WO2019062376A1 - 摄像模组 - Google Patents

摄像模组 Download PDF

Info

Publication number
WO2019062376A1
WO2019062376A1 PCT/CN2018/101035 CN2018101035W WO2019062376A1 WO 2019062376 A1 WO2019062376 A1 WO 2019062376A1 CN 2018101035 W CN2018101035 W CN 2018101035W WO 2019062376 A1 WO2019062376 A1 WO 2019062376A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera module
module according
unit
driver
assembly
Prior art date
Application number
PCT/CN2018/101035
Other languages
English (en)
French (fr)
Inventor
张宝忠
刘挺
张玉文
Original Assignee
宁波舜宇仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇仪器有限公司 filed Critical 宁波舜宇仪器有限公司
Publication of WO2019062376A1 publication Critical patent/WO2019062376A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position

Definitions

  • the invention relates to a camera module, and in particular to a camera module including an electric heating device.
  • the VCM motor is widely used in the camera module for auto focus and automatic anti-shake.
  • the coils and magnets of the VCM motor prevent the module from shrinking further.
  • the VCM motor is based on the action of electromagnetic force, and the large stroke requires high power support. Therefore, the travel of the camera module is greatly limited.
  • Shape Memory Alloy (SMA) technology which is based on the principle of heat expansion and contraction, has been used to drive a lens for autofocusing of a camera lens.
  • shape memory alloy used for the camera module is made of a circular metal wire, and severe hysteresis and repeated back and forth movements may cause mechanical fatigue to cause poor stability of the camera module.
  • An object of the present invention is to provide a camera module that solves the problems of large size and poor stability of the camera module in the prior art.
  • Another object of the present invention is to provide a camera module that solves the problem of short stroke of the camera module.
  • a camera module including:
  • the lens unit is located in the supporting unit;
  • An imaging unit the imaging unit being located under the support unit; the driving device being located between the lens unit and the support unit;
  • the drive device includes a driver.
  • the driver includes two drive assemblies, a connector interconnected with the drive assembly.
  • the driving assembly includes: a substrate, a heater, and a spacer; the spacers are spaced apart from each other on the same side of the substrate;
  • One end of the spacer is fixedly connected to the substrate, and the other end extends away from the substrate to form a free end;
  • the heater is disposed on the substrate;
  • a power element is disposed between adjacent ones of the partitions.
  • the heater is a film heater.
  • the heater comprises two mutually parallel extensions, and a connecting portion
  • Two of the extensions extend from an end of one end of the substrate to the other end, and the extension is parallel to the substrate;
  • the connecting portion and the ends of the two extending portions extending along the substrate are connected to each other.
  • the heater further includes a support portion between the two extensions and having the same material as the substrate;
  • the distance between the separator and the heater is less than or equal to the thickness of the substrate.
  • the length of the heater is less than or equal to one-half of the length of the drive assembly.
  • the length of the heater is less than or equal to one third of the length of the drive assembly.
  • the heater and the partition plate and the power element are fixedly connected to each other.
  • the separator has a thickness H of 11-20 ⁇ m and a length L of 20-30 ⁇ m;
  • the distance H1 between adjacent separators is 10-20 ⁇ m.
  • the material of the power element is a polymer having a coefficient of thermal expansion of 52 ppm/° C. or more.
  • the substrate has a thickness of 11 to 20 ⁇ m.
  • the connector comprises a support block, and the opposite sides of the support block are further provided with a flexible beam.
  • the flexible beam is a meandering folded beam or a plate spring.
  • the drive assembly is interconnected with the flexible beam.
  • the driver is generally V-shaped.
  • the driving device comprises at least two drivers; two of the drivers are arranged oppositely to form a driver group, and two of the single driver groups are remote from each other.
  • the driver groups may be individually provided; alternatively, the driver groups may be arranged in parallel with each other; or the driver groups may be arranged in parallel with a single driver.
  • the driving device comprises at least two drivers; two of the drivers are arranged oppositely to form a driver group, and two of the single driver groups are fixedly connected to each other.
  • the driver groups may be individually provided; alternatively, the driver groups may be arranged in parallel with each other; or the driver groups may be arranged in parallel with a single driver.
  • At least one of the driving devices is fixedly connected to the lens unit and the supporting unit, respectively;
  • the driving device is laterally disposed between the opposite sides of the lens unit and the supporting unit.
  • the lens unit includes a lens, and a lens carrier supporting the lens;
  • the lens carrier is coupled to the drive device.
  • the support unit comprises an upper bracket and a lower bracket
  • the lower bracket is coupled to the drive device.
  • the support unit further includes an elastic member
  • the elastic member includes a fixing portion, and a movable portion elastically coupled to the fixing portion;
  • the fixing portion is clamped and fixed by the upper bracket and the lower bracket, and the movable portion is sleeved on the lens unit.
  • an imaging unit includes a base, a wiring board, a connecting line, a filter, and a photosensitive chip for imaging;
  • the circuit board is electrically connected to the photosensitive chip and the driving device respectively;
  • the connecting line is electrically connected to the circuit board.
  • a slide assembly is further disposed between the lens unit and the support unit.
  • the sliding assembly includes a first chute, a second chute, and a ball
  • the balls are at least two.
  • the sliding assembly is provided with at least two groups
  • the sliding assembly is mounted between the opposite sides of the lens unit and the supporting unit.
  • a compacting assembly is further included;
  • the pressing assembly is respectively connected to the lens unit and the supporting unit;
  • the hold down assembly is located on the opposite side of the slide assembly.
  • the pressing assembly comprises a first component and a second component
  • the first component and the second component are mutually exclusive.
  • the driving device is small in size, so that the size of the camera module is sufficiently reduced.
  • the driver device is laterally mounted between the two sides of the lens unit and the supporting unit, which makes full use of the excess space in the camera module. While achieving auto focus, the size of the camera module can be reduced and the cost can be reduced. Since the driving device is disposed sideways, it is possible to increase the space that the driver can play in the length design, and at least the stroke can be increased to 400 ⁇ m.
  • the drive has a high degree of linear drive due to the structural arrangement of the drive assembly and the presence of the flexible beam.
  • the stiffness of the drive in the driving direction is greater, resulting in higher overall structural strength, high stability and a wider range of adaptation.
  • the driver also has a good anti-shake effect, and the flexible beam can ensure that the vibration generated by the outside is directly eliminated inside the driver, and the stability is high.
  • the drive means of the superimposed drive, the drive stroke of the drive unit superimposing the two drives in the same response time is twice the drive stroke that can be achieved by a single drive.
  • the driving force generated by the parallel arrangement of the driver groups is twice that of the single driver group.
  • the driver group is disposed in parallel with a single driver or an elastic member, which can effectively shorten the recovery time of the driver.
  • the drive unit of the differential drive arrangement is mostly used as a center motor, so that the lens position is maintained at a stable position at different ambient temperatures.
  • the other drive assists the cooled drive to quickly return to the starting position for faster response times.
  • the driving device of the camera module when the driving device of the camera module is powered on, the driving device drives the lens unit to move upward, and the resistance of the lens unit during the upward movement is reduced due to the presence of the sliding assembly. Further, the time required for the driving stroke is shortened; and when the driving device is powered off, the lens unit can be returned to the starting position due to the driving device itself, and the elastic member can speed up the process of returning the lens unit to the starting position. In addition, since the lens unit is moved along the sliding groove direction of the slide assembly, the lens does not tilt, which ensures the stability of the lens movement.
  • the lens carrier and the lower bracket are brought into close contact by the repulsive force of the two magnets; the magnets of the first component and the second component are arranged in a triangle with respect to the balls in the two sliding assemblies.
  • the repulsive force of the magnet forms three fulcrums with the two sets of balls, so that the shock resistance of the lens unit during the movement is better.
  • FIG. 1 is a perspective view schematically showing a camera module according to an embodiment of the present invention
  • FIG. 2 is a perspective view schematically showing a drive assembly according to an embodiment of the present invention
  • Figure 3 is an enlarged view of a portion A of Figure 2;
  • FIG. 4 is a perspective view schematically showing a driver according to an embodiment of the present invention.
  • Figure 5 is a perspective view schematically showing a driving device according to an embodiment of the present invention.
  • Figure 6 is a perspective view schematically showing a driving device according to another embodiment of the present invention.
  • Figure 7 is a perspective view schematically showing a driving device according to another embodiment of the present invention.
  • Figure 8 is a perspective view schematically showing a parallel connection of a driver group according to an embodiment of the present invention.
  • Figure 9 is a perspective view schematically showing a parallel connection of a driver group according to another embodiment of the present invention.
  • FIG. 10 is a view schematically showing a cooperation of a support unit and a lens unit according to an embodiment of the present invention.
  • Figure 11 is a perspective view schematically showing a lens carrier according to an embodiment of the present invention.
  • FIG. 12 is a perspective view showing a partial configuration of a camera module according to an embodiment of the present invention.
  • a camera module includes a driving device 1, a lens unit 2, a supporting unit 3, and an imaging unit 4.
  • the imaging unit 4 is located at the bottom of the camera module
  • the support unit 3 is located above the imaging unit 4
  • the lens unit 2 is located in the support unit 3, and the support unit 3 is fixedly coupled to the imaging unit 4.
  • the lens unit 2 includes a lens 21 and a lens carrier 22.
  • the lens carrier 22 is connected to the support unit 3 by the drive device 1, and the lateral arrangement of the drive device 1 is between the two side faces of the lens unit 2 opposite to the support unit 3.
  • the drive device 1 includes at least one driver 10.
  • the driver 10 in the driving device 1 generates a driving force, which can drive the lens 21 to perform linear motion in the supporting unit 3, thereby achieving the purpose of focusing the camera module.
  • the driving device is small in size, so that the size of the camera module is sufficiently reduced.
  • the driver device 1 is laterally mounted between the opposite sides of the lens unit 2 and the support unit 3, and the excess space in the camera module is fully utilized. Further reducing the size of the camera module.
  • the above described drive device 1 should comprise at least one drive 10, wherein the drive 10 in turn comprises a drive assembly and a connector.
  • FIG. 2 is a perspective view schematically showing a drive assembly according to an embodiment of the present invention.
  • Fig. 3 is an enlarged view schematically showing a portion A in Fig. 2;
  • a drive assembly 101 in accordance with the present invention includes a substrate 1011, a heater 1012, a spacer 1013, and a power component 1014.
  • the spacers 1013 are disposed on the same side of the substrate 1011.
