compressor 1 or the angle of the guide vane (guide vane) adjusts the total refrigerant flow according to the degree of superheat of the outlet refrigerant of the first evaporator 6 and the second evaporator 7. Thus, the total cooling capacity of the refrigerator satisfies the requirement for removing sensible heat and latent heat.

この実施形態においては、凝縮温度が、冷却水入口11を通って第2の凝縮器3に入る冷却水の温度又は流れを調節することにより調節され、第1の凝縮器2の出口濃縮溶液温度が、濃縮溶液の必要条件を満たすものとされる。   In this embodiment, the condensing temperature is adjusted by adjusting the temperature or flow of cooling water entering the second condenser 3 through the cooling water inlet 11 and the outlet concentrated solution temperature of the first condenser 2. However, it shall satisfy the requirements of the concentrated solution.

<第2の実施形態>
図3は、本発明の第2の実施形態に係るTHIC空調システムの熱源及び冷熱源の構造概略図である。図3に示されているように、THIC空調システムの熱源及び冷熱源は、1以上の冷凍機aと、1以上の冷凍機bを備え、冷凍機aが、第1の圧縮機1a、第1の凝縮器2a、第1の膨張弁3a、及び、第1の蒸発器4aを含み、これらが互いに接続されて環を形成している。また、冷凍機bが、第2の圧縮機1b、第2の凝縮器2b、第2の膨張弁3b、及び、第2の蒸発器4bを含み、これらが互いに接続されて環を形成している。
<Second Embodiment>
FIG. 3 is a schematic structural diagram of a heat source and a cold heat source of a THIC air conditioning system according to the second embodiment of the present invention. As shown in FIG. 3, the heat source and the cold heat source of the THIC air conditioning system include one or more refrigerators a and one or more refrigerators b, and the refrigerator a includes the first compressor 1a, the first 1 condenser 2a, 1st expansion valve 3a, and 1st evaporator 4a, these are connected mutually and form the ring. The refrigerator b includes a second compressor 1b, a second condenser 2b, a second expansion valve 3b, and a second evaporator 4b, which are connected to each other to form a ring. Yes.

冷凍機aにおいては、最初に、第1の圧縮機1aの出口冷媒が第1の凝縮器2aに流入し、出口冷媒とは逆方向に第1の凝縮器2aの他方を流れる冷却水により冷凍機aにより発生された凝縮熱が除去される。第1の凝縮器2aからの出口冷媒が、第1の膨張弁3aを通って第1の蒸発器4aに流入し、出口冷媒とは逆方向に第1の蒸発器4aの他方を流れる高温冷水が冷却される。第1の蒸発器4aの出口冷媒は、第1の圧縮機1aに流入し、処理された後に次のサイクルに入る。   In the refrigerator a, first, the outlet refrigerant of the first compressor 1a flows into the first condenser 2a, and is refrigerated by the cooling water flowing in the other direction of the first condenser 2a in the opposite direction to the outlet refrigerant. The heat of condensation generated by machine a is removed. High-temperature cold water in which the outlet refrigerant from the first condenser 2a flows into the first evaporator 4a through the first expansion valve 3a and flows through the other side of the first evaporator 4a in the opposite direction to the outlet refrigerant. Is cooled. The outlet refrigerant of the first evaporator 4a flows into the first compressor 1a and enters the next cycle after being processed.

冷凍機bにおいては、最初に、第2の圧縮機1bの出口冷媒が第2の凝縮器2bに流入し、出口冷媒とは逆方向に第2の凝縮器2bの他方を流れる濃縮溶液を冷媒の高温により加熱する。第2の凝縮器2bの出口冷媒が、第2の膨張弁3bを通って第2の蒸発器4bに流入し、出口冷媒とは逆方向に第2の蒸発器4bの他方を流れる希釈溶液が冷却される。第2の蒸発器4bの出口冷媒は、第2の圧縮機1bに流入し、処理された後に次のサイクルに入る。   In the refrigerator b, first, the outlet refrigerant of the second compressor 1b flows into the second condenser 2b, and the concentrated solution flowing in the other direction of the second condenser 2b in the opposite direction to the outlet refrigerant is used as the refrigerant. Heat at high temperature. The outlet refrigerant of the second condenser 2b flows into the second evaporator 4b through the second expansion valve 3b, and the diluted solution flowing through the other side of the second evaporator 4b in the direction opposite to the outlet refrigerant is To be cooled. The outlet refrigerant of the second evaporator 4b flows into the second compressor 1b and enters the next cycle after being processed.

