WO2019062311A1 - 用于电路板的散热件以及应用该散热件的显示面板 - Google Patents

用于电路板的散热件以及应用该散热件的显示面板 Download PDF

Info

Publication number
WO2019062311A1
WO2019062311A1 PCT/CN2018/097221 CN2018097221W WO2019062311A1 WO 2019062311 A1 WO2019062311 A1 WO 2019062311A1 CN 2018097221 W CN2018097221 W CN 2018097221W WO 2019062311 A1 WO2019062311 A1 WO 2019062311A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
heat
circuit board
substrate
heat sink
Prior art date
Application number
PCT/CN2018/097221
Other languages
English (en)
French (fr)
Inventor
张宁
孙志华
姚树林
苏国火
唐继托
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2019062311A1 publication Critical patent/WO2019062311A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • H01L23/4275Cooling by change of state, e.g. use of heat pipes by melting or evaporation of solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons

Definitions

  • the present disclosure relates to the field of electronic product heat dissipation technology, and in particular to a heat sink for a circuit board and a display panel to which the heat sink is applied.
  • the current focus on the heat dissipation design of a large-sized semiconductor display panel focuses on the heat dissipation of the whole system, but as the size of the display panel continues to increase, the size of the TCON board (logic board) continues to shrink, TCON
  • the heat dissipation of the board becomes a problem that must be considered in the future, otherwise it may cause the TCON board to work poorly.
  • the higher temperature components on the TCON board are generally chip devices, including TCON master chips, PMIC chips, and P-gamma chips.
  • a heat sink for a circuit board including:
  • the heat sink body includes a first substrate and a second substrate, the first substrate and the second substrate are sealingly fitted to each other to define a plurality of spaced apart heat dissipation chambers for accommodating the working medium, and the plurality of heat dissipation chambers Each is in communication with at least one of the remaining heat dissipation chambers through a flow passage, each of the plurality of heat dissipation chambers having a condensation portion and an evaporation portion to enable the working medium to evaporate between the condensation portion and the evaporation portion - Condensation cycle.
  • the flow passage is formed within the heat sink body and the flow passage includes a plurality of capillary channels.
  • a plurality of capillary channels are disposed in parallel with each other, one end of each capillary channel being in communication with one of the heat dissipation chambers and the other end being in communication with the other of the heat dissipation chambers.
  • the capillary channel is formed from a powder sintered structure or formed from a microchannel structure.
  • the heat dissipation chamber is formed as a porous medium or a porous medium is provided in the heat dissipation chamber.
  • the porous medium is a wire mesh structure or a sintered structure.
  • the heat dissipation chamber is provided with a plurality of heat exchange enhancement portions to form a porous medium
  • the heat exchange reinforcement portion includes at least one of an outer convex portion and an inner concave portion
  • the heat exchange reinforcement is coupled to at least one of an evaporation portion and a condensation portion of the heat dissipation chamber.
  • the heat exchange reinforcement portion is an outer convex portion, and the outer convex portion is columnar.
  • the first substrate has a plurality of first receiving grooves and a second receiving groove, and each of the plurality of first receiving grooves communicates with at least one of the remaining first receiving grooves through the second receiving groove;
  • the second substrate is a planar plate body, and the second substrate is opposite to the first substrate and is sealingly connected, so that the first receiving groove and the second substrate together define a heat dissipation chamber, and the second receiving groove and the second substrate jointly define a circulation. aisle.
  • the surface of the second substrate that faces away from the first substrate is a smooth mounting surface.
  • the first substrate has a plurality of first receiving grooves and a second receiving groove, and each of the plurality of first receiving grooves communicates with at least one of the remaining first receiving grooves through the second receiving groove;
  • the second substrate is the same as the first substrate and is oppositely disposed.
  • the second substrate is sealingly connected to the first substrate, so that the opposite first receiving grooves jointly define the heat dissipation chamber, and the oppositely disposed second receiving grooves are jointly defined. Circulation channel.
  • the heat sink for the circuit board further includes a heat pipe outside the heat sink body and connected to the heat sink body, and the circulation passage is formed in the heat pipe.
  • the plurality of flow passages are independent of each other and each flow passage uniquely communicates with the two heat dissipation chambers, one end of each capillary passage of each flow passage is in communication with one of the two heat dissipation chambers and The other end is in communication with the other of the two heat dissipation chambers.
  • the heat dissipation areas of the plurality of heat dissipation chambers are different, wherein the chamber having the largest heat dissipation area is the first heat dissipation chamber, and each of the remaining heat dissipation chambers passes through the independent circulation channel and the first heat dissipation chamber.
  • the rooms are connected.
  • the heat sink for the circuit board further includes an injection channel that communicates with the first heat dissipation chamber, and the injection channel, the heat dissipation chamber, and the flow channel are integrally closed.
  • the inlet of the injection passage is sealed by means of weld sintering, or the inlet of the injection passage is provided with a heat resistant plug that closes the inlet.
  • the heat sink body is fabricated using at least one of the following processing methods: stamping, wet etching, dry etching, laser engraving.
  • mounting holes for connecting to the circuit board are respectively disposed on the first substrate and the second substrate.
  • a display panel comprising: a circuit board having a plurality of chips; and the heat sink according to any of the preceding embodiments, wherein the heat sink is mounted on one side of the circuit board and The plurality of heat dissipation chambers are in one-to-one correspondence with the plurality of chips, and the portion of the heat dissipation chamber close to the circuit board is formed as an evaporation portion and the portion of the heat dissipation chamber away from the circuit board is formed as a condensation portion.
  • FIG. 1 is a schematic exploded view of a heat sink according to an embodiment of the present disclosure.
  • Figure 2 is a partially enlarged schematic view of the area A of Figure 1.
  • Figure 3 is a partially enlarged schematic view of the area B of Figure 1.
  • FIG. 4 is a schematic exploded view of a heat sink according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic exploded view of a heat sink according to still another embodiment of the present disclosure.
  • FIG. 6 is a schematic exploded view of a heat sink according to still another embodiment of the present disclosure.
  • FIG. 7 is a schematic exploded view of a heat sink according to still another embodiment of the present disclosure.
  • the existing heat dissipation structure for heat dissipation of a plurality of chips is a water-cooling method, a multi-hotspot heat sink with a liquid inlet and a liquid outlet, and the working fluid in the device enters the microchannel through the liquid inlet and flows through each A heat source chip flows out from the liquid outlet.
  • the existing multi-chip heat sink has the following defects: 1) An external liquid circulation device, such as an electronic pump, is required to promote active circulation of the working fluid, which is not only costly, but also bulky and takes up space; 2) close to the front end of the microchannel The heat dissipation effect of the chip is better, but the heat dissipation effect on the chip near the end of the microchannel is poor.
  • the existing multi-chip heat sinks usually introduce a multi-chip heat-dissipating package structure in the chip packaging stage, or heat-dissipate the multi-layer chip stack. Although these can play a heat dissipation role, it is necessary to change the front-end chip package manufacturing. The process, the production process is cumbersome, and the heat dissipation of each chip is independent of each other, and the heat dissipation effect is not balanced.
  • the inventors have conducted in-depth research and analysis and found that the above problems occur because the existing heat sinks usually heat the entire board, so that the heat sink covers several hot spots, or separate heat dissipation structures for multiple hotspots. . That is to say, the existing multi-chip circuit board does not take into consideration the problem that the heat dissipation requirements of the plurality of chips existing in the multi-chip heat dissipation are different.