  • One end of the spacer 1013 is fixedly connected to the substrate 1011, and the other end extends away from the substrate 1011 to form a free end.
  • a power element 1014 is disposed between the partition 1013 and the partition 1013.
  • the driving direction of the driving assembly 101 is ensured to be uniform, the rigidity of the driving assembly 101 is ensured, and the entire driving assembly 101 is further maintained in a good linear driving action.
  • the material of the substrate 1011 and the separator 1013 is silicon.
  • the substrate 1011 and the separator 1013 have good thermal conductivity using silicon as a material. Therefore, during the operation of the driving component 101, the response time of the driving component is facilitated; the driving component 101 stops working, and the good thermal conductivity is more favorable for the heat dissipation of the driving component 101, thereby ensuring rapid cooling of the driving component 101, and further shortening The time at which the drive assembly 101 is restored to the initial position.
  • the thickness of the substrate 1011 is 11-20 ⁇ m. Setting the substrate 1011 within the above range ensures sufficient use strength and saves material. With the above arrangement, it is possible to reduce the hindrance to the driving direction of the entire driving unit 101, and to promote the driving performance of the driving unit. At the same time, it can exert excellent thermal conductivity and reduce heat loss.
  • the material of the power element 1014 is a polymer, and the coefficient of thermal expansion is 52 ppm/° C. or more.
  • the power element 1014 is embedded in the gap between adjacent partitions 1013 to ensure that the heat conducted by the diaphragm 1013 can be fully absorbed by the power element 1014.
  • the thermal expansion coefficient of the power element 1014 is 52 ppm/° C. or more, which can effectively provide sufficient driving force and driving displacement, so that the power element 1014 can fully exert the driving action.
  • the use of the above-described power element ensures the service life of the drive assembly 101, and the driving force is large, thereby ensuring accurate and effective movement of the drive assembly 101.
  • the material of the power element 1014 may be SU-8 glue or silicone resin SILRES H62, SILRES H62C or the like.
  • the cross-sectional shape of the separator 1013 is a rectangle, the thickness H of the separator 1013 is 11-20 ⁇ m, the length L is 20-30 ⁇ m, and the distance H1 between adjacent separators 1013 is 10-20 ⁇ m. With this arrangement, the size of the spacer 1013 is set to be within the above-described range according to the driving force required to ensure the heat transfer of the spacer 1013 quickly and efficiently, and the loss of thermal energy is avoided.
  • the embedded volume of the power element 1014 is matched to the size setting of the spacer 1013.
  • the thickness of the separator 1013 and the interval between the separators 1013 according to the present invention are not limited to the above arrangement, as long as the performance of the driving assembly 101 is not affected, and the driving effect is not affected, that is, the same.
  • the shape of 1013 also does not have the above limitations.
  • the cross section of the spacer 1013 may be an industrially achievable shape such as a trapezoidal shape, a triangular shape, or a semi-elliptical shape.
  • the heater 1012 according to the present invention is a thin film heater.
  • the heater 1012 includes an extension 1012a and a connecting portion 1012b, wherein the extensions 1012a are two, disposed in parallel with each other.
  • One end of the connecting portion 1012b is connected to the end of one extension portion 1012a, and the other end is connected to the end portion of the other extension portion 1012a.
  • the heater 1012 according to the present invention is disposed on the substrate 1011, and the support portions 1012c of the same material as the substrate 1011 are filled between the two extension portions 1012a.
  • the support portion 1012c can ensure a certain interval between the two extension portions 1012a, which ensures the stability of the structure during the operation of the heater 1012.
  • the support member 1012c adopts the same material as the substrate 1011 to ensure that the heat of the heater 1012 at the upper extension portion 1012a can be timely transmitted, ensuring the heat transfer stability of the heater 1012, and the support portion 1012c can also function as an insulation.
  • the performance of the heater 1012 is guaranteed to be stable and reliable.
  • the two extensions 1012a of the heater 1012 are extended from the end of one end of the substrate 1011 to the other end.
  • the two extensions 1012a extend the ends of the substrate 1011 and are fixedly connected to the connection portion 1012b, respectively.
  • the extension portion 1012a is parallel to the substrate 1011 in the same manner.
  • the width of the extension portion 1012a is the same as the width of the substrate 1011.
  • the two extensions 1012a are respectively connected to the circuit at the beginning of the end of the substrate 1011, so that the heater 1012 can be connected to the circuit.
  • a distance between one end of the separator 1013 and the substrate 1011 and the adjacent extension portion 1012a is equal to or smaller than the thickness of the substrate 1011.
  • the substrate 1011 is provided with the position of the heater 1012, and the heater 1012 is fixedly connected to the spacer 1013 and the power element 1014 to each other.
  • the spacer 1013 and the power element 1014 may not be in contact, that is, the spacer 1013, the power element 1014 and the heater 1012 are respectively located on both sides of the substrate 1011, and between the end of the spacer 1013 and the adjacent extension 1012a.
  • the distance is at most the thickness of the substrate 1011.
  • the heater 1012 is disposed on the substrate 1011, so that the heat generated by the heater 1012 can be timely transmitted to the partition 1013, so that the power component 1014 is heated in time, reducing the response time of the driving assembly 101.
  • the length of the heater 1012 is proportional to the driving distance of the driving assembly 101, and the driving distance of the driving assembly 101 can be easily controlled by changing the length of the heater 1012. Therefore, the design of the length of the drive assembly 101 has a flexible adjustment space.
  • the length of the heater 1012 in accordance with the present invention should be less than or equal to one-half the length of the drive assembly 101. When the actuator body 101 is displaced, the heater 1012 is deformed.
  • the length of the heater 1012 is kept within the above range, and the influence of the deformation stress of the driving assembly 101 on the heater 1012 is avoided, thereby ensuring the stability of the heater 1012 and further ensuring the service life of the heater 1012.
  • the length of the heater 1012 is guaranteed to be as small as possible within the above range, without affecting performance.
  • the length of the heater 1012 is less than or equal to one third of the length of the drive assembly 101.
  • the heater 1012 has a short length and a small resistance value, and the heater 1012 has a resistance value of 200 ohm or less, which is very advantageous for low voltage driving.
  • the operating principle of the above-mentioned driving assembly 101 is as follows: the heater 1012 is disposed on the substrate 1011, the partition 1013 is fixedly connected to one side of the substrate 1011, and the power component 1014 is disposed between the partition 1013 and the partition 1013. After the energization of 1012, the power element 1014 between the partitions 1013 is heated, and the power element 1014 expands, thereby generating displacement in the lateral and longitudinal directions, that is, generating a driving force. With this arrangement, the driving direction of the driving component 101 is effectively ensured, and the reliability of the working process of the driving component 101 is further ensured.
  • the drive 10 according to the present invention includes a drive assembly 101 and a connector 102 interconnected with the drive assembly 101.
  • the driving component 101 according to the present invention is identical to the above, and will not be described again.
  • the connector 102 according to the present invention includes a support block 1021 and a flexible beam 1022. As shown in FIG. 4, two corresponding flexible beams 1022 are disposed on opposite sides of the support block 1021. The flexible beam 1022 and the driving assembly 101 are connected to each other, and the heater 1012 on the driving assembly 101 is away from the flexible beam 1022.
  • two drive assemblies 101 are provided in the drive 10, and both drive assemblies 101 are fixedly coupled to the connector 102 to form a V-shaped drive as a whole.
  • the flexible beam 1022 is a meandering folded beam.
  • the flexible beam 1022 has a small lateral stiffness and a large longitudinal rigidity.
  • the intervening power element 1014 is heated, and the power element 1014 is thermally expanded to generate displacement in the lateral and longitudinal directions because the lateral stiffness of the flexible beam 1022 detour structure is small, and the lateral displacement can be absorbed, while the flexible beam 1022 has a large longitudinal stiffness, the power element
  • the longitudinal displacement caused by the expansion of 1014 can drive the linear movement of the support block 1021 connected to the drive assembly 101.
  • the shape of the support block 1021 in the connecting member 102 is not limited to the above arrangement, and may be, for example, a rectangular parallelepiped or the like. In principle, as long as the structural strength is satisfied, the installation of the flexible beam 1022 is qualified.
  • the flexible beam 1022 can also be a plate spring or the like.
  • the driver 10 due to the structural arrangement of the driving assembly 101 and the presence of the flexible beam 1022, the driver 10 has a high degree of linear driving, and the rigidity of the driver in the driving direction is greater, so that the overall structural strength is higher. Adapt to a wider range. At the same time, the driver 10 also has a good anti-shake effect, and the optimized flexible beam 1022 can ensure that the vibration generated by the outside is directly eliminated inside the driver 10, and the stability is high.
  • Fig. 5 is a perspective view schematically showing a driving device according to an embodiment of the present invention.
  • a driving device including the above-described driver 10 can be provided.
  • the drive device 1 according to the invention comprises two drives 10 and a web 11 .
  • both of the drivers 10 are fixedly connected to the connection board 11 and are oppositely disposed to constitute one driver group 1a.
  • One end of the driver 10 to which the heater 1012 is mounted is fixedly connected to the connecting plate 11 to each other.
  • the support blocks 1021 on the two drives 10 are disposed opposite each other and away from each other. Obviously, if there is only one driver 10 in the driving device, the arrangement is the same as that of any one of the above-described setting modes.
  • the support block 1021 of one of the drivers 10 and the lens unit 2 are connected to each other, and the support block 1021 of the other driver 10 and the support unit 3 are connected to each other.
  • the driver group 1a is separately energized and heated, and the two drivers 10 have two displacements in opposite directions, thereby realizing the driving of the lens unit 2.
  • the driving displacement effect of the two parts in one driver group 1a is superimposed, that is, in the same response time, the driving stroke of the driving device 1 superimposing the two drivers 10 is twice the driving stroke that the single driver 10 can achieve.
  • the number of superposition of the driver 10 is not limited, and the specific number is to satisfy the required driving stroke.
  • Fig. 6 is a perspective view schematically showing a driving device according to another embodiment of the present invention.
  • a driving device including the above-described driver 10 can be provided.
  • the drive device 1 according to the invention comprises two drives 10 and two webs 11.
  • the two drivers 10 are arranged oppositely to constitute one driver group 1a.
  • a single drive 10 and a single connecting plate 11 are fixedly connected to each other.
  • One end of the driver 10 to which the heater 1012 is mounted is fixedly connected to the connecting plate 11 to each other.
  • the support blocks 1021 on the two drives 10 abut each other and are fixedly connected, and the two connecting plates 11 are located at opposite and distant positions.
  • one of the connecting plates 11 connected to the driver 10 and the lens unit 2 are connected to each other, and the other connecting plate connected to the driver 10 is connected to the supporting unit 3.
  • the driver group 1a is separately energized and heated, and the two drivers 10 have two displacements in opposite directions, thereby realizing the driving of the lens unit 2.