この実施形態において、第1の圧縮機1a及び第2の圧縮機1bは、例えば、175kWの冷却能力を有する遠心圧縮機である(ワン ジアら(Wang Jia et al.)、「マイクロターボ冷凍機の性能分析(Performance analysis on micro centrifugal chiller)」、中国暖通空調HV&AC、空気調和・衛生工学会論文、2009年、第39巻、第5期、104〜108頁)。   In this embodiment, the first compressor 1a and the second compressor 1b are, for example, centrifugal compressors having a cooling capacity of 175 kW (Wang Jia et al., “Micro Turbo Refrigerator”). (Performance analysis on micro centrifugal chiller) ”, China Hot Air Conditioning HV & AC, Air Conditioning and Sanitary Engineering Society, 2009, Vol. 39, No. 5, 104-108).

この実施形態においては、冷水入口7を通って第1の蒸発器4aに入った高温冷水が、冷媒により約18℃に冷却され、冷水出口8を通って屋内の顕熱部に送られる。濃縮溶液入口10を通って第2の凝縮器bに入る濃縮溶液が、冷媒により約45℃に加熱され、濃縮溶液出口9を通って再生器に送られる。希釈溶液入口11を通って第2の蒸発器4bに入った希釈溶液が、冷媒により約14℃に冷却され、希釈溶液出口12を通って除湿器に送られる。   In this embodiment, the high-temperature cold water that has entered the first evaporator 4 a through the cold water inlet 7 is cooled to about 18 ° C. by the refrigerant and is sent to the indoor sensible heat section through the cold water outlet 8. The concentrated solution entering the second condenser b through the concentrated solution inlet 10 is heated to about 45 ° C. by the refrigerant and sent to the regenerator through the concentrated solution outlet 9. The diluted solution that has entered the second evaporator 4 b through the diluted solution inlet 11 is cooled to about 14 ° C. by the refrigerant, and is sent to the dehumidifier through the diluted solution outlet 12.

この実施形態においては、1以上の冷凍機aがそれぞれ独立に制御される。また1以上の冷凍機bがそれぞれ独立に制御される。   In this embodiment, one or more refrigerators a are controlled independently. One or more refrigerators b are controlled independently.

要約すると、本発明は、屋内の顕熱及び屋内の潜熱の両方を除去するために1つのターボ冷凍機が圧縮機として用いられるTHIC空調システムの熱源及び冷熱源を提供することにより、小規模なTHIC空調システム(全冷却能力が250kW未満)の熱源及び冷熱源に求められる要件を満たすことができる。本発明は、さらに、屋内の顕熱及び屋内の潜熱をそれぞれ独立に除去するために少なくとも2つのターボ冷凍機が圧縮機として用いられる他のTHIC空調システムの熱源及び冷熱源を提供することにより、大規模なTHIC空調システム(全冷却能力が500kWよりも大きい)の熱源及び冷熱源に求められる要件を満たすことができる。   In summary, the present invention provides a heat source and cold source for a THIC air conditioning system in which one turbo refrigerator is used as a compressor to remove both indoor sensible heat and indoor latent heat. The requirements for the heat source and the cold source of the THIC air conditioning system (total cooling capacity less than 250 kW) can be satisfied. The present invention further provides heat and cold sources for other THIC air conditioning systems in which at least two turbo chillers are used as compressors to independently remove indoor sensible heat and indoor latent heat, respectively. The requirements for heat and cold sources of large scale THIC air conditioning systems (total cooling capacity greater than 500 kW) can be met.

従来の渦流冷凍機と比較して、ターボ冷凍機は、冷凍効率に関する明確な利点を有するので、ターボ冷凍機をTHIC空調システムの熱源及び冷熱源として用いることにより、全冷凍効率が高められ得る。従って、エネルギー消費を著しく低減し、且つ大気環境を保護することが可能である。   Compared to conventional vortex chillers, turbo chillers have distinct advantages with respect to refrigeration efficiency, so the total refrigeration efficiency can be increased by using turbo chillers as heat and cold sources for THIC air conditioning systems. Therefore, it is possible to significantly reduce energy consumption and protect the atmospheric environment.

