WO2019062521A1 - 一种极化编码方法、装置、电子设备及存储介质 - Google Patents

一种极化编码方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2019062521A1
WO2019062521A1 PCT/CN2018/104629 CN2018104629W WO2019062521A1 WO 2019062521 A1 WO2019062521 A1 WO 2019062521A1 CN 2018104629 W CN2018104629 W CN 2018104629W WO 2019062521 A1 WO2019062521 A1 WO 2019062521A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
encoded
preset
length
threshold
Prior art date
Application number
PCT/CN2018/104629
Other languages
English (en)
French (fr)
Inventor
王加庆
张荻
郑方政
孙韶辉
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711149116.1A external-priority patent/CN109600201B/zh
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to EP18862044.7A priority Critical patent/EP3694124A4/en
Priority to JP2020518805A priority patent/JP7035177B2/ja
Priority to KR1020207011979A priority patent/KR102325782B1/ko
Priority to US16/652,431 priority patent/US11394488B2/en
Publication of WO2019062521A1 publication Critical patent/WO2019062521A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a polarization encoding method, apparatus, electronic device, and storage medium.
  • the fifth generation mobile communication technology (5th-Generation, 5G) enhanced mobile broadband (eMBB) scene control channel coding scheme polar code
  • 5G enhanced mobile broadband
  • eMBB scene control channel coding scheme polar code
  • the length of the 5G code of the code code is 512 bits in the downlink and 1024 bits in the uplink.
  • Massive Multiple-Input Multiple-Output Massive MIMO
  • the length of the information sequence of Uplink Control Information (UCI) is greatly increased, which leads to polarization coding of UCI.
  • the length of the corresponding sequence to be encoded is also proliferating, wherein the sequence to be encoded is an uplink control information payload obtained by adding a Cyclic Redundancy Check (CRC) sequence after the information sequence of the UCI (UCI payload) ).
  • CRC Cyclic Redundancy Check
  • the coded sequence is directly subjected to polarization coding, which will significantly reduce the uplink control. Channel performance.
  • the prior art is to segment the larger sequence to be encoded, that is, after the sequence to be encoded is divided into two segments, Polarization coding is performed to ensure the performance of the uplink control channel.
  • the prior art only uses a fixed segmentation strategy when performing polarization coding, that is, the sequence to be coded is segmented, or the sequence to be coded is not segmented, but only one segmentation strategy is adopted.
  • the polarization coding mode reduces the performance of the uplink control channel. Therefore, there is an urgent need for a polarization coding scheme that can flexibly determine the segmentation strategy corresponding to the sequence to be encoded to ensure the performance of the uplink control channel.
  • the embodiment of the invention provides a polarization coding method, a device, an electronic device and a storage medium, which are used to provide a polarization coding scheme for flexibly determining a segmentation strategy corresponding to a sequence to be encoded, so as to ensure uplink control.
  • the performance of the street is not limited to a polarization coding method, a device, an electronic device and a storage medium, which are used to provide a polarization coding scheme for flexibly determining a segmentation strategy corresponding to a sequence to be encoded, so as to ensure uplink control. The performance of the street.
  • a polarization coding method is disclosed in the embodiment of the present invention, and the method includes:
  • the sequence to be encoded is processed correspondingly, and the processed sequence to be encoded is polarization coded.
  • determining, according to the length of the sequence to be encoded and the transmission code rate, the segmentation strategy corresponding to the sequence to be encoded includes:
  • determining, according to the length of the sequence to be encoded and the transmission code rate, the segmentation strategy corresponding to the sequence to be encoded includes:
  • the transmission code rate is not greater than or less than a preset first rate threshold, and is not less than or greater than a preset second rate threshold, determining whether the length of the sequence to be encoded is greater than or equal to a preset a first length threshold, wherein the first rate threshold is greater than the second rate threshold;
  • the preset first code rate threshold is 0.4.
  • the method further includes:
  • a first length threshold is determined according to the transmission code rate and a preset function.
  • the first parameter, b is a preset second parameter, and R is a transmission code rate.
  • the c is not more than 1200 and not less than 800, and the b is not more than 161 and not less than 119.
  • determining, according to the length of the sequence to be encoded and the transmission code rate, the segmentation strategy corresponding to the sequence to be encoded includes:
  • the preset second length threshold is not less than 290 and not more than 390.
  • the preset second length threshold is 340.
  • the preset second rate threshold is 0.2.
  • determining, according to the length of the sequence to be encoded and the transmission code rate, the segmentation strategy corresponding to the sequence to be encoded includes:
  • the third code rate threshold is 6/25.
  • the preset third length threshold is not less than 348 and not greater than 472.
  • the preset third length threshold is 410.
  • determining, according to the length of the sequence to be encoded and the transmission code rate, the segmentation strategy corresponding to the sequence to be encoded includes:
  • Determining whether the length of the sequence to be encoded is greater than or equal to a preset value if the transmission code rate is not less than or greater than a preset third rate threshold, and is not greater than or less than a preset fourth rate threshold. a fourth length threshold, wherein the fourth rate threshold is greater than the third rate threshold;
  • the method further includes:
  • the a is not more than 1200 and not less than 800, and the e is not more than 196 and not less than 144.
  • the a is 1000 and the e is 170.
  • determining, according to the length of the sequence to be encoded and the transmission code rate, the segmentation strategy corresponding to the sequence to be encoded includes:
  • the method further includes:
  • the preset fifth code rate threshold is not less than 0.2 and not more than 0.9.
  • the preset fifth rate threshold is 0.75, or 2/3, or 1/2, or 2/5, or 0.38, or 0.36, or 1/3, or 0.3, or 0.28, or 0.26 , or 0.24, or 1/4, or 1/5.
  • the preset fifth length threshold is not less than 300 and not more than 450.
  • the preset fifth length threshold is 340, or 350, or 360, or 370, or 380, or 390, or 400, or 410, or 420, or 430, or 440, or 450.
  • determining, according to the length of the sequence to be encoded and the transmission code rate, the segmentation strategy corresponding to the sequence to be encoded includes:
  • the f is a value in the range of 500-1200
  • g is a value in the range of 60-300.
  • the f is 832 and the g is 200.
  • the preset sixth rate threshold is 0.2.
  • determining, according to the length of the sequence to be encoded and the transmission code rate, the segmentation strategy corresponding to the sequence to be encoded includes:
  • the parameter value, i is the preset eighth parameter value, R is the transmission code rate, and int is the rounding function.
  • h is a value in the range of 500-1200
  • i is a value in the range of 60-300.
  • the method further includes:
  • the fifth code rate threshold is located between x times the maximum to-be-coded bit length and N times the maximum to-be-coded bit length, where x is a value greater than 0 and less than N.
  • the x is a value greater than or equal to 0.3 and less than 2, and N is 2.
  • performing corresponding processing on the sequence to be encoded includes:
  • the sequence to be encoded containing the information sequence and the CRC sequence is segmented.
  • a polarization encoding apparatus is disclosed in the embodiment of the present invention, and the apparatus includes:
  • a determining module configured to determine, according to a length of the sequence to be encoded and a transmission code rate, a segmentation strategy corresponding to the sequence to be encoded
  • an encoding module configured to perform corresponding processing on the sequence to be encoded according to the segmentation policy, and perform polarization coding on the processed sequence to be encoded.
  • An embodiment of the present invention discloses an electronic device, including: a memory and a processor;
  • the processor is configured to read a program in the memory, and perform the following process: determining a segmentation strategy corresponding to the sequence to be encoded according to a length of the sequence to be encoded and a transmission code rate; according to the segmentation policy, Performing corresponding processing on the sequence to be encoded, and performing polarization encoding on the processed sequence to be encoded.
  • the processor is specifically configured to determine whether the transmission code rate is greater than or equal to a preset first rate threshold; if yes, determine that the sequence to be encoded is not segmented.
  • the processor is specifically configured to determine, if the transmission code rate is not greater than or less than a preset first rate threshold, and is not less than or greater than a preset second rate threshold, Whether the length of the sequence is greater than or equal to or greater than a preset first length threshold, wherein the first rate threshold is greater than the second rate threshold; if yes, determining to segment the sequence to be encoded, otherwise, determining The sequence to be encoded is not segmented.
  • the preset first code rate threshold is 0.4.
  • the processor is further configured to determine a first length threshold according to the transmission code rate and a preset first function.
  • the first parameter, b is a preset second parameter, and R is a transmission code rate.
  • the c is not more than 1200 and not less than 800, and the b is not more than 161 and not less than 119.
  • the processor is specifically configured to determine whether the length of the sequence to be encoded is greater than or equal to a preset second length if the transmission code rate is less than or equal to or less than a preset second rate threshold. a threshold; if yes, determining to segment the sequence to be encoded, otherwise determining not to segment the sequence to be encoded.
  • the preset second length threshold is not less than 290 and not more than 390.
  • the preset second length threshold is 340.
  • the preset second rate threshold is 0.2.
  • the processor is specifically configured to determine whether the length of the sequence to be encoded is greater than or equal to a preset third length if the transmission code rate is less than or equal to a preset third rate threshold. a threshold; if yes, determining to segment the sequence to be encoded, otherwise determining not to segment the sequence to be encoded.
  • the third code rate threshold is 6/25.
  • the preset third length threshold is not less than 348 and not greater than 472.
  • the preset third length threshold is 410.
  • the processor is specifically configured to determine, if the transmission code rate is not less than or greater than a preset third rate threshold, and is not greater than or less than a preset fourth rate threshold, Whether the length of the sequence is greater than or equal to or greater than a preset fourth length threshold, wherein the fourth rate threshold is greater than the third rate threshold; if yes, determining to segment the sequence to be encoded, otherwise, determining The sequence to be encoded is not segmented.
  • the processor is further configured to determine, according to the transmission code rate and a preset second function, before determining whether the length of the sequence to be encoded is greater than or equal to a preset fourth length threshold.
  • Four length thresholds Four length thresholds.
  • the a is not more than 1200 and not less than 800, and the e is not more than 196 and not less than 144.
  • the a is 1000 and the e is 170.
  • the processor is specifically configured to determine whether the transmission code rate is greater than or equal to a preset fourth rate threshold; if yes, determine not to segment the sequence to be encoded.
  • the preset fourth rate threshold is 9/25.
  • the processor is specifically configured to determine whether a length of the sequence to be encoded is greater than or equal to a preset fifth length threshold; if yes, determine to segment the sequence to be encoded.
  • the processor is specifically configured to determine whether the transmission code rate is less than or equal to a preset fifth rate threshold; if yes, determine to segment the sequence to be encoded.
  • the preset fifth code rate threshold is not less than 0.2 and not more than 0.9.
  • the preset fifth rate threshold is 0.75, or 2/3, or 1/2, or 2/5, or 0.38, or 0.36, or 1/3, or 0.3, or 0.28, or 0.26 , or 0.24, or 1/4, or 1/5.
  • the preset fifth length threshold is not less than 300 and not more than 450.
  • the preset fifth length threshold is 340, or 350, or 360, or 370, or 380, or 390, or 400, or 410, or 420, or 430, or 440, or 450.
  • the f is a value in the range of 500-1200
  • g is a value in the range of 60-300.
  • the f is 832 and the g is 200.
  • the preset sixth rate threshold is 0.2.
  • h is a value in the range of 500-1200
  • i is a value in the range of 60-300.
  • the processor is further configured to determine whether the length of the sequence to be encoded is less than or equal to a preset fifth length threshold; if yes, perform the step of determining to segment the sequence to be encoded.
  • the fifth code rate threshold is located between x times the maximum to-be-coded bit length and N times the maximum to-be-coded bit length, where x is a value greater than 0 and less than N.
  • the x is a value greater than or equal to 0.3 and less than 2, and N is 2.
  • the processor is specifically configured to: when the segmentation policy is to segment the sequence to be encoded, segment the information sequence in the sequence to be encoded; or include the information sequence And the sequence to be encoded of the CRC sequence is segmented.
  • a computer readable storage medium storing a computer program executable by an electronic device, when the program is run on the electronic device, causes the electronic device to perform any of the above The steps of the method.
  • a method, a device, an electronic device, and a storage medium are disclosed.
  • the solution includes: determining a segmentation strategy corresponding to the sequence to be encoded according to a length of a sequence to be encoded and a transmission code rate; According to the segmentation strategy, the sequence to be encoded is processed correspondingly, and the processed sequence to be encoded is polarization coded.
  • the segmentation policy corresponding to the sequence to be encoded may be determined according to the length of the sequence to be encoded and the transmission code rate, and the corresponding sequence is determined for different lengths of the sequence to be encoded and different transmission code rates.
  • the segmentation strategy ensures the performance of the uplink control track.
  • FIG. 1 is a schematic diagram of a polarization encoding process according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic flowchart of a polarization coding process according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of performance comparison of an uplink control channel according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic diagram of performance comparison of an uplink control channel according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic diagram of simulation results provided by Embodiment 5 of the present invention.
  • FIG. 6 is a schematic diagram of a simulation result according to Embodiment 7 of the present invention.
  • FIG. 7 is a schematic diagram of simulation results provided by Embodiment 7 of the present invention.
  • FIG. 8 is a schematic diagram of a simulation result according to Embodiment 8 of the present invention.
  • FIG. 9 is a schematic structural diagram of a polarization encoding apparatus according to Embodiment 13 of the present invention.
  • FIG. 10 is a schematic structural diagram of an electronic device according to Embodiment 14 of the present invention.
  • the embodiments are numbered for convenience of reading, for example, Embodiments 1, 2, 3, . . . , etc., but this does not mean that each embodiment is completely independent and cannot be combined, in fact each The numbered embodiments are all used to illustrate how a certain scheme is implemented, and the various embodiments can be combined as needed to achieve the desired effect.
  • FIG. 1 is a schematic diagram of a polarization encoding process according to an embodiment of the present disclosure, where the method includes:
  • S101 Determine, according to the length of the sequence to be encoded and the transmission code rate, a segmentation strategy corresponding to the sequence to be encoded.
  • the polarization coding method provided by the embodiment of the present invention is applied to a transmitting end, and the specific sending end may be a base station or a user equipment (User Equipment, UE).
  • the specific sending end may be a base station or a user equipment (User Equipment, UE).
  • the Physical Uplink Control Channel (PUCCH) is used to transmit the UCI after synchronization.
  • the UCI transmitted on the PUCCH includes an uplink scheduling request (SR) and a downlink.
  • the transmitting end adds a CRC sequence for checking after the information sequence of the UCI, before the encoding of the UCI, in the embodiment of the present invention, to be encoded.
  • the sequence includes the information sequence of the UCI and the CRC sequence for verification, that is, the sequence to be encoded is the obtained UCI payload.
  • At least one length threshold and/or at least one code rate threshold are respectively set for the length of the sequence to be encoded and the transmission code rate, and for the at least one length threshold and/or at least one code.
  • the rate threshold is set with a corresponding segmentation strategy, wherein the segmentation strategy segments the sequence to be encoded or the sequence to be encoded.
  • the segmentation strategy corresponding to the sequence to be encoded may be determined according to the length of the sequence to be encoded and the transmission code rate, and at least one length threshold and/or at least one code rate threshold.
  • S102 Perform corresponding processing on the sequence to be encoded according to the segmentation policy, and perform polarization coding on the processed sequence to be encoded.
  • segmentation is performed, for example, into two segments, and the sequence to be encoded is subjected to polarization coding; if it is determined that the sequence to be encoded is not segmented Processing, directly processing the encoded sequence for polarization encoding.
  • the information sequence in the sequence to be encoded may be segmented, and each segment of the information sequence after segmentation is added with a CRC, or a partial segmentation information sequence is added. CRC.
  • FIG. 2 is a schematic diagram of a polarization encoding process according to an embodiment of the present invention. Specifically, an information sequence of UCI is first CRC encoded, and a CRC sequence is added after the information sequence of the UCI to obtain a coding sequence to be encoded.
  • the sequence of the UCI payload is coded segmentation (Code block segmentation), and the sequence to be coded is segmented.
  • the sequence to be coded is divided into two segments, which are divided into two segments.
  • the sequence to be coded is subjected to polarization coding (Polar coding), and the two sequences to be coded are subjected to rate matching, and finally the coded two sequences to be coded are code-coded.