  • the driving displacement effects of the two parts are superimposed, that is, in the same response time, the driving stroke of the driving device superimposing the two drivers 10 is twice the driving stroke that the single driver 10 can achieve.
  • the number of superpositions of the driver 10 according to the above-described driving device of the present invention is not limited, and the specific number is such that the required driving stroke can be satisfied.
  • Fig. 7 is a perspective view schematically showing a driving device according to another embodiment of the present invention.
  • a drive unit 1 according to the invention comprises two drives 10 and a web 11.
  • the two drivers 10 are arranged oppositely to constitute one driver group 1a. Both ends of the two drivers 10 mounted with the heater 1012 are respectively fixed to the same connecting plate 11.
  • the two support blocks 1021 that are opposite and distant from each other are fixedly connected to each other to constitute a differential driving device.
  • the above-mentioned driving device is mostly used as a center motor.
  • the two supporting blocks 1021 connected to each other in the driving device are movable, and the two supporting blocks 1021 and the lens unit 2 connected to each other are connected to each other, and the connecting plate 11 and the supporting unit are connected. 3 are connected to each other.
  • the driving forces generated by the two drivers 10 in one of the driver groups 1a are reversed and the same size, so that the lens unit position is always maintained at the center position.
  • the other drive 10 with or without heating, assists the driver 10 entering the cooling to quickly return to the starting position with a faster response time.
  • Figure 8 is a perspective view schematically showing a parallel connection of a driver group according to an embodiment of the present invention.
  • the driver groups 1a according to the present invention can be arranged in parallel.
  • the driver groups 1a according to the invention can also be arranged in parallel superimposed on each other.
  • two identical driver groups 1a are superposed on each other, and the drivers in the two sets of driver groups 1a are sequentially arranged in a double V shape.
  • two identical drive sets 1a can also be arranged side by side in parallel.
  • the driving force that can be generated is twice that of the single driver group 1a.
  • the number of parallel connections of the above-described driver group 1a according to the present invention has no limitation, and specifically is to satisfy the required driving force. Further, as in the driving device shown in FIG. 5, in the case where the driving stroke is increased, the plurality of driver groups 1a may be connected in parallel to increase the driving force.
  • FIG. 9 is a perspective view schematically showing a parallel connection of a driver group according to another embodiment of the present invention.
  • a driver 10 connected in parallel with the driver group 1a is provided on one side of a driver group 1a to form a drive combination.
  • the driver group 1a is energized, and the single driver 10 disposed on the side of the driver group 1a is not energized.
  • the single drive 10 on one side is deformed; when the drive group 1a is driven, the single drive 10 serves to provide an elastic force, which helps to assist the drive group 1a to resume the start.
  • the location is a good way to shorten the long recovery time of the existing thermal drive.
  • the driver group 1a can be connected in parallel with a plurality of non-energized drives 10, the number of which is based on the recovery time required to satisfy the drive unit. Further, it is not only the driver 10 that is disposed on the side of the driver group 1a, but may be, for example, a flexible member 1022 or an elastic member such as a spring.
  • the driving device 1 may be the driving device 1 of any of the above modes, but is not limited to the above-mentioned driving device 1, and the specific requirement is to satisfy the imaging mode.
  • the drive requirements of the group shall prevail.
  • a lens unit 2 includes a lens 21 and a lens carrier 22, and the lens 21 and the lens carrier 22 are fixedly coupled to each other.
  • the support unit 3 according to the present invention includes an upper bracket 31 and a lower bracket 32.
  • the upper bracket 31 and the lower bracket 32 are fixedly coupled to each other, and a cavity accommodating the lens unit 2 is formed.
  • the lens unit 2 is movable up and down within the cavity of the support unit 3 to complete focusing.
  • the lower bracket 32 is coupled to the lens carrier 22 via a drive unit 1.
  • the driving device 1 according to the present invention is assembled by plane assembly, inverted by 90°, and disposed between the opposite sides of the lens carrier 22 and the lower holder 32.
  • the number of the driving devices 1 provided in the camera module according to the present invention may be two, three or more, that is, the camera module is not limited to the one-side driving method described above, and may be a polygon driving.
  • the driving device 1 since the driving device 1 is disposed on the lens unit 2, the volume of the camera module can be reduced and the cost can be reduced while achieving automatic focusing; and the driver can be added because the driving device 1 is disposed sideways. 10
  • the space that can be used in the length design can increase the stroke to at least 400 ⁇ m.
  • FIG. 10 is a view schematically showing a cooperation of a support unit and a lens unit according to an embodiment of the present invention.
  • Figure 11 is a perspective view schematically showing a lens carrier according to an embodiment of the present invention.
  • the support unit 3 of the camera module according to the present invention further includes an elastic member 33 including a fixing portion 331 and a movable portion 332.
  • the fixing portion 331 and the movable portion 332 are elastically connected.
  • the fixing portion 331 of the elastic member 33 according to the present invention is held and fixed by the upper bracket 3131 and the lower bracket 332.
  • the movable portion 332 is sleeved on the lens carrier 22 of the lens unit 2, and a unidirectional limit is formed at a position connected to the elastic member 33 by a step on the lens carrier 22.
  • the driving force of the driving device 1 should be greater than the elastic force of the elastic member 33, that is, when the driving force generated by the driving device 1 causes the lens unit 2 to move upward, the resistance generated by the elastic member 33 does not affect the driving stroke.
  • the lens unit 2 when the driving device 1 is energized, the lens unit 2 is pushed upward. After the power is turned off, the driving force in the driving device 1 disappears, and under the action of the elastic member 33, the driving device 1 can be accelerated to return to the starting position. With the above settings, the response time of the lens unit 2 can be reduced, thereby increasing the zoom speed of the camera module. Further, since the elastic member 33 is sleeved on the lens unit 2, its elastic force against the lens unit 2 effectively suppresses the tilt of the lens 21, improving the stability of the movement of the lens 21.
  • the lens unit 2 and the support unit 3 according to the present invention are in a sliding connection.
  • a slide assembly 5 is disposed between the lens unit 2 and the support unit 3.
  • the slide assembly 5 includes a first chute 51, a second chute 52, and balls 53.
  • the first chute 51 is disposed outside the lens carrier 22 in the lens unit 2
  • the second chute 52 is disposed on the inner side of the lower bracket 32 of the support unit 3.
  • the first chute 51 and the second chute 52 cooperate with each other.
  • the ball 53 is disposed between the first chute 51 and the second chute 52, and both ends of the first chute 51 and the second chute 52 are provided with a limiting structure of the balls 53. Due to the presence of the slide assembly 5, the lens unit 2 and the lower bracket 32 can achieve relative sliding.
  • the slide assembly 5 is provided with at least two sets.
  • the slide assembly 5 is provided with three groups and the three groups are arranged in a triangle, the movement stability of the lens unit 2 can be made better.
  • the number of balls 53 is three
  • the sliding assembly 5 is provided with two groups
  • the two sets of sliding assemblies 5 are located on both sides of the driving device 1. It should be noted that the positional arrangement of the two sets of sliding assemblies 5 is not limited to the above arrangement.
  • the two sets of sliding assemblies 5 may be located on the same side of the driving device 1, and when there are more than two sets of sliding assemblies 5, the sliding assembly 5
  • the arrangement is also not limited, and the sliding assembly 5 can be located on both sides of the driving device 1, or on the same side of the driving device 1, and when the sliding assembly 5 is located on both sides of the driving device 1, the sliding assembly 5 on each side
  • the number can be the same or different.
  • the driving device 1 when the driving device 1 is energized, the driving device 1 drives the lens unit 2 to move upward. Due to the presence of the slide assembly 5, the resistance during the upward movement of the lens unit 2 is reduced, thereby shortening the time required for the drive stroke.
  • the driving device 1 is powered off, since the lens unit 2 can be returned to the starting position by the driving device 1 itself, the elastic member 33 can speed up the process of returning the lens unit 2 to the starting position. Further, since the lens unit 2 is moved along the chute direction of the slide unit 5, the lens 21 is not tilted, and the lens 21 is more stably moved during being driven.
  • the camera module according to the present invention further includes a pressing assembly 6 including a first assembly 61 and a second assembly 62.
  • the first component 61 and the second component 62 of the compression assembly 6 are both magnets.
  • the pressing member 6 according to the present invention is not limited to the above-described magnet, and may be, for example, an electromagnet or other pressing means capable of generating a repulsive force.
  • a groove is provided on the outer wall of the lens carrier 22 and the inner wall of the lower bracket 32 in accordance with the present invention.
  • the first component 61 and the second component 62 of the compression assembly 6 are disposed in the two recesses, respectively.
  • the first assembly 61 and the second assembly 62 are both rectangular bodies and form a cross structure perpendicular to each other, and the sliding assembly 5 between the lens carrier 22 and the lower bracket 32 is pressed by the repulsive force of the first assembly 61 and the second assembly 62.
  • the tightness ensures the reliability and stability of the sliding component 5, and further ensures the stable operation of the camera module.
  • the pressing assembly 6 and the two sets of slide assemblies 5 are evenly distributed along the outer side of the lens carrier 22. At this time, the pressing assembly 6 forms three fulcrums with the two sets of sliding assemblies 5, so that the lens unit 2 is more shock-resistant during the movement.
  • FIG. 12 is a perspective view showing a partial configuration of a camera module according to an embodiment of the present invention.
  • an image forming unit 4 includes a base 41, a wiring board 42, a connecting line 43, a filter, and a photosensitive chip.
  • the imaging unit 4 is located below the lower bracket 32 in the support unit 3, and the imaging unit 4 is fixedly coupled to the lower bracket 32.
  • the circuit board 42 in the image forming unit 4 according to the present invention is located above the base 41 and fixedly coupled to the base 41, and both the driving device 1 and the photosensitive chip are electrically connected to the wiring board 42.
  • the connection between the connection line 43 and the circuit board 42 is also electrically connected. According to the above arrangement of the present invention, the circuit board 42 can supply power to the drive unit 1 to generate a driving force.
  • the zooming operation of the above-described camera module according to the present invention is as follows: After the driving device 1 is energized, the driver 10 in the driving device 1 generates a driving force. Since the driving device 1 and the lens unit 2 and the supporting unit 3 are connected to each other, and the sliding assembly 5 is present between the lens unit 2 and the supporting unit 3, the driving force generated by the driving device 1 can drive the lens unit 2 to linearly move. Zooming, when the driving device 1 is powered off, the lens unit 2 can quickly return to the starting position by the cooperation of the driving device 1 and the sliding assembly 5 and the elastic member 33.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Abstract