上記の実施形態は、本発明を説明するためにのみ用いられるが、本発明の保護範囲を限定するものではない。当業者は、本発明の趣旨及び範囲から逸脱せずに様々な変更及び修正を実行し得る。従って、均等な解決手段の全ては、添付の特許請求の範囲により定義される本発明の保護範囲内にあるものとする。   The above embodiments are used only to explain the present invention, but do not limit the protection scope of the present invention. Those skilled in the art may make various changes and modifications without departing from the spirit and scope of the present invention. Accordingly, all equivalent solutions are intended to be within the protection scope of the present invention as defined by the appended claims.

1 圧縮機
1a 第1の圧縮機
2 第1の凝縮器
2a 第1の凝縮器
2b 第2の凝縮器
3 第2の凝縮器
3a 第1の膨張弁
3b 第1の膨張弁
4 第1の膨張弁
4a 第1の蒸発器
4b 第2の蒸発器
5 第2の膨張弁
6 第1の蒸発器
7 第2の蒸発器
9 濃縮液入口
11 冷却水入口
DESCRIPTION OF SYMBOLS 1 Compressor 1a 1st compressor 2 1st condenser 2a 1st condenser 2b 2nd condenser 3 2nd condenser 3a 1st expansion valve 3b 1st expansion valve 4 1st expansion Valve 4a First evaporator 4b Second evaporator 5 Second expansion valve 6 First evaporator 7 Second evaporator 9 Concentrate inlet 11 Cooling water inlet

Claims (7)

温度及び湿度を独立に制御可能な空調システムの熱源及び冷熱源であって、
圧縮機(1)と、
連続して接続された第1の凝縮器(2)及び第2の凝縮器(3)と、
前記第2の凝縮器(3)に接続された第1の膨張弁(4)と、
前記第2の凝縮器(3)に接続された第2の膨張弁(5)と、
前記圧縮機(1)に接続された第1の蒸発器(6)と、
前記圧縮機(1)に接続された第2の蒸発器(7)とを備え、
前記第1の蒸発器(6)が前記第1の膨張弁(4)に接続されて第1の循環支流を形成し、
前記第2の蒸発器(7)が前記第2の膨張弁(5)に接続されて第2の循環支流を形成し、
並列に接続された前記第1の循環支流と前記第2の循環支流とが、前記第2の凝縮器(3)と前記圧縮機(1)とを接続している熱源及び冷熱源。
A heat source and a cold source of an air conditioning system capable of independently controlling temperature and humidity,
A compressor (1);
A first condenser (2) and a second condenser (3) connected in series;
A first expansion valve (4) connected to the second condenser (3);
A second expansion valve (5) connected to the second condenser (3);
A first evaporator (6) connected to the compressor (1);
A second evaporator (7) connected to the compressor (1),
The first evaporator (6) is connected to the first expansion valve (4) to form a first circulation tributary;
The second evaporator (7) is connected to the second expansion valve (5) to form a second circulation tributary;
A heat source and a cold heat source in which the first circulation branch and the second circulation branch connected in parallel connect the second condenser (3) and the compressor (1).
前記圧縮機(1)が遠心圧縮機である請求項1に記載の熱源及び冷熱源。   The heat source and cold source according to claim 1, wherein the compressor (1) is a centrifugal compressor. 前記第1の膨張弁(4)が、前記第1の蒸発器(6)の出口冷水の温度を調節するために用いられる請求項1に記載の熱源及び冷熱源。   The heat and cold source according to claim 1, wherein the first expansion valve (4) is used to adjust the temperature of the outlet cold water of the first evaporator (6). 前記第2の膨張弁(5)が、第2の蒸発器(7)の出口希釈溶液の温度を調節するために用いられる請求項1に記載の熱源及び冷熱源。   The heat and cold source according to claim 1, wherein the second expansion valve (5) is used to adjust the temperature of the outlet diluted solution of the second evaporator (7). 温度及び湿度を独立に制御可能な空調システムの熱源及び冷熱源であって、
1以上の冷凍機(a)と、
1以上の冷凍機(b)を備え、
前記冷凍機(a)が、環を形成するように互いに接続された、第1の圧縮機(1a)と、第1の凝縮器(2a)と、第1の膨張弁(3a)と、第1の蒸発器(4a)とを含み、
前記冷凍機(b)が、環を形成するように互いに接続された、第2の圧縮機(1b)と、第2の凝縮器(2b)と、第2の膨張弁(3b)と、第2の蒸発器(4b)を含む熱源及び冷熱源。
A heat source and a cold source of an air conditioning system capable of independently controlling temperature and humidity,
One or more refrigerators (a);
Comprising one or more refrigerators (b),
A first compressor (1a), a first condenser (2a), a first expansion valve (3a), a first compressor, and a refrigerator (a) connected to each other so as to form a ring. 1 evaporator (4a),
A second compressor (1b), a second condenser (2b), a second expansion valve (3b), and a second compressor (b) connected to each other so as to form a ring. Heat source and cold source including two evaporators (4b).
前記第1の圧縮機(1a)及び前記第2の圧縮機(1b)が遠心圧縮機である請求項5に記載の熱源及び冷熱源。   The heat source and cold source according to claim 5, wherein the first compressor (1a) and the second compressor (1b) are centrifugal compressors. 前記1以上の冷凍機(a)がそれぞれ独立に制御され、
前記1以上の冷凍機(b)がそれぞれ独立に制御される請求項5に記載の熱源及び冷熱源。
The one or more refrigerators (a) are independently controlled;
The heat source and cold heat source according to claim 5, wherein the one or more refrigerators (b) are controlled independently of each other.
JP2013509427A 2011-04-12 2011-04-12 Heat source and cold source of air conditioning system with independent control of temperature and humidity Pending JP2013519066A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/000642 WO2012139248A1 (en) 2011-04-12 2011-04-12 Heat and cold sources of temperature and humidity independent control air conditioning system