  • the inventors obtained experimentally obtained instantaneous temperature measurement results of circuit boards (with no heat dissipation structure) on TV panels of different sizes.
  • the TCON circuit and the source circuit are integrated on the same PCB.
  • the maximum temperature on the TCON board is approximately 72.2 ° C, and the highest temperature occurs at the TCON master and PMIC chips.
  • the temperature of the TCON part of a 55-inch TV panel was measured using an infrared camera.
  • the maximum temperature on the TCON board is approximately 73.9 ° C, and the highest temperature occurs at the TCON master chip and the P-gamma chip.
  • the inventor designed a heat sink with a simple structure and low cost, which can meet the different needs of heat dissipation of a plurality of chips and realize heat dissipation balance of a plurality of chips.
  • a heat sink 100 for a circuit board according to an embodiment of the present disclosure will be described below with reference to FIGS. 1 through 5.
  • a heat sink 100 for a circuit board includes: a heat sink body 10 having a plurality of spaced-apart heat dissipation chambers 11 (11a, 11b, 11c) for dissipating heat.
  • the chamber is configured to receive a working medium, and any one of the plurality of heat dissipation chambers (eg, 11a) is in communication with at least one of the remaining heat dissipation chambers (eg, 11b and/or 11c) through the flow passage 12, each heat dissipation chamber
  • the chambers 11 each have a condensation portion and an evaporation portion to enable the working medium to effect an evaporation-condensation cycle between the condensation portion and the evaporation portion.
  • working medium refers to a suitable heat dissipating medium that is present in the form of a vapor after absorbing heat and releasing the heat and then presenting it in liquid form.
  • the working fluid forms a working fluid vapor after absorbing heat
  • the working fluid vapor forms a working fluid after releasing heat.
  • the term "evaporation site” is the portion of the heat dissipation chamber where the working fluid easily absorbs heat
  • the "condensation site” is the portion of the heat dissipation chamber where the working fluid vapor is likely to release heat.
  • the "evaporation site” and the “condensation site” are relative concepts.
  • a side of the heat sink body 10 near the hot spot may be referred to as an "evaporation portion".
  • the side of the heat sink body 10 away from the hot spot is relatively referred to as a "condensation portion"; for another example, the heat dissipation chamber 11 in the heat sink body 10 of the heat sink 100 is also positioned to a hot spot of the circuit board (for example, a heat generating chip) At the position, the portion of the heat dissipation chamber 11 near the hot spot (for example, the central portion of the heat dissipation chamber) may also be referred to as an "evaporation portion", and the portion of the heat dissipation chamber 11 away from the hot spot (for example, the peripheral portion of the heat dissipation chamber) is relatively The ground is called the "condensation site.”
  • a plurality of heat dissipating chambers 11 are disposed to dissipate heat for a plurality of chips as hot spots of the circuit board, and a portion of the heat dissipating chamber 11 near the circuit board is formed as an evaporation portion. The portion of the heat dissipation chamber 11 that is away from the circuit board is formed as a condensation portion.
  • the working fluid absorbs heat from the chip in the heat dissipation chamber 11, the working fluid vaporizes to form working fluid vapor, and the working fluid vapor diffuses in the closed cavity by the action of vapor pressure, when the hot working fluid vapor When diffused to a relatively low temperature, the heat is released to the outside and condensed into a working fluid to form a complete evaporation-condensation cycle.
  • the heat can be quickly released from the chip to the outside through the phase change cycle, and the chip is cooled. the goal of.
  • the plurality of heat dissipation chambers 11 are connected through the circulation passage 12 so that the working fluids in the respective heat dissipation chambers 11 can flow through each other, so that the working medium can be exchanged between the different heat dissipation chambers 11 to improve the circuit board. Heat dissipation efficiency and heat balance.
  • the heat dissipating component for the circuit board provided by the embodiment of the present disclosure does not need an external circulation device, does not affect the packaging process of the chip, and does not need to additionally test the heat generation condition of each chip, thereby realizing the autonomous circulation of the working medium.
  • the heat dissipation effect of different chips can achieve self-matching and self-balancing, and is more suitable for multi-chip heat dissipation of the circuit board, which is convenient for production and application.
  • the flow passage 12 is formed within the heat sink body 10 and the flow passage 12 includes a plurality of capillary channels 121.
  • the capillary channel 121 can be a narrow channel formed in the flow channel 12 that provides capillary force to pull the working fluid back from the lower temperature end to the higher temperature end.
  • the working fluid is transferred to the heat dissipation chamber 11 opposite to the higher temperature chip to improve the heat dissipation capability of the heat dissipation chamber 11, thereby achieving self-matching and self-balancing of heat dissipation by a simple structure.
  • a plurality of capillary channels 121 may be disposed in parallel, one end of the capillary channel 121 is in communication with an evaporation portion of one of the heat dissipation chambers, and the other end of the capillary channel 121 is in communication with an evaporation portion of the other heat dissipation chamber.
  • the working fluid is mainly concentrated in the evaporation portion, and the working fluid can flow faster from the lower temperature heat dissipation chamber 11 to the higher temperature heat dissipation chamber 11 through the plurality of capillary channels 121, thereby further improving the respective heat dissipation chambers.
  • the temperature of the chamber 11 is balanced.
  • the capillary channel may be formed by a powder sintered structure or by a microchannel structure.
  • the powder sintered structure is a porous structure formed by sintering a powder, whereby the capillary channel has a better capillary adsorption force, further improving the flow velocity and flow efficiency of the working fluid.
  • the microchannel structure is a multi-channel structure having a plurality of microchannels.
  • the circulation channel 12 is not limited to being located in the heat sink body 10 , and the circulation channel 12 may also be located outside the heat sink body 10 .
  • the circulation channel 12 may also be a heat pipe independent of the heat sink body 10 , the heat pipe.
  • the respective heat dissipation chambers 11 are communicated outside the heat sink body 10.
  • the heat sink 100 may further include a heat pipe 18 adapted to be connected to the heat sink body 10 outside the heat sink body 10 , and the flow passage 12 is formed in the heat pipe 18 .
  • each flow passage 12 may be independent of each other and each flow passage 12 uniquely communicates with two heat dissipation chambers 11, each flow passage One end of each capillary channel 121 of 12 is in communication with one of the heat dissipation chambers 11 and the other end is in communication with the other heat dissipation chamber 11.
  • the heat dissipation areas of the plurality of heat dissipation chambers 11 may be the same or different, wherein the chamber with the largest heat dissipation area is the first heat dissipation chamber 11a, and the remaining second heat dissipation chambers. 11b.
  • the third heat dissipation chamber 11c is in communication with the first heat dissipation chamber 11a through the independent flow passage 12.
  • the first heat dissipation chamber 11a may correspond to a component (such as a chip type device) having a large heat dissipation requirement when working on the circuit board.
  • the first heat dissipation chamber 11a and the remaining second heat dissipation chamber 11b and the third heat dissipation chamber 11c are both communicated through the independent flow passage 12 to be in the first heat dissipation.
  • the working fluid flows from the remaining second heat dissipation chamber 11b and the third heat dissipation chamber 11c to the first heat dissipation chamber 11a, so that the heat balance of each of the heat dissipation chambers 11 is faster. timely.
  • the number of heat dissipation chambers 11 may not be limited to the first, second, and third heat dissipation chambers described above.
  • the heat sink body 10 further includes an injection channel 16 that communicates with the first heat dissipation chamber 11a, the injection channel 16, and the first heat dissipation cavity.
  • the chamber 11a, the second heat dissipation chamber 11b, the third heat dissipation chamber 11c, and the flow passage 12 are integrally closed.
