WO2019062256A1 - 一种基于倾转涵道的单升力涵道垂直起降飞机 - Google Patents

一种基于倾转涵道的单升力涵道垂直起降飞机 Download PDF

Info

Publication number
WO2019062256A1
WO2019062256A1 PCT/CN2018/094425 CN2018094425W WO2019062256A1 WO 2019062256 A1 WO2019062256 A1 WO 2019062256A1 CN 2018094425 W CN2018094425 W CN 2018094425W WO 2019062256 A1 WO2019062256 A1 WO 2019062256A1
Authority
WO
WIPO (PCT)
Prior art keywords
ducted
lift
landing
vertical take
tilting
Prior art date
Application number
PCT/CN2018/094425
Other languages
English (en)
French (fr)
Inventor
陈海昕
周肖鹏
张茂权
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201721275191.8U external-priority patent/CN207417148U/zh
Priority claimed from CN201710910903.7A external-priority patent/CN107539472A/zh
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2019062256A1 publication Critical patent/WO2019062256A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/26Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft characterised by provision of fixed wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/06Fins

Definitions

  • the invention relates to the field of aircrafts, and in particular to a single-lift force ducted vertical take-off and landing aircraft based on tilting ducts.
  • Vertical take-off and landing aircraft usually refer to the ability to take off and land vertically like a helicopter, have a hovering capability, and can fly a class of aircraft horizontally in the form of a fixed-wing aircraft. Benefiting from the advantages of convenient take-off and landing and high flight efficiency, the vertical take-off and landing aircraft has important application value in military field.
  • the existing tilting type vertical take-off and landing aircraft includes a tilting double rotor, a tilting four-rotor, a tilting wing, a tilting ducted fan, etc., all of which change the thrust direction by a rotating mechanism to achieve vertical take-off and landing.
  • the existing tilt-type vertical take-off and landing aircraft is complicated in structure and transmission mechanism, resulting in complex flight dynamic characteristics and low reliability in the transition process.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a single-lift force ducted vertical take-off and landing aircraft based on tilting ducts.
  • the present invention proposes a single-lift ducted vertical take-off and landing aircraft based on tilting ducts, including:
  • Two wings for generating lift correspondingly disposed on both sides of the middle rear portion of the fuselage and each wing is extended outward from the side, and the outer edge of each wing is streamlined;
  • N tilting ducted fans for attitude control in the vertical takeoff and landing phase and propulsion in the horizontal flight phase N is even and divided into N/2 groups, each set of tilting ducted fans is mounted on the fuselage On both sides, each of the tilting ducted fans is rotatably connected to the fuselage through a corresponding connecting member;
  • a single lift ducted fan for providing a primary lift during a vertical takeoff and landing phase, embedded between the fuselage and the two wings;
  • a duct cover installed on an upper portion of the single lift duct fan and being openable or closable relative to the single lift duct fan, and the duct cover is opened during a vertical takeoff and landing phase to allow airflow to pass, as described in the horizontal flight phase
  • the duct cover is closed and no airflow passes.
  • the duct cover is opened to allow airflow to smoothly enter the single lift duct fan to provide primary lift for the single lift bypass.
  • the N tilting ducted fans gradually change the angle, so that the single lift force duct vertical takeoff and landing aircraft has a forward speed and acceleration;
  • the two wings gradually generate lift, the duct cover is closed, and the shape of the wing is maintained, so that the single lift force duct has a high lift-to-drag ratio. Get a larger range and flight time.
  • the thrust axes of the N tilting ducted fans are all rearward, and the thrust is provided by the tilting ducted fan, and each of the tilting ducted fans and the corresponding connecting member forms a duck wing by adjusting the deflection angle thereof.
  • a pitching moment and a rolling moment may be provided for the single lift force ducted vertical takeoff and landing aircraft.
  • the bottom of the single lift duct fan is provided with guide vanes for providing additional roll control and yaw control torque.
  • the single-lift ducted vertical take-off and landing aircraft further includes a vertical tail wing for providing heading safety, correspondingly disposed at the tips of the two wings, the vertical tail and the corresponding wing being perpendicular to each other .
  • each vertical tail forms a rudder for providing a yaw moment.
  • ailerons are formed at the trailing edge of each wing for providing a rolling moment.
  • the single-lift ducted vertical take-off and landing aircraft further includes:
  • main landing gear corresponding to the lower sides of the fuselage and located at the positions of the two wings, each main landing gear being retractable or lowered relative to the fuselage;
  • a front landing gear disposed at a position of the lower portion of the fuselage at a position of the fuselage head, the front landing gear being retractable or lowered relative to the fuselage;
  • the main landing gear and the front landing gear are in a lowered state to support the single-lift force duct vertical take-off and landing aircraft and buffer landing impact;
  • the main landing gear and the front landing gear are in a stowed state to reduce cruising resistance.
  • each of the tilting ducted fans is driven by a motor that is driven by a turboshaft engine, a piston engine or an electric motor.
  • the single-lift ducted vertical take-off and landing aircraft of the present invention provides attitude control in the vertical take-off and phase stages and advancement in the horizontal flight stage through the tilting ducted fan, and the main lift in the vertical take-off stage is provided by a single lift ducted fan, which not only realizes The vertical take-off and landing, and the lift and the attitude control part are decoupled, thereby reducing the complexity of the dynamic characteristics of the single-lift force ducted vertical take-off and landing aircraft of the present invention, thereby improving the reliability.