本发明涉及一种摄像模组,包括驱动装置、镜头单元、支撑单元和成像单元。驱动装置包括至少一个驱动器,驱动器包括驱动组件和连接件,镜头单元设置于支撑单元之中,支撑单元设置在成像单元之上,支撑单元包括上支架、下支架,在镜头单元与上支架之间还设置有弹性件。驱动装置设置在镜头单元和支撑单元相对的两侧面之间,驱动装置分别与镜头单元和支撑单元连接,驱动装置可以产生驱动力,进而带动镜头单元做线性运动,实现摄像模组的调焦。本发明解决了现有技术中驱动模块厚度限制、驱动行程短、稳定性差的问题。

Description

摄像模组
本申请要求于2017年09月28日提交中国专利局、申请号为201710900790.2、申请名称为“摄像模组”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种摄像模组,尤其涉及一种包括有电热驱动装置的摄像模组。
背景技术
现有技术中,VCM马达在摄像模组中广泛用于自动聚焦和自动防抖。由于现在摄像系统趋向于做的更薄、行程更大、功率更低,而VCM马达的线圈和磁铁阻碍了模组体积进一步缩小。同时,VCM马达基于电磁力作用,大行程需要大功率支持。因此,摄像模组的行程受到很大限制。
近年来,通过热涨冷缩的原理的形状记忆合金技术(Shape Memory Alloy,SMA)技术已被采用来驱动镜头以进行摄像镜头自动对焦功能。然而,用于摄像模组的形状记忆合金是圆形金属线做成,严重的迟滞现象及反复来回运动易导致机械疲劳导致摄像模组稳定性差。
发明内容
本发明的目的在于提供一种摄像模组,解决现有技术中摄像模组体积大,稳定性差的问题。
本发明的另一个目的在于提供一种摄像模组,解决摄像模组行程短的问题。
为实现上述目的,本发明提供一种摄像模组,包括:
驱动装置;
镜头单元;
支撑单元,所述镜头单元位于所述支撑单元内;
成像单元,所述成像单元位于所述支撑单元下方;所述驱动装置位于所述镜头单元、所述支撑单元之间;
所述驱动装置包括驱动器。
根据本发明的一个方面,所述驱动器包括两个驱动组件,与所述驱动组件相互连接的连接件。
根据本发明的一个方面,所述驱动组件包括:基板,加热器,隔板;所述隔板相互间隔的设置在所述基板的同一侧;
所述隔板一端与所述基板相互固定连接,另一端向远离所述基板的方向延伸构成自由端;
所述加热器设置于所述基板上;
相邻所述隔板之间设有动力元件。
根据本发明的一个方面,所述加热器为薄膜加热器。
根据本发明的一个方面,所述加热器包括两个相互平行的延长部,以及连接部;
两个所述延长部由所述基板的一端的端部起始向另一端延伸,且所述延长部与所述基板相互平行;
所述连接部与两个所述延长部沿基板延伸的端部均相互连接。
根据本发明的一个方面,所述加热器还包括位于两个所述延长部之间且与所述基板相同材料的支撑部;
所述隔板与所述加热器之间的距离小于等于所述基板的厚度。
根据本发明的一个方面,所述加热器的长度小于等于所述驱动组件长度的二分之一。
根据本发明的一个方面,所述加热器的长度小于等于所述驱动组件长度的三分之一。
根据本发明的一个方面,所述加热器与所述隔板、所述动力元件相互固定连接。
根据本发明的一个方面,所述隔板的厚度H为11-20μm,长度L为20-30μm;
相邻所述隔板之间的距离H1为10-20μm。
根据本发明的一个方面,所述动力元件的材料为热膨胀系数大于等于52ppm/℃的聚合物。
根据本发明的一个方面,所述基板的厚度为11-20μm。
根据本发明的一个方面,所述连接件包括支撑块,所述支撑块相对的两侧还设有柔性梁。
根据本发明的一个方面,所述柔性梁为迂回型折叠梁或板状弹簧。
根据本发明的一个方面,所述驱动组件与所述柔性梁相互连接。
根据本发明的一个方面,所述驱动器整体呈V型。
根据本发明的一个方面,所述驱动装置包括至少两个驱动器;两个所述驱动器反向相对设置构成一个驱动器组,且单个所述驱动器组中的两个所述支撑块相互远离。
根据本发明的一个方面,所述驱动装置中,所述驱动器组可以单个设置;或者,所述驱动器组可以相互并联设置;或者,所述驱动器组与单个驱动器并联设置。
根据本发明的一个方面,所述驱动装置包括至少两个驱动器;两个所述驱动器反向相对设置构成一个驱动器组,且单个所述驱动器组中的两个所述支撑块相互固定连接。
根据本发明的一个方面,所述驱动装置中,所述驱动器组可以单个设置;或者,所述驱动器组可以相互并联设置;或者,所述驱动器组与单个驱动器并联设置。
根据本发明的一个方面,至少一个所述驱动装置分别与所述镜头单元、所述支撑单元固定连接;
所述驱动装置在所述镜头单元和所述支撑单元相对的两个侧面之间侧立设置。
根据本发明的一个方面,所述镜头单元包括镜头,支撑所述镜头的镜头载体;
所述镜头载体与所述驱动装置相连接。
根据本发明的一个方面,所述支撑单元包括上支架和下支架;
所述下支架与所述驱动装置相连接。
根据本发明的一个方面,所述支撑单元还包括弹性件;
所述弹性件包括固定部,与所述固定部弹性连接的活动部;
所述固定部被所述上支架和所述下支架夹持固定,所述活动部套设在所述镜头单元上。
根据本发明的一个方面,成像单元包括底座、线路板、连接线、滤光片,以及用于成像的感光芯片;
所述线路板分别与所述感光芯片、所述驱动装置电连接;
所述连接线与所述线路板电连接。
根据本发明的一个方面,所述镜头单元与所述支撑单元之间还设有滑动组件。
根据本发明的一个方面,所述滑动组件包括第一滑槽、第二滑槽和滚珠;
所述滚珠至少为两个。
根据本发明的一个方面,所述滑动组件至少设有两组;
所述滑动组件安装于所述镜头单元和所述支撑单元相对的两个侧面之间。
根据本发明的一个方面,还包括压紧组件;
所述压紧组件分别与所述镜头单元、所述支撑单元相连接;
所述压紧组件位于所述滑动组件的对侧。
根据本发明的一个方面,所述压紧组件包括第一组件和第二组件;
所述第一组件和所述第二组件相互排斥设置。
根据本发明的一个方案,驱动装置体积小,从而使摄像模组的尺寸充分减小。同时,采用驱动装置侧立的安装在镜头单元与支撑单元相对的两侧面之间,充分利用了摄像模组中的多余空间。在实现自动聚焦的同时,可以缩小摄像模组的体积,降低成本。由于驱动装置侧立设置的,可以增加驱动器在长度设计方面可发挥的空间,可至少提升行程至400μm。
根据本发明的一个方案,由于驱动组件的结构布置和柔性梁的存在,使得该驱动器具有高度的线性驱动。驱动器在驱动方向上的刚度更大,使整体结构强度更高,稳定性高,适应范围更广。同时,驱动器还具有良好 的防抖效果,柔性梁能够保证在驱动器内部直接消除外界产生的振动,稳定性高。
根据本发明的一个方案,叠加驱动器的组成的驱动装置,相同的响应时间内,叠加两个驱动器的驱动装置实现的驱动行程是单个驱动器所能实现驱动行程的二倍。
根据本发明的一个方案,驱动装置中,驱动器组并联布置所能产生的驱动力是单个驱动器组的二倍。
根据本发明的一个方案,驱动装置中,驱动器组与单个驱动器或弹性件相并联设置,可以有效的缩短驱动器的恢复时间。
根据本发明的一个方案,差分驱动设置的驱动装置多作为中置马达,在不同的环境温度下,使得镜头位置一直保持在稳定位置。当其中一个驱动器驱动后冷却时,另一个驱动器可协助进入冷却的驱动器快速回复起始位置,响应时间更快。
根据本发明的一个方案,根据本发明的滑动组件,当摄像模组的驱动装置通电后,驱动装置带动镜头单元向上移动,由于滑动组件的存在,使得镜头单元向上移动过程中的阻力减小,进而缩短了驱动行程所需要的时间;而当驱动装置断电后,由于在驱动装置自身的作用下,镜头单元可回复到起始位置,而弹性件可加快镜头单元回复到起始位置的过程,此外,由于镜头单元都是沿着滑动组件的滑槽方向进行移动的,使得镜头不会发生倾斜,这确保了镜头运动的稳定性。
根据本发明的一个方案,根据本发明的压紧组件,通过两磁铁的相斥力使得镜头载体与下支架紧贴;第一组件和第二组件的磁铁相对于两滑动组件中的滚珠呈三角形布置,此时磁铁的排斥力与两组滚珠形成三个支点,使得镜头单元在运动过程中的抗震性更好。
附图说明
图1是示意性表示根据本发明的一种实施方式的摄像模组的立体图;
图2是示意性表示根据本发明的一种实施方式的驱动组件的立体图;
图3是示意性表示图2中的A部放大图;
图4是示意性表示根据本发明的一种实施方式的驱动器的立体图;
图5是示意性表示根据本发明的一种实施方式的驱动装置的立体图;
图6是示意性表示根据本发明的另一种实施方式的驱动装置的立体图;
图7是示意性表示根据本发明的另一种实施方式的驱动装置立体图;
图8是示意性表示根据本发明的一种实施方式的驱动器组并联立体图;
图9是示意性表示根据本发明的另一种实施方式的驱动器组并联立体图;
图10是示意性表示根据本发明的一种实施方式的支撑单元与镜头单元配合图;
图11是示意性表示根据本发明的一种实施方式的镜头载体立体图;
图12是示意性表示根据本发明的一种实施方式的摄像模组的部分组成立体图。
具体实施方式
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
在针对本发明的实施方式进行描述时,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”所表达的方位或位置关系是基于相关附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
下面结合附图和具体实施方式对本发明作详细地描述,实施方式不能在此一一赘述,但本发明的实施方式并不因此限定于以下实施方式。
图1是示意性表示根据本发明的一种实施方式的摄像模组立体图。如图1所示,根据本发明的一种实施方式,根据本发明的摄像模组包括驱动装置1、镜头单元2、支撑单元3和成像单元4。在本实施方式中,成像单 元4位于摄像模组的最下方,支撑单元3位于成像单元4的上方,镜头单元2位于支撑单元3中,支撑单元3与成像单元4固定连接。镜头单元2包括镜头21和镜头载体22。镜头载体22通过驱动装置1与支撑单元3相连接,驱动装置1侧立的设置与镜头单元2与支撑单元3相对的两侧面之间。在本实施方式中,驱动装置1包括至少一个驱动器10。驱动装置1中的驱动器10产生驱动力,可带动镜头21在支撑单元3中做线性运动,进而实现摄像模组调焦的目的。驱动装置体积小,从而使摄像模组的尺寸充分减小。采用驱动装置1侧立的安装在镜头单元2与支撑单元3相对的两侧面之间,充分利用了摄像模组中的多余空间。进一步缩小了摄像模组的体积。