Publications (1)

Publication Number Publication Date
JP2013519066A true JP2013519066A (en) 2013-05-23

Family

ID=47008765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013509427A Pending JP2013519066A (en) 2011-04-12 2011-04-12 Heat source and cold source of air conditioning system with independent control of temperature and humidity

Country Status (4)

Country Link
US (1) US20130111940A1 (en)
JP (1) JP2013519066A (en)
CN (1) CN103562657B (en)
WO (1) WO2012139248A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019062671A1 (en) * 2017-09-30 2019-04-04 Foshan Naibao Electric Co., Ltd. Dehumidifier

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103994601A (en) * 2014-06-05 2014-08-20 上海理工大学 Independent temperature and humidity control air-conditioning system with heat recovery function
CN104908919B (en) * 2015-05-26 2017-11-07 浙江海洋学院 A kind of air-conditioning device of ship cabin
CN105758056B (en) * 2016-04-22 2018-08-17 广东美的制冷设备有限公司 Air-conditioning system and air conditioner with it
CN105928098A (en) * 2016-06-16 2016-09-07 珠海格力电器股份有限公司 Air conditioner
CN108105795B (en) * 2017-07-10 2023-04-18 昊姆(上海)节能科技有限公司 Compression type and absorption type heat pump coupling flue gas treatment equipment
CN108518736A (en) * 2018-04-04 2018-09-11 珠海格力电器股份有限公司 Machine, constant temperature and humidity system and its control method in constant temperature and humidity
CN110425761A (en) * 2019-09-02 2019-11-08 珠海冰恬环境科技有限公司 A kind of comprehensive Cooling and Heat Source supply Optimization of Energy Saving system and its control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174578U (en) * 1983-05-10 1984-11-21 三菱重工業株式会社 heat pump system
CN1570501A (en) * 2003-07-22 2005-01-26 台湾新晃工业股份有限公司 Combined type heat recuperation unit for air-conditioning refrigeration systems
JP2010075588A (en) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd Heat pump dryer
JP2010112651A (en) * 2008-11-07 2010-05-20 Daikin Ind Ltd Refrigerating device
JP2010190563A (en) * 2009-02-13 2010-09-02 Ind Technol Res Inst Controlling method of compressor and system thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941324A (en) * 1989-09-12 1990-07-17 Peterson John L Hybrid vapor-compression/liquid desiccant air conditioner
CN1818486A (en) * 2006-03-17 2006-08-16 清华大学 Air-conditioner system with carbon dioxide supercritical circulating hot pump and solution dehumidification combination
CN1851334A (en) * 2006-04-29 2006-10-25 绍兴吉利尔科技发展有限公司 Compression refrigeration and solution combined gas dehumidifying system
US20070256434A1 (en) * 2006-05-04 2007-11-08 Kwangtaek Hong Monitoring System for Detecting Low-Charge Condition in a Heat-Exchange System
CN1862121A (en) * 2006-06-15 2006-11-15 清华大学 Temp and moisture independent control type air-conditioning system using solution as auxiliary working substance
DE102008024325A1 (en) * 2008-05-20 2009-11-26 BSH Bosch und Siemens Hausgeräte GmbH Cooling unit with coolant storage in the condenser and corresponding procedure
JP5313093B2 (en) * 2008-09-16 2013-10-09 パナソニックヘルスケア株式会社 Refrigeration equipment
JP4864109B2 (en) * 2009-03-03 2012-02-01 三菱電機株式会社 Air conditioning apparatus and control method thereof
CN102549356B (en) * 2009-08-17 2014-12-24 江森自控科技公司 Heat-pump chiller with improved heat recovery features
CN101666526B (en) * 2009-09-18 2011-07-20 南京理工大学 Temperature adjusting and dehumidifying air-conditioning unit with double evaporators