  • FIG. 1 is a schematic axial side view of a single lift force ducted vertical takeoff and landing aircraft based on tilting ducts, in accordance with one embodiment of the present invention
  • Figure 2 is a schematic front view of the single-lift force ducted vertical take-off and landing aircraft based on the tilting duct shown in Figure 1;
  • Figure 3 is a schematic plan view of the single-lift force ducted vertical take-off and landing aircraft based on the tilting duct shown in Figure 1;
  • Figure 4 is a schematic side view of the single-lift force ducted vertical take-off and landing aircraft based on the tilting duct shown in Figure 1;
  • FIG. 5 is a schematic perspective view of a vertical take-off and landing state of a single-lift force ducted vertical take-off and landing aircraft based on tilting ducts according to an embodiment of the present invention
  • FIG. 6 is a schematic perspective view of a horizontal flight state of a single-lift force ducted vertical take-off and landing aircraft based on tilting ducts, in accordance with one embodiment of the present invention.
  • FIG. 1 is a schematic axial side view of a single lift force ducted vertical takeoff and landing aircraft based on tilting ducts, in accordance with one embodiment of the present invention.
  • 2 is a schematic front view of the single-lift force ducted vertical take-off and landing aircraft of FIG. 1 based on the tilting duct.
  • 3 is a schematic plan view of the single-lift force duct vertical take-off and landing aircraft of FIG. 1 based on the tilting duct.
  • 4 is a schematic side view of the single-lift force ducted vertical take-off and landing aircraft of FIG. 1 based on the tilting duct.
  • the present invention provides a single-lift force ducted vertical take-off and landing aircraft based on tilting ducts, which may generally include a fuselage 1, two wings 4, and N A tilting ducted fan, a single lift ducted fan 8 and a duct cover 12 are provided.
  • the fuselage 1 of the single-lift ducted vertical take-off and landing aircraft of the present invention is usually equipped with an aircraft system, a fuel system, a payload bay, an avionics system and the like.
  • N tilting ducted fans are used for attitude control during the vertical takeoff and landing phases and advancement of the horizontal flight phase.
  • N is an even number and N tilting ducted fans are divided into N/2 groups, and each set of tilting ducted fans is correspondingly mounted on both sides of the fuselage 1, and each tilting ducted fan passes the corresponding connection
  • the piece is rotatably coupled to the body 1.
  • two tilting ducted fans namely a left tilting ducted fan 3 and a right tilting ducted fan 2
  • two tilting ducted fans namely a left tilting ducted fan 3 and a right tilting ducted fan 2
  • two tilting ducted fans namely a left tilting ducted fan 3 and a right tilting ducted fan 2
  • N may be four and divided into two groups, and two sets of tilting ducted fans are respectively disposed at the head and the front of the body 1.
  • a single lift ducted fan 8 is used to provide primary lift during the vertical takeoff and landing phase, and a single lift ducted fan 8 is embedded between the fuselage 1 and the two wings 4.
  • the duct cover 12 is installed at an upper portion of the single lift duct fan 8 and can be opened or closed with respect to the single lift duct fan 8.
  • the duct cover 12 is opened during the vertical take-off and landing, so that the airflow passes and the horizontal flight At the stage, the duct cover 12 is closed and no airflow passes.
  • the upper, lower, left, right, front, and back described in this embodiment are defined according to the direction of the view.
  • the tilting ducted fan of the present invention that is, the left tilting ducted fan 3, the right tilting ducted fan 2, and the single lift ducting fan 8 are both configured to surround the fan and the engine.
  • the ducted fan is the main component of the aircraft and the key components of the fuselage structure.
  • the main advantages of the conventional ducted propeller are as follows: 1) Under the same power consumption, the tensile force and power load of the ducted fan are greater than the same diameter. Isolated propeller; 2) Because the rotating fan and engine are enclosed by the duct, the aerodynamic noise of the fan is weakened, which is very important for the manned aircraft; 3) compact structure, high-speed rotating fan and airborne equipment, personnel Isolated to provide a certain protection.
  • FIG. 5 is a schematic perspective view of a vertical take-off and landing state of a single-lift force ducted vertical take-off and landing aircraft based on tilting ducts, in accordance with one embodiment of the present invention.
  • the thrust axis of each of the tilting ducted fans is perpendicular to the ground, that is, the thrust axes of the left tilting ducted fan 3 and the right tilting ducted fan 2 are perpendicular to the ground, and the left tilting duct is utilized.
  • the difference between the thrust of the fan 3 and the right tilting ducted fan 2 and the thrust angle difference can provide a roll control torque to control the rolling attitude.
  • the pitch control can be realized by the difference in thrust between the left tilting ducted fan 3 and the right tilting ducted fan 2 and the single lift ducting fan 8.
  • FIG. 6 is a schematic perspective view of a horizontal flight state of a single-lift force ducted vertical take-off and landing aircraft based on tilting ducts, in accordance with one embodiment of the present invention.
  • the left tilting ducted fan 3 and the right tilting ducted fan 2 are tilted by 90°, and the left tilting ducted fan 3 and the right tilting ducted fan 2 thrust shaft are parallel to the ground, providing vertical The plane lifts the single lift and the required thrust for the vertical take-off and landing of the aircraft.