  • the information sequence of the UCI may be first coded, and a bit sequence of a set length may be added to the information sequence of the UCI divided by the code block.
  • the process of subsequent polarization coding is performed.
  • the length of the CRC sequence is increased, which will significantly reduce the performance of the system.
  • the UCI of each segment contains the CRC sequence, it is simpler in decoding. Easy to operate.
  • the segmentation policy corresponding to the sequence to be encoded may be determined according to the length of the sequence to be encoded and the transmission code rate, and the corresponding sequence is determined for different lengths of the sequence to be encoded and different transmission code rates.
  • the segmentation strategy ensures the performance of the uplink control track.
  • segmentation of the sequence to be encoded has an effect on the Signal-to-Noise Ratio (SNR).
  • SNR Signal-to-Noise Ratio
  • the sending end may determine whether the transmission code rate is greater than a preset first rate threshold, and if yes, determine not to segment the sequence to be encoded. Or determining whether the transmission code rate is greater than or equal to a preset first rate threshold, and if so, determining not to segment the sequence to be encoded.
  • the preset first rate threshold is 0.4.
  • a transmission rate higher than 0.4 is not excluded as the first rate threshold, and segmented polarization coding is not used when the first rate threshold is exceeded.
  • the segmentation strategy corresponding to the sequence to be encoded includes:
  • the preset fourth rate threshold is 9/25.
  • a transmission rate higher than 9/25 is not excluded as the fourth rate threshold, and segmentation polarization coding is not used when the fourth rate threshold is exceeded.
  • determining the segmentation strategy corresponding to the sequence to be encoded according to the length of the sequence to be encoded and the transmission code rate includes:
  • the transmission code rate is not greater than or less than a preset first rate threshold, and is not less than or greater than a preset second rate threshold, determining whether the length of the sequence to be encoded is greater than or equal to a preset a first length threshold, wherein the first rate threshold is greater than the second rate threshold;
  • the transmission code rate is not greater than or less than a preset first rate threshold, and is not less than or greater than a preset second rate threshold, where the first rate threshold is greater than the second rate threshold
  • the preset first rate threshold is 0.4
  • the preset second rate threshold is 0.2
  • determining, according to the length of the sequence to be encoded and the transmission code rate, the segmentation strategy corresponding to the sequence to be encoded includes:
  • Determining whether the length of the sequence to be encoded is greater than or equal to a preset value if the transmission code rate is not less than or greater than a preset third rate threshold, and is not greater than or less than a preset fourth rate threshold. a fourth length threshold, wherein the fourth rate threshold is greater than the third rate threshold;
  • the preset third rate threshold is 6/25
  • the preset fourth rate threshold is 9/25
  • SCL polarization decoding used in polarization coding
  • Non-seg indicates no segmentation
  • seg indicates segmentation
  • R indicates transmission rate
  • the horizontal axis of the coordinate system indicates the length (K) of the sequence to be encoded
  • the vertical axis indicates the SNR value (S).
  • the sequence to be encoded is segmented in FIG. 3, the information sequence in the sequence to be encoded is segmented, and a CRC is added to a segmentation information sequence.
  • a transmission code rate is between 0.2 and 0.4
  • the performance of segmentation for polarization coding is not as good as when segmentation polarization coding is not used.
  • Performance so a feasible implementation may be that segmentation polarization coding is not used when the value is greater than or equal to 0.4; after the size K of the sequence to be coded is greater than a certain length threshold, the performance of the segmentation polarization coding may be obvious. It is better than non-segmented polarization coding performance, but the length threshold varies with the transmission code rate. If the proper demarcation point is not found, the piecewise polarization coding technique has no practical value in practice.
  • the above analysis is a performance comparison diagram of the transmission code rate between 0.2 and 0.4, segmentation and non-segmentation.
  • the transmission code rate is between 6/25 and 9/25, when the sequence to be coded is segmented.
  • a CRC is added to each segmentation information sequence, the performance comparison between segmentation and non-segmentation is similar to that of FIG. 3, and details are not described herein again.
  • the length threshold is very close to a diagonal line on a plan view where K is the x-axis and SNR is the y-axis. This inspires that a linear approximation can be used in the implementation to estimate the threshold.
  • the method before determining whether the length of the sequence to be encoded is greater than a preset first length threshold, the method further includes:
  • the rounding function can be, for example, an int function, or a floor function, and the rounding manner of the rounding function int can be set to take the whole, or take the whole, or round off and round.
  • c is not more than 1200 and not less than 800, and b is not more than 161 and not less than 119. In practice, c is 1000 and b is 140.
  • the method before the determining whether the length of the sequence to be encoded is greater than or equal to a preset fourth length threshold, the method further includes:
  • the three parameters, e is the preset fourth parameter, and R is the transmission code rate.
  • a is not more than 1200 and not less than 800, and the e is not more than 196 and not less than 144. In practice, a is 1000 and e is 170.
  • Table 1 is an example of an uplink control channel gain value corresponding to different transmission code rates (R) when the length of the sequence to be encoded is the first length threshold according to an embodiment of the present invention.
  • the first length threshold corresponding to the transmission code rate of 0.2 is 350, the corresponding gain value is 0.128112; the first length threshold corresponding to the transmission code rate of 0.22 is 370, the corresponding gain value is 0.127483; and the transmission code rate is 0.24.
  • the first length threshold is 390, the corresponding gain value is 0.10674; the first length threshold corresponding to the transmission code rate 0.26 is 410, and the corresponding gain value is 0.149014; the first length threshold corresponding to the transmission code rate 0.28 is 430, corresponding to The gain value is 0.115676; the first length threshold corresponding to the transmission code rate of 0.3 is 450, and the corresponding gain value is 0.0837032; the first length threshold corresponding to the transmission code rate of 0.32 is 470, the corresponding gain value is 0.0356907; and the transmission code rate is 0.34.
  • the first length threshold is 490, the corresponding gain value is 0.08450445; the first length threshold corresponding to the transmission code rate of 0.36 is 510, the corresponding gain value is 0.180271; and the first length threshold corresponding to the transmission code rate of 0.38 is 530, corresponding to The gain value is 0.2199536; the first length threshold corresponding to the transmission code rate of 0.4 is 550, and the corresponding gain value is 0.1574885. Therefore, when the transmission code rate is between 0.2 and 0.4, according to the first length threshold determined by the first function, it is determined whether to perform segmentation of the sequence to be coded, thereby performing polarization code coding, and the gain is known according to Table 1 above. The value is not very large, so it is very appropriate to use the corresponding first length threshold as the threshold for making the determination.
  • the sequence to be encoded includes an information sequence and a CRC sequence
  • the corresponding segmentation policy may be determined according to the length of the sequence to be encoded.
  • the segmentation policy is determined according to the length of the information sequence
  • the length and information of the sequence to be encoded may be determined according to the length threshold determined. Corresponding relationships between the lengths of the sequences determine the corresponding appropriate length threshold. The same is true in the following scenarios, and will not be described here.
  • determining the segmentation strategy corresponding to the sequence to be encoded according to the length of the sequence to be encoded and the transmission code rate includes:
  • the sending end determines whether the length of the sequence to be encoded is greater than or equal to a preset second length threshold; if yes, determining the location The sequence segmentation of the encoding is described, otherwise it is determined that the sequence to be encoded is not segmented.
  • the preset second rate threshold is 0.2.
  • Non-seg indicates no segmentation
  • seg indicates segmentation
  • R indicates transmission rate
  • the horizontal axis of the coordinate system indicates the length (K) of the sequence to be encoded
  • the vertical axis indicates the SNR value (S).
  • the sequence to be encoded is segmented in FIG. 4, the information sequence in the sequence to be encoded is segmented, and a CRC is added to a segmentation information sequence.
  • the transmission code rate is not greater than 0.2
  • the length of the sequence to be encoded is greater than or equal to 290
  • the respective transmission bit rates are fixed, and different values between 290 and 390 may be used for each transmission code rate.
  • the preset second length threshold is not less than 290 and not greater than 390. Specifically, when the code rate is less than 0.2, the preset second length threshold may be determined within the range.
  • the preset second length threshold is 340, that is, when the determination is made, the preset second length threshold is set to 340, and the fixed value is used for the determination.
  • the above analysis is a performance comparison diagram of the transmission code rate between 0.2 and 0.4, segmentation and non-segmentation.
  • the transmission code rate is between 6/25 and 9/25, when the sequence to be coded is segmented.
  • a CRC is added to each segmentation information sequence, the performance comparison between segmentation and non-segmentation is similar to that of FIG. 4, and details are not described herein again.
  • determining the segmentation strategy corresponding to the sequence to be encoded according to the length of the sequence to be encoded and the transmission code rate includes:
  • the preset third rate threshold may be 6/25.
  • the preset third length threshold is not less than 348 and not greater than 472.
  • the preset third length threshold may be 410.
  • Table 2 is an example of an uplink control channel gain value corresponding to different transmission code rates (R) when the length of the sequence to be encoded is the second length threshold according to an embodiment of the present invention.
  • the gain value is the difference between the SNR at the time of segmentation and the SNR at the time of non-segmentation.
  • the second length threshold corresponding to the transmission code rate of 0.12 is 340, the corresponding gain value is 0.032309; the second length threshold corresponding to the transmission code rate of 0.14 is 340, the corresponding gain value is 0.069684; and the transmission code rate is 0.16.
  • the corresponding second length threshold is 340, the corresponding gain value is 0.10115; the second length threshold corresponding to the transmission code rate 0.18 is 340, and the corresponding gain value is 0.071813. Therefore, when the transmission code rate is not higher than 0.2, it is determined whether to perform segmentation of the sequence to be coded according to the second length threshold, thereby performing polarization code coding. According to the above Table 2, the gain value is not large. Therefore, it is very appropriate to use the corresponding second length threshold as the threshold for making the determination.
  • the length of the sequence to be encoded is different, and whether the sequence to be encoded is segmented may affect the SNR.
  • the The length of the encoded sequence and the transmission code rate, and determining the segmentation strategy corresponding to the sequence to be encoded includes:
  • the sending end may determine whether the length of the sequence to be encoded is greater than or equal to a preset fifth length threshold, and if yes, determine the sequence to be encoded.
  • the fifth code rate threshold is located between x times the maximum to-be-coded bit length and N times the maximum to-be-coded bit length, and x is a value greater than 0 and less than N, and N is a value greater than 0. In the implementation, x is a value greater than or equal to 0.3 and less than 2, and N is 2.
  • the maximum mother code length of the 5G polar code is 1024, so that the length of the sequence to be encoded must be less than 1024. If the length of the sequence to be encoded is 1060, 1024 or less is less than 2048, no matter what the transmission rate is.
  • the sequence to be encoded is directly subjected to polar encoding, for example, divided into two segments for polar encoding. The simulation result is shown in FIG. 5.
  • the length of the sequence to be encoded is less than the maximum length of the to-be-coded bit 1024, it is greater than a certain preset value, and the direct segmentation can be better than the non-segmentation regardless of the transmission code rate. Performance, and processing is simple, the preset value can be located below 500 and 1200.
  • a feasible solution for segmenting a sequence of codes is to use equal or approximate division, in which the implementation can be divided into only two segments, and then each segment is polar coded.
  • the method further includes: before the determining is to segment the sequence to be encoded, the method further includes:
  • the sending end determines whether the transmission code rate is less than or equal to a preset fifth rate threshold, and if yes, determining the to-be-determined Encoded sequence segmentation.
  • the preset fifth rate threshold is not less than 0.2 and not greater than 0.9. In implementation, the preset fifth rate threshold is 0.75, or 2/3, or 1/2, or 2/5, or 0.38, or 0.36, or 1/3, or 0.3, or 0.28, or 0.26, or 0.24, or 1/4, or 1/5.
  • the preset fifth length threshold is not less than 300 and not greater than 450.
  • the preset fifth length threshold is 340, or 350, or 360, or 370, or 380, or 390, or 400, Or 410, or 420, or 430, or 440, or 450.
  • Kth5 ⁇ include: ⁇ 0.4, 350 ⁇ , ⁇ 0.4, 370 ⁇ , ⁇ 0.4, 380 ⁇ , ⁇ 0.4, 390 ⁇ , ⁇ 0.4, 400 ⁇ , ⁇ 0.4, 410 ⁇ , ⁇ 0.4, 420 ⁇ , ⁇ 0.28, 370 ⁇ , ⁇ 0.28, 380 ⁇ , ⁇ 0.28, 390 ⁇ , ⁇ 0.28,400 ⁇ , ⁇ 0.28,410 ⁇ , ⁇ 0.28,420 ⁇ , ⁇ 0.26,370 ⁇ , ⁇ 0.26,380 ⁇ , ⁇ 0.26,390 ⁇ , ⁇ 0.26,400 ⁇ , ⁇ 0.26,410 ⁇ , ⁇ 0.26, 420 ⁇ .
  • a possible implementation of the segmentation of the encoded sequence may be to use an equal or approximate division method, in which the implementation can be divided into only two segments, and then each segment is polar coded.
  • the maximum feedback amount of 5G uplink control information is greatly increased.
  • the UCI maximum feedback amount does not include the 11-bit CRC and reaches 543 bits.
  • the segmentation strategy corresponding to the sequence to be encoded is determined according to the length of the sequence to be encoded and the transmission code rate.
  • f is a value in the range of 500-1200
  • g is a value in the range of 60-300.
  • the sequence to be encoded is directly segmented according to a preset linear function.
  • the preset sixth rate threshold is 0.2.
  • FIG. 6 is a schematic diagram of corresponding simulation results.
  • the corresponding segmentation method may adopt the following rules:
  • K_th 1024*R+150
  • FIG. 7 is a schematic diagram of another simulation result. According to FIG. 7, the corresponding segmentation method may adopt the following rules:
  • a possible implementation of the segmentation of the encoded sequence may be to use an equal or approximate division method, in which the implementation can be divided into only two segments, and then each segment is polar coded.
  • segmenting the sequence to be encoded includes:
  • target code rate interval segmenting the sequence to be encoded according to a target linear function corresponding to the target code rate interval, wherein a minimum code rate value in the code rate interval is not less than the preset sixth Rate threshold.
  • the minimum code rate value in the code rate interval is not less than the preset sixth code rate threshold.
  • the preset sixth code rate threshold is 0.2, and the two code rate intervals are pre-set to be greater than 0.2 and less than 0.4, and greater than or equal to 0.4.
  • the target corresponding to the transmission code rate is determined according to the transmission code rate.
  • the code rate interval segments the sequence to be encoded according to a target linear function corresponding to the target code rate interval.
  • each code rate interval corresponds to a different linear function.
  • the preset sixth rate threshold is 0.2.
  • FIG. 8 is a schematic diagram of simulation results according to an embodiment of the present invention. According to FIG. 8 , the corresponding segmentation method adopts the following rules:
  • K_th 1024*R+140
  • the transmission code rate can be considered to determine whether to process the coding sequence segment, and the length of the sequence to be coded is different, which also affects the performance of the uplink control channel, in order to further ensure The performance of the uplink control channel, before determining that the sequence to be encoded is segmented, based on the foregoing Embodiment 7 and Embodiment 8, the method further includes:
  • the fifth rate threshold is between x times the maximum bit length to be encoded and N times the maximum bit length to be encoded, where x is a value greater than 0 and less than N, and N is a value greater than 0, in practice, x For a value greater than or equal to 0.3 and less than 2, N is 2.
  • a linear function may be used for segmentation, and the segmentation strategy corresponding to the sequence to be encoded is determined according to the length of the sequence to be encoded and the transmission code rate.
  • the value, i is the preset eighth parameter value, R is the transmission code rate, and int is the rounding function.
  • the preset linear function may be one or more than two. If more than two linear functions are included, the segmentation may be flexibly selected according to actual conditions.
  • h 500-1200 and i is 60-300.
  • the linear function may be used for segmentation regardless of the transmission code rate, and the length of the sequence to be encoded may also affect the performance of the uplink control channel, in order to further ensure the uplink control channel. Performance, on the basis of the foregoing embodiment, before determining to segment the sequence to be encoded, the method further includes:
  • the fifth rate threshold is between x times the maximum bit length to be encoded and N times the maximum bit length to be encoded, where x is a value greater than 0 and less than N, and N is a value greater than 0, in practice, x For a value greater than or equal to 0.3 and less than 2, N is 2.
  • the segmentation threshold (Kth) is described according to the length of the sequence to be encoded.
  • the segmentation threshold can also be described in terms of the encoded data length (M) if the code rate is known.
  • M the encoded data length
  • the segmentation threshold Kth is described according to the information bit length to be encoded.
  • the segmentation threshold may also be described in the case of the coded data length M in the case where the code rate is known.