  • the inlet of the injection passage 16 is sealed by welding sintering, or the inlet of the injection passage 16 is provided with a heat resistant plug that closes the inlet.
  • the heat dissipation chamber 11 is formed as a porous medium or a heat medium is provided in the heat dissipation chamber 11.
  • the porous medium may be a mesh structure or a sintered structure.
  • the wire mesh structure is a structure having a plurality of meshes
  • the sintered structure is also a porous structure having a plurality of heat dissipation holes.
  • a plurality of heat exchange enhancement portions 13 are disposed in the heat dissipation chamber 11 to form a porous medium, and the heat exchange reinforcement portion 13 includes at least one of an outer convex portion and an inner concave portion.
  • the convex portion protrudes outward, and the inner concave portion is recessed inward.
  • the heat exchange reinforcement portion 13 is coupled to at least one of an evaporation portion and a condensation portion of the heat dissipation chamber 11.
  • the heat exchange reinforcement portion 13 is disposed opposite to the circuit board; when the heat exchange reinforcement portion 13 is connected to the condensation portion of the heat dissipation chamber 11, the heat exchange reinforcement portion 13 Deviated from the board.
  • the heat exchange reinforcing portion 13 is an outer convex portion
  • the outer convex portion is columnar
  • one end of the outer convex portion is connected to any one of an evaporation portion and a condensation portion
  • the other end of the convex portion corresponds to the other of the evaporation portion and the condensation portion.
  • the heat sink body 10 includes a first substrate 14 and a second substrate 15.
  • the first substrate 14 has a plurality of first receiving slots 141 and second receiving slots 142, and a plurality of Each of the one receiving grooves 141 communicates with at least one of the remaining first receiving grooves 141 through the second receiving grooves 142, and the heat exchange reinforcing portion is formed in the first receiving grooves 141.
  • the second substrate 15 is a planar plate body, and the second substrate 15 is opposite to the first substrate 14 and is sealingly connected, so that the first receiving groove 141 and the second substrate 15 together define the heat dissipation chamber 11 and the second receiving groove 142.
  • the second substrate 15 collectively defines a flow passage 12 .
  • the heat sink body 10 includes a first substrate 14 and a second substrate 15.
  • the first substrate 14 is a planar plate body
  • the second substrate 15 has a plurality of first receiving grooves 141 and second receiving grooves 142, each of the plurality of first receiving grooves 141 and the remaining first receiving grooves 141. At least one is communicated through the second receiving groove 142, and the heat exchange reinforcing portion is formed in the first receiving groove 141.
  • the second substrate 15 is disposed opposite to the first substrate 14 and is sealingly connected, so that the first receiving groove 141 and the first substrate 14 together define the heat dissipation chamber 11 , and the second receiving groove 142 and the first substrate 14 together define a circulation channel. 12. Therefore, for the sheet-shaped heat sink, only one substrate can be processed to obtain the heat dissipation chamber 11 and the flow passage 12, which reduces the production process and production man-hour, and improves the production efficiency.
  • first substrate 14 and the second substrate 15 may be bonded to each other and the edges of the two substrates may be joined together by a sintering process, and the two substantially bonded regions may also be bonded by a sealant.
  • the surface of the second substrate 15 that faces away from the first substrate 14 is a smooth mounting surface.
  • the application of the heat transfer adhesive is facilitated, which facilitates the assembly and integration of the heat sink 100 on the circuit board.
  • the heat sink body 10 includes a first substrate 14 and a second substrate 15, and the first substrate 14 has a plurality of first The receiving groove 141 and the second receiving groove 142, each of the plurality of first receiving grooves 141 and at least one of the remaining first receiving grooves 141 communicate with each other through the second receiving groove 142, and the heat exchange reinforcing portion 13 is formed at the first In the accommodating groove 141, the second substrate 15 and the first substrate 14 have the same structure and are oppositely disposed, and the second substrate 15 is sealingly connected to the first substrate 14 such that the oppositely disposed first accommodating grooves 141 jointly define the heat dissipation chamber 11 (See Fig. 1), the oppositely disposed second receiving slots 142 collectively define a flow passage 12 (see Fig. 1).
  • the material selection of the first substrate 14 and the second substrate 15 is not limited to various high thermal conductivity metals, and includes organic materials such as polymers which are advantageous for forming a heat dissipation effect. It should be noted that, according to the embodiment of the present disclosure, the thickness of the first substrate 14 and the second substrate 15 is not limited, and only the heat dissipation effect of the heat sink may be achieved. In actual fabrication, when the first substrate 14 and/or the second substrate 15 have a large thickness, the first and second receiving grooves may be formed by a turning process or the like.
  • the formation on the first and second receiving grooves may be formed by a stamping process or the like, in which case, the first substrate 14 and/or the second substrate 15 are formed.
  • a convex structure corresponding to the first and second receiving grooves may be formed on the back surface opposite to the surface on which the first and second receiving grooves are located (for example, see the second substrate 15 shown in FIGS. 1, 5, and 7). a raised structure on the back surface).
  • the heat sink body 10 is fabricated using at least one of the following processing methods: stamping, wet etching, dry etching, laser engraving.
  • the manufacturing method of the heat dissipating member 100 is not limited to the stamping process, and includes various processes such as wet etching, dry etching, laser engraving, and the like, which may form a microstructure or a porous structure on a specific material.
  • the heat dissipating component 100 of the patent has good versatility, is not limited to being applied to a circuit board having a logic board, and is also applicable to other circuit boards having multiple hotspot heat dissipation requirements, for example, some TCON circuits and Source.
  • the driving circuit is integrated in the same PCB board, so the heat sink 100 of the present application can also be applied to the Source driving circuit and other board-level integrated circuits having heat dissipation requirements.
  • the heat sink 100 includes a first substrate 14 and a second substrate 15 which are vertically opposed to each other, and mounting holes 17 for connecting to the circuit board are left on both sides of the substrate.
  • the first substrate 14 and the second substrate 15 are soldered together to form a plurality of (three in the drawing) heat dissipation chambers 11 (11a, 11b, and 11c), and each of the hot spots on the circuit board corresponds to a uniform heat dissipation of the circuit board.
  • the heat dissipation chamber 11 (11a, 11b or 11c), the hot spot and the first substrate 14 of the heat sink 100 may be adhered by a substance such as thermal grease. It can be seen that the position of the heat dissipation chamber 11 at the heat sink 100 varies with the layout of various hot spots (including but not limited to chips) in the circuit board.
  • a groove may be left on the inner side of the first substrate 14 or the second substrate 15 to define an injection channel 16 inside the heat sink 100, the injection channel 16 connecting the internal cavity of the heat sink body 10 to the outside, such that A certain amount of working fluid can be filled into the cavity by means of negative pressure, and finally the inlet of the filling channel is blocked by welding or by heat-resistant glue to form a completely closed inner cavity structure.
  • a display panel includes: a circuit board and the heat sink 100 described in the first aspect embodiment as described above, the circuit board having a plurality of chips, and the heat sink 100 is mounted on one side of the circuit board and
  • the plurality of heat dissipation chambers 11 are in one-to-one correspondence with the plurality of chips, and a portion of the heat dissipation chamber 11 close to the circuit board is formed as an evaporation portion, and a portion of the heat dissipation chamber 11 away from the circuit board is formed as a condensation portion.
  • the display panel according to the embodiment of the present disclosure can enable the heat dissipation effect of different chips to achieve self-matching and self-balancing, and is more suitable for board-level multi-chip heat dissipation, which is convenient for production and application.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