根据本发明的上述驱动装置1应包含至少一个驱动器10,其中,驱动器10又包括驱动组件和连接件。
图2是示意性表示根据本发明的一种实施方式的驱动组件立体图。
图3是示意性表示图2中A部的放大图。
如图2、图3所示,根据本发明的一种实施方式,根据本发明的驱动组件101包括基板1011、加热器1012、隔板1013和动力元件1014。在本实施方式中,隔板1013相间设置在基板1011的同一侧。隔板1013的一端与基板1011固定连接,另一端向远离基板1011的方向延伸形成自由端。隔板1013与隔板1013之间设置有动力元件1014。通过单侧设置隔板1013和动力元件1014,保证了驱动组件101驱动方向的一致,保证了驱动组件101的刚度,进一步使整个驱动组件101保持良好的线性驱动作用。在本实施方式中,基板1011和隔板1013的材料均为硅。基板1011和隔板1013采用硅为材料具有良好的的导热性。因此,驱动组件101工作过程中,有利于较少驱动组件的响应时间;驱动组件101停止工作,良好的导热性更加有利于驱动组件101的散热,保证了驱动组件101的快速冷却,进一步缩短了驱动组件101的恢复初始位置的时间。在本实施方式中,基板1011的厚度为11-20μm。将基板1011设置在上述范围内,保证了足够的使用强度,节约了材料。通过上述设置,能够减小对整个驱动组件101驱动方向的阻碍,促进驱动组件发挥优良的驱动性能。同时,能够发挥优良的导 热性能,并减少热量的损失。
在本实施方式中,动力元件1014的材料为聚合物,且热膨胀系数大于等于52ppm/℃。采用动力元件1014镶嵌在相邻隔板1013之间的间隙中,从而保证隔板1013传导的热量能够被动力元件1014充分吸收。动力元件1014的热膨胀系数大于等于52ppm/℃,能够有效提供足够的驱动力和驱动位移,使得动力元件1014能够充分发挥驱动作用。采用上述动力元件保证了驱动组件101的使用寿命,并且驱动力大,从而保证了驱动组件101的运动准确有效。在本实施方式中,动力元件1014的材料可采用SU-8胶或者有机硅树脂SILRES H62、SILRES H62C等。在本实施方式中,隔板1013的横截面形状为矩形,隔板1013的厚度H为11-20μm,长度L为20-30μm,相邻隔板1013之间的距离H1为10-20μm。通过这种设置,根据需要提供的驱动力将隔板1013的尺寸设置为上述区间范围内,保证隔板1013传热的快速有效,避免了热能的损失。当然,通过将相邻隔板1013之间的距离H1设置为10-20μm,使得动力元件1014的嵌入的体积与隔板1013的尺寸设置相匹配。通过上述设置,保证了隔板1013传热与动力元件1014吸热或放热的平衡,保证了驱动组件101内部结构的稳定,进一步使得驱动组件101能够充分利用加热器1012发出的热能。同时,保证了驱动组件101的良好驱动性能,对提高整个驱动组件的刚度起到有益效果。需要指出的是,根据本发明的隔板1013的厚度以及隔板1013之间的间隔不局限于上述布置,只要不影响驱动组件101的性能,不影响驱动效果即符合要求,同样的,隔板1013的形状也不具有上述局限性,例如隔板1013的横截面可以是梯形、三角形、半椭圆型等工业可以实现的形状。
如图2、图3所示,根据本发明的加热器1012为薄膜加热器。加热器1012包括延长部1012a和连接部1012b,其中延长部1012a为两个,相互平行设置。连接部1012b的一端与一个延长部1012a的端部连接,另一端与另一个延长部1012a的端部连接。根据本发明的加热器1012设置于基板1011上,两个延长部1012a之间填充有与基板1011相同的材料的支撑部1012c。支撑部1012c可以保证两个延长部1012a之间的间隔一定,保证了加热器1012工作过程中结构的稳定。同时,支撑部1012c采用与基板1011 相同的材料保证了加热器1012处于上部的延长部1012a的热量能够被及时传导,保证加热器1012传热的稳定,支撑部1012c还能起到绝缘的作用,保证了加热器1012性能的稳定可靠。在本实施方式中,加热器1012的两个延长部1012a由基板1011的一端的端部起始向另一端延伸设置。两个延长部1012a延伸基板1011延伸的端部,分别与连接部1012b固定连接。延长部1012a与基板1011同样为相互平行的。延长部1012a的宽度与基板1011的宽度相同。两个延长部1012a位于基板1011的端部的起始端分别与电路连接,就可以实现加热器1012与电路连通。隔板1013与基板1011相互连接的一端与相邻的延长部1012a之间的距离小于等于基板1011的厚度。在本实施方式中,基板1011设置加热器1012的位置,加热器1012与隔板1013、动力元件1014相互固定连接。当然,隔板1013、动力元件1014也可以不接触,即隔板1013、动力元件1014与加热器1012分别位于基板1011的两侧,并且隔板1013的端部与相邻的延长部1012a之间的距离最大为基板1011的厚度。加热器1012设置在基板1011上,能够保证加热器1012发出的热量能够被及时地传输到隔板1013上,进而使动力元件1014及时被加热,降低了驱动组件101的响应时间。加热器1012的长度与驱动组件101的驱动距离成正比的,改变加热器1012的长度就可以容易控制驱动组件101的驱动距离。因此,驱动组件101长度的设计就具有灵活的调整空间。此外,根据本发明的加热器1012的长度应小于或者等于驱动组件101长度的二分之一。因为驱动器体101产生位移时,会使加热器1012产生变形。加热器1012的长度保持在上述范围内,避免了驱动组件101变形应力对加热器1012的影响,从而保证了加热器1012稳定性,进一步保证了加热器1012的使用寿命。当然,在不影响性能的条件下,加热器1012的长度保证在上述范围内越小越好。进一步优选的,加热器1012的长度小于或者等于驱动组件101长度的三分之一。加热器1012的长度短,其电阻值小,加热器1012的电阻值达到200欧姆以下,非常有利于低电压驱动。
根据本发明的上述驱动组件101的工作原理如下:加热器1012设置于基板1011上,基板1011一侧固定连接有隔板1013,隔板1013与隔板1013之间设置动力元件1014,当加热器1012通电后,会对隔板1013之间的动 力元件1014加热,动力元件1014发生膨胀,进而在横向和纵向上产生位移,即产生驱动力。采用这种设置方式,有效保证了驱动组件101驱动方向的一致,进一步保证了驱动组件101工作过程的可靠性。
图4是示意性表示根据本发明的一种实施方式的驱动器的立体图。如图4所示,根据本发明的驱动器10包括驱动组件101和与驱动组件101相互连接的连接件102。其中,根据本发明的驱动组件101与上述一致,不再赘述。在本实施方式中,根据本发明的连接件102包括支撑块1021和柔性梁1022。如图4所示,支撑块1021上相对应的两侧设置有两个柔性梁1022,柔性梁1022与驱动组件101相互连接,驱动组件101上的加热器1012在远离柔性梁1022的位置。在本实施方式中,驱动器10中设有两个驱动组件101,两个驱动组件101均与连接件102相互固定连接,从而构成整体呈V型的驱动器。如图3所示,柔性梁1022为迂回折叠梁,柔性梁1022的横向刚度较小,纵向刚度大,当驱动组件101中的加热器1012通电后,对设置在隔板1013与隔板1013之间的动力元件1014进行加热,动力元件1014受热膨胀,在横向和纵向上产生位移,因为柔性梁1022迂回结构的横向刚度较小,可以吸纳横向位移,而柔性梁1022纵向刚度较大,动力元件1014膨胀产生的纵向位移可带动与驱动组件101相连的支撑块1021线性移动。此外,连接件102中的支撑块1021的形状设置不局限于上述设置,例如可以是长方体等,原则上只要满足结构强度,便于柔性梁1022的安装即符合条件。当然,柔性梁1022还可以是板状弹簧等。
根据本发明的上述驱动器10,由于驱动组件101的结构布置和柔性梁1022的存在,使得该驱动器10具有高度的线性驱动,而驱动器在驱动方向上的刚度更大,使整体结构强度更高,适应范围更广。同时,驱动器10还具有良好的防抖效果,经过优化后的柔性梁1022能够保证在驱动器10内部直接消除外界产生的振动,稳定性高。
图5是示意性表示根据本发明的一种实施方式的驱动装置的立体图。根据本发明上述驱动器10,可提供一种包含上述驱动器10的驱动装置。如图5所示,根据本发明的一种实施方式,根据本发明的驱动装置1包括两个驱动器10和一个连接板11。在本实施方式中,两个驱动器10均与连 接板11相互固定连接,且反向相对设置构成一个驱动器组1a。驱动器10安装加热器1012的一端均与连接板11相互固定连接。两个驱动器10上的支撑块1021相对设置,并且相互远离。显而易见地,若驱动装置中只有一个驱动器10,则布置方式与上述设置方式中的任意一个驱动器10的布置方式相同。
根据本发明的上述驱动装置1,在一个驱动器组1a中,将其中一个驱动器10的支撑块1021与镜头单元2相互连接,另一个驱动器10的支撑块1021与支撑单元3相互连接。对驱动器组1a分别通电加热,两个驱动器10则具有两个相反方向的位移,从而实现了镜头单元2的驱动。在一个驱动器组1a中两部分的驱动位移效果会产生叠加,即在相同的响应时间内,叠加两个驱动器10的驱动装置1实现的驱动行程是单个驱动器10所能实现驱动行程的二倍。同样的,为适应大行程的要求,根据本发明的上述驱动装置,驱动器10叠加数量不具有局限性,具体数量以能满足所需的驱动行程为准。