  • the segmentation policy when the segmentation policy is to segment the sequence to be encoded, the sequence to be encoded according to the segmentation policy
  • the corresponding processing includes:
  • the sequence to be encoded containing the information sequence and the CRC sequence is segmented.
  • the sequence to be encoded includes an information sequence and a CRC sequence, and when the sequence to be encoded is segmented, only the encoded sequence segment may be processed. This is because when performing polarization code encoding, a CRC sequence is added after the information sequence to obtain a sequence to be encoded, and then the sequence to be encoded is segmented.
  • a feasible implementation manner may be divided into two segments and divided into two. The two sequences to be encoded are respectively encoded by the polar code, so that only one of the obtained segments to be encoded may have a CRC.
  • the sequence of information in the sequence to be encoded may be segmented. That is, the information sequence is first divided into two segments, and each segment is added with an L-bit CRC sequence, for example, 11 bits.
  • L-bit CRC sequence for example, 11 bits.
  • the length of the information sequence is different, or the nFAR value is different, and the length of the added CRC sequence is different, and the specificity can be flexibly set according to requirements.
  • FIG. 9 is a schematic structural diagram of a polarization coding apparatus according to an embodiment of the present disclosure, where the apparatus includes:
  • a determining module 51 configured to determine, according to a length of the sequence to be encoded and a transmission code rate, a segmentation strategy corresponding to the sequence to be encoded;
  • the encoding module 52 is configured to perform corresponding processing on the sequence to be encoded according to the segmentation policy, and perform polarization coding on the processed sequence to be encoded.
  • the determining module 51 is specifically configured to determine whether the transmission code rate is greater than or equal to a preset first rate threshold; if yes, determine that the sequence to be encoded is not segmented.
  • the determining module 51 is configured to determine, if the transmission code rate is not greater than or less than a preset first rate threshold, and is not less than or greater than a preset second rate threshold, determining the sequence to be encoded. Whether the length is greater than or equal to or greater than a preset first length threshold, wherein the first rate threshold is greater than the second rate threshold; if yes, determining to segment the sequence to be encoded, otherwise determining that the location is incorrect The sequence segmentation of the encoding is described.
  • the preset first rate threshold is 0.4.
  • the determining module 51 is further configured to determine a first length threshold according to the transmission code rate and a preset first function.
  • the first parameter, b is a preset second parameter, and R is a transmission code rate.
  • the c is not more than 1200 and not less than 800, and the b is not more than 161 and not less than 119.
  • c 1000 and b is 140.
  • the determining module 51 is specifically configured to determine whether the length of the sequence to be encoded is greater than or equal to a preset second length threshold, if the transmission code rate is less than or equal to a preset second rate threshold; If so, it is determined that the sequence to be encoded is segmented, otherwise it is determined that the sequence to be encoded is not segmented.
  • the preset second length threshold is not less than 290 and not greater than 390.
  • the preset second length threshold bit 340 In implementation, the preset second length threshold bit 340.
  • the preset second rate threshold is 0.2.
  • the determining module 51 is specifically configured to determine, if the transmission code rate is less than or equal to a preset third rate threshold, whether the length of the sequence to be encoded is greater than or equal to a preset third. a length threshold; if yes, determining to segment the sequence to be encoded, otherwise determining not to segment the sequence to be encoded.
  • the third rate threshold is 6/25.
  • the preset third length threshold is not less than 348 and not greater than 472.
  • the preset third length threshold is 410.
  • the determining module 51 is specifically configured to determine that the transmission code rate is not less than or greater than a preset third rate threshold, and is not greater than or less than a preset fourth rate threshold, and determines the to-be-coded Whether the length of the sequence is greater than or equal to or greater than a preset fourth length threshold, wherein the fourth rate threshold is greater than the third rate threshold; if yes, determining to segment the sequence to be encoded, otherwise, It is determined that the sequence to be encoded is not segmented.
  • the determining module 51 is specifically configured to determine, according to the transmission code rate and a preset second function, whether the length of the sequence to be encoded is greater than or equal to a preset fourth length threshold.
  • the fourth length threshold is specifically configured to determine, according to the transmission code rate and a preset second function, whether the length of the sequence to be encoded is greater than or equal to a preset fourth length threshold. The fourth length threshold.
  • the third parameter, e is a preset fourth parameter, and R is a transmission code rate.
  • the a is no more than 1200 and not less than 800, and the e is not more than 196 and not less than 144.
  • the a is 1000 and the e is 170.
  • the determining module 51 is specifically configured to determine whether the transmission code rate is greater than or equal to a preset fourth rate threshold; if yes, determine that the sequence to be encoded is not segmented.
  • the preset fourth rate threshold is 9/25.
  • the determining module 51 is specifically configured to determine whether the length of the sequence to be encoded is greater than or equal to a preset fifth length threshold; if yes, determine the segmentation of the sequence to be encoded.
  • the determining module 51 is specifically configured to determine whether the transmission code rate is less than or equal to a preset fifth rate threshold; if yes, determine to segment the sequence to be encoded.
  • the preset fifth rate threshold is not less than 0.2 and not greater than 0.9.
  • the preset fifth rate threshold is 0.75, or 2/3, or 1/2, or 2/5, or 0.38, or 0.36, or 1/3, or 0.3, or 0.28, or 0.26. , or 0.24, or 1/4, or 1/5.
  • the preset fifth length threshold is not less than 300 and not greater than 450.
  • the preset fifth length threshold is 340, or 350, or 360, or 370, or 380, or 390, or 400, or 410, or 420, or 430, or 440, or 450.
  • the f is a value in the range of 500-1200, and g is a value in the range of 60-300.
  • the f is 832 and the g is 200.
  • the preset sixth rate threshold is 0.2.
  • h is a value in the range of 500-1200, and i is a value in the range of 60-300.
  • the determining module 51 is further configured to determine whether the length of the sequence to be encoded is less than or equal to a preset fifth length threshold; if yes, perform the step of determining to segment the sequence to be encoded.
  • the fifth rate threshold is between x times the maximum to-be-coded bit length and N times the maximum to-be-coded bit length, where x is a value greater than 0 and less than N.
  • the x is a value greater than or equal to 0.3 and less than 2, and N is 2.
  • the encoding module 52 is configured to: when the segmentation policy is to segment the sequence to be encoded, segment the information sequence in the sequence to be encoded; or And the sequence to be encoded of the CRC sequence is segmented.
  • an electronic device is further provided in the embodiment of the present invention. Since the principle solved by the above electronic device is similar to the polarization coding method, the implementation of the foregoing electronic device may refer to the implementation of the method, and the repeated description is not repeated. .
  • FIG. 10 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • a bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 61.
  • the various circuits of the memory represented by memory 62 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the processor 61 is responsible for managing the bus architecture and general processing, and the memory 62 can store data used by the processor 61 in performing operations.
  • the processor 61 is configured to read the program in the memory 62, and perform the following process: determining a segmentation strategy corresponding to the sequence to be encoded according to the length of the sequence to be encoded and the transmission code rate; according to the segmentation strategy, Performing corresponding processing on the sequence to be encoded, and performing polarization encoding on the processed sequence to be encoded.
  • the processor 61 is specifically configured to determine whether the transmission code rate is greater than or equal to a preset first rate threshold; if yes, determine that the sequence to be encoded is not segmented.
  • the processor 61 is specifically configured to determine that the to-be-coded if the transmission code rate is not greater than or less than a preset first rate threshold and is not less than or greater than a preset second rate threshold. Whether the length of the sequence is greater than or equal to or greater than a preset first length threshold, wherein the first rate threshold is greater than the second rate threshold; if yes, determining to segment the sequence to be encoded, otherwise, It is determined that the sequence to be encoded is not segmented.
  • the preset first rate threshold is 0.4.
  • the processor 61 is further configured to determine a first length threshold according to the transmission code rate and a preset function.
  • the c is not more than 1200 and not less than 800, and the b is not more than 161 and not less than 119.
  • c 1000 and b is 140.
  • the processor 61 is configured to determine, if the transmission code rate is less than or equal to a preset second rate threshold, whether the length of the sequence to be encoded is greater than or equal to a preset second. a length threshold; if yes, determining to segment the sequence to be encoded, otherwise determining not to segment the sequence to be encoded.
  • the preset second length threshold is not less than 290 and not greater than 390.
  • the preset second length threshold bit 340 In implementation, the preset second length threshold bit 340.
  • the preset second rate threshold is 0.2.
  • the processor 61 is configured to determine, if the transmission code rate is less than or equal to a preset third rate threshold, whether the length of the sequence to be encoded is greater than or equal to a preset third. a length threshold; if yes, determining to segment the sequence to be encoded, otherwise determining not to segment the sequence to be encoded.
  • the third rate threshold is 6/25.
  • the preset third length threshold is not less than 348 and not greater than 472.
  • the preset third length threshold is 410.
  • the processor 61 is specifically configured to determine, if the transmission code rate is not less than or greater than a preset third rate threshold, and is not greater than or less than a preset fourth rate threshold, Whether the length of the sequence is greater than or equal to or greater than a preset fourth length threshold, wherein the fourth rate threshold is greater than the third rate threshold; if yes, determining to segment the sequence to be encoded, otherwise, It is determined that the sequence to be encoded is not segmented.
  • the processor 61 is further configured to determine, according to the transmission code rate and a preset second function, whether the length of the sequence to be encoded is greater than or equal to a preset fourth length threshold.
  • the fourth length threshold is further configured to determine, according to the transmission code rate and a preset second function, whether the length of the sequence to be encoded is greater than or equal to a preset fourth length threshold.
  • the third parameter, e is a preset fourth parameter, and R is a transmission code rate.
  • the a is no more than 1200 and not less than 800, and the e is not more than 196 and not less than 144.
  • the a is 1000 and the e is 170.
  • the processor 61 is specifically configured to determine whether the transmission code rate is greater than or equal to a preset fourth rate threshold; if yes, determine that the sequence to be encoded is not segmented.
  • the preset fourth rate threshold is 9/25.
  • the processor 61 is specifically configured to determine whether the length of the sequence to be encoded is greater than or equal to a preset fifth length threshold; if yes, determine to segment the sequence to be encoded.
  • the processor 61 is specifically configured to determine whether the transmission code rate is less than or equal to a preset fifth rate threshold; if yes, determine to segment the sequence to be encoded.
  • the preset fifth rate threshold is not less than 0.2 and not greater than 0.9.
  • the preset fifth rate threshold is 0.75, or 2/3, or 1/2, or 2/5, or 0.38, or 0.36, or 1/3, or 0.3, or 0.28, or 0.26. , or 0.24, or 1/4, or 1/5.
  • the preset fifth length threshold is not less than 300 and not greater than 450.
  • the preset fifth length threshold is 340, or 350, or 360, or 370, or 380, or 390, or 400, or 410, or 420, or 430, or 440, or 450.
  • the f is a value in the range of 500-1200, and g is a value in the range of 60-300.
  • the f is 832 and the g is 200.
  • the preset sixth rate threshold is 0.2.
  • h is a value in the range of 500-1200, and i is a value in the range of 60-300.
  • the processor 61 is further configured to determine whether the length of the sequence to be encoded is less than or equal to a preset fifth length threshold; if yes, perform the step of determining to segment the sequence to be encoded.
  • the fifth rate threshold is between x times the maximum to-be-coded bit length and N times the maximum to-be-coded bit length, where x is a value greater than 0 and less than N.
  • the x is a value greater than or equal to 0.3 and less than 2, and N is 2.
  • the processor 61 is configured to: when the segmentation policy is to segment the sequence to be encoded, segment the information sequence in the sequence to be encoded; or The information sequence and the sequence to be encoded of the CRC sequence are segmented.
  • the embodiment of the present invention further provides a computer storage readable storage medium, where the computer readable storage medium stores a computer program executable by the electronic device, when the program is in the When the electronic device is running, the electronic device is executed to implement the following steps:
  • the sequence to be encoded is processed correspondingly, and the processed sequence to be encoded is polarization coded.
  • the determining, according to the length of the sequence to be encoded and the transmission code rate, the segmentation strategy corresponding to the sequence to be encoded includes:
  • the determining, according to the length of the sequence to be encoded and the transmission code rate, the segmentation strategy corresponding to the sequence to be encoded includes:
  • the transmission code rate is not greater than or less than a preset first rate threshold, and is not less than or greater than a preset second rate threshold, determining whether the length of the sequence to be encoded is greater than or equal to a preset a first length threshold, wherein the first rate threshold is greater than the second rate threshold;
  • the preset first rate threshold is 0.4.
  • the method before the determining whether the length of the sequence to be encoded is greater than a preset first length threshold, the method further includes:
  • the first parameter, b is a preset second parameter, and R is a transmission code rate.
  • the c is not more than 1200 and not less than 800, and the b is not more than 161 and not less than 119.
  • c 1000 and b is 140.
  • the determining, according to the length of the sequence to be encoded and the transmission code rate, the segmentation strategy corresponding to the sequence to be encoded includes:
  • the preset second length threshold is not less than 290 and not greater than 390.
  • the preset second length threshold is 340.
  • the preset second rate threshold is 0.2.
  • the determining, according to the length of the sequence to be encoded and the transmission code rate, the segmentation strategy corresponding to the sequence to be encoded includes:
  • the third rate threshold is 6/25.
  • the preset third length threshold is not less than 348 and not greater than 472.
  • the preset third length threshold is 410.
  • the determining, according to the length of the sequence to be encoded and the transmission code rate, the segmentation strategy corresponding to the sequence to be encoded includes:
  • Determining whether the length of the sequence to be encoded is greater than or equal to a preset value if the transmission code rate is not less than or greater than a preset third rate threshold, and is not greater than or less than a preset fourth rate threshold. a fourth length threshold, wherein the fourth rate threshold is greater than the third rate threshold;
  • the method before the determining whether the length of the sequence to be encoded is greater than or equal to a preset fourth length threshold, the method further includes:
  • the third parameter, e is a preset fourth parameter, and R is a transmission code rate.
  • the a is no more than 1200 and not less than 800, and the e is not more than 196 and not less than 144.
  • the a is 1000 and the e is 170.
  • the determining, according to the length of the sequence to be encoded and the transmission code rate, the segmentation strategy corresponding to the sequence to be encoded includes:
  • the preset fourth rate threshold is 9/25.
  • the determining, according to the length of the sequence to be encoded and the transmission code rate, the segmentation strategy corresponding to the sequence to be encoded includes:
  • the method before the determining to segment the sequence to be encoded, the method further includes:
  • the preset fifth rate threshold is not less than 0.2 and not greater than 0.9.
  • the preset fifth rate threshold is 0.75, or 2/3, or 1/2, or 2/5, or 0.38, or 0.36, or 1/3, or 0.3, or 0.28, or 0.26. , or 0.24, or 1/4, or 1/5.
  • the preset fifth length threshold is not less than 300 and not greater than 450.
  • the preset fifth length threshold is 340, or 350, or 360, or 370, or 380, or 390, or 400, or 410, or 420, or 430, or 440, or 450.
  • the determining, according to the length of the sequence to be encoded and the transmission code rate, the segmentation strategy corresponding to the sequence to be encoded includes:
  • the f is a value in the range of 500-1200, and g is a value in the range of 60-300.
  • the f is 832 and the g is 200.
  • the preset sixth rate threshold is 0.2.
  • the determining, according to the length of the sequence to be encoded and the transmission code rate, the segmentation strategy corresponding to the sequence to be encoded includes:
  • the parameter value, i is the preset eighth parameter value, R is the transmission code rate, and int is the rounding function.
  • h is a value in the range of 500-1200, and i is a value in the range of 60-300.
  • the method before determining to segment the sequence to be encoded, the method further includes:
  • the fifth rate threshold is between x times the maximum to-be-coded bit length and N times the maximum to-be-coded bit length, where x is a value greater than 0 and less than N.
  • the x is a value greater than or equal to 0.3 and less than 2, and N is 2.
  • the corresponding processing of the sequence to be encoded according to the segmentation policy includes:
  • the sequence to be encoded containing the information sequence and the CRC sequence is segmented.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