在一个实施例中,一种用于电路板的散热件,包括散热件本体。散热件本体包括第一基板和第二基板,第一基板和第二基板彼此密封配合以限定多个间隔分布的散热腔室,散热腔室用于容纳工质,多个散热腔室中的每个均与其余散热腔室中的至少一个通过流通通道相连通,多个散热腔室中的每个均具有冷凝部位和蒸发部位以使得工质能够在冷凝部位和蒸发部位之间实现蒸发-冷凝循环。

Description

用于电路板的散热件以及应用该散热件的显示面板
相关申请的交叉引用
本申请要求于2017年9月30日向中国国家知识产权局递交的中国专利申请201710917675.6的权益,该申请的公开内容通过引用整体并入本文中。
技术领域
本公开涉及电子产品散热技术领域,具体而言,涉及一种用于电路板的散热件以及应用该散热件的显示面板。
背景技术
相关技术中,目前关于大尺寸半导体显示面板(如TV)散热设计的焦点集中于整机系统的散热,但是随着显示面板尺寸的不断增大、TCON板(逻辑板)尺寸的不断缩小,TCON板的散热成为未来必须考虑的问题,否则可能会引起TCON板工作不良。目前TCON板上工作时温度较高的元器件一般都是芯片类器件,包括TCON主控芯片、PMIC芯片以及P-gamma芯片等等。这样,当TCON板工作时,多个芯片的温度均较高并形成多个热点,因此急需对多个芯片同时进行散热。
发明内容
根据本公开的一个方面,提供了一种用于电路板的散热件,包括:
散热件本体,包括第一基板和第二基板,第一基板和第二基板彼此密封配合以限定多个间隔分布的散热腔室,散热腔室用于容纳工质,多个散热腔室中的每个均与其余散热腔室中的至少一个通过流通通道相连通,多个散热腔室中的每个均具有冷凝部位和蒸发部位以使得工质能够在冷凝部位和蒸发部位之间实现蒸发-冷凝循环。
在一个具体实施例中,流通通道形成在散热件本体内,流通通道包括多个毛细管道。
在一个具体实施例中,多个毛细管道彼此平行设置,每个毛细管道的一端与一个散热腔室相连通且另一端与另一个散热腔室相连通。
在一个具体实施例中,毛细通道由粉末烧结结构形成或由微通道结构形成。
在一个具体实施例中,散热腔室形成为多孔介质或散热腔室内设有多孔介质。
在一个具体实施例中,多孔介质为丝网结构或烧结结构。
在一个具体实施例中,,散热腔室内设有多个换热加强部以形成多孔介质,换热加强部包括外凸部和内凹部中的至少一种。
在一个具体实施例中,换热加强部连接在散热腔室的蒸发部位和冷凝部位中的至少一个上。
在一个具体实施例中,换热加强部为外凸部,外凸部为柱状。
在一个具体实施例中,第一基板具有多个第一容纳槽和第二容纳槽,多个第一容纳槽中的每个与其余第一容纳槽中的至少一个通过第二容纳槽连通;第二基板为平面板体,第二基板与第一基板相对设置且密封连接,以使第一容纳槽与第二基板共同限定出散热腔室、第二容纳槽与第二基板共同限定出流通通道。
在一个具体实施例中,第二基板的与第一基板相背离的表面为平滑的安装面。
在一个具体实施例中,第一基板具有多个第一容纳槽和第二容纳槽,多个第一容纳槽中的每个与其余第一容纳槽中的至少一个通过第二容纳槽连通;第二基板与第一基板的结构相同且相对设置,第二基板与第一基板密封连接,以使相对设置的第一容纳槽共同限定出散热腔室、相对设置的第二容纳槽共同限定出流通通道。
在一个具体实施例中,用于电路板的散热件还包括热管,热管在散热件本体外且与散热件本体连接,流通通道形成在热管内。
在一个具体实施例中,多个流通通道互相独立且每个流通通道唯一地连通两个散热腔室,每个流通通道的每个毛细管道的一端与两个散热腔室中的其中一个连通且另一端与两个散热腔室中的另一个连通。
在一个具体实施例中,多个散热腔室的散热面积不同,其中散热面积最大的腔室为第一散热腔室,其余散热腔室中的每一个均通过独立的流通通道与第一散热腔室相连通。
在一个具体实施例中,用于电路板的散热件还包括注入通道,注入通道与第一散热腔室连通,注入通道、散热腔室以及流通通道整体封闭。
在一个具体实施例中,注入通道的入口通过焊接烧结方式被密封,或者注入通道的入口设有封闭该入口的抗热堵盖。
在一个具体实施例中,散热件本体的制作至少采用以下加工方法中的一种:冲压成型、湿法刻蚀、干法刻蚀、激光雕刻。
在一个具体实施例中,第一基板和第二基板上分别设有用于与电路板连接的安装孔。
根据本公开的另一个方面,提供了一种显示面板,包括:电路板,电路板具有多个芯片;以及如前述任一实施例所述的散热件,散热件安装在电路板的一侧且多个散热腔室与多个芯片一一对应,散热腔室的靠近电路板的部位形成为蒸发部位且散热腔室的远离电路板的部位形成为冷凝部位。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开一个实施例的散热件的拆分示意图。
图2是图1中A区域的局部放大示意图。
图3是图1中B区域的局部放大示意图。
图4是根据本公开另一个实施例的散热件的拆分示意图。
图5是根据本公开再一个实施例的散热件的拆分示意图。
图6是根据本公开又一个实施例的散热件的拆分示意图。
图7是根据本公开还一个实施例的散热件的拆分示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
已有的针对多个芯片散热的散热结构为基于水冷方法、带有进液口和出液口的多热点散热装置,该装置内的工质液体通过进液口进入微通道,并流经每一个热源芯片后从出液口流出。
已有的多芯片散热装置存在以下缺陷:1)需要外接液体循环装置,如电子泵,以促进工质液体的主动循环,不仅成本高、而且体积大、占用空间;2)对靠近微通道前端的芯片的散热效果较好,但对靠近微通道末端的芯片的散热效果较差。
此外,已有的多芯片散热装置还通常在芯片封装阶段就引入多芯片散热封装结构,或者将采用多层芯片堆叠的方式进行散热,这些虽然能起到散热作用,但是需要变更前段芯片封装制造流程,制作过程繁琐、而且各个芯片的散热是互相独立的、散热效果不均衡。
本公开是发明人基于以下认知作出的:
对于多芯片电路板的散热,已有的电路板虽然设置了散热装置,但是在电路板持续工作时间较长时,仍会出现散热不足进而导致电流板上的芯片温度过高造成的电路失效的现象,最终电路板上的某一个或多个芯片的工作温度超过预设的上限值时,就会被断电以对芯片进行保护,防止高温工作对芯片造成损伤。
发明人经深入研究分析发现,之所以出现上述问题,是因为已有的散热装置通常是对电路板进行整体散热,使散热装置覆盖住几个热点,或者分别针对多个热点设置独立的散热结构。也就是说,已有的多芯片电路板并没有考虑到多芯片散热时存在的多个芯片的散热需求不同的问题。