  • the left tilting ducted fan 3 and the right tilting ducted fan 2 and the corresponding connecting members form a left side duck wing 13 and a right side duck wing 13
  • the single lifting power duct can be taken up and down by adjusting the deflection angle thereof.
  • the angle of the left side of the canard 13 and the right side of the canard 13 are positive, then the opposite
  • the single lift force ducted vertical takeoff and landing aircraft provides head lifting torque.
  • the aircraft is provided with a heading moment for the single-lift force ducted vertical take-off and landing aircraft. If the left wing 13 is differential from the right side of the canard 13, a roll control torque can also be provided. If the angle of attack of the left side of the canard 13 relative to the incoming flow is greater than the angle of attack of the right side of the canard 13, the aircraft is provided with a torque to the right for the single-lift force ducted vertical take-off and landing.
  • the single lift duct fan 8 utilizes the duct cover 12 to cover its duct in the cruising state of the aircraft, maintain the shape of the wing 4, and improve the lift-to-drag ratio of the whole machine.
  • the single-lift ducted vertical take-off and landing aircraft of the present invention provides attitude control in the vertical takeoff and landing phase and advancement in the horizontal flight phase through the tilting ducted fan, and the main lift in the vertical takeoff and landing phase is provided by the single lift ducted fan 8. Not only the vertical take-off and landing, but also the lifting force and the attitude control part are decoupled, thereby reducing the complexity of the single-lift force ducting vertical take-off and landing aircraft dynamic characteristics, thereby improving the reliability.
  • the single-lift force ducted vertical take-off and landing aircraft of the invention has the advantages of high-efficiency leveling, small outer dimensions, simple flight control, and good engineering realization, and has the advantages of long range and high speed in performance, and can be applied.
  • conventional and special aircraft such as light aircraft, transport aircraft, reconnaissance aircraft, electronic warfare aircraft.
  • the bottom of the single lift duct fan 8 is provided with guide vanes 9, which are used to provide additional roll control and yaw control torque.
  • the single-lift ducted vertical take-off and landing aircraft further includes a vertical tail wing 5 for providing heading safety, correspondingly disposed at the tip of the two wings 4,
  • the vertical tail 5 is perpendicular to the corresponding wing 4.
  • each vertical tail 5 forms a rudder 6 for providing a yaw moment.
  • ailerons 7 are formed at the trailing edge of each of the wings 4 for providing a rolling moment.
  • the single-lift ducted vertical take-off and landing aircraft further includes a main landing gear 10 and a nose landing gear 11 .
  • the main landing gear 10 is correspondingly disposed at both sides of the lower portion of the fuselage 1 and at the positions of the two wings 4, and each of the main landing gears 10 can be stowed or lowered relative to the body 1.
  • the front landing gear 11 is disposed at a position where the lower portion of the body 1 is located at the head of the body 1, and the front landing gear 11 can be retracted or lowered relative to the body 1.
  • the thrust axes of the N tilting ducted fans that is, the left tilting ducted fan 3 and the right tilting ducted fan 2 are both downward, by adjusting them
  • the deflection angle and the magnitude of the thrust provide the pitching moment and the rolling moment for the single-lift force ducted vertical take-off and landing aircraft.
  • the duct cover 12 is opened to allow airflow to smoothly enter the single lift duct fan 8 to provide primary lift for the single lift ducted vertical takeoff and landing aircraft.
  • the main landing gear 10 and the front landing gear 11 are in a lowered state to support the single lift power duct vertical take-off and landing aircraft and cushioning landing impact.
  • the N tilting ducted fans that is, the left tilting ducted fan 3 and the right tilting ducted fan 2 gradually change the angle, so that the The single-lift ducted vertical take-off and landing aircraft has forward speed and acceleration.
  • the two wings 4 gradually generate lift, the duct cover 12 is closed, maintaining the outer shape of the wing 4, so that the single lift force duct vertical take-off and landing aircraft has a higher rise. Resistance ratio for larger voyages and voyages.
  • the thrust axes of the N tilting ducted fans that is, the left tilting ducted fan 3 and the right tilting ducted fan 2 are all backwards, and the thrust is provided by each.
  • a tilting ducted fan and a corresponding connecting member form a canard 13, that is, a duck wing 13 on the left side and a duck wing 13 on the right side.
  • the pitching moment and the rolling moment can be provided for the single-lift force ducted vertical take-off and landing aircraft by adjusting its deflection angle.
  • the efficiency of the aerodynamic rudder surface increases, the vertical empennage 5 at the tip of the wing 4 provides heading stability, and the rudder 6 provides yaw moment.
  • the ailerons 7 located at the trailing edge of the wing 4 provide a rolling moment.
  • the main landing gear 10 and the front landing gear 11 are in a stowed state to reduce cruising resistance.
  • each of the tilting ducted fans that is, the left tilting ducted fan 3 and the right tilting ducted fan 2 are driven by a motor, and a sensitive speed regulation characteristic can be obtained, which is convenient for realizing control.
  • the single lift ducted fan 8 is driven by a turboshaft engine, a piston engine or an electric motor, and a turboprop engine or a piston engine can be used to obtain a larger voyage voyage, and a motor drive can be used to obtain a sensitive speed regulation characteristic.