一种极化编码方法、装置、电子设备及存储介质,所述方法包括:根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略;根据所述分段策略,对所述待编码的序列进行相应处理,并将处理后的所述待编码的序列进行极化编码。由于在本发明实施例中,可以根据待编码的序列的长度及传输码率,确定待编码的序列对应的分段策略,针对不同长度的待编码的序列和不同的传输码率,确定对应的分段策略,保证了上行控制行道的性能。

Description

一种极化编码方法、装置、电子设备及存储介质
本申请要求在2017年10月1日提交中国专利局、申请号为201710924773.2、发明名称为“一种极化编码方法、装置、电子设备及存储介质”的中国专利申请的优先权、以及在2017年11月17日提交中国专利局、申请号为201711149116.1、发明名称为“一种极化编码方法、装置、电子设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种极化编码方法、装置、电子设备及存储介质。
背景技术
第五代移动通信技术(5th-Generation,5G)的增强移动宽带(Enhanced Mobile Broadband,eMBB)场景控制信道编码方案的极化(polar)码,是一种可以达到二进制对称信道容量的编码,具有优异的译码性能。然而polar码在母码长度较大的时候,具有较大的存储量与时延(latency),所以5G规定polar码母码长度下行最大为512比特,上行最大为1024比特。然而由于大规模多入多出技术(MassiveMultiple-Input Multiple-Output,Massive MIMO)的影响,导致上行控制信息(Uplink Control Information,UCI)的信息序列的长度激增,进而导致在对UCI进行极化编码时,对应的待编码的序列的长度也在激增,其中待编码的序列为UCI的信息序列之后附加了循环冗余校验(Cyclic Redundancy Check,CRC)序列得到的上行控制信息有效载荷(UCI payload)。
通信时为了保证覆盖率,有时需要采用低码率传输,然而在低码率传输时,对应的待编码的序列的长度较大时,直接对待编码的序列进行极化编码,会明显降低上行控制信道的性能。为了解决较大的待编码的序列在低码率时, 影响上行控制信道性能的问题,现有技术是将较大的待编码的序列进行分段,即将待编码的序列分为两段后,进行极化编码,以保证上行控制信道的性能。
然而,现有技术在进行极化编码时只采用固定的一种分段策略,即对待编码的序列都进行分段,或对待编码的序列都不进行分段,然而只采用一种分段策略的极化编码方式会降低上行控制信道的性能,因此急需一种可以灵活确定待编码的序列对应的分段策略,以保证上行控制行道的性能的极化编码方案。
发明内容
本发明实施例中提供一种极化编码方法、装置、电子设备及存储介质,用以提供一种极化编码方案,用以灵活的确定待编码的序列对应的分段策略,以保证上行控制行道的性能。
本发明实施例中公开了一种极化编码方法,所述方法包括:
根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略;
根据所述分段策略,对所述待编码的序列进行相应处理,并将处理后的所述待编码的序列进行极化编码。
进一步地,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
判断所述传输码率是否大于或大于等于预设的第一码率阈值;
如果是,确定不对所述待编码的序列分段。
进一步地,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
如果所述传输码率不大于或者小于预设的第一码率阈值、且不小于或大于预设的第二码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第一长度阈值,其中所述第一码率阈值大于所述第二码率阈值;
如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
进一步地,所述预设的第一码率阈值为0.4。
进一步地,所述判断所述待编码的序列的长度是否大于或者大于等于预设的第一长度阈值之前,所述方法还包括:
根据所述传输码率及预设的函数,确定第一长度阈值。
进一步地,所述预设的第一函数为Kth1=int(c*R+b)或者Kth1=c*R+b,其中kth1为第一长度阈值、int为取整函数、c为预设的第一参数、b为预设的第二参数、R为传输码率。
进一步地,所述c不大于1200、且不小于800,所述b不大于161、且不小于119。
进一步地,所述c为1000,b为140。
进一步地,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
如果所述传输码率小于或者小于等于预设的第二码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第二长度阈值;
如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
进一步地,所述预设的第二长度阈值不小于290、且不大于390。
进一步地,所述预设的第二长度阈值为340。
进一步地,所述预设的第二码率阈值为0.2。
进一步地,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
如果所述传输码率小于或者小于等于预设的第三码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第三长度阈值;
如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
进一步地,所述第三码率阈值为6/25。
进一步地,所述预设的第三长度阈值不小于348、且不大于472。
进一步地,所述预设的第三长度阈值为410。
进一步地,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
如果所述传输码率不小于或大于预设的第三码率阈值、且不大于或者小于预设的第四码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第四长度阈值,其中所述第四码率阈值大于所述第三码率阈值;
如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
进一步地,所述判断所述待编码的序列的长度是否大于或者大于等于预设的第四长度阈值之前,所述方法还包括:
根据所述传输码率及预设的第二函数,确定第四长度阈值。
进一步地,所述预设的第二函数为Kth2=int(a*R+e)或者Kth2=a*R+e,其中kth2为第四长度阈值、int为取整函数、a为预设的第三参数、e为预设的第四参数、R为传输码率。
进一步地,所述a不大于1200、且不小于800,所述e不大于196、且不小于144。
进一步地,所述a为1000,e为170。
进一步地,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
判断所述待编码的序列的长度是否大于或大于等于预设的第五长度阈值;
如果是,确定对所述待编码的序列分段。
进一步地,所述确定对所述待编码的序列分段之前,所述方法还包括:
判断所述传输码率是否小于或小于等于预设的第五码率阈值;
如果是,进行后续步骤。
进一步地,所述预设的第五码率阈值不小于0.2、且不大于0.9。
进一步地,所述预设的第五码率阈值为0.75,或2/3,或1/2,或2/5,或0.38,或0.36,或1/3,或0.3,或0.28,或0.26,或0.24,或1/4,或1/5。
进一步地,所述预设的第五长度阈值不小于300、且不大于450。
进一步地,所述预设的第五长度阈值为340,或350,或360,或370,或380,或390,或400,或410,或420,或430,或440,或450。
进一步地,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
判断所述传输码率是否大于预设的第六码率阈值;
如果是,确定根据预设的线性函数K_th1=f*R+g或K_th1=int(f*R+g)对所述待编码的序列分段,其中K_th1为第一长度值、f为预设的第五参数值、g为预设的第六参数值、R为传输码率、int为取整函数。
进一步地,所述f为位于500-1200范围内的数值、g为位于60-300范围内的数值。
进一步地,所述f为832、g为200。
进一步地,所述确定根据预设的线性函数K_th1=f*R+g或K_th1=int(f*R+g)对所述待编码的序列分段包括:
确定根据预先设定的至少两个码率区间,及每个码率区间对应的预设的线性函数K_th1=fn*R+gn或K_th1=int(fn*R+gn),确定所述传输码率对应的目标码率区间,根据所述目标码率区间对应的目标线性函数对所述待编码的序列分段,其中所述码率区间中的最小码率值不小于所述预设的第六码率阈值。
进一步地,所述预设的第六码率阈值为0.2。
进一步地,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
确定根据预设的线性函数K_th2=h*R+i或K_th2=int(h*R+i)对所述待编码的序列分段,其中K_th2为第二长度值、h为预设的第七参数值、i为预设的第八参数值、R为传输码率、int为取整函数。
进一步地,所述h为位于500-1200范围内的数值、i为位于60-300范围内的数值。
进一步地,确定对所述待编码序列进行分段之前,所述方法还包括:
判断所述待编码序列的长度是否小于等于预设的第五长度阈值;
如果是,进行后续步骤。
进一步地,所述第五码率阈值位于最大待编码比特长度的x倍到最大待编码比特长度的N倍之间,其中x为大于0小于N的数值。
进一步地,所述x为大于等于0.3,小于2的数值,N为2。
进一步地,当所述分段策略为对所述待编码的序列进行分段时,所述根据所述分段策略,对所述待编码的序列进行相应处理包括:
对所述待编码的序列中的信息序列进行分段;或,
对包含信息序列及CRC序列的所述待编码的序列进行分段。
本发明实施例中公开了一种极化编码装置,所述装置包括:
确定模块,用于根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略;
编码模块,用于根据所述分段策略,对所述待编码的序列进行相应处理,并将处理后的所述待编码的序列进行极化编码。
本发明实施例中公开了一种电子设备,包括:存储器和处理器;
所述处理器,用于读取存储器中的程序,执行下列过程:根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略;根据所述分段策略,对所述待编码的序列进行相应处理,并将处理后的所述待编码的序列进行极化编码。
进一步地,所述处理器,具体用于判断所述传输码率是否大于或大于等于预设的第一码率阈值;如果是,确定不对所述待编码的序列分段。
进一步地,所述处理器,具体用于如果所述传输码率不大于或者小于预设的第一码率阈值、且不小于或大于预设的第二码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第一长度阈值,其中所述第一码 率阈值大于所述第二码率阈值;如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
进一步地,所述预设的第一码率阈值为0.4。
进一步地,所述处理器,还用于根据所述传输码率及预设的第一函数,确定第一长度阈值。
进一步地,所述预设的第一函数为Kth1=int(c*R+b)或者Kth1=c*R+b,其中kth1为第一长度阈值、int为取整函数、c为预设的第一参数、b为预设的第二参数、R为传输码率。
进一步地,所述c不大于1200、且不小于800,所述b不大于161、且不小于119。
进一步地,所述c为1000,b为140。
进一步地,所述处理器,具体用于如果所述传输码率小于或者小于等于预设的第二码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第二长度阈值;如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
进一步地,所述预设的第二长度阈值不小于290、且不大于390。
进一步地,所述预设的第二长度阈值为340。
进一步地,所述预设的第二码率阈值为0.2。
进一步地,所述处理器,具体用于如果所述传输码率小于或者小于等于预设的第三码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第三长度阈值;如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
进一步地,所述第三码率阈值为6/25。
进一步地,所述预设的第三长度阈值不小于348、且不大于472。
进一步地,所述预设的第三长度阈值为410。
进一步地,所述处理器,具体用于如果所述传输码率不小于或大于预设的第三码率阈值、且不大于或者小于预设的第四码率阈值,判断所述待编码 的序列的长度是否大于或者大于等于预设的第四长度阈值,其中所述第四码率阈值大于所述第三码率阈值;如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
进一步地,所述处理器,还用于判断所述待编码的序列的长度是否大于或者大于等于预设的第四长度阈值之前,根据所述传输码率及预设的第二函数,确定第四长度阈值。
进一步地,所述预设的第二函数为Kth2=int(a*R+e)或者Kth2=a*R+e,其中kth2为第四长度阈值、int为取整函数、a为预设的第三参数、e为预设的第四参数、R为传输码率。
进一步地,所述a不大于1200、且不小于800,所述e不大于196、且不小于144。
进一步地,所述a为1000,e为170。
进一步地,所述处理器,具体用于判断所述传输码率是否大于或大于等于预设的第四码率阈值;如果是,确定不对所述待编码的序列分段。
进一步地,所述预设的第四码率阈值为9/25。
进一步地,所述处理器,具体用于判断所述待编码的序列的长度是否大于或大于等于预设的第五长度阈值;如果是,确定对所述待编码的序列分段。
进一步地,所述处理器,具体用于判断所述传输码率是否小于或小于等于预设的第五码率阈值;如果是,确定对所述待编码的序列分段。
进一步地,所述预设的第五码率阈值不小于0.2、且不大于0.9。
进一步地,所述预设的第五码率阈值为0.75,或2/3,或1/2,或2/5,或0.38,或0.36,或1/3,或0.3,或0.28,或0.26,或0.24,或1/4,或1/5。
进一步地,所述预设的第五长度阈值不小于300、且不大于450。
进一步地,所述预设的第五长度阈值为340,或350,或360,或370,或380,或390,或400,或410,或420,或430,或440,或450。
进一步地,所述处理器,具体用于判断所述传输码率是否大于预设的第六码率阈值;如果是,确定根据预设的线性函数K_th1=f*R+g或K_th1=int (f*R+g)对所述待编码的序列分段,其中K_th1为第一长度值、f为预设的第五参数值、g为预设的第六参数值、R为传输码率、int为取整函数。
进一步地,所述f为位于500-1200范围内的数值、g为位于60-300范围内的数值。
进一步地,所述f为832、g为200。
进一步地,所述处理器,具体用于确定根据预先设定的至少两个码率区间,及每个码率区间对应的预设的线性函数K_th1=fn*R+gn或K_th1=int(fn*R+gn),确定所述传输码率对应的目标码率区间,根据所述目标码率区间对应的目标线性函数对所述待编码的序列分段,其中所述码率区间中的最小码率值不小于所述预设的第六码率阈值。
进一步地,所述预设的第六码率阈值为0.2。
进一步地,所述处理器,具体用于确定根据预设的线性函数K_th2=h*R+i或K_th2=int(h*R+i)对所述待编码的序列分段,其中K_th2为第二长度值、h为预设的第七参数值、i为预设的第八参数值、R为传输码率、int为取整函数。
进一步地,所述h为位于500-1200范围内的数值、i为位于60-300范围内的数值。
进一步地,所述处理器,还用于判断所述待编码序列的长度是否小于等于预设的第五长度阈值;如果是,进行确定对所述待编码序列进行分段的步骤。
进一步地,所述第五码率阈值位于最大待编码比特长度的x倍到最大待编码比特长度的N倍之间,其中x为大于0小于N的数值。
进一步地,所述x为大于等于0.3,小于2的数值,N为2。
进一步地,所述处理器,具体用于当所述分段策略为对所述待编码的序列进行分段时,对所述待编码的序列中的信息序列进行分段;或对包含信息序列及CRC序列的所述待编码的序列进行分段。
本发明实施例中公开了一种计算机可读存储介质,其存储有可由电子设 备执行的计算机程序,当所述程序在所述电子设备上运行时,使得所述电子设备执行上述任一所述方法的步骤。
本发明实施例中公开了一种极化编码方法、装置、电子设备及存储介质,方案包括:根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略;根据所述分段策略,对所述待编码的序列进行相应处理,并将处理后的所述待编码的序列进行极化编码。由于在本发明实施例中,可以根据待编码的序列的长度及传输码率,确定待编码的序列对应的分段策略,针对不同长度的待编码的序列和不同的传输码率,确定对应的分段策略,保证了上行控制行道的性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1提供的一种极化编码过程示意图;
图2为本发明实施例1提供的一种极化编码流程示意图;
图3为本发明实施例3提供的一种上行控制信道性能对比示意图;
图4为本发明实施例4提供的一种上行控制信道性能对比示意图;
图5为本发明实施例5提供的一种仿真结果图;
图6为本发明实施例7提供的一种仿真结果图;
图7为本发明实施例7提供的一种仿真结果图;
图8为本发明实施例8提供的一种仿真结果图;
图9为本发明实施例13提供的一种极化编码装置结构示意图;
图10为本发明实施例14提供的一种电子设备结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例中,为了方便阅读,对实施例进行了编号,例如实施例1、2、3……15等,但这不代表每个实施例都是完全独立不可结合的,事实上每个编号的实施例都是用以说明某一方案如何实施,各个实施例之间是可以根据需要进行结合使用以获得期望的效果。
实施例1:
图1为本发明实施例提供的一种极化编码过程示意图,该方法包括:
S101:根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略。
本发明实施例提供的极化编码方法应用于发送端,具体的该发送端可以是基站或用户终端设备(User Equipment,UE)。
在长期演进(Long Term Evolution,LTE)系统中,物理上行控制信道(Physical Uplink Control Channel,PUCCH)用于传输同步以后的UCI,PUCCH上传输的UCI包括上行调度请求(scheduling request,SR)、下行混合自动重传请求确认(Hybrid Automatic Repeat Request Acknowledgment,HARQ-ACK)信息、以及UE的周期信道质量指示(Channel Quality Indicator,CQI)信息。为了保证接收端能对接收到的UCI进行准确性的校验,发送端在对UCI编码之前,在UCI的信息序列之后会附加用于校验的CRC序列,在本发明实施例中,待编码的序列包括UCI的信息序列和用于校验的CRC序列,即该待编码的序列为得到的UCI payload。传输码率(R)为待编码的序列的长度(K)与对待编码的序列进行极化编码和速率匹配(rate matching)后得到得序列的长度(M)的比值,即R=K/M。
此外,在本发明实施例中,针对待编码的序列的长度及传输码率,分别设置有至少一个长度阈值和/或至少一个码率阈值,并且针对该至少一个长度阈值和/或至少一个码率阈值,设置有对应的分段策略,其中分段策略为对待编码的序列分段或不对待编码的序列分段。根据待编码的序列的长度及传输码率,及至少一个长度阈值和/或至少一个码率阈值,可以确定所述待编码的序列对应的分段策略。
S102:根据所述分段策略,对所述待编码的序列进行相应处理,并将处理后的所述待编码的序列进行极化编码。
具体的,如果确定对待编码的序列进行分段处理,进行分段,例如分为两段,并将分段处理后的待编码的序列进行极化编码;如果确定不对待编码的序列进行分段处理,直接对待编码的序列进行极化编码。在本发明实施例中,如果确定对待编码的序列进行分段处理,可以对待编码的序列中的信息序列进行分段,分段后的每段信息序列都添加CRC,或者部分分段信息序列添加CRC。
图2为本发明实施例提供的一种极化编码过程示意图,具体的,UCI的信息序列(Information bits),首先进行CRC编码,在UCI的信息序列之后附加CRC序列(CRC attachment)得到待编码的序列,即UCI payload;对待编码的序列进行码块分割(Code block segmentation),将待编码的序列进行分段,实施中,将待编码的序列均分为两段,被分为两段的待编码的序列分别进行极化编码(Polar coding),并将编码后的两段待编码的序列进行速率匹配(Rate matching),最后将速率匹配完成编码后的两段待编码的序列进行码块级联(Code block concatenation)输出。此外,在上述对待编码的序列进行极化编码的过程中,也可以先将UCI的信息序列进行码块分割,在对码块分割后的UCI的信息序列分别添加设定长度的比特序列,在进行后续极化编码的过程。这种方式相比直接在UCI的信息序列添加CRC序列的方式,CRC序列的长度增加了,会明显降低系统的性能,但是因每个分段的UCI都包含CRC序列,在译码时较简单,容易操作。
由于在本发明实施例中,可以根据待编码的序列的长度及传输码率,确定待编码的序列对应的分段策略,针对不同长度的待编码的序列和不同的传输码率,确定对应的分段策略,保证了上行控制行道的性能。
实施例2:
当传输码率属于高码率时,不对待编码的序列分段,会对信噪比(Signal-to-Noise Ratio,SNR)产生影响。为了保证上行控制信道的性能,在上述实施例的基础上,在本发明实施例中,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
判断所述传输码率是否大于或大于等于预设的第一码率阈值;
如果是,确定不对所述待编码的序列分段。
具体的,发送端可以判断传输码率是否大于预设的第一码率阈值,如果是,确定不对待编码的序列进行分段。或者判断该传输码率是否大于等于预设的第一码率阈值,如果是,确定不对待编码的序列进行分段。
实施中,在本发明实施例中,预设的第一码率阈值为0.4。
当然了,也不排除一个比0.4更大的传输码率作为第一码率阈值,高于该第一码率阈值时不采用分段极化编码。
或者,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
判断所述传输码率是否大于或大于等于预设的第四码率阈值;
如果是,确定不对所述待编码的序列分段。
实施中,在本发明实施例中,其中,所述预设的第四码率阈值为9/25。当然了,也不排除一个比9/25更大的传输码率作为第四码率阈值,高于该第四码率阈值时不采用分段极化编码。
实施例3:
当传输码率属于中码率时,待编码的序列的长度不同,对待编码的序列是否进行分段,会对SNR产生影响,为了保证上行控制信道的性能,在上述各实施例的基础上,在本发明实施例中,所述根据待编码的序列的长度及传 输码率,确定所述待编码的序列对应的分段策略包括:
如果所述传输码率不大于或者小于预设的第一码率阈值、且不小于或大于预设的第二码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第一长度阈值,其中所述第一码率阈值大于所述第二码率阈值;
如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
具体的,如果传输码率不大于或者小于预设的第一码率阈值、且不小于或大于预设的第二码率阈值,其中所述第一码率阈值大于所述第二码率阈值,发送端判断待编码的序列的长度是否大于或者大于等于预设的第一长度阈值,如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
实施中,在本发明实施例中,预设的第一码率阈值为0.4、预设的第二码率阈值为0.2。
或者,在本发明实施例中,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
如果所述传输码率不小于或大于预设的第三码率阈值、且不大于或者小于预设的第四码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第四长度阈值,其中所述第四码率阈值大于所述第三码率阈值;
如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
实施中,在本发明实施例中,预设的第三码率阈值为6/25、预设的第四码率阈值为9/25。
在UCI的信息序列后添加的CRC序列为11位,即待编码的序列中包含的CRC序列为11位、极化编码时采用的列表大小(list size L)=8的极化译码(SCL decoding)情形下对应nFAR=8时,不同传输码率、不同待编码的序列的长度,采用对待编码的序列分段和不分段极化编码,在块差错率(BLock Error Rate,BLER)为0.01时对应的SNR值曲线,如图3所示。其中,当采 用11位CRC序列时,若采用list size L=8译码,nFAR=11-log 2(8)=8,此时对映的虚警概率(false alarm probability,FAR)=1/(2^nFAR);即当采用N位CRC序列时,若采用list size L=t译码,nFAR=N-log 2(t),对映的FAR=1/(2^nFAR)。
在图3中,Non-seg表示不分段、seg表示分段、R表示传输码率、坐标系的横轴表示待编码的序列的长度(K)、纵轴表示SNR值(S)。当待编码的序列的长度为550时,图中曲线由下到上依次对应Seg,R=0.2;Seg,R=0.22;Non-seg,R=0.2;Seg,R=0.24;Non-seg,R=0.22;Seg,R=0.26;Non-seg,R=0.24;Seg,R=0.28;Non-seg,R=0.26;Seg,R=0.3;Non-seg,R=0.28;Seg,R=0.32;Non-seg,R=0.3;Seg,R=0.34;Non-seg,R=0.32;Seg,R=0.36;Non-seg,R=0.34;Non-seg,R=0.36;Seg,R=0.38;Non-seg,R=0.38;Seg,R=0.4;Non-seg,R=0.4。另外在图3中当对待编码的序列进行分段时,将待编码的序列中的信息序列进行了分段,一个分段信息序列中添加了CRC。由图3可知,当传输码率在0.2至0.4之间,可以明显的观察到,在传输码率大于等于0.4时,分段进行极化编码的性能不如不采用分段极化编码的时的性能,所以一种可行的实施方式可以是在大于等于0.4时不采用分段极化编码;在待编码的序列的大小K在大于某一长度阈值后,会出现分段极化编码的性能明显优于不分段极化编码性能,但是该长度阈值随着传输码率在变化,如果找不到恰当的分界点,分段极化编码技术在实际中就不存在实用价值。
上述分析的是传输码率在0.2至0.4之间,分段与不分段的性能对比图,当传输码率在6/25至9/25之间,在对待编码的序列进行分段时,每个分段信息序列中都添加了CRC时,其分段与不分段的性能对比与图3类似,这里不再赘述。
实施时可以观察到随着传输码率的增加,在以K为x轴,SNR为y轴的平面图上该长度阈值与一条斜线很接近。这样就启发了在实施中可以利用线性近似去估计该阈值。具体例子如下:假定传输码率范围为[0.2,0.4],而该阈值在图3中所在的线性方程为y=tx+b,其中t与b为常数值,问题是图3 中的纵坐标不是传输码率,为了找到任何传输码率对映的该长度阈值需要进行线性插值处理。一个可行的例子可以是:当R=[0.2,0.4],对映K=[350,550],由于满足线性关系,对映纵坐标为:[y1=350t+b,y2=550t+b]。任何传输码率R∈[0.2,0.4],对映的纵坐标yR=y1+(y2-y1)*(R-0.2)/(0.4-0.2)=(1000R+150)*t+b,所以在传输码率[0.2,0.4]范围内该长度阈值满足Kth1=int(1000R+150),R∈[0.2,0.4],此处int表示取整,不排除四舍五入,取上整或者取下整等各种形式。
另一个可行的实施例为:当R=[0.2,0.4],对映K=[340,540],由于满足线性关系,对映纵坐标为:[y1=340t+b,y2=540t+b]。任何传输码率R∈[0.2,0.4],对映的纵坐标yR=y1+(y2-y1)*(R-0.2)/(0.4-0.2)=(1000R+140)*t+b,所以在码率[0.2,0.4]范围内该长度阈值满足Kth1=int(1000R+140),R∈[0.2,0.4]。该阈值仅仅与传输码率有关,且与传输码率间关系为线性关系。
因此在本发明实施例中,判断所述待编码的序列的长度是否大于预设的第一长度阈值之前,所述方法还包括:
根据所述传输码率及预设的第一函数,确定第一长度阈值。
其中,预设的第一函数为Kth1=int(c*R+b)或者Kth1=c*R+b,其中kth1为第一长度阈值、int为取整函数、c为预设的第一参数、b为预设的第二参数、R为传输码率。其中取整函数例如可以是int函数,还可以是floor函数等,取整函数int的取整方式可以设置为取上整、或取下整、或四舍五入取整等。
在上述第一函数中c不大于1200、且不小于800,所述b不大于161、且不小于119,实施中,c为1000,b为140。
或者,在本发明实施例中,所述判断所述待编码的序列的长度是否大于或者大于等于预设的第四长度阈值之前,所述方法还包括:
根据所述传输码率及预设的第二函数,确定第四长度阈值。
其中,所述预设的第二函数为Kth2=int(a*R+e)或者Kth2=a*R+e,其中kth2为第四长度阈值、int为取整函数、a为预设的第三参数、e为预设的第四参数、R为传输码率。在上述第二函数中a不大于1200、且不小于800,所述e不大 于196、且不小于144。实施中,a为1000,e为170。
表1为本发明实施例提供的一种当待编码的序列的长度为第一长度阈值时,不同传输码率(R)对应的上行控制信道增益值示例。其中增益值为分段时的SNR与不分段时的SNR的差值,第一长度阈值对应的确定函数为Kth=int(1000*R)+150。
表1:
R 第一长度阈值 增益值
0.2 350 0.128112
0.22 370 0.127483
0.24 390 0.10674
0.26 410 0.149014
0.28 430 0.115676
0.3 450 0.0837032
0.32 470 0.0356907
0.34 490 0.08450445
0.36 510 0.180271
0.38 530 0.2199536
0.4 550 0.1574885
如表1所示传输码率0.2对应的第一长度阈值为350,对应的增益值为0.128112;传输码率0.22对应的第一长度阈值为370,对应的增益值为0.127483;传输码率0.24对应的第一长度阈值为390,对应的增益值为0.10674;传输码率0.26对应的第一长度阈值为410,对应的增益值为0.149014;传输码率0.28对应的第一长度阈值为430,对应的增益值为0.115676;传输码率0.3对应的第一长度阈值为450,对应的增益值为0.0837032;传输码率0.32对应的第一长度阈值为470,对应的增益值为0.0356907;传输码率0.34对应的第一长度阈值为490,对应的增益值为0.08450445;传输码率0.36对应的第一长度阈值为510,对应的增益值为0.180271;传输码率0.38对应的第一长度阈值为530,对应的增益值为0.2199536;传输码率0.4对应的第一长度阈值为550,对应的增益值为0.1574885。因此可知,当传输码率在0.2至0.4之间,根据上述第一函数确定的第一长度阈值,确定是否进行对待编码的序列进行分段, 从而进行极化码编码,根据上述表1可知增益值都不是很大,因此将该对应的第一长度阈值作为进行判断的门限值非常恰当。
在本发明实施例中该待编码的序列包括信息序列和CRC序列,可以根据该待编码的序列的长度,确定对应的分段策略,当然如果根据信息序列的长度,确定对应的分段策略,因为待编码的序列长度和信息序列的长度之间的存在对应关系,所以如果根据信息序列的长度,确定对应的分段策略,在确定对应的长度阈值时,可以根据待编码的序列长度和信息序列的长度之间的存在对应关系,确定对应的合适的长度阈值。以下方案中也相同,在此不再赘述。
实施例4:
当传输码率处于低码率时,待编码的序列的长度不同,对待编码的序列是否进行分段,会对SNR产生影响,为了保证上行控制信道的性能,在上述各实施例的基础上,在本发明实施例中,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
如果所述传输码率小于或者小于等于预设的第二码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第二长度阈值;
如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
具体的,如果传输码率小于或者小于等于预设的第二码率阈值,发送端判断所述待编码的序列的长度是否大于或者大于等于预设的第二长度阈值;如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
实施中,在本发明实施例中,预设的第二码率阈值为0.2。
在UCI的信息序列后添加的CRC序列为11位,即待编码的序列中包含的CRC序列为11位、极化编码时采用的list size L=8的SCL decoding情形下对应nFAR=8时,不同传输码率、不同待编码的序列的长度,采用对待编码的序列分段和不分段极化编码,在BLER为0.01时对应的SNR值曲线,如图 4所示。其中,当采用11位CRC序列时,若采用list size L=8译码,nFAR=11-log 2(8)=8,此时对映的FAR=1/(2^nFAR);即当采用N位CRC序列时,若采用list size L=t译码,nFAR=N-log 2(t),对映的FAR=1/(2^nFAR)。
在图4中,Non-seg表示不分段、seg表示分段、R表示传输码率、坐标系的横轴表示待编码的序列的长度(K)、纵轴表示SNR值(S)。当待编码的序列的长度不同时,图中曲线由下到上的顺序存在差异,其中,当待编码的序列的长度为400时,图中曲线由下到上依次对应Seg,R=0.12;Non-seg,R=0.12;Seg,R=0.14;Non-seg,R=0.14;Seg,R=0.16;Non-seg,R=0.16;Seg,R=0.18;Non-seg,R=0.18。另外在图4中当对待编码的序列进行分段时,将待编码的序列中的信息序列进行了分段,一个分段信息序列中添加了CRC。由图4可知,在传输码率不大于0.2时,待编码的序列的长度大于等于290,就可以明显的观察到,对待编码的序列分段进行极化编码具有性能增益,实施中,在R<0.2可以选择一个固定的长度阈值Kth,当K>Kth则采用分段极化编码,Kth可以选择如K=340或者K=310、320、330、350等,该固定的长度阈值Kth,在R<0.2时对各个传输码率(rate)都是固定的,也可以针对各个传输码率采用位于290到390之间的不同的值。
因此,在本发明实施例中,预设的第二长度阈值不小于290、且不大于390,具体的,在码率小于0.2时,预设的第二长度阈值可以在该范围内进行确定,实施中,预设的第二长度阈值为340,即在进行判断时,将该预设的第二长度阈值设置为340,采用该固定的数值进行判断。
上述分析的是传输码率在0.2至0.4之间,分段与不分段的性能对比图,当传输码率在6/25至9/25之间,在对待编码的序列进行分段时,每个分段信息序列中都添加了CRC时,其分段与不分段的性能对比与图4类似,这里不再赘述。
或者,在本发明实施中,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
如果所述传输码率小于或者小于等于预设的第三码率阈值,判断所述待 编码的序列的长度是否大于或者大于等于预设的第三长度阈值;
如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
在本发明实施例中,预设的第三码率阈值可以为6/25。
所述预设的第三长度阈值不小于348、且不大于472。
所述预设的第三长度阈值可以为410。
表2为本发明实施例提供的一种当待编码的序列的长度为第二长度阈值时,不同传输码率(R)对应的上行控制信道增益值示例。其中增益值为分段时的SNR,与不分段时的SNR的差值。
表2:
R 第二长度阈值 增益值
0.12 340 0.032309
0.14 340 0.069684
0.16 340 0.10115
0.18 340 0.071813
如表2所示,传输码率0.12对应的第二长度阈值为340,对应的增益值为0.032309;传输码率0.14对应的第二长度阈值为340,对应的增益值为0.069684;传输码率0.16对应的第二长度阈值为340,对应的增益值为0.10115;传输码率0.18对应的第二长度阈值为340,对应的增益值为0.071813。因此可知,当传输码率不高于0.2时,根据上述第二长度阈值,确定是否进行对待编码的序列进行分段,从而进行极化码编码,根据上述表2可知增益值都不是很大,因此将该对应的第二长度阈值作为进行判断的门限值非常恰当。
实施例5:
待编码的序列的长度不同,对待编码的序列是否进行分段,会对SNR产生影响,为了保证上行控制信道的性能,在上述实施例的基础上,在本发明实施例中,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
判断所述待编码的序列的长度是否大于或大于等于预设的第五长度阈值;
如果是,确定对所述待编码的序列分段。
具体的,发送端可以判断待编码的序列的长度是否大于或大于等于预设的第五长度阈值,如果是,确定对待编码的序列分段。
其中,第五码率阈值位于最大待编码比特长度的x倍到最大待编码比特长度的N倍之间,x为大于0小于N的数值,N为大于0的数值。实施中,x为大于等于0.3,小于2的数值,N为2。
例如:5G polar码的最大母码长度规定为1024,这样允许的待编码的序列的长度一定小于1024,如果待编码的序列的长度为1060,大于等于1024小于2048,这样无论传输码率为多少都直接将待编码的序列分段进行polar编码,比如分为两段进行polar编码。仿真结果如图5所示,在待编码的序列的长度小于最大待编码比特长度1024时,大于某一预设值,不管传输码率为多少,直接分段可以获得比不分段更好的性能,而且处理简单,该预设值可以位于500以上1200以下。
当然从实现角度当x>=0.3,即对应的待编码的序列的长度大于等于0.3*1024=307时,不管传输码率为多少,直接分段,该方式虽然在待编码的序列的长度较短时有性能损失,但该分段方式简单,也是可行的。
对待编码的序列分段时一种可行的方案是,采用等分或者近似等分的方式,实施中可以只分两段,然后对每段进行polar编码。
实施例6:
在上述实施例5中,可以只考虑待编码的序列的长度,从而确定是否分段。另外,传输码率的不同也会对上行控制信道的性能产生影响,为了进一步保证上行控制信道的性能,在上述实施例5的基础上,如果待编码的序列的长度大于或大于等于预设的第五长度阈值,所述确定对所述待编码的序列分段之前,所述方法还包括:
判断所述传输码率是否小于或小于等于预设的第五码率阈值;
如果是,进行后续步骤。
具体的,如果待编码的序列的长度大于或大于等于预设的第五长度阈值, 发送端判断传输码率是否小于或小于等于预设的第五码率阈值,如果是,确定对所述待编码的序列分段。
实施中,预设的第五码率阈值不小于0.2、且不大于0.9,实施中,预设的第五码率阈值为0.75,或2/3,或1/2,或2/5,或0.38,或0.36,或1/3,或0.3,或0.28,或0.26,或0.24,或1/4,或1/5。
实施中,预设的第五长度阈值不小于300、且不大于450,实施中,预设的第五长度阈值为340,或350,或360,或370,或380,或390,或400,或410,或420,或430,或440,或450。
其中,预设的第五码率阈值(Rth5)与预设的第五长度阈值(Kth5)在实施中可行的取值组合{Rth5,Kth5}包括:{0.4,350}、{0.4,370}、{0.4,380}、{0.4,390}、{0.4,400}、{0.4,410}、{0.4,420}、{0.28,370}、{0.28,380}、{0.28,390}、{0.28,400}、{0.28,410}、{0.28,420}、{0.26,370}、{0.26,380}、{0.26,390}、{0.26,400}、{0.26,410}、{0.26,420}。
对待编码的序列分段时一种可行的实施方式可以是,采用等分或者近似等分的方法,实施中可以只分两段,然后对每段进行polar编码。
实施例7:
由于massive MIMO等原因,导致5G上行控制信息(UCI)的最大反馈量大大增加,单载波情况下UCI最大反馈量不包括11比特CRC就达到543比特。5G支持每个单载波反馈UCI,但也支持多载波反馈UCI,这样就会出现待编码的序列的长度大于543+11=554,随着UCI长度的增加,在更高的传输码率上就会满足分段条件。
为了保证上行控制信道的性能,在上述各实施例的基础上,在本发明实施例中,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
判断所述传输码率是否大于预设的第六码率阈值;
如果是,确定根据预设的线性函数K_th1=f*R+g或K_th1=int(f*R+g)对所述待编码的序列分段,其中K_th1为第一长度值、f为预设的第五参数值、 g为预设的第六参数值、R为传输码率、int为取整函数。
实施中,f为位于500-1200范围内的数值、g为位于60-300范围内的数值。
在本发明实施例中,当传输码率大于预设的第六码率阈值时,直接根据预设的线性函数对待编码的序列分段。
实施中,预设的第六码率阈值为0.2。
图6为对应的仿真结果示意图,根据图6所示:其对应的分段方法可以采用如下规则:
if R<=1/5
K_th=370;
Else if R>1/5
K_th=1024*R+150;
End
当码率大于0.2时,可以采用线性函数K_th1=1024*R+150进行分段。
图7为另一仿真结果示意图,根据图7所示可知,其对应的分段方法可以采用如下规则:
if K(i)/M(i)<=1/5
K_th=350;
elseif K(i)/M(i)>1/5
K_th=832*R+200;
End
当码率大于0.2时,也可以采用线性函数K_th1=832*R+200进行分段,采用该线性函数进行分段,也可以取得比较好的性能。
对待编码的序列分段时一种可行的实施方式可以是,采用等分或者近似等分的方法,实施中可以只分两段,然后对每段进行polar编码。
实施例8:
根据上述图6和图7所示,事实上当待编码的比特大于600比特时,线性函数分界点比前面的分段方式更靠近两条性性能曲线的交叉点,从分段意 义上此种方式更精确,当然由于分段会导致polar译码复杂度增加,到底取那种方式需要更好,需要折中考虑。因此,在实施例7的基础上在本发明实施中,还可以考虑其他方式。
其中,所述确定根据预设的线性函数K_th1=f*R+g或K_th1=int(f*R+g)对所述待编码的序列分段包括:
根据预先设定的至少两个码率区间,及每个码率区间对应的预设的线性函数K_th1=fn*R+gn或K_th1=int(fn*R+gn),确定所述传输码率对应的目标码率区间,根据所述目标码率区间对应的目标线性函数对所述待编码的序列分段,其中所述码率区间中的最小码率值不小于所述预设的第六码率阈值。
具体的,发送端预先设置有至少两个码率区间,并保存有每个码率区间对应的预设的线性函数K_th1=fn*R+gn或K_th1=int(fn*R+gn),其中码率区间中的最小码率值不小于预设的第六码率阈值。例如:预设的第六码率阈值为0.2,预设有两个码率区间分别为大于0.2小于0.4、及大于等于0.4。发送端在根据预设的线性函数K_th1=f*R+g或K_th1=int(f*R+g)对所述待编码的序列分段时,根据传输码率,确定传输码率对应的目标码率区间,根据目标码率区间对应的目标线性函数对所述待编码的序列分段。
例如:码率区间为大于0.2小于0.4对应的线性函数为K_th1=1024*R+140,码率区间大于等于0.4对应的线性函数为K_th1=832*R+200。
当然也可以预先划分为三个码率区间或者更多个码率区间,每个码率区间对应不同的线性函数。
实施中,预设的第六码率阈值为0.2。
图8为本发明实施例提供的仿真结果示意图,根据图8所示,其对应的分段方法采用如下规则:
if R<=1/5
K_th=340;
elseif R>1/5&&R<2/5
K_th=1024*R+140;
Else if R>=2/5
K_th=832*R+200;
End
即,在码率大于0.2,小于0.4时,可以采用线性函数K_th=1024*R+140分段,当码率大于等于0.4时,采用线性函数K_th=832*R+200进行分段。即当R大于等于0.4在原来分段方法基础上再增加个线性分段函数,这样可以保证各个区域分段的精确化。
实施例9:
在上述实施例7和实施例8中,可以只考虑传输码率,从而确定是否对待编码序列分段,另外待编码的序列的长度不同,也会对上行控制信道的性能产生影响,为了进一步保证上行控制信道的性能,在上述实施例7和实施例8的基础上,确定对所述待编码序列进行分段之前,所述方法还包括:
判断所述待编码序列的长度是否小于等于预设的第五长度阈值;
如果是,进行后续步骤。
实施中,第五码率阈值位于最大待编码比特长度的x倍到最大待编码比特长度的N倍之间,其中x为大于0小于N的数值,N为大于0的数值,实施中,x为大于等于0.3,小于2的数值,N为2。
因为随着码率的增加,当UCI的长度大于待编码序列的最大长度时,不管是什么码率,都可以直接分段。待编码序列的最大长度只是一个具体的例子,当然还可以是其他长度。
实施例10:
实施中,为了简化流程,无论传输码率为多少,都可以采用线性函数进行分段,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
根据预设的线性函数K_th2=h*R+i或K_th2=int(h*R+i)对所述待编码的序列分段,其中K_th2为第二长度值、h为预设的第七参数值、i为预设的第八参数值、R为传输码率、int为取整函数。
具体的,在该实施例中无论传输码率为多少,发送端根据预设的线性函数K_th2=h*R+i或K_th2=int(h*R+i)对所述待编码的序列分段。其中,预设的线性函数可以是一个,也可以是两个以上,如果包含两个以上的线性函数时,在进行分段时,可以根据实际情况灵活选择。