发明人通过实验方式获得了不同尺寸的TV面板上的电路板(未设置散热结构)的瞬时温度测量结果。
利用红外热像仪对一款32寸TV面板中TCON电路板进行温度测量,该款的TCON电路与source电路是集成在同一块PCB板上。TCON板上的最高温度约为72.2℃,温度最高点发生在TCON主控芯片和PMIC芯片处。
利用红外热像仪对一款55寸TV面板中TCON部分进行温度测量。TCON板上的最高温度约为73.9℃,温度最高点发生在TCON主控芯片和P-gamma芯片处。
由上可知,不同电路板的芯片的发热情况不同,每个电路板的多个芯片的工作温度也不同,因此各个芯片的散热需求也就不同,同样环境下温度越高、温升较快的芯片的散热需要越高,相反地,温度越低、温升较慢的芯片的散热需求较低。只有根据不同芯片的散热需求进行散热结构的布置才能实现多个芯片的散热平衡、改善散热效果、增强电路板工作的稳定性和可靠性。
基于此,发明人设计了一种能够满足多个芯片散热的不同需求、实现多个芯片的散热平衡的结构简单、成本低的散热件。
下面参考图1至图5描述根据本公开实施例的用于电路板的散热件100。
如图1所示,根据本公开实施例的用于电路板的散热件100包括:散热件本体10,散热件本体10具有多个间隔分布的散热腔室11(11a、11b、11c),散热腔室用于容纳工质,多个散热腔室中的任一个(例如11a)均与其余散热腔室中的至少一个(例如11b和/或11c)通过流通通道12相连通,每个散热腔室11均具有冷凝部位和蒸发部位以使得工质能够在冷凝部位和蒸发部位之间实现蒸发-冷凝循环。
本公开中,术语“工质”是指吸收热量后以蒸汽形式呈现而释放热量后以液体形式呈现的适宜的散热媒介。例如,工质液体在吸收热量后形成工质蒸汽,而工质蒸汽在释 放热量后形成工质液体。相应地,术语“蒸发部位”是散热腔室中工质液体易吸收热量的部位,而“冷凝部位”是散热腔室中工质蒸汽易释放热量的部位。这里,“蒸发部位”和“冷凝部位”是相对的概念。例如,当散热件100的散热件本体10中的散热腔室11被定位到电路板的热点(例如发热芯片)位置时,散热件本体10靠近热点的一侧面可以被称为“蒸发部位”,而散热件本体10远离热点的一侧面相对地被称为“冷凝部位”;又例如,同样当散热件100的散热件本体10中的散热腔室11被定位到电路板的热点(例如发热芯片)位置时,散热腔室11靠近热点的部位(例如散热腔室的中心部位)也可以被称为“蒸发部位”,而散热腔室11远离热点的部位(例如散热腔室的周边部位)相对地被称为“冷凝部位”。
根据本公开实施例的用于电路板的散热件100,通过设置多个散热腔室11以针对电路板的多个作为热点的芯片进行散热,散热腔室11靠近电路板的部位形成为蒸发部位,散热腔室11远离电路板的部位形成为冷凝部位。由于工质液体在散热腔室11中吸收来自芯片的热量,工质液体会气化形成工质蒸汽,工质蒸汽在密闭腔体中借着蒸汽压的作用进行扩散,当热的工质蒸汽扩散到四周温度相对较低的位置时,又会将热量释放到外界而冷凝成工质液体,形成一个完整的蒸发-冷凝循环,通过相变循环热量可以快速从芯片向外界释放,达到芯片降温的目的。而且,通过流通通道12将多个散热腔室11连通起来,以使各个散热腔室11内的工质能够互相流通,这样工质在不同散热腔室11之间能够进行交换,提高了电路板的散热效率和热平衡能力。
由此,本公开实施例提供的用于电路板的散热件,不需要外接循环装置,不影响芯片的封装流程,也不需要额外测试每个芯片的发热状况,就能够实现工质的自主循环,使不同芯片的散热效果可以达到自匹配和自平衡,更适用于电路板的多芯片散热,方便生产和应用。
在一些实施例中,流通通道12形成在散热件本体10内,流通通道12包括多个毛细管道121。如图2所示,毛细管道121可以是形成在流通通道12内的狭窄的沟道,该沟道可提供毛细力以将工质液体从温度较低的一端回拉至温度较高的一端,这样工质液体会向与温度较高的芯片相对的散热腔室11转移,以提高了该散热腔室11的散热能力,由此通过简单的结构实现了散热的自匹配和自平衡。
具体地,多个毛细管道121可以平行设置,毛细管道121的一端与其中一个散热腔室的蒸发部位相连通且毛细管道121的另一端与另一个散热腔室的蒸发部位相连通。由此,工质液体主要聚集在蒸发部位,工质液体能够更快地经过多个毛细管道121从温度较低的散热腔室11流向温度较高的散热腔室11,进一步提高了各个散热腔室11的温度 均衡性。
其中,毛细通道可以由粉末烧结结构形成或由微通道结构形成。具体地,粉末烧结结构为通过对粉末进行烧结形成的多孔结构,由此毛细通道具有更好的毛细吸附力,进一步提高了工质液体的流动速度和流动效率。此外,微通道结构为具有多个微通道的多通道结构。
当然,根据本公开实施例,流通通道12不限于位于散热件本体10内,流通通道12还可以位于散热件本体10外,换言之,流通通道12还可以是独立于散热件本体10的热管,热管在散热件本体10外连通各个散热腔室11。具体而言,如图7所示,散热件100还可以包括热管18,热管18适于在散热件本体10外与散热件本体10连接,流通通道12形成在热管18内。
多个流通通道12之间的连通方式可以有多种,例如,在一些实施例中,多个流通通道12互相独立且每个流通通道12唯一地连通两个散热腔室11,每个流通通道12的每个毛细管道121的一端与其中一个散热腔室11连通且另一端与另一个散热腔室11连通。
根据本公开的具体实施例,如图1所示,多个散热腔室11的散热面积可以相同或不同,其中散热面积最大的腔室为第一散热腔室11a,其余的第二散热腔室11b、第三散热腔室11c均通过独立的流通通道12与第一散热腔室11a相连通。根据本公开的具体实施例,散热件使用时,第一散热腔室11a可以对应于电路板上工作时散热需求较大的元器件(例如芯片类器件)。为了快速增强第一散热腔室11a的散热能力,将第一散热腔室11a与其余的第二散热腔室11b和第三散热腔室11c均通过独立的流通通道12连通,以在第一散热腔室11a的温度较高时,使工质液体从其余的第二散热腔室11b和第三散热腔室11c流向第一散热腔室11a,以使各个散热腔室11的热平衡的更快速、及时。当然,在其它实施例中,散热腔室11的数量可以不限于上述的第一、第二和第三散热腔室。
此外,如图2所示,为方便散热件本体10内工质的注入,散热件本体10还包括注入通道16,注入通道16与第一散热腔室11a连通,注入通道16、第一散热腔室11a、第二散热腔室11b、第三散热腔室11c以及流通通道12整体封闭。具体地,注入通道16的入口通过焊接烧结方式被密封,或者注入通道16的入口设有封闭该入口的抗热堵盖。