图6是示意性表示根据本发明的另一种实施方式的驱动装置的立体图。根据本发明上述驱动器10,可提供一种包含上述驱动器10的驱动装置。如图6所示,根据本发明的另一种实施方式,根据本发明的驱动装置1包括两个驱动器10和两个连接板11。在本实施方式中,两个驱动器10反向相对设置构成一个驱动器组1a。其中,单个驱动器10与单个连接板11相互固定连接。驱动器10安装加热器1012的一端均与连接板11相互固定连接。两个驱动器10上的支撑块1021相互抵靠并固定连接,则两个连接板11位于相对且相互远离的位置。
根据本发明的上述驱动装置1,在一个驱动器组1a中,将其中一个与驱动器10连接的连接板11与镜头单元2相互连接,另一个与驱动器10连接的连接板与支撑单元3相互连接。对驱动器组1a分别通电加热,两个驱动器10则具有两个相反方向的位移,从而实现了镜头单元2的驱动。在一个驱动器组1a中,两部分的驱动位移效果会产生叠加,即在相同的响应时间内,叠加两个驱动器10的驱动装置实现的驱动行程是单个驱动器10所能实现驱动行程的二倍。同样的,为适应大行程的要求,根据本发明的上 述驱动装置,驱动器10叠加数量不具有局限性,具体数量以能满足所需的驱动行程为准。
图7是示意性表示根据本发明的另一种实施方式的驱动装置立体图。如图7所示,根据本发明的另一种实施方式,根据本发明的驱动装置1包括两个驱动器10和一个连接板11。在本实施方式中,两个驱动器10反向相对设置构成一个驱动器组1a。两驱动器10安装有加热器1012的两端分别固定在同一个连接板11上。在本实施方式中,处于相对且相互远离的两个支撑块1021相互固定连接,构成一个差分驱动装置。
根据本发明的上述驱动装置多作为中置马达,驱动装置中相互连接的两个支撑块1021是可以移动的,相互连接的两个支撑块1021与镜头单元2相互连接,连接板11与支撑单元3相互连接。在不同的环境温度下,一个驱动器组1a中的两个驱动器10产生的驱动力的方向相反,且大小一样,从而使得镜头单元位置一直保持在中央位置。当其中一个驱动器10驱动后冷却时,另一个驱动器10加热或不加热均可协助进入冷却的驱动器10快速回复起始位置,响应时间更快。
图8是示意性表示根据本发明的一种实施方式的驱动器组并联立体图。
如图8所示,在本实施方式中,根据本发明的驱动器组1a可以并联设置。在本实施方式中,根据本发明的驱动器组1a还可以相互叠加地并联设置。如图8中所示,两个相同的驱动器组1a相互叠加在一起,两组驱动器组1a中的驱动器依次排列成双V字形。当然,两个相同的驱动器组1a也可以肩并肩的并联设置在一起。根据本发明的两个驱动器组1a的并联布置,所能产生的驱动力是单个驱动器组1a的二倍。同样的,为适应大驱动力的要求,根据本发明的上述驱动器组1a的并联数量不具有局限性,具体以能满足所需的驱动力为准。此外,如图5所示的驱动装置,在增大了驱动行程的情况下,也可以将多个驱动器组1a并联,以增加驱动力。
图9是示意性表示根据本发明的另一种实施方式的驱动器组并联立体图。如图7所示,在本实施方式中,在一驱动器组1a的一侧设置有一个与驱动器组1a并联的驱动器10形成驱动组合。工作时,驱动器组1a通电,设置于驱动器组1a一侧的单个驱动器10不通电。当驱动驱动器组1a产生 位移时会使位于一侧单个驱动器10产生形变;当驱动器组1a驱动行程结束后,单个的驱动器10起到提供弹性力的作用,有助于协助驱动器组1a回复起始位置,很好的缩短了现有热驱动器恢复时间长的问题。为适应驱动装置1的恢复时间要求,根据本发明的上述驱动组合,驱动器组1a可以与多个不通电的驱动器10相并联,具体数量以能满足驱动装置所需的恢复时间为准。另外,设置在驱动器组1a一侧的不仅仅可以是驱动器10,例如,可以是柔性梁1022或者弹簧等弹性件。
需要指出的是,根据本发明的摄像模组,其中的驱动装置1可以是上述的任意一种方式的驱动装置1,但不局限于是上述的驱动装置1的一种,具体要求以满足摄像模组的驱动要求为准。
参考图1,根据本发明的镜头单元2包括镜头21和镜头载体22,镜头21与镜头载体22相互固定连接。根据本发明的支撑单元3包括上支架31和下支架32。上支架31和下支架32相互固定连接,并且形成一个容纳镜头单元2的空腔。镜头单元2可在支撑单元3的空腔内上下移动完成对焦。下支架32与镜头载体22通过驱动装置1相连接。在本实施方式中,根据本发明的驱动装置1经过平面组装后翻转90°侧立,并设置于镜头载体22和下支架32相对的侧面之间。驱动装置1立起后,驱动装置1中位于上面的驱动器10与镜头载体22固定连接,驱动装置1中位下面的驱动器10与支撑单元3的下支架32固定连接。同样的,根据本发明的摄像模组中设置的驱动装置1的数量可以是两个、三个或者更多,即摄像模组不局限于上述的单边驱动方式,也可以是多边驱动。
根据本发明的上述摄像模组,由于驱动装置1设置于镜头单元2上,在实现自动聚焦的同时,可以缩小摄像模组的体积,降低成本;由于驱动装置1侧立设置的,可以增加驱动器10在长度设计方面可发挥的空间,可至少提升行程至400μm。
图10是示意性表示根据本发明的一种实施方式的支撑单元与镜头单元配合图。
图11是示意性表示根据本发明的一种实施方式的镜头载体立体图。
结合图1和图10所示,根据本发明的摄像模组的支撑单元3还包括有 弹性件33,弹性件33包括固定部331和活动部332。固定部331与活动部332为弹性连接。根据本发明的弹性件33的固定部331被上支架3131和下支架332夹持固定。参照图11,活动部332套设在镜头单元2的镜头载体22上,通过镜头载体22上的台阶在与弹性件33连接的位置形成一个单向的限位。此外,驱动装置1的驱动力应大于弹性件33的弹性力,即当驱动装置1产生驱动力带动镜头单元2向上移动时,弹性件33产生的阻力不会对驱动行程产生影响。
根据本发明的上述弹性件33的设置,当驱动装置1通电后,推动镜头单元2向上移动。断电后,驱动装置1中驱动力消失,在弹性件33的作用下,可以加快驱动装置1回复到起始位置。通过上述设置,可以降低镜头单元2的响应时间,进而提高摄像模组的变焦速度。此外,由于弹性件33的套设在镜头单元2上,其对镜头单元2的弹性力有效的抑制了镜头21的倾斜,提高了镜头21的运动稳定性。
结合图1和图10所示,根据本发明的镜头单元2与支撑单元3之间为滑动连接。镜头单元2和支撑单元3之间设置有滑动组件5。在本实施方式中,滑动组件5包括第一滑槽51、第二滑槽52和滚珠53。其中,第一滑槽51设置在镜头单元2中的镜头载体22的外侧,第二滑槽52设置在支撑单元3中下支架32的内侧,第一滑槽51和第二滑槽52相互配合,滚珠53设置在第一滑槽51和第二滑槽52之间,并且第一滑槽51和第二滑槽52的两端部分均设有滚珠53的限位结构。由于滑动组件5的存在,镜头单元2与下支架32可以实现相对滑动。根据本发明的滚珠53至少为两个,滑动组件5至少设置有两组,当滑动组件5设有三组并且三组呈三角形排列时,能使镜头单元2的运动稳定性更好。在本实施方式中,滚珠53的数量为三个,滑动组件5设置有两组,两组滑动组件5位于驱动装置1的两侧。需要指出的是,两组滑动组件5的位置设置不局限于上述布置,例如,两组滑动组件5可以位于驱动装置1的同一侧,当有多于两组滑动组件5时,滑动组件5的排布同样不具有局限性,滑动组件5可以位于驱动装置1的两侧,也可以位于驱动装置1的同一侧,当滑动组件5位于驱动装置1的两侧时,每一侧的滑动组件5的数量可以相同,也可以不同。
根据本发明的上述滑动组件5,当的驱动装置1通电后,驱动装置1带动镜头单元2向上移动。由于滑动组件5的存在,使得镜头单元2向上移动过程中的阻力减小,进而缩短了驱动行程所需要的时间。当驱动装置1断电后,由于在驱动装置1自身的作用下,镜头单元2可回复到起始位置,而弹性件33可加快镜头单元2回复到起始位置的过程。此外,由于镜头单元2都是沿着滑动组件5的滑槽方向进行移动的,使得镜头21不会发生倾斜,并且镜头21在被驱动过程中运动更为稳定。
结合图1和图11所示,根据本发明的摄像模组还包括有压紧组件6,压紧组件6包括第一组件61和第二组件62。在本实施方式中,压紧组件6的第一组件61和第二组件62均为磁铁。根据本发明的压紧组件6不局限为上述磁铁,例如,可以是电磁铁,也可以是其他能够产生排斥力的压紧装置。参照图1和图11,根据本发明的镜头载体22外壁上和下支架32内壁上均设置有凹槽。压紧组件6的第一组件61和第二组件62分别设置于两凹槽内。第一组件61和第二组件62均为矩形体且相互垂直构成一个十字结构,通过第一组件61和第二组件62的排斥力使得镜头载体22和下支架32之间的滑动组件5被压紧,保证了滑动组件5运动过程的可靠和稳定,进一步保证了摄像模组的运行稳定。此外,在本实施方式中,压紧组件6与两组滑动组件5沿镜头载体22的外侧相间均匀分布。此时的压紧组件6的与两组滑动组件5形成三个支点,使得镜头单元2在运动过程中的抗震性更好。
图12是示意性表示根据本发明的一种实施方式的摄像模组的部分组成立体图。
结合图1和图12所示,根据本发明的成像单元4包括底座41、线路板42、连接线43、滤光片和感光芯片。在本实施方式中,成像单元4位于支撑单元3中下支架32的下方,成像单元4与下支架32固定连接。根据本发明的成像单元4中的线路板42位于底座41的上方并与底座41固定连接,驱动装置1和感光芯片均与线路板42电连接。连接线43与线路板42之间也为电连接,根据本发明的上述设置,线路板42可以给驱动装置1提供电源,进而产生驱动力。
根据本发明的上述摄像模组的变焦工作流程如下:驱动装置1通电后,驱动装置1中的驱动器10产生驱动力。因驱动装置1与镜头单元2和支撑单元3之间相互连接,并且镜头单元2与支撑单元3之间存在滑动组件5,使得驱动装置1产生的驱动力可以带动镜头单元2做线性移动,实现变焦,当驱动装置1断电后,在驱动装置1和滑动组件5以及弹性件33的共同作用下,镜头单元2可以快速的回复到起始位置。
对于其中未详尽描述的设备和结构,应当理解为采取本领域已有的通用设备及通用方法来予以实施。
以上所述仅为本发明的一个实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (29)