实施中,h为500-1200、i为60-300。
实施例11:
在上述实施例10中,可以不考虑传输码率,都采用线性函数进行分段,另因待编码的序列的长度不同,也会对上行控制信道的性能产生影响,为了进一步保证上行控制信道的性能,在上述实施例的基础上,确定对所述待编码序列进行分段之前,所述方法还包括:
判断所述待编码序列的长度是否小于等于预设的第五长度阈值;
如果是,进行后续步骤。
实施中,第五码率阈值位于最大待编码比特长度的x倍到最大待编码比特长度的N倍之间,其中x为大于0小于N的数值,N为大于0的数值,实施中,x为大于等于0.3,小于2的数值,N为2。
上述实施方式也可以理解为,当码率低于某一预设值,如该预设值为0.9时,都采用同一线性函数来进行分段,例如可以为K_th=832*R+200;当码率高于该预设值0.9时,采用其他方式,比如直接分段的方式,因为码率过高按照线性方式进行分段也许有性能增益,但是直接分段方式也许更简单。
在本发明实施例中,根据待编码的序列长度叙述分段门限(Kth),事实上分段门限也可在码率已知的情况下也可按照编码后数据长度(M)叙述。其关系为M=K/R,以Kth=aR+b为例,两边除以R即得Mth=a+b/R。其中R为传输码率、K为待编码的序列的长度。
本发明实施例根据待编码的信息比特长度叙述分段门限Kth,事实上分段门限也可在码率已知的情况下,也可按照编码后数据长度M叙述。其关系为M=K/R,以Kth=aR+b为例,两边除以R即得Mth=a+b/R。因此根据编码后的数据长度进行分段的方式,可以根据本发明实施例公开的上述各实施方式, 相应的推导而出,本领域技术人员根据上述描述进行相应的变形即可。
实施例12:
另外,上述各实施例中,在本发明实施例中,当所述分段策略为对所述待编码的序列进行分段时,所述根据所述分段策略,对所述待编码的序列进行相应处理包括:
对所述待编码的序列中的信息序列进行分段;或,
对包含信息序列及CRC序列的所述待编码的序列进行分段。
在本发明实施例中待编码的序列中包括信息序列和CRC序列,在对待编码的序列进行分段时,可以只对待编码的序列分段。这是因为在进行极化码编码时,在信息序列之后添加CRC序列得到待编码的序列,之后对待编码的序列进行分段,一种可行的实施方式可以是均分为两段,被分为两段的待编码的序列分别利用polar码进行编码,因此得到的分段后的待编码的序列中可能只有一个有CRC。
或者,也可以是对待编码的序列中的信息序列进行分段。也就是先将信息序列分为两段,每段添加L比特的CRC序列,例如11比特。比如信息序列的长度不同,或nFAR值不同,添加的CRC序列的长度不同,具体可以根据需求进行灵活设置。
实施例13:
图9为本发明实施例提供的一种极化编码装置结构示意图,所述装置包括:
确定模块51,用于根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略;
编码模块52,用于根据所述分段策略,对所述待编码的序列进行相应处理,并将处理后的所述待编码的序列进行极化编码。
所述确定模块51,具体用于判断所述传输码率是否大于或大于等于预设的第一码率阈值;如果是,确定不对所述待编码的序列分段。
所述确定模块51,具体用于如果所述传输码率不大于或者小于预设的第 一码率阈值、且不小于或大于预设的第二码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第一长度阈值,其中所述第一码率阈值大于所述第二码率阈值;如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
实施中,所述预设的第一码率阈值为0.4。
所述确定模块51,还用于根据所述传输码率及预设的第一函数,确定第一长度阈值。
实施中,所述预设的第一函数为Kth1=int(c*R+b)或者Kth1=c*R+b,其中kth1为第一长度阈值、int为取整函数、c为预设的第一参数、b为预设的第二参数、R为传输码率。
实施中,所述c不大于1200、且不小于800,所述b不大于161、且不小于119。
实施中,所述c为1000,b为140。
所述确定模块51,具体用于如果所述传输码率小于或者小于等于预设的第二码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第二长度阈值;如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
实施中,所述预设的第二长度阈值不小于290、且不大于390。
实施中,所述预设的第二长度阈值位340。
实施中,所述预设的第二码率阈值为0.2。
实施中,所述确定模块51,具体用于如果所述传输码率小于或者小于等于预设的第三码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第三长度阈值;如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
实施中,所述第三码率阈值为6/25。
实施中,所述预设的第三长度阈值不小于348、且不大于472。
实施中,所述预设的第三长度阈值为410。
实施中,所述确定模块51,具体用于果所述传输码率不小于或大于预设的第三码率阈值、且不大于或者小于预设的第四码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第四长度阈值,其中所述第四码率阈值大于所述第三码率阈值;如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
实施中,所述确定模块51,具体用于判断所述待编码的序列的长度是否大于或者大于等于预设的第四长度阈值之前,根据所述传输码率及预设的第二函数,确定第四长度阈值。
实施中,所述预设的第二函数为Kth2=int(a*R+e)或者Kth2=a*R+e,其中kth2为第四长度阈值、int为取整函数、a为预设的第三参数、e为预设的第四参数、R为传输码率。
实施中,所述a不大于1200、且不小于800,所述e不大于196、且不小于144。
实施中,所述a为1000,e为170。
实施中,所述确定模块51,具体用于判断所述传输码率是否大于或大于等于预设的第四码率阈值;如果是,确定不对所述待编码的序列分段。
实施中,所述预设的第四码率阈值为9/25。
实施中,所述确定模块51,具体用于判断所述待编码的序列的长度是否大于或大于等于预设的第五长度阈值;如果是,确定对所述待编码的序列分段。
实施中,所述确定模块51,具体用于判断所述传输码率是否小于或小于等于预设的第五码率阈值;如果是,确定对所述待编码的序列分段。
实施中,所述预设的第五码率阈值不小于0.2、且不大于0.9。
实施中,所述预设的第五码率阈值为0.75,或2/3,或1/2,或2/5,或0.38,或0.36,或1/3,或0.3,或0.28,或0.26,或0.24,或1/4,或1/5。
实施中,所述预设的第五长度阈值不小于300、且不大于450。
实施中,所述预设的第五长度阈值为340,或350,或360,或370,或 380,或390,或400,或410,或420,或430,或440,或450。
实施中,所述确定模块51,具体用于判断所述传输码率是否大于预设的第六码率阈值;如果是,确定根据预设的线性函数K_th1=f*R+g或K_th1=int(f*R+g)对所述待编码的序列分段,其中K_th1为第一长度值、f为预设的第五参数值、g为预设的第六参数值、R为传输码率、int为取整函数。
实施中,所述f为位于500-1200范围内的数值、g为位于60-300范围内的数值。
实施中,所述f为832、g为200。
实施中,所述确定模块51,具体用于确定根据预先设定的至少两个码率区间,及每个码率区间对应的预设的线性函数K_th1=fn*R+gn或K_th1=int(fn*R+gn),确定所述传输码率对应的目标码率区间,根据所述目标码率区间对应的目标线性函数对所述待编码的序列分段,其中所述码率区间中的最小码率值不小于所述预设的第六码率阈值。
实施中,所述预设的第六码率阈值为0.2。
实施中,所述确定模块51,具体用于确定根据预设的线性函数K_th2=h*R+i或K_th2=int(h*R+i)对所述待编码的序列分段,其中K_th2为第二长度值、h为预设的第七参数值、i为预设的第八参数值、R为传输码率、int为取整函数。
实施中,所述h为位于500-1200范围内的数值、i为位于60-300范围内的数值。
实施中,所述确定模块51,还用于判断所述待编码序列的长度是否小于等于预设的第五长度阈值;如果是,进行确定对所述待编码序列进行分段的步骤。
实施中,所述第五码率阈值位于最大待编码比特长度的x倍到最大待编码比特长度的N倍之间,其中x为大于0小于N的数值。
实施中,所述x为大于等于0.3,小于2的数值,N为2。
实施中,编码模块52,具体用于当所述分段策略为对所述待编码的序列 进行分段时,对所述待编码的序列中的信息序列进行分段;或,对包含信息序列及CRC序列的所述待编码的序列进行分段。
实施例14:
基于同一发明构思,本发明实施例中还提供了一种电子设备,由于上述电子设备解决的原理与极化编码方法相似,因此上述电子设备的实施可以参见方法的实施,重复之处不再赘述。
如图10所示,为本发明实施例提供的电子设备结构示意图,其中在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器61代表的一个或多个处理器和存储器62代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器61负责管理总线架构和通常的处理,存储器62可以存储处理器61在执行操作时所使用的数据。
在本发明实施例提供的电子设备中:
处理器61,用于读取存储器62中的程序,执行下列过程:根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略;根据所述分段策略,对所述待编码的序列进行相应处理,并将处理后的所述待编码的序列进行极化编码。
实施中,所述处理器61,具体用于判断所述传输码率是否大于或大于等于预设的第一码率阈值;如果是,确定不对所述待编码的序列分段。
实施中,所述处理器61,具体用于如果所述传输码率不大于或者小于预设的第一码率阈值、且不小于或大于预设的第二码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第一长度阈值,其中所述第一码率阈值大于所述第二码率阈值;如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
实施中,所述预设的第一码率阈值为0.4。
实施中,所述处理器61,还用于根据所述传输码率及预设的函数,确定 第一长度阈值。
实施中,所述预设的函数为Kth=int(c*R+b)或者Kth=c*R+b,其中kth为第一长度阈值、int为取整函数、c为预设的第一参数、b为预设的第二参数、R为传输码率。
实施中,所述c不大于1200、且不小于800,所述b不大于161、且不小于119。
实施中,所述c为1000,b为140。
实施中,所述处理器61,具体用于如果所述传输码率小于或者小于等于预设的第二码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第二长度阈值;如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
实施中,所述预设的第二长度阈值不小于290、且不大于390。
实施中,所述预设的第二长度阈值位340。
实施中,所述预设的第二码率阈值为0.2。
实施中,所述处理器61,具体用于如果所述传输码率小于或者小于等于预设的第三码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第三长度阈值;如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
实施中,所述第三码率阈值为6/25。
实施中,所述预设的第三长度阈值不小于348、且不大于472。
实施中,所述预设的第三长度阈值为410。
实施中,所述处理器61,具体用于如果所述传输码率不小于或大于预设的第三码率阈值、且不大于或者小于预设的第四码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第四长度阈值,其中所述第四码率阈值大于所述第三码率阈值;如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
实施中,所述处理器61,还用于判断所述待编码的序列的长度是否大于 或者大于等于预设的第四长度阈值之前,根据所述传输码率及预设的第二函数,确定第四长度阈值。
实施中,所述预设的第二函数为Kth2=int(a*R+e)或者Kth2=a*R+e,其中kth2为第四长度阈值、int为取整函数、a为预设的第三参数、e为预设的第四参数、R为传输码率。
实施中,所述a不大于1200、且不小于800,所述e不大于196、且不小于144。
实施中,所述a为1000,e为170。
实施中,所述处理器61,具体用于判断所述传输码率是否大于或大于等于预设的第四码率阈值;如果是,确定不对所述待编码的序列分段。
实施中,所述预设的第四码率阈值为9/25。
实施中,所述处理器61,具体用于判断所述待编码的序列的长度是否大于或大于等于预设的第五长度阈值;如果是,确定对所述待编码的序列分段。
实施中,所述处理器61,具体用于判断所述传输码率是否小于或小于等于预设的第五码率阈值;如果是,确定对所述待编码的序列分段。
实施中,所述预设的第五码率阈值不小于0.2、且不大于0.9。
实施中,所述预设的第五码率阈值为0.75,或2/3,或1/2,或2/5,或0.38,或0.36,或1/3,或0.3,或0.28,或0.26,或0.24,或1/4,或1/5。
实施中,所述预设的第五长度阈值不小于300、且不大于450。
实施中,所述预设的第五长度阈值为340,或350,或360,或370,或380,或390,或400,或410,或420,或430,或440,或450。
实施中,所述处理器61,具体用于判断所述传输码率是否大于预设的第六码率阈值;如果是,确定根据预设的线性函数K_th1=f*R+g或K_th1=int(f*R+g)对所述待编码的序列分段,其中K_th1为第一长度值、f为预设的第五参数值、g为预设的第六参数值、R为传输码率、int为取整函数。
实施中,所述f为位于500-1200范围内的数值、g为位于60-300范围内的数值。
实施中,所述f为832、g为200。
实施中,所述处理器61,具体用于确定根据预先设定的至少两个码率区间,及每个码率区间对应的预设的线性函数K_th1=fn*R+gn或K_th1=int(fn*R+gn),确定所述传输码率对应的目标码率区间,根据所述目标码率区间对应的目标线性函数对所述待编码的序列分段,其中所述码率区间中的最小码率值不小于所述预设的第六码率阈值。
实施中,所述预设的第六码率阈值为0.2。
实施中,所述处理器61,具体用于确定根据预设的线性函数K_th2=h*R+i或K_th2=int(h*R+i)对所述待编码的序列分段,其中K_th2为第二长度值、h为预设的第七参数值、i为预设的第八参数值、R为传输码率、int为取整函数。
实施中,所述h为位于500-1200范围内的数值、i为位于60-300范围内的数值。
实施中,所述处理器61,还用于判断所述待编码序列的长度是否小于等于预设的第五长度阈值;如果是,进行确定对所述待编码序列进行分段的步骤。
实施中,所述第五码率阈值位于最大待编码比特长度的x倍到最大待编码比特长度的N倍之间,其中x为大于0小于N的数值。
实施中,所述x为大于等于0.3,小于2的数值,N为2。
实施中,所述处理器61,具体用于当所述分段策略为对所述待编码的序列进行分段时,对所述待编码的序列中的信息序列进行分段;或,对包含信息序列及CRC序列的所述待编码的序列进行分段。
实施例15:
在上述各实施例的基础上,本发明实施例还提供了一种计算机存储可读存储介质,所述计算机可读存储介质内存储有可由电子设备执行的计算机程序,当所述程序在所述电子设备上运行时,使得所述电子设备执行时实现如下步骤:
根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略;
根据所述分段策略,对所述待编码的序列进行相应处理,并将处理后的所述待编码的序列进行极化编码。
实施中,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
判断所述传输码率是否大于或大于等于预设的第一码率阈值;
如果是,确定不对所述待编码的序列分段。
实施中,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
如果所述传输码率不大于或者小于预设的第一码率阈值、且不小于或大于预设的第二码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第一长度阈值,其中所述第一码率阈值大于所述第二码率阈值;
如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
实施中,所述预设的第一码率阈值为0.4。
实施中,所述判断所述待编码的序列的长度是否大于预设的第一长度阈值之前,所述方法还包括:
根据所述传输码率及预设的第一函数,确定第一长度阈值。
实施中,所述预设的第一函数为Kth1=int(c*R+b)或者Kth1=c*R+b,其中kth1为第一长度阈值、int为取整函数、c为预设的第一参数、b为预设的第二参数、R为传输码率。
实施中,所述c不大于1200、且不小于800,所述b不大于161、且不小于119。
实施中,所述c为1000,b为140。
实施中,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
如果所述传输码率小于或者小于等于预设的第二码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第二长度阈值;
如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
实施中,所述预设的第二长度阈值不小于290、且不大于390。
实施中,所述预设的第二长度阈值为340。
实施中,所述预设的第二码率阈值为0.2。
实施中,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
如果所述传输码率小于或者小于等于预设的第三码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第三长度阈值;
如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
实施中,所述第三码率阈值为6/25。
实施中,所述预设的第三长度阈值不小于348、且不大于472。
实施中,所述预设的第三长度阈值为410。
实施中,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
如果所述传输码率不小于或大于预设的第三码率阈值、且不大于或者小于预设的第四码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第四长度阈值,其中所述第四码率阈值大于所述第三码率阈值;
如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
实施中,所述判断所述待编码的序列的长度是否大于或者大于等于预设的第四长度阈值之前,所述方法还包括:
根据所述传输码率及预设的第二函数,确定第四长度阈值。
实施中,所述预设的第二函数为Kth2=int(a*R+e)或者Kth2=a*R+e,其中 kth2为第四长度阈值、int为取整函数、a为预设的第三参数、e为预设的第四参数、R为传输码率。
实施中,所述a不大于1200、且不小于800,所述e不大于196、且不小于144。
实施中,所述a为1000,e为170。
实施中,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
判断所述传输码率是否大于或大于等于预设的第四码率阈值;
如果是,确定不对所述待编码的序列分段。
实施中,所述预设的第四码率阈值为9/25。
实施中,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
判断所述待编码的序列的长度是否大于或大于等于预设的第五长度阈值;
如果是,确定对所述待编码的序列分段。
实施中,所述确定对所述待编码的序列分段之前,所述方法还包括:
判断所述传输码率是否小于或小于等于预设的第五码率阈值;
如果是,进行后续步骤。
实施中,所述预设的第五码率阈值不小于0.2、且不大于0.9。
实施中,所述预设的第五码率阈值为0.75,或2/3,或1/2,或2/5,或0.38,或0.36,或1/3,或0.3,或0.28,或0.26,或0.24,或1/4,或1/5。
实施中,所述预设的第五长度阈值不小于300、且不大于450。
实施中,所述预设的第五长度阈值为340,或350,或360,或370,或380,或390,或400,或410,或420,或430,或440,或450。
实施中,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
判断所述传输码率是否大于预设的第六码率阈值;
如果是,确定根据预设的线性函数K_th1=f*R+g或K_th1=int(f*R+g) 对所述待编码的序列分段,其中K_th1为第一长度值、f为预设的第五参数值、g为预设的第六参数值、R为传输码率、int为取整函数。
实施中,所述f为位于500-1200范围内的数值、g为位于60-300范围内的数值。
实施中,所述f为832、g为200。
实施中,所述确定根据预设的线性函数K_th1=f*R+g或K_th1=int(f*R+g)对所述待编码的序列分段包括:
确定根据预先设定的至少两个码率区间,及每个码率区间对应的预设的线性函数K_th1=fn*R+gn或K_th1=int(fn*R+gn),确定所述传输码率对应的目标码率区间,根据所述目标码率区间对应的目标线性函数对所述待编码的序列分段,其中所述码率区间中的最小码率值不小于所述预设的第六码率阈值。
实施中,所述预设的第六码率阈值为0.2。
实施中,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
确定根据预设的线性函数K_th2=h*R+i或K_th2=int(h*R+i)对所述待编码的序列分段,其中K_th2为第二长度值、h为预设的第七参数值、i为预设的第八参数值、R为传输码率、int为取整函数。
实施中,所述h为位于500-1200范围内的数值、i为位于60-300范围内的数值。
实施中,确定对所述待编码序列进行分段之前,所述方法还包括:
判断所述待编码序列的长度是否小于等于预设的第五长度阈值;
如果是,进行后续步骤。
实施中,所述第五码率阈值位于最大待编码比特长度的x倍到最大待编码比特长度的N倍之间,其中x为大于0小于N的数值。
实施中,所述x为大于等于0.3,小于2的数值,N为2。
实施中,当所述分段策略为对所述待编码的序列进行分段时,所述根据 所述分段策略,对所述待编码的序列进行相应处理包括:
对所述待编码的序列中的信息序列进行分段;或,
对包含信息序列及CRC序列的所述待编码的序列进行分段。
对于系统/装置实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了 基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (82)