Abstract

一种基于倾转涵道的单升力涵道垂直起降飞机,涉及飞行器。该垂直起降飞机包括机身、两个机翼、N个倾转涵道风扇、单个升力涵道风扇及涵道罩。机翼对应设置在机身的中后部的两侧且每一机翼由侧部向外伸展而成。每组倾转涵道风扇对应安装在机身的两侧,每个倾转涵道风扇通过对应的连接件与机身转动连接。单个升力涵道风扇嵌入安装在机身与两个机翼之间。涵道罩安装在单个升力涵道风扇的上部并可打开或关闭。

Description

一种基于倾转涵道的单升力涵道垂直起降飞机 技术领域
本发明涉及飞行器领域,尤其是涉及一种基于倾转涵道的单升力涵道垂直起降飞机。
背景技术
垂直起降飞机通常指能够像直升机一样垂直起飞和降落,具备悬停能力,且能够以固定翼飞机的方式水平飞行一类飞行器。受益于起降方便、飞行效率高的优点,垂直起降飞机在军事方面有着重要的应用价值。垂直起降飞机的种类有旋翼类垂直起降飞行器、倾转类垂直起降飞行器及尾座式垂直起降飞行器这三种。下面以倾转类垂直起降飞行器加以说明。
现有的倾转类垂直起降飞行器包括倾转双旋翼、倾转四旋翼、倾转机翼、倾转涵道风扇等,它们均通过转动机构来改变推力方向,实现垂直起降。
但是,现有的倾转类垂直起降飞行器由于其结构与传动机构复杂,导致过渡过程飞行动力特性复杂,可靠性较低。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种基于倾转涵道的单升力涵道垂直起降飞机。
特别地,本发明提出了一种基于倾转涵道的单升力涵道垂直起降飞机,包括:
机身;
两个机翼,用于产生升力,对应设置在所述机身的中后部的两侧且每一机翼由侧部向外伸展而成,每一机翼的外侧缘呈流线型;
N个倾转涵道风扇,用于垂直起降阶段的姿态控制和水平飞行阶段的推进,N为偶数且分为N/2组,每组倾转涵道风扇对应安装在所述机身的两侧,每个倾转涵道风扇通过对应的连接件与所述机身转动连接;和
单个升力涵道风扇,用于提供垂直起降阶段的主要升力,嵌入安装在所述机身与所述两个机翼之间;和
涵道罩,安装在所述单个升力涵道风扇的上部,并可相对所述单个升力涵道风扇打开或关闭,垂直起降阶段所述涵道罩打开,使气流通过,水平飞行阶段所述涵道罩关闭,无气流通过。
进一步地,在垂直起降状态,所述N个倾转涵道风扇的推力轴均向下,通过调节它们的偏转角度和推力大小,为所述单升力涵道垂直起降飞机提供俯仰力矩及滚转力矩;
所述涵道罩打开,使气流顺畅进入所述单个升力涵道风扇,为所述单升力涵道垂直起降飞机提供主要升力。
进一步地,在垂直飞行向水平飞行转换的过渡状态,所述N个倾转涵道风扇逐渐改变角度,使所述单升力涵道垂直起降飞机具有向前的速度和加速度;
随着飞行速度的提高,所述两个机翼逐渐产生升力,所述涵道罩关闭,维持所述机翼外形,使所述单升力涵道垂直起降飞机具有较高的升阻比,以获得较大航程与航时。
进一步地,在水平飞行状态,所述N个倾转涵道风扇的推力轴均向后,由其提供推力,每一倾转涵道风扇与对应的连接件形成鸭翼,通过调节其偏转角度可为所述单升力涵道垂直起降飞机提供俯仰力矩及滚转力矩。
进一步地,所述单个升力涵道风扇的底部设置导流叶片,所述导流叶片用于提供额外的滚转控制和偏航控制力矩。
进一步地,所述的单升力涵道垂直起降飞机还包括垂直尾翼,用于提供航向安全性,对应设置在所述两个机翼的梢部,所述垂直尾翼与对应的机翼相互垂直。
进一步地,每一垂直尾翼的后端形成方向舵,用于提供偏航力矩。
进一步地,每一机翼的后缘处形成副翼,用于提供滚转力矩。
进一步地,所述的单升力涵道垂直起降飞机还包括:
主起落架,对应设置所述机身的下部两侧且位于所述两个机翼的位置处,每一主起落架可相对所述机身收起或放下;和
前起落架,设置在所述机身的下部位于所述机身头部的位置处,所述前起落架可相对所述机身收起或放下;
在垂直起降状态,所述主起落架与所述前起落架处于放下状态,以支撑所述单升力涵道垂直起降飞机和缓冲着陆冲击;
在水平飞行状态,所述主起落架与所述前起落架处于收起状态,以降低巡航阻力。
进一步地,每一倾转涵道风扇通过电机驱动,所述单个升力涵道风扇通过涡轴发动机、活塞发动机或电动机驱动。