根据本公开一个实施例的用于电路板的散热件100,散热腔室11形成为多孔介质或散热腔室11内设有多孔介质。由此,能够进一步增大散热腔室11的散热面积,提高散 热腔室11的散热效果。具体地,多孔介质可以是丝网结构或烧结结构。丝网结构是具有多个网孔的结构,烧结结构也是具有多个散热孔的多孔结构。
在一个具体实施例中,如图3所示,散热腔室11内设有多个换热加强部13以形成多孔介质,换热加强部13包括外凸部和内凹部中的至少一种,外凸部向外凸出,内凹部向内凹陷。
根据本公开实施例,换热加强部13连接在散热腔室11的蒸发部位和冷凝部位中的至少一个上。当换热加强部13与散热腔室11的蒸发部位连接时,换热加强部13与电路板相对设置;当换热加强部13与散热腔室11的冷凝部位连接时,换热加强部13与电路板相背离。
进一步地,在如图3所示的具体实施例中,换热加强部13为外凸部,外凸部为柱状,外凸部的一端连接在蒸发部位和冷凝部位中的任意一个上,且外凸部的另一端对应蒸发部位和冷凝部位中的另一个。由此,外凸部能够在散热腔室11内对散热件本体10形成支撑,进一步增强了散热件本体10在各个散热腔室11处的强度。
在一个具体示例中,如图4所示,散热件本体10包括:第一基板14和第二基板15,第一基板14具有多个第一容纳槽141、第二容纳槽142,多个第一容纳槽141中的每个与其余的第一容纳槽141中的至少一个通过第二容纳槽142连通,换热加强部形成在第一容纳槽141中。第二基板15为平面板体,第二基板15与第一基板14相对设置且密封连接,以使第一容纳槽141与第二基板15共同限定出散热腔室11、第二容纳槽142与第二基板15共同限定出流通通道12。在另一个具体示例中,如图5所示,散热件本体10包括:第一基板14和第二基板15。第一基板14为平面板体,而第二基板15具有多个第一容纳槽141、第二容纳槽142,多个第一容纳槽141中的每个与其余的第一容纳槽141中的至少一个通过第二容纳槽142连通,换热加强部形成在第一容纳槽141中。第二基板15与第一基板14相对设置且密封连接,以使第一容纳槽141与第一基板14共同限定出散热腔室11、第二容纳槽142与第一基板14共同限定出流通通道12。由此,对于片状的散热件,只需要对一个基板进行加工就能得到散热腔室11和流通通道12,减少了生产工序和生产工时,提高了生产效率。
具体地,第一基板14和第二基板15可以互相贴合且两者的边沿通过烧结工艺连接到一起,两个基本互相贴合的区域还可以通过密封胶连粘接。
进一步地,第二基板15的与第一基板14相背离的表面为平滑的安装面。由此,例如便于传热粘合胶的涂敷,更方便散热件100在电路板上的装配和集成。
当然,散热件100的结构并不限于此,在另一个具体示例中,参见图6所示,散热 件本体10包括:第一基板14和第二基板15,第一基板14具有多个第一容纳槽141、第二容纳槽142,多个第一容纳槽141中的每个与其余的第一容纳槽141中的至少一个通过第二容纳槽142连通,换热加强部13形成在第一容纳槽141内,第二基板15与第一基板14的结构相同且相对设置,第二基板15与第一基板14密封连接,以使相对设置的第一容纳槽141共同限定出散热腔室11(参见图1)、相对设置的第二容纳槽142共同限定出流通通道12(参见图1)。
其中,第一基板14和第二基板15的选材,不限于各种高热导率金属,还包括有利于形成散热效果的聚合物等有机材料。需要说明的是,根据本公开实施例,对第一基板14和第二基板15的厚度不做限制,只需能够实现散热件的散热效果即可。在实际制作中,当第一基板14和/或第二基板15具有较大厚度时,第一和第二容纳槽可以采用车削工艺等形成。而当第一基板14和/或第二基板15具有较小厚度时,第一和第二容纳槽上的形成可以采用冲压工艺等形成,此时,第一基板14和/或第二基板15上与第一和第二容纳槽所在表面相反的背表面上可以形成与第一和第二容纳槽相应的凸起结构(例如参见图1、图5和图7中所示的第二基板15背表面上的凸起结构)。
根据本公开另一些实施例的用于电路板的散热件100,散热件本体10的制作至少采用以下加工方法中的一种:冲压成型、湿法刻蚀、干法刻蚀、激光雕刻。换言之,散热件100的制造方法,不局限于冲压工艺,也应包括湿法刻蚀、干法刻蚀、激光雕刻等各种可能在特定材料上形成微结构或多孔结构的工艺方法。
可以理解的是,本专利的散热件100具有较好的通用性,不限于应用在具有逻辑板的电路板上,还适用于其它具有多热点散热需求的电路板,例如,有些TCON电路与Source驱动电路会集成在同一块PCB板中,故在Source驱动电路以及其他有散热需求的板级集成电路上也可以应用本申请的散热件100。
下面参照图1描述根据本公开的一个具体实施例。
如图1所示,散热件100包括上下相对的第一基板14和第二基板15,基板两侧留有用于与电路板连接的安装孔17。第一基板14和第二基板15焊接在一起以形成若干个(图中为三个)散热腔室11(11a、11b和11c),电路板上的每一个热点对应一个使电路板均匀散热的散热腔室11(11a、11b或11c),热点与散热件100的第一基板14的之间可以用导热硅脂等物质粘连起来。由此可见,散热腔室11在散热件100的位置随着电路板中各个热点(包括但不限于芯片)布局的不同而不同。
第一基板14或第二基板15的内侧上可以留有一个凹槽以便于在散热件100内部限定出注入通道16,该注入通道16将散热件本体10的内部腔体与外界连接起来,这样可 以利用负压将一定量的工质液体充入腔体中,最后再用焊接烧结的方法或用抗热胶堵住充液通道的入口,以形成完全封闭的内腔结构。
根据本公开第二方面实施例的显示面板包括:电路板以及如上所述第一方面实施例中所述的散热件100,电路板具有多个芯片,散热件100安装在电路板的一侧且多个散热腔室11与多个芯片一一对应,散热腔室11的靠近电路板的部位形成为蒸发部位且散热腔室11远离所述电路板的部位形成为冷凝部位。
根据本公开实施例的显示面板能够使不同芯片的散热效果可以达到自匹配和自平衡,更适用于板级的多芯片散热,方便生产和应用。
在本公开的描述中,需要理解的是,术语“中心””、“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的结构或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (20)