  1. 一种极化编码方法,其特征在于,所述方法包括:
    根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略;
    根据所述分段策略,对所述待编码的序列进行相应处理,并将处理后的所述待编码的序列进行极化编码。
  2. 如权利要求1所述的方法,其特征在于,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
    判断所述传输码率是否大于或大于等于预设的第一码率阈值;
    如果是,确定不对所述待编码的序列分段。
  3. 如权利要求1所述的方法,其特征在于,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
    如果所述传输码率不大于或者小于预设的第一码率阈值、且不小于或大于预设的第二码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第一长度阈值,其中所述第一码率阈值大于所述第二码率阈值;
    如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
  4. 如权利要求2或3所述的方法,其特征在于,所述预设的第一码率阈值为0.4。
  5. 如权利要求3所述的方法,其特征在于,所述判断所述待编码的序列的长度是否大于或者大于等于预设的第一长度阈值之前,所述方法还包括:
    根据所述传输码率及预设的第一函数,确定第一长度阈值。
  6. 如权利要求5所述的方法,其特征在于,所述预设的第一函数为Kth1=int(c*R+b)或者Kth1=c*R+b,其中kth1为第一长度阈值、int为取整函数、c为预设的第一参数、b为预设的第二参数、R为传输码率。
  7. 如权利要求6所述的方法,其特征在于,所述c不大于1200、且不小 于800,所述b不大于161、且不小于119。
  8. 如权利要求7所述的方法,其特征在于,所述c为1000,b为140。
  9. 如权利要求1所述的方法,其特征在于,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
    如果所述传输码率小于或者小于等于预设的第二码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第二长度阈值;
    如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
  10. 如权利要求9所述的方法,其特征在于,所述预设的第二长度阈值不小于290、且不大于390。
  11. 如权利要求10所述的方法,其特征在于,所述预设的第二长度阈值为340。
  12. 如权利要求3或9所述的方法,其特征在于,所述预设的第二码率阈值为0.2。
  13. 如权利要求1所述的方法,其特征在于,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
    如果所述传输码率小于或者小于等于预设的第三码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第三长度阈值;
    如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
  14. 如权利要求13所述的方法,其特征在于,所述第三码率阈值为6/25。
  15. 如权利要求13所述的方法,其特征在于,所述预设的第三长度阈值不小于348、且不大于472。
  16. 如权利要求15所述的方法,其特征在于,所述预设的第三长度阈值为410。
  17. 如权利要求1所述的方法,其特征在于,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
    如果所述传输码率不小于或大于预设的第三码率阈值、且不大于或者小于预设的第四码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第四长度阈值,其中所述第四码率阈值大于所述第三码率阈值;
    如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
  18. 如权利要求17所述的方法,其特征在于,所述判断所述待编码的序列的长度是否大于或者大于等于预设的第四长度阈值之前,所述方法还包括:
    根据所述传输码率及预设的第二函数,确定第四长度阈值。
  19. 如权利要求18所述的方法,其特征在于,所述预设的第二函数为Kth2=int(a*R+e)或者Kth2=a*R+e,其中kth2为第四长度阈值、int为取整函数、a为预设的第三参数、e为预设的第四参数、R为传输码率。
  20. 如权利要求19所述的方法,其特征在于,所述a不大于1200、且不小于800,所述e不大于196、且不小于144。
  21. 如权利要求20所述的方法,其特征在于,所述a为1000,e为170。
  22. 如权利要求1所述的方法,其特征在于,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
    判断所述传输码率是否大于或大于等于预设的第四码率阈值;
    如果是,确定不对所述待编码的序列分段。
  23. 如权利要求17或22所述的方法,其特征在于,所述预设的第四码率阈值为9/25。
  24. 如权利要求1所述的方法,其特征在于,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
    判断所述待编码的序列的长度是否大于或大于等于预设的第五长度阈值;
    如果是,确定对所述待编码的序列分段。
  25. 如权利要求24所述的方法,其特征在于,所述确定对所述待编码的序列分段之前,所述方法还包括:
    判断所述传输码率是否小于或小于等于预设的第五码率阈值;
    如果是,进行后续步骤。
  26. 如权利要求25所述的方法,其特征在于,所述预设的第五码率阈值不小于0.2、且不大于0.9。
  27. 如权利要求26所述的方法,其特征在于,所述预设的第五码率阈值为0.75,或2/3,或1/2,或2/5,或0.38,或0.36,或1/3,或0.3,或0.28,或0.26,或0.24,或1/4,或1/5。
  28. 如权利要求26所述的方法,其特征在于,所述预设的第五长度阈值不小于300、且不大于450。
  29. 如权利要求28所述的方法,其特征在于,所述预设的第五长度阈值为340,或350,或360,或370,或380,或390,或400,或410,或420,或430,或440,或450。
  30. 如权利要求1所述的方法,其特征在于,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
    判断所述传输码率是否大于预设的第六码率阈值;
    如果是,确定根据预设的线性函数K_th1=f*R+g或K_th1=int(f*R+g)对所述待编码的序列分段,其中K_th1为第一长度值、f为预设的第五参数值、g为预设的第六参数值、R为传输码率、int为取整函数。
  31. 如权利要求30所述的方法,其特征在于,所述f为位于500-1200范围内的数值、g为位于60-300范围内的数值。
  32. 如权利要求31所述的方法,其特征在于,所述f为832、g为200。
  33. 如权利要求30所述的方法,其特征在于,所述确定根据预设的线性函数K_th1=f*R+g或K_th1=int(f*R+g)对所述待编码的序列分段包括:
    确定根据预先设定的至少两个码率区间,及每个码率区间对应的预设的线性函数K_th1=fn*R+gn或K_th1=int(fn*R+gn),确定所述传输码率对应的目标码率区间,根据所述目标码率区间对应的目标线性函数对所述待编码的序列分段,其中所述码率区间中的最小码率值不小于所述预设的第六码率阈值。
  34. 如权利要求30或33所述的方法,其特征在于,所述预设的第六码率阈值为0.2。
  35. 如权利要求1所述的方法,其特征在于,所述根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略包括:
    确定根据预设的线性函数K_th2=h*R+i或K_th2=int(h*R+i)对所述待编码的序列分段,其中K_th2为第二长度值、h为预设的第七参数值、i为预设的第八参数值、R为传输码率、int为取整函数。
  36. 如权利要求35所述的方法,其特征在于,所述h为位于500-1200范围内的数值、i为位于60-300范围内的数值。
  37. 如权利要求30或33或35所述的方法,其特征在于,确定对所述待编码序列进行分段之前,所述方法还包括:
    判断所述待编码序列的长度是否小于等于预设的第五长度阈值;
    如果是,进行后续步骤。
  38. 如权利要求24或37所述的方法,其特征在于,所述第五码率阈值位于最大待编码比特长度的x倍到最大待编码比特长度的N倍之间,其中x为大于0小于N的数值。
  39. 如权利要求38所述的方法,其特征在于,所述x为大于等于0.3,小于2的数值,N为2。
  40. 如权利要求1或3或9或13或17或24或30或33或35所述的方法,其特征在于,当所述分段策略为对所述待编码的序列进行分段时,所述根据所述分段策略,对所述待编码的序列进行相应处理包括:
    对所述待编码的序列中的信息序列进行分段;或,
    对包含信息序列及CRC序列的所述待编码的序列进行分段。
  41. 一种极化编码装置,其特征在于,所述装置包括:
    确定模块,用于根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略;
    编码模块,用于根据所述分段策略,对所述待编码的序列进行相应处理, 并将处理后的所述待编码的序列进行极化编码。
  42. 一种电子设备,其特征在于,包括:存储器和处理器;
    所述处理器,用于读取存储器中的程序,执行下列过程:根据待编码的序列的长度及传输码率,确定所述待编码的序列对应的分段策略;根据所述分段策略,对所述待编码的序列进行相应处理,并将处理后的所述待编码的序列进行极化编码。
  43. 如权利要求42所述的电子设备,其特征在于,所述处理器,具体用于判断所述传输码率是否大于或大于等于预设的第一码率阈值;如果是,确定不对所述待编码的序列分段。
  44. 如权利要求42所述的电子设备,其特征在于,所述处理器,具体用于如果所述传输码率不大于或者小于预设的第一码率阈值、且不小于或大于预设的第二码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第一长度阈值,其中所述第一码率阈值大于所述第二码率阈值;如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
  45. 如权利要求43或44所述的电子设备,其特征在于,所述预设的第一码率阈值为0.4。
  46. 如权利要求44所述的电子设备,其特征在于,所述处理器,还用于根据所述传输码率及预设的第一函数,确定第一长度阈值。
  47. 如权利要求46所述的电子设备,其特征在于,所述预设的第一函数为Kth1=int(c*R+b)或者Kth1=c*R+b,其中kth1为第一长度阈值、int为取整函数、c为预设的第一参数、b为预设的第二参数、R为传输码率。
  48. 如权利要求47所述的电子设备,其特征在于,所述c不大于1200、且不小于800,所述b不大于161、且不小于119。
  49. 如权利要求48所述的电子设备,其特征在于,所述c为1000,b为140。
  50. 如权利要求42所述的电子设备,其特征在于,所述处理器,具体用于如果所述传输码率小于或者小于等于预设的第二码率阈值,判断所述待编 码的序列的长度是否大于或者大于等于预设的第二长度阈值;如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
  51. 如权利要求50所述的电子设备,其特征在于,所述预设的第二长度阈值不小于290、且不大于390。
  52. 如权利要求51所述的电子设备,其特征在于,所述预设的第二长度阈值为340。
  53. 如权利要求44或50所述的电子设备,其特征在于,所述预设的第二码率阈值为0.2。
  54. 如权利要求52所述的电子设备,其特征在于,所述处理器,具体用于如果所述传输码率小于或者小于等于预设的第三码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第三长度阈值;如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
  55. 如权利要求54所述的电子设备,其特征在于,所述第三码率阈值为6/25。
  56. 如权利要求54所述的电子设备,其特征在于,所述预设的第三长度阈值不小于348、且不大于472。
  57. 如权利要求56所述的电子设备,其特征在于,所述预设的第三长度阈值为410。
  58. 如权利要求42所述的电子设备,其特征在于,所述处理器,具体用于如果所述传输码率不小于或大于预设的第三码率阈值、且不大于或者小于预设的第四码率阈值,判断所述待编码的序列的长度是否大于或者大于等于预设的第四长度阈值,其中所述第四码率阈值大于所述第三码率阈值;如果是,确定对所述待编码的序列分段,否则,确定不对所述待编码的序列分段。
  59. 如权利要求58所述的电子设备,其特征在于,所述处理器,还用于判断所述待编码的序列的长度是否大于或者大于等于预设的第四长度阈值之前,根据所述传输码率及预设的第二函数,确定第四长度阈值。
  60. 如权利要求59所述的电子设备,其特征在于,所述预设的第二函数 为Kth2=int(a*R+e)或者Kth2=a*R+e,其中kth2为第四长度阈值、int为取整函数、a为预设的第三参数、e为预设的第四参数、R为传输码率。
  61. 如权利要求60所述的电子设备,其特征在于,所述a不大于1200、且不小于800,所述e不大于196、且不小于144。
  62. 如权利要求61所述的电子设备,其特征在于,所述a为1000,e为170。
  63. 如权利要求42所述的电子设备,其特征在于,所述处理器,具体用于判断所述传输码率是否大于或大于等于预设的第四码率阈值;如果是,确定不对所述待编码的序列分段。
  64. 如权利要求58或63所述的电子设备,其特征在于,所述预设的第四码率阈值为9/25。
  65. 如权利要求42所述的电子设备,其特征在于,所述处理器,具体用于判断所述待编码的序列的长度是否大于或大于等于预设的第五长度阈值;如果是,确定对所述待编码的序列分段。
  66. 如权利要求65所述的电子设备,其特征在于,所述处理器,具体用于判断所述传输码率是否小于或小于等于预设的第五码率阈值;如果是,确定对所述待编码的序列分段。
  67. 如权利要求66所述的电子设备,其特征在于,所述预设的第五码率阈值不小于0.2、且不大于0.9。
  68. 如权利要求67所述的电子设备,其特征在于,所述预设的第五码率阈值为0.75,或2/3,或1/2,或2/5,或0.38,或0.36,或1/3,或0.3,或0.28,或0.26,或0.24,或1/4,或1/5。
  69. 如权利要求67所述的电子设备,其特征在于,所述预设的第五长度阈值不小于300、且不大于450。
  70. 如权利要求69所述的电子设备,其特征在于,所述预设的第五长度阈值为340,或350,或360,或370,或380,或390,或400,或410,或420,或430,或440,或450。
  71. 如权利要求42所述的电子设备,其特征在于,所述处理器,具体用于判断所述传输码率是否大于预设的第六码率阈值;如果是,确定根据预设的线性函数K_th1=f*R+g或K_th1=int(f*R+g)对所述待编码的序列分段,其中K_th1为第一长度值、f为预设的第五参数值、g为预设的第六参数值、R为传输码率、int为取整函数。
  72. 如权利要求71所述的电子设备,其特征在于,所述f为位于500-1200范围内的数值、g为位于60-300范围内的数值。
  73. 如权利要求72所述的电子设备,其特征在于,所述f为832、g为200。
  74. 如权利要求71所述的电子设备,其特征在于,所述处理器,具体用于确定根据预先设定的至少两个码率区间,及每个码率区间对应的预设的线性函数K_th1=fn*R+gn或K_th1=int(fn*R+gn),确定所述传输码率对应的目标码率区间,根据所述目标码率区间对应的目标线性函数对所述待编码的序列分段,其中所述码率区间中的最小码率值不小于所述预设的第六码率阈值。
  75. 如权利要求71或74所述的电子设备,其特征在于,所述预设的第六码率阈值为0.2。
  76. 如权利要求42所述的电子设备,其特征在于,所述处理器,具体用于确定根据预设的线性函数K_th2=h*R+i或K_th2=int(h*R+i)对所述待编码的序列分段,其中K_th2为第二长度值、h为预设的第七参数值、i为预设的第八参数值、R为传输码率、int为取整函数。
  77. 如权利要求76所述的电子设备,其特征在于,所述h为位于500-1200范围内的数值、i为位于60-300范围内的数值。
  78. 如权利要求71或74或76所述的电子设备,其特征在于,所述处理器,还用于判断所述待编码序列的长度是否小于等于预设的第五长度阈值;如果是,进行确定对所述待编码序列进行分段的步骤。
  79. 如权利要求65或78所述的电子设备,其特征在于,所述第五码率阈值位于最大待编码比特长度的x倍到最大待编码比特长度的N倍之间,其 中x为大于0小于N的数值。
  80. 如权利要求79所述的电子设备,其特征在于,所述x为大于等于0.3,小于2的数值,N为2。
  81. 如权利要求42或44或50或54或58或65或71或74或76所述的电子设备,其特征在于,所述处理器,具体用于当所述分段策略为对所述待编码的序列进行分段时,对所述待编码的序列中的信息序列进行分段;或,对包含信息序列及CRC序列的所述待编码的序列进行分段。
  82. 一种计算机可读存储介质,其特征在于,其存储有可由电子设备执行的计算机程序,当所述程序在所述电子设备上运行时,使得所述电子设备执行权利要求1~40中任一所述方法的步骤。
PCT/CN2018/104629 2017-10-01 2018-09-07 一种极化编码方法、装置、电子设备及存储介质 WO2019062521A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18862044.7A EP3694124A4 (en) 2017-10-01 2018-09-07 POLARIZED CODING PROCESS AND APPARATUS, ELECTRONIC DEVICE AND INFORMATION CARRIER
JP2020518805A JP7035177B2 (ja) 2017-10-01 2018-09-07 極性コーディング方法、装置、電子デバイスおよび記憶媒体
KR1020207011979A KR102325782B1 (ko) 2017-10-01 2018-09-07 폴라 코딩의 방법 및 장치, 전자 장치 및 저장 매체
US16/652,431 US11394488B2 (en) 2017-10-01 2018-09-07 Polarized coding method and apparatus, electronic device, and storage medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710924773 2017-10-01
CN201710924773.2 2017-10-01
CN201711149116.1A CN109600201B (zh) 2017-10-01 2017-11-17 一种极化编码方法、装置、电子设备及存储介质
CN201711149116.1 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019062521A1 true WO2019062521A1 (zh) 2019-04-04