本发明的单升力涵道垂直起降飞机通过倾转涵道风扇提供垂直起降阶段的姿态控制和水平飞行阶段的推进,通过单个升力涵道风扇提供垂直起降阶段的主要升力,不但实现了垂直起降,而且将升力与姿态控制部分解耦,从而降低了本发明单升力涵道垂直起降飞机动力特性的复杂度,由此提高了可靠性。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得 明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的基于倾转涵道的单升力涵道垂直起降飞机的示意性轴侧图;
图2是图1所示基于倾转涵道的单升力涵道垂直起降飞机的示意性主视图;
图3是图1所示基于倾转涵道的单升力涵道垂直起降飞机的示意性俯视图;
图4是图1所示基于倾转涵道的单升力涵道垂直起降飞机的示意性侧视图;
图5是根据本发明一个实施例的基于倾转涵道的单升力涵道垂直起降飞机垂直起降状态的示意性立体图;
图6是根据本发明一个实施例的基于倾转涵道的单升力涵道垂直起降飞机水平飞行状态的示意性立体图。
附图标记:
1.机身;2.右倾转涵道风扇;3.左倾转涵道风扇;4.机翼;5.垂直尾翼;6.方向舵;7.副翼;8.单个升力涵道风扇;9.导流叶片;10.主起落架;11.前起落架;12涵道罩;13鸭翼。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
图1是根据本发明一个实施例的基于倾转涵道的单升力涵道垂直起降飞机的示意性轴侧图。图2是图1所示基于倾转涵道的单升力涵道垂直起降飞机的示意性主视图。图3是图1所示基于倾转涵道的单升力涵道垂直起降飞机的示意性俯视图。图4是图1所示基于倾转涵道的单升力涵道垂直起降飞机的示意性侧视图。
如图1所示,还可以参见图2-4,本发明提出了一种基于倾转涵道的单升力涵道垂 直起降飞机一般性可以包括机身1、两个机翼4、N个倾转涵道风扇、单个升力涵道风扇8及涵道罩12。本发明所述单升力涵道垂直起降飞机的机身1内部通常布置有发动机系统、燃油系统、有效载荷舱、航电系统等飞机必备系统。两个机翼4对应设置在所述机身1的中后部的两侧且每一机翼4由侧部向外伸展而成,每一机翼4的外侧缘呈流线型,两个机翼4用于产生升力。N个倾转涵道风扇用于垂直起降阶段的姿态控制和水平飞行阶段的推进。其中,N为偶数且N个倾转涵道风扇分为N/2组,每组倾转涵道风扇对应安装在所述机身1的两侧,每个倾转涵道风扇通过对应的连接件与所述机身1转动连接。本例中,设置有两个倾转涵道风扇即左倾转涵道风扇3和右倾转涵道风扇2,且两个倾转涵道风扇即左倾转涵道风扇3和右倾转涵道风扇2设置在机身1的头部两侧。当然,在其他实施例中,N可以是四个且分成两组,两组倾转涵道风扇分别设置在所述机身1的头部和前部。单个升力涵道风扇8用于提供垂直起降阶段的主要升力,单个升力涵道风扇8嵌入安装在所述机身1与所述两个机翼4之间。涵道罩12安装在所述单个升力涵道风扇8的上部,并可相对所述单个升力涵道风扇8打开或关闭,垂直起降阶段所述涵道罩12打开,使气流通过,水平飞行阶段所述涵道罩12关闭,无气流通过。
其中,本实施例中所述的上、下、左、右、前、后均是按照视图表示方向定义的。
本发明中的所述的倾转涵道风扇即左倾转涵道风扇3和右倾转涵道风扇2与单个升力涵道风扇8均采用将风扇及发动机被涵道环括的结构。其中,涵道风扇作为飞行器的主动力系统和机身结构的关键部件,比起传统的螺旋桨主要优势体现在下面:1)同等功率消耗下,涵道风扇的拉力和功率载荷要大于相同直径的孤立螺旋桨;2)由于旋转的风扇和发动机被涵道环括,使其风扇的气动噪声减弱,对于载人飞行器而言十分重要;3)结构紧凑,把高速旋转的风扇和机载设备、人员隔离开来,起到一定保护作用。
图5是根据本发明一个实施例的基于倾转涵道的单升力涵道垂直起降飞机垂直起降状态的示意性立体图。本发明中,在垂直起降状态,每一倾转涵道风扇的推力轴与地面垂直,即左倾转涵道风扇3和右倾转涵道风扇2的推力轴与地面垂直,利用左倾转涵道风扇3及右倾转涵道风扇2推力差及推力角度差可提供滚转控制力矩,实现对滚转姿态的控制。利用左倾转涵道风扇3及右倾转涵道风扇2与单个升力涵道风扇8的推力差可实现俯仰控制。