  1. 一种用于电路板的散热件,包括:
    散热件本体,包括第一基板和第二基板,所述第一基板和第二基板彼此密封配合以限定多个间隔分布的散热腔室,所述散热腔室用于容纳工质,所述多个散热腔室中的每个均与其余散热腔室中的至少一个通过流通通道相连通,所述多个散热腔室中的每个均具有冷凝部位和蒸发部位以使得工质能够在所述冷凝部位和所述蒸发部位之间实现蒸发-冷凝循环。
  2. 根据权利要求1所述的用于电路板的散热件,其中,所述流通通道形成在所述散热件本体内,所述流通通道包括多个毛细管道。
  3. 根据权利要求2所述的用于电路板的散热件,其中,所述多个毛细管道彼此平行设置,每个所述毛细管道的一端与一个所述散热腔室相连通且另一端与另一个所述散热腔室相连通。
  4. 根据权利要求2所述的用于电路板的散热件,其中,所述毛细通道由粉末烧结结构形成或由微通道结构形成。
  5. 根据权利要求1所述的用于电路板的散热件,其中,所述散热腔室形成为多孔介质或所述散热腔室内设有多孔介质。
  6. 根据权利要求5所述的用于电路板的散热件,其中,所述多孔介质为丝网结构或烧结结构。
  7. 根据权利要求5所述的用于电路板的散热件,其中,所述散热腔室内设有多个换热加强部以形成所述多孔介质,所述换热加强部包括外凸部和内凹部中的至少一种。
  8. 根据权利要求7所述的用于电路板的散热件,其中,所述换热加强部连接在所述散热腔室的蒸发部位和冷凝部位中的至少一个上。
  9. 根据权利要求7所述的用于电路板的散热件,其中,所述换热加强部为外凸部,所述外凸部为柱状。
  10. 根据权利要求1所述的用于电路板的散热件,其中,
    所述第一基板具有多个第一容纳槽和第二容纳槽,所述多个第一容纳槽中的每个与其余第一容纳槽中的至少一个通过第二容纳槽连通;
    所述第二基板为平面板体,所述第二基板与所述第一基板相对设置且密封连接,以使所述第一容纳槽与所述第二基板共同限定出所述散热腔室、所述第二容纳槽与所述第二基板共同限定出所述流通通道。
  11. 根据权利要求10所述的用于电路板的散热件,其中,所述第二基板的与所述第一基板相背离的表面为平滑的安装面。
  12. 根据权利要求1所述的用于电路板的散热件,其中,
    所述第一基板具有多个第一容纳槽和第二容纳槽,所述多个第一容纳槽中的每个与其余第一容纳槽中的至少一个通过第二容纳槽连通;
    所述第二基板与所述第一基板的结构相同且相对设置,所述第二基板与所述第一基板密封连接,以使相对设置的第一容纳槽共同限定出所述散热腔室、相对设置的第二容纳槽共同限定出所述流通通道。
  13. 根据权利要求1所述的用于电路板的散热件,还包括热管,所述热管在所述散热件本体外且与所述散热件本体连接,所述流通通道形成在所述热管内。
  14. 根据权利要求1-13中任一项所述的用于电路板的散热件,其中,所述多个流通通道互相独立且每个流通通道唯一地连通两个散热腔室,每个流通通道的每个毛细管道的一端与两个散热腔室中的其中一个连通且另一端与两个散热腔室中的另一个连通。
  15. 根据权利要求1-13中任一项所述的用于电路板的散热件,其中,所述多个散热腔室的散热面积不同,其中散热面积最大的腔室为第一散热腔室,其余散热腔室中的每一个均通过独立的流通通道与所述第一散热腔室相连通。
  16. 根据权利要求12所述的用于电路板的散热件,还包括注入通道,所述注入通道与所述第一散热腔室连通,所述注入通道、所述散热腔室以及所述流通通道整体封闭。
  17. 根据权利要求16所述的用于电路板的散热件,其中,所述注入通道的入口通过焊接烧结方式被密封,或者所述注入通道的入口设有封闭该所述入口的抗热堵盖。
  18. 根据权利要求1所述的用于电路板的散热件,其中,所述散热件本体的制作至少采用以下加工方法中的一种:冲压成型、湿法刻蚀、干法刻蚀、激光雕刻。
  19. 根据权利要求1所述的用于电路板的散热件,其中,所述第一基板和第二基板上分别设有用于与电路板连接的安装孔。
  20. 一种显示面板,包括:
    电路板,电路板具有多个芯片;
    以及
    如权利要求1-19中任一项所述的散热件,所述散热件安装在所述电路板的一侧且所述多个散热腔室与所述多个芯片一一对应,所述散热腔室的靠近所述电路板的部位形成为蒸发部位且散热腔室的远离所述电路板的部位形成为冷凝部位。
PCT/CN2018/097221 2017-09-30 2018-07-26 用于电路板的散热件以及应用该散热件的显示面板 WO2019062311A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710917675.6A CN109599375A (zh) 2017-09-30 2017-09-30 用于电路板的散热件以及应用其的显示面板
CN201710917675.6 2017-09-30