Family

ID=65900611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104629 WO2019062521A1 (zh) 2017-10-01 2018-09-07 一种极化编码方法、装置、电子设备及存储介质

Country Status (1)

Country Link
WO (1) WO2019062521A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106230555A (zh) * 2016-07-29 2016-12-14 西安电子科技大学 极化码的分段循环冗余校验方法
WO2017128700A1 (en) * 2016-01-25 2017-08-03 Qualcomm Incorporated Generation of polar codes with a variable block length utilizing puncturing
CN107204779A (zh) * 2013-12-24 2017-09-26 华为技术有限公司 极性码的编码方法和编码装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107204779A (zh) * 2013-12-24 2017-09-26 华为技术有限公司 极性码的编码方法和编码装置
WO2017128700A1 (en) * 2016-01-25 2017-08-03 Qualcomm Incorporated Generation of polar codes with a variable block length utilizing puncturing
CN106230555A (zh) * 2016-07-29 2016-12-14 西安电子科技大学 极化码的分段循环冗余校验方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC: "Check on Polar Rate-Matching Function", 3GPP TSG RAN WG1 RANI MEETING AD-HOC #3, R1-1716678, 21 September 2017 (2017-09-21), XP051353805 *
See also references of EP3694124A4 *
ZTE ET AL.: "Segmentation of Polar Code for Large UCI", 3GPP TSG RAN WG1 NR AD-HOC#3, R1-1715667, 21 September 2017 (2017-09-21), XP051329433 *

Similar Documents

Publication Publication Date Title
CN109600201B (zh) 一种极化编码方法、装置、电子设备及存储介质
KR101628641B1 (ko) 데이터 전송 방법, 기지국 및 사용자 장비
US10321386B2 (en) Facilitating an enhanced two-stage downlink control channel in a wireless communication system
CN111133704B (zh) 用于基于代码块组的第五代(5g)或其它下一代系统的自适应两级下行链路控制信道结构
CN110769502B (zh) 用于多波束发送上行信道的方法、终端设备和网络侧设备
EP2858443A1 (en) Data transmission method, base station, and user equipment
US20190182809A1 (en) Data transmission method and apparatus, and data processing method and apparatus
WO2019100795A1 (zh) 一种编码方法、装置、电子设备和存储介质
US10455607B2 (en) Communication methods and apparatus employing rateless codes
US11075711B2 (en) Wireless device specific maximum code rate limit adjustment
EP3361790B1 (en) User equipment with adaptive transmission power scaling based on decoding confidence
US10805045B2 (en) Polar code encoding method and device and polar code decoding method and device
TWI523462B (zh) 用於促成通訊設備中的提早標頭解碼的方法和設備
CN104981001A (zh) 用于通过提早解码来降低功耗的方法和设备
WO2020134258A1 (zh) 一种数据的重传解码方法、装置、系统及通信设备
CN104937858A (zh) 用于先验解码的系统和方法
WO2021089050A1 (zh) 一种控制信息指示方法、通信节点及计算机可读存储介质
WO2019062521A1 (zh) 一种极化编码方法、装置、电子设备及存储介质
CN106162227B (zh) 实时视频传输的rs编码冗余包分配方法和发送设备
WO2018201903A1 (zh) 数据传输方法、终端和基站
WO2021203961A1 (zh) 信道状态信息参考信号传输方法及装置
JP2023529226A (ja) パリティブロックを使用した無線データ伝送
CN116827487B (zh) 码率控制方法、装置及存储介质
WO2021233146A1 (zh) 一种数据调度方法及装置
US20240113812A1 (en) Feedback per code block group

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518805

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207011979

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018862044

Country of ref document: EP

Effective date: 20200504