图6是根据本发明一个实施例的基于倾转涵道的单升力涵道垂直起降飞机水平飞行状态的示意性立体图。在飞机巡航状态即水平飞行状态,左倾转涵道风扇3及右倾转涵道风扇2倾转90°,左倾转涵道风扇3及右倾转涵道风扇2推力轴均与地面平行,提供垂直起降飞机单升力涵道垂直起降飞机向前飞行所需推力。左倾转涵道风扇3及右倾转涵道风扇2与对应的连接件形成左侧的鸭翼13和右侧的鸭翼13,通过调节其偏转角度 可为所述单升力涵道垂直起降飞机提供俯仰力矩及滚转力矩。参见图2所示,通过调节左侧的鸭翼13及右侧的鸭翼13的偏转角度,此时,左侧的鸭翼13及右侧的鸭翼13攻角均为正,则对所述单升力涵道垂直起降飞机提供抬头力矩。若左侧的鸭翼13及右侧的鸭翼13攻角均为负,则对所述单升力涵道垂直起降飞机提供低头力矩。若左侧的鸭翼13与右侧的鸭翼13差动,还可提供滚转控制力矩。若左侧的鸭翼13相对来流的攻角大于右侧的鸭翼13的攻角,则对所述单升力涵道垂直起降飞机提供向右滚转的力矩。若左侧的鸭翼13相对来流的攻角小于右侧的鸭翼13的攻角,则对所述单升力涵道垂直起降飞机提供向左滚转的力矩。单个升力涵道风扇8利用涵道罩12,在飞机巡航状态盖住它的涵道,维持机翼4外形,提高全机升阻比。
本发明的单升力涵道垂直起降飞机通过倾转涵道风扇提供垂直起降阶段的姿态控制和水平飞行阶段的推进,通过单个升力涵道风扇8提供垂直起降阶段的主要升力。不但实现了垂直起降,而且将升力与姿态控制部分解耦,从而降低了本发明单升力涵道垂直起降飞机动力特性的复杂度,由此提高了可靠性。
此外,本发明的单升力涵道垂直起降飞机还具有高效平飞、外廓尺寸小、飞行控制简单、工程实现性好等优点,在性能上还具备航程远、速度快的优点,可应用于轻型飞机、运输机、侦察机、电子战飞机等常规和特种飞机领域。
如图1所示,本实施例中,所述单个升力涵道风扇8的底部设置导流叶片9,所述导流叶片9用于提供额外的滚转控制和偏航控制力矩。
如图1所示,本实施例中,所述的单升力涵道垂直起降飞机还包括垂直尾翼5,用于提供航向安全性,对应设置在所述两个机翼4的梢部,所述垂直尾翼5与对应的机翼4相互垂直。
如图1所示,本实施例中,每一垂直尾翼5的后端形成方向舵6,用于提供偏航力矩。
如图1所示,本实施例中,每一机翼4的后缘处形成副翼7,用于提供滚转力矩。
如图1所示,本实施例中,所述的单升力涵道垂直起降飞机还包括主起落架10和前起落架11。主起落架10对应设置所述机身1的下部两侧且位于所述两个机翼4的位置处,每一主起落架10可相对所述机身1收起或放下。前起落架11设置在所述机身1的下部位于所述机身1头部的位置处,所述前起落架11可相对所述机身1收起或放下。
如图5所示,本实施例中,在垂直起降状态,所述N个倾转涵道风扇即左倾转涵道风扇3和右倾转涵道风扇2的推力轴均向下,通过调节它们的偏转角度和推力大小,为所述单升力涵道垂直起降飞机提供俯仰力矩及滚转力矩。
所述涵道罩12打开,使气流顺畅进入所述单个升力涵道风扇8,为所述单升力涵道 垂直起降飞机提供主要升力。
所述主起落架10与所述前起落架11处于放下状态,以支撑所述单升力涵道垂直起降飞机和缓冲着陆冲击。
参见图1,本实施例中,在垂直飞行向水平飞行转换的过渡状态,所述N个倾转涵道风扇即左倾转涵道风扇3和右倾转涵道风扇2逐渐改变角度,使所述单升力涵道垂直起降飞机具有向前的速度和加速度。
随着飞行速度的提高,所述两个机翼4逐渐产生升力,所述涵道罩12关闭,维持所述机翼4外形,使所述单升力涵道垂直起降飞机具有较高的升阻比,以获得较大航程与航时。
参见图6,本实施例中,在水平飞行状态,所述N个倾转涵道风扇即左倾转涵道风扇3和右倾转涵道风扇2的推力轴均向后,由其提供推力,每一倾转涵道风扇与对应的连接件形成鸭翼13,即对应形成左侧的鸭翼13和右侧的鸭翼13。通过调节其偏转角度可为所述单升力涵道垂直起降飞机提供俯仰力矩及滚转力矩。随着飞行速度的提高,气动舵面效率提高,位于机翼4梢部的垂直尾翼5提供航向安定性,方向舵6提供偏航力矩。位于机翼4后缘的副翼7提供滚转力矩。
所述主起落架10与所述前起落架11处于收起状态,以降低巡航阻力。
本实施例中,每一倾转涵道风扇即左倾转涵道风扇3和右倾转涵道风扇2通过电机驱动,可获得灵敏的调速特性,方便实现控制。所述单个升力涵道风扇8通过涡轴发动机、活塞发动机或电动机驱动,使用涡轴发动机或者活塞发动机可获得较大的航程航时,使用电动机驱动可获得灵敏的调速特性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种基于倾转涵道的单升力涵道垂直起降飞机,其特征在于,包括:
    机身;
    两个机翼,用于产生升力,对应设置在所述机身的中后部的两侧且每一机翼由侧部向外伸展而成,每一机翼的外侧缘呈流线型;
    N个倾转涵道风扇,用于垂直起降阶段的姿态控制和水平飞行阶段的推进,N为偶数且分为N/2组,每组倾转涵道风扇对应安装在所述机身的两侧,每个倾转涵道风扇通过对应的连接件与所述机身转动连接;和
    单个升力涵道风扇,用于提供垂直起降阶段的主要升力,嵌入安装在所述机身与所述两个机翼之间;和
    涵道罩,安装在所述单个升力涵道风扇的上部,并可相对所述单个升力涵道风扇打开或关闭,垂直起降阶段所述涵道罩打开,使气流通过,水平飞行阶段所述涵道罩关闭,无气流通过。
  2. 根据权利要求1所述的单升力涵道垂直起降飞机,其特征在于,在垂直起降状态,所述N个倾转涵道风扇的推力轴均向下,通过调节它们的偏转角度和推力大小,为所述单升力涵道垂直起降飞机提供俯仰力矩及滚转力矩;
    所述涵道罩打开,使气流顺畅进入所述单个升力涵道风扇,为所述单升力涵道垂直起降飞机提供主要升力。
  3. 根据权利要求1或2所述的单升力涵道垂直起降飞机,其特征在于,在垂直飞行向水平飞行转换的过渡状态,所述N个倾转涵道风扇逐渐改变角度,使所述单升力涵道垂直起降飞机具有向前的速度和加速度;
    随着飞行速度的提高,所述两个机翼逐渐产生升力,所述涵道罩关闭,维持所述机翼外形,使所述单升力涵道垂直起降飞机具有较高的升阻比,以获得较大航程与航时。
  4. 根据权利要求1-3中任一项所述的单升力涵道垂直起降飞机,其特征在于,在水平飞行状态,所述N个倾转涵道风扇的推力轴均向后,由其提供推力,每一倾转涵道风扇与对应的连接件形成鸭翼,通过调节其偏转角度可为所述单升力涵道垂直起降飞机提供俯仰力矩及滚转力矩。
  5. 根据权利要求1-4中任一项所述的单升力涵道垂直起降飞机,其特征在于,所述单个升力涵道风扇的底部设置导流叶片,所述导流叶片用于提供额外的滚转控制和偏航控制力矩。
  6. 根据权利要求1-5中任一项所述的单升力涵道垂直起降飞机,其特征在于,还包括垂直尾翼,用于提供航向安全性,对应设置在所述两个机翼的梢部,所述垂直尾翼与对应的机翼相互垂直。
  7. 根据权利要求6所述的单升力涵道垂直起降飞机,其特征在于,每一垂直尾翼的后端形成方向舵,用于提供偏航力矩。
  8. 根据权利要求1-7中任一项所述的单升力涵道垂直起降飞机,其特征在于,每一机翼的后缘处形成副翼,用于提供滚转力矩。
  9. 根据权利要求1-8中任一项所述的单升力涵道垂直起降飞机,其特征在于,还包括:
    主起落架,对应设置所述机身的下部两侧且位于所述两个机翼的位置处,每一主起落架可相对所述机身收起或放下;和
    前起落架,设置在所述机身的下部位于所述机身头部的位置处,所述前起落架可相对所述机身收起或放下;
    在垂直起降状态,所述主起落架与所述前起落架处于放下状态,以支撑所述单升力涵道垂直起降飞机和缓冲着陆冲击;
    在水平飞行状态,所述主起落架与所述前起落架处于收起状态,以降低巡航阻力。
  10. 根据权利要求1-9中任一项所述的单升力涵道垂直起降飞机,其特征在于,每一倾转涵道风扇通过电机驱动,所述单个升力涵道风扇通过涡轴发动机、活塞发动机或电动机驱动。
PCT/CN2018/094425 2017-09-29 2018-07-04 一种基于倾转涵道的单升力涵道垂直起降飞机 WO2019062256A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201721275191.8U CN207417148U (zh) 2017-09-29 2017-09-29 一种基于倾转涵道的单升力涵道垂直起降飞机
CN201710910903.7A CN107539472A (zh) 2017-09-29 2017-09-29 一种基于倾转涵道的单升力涵道垂直起降飞机
CN201710910903.7 2017-09-29
CN201721275191.8 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019062256A1 true WO2019062256A1 (zh) 2019-04-04