  1. 一种摄像模组,包括:
    驱动装置(1);
    镜头单元(2);
    支撑单元(3),所述镜头单元(2)位于所述支撑单元(3)内;
    成像单元(4),所述成像单元(4)位于所述支撑单元(3)下方;其特征在于,所述驱动装置(1)位于所述镜头单元(2)、所述支撑单元(3)之间;
    所述驱动装置(1)包括驱动器(10)。
  2. 根据权利要求1所述的摄像模组,其特征在于,所述驱动器(10)包括两个驱动组件(101),与两个所述驱动组件(101)相互连接的连接件(102)。
  3. 根据权利要求2所述的摄像模组,其特征在于,所述驱动组件(101)包括:基板(1011),加热器(1012),隔板(1013);所述隔板(1013)相互间隔的设置在所述基板(1011)的同一侧;
    所述隔板(1013)一端与所述基板(1011)相互固定连接,另一端向远离所述基板(1011)的方向延伸构成自由端;
    所述加热器(1012)设置于所述基板(1011)上;
    相邻所述隔板(1013)之间设有动力元件(1014)。
  4. 根据权利要求3所述的摄像模组,其特征在于,所述加热器(1012)为薄膜加热器。
  5. 根据权利要求4所述的摄像模组,其特征在于,所述加热器(1012)包括两个相互平行的延长部(1012a),以及连接部(1012b);
    两个所述延长部(1012a)由所述基板(1011)的一端的端部起始向另一端延伸,且所述延长部(1012a)与所述基板(1011)相互平行;
    所述连接部(1012b)与两个所述延长部(1012a)沿基板(1011)延伸的端部均相互连接。
  6. 根据权利要求5所述的摄像模组,其特征在于,所述加热器(1012) 还包括位于两个所述延长部(1012a)之间且与所述基板(1011)相同材料的支撑部(1012c);
    所述隔板(1013)与所述加热器(1012)之间的距离小于等于所述基板(1011)的厚度。
  7. 根据权利要求6所述的摄像模组,其特征在于,所述加热器(1012)的长度小于等于所述驱动组件(101)长度的二分之一。
  8. 根据权利要求7所述的摄像模组,其特征在于,所述加热器(1012)的长度小于等于所述驱动组件(101)长度的三分之一。
  9. 根据权利要求8所述的摄像模组,其特征在于,所述隔板(1013)的厚度H为11-20μm,长度L为20-30μm;
    相邻所述隔板(1013)之间的距离H1为10-20μm。
  10. 根据权利要求9所述的摄像模组,其特征在于,所述动力元件(1014)的材料为热膨胀系数大于等于52ppm/℃的聚合物。
  11. 根据权利要求10所述的摄像模组,其特征在于,所述基板(1011)的厚度为11-20μm。
  12. 根据权利要求11所述的摄像模组,其特征在于,所述连接件(102)包括支撑块(1021),所述支撑块(1021)相对的两侧还设有柔性梁(1022)。
  13. 根据权利要求12所述的摄像模组,其特征在于,所述柔性梁(1022)为迂回型折叠梁或板状弹簧。
  14. 根据权利要求13所述的摄像模组,其特征在于,所述驱动组件(101)与所述柔性梁(1022)相互连接。
  15. 根据权利要求14所述的摄像模组,其特征在于,所述驱动器(10)整体呈V型。
  16. 根据权利要求15所述的摄像模组,其特征在于,所述驱动装置(1)包括至少两个驱动器(10);两个所述驱动器(10)反向相对设置构成一个驱动器组(1a),且单个所述驱动器组(1a)中的两个所述支撑块(1021)相互远离。
  17. 根据权利要求16所述的摄像模组,其特征在于,所述驱动装置(1)中,所述驱动器组(1a)可以单个设置;或者,所述驱动器组(1a)可以 相互并联设置;或者,所述驱动器组(1a)与单个驱动器(10)并联设置。
  18. 根据权利要求15所述的摄像模组,其特征在于,所述驱动装置(1)包括至少两个驱动器(10);两个所述驱动器(10)反向相对设置构成一个驱动器组(1a),且单个所述驱动器组(1a)中的两个所述支撑块(1021)相互固定连接。
  19. 根据权利要求18所述的摄像模组,其特征在于,所述驱动装置(1)中,所述驱动器组(1a)可以单个设置;或者,所述驱动器组(1a)可以相互并联设置;或者,所述驱动器组(1a)与单个驱动器(10)并联设置。
  20. 根据权利要求1所述的摄像模组,其特征在于,至少一个所述驱动装置(1)分别与所述镜头单元(2)、所述支撑单元(3)固定连接;
    所述驱动装置(1)在所述镜头单元(2)和所述支撑单元(3)相对的两个侧面之间侧立设置。
  21. 根据权利要求20所述的摄像模组,其特征在于,所述镜头单元(2)包括镜头(21),支撑所述镜头(21)的镜头载体(22);
    所述镜头载体(22)与所述驱动装置(1)相连接。
  22. 根据权利要求20所述的摄像模组,其特征在于,所述支撑单元(3)包括上支架(31)和下支架(32);
    所述下支架(32)与所述驱动装置(1)相连接。
  23. 根据权利要求22所述的摄像模组,其特征在于,所述支撑单元(3)还包括弹性件(33);
    所述弹性件(33)包括固定部(331),与所述固定部(331)弹性连接的活动部(332);
    所述固定部(331)被所述上支架(31)和所述下支架(32)夹持固定,所述活动部(332)套设在所述镜头单元(2)上。
  24. 根据权利要求20所述的摄像模组,其特征在于,成像单元(4)包括底座(41)、线路板(42)、连接线(43)、滤光片,以及用于成像的感光芯片;
    所述线路板(42)分别与所述感光芯片、所述驱动装置(1)电连接;
    所述连接线(43)与所述线路板(42)电连接。
  25. 根据权利要求20所述的摄像模组,其特征在于,所述镜头单元(2)与所述支撑单元(3)之间还设有滑动组件(5)。
  26. 根据权利要求25所述的摄像模组,其特征在于,所述滑动组件(5)包括第一滑槽(51)、第二滑槽(52)和滚珠(53);
    所述滚珠(53)至少为两个。
  27. 根据权利要求26所述的摄像模组,其特征在于,所述滑动组件(5)至少设有两组;
    所述滑动组件(5)安装于所述镜头单元(2)和所述支撑单元(3)相对的两个侧面之间。
  28. 根据权利要求25至27之一所述的摄像模组,其特征在于,还包括压紧组件(6);
    所述压紧组件(6)分别与所述镜头单元(1)、所述支撑单元(3)相连接;
    所述压紧组件(6)位于所述滑动组件(5)的对侧。
  29. 根据权利要求28所述的摄像模组,其特征在于,所述压紧组件(6)包括第一组件(61)和第二组件(62);
    所述第一组件(61)和所述第二组件(62)相互排斥设置。
PCT/CN2018/101035 2017-09-28 2018-08-17 摄像模组 WO2019062376A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710900790.2 2017-09-28
CN201710900790.2A CN107659759B (zh) 2017-09-28 2017-09-28 摄像模组