CN101846368B (en) * 2010-05-12 2012-07-04 清华大学 Solution dehumidifying fresh air handling unit combining heat pump drive and evaporative cooling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174578U (en) * 1983-05-10 1984-11-21 三菱重工業株式会社 heat pump system
CN1570501A (en) * 2003-07-22 2005-01-26 台湾新晃工业股份有限公司 Combined type heat recuperation unit for air-conditioning refrigeration systems
JP2010075588A (en) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd Heat pump dryer
JP2010112651A (en) * 2008-11-07 2010-05-20 Daikin Ind Ltd Refrigerating device
JP2010190563A (en) * 2009-02-13 2010-09-02 Ind Technol Res Inst Controlling method of compressor and system thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019062671A1 (en) * 2017-09-30 2019-04-04 Foshan Naibao Electric Co., Ltd. Dehumidifier

Also Published As

Publication number Publication date
CN103562657B (en) 2016-05-18
US20130111940A1 (en) 2013-05-09
CN103562657A (en) 2014-02-05
WO2012139248A1 (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP2013519066A (en) Heat source and cold source of air conditioning system with independent control of temperature and humidity
CN103075770B (en) Rotating wheel dehumidification device utilizing indoor exhaust evaporation cooling and use method of rotating wheel dehumidification device
CN105299939B (en) Frequency converter cooling and dehumidifying system, inverter compressor group and refrigeration plant
JP6119141B2 (en) Air conditioning system
CN103225855B (en) The solution dehumidification air processor that a kind of multi-stage heat pump circulation drives
CN201368542Y (en) Heat-pipe type fresh air dehumidifier
KR101254935B1 (en) High efficiency homoiothermic humidistat for clean room utilizing waste heat air conditioner for precision control
CN107166588B (en) Temperature and humidity independent control air conditioning system capable of precooling by utilizing high-temperature cold water
CN113757841B (en) Low-grade heat step driving heat and humidity decoupling processing air conditioning system
CN105318612A (en) Thermoelectric cooling system for super-cooling section of air-conditioner condenser
KR101138970B1 (en) Defrosting system using air cooling refrigerant evaporator and condenser
CN205332368U (en) Freely cool off computer lab air conditioning unit
CN106642851B (en) A kind of air-conditioning system that can prevent outdoor heat exchanger frosting
CN111536608A (en) Circulating type rotating wheel dehumidification device and dehumidification method
CN106440072B (en) High-efficient unit formula air conditioner of many evaporating temperature
WO2019128517A1 (en) Air-conditioner system
JP5808105B2 (en) Heat source system and control method thereof
TWM598922U (en) Heat exchange system
JP2007155195A (en) Cooling facility
CN216244672U (en) Novel energy-saving constant temperature and humidity unit
CN102997343A (en) Solution type constant-temperature dehumidifier and control method thereof
KR20120046856A (en) Energy reducing system of conditioning for clean room
CN210441351U (en) Frequency conversion fresh air dehumidifier for radiation air-conditioning system
CN202813614U (en) Novel rotary wheel absorption steam compression refrigeration coupling air conditioning device
TWI772765B (en) Heat exchange system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008