Family

ID=65900485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094425 WO2019062256A1 (zh) 2017-09-29 2018-07-04 一种基于倾转涵道的单升力涵道垂直起降飞机

Country Status (1)

Country Link
WO (1) WO2019062256A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860200A (en) * 1973-09-05 1975-01-14 Rockwell International Corp Airfoil
CN102126553A (zh) * 2010-01-12 2011-07-20 北京航空航天大学 一种垂直起降小型无人机
CN202011472U (zh) * 2011-02-28 2011-10-19 南昌航空大学 倾转涵道无人机
US20140367509A1 (en) * 2005-10-18 2014-12-18 Frick A. Smith Aircraft with freewheeling engine
CN104369863A (zh) * 2014-10-31 2015-02-25 吴建伟 一种复合式垂直起降飞行器
WO2017021918A1 (fr) * 2012-12-10 2017-02-09 Gerome Bermond Aéronef convertible pourvu de deux rotors carénés en bout d'aile et d'un fan horizontal dans le fuselage
CN107074358A (zh) * 2014-05-07 2017-08-18 Xti飞行器公司 垂直起降的飞行器
CN107539472A (zh) * 2017-09-29 2018-01-05 清华大学 一种基于倾转涵道的单升力涵道垂直起降飞机
CN107628244A (zh) * 2017-09-29 2018-01-26 清华大学 一种基于倾转涵道的双升力涵道垂直起降飞机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860200A (en) * 1973-09-05 1975-01-14 Rockwell International Corp Airfoil
US20140367509A1 (en) * 2005-10-18 2014-12-18 Frick A. Smith Aircraft with freewheeling engine
CN102126553A (zh) * 2010-01-12 2011-07-20 北京航空航天大学 一种垂直起降小型无人机
CN202011472U (zh) * 2011-02-28 2011-10-19 南昌航空大学 倾转涵道无人机
WO2017021918A1 (fr) * 2012-12-10 2017-02-09 Gerome Bermond Aéronef convertible pourvu de deux rotors carénés en bout d'aile et d'un fan horizontal dans le fuselage
CN107074358A (zh) * 2014-05-07 2017-08-18 Xti飞行器公司 垂直起降的飞行器
CN104369863A (zh) * 2014-10-31 2015-02-25 吴建伟 一种复合式垂直起降飞行器
CN107539472A (zh) * 2017-09-29 2018-01-05 清华大学 一种基于倾转涵道的单升力涵道垂直起降飞机
CN107628244A (zh) * 2017-09-29 2018-01-26 清华大学 一种基于倾转涵道的双升力涵道垂直起降飞机

Similar Documents

Publication Publication Date Title
US11634222B2 (en) Vertical take-off and landing unmanned aerial vehicle having foldable fixed wing and based on twin-ducted fan power system
US11142309B2 (en) Convertible airplane with exposable rotors
US10301016B1 (en) Stabilized VTOL flying apparatus and aircraft
US9499266B1 (en) Five-wing aircraft to permit smooth transitions between vertical and horizontal flight
US10287011B2 (en) Air vehicle
US6669137B1 (en) Air vehicle having rotor/scissors wing
CN110316370B (zh) 一种分布式动力倾转机翼飞机的布局与控制方法
US10005554B2 (en) Unmanned aerial vehicle
US20140217229A1 (en) Unmanned aerial vehicle
US20050133662A1 (en) Convertible aircraft provided with two tilt fans on either side of the fuselage and with a third tilt fan arranged on the tail of the aircraft
US20060022084A1 (en) Convertible aircraft provided with two tilt fans on either side of the fuselage, and with a non-tilting fan inserted in the fuselage
US20210086893A1 (en) Convertiplane
KR101828924B1 (ko) 내연 엔진과 전기 모터를 구비한 항공기
US20210331791A1 (en) Distributed Electric Propulsion Modular Wing Aircraft with Blown Wing and Extreme Flaps for VTOL and/or STOL Flight
US11407506B2 (en) Airplane with tandem roto-stabilizers
CN103754360A (zh) 一种类飞碟式旋翼机
CN218617171U (zh) 一种多旋翼飞行器
WO2019062257A1 (zh) 一种基于倾转涵道的双升力涵道垂直起降飞机
US11919633B2 (en) Convertiplane
CN113104195B (zh) 一种双涵道复合翼飞行器
CN112124589B (zh) 一种二旋翼矢量倾转无人机
TWI734446B (zh) 垂直起降定翼機
CN114802742A (zh) 一种基于倾转动力的垂平两用飞行器
CN211996136U (zh) 旋翼和矢量推进系统组合式飞行器
WO2019062256A1 (zh) 一种基于倾转涵道的单升力涵道垂直起降飞机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861202

Country of ref document: EP

Kind code of ref document: A1