Publications (1)

Publication Number Publication Date
WO2019062376A1 true WO2019062376A1 (zh) 2019-04-04

Family

ID=61115897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101035 WO2019062376A1 (zh) 2017-09-28 2018-08-17 摄像模组

Country Status (2)

Country Link
CN (1) CN107659759B (zh)
WO (1) WO2019062376A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107659759B (zh) * 2017-09-28 2020-10-23 宁波舜宇仪器有限公司 摄像模组
CN109061829A (zh) * 2018-09-13 2018-12-21 昆山联滔电子有限公司 镜头驱动装置和摄像模组
CN112492185A (zh) * 2020-12-11 2021-03-12 维沃移动通信有限公司 摄像模组和电子设备
CN112804456B (zh) * 2021-01-08 2022-06-10 维沃移动通信有限公司 摄像模组及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286714A (zh) * 2008-05-22 2008-10-15 上海交通大学 V型梁复合材料电热微驱动器
CN101544347A (zh) * 2009-04-23 2009-09-30 上海交通大学 基于电热电磁驱动的双向双稳态微驱动器
CN106950678A (zh) * 2017-05-08 2017-07-14 广州市松诺电子有限公司 一种新型手机自动对焦马达
US20170254978A1 (en) * 2016-03-03 2017-09-07 Ningbo Sunny Opotech Co., Ltd. MEMS Device for Lens Barrel Positioning
CN107659759A (zh) * 2017-09-28 2018-02-02 宁波舜宇仪器有限公司 摄像模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286714A (zh) * 2008-05-22 2008-10-15 上海交通大学 V型梁复合材料电热微驱动器
CN101544347A (zh) * 2009-04-23 2009-09-30 上海交通大学 基于电热电磁驱动的双向双稳态微驱动器
US20170254978A1 (en) * 2016-03-03 2017-09-07 Ningbo Sunny Opotech Co., Ltd. MEMS Device for Lens Barrel Positioning
CN106950678A (zh) * 2017-05-08 2017-07-14 广州市松诺电子有限公司 一种新型手机自动对焦马达
CN107659759A (zh) * 2017-09-28 2018-02-02 宁波舜宇仪器有限公司 摄像模组

Also Published As

Publication number Publication date
CN107659759A (zh) 2018-02-02
CN107659759B (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2019062376A1 (zh) 摄像模组
US10334172B2 (en) Multi-aperture imaging device, method for producing the same and imaging system
US7936527B2 (en) Auto focus lens module with piezoelectric actuator
JP7045784B2 (ja) レンズユニット
US20110026150A1 (en) Compact auto focus lens module with piezoelectric actuator
JP2021509967A (ja) 駆動機構、カメラモジュール及び電子機器
US9813596B2 (en) Vibration-type actuator, interchangeable lens, image pickup apparatus, and automatic stage
TWI385472B (zh) 鏡頭模組及鏡頭模組調焦機構
KR101624856B1 (ko) 렌즈 구동을 위한 피에조 액추에이터 및 피에조 액추에이터를 이용한 휴대단말기용 카메라 모듈
CN111367038A (zh) Sma致动装置、摄像模块和电子设备
CN113395432A (zh) 摄像头模组和电子设备
KR20220055488A (ko) 카메라 모듈 및 이동 단말기
CN201489176U (zh) 小型压电式自动对焦镜头模块
CN212207804U (zh) Sma致动器、摄像模块和电子设备
WO2019238205A1 (en) Lens arrangement with deformable lens and optical system comprising same
WO2012153600A1 (ja) レンズ駆動装置、および撮像装置
JP7025558B2 (ja) オートフォーカスレンズユニット
CN114879336A (zh) 可变焦摄像模组
WO2019062375A1 (zh) 驱动组件及其制造方法
JP2013501245A (ja) 小型撮像装置
CN114942505B (zh) 可变焦摄像模组
CN110545371A (zh) 图像感应模组、镜头模组及移动终端
WO2022193930A1 (zh) 潜望式摄像模组
WO2022166921A1 (zh) 可变焦摄像模组
KR20140116737A (ko) 카메라 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862514

Country of ref document: EP

Kind code of ref document: A1