Publications (1)

Publication Number Publication Date
WO2019062311A1 true WO2019062311A1 (zh) 2019-04-04

Family

ID=65900473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097221 WO2019062311A1 (zh) 2017-09-30 2018-07-26 用于电路板的散热件以及应用该散热件的显示面板

Country Status (2)

Country Link
CN (1) CN109599375A (zh)
WO (1) WO2019062311A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418549B (zh) * 2019-06-18 2021-01-29 华为技术有限公司 一种散热组件、电子设备
US11622480B2 (en) 2021-03-18 2023-04-04 Dynascan Technology Corp. Display having an evaporator
CN113923930B (zh) * 2021-05-31 2022-08-16 荣耀终端有限公司 电子组件和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026946A (zh) * 2006-02-22 2007-08-29 业强科技股份有限公司 环路导热装置
CN101340798A (zh) * 2007-07-06 2009-01-07 王卫民 蒸发冷凝冷却器及应用
CN102544169A (zh) * 2010-12-21 2012-07-04 新奥科技发展有限公司 太阳能电池板冷却系统和太阳能电热联用系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201715908U (zh) * 2010-06-07 2011-01-19 锘威科技(深圳)有限公司 一体式烧结型平板热管
CN104976909A (zh) * 2014-04-04 2015-10-14 奇鋐科技股份有限公司 均温板结构及其制造方法
US9625215B2 (en) * 2014-09-21 2017-04-18 Htc Corporation Electronic device and heat dissipation plate
CN106887419B (zh) * 2017-02-27 2019-06-11 华为技术有限公司 蒸气腔连体散热器及电子装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026946A (zh) * 2006-02-22 2007-08-29 业强科技股份有限公司 环路导热装置
CN101340798A (zh) * 2007-07-06 2009-01-07 王卫民 蒸发冷凝冷却器及应用
CN102544169A (zh) * 2010-12-21 2012-07-04 新奥科技发展有限公司 太阳能电池板冷却系统和太阳能电热联用系统

Also Published As

Publication number Publication date
CN109599375A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
US11536518B2 (en) Fabrication method for loop heat pipe
TWI768335B (zh) 均溫板及其製造方法
JP4557055B2 (ja) 熱輸送デバイス及び電子機器
TWI242865B (en) Electro-osmotic pumps and micro-channels
US20140182819A1 (en) Heat dissipating device
US9549486B2 (en) Raised bodied vapor chamber structure
US20140246176A1 (en) Heat dissipation structure
WO2019062311A1 (zh) 用于电路板的散热件以及应用该散热件的显示面板
US20150026981A1 (en) Manufacturing mehtod of vapor chamber structure
TWI811504B (zh) 散熱裝置
US20110259555A1 (en) Micro vapor chamber
US9772143B2 (en) Thermal module
TWI819157B (zh) 超薄型均溫板及其製造方法
CN110342454B (zh) 一种惯性导航模块散热装置
JPH03186195A (ja) ヒートパイプを具える放熱体およびその製造方法
JP5554444B1 (ja) 半導体パッケージの複合冷却構造
TWI538610B (zh) 散熱裝置及其製造方法
US20140338194A1 (en) Heat dissipation device and manufacturing method thereof
US10352625B2 (en) Thermal module
TWI642892B (zh) 散熱單元之直通結構
TWI703302B (zh) 散熱裝置
TWI699508B (zh) 流道型二相流散熱器
TWI839974B (zh) 一種利用兩相流循環蒸氣腔與冷液態流體進行熱交換之散熱模組
TW201944020A (zh) 散熱單元結合強化結構
TW200532425A (en) Heat dissipation module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19-08-2020)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19-08-2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18862380

Country of ref document: EP

Kind code of ref document: A1