US20140367509A1 - Aircraft with freewheeling engine - Google Patents
Aircraft with freewheeling engine Download PDFInfo
- Publication number
- US20140367509A1 US20140367509A1 US14/251,850 US201414251850A US2014367509A1 US 20140367509 A1 US20140367509 A1 US 20140367509A1 US 201414251850 A US201414251850 A US 201414251850A US 2014367509 A1 US2014367509 A1 US 2014367509A1
- Authority
- US
- United States
- Prior art keywords
- aircraft
- fuselage
- engines
- engine
- parachute
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 235000015842 Hesperis Nutrition 0.000 claims description 5
- 235000012633 Iberis amara Nutrition 0.000 claims description 5
- 238000013461 design Methods 0.000 description 20
- 241000272517 Anseriformes Species 0.000 description 16
- 239000000446 fuel Substances 0.000 description 16
- 238000012546 transfer Methods 0.000 description 15
- 230000033001 locomotion Effects 0.000 description 12
- 239000003381 stabilizer Substances 0.000 description 9
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 230000000153 supplemental effect Effects 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- IBSREHMXUMOFBB-JFUDTMANSA-N 5u8924t11h Chemical compound O1[C@@H](C)[C@H](O)[C@@H](OC)C[C@@H]1O[C@@H]1[C@@H](OC)C[C@H](O[C@@H]2C(=C/C[C@@H]3C[C@@H](C[C@@]4(O3)C=C[C@H](C)[C@@H](C(C)C)O4)OC(=O)[C@@H]3C=C(C)[C@@H](O)[C@H]4OC\C([C@@]34O)=C/C=C/[C@@H]2C)/C)O[C@H]1C.C1=C[C@H](C)[C@@H]([C@@H](C)CC)O[C@]11O[C@H](C\C=C(C)\[C@@H](O[C@@H]2O[C@@H](C)[C@H](O[C@@H]3O[C@@H](C)[C@H](O)[C@@H](OC)C3)[C@@H](OC)C2)[C@@H](C)\C=C\C=C/2[C@]3([C@H](C(=O)O4)C=C(C)[C@@H](O)[C@H]3OC\2)O)C[C@H]4C1 IBSREHMXUMOFBB-JFUDTMANSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 241000272168 Laridae Species 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 241000566150 Pandion haliaetus Species 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
- B64C29/0008—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
- B64C29/0016—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
- B64C29/0033—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C1/00—Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
- B64C1/14—Windows; Doors; Hatch covers or access panels; Surrounding frame structures; Canopies; Windscreens accessories therefor, e.g. pressure sensors, water deflectors, hinges, seals, handles, latches, windscreen wipers
- B64C1/1407—Doors; surrounding frames
- B64C1/1415—Cargo doors, e.g. incorporating ramps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C1/00—Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
- B64C1/14—Windows; Doors; Hatch covers or access panels; Surrounding frame structures; Canopies; Windscreens accessories therefor, e.g. pressure sensors, water deflectors, hinges, seals, handles, latches, windscreen wipers
- B64C1/1476—Canopies; Windscreens or similar transparent elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/22—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/22—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
- B64C27/26—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft characterised by provision of fixed wings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/22—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
- B64C27/28—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with forward-propulsion propellers pivotable to act as lifting rotors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/52—Tilting of rotor bodily relative to fuselage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/82—Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
- B64C29/0008—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
- B64C29/0016—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/02—Aircraft not otherwise provided for characterised by special use
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D17/00—Parachutes
- B64D17/22—Load suspension
- B64D17/24—Rigging lines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D17/00—Parachutes
- B64D17/22—Load suspension
- B64D17/34—Load suspension adapted to control direction or rate of descent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D17/00—Parachutes
- B64D17/62—Deployment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D17/00—Parachutes
- B64D17/62—Deployment
- B64D17/64—Deployment by extractor parachute
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D17/00—Parachutes
- B64D17/80—Parachutes in association with aircraft, e.g. for braking thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D31/00—Power plant control systems; Arrangement of power plant control systems in aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D31/00—Power plant control systems; Arrangement of power plant control systems in aircraft
- B64D31/16—Power plant control systems; Arrangement of power plant control systems in aircraft for electric power plants
- B64D31/18—Power plant control systems; Arrangement of power plant control systems in aircraft for electric power plants for hybrid-electric power plants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D35/00—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
- B64D35/04—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions characterised by the transmission driving a plurality of propellers or rotors
-
- B64C2201/04—
-
- B64C2201/10—
-
- B64C2201/162—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/15—UAVs specially adapted for particular uses or applications for conventional or electronic warfare
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U30/00—Means for producing lift; Empennages; Arrangements thereof
- B64U30/10—Wings
- B64U30/12—Variable or detachable wings, e.g. wings with adjustable sweep
- B64U30/14—Variable or detachable wings, e.g. wings with adjustable sweep detachable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/10—Propulsion
- B64U50/13—Propulsion using external fans or propellers
- B64U50/14—Propulsion using external fans or propellers ducted or shrouded
Definitions
- This invention relates generally to Vertical Take-Off and Landing (VTOL) aircraft and more specifically to a compact VTOL aircraft with a fixed wing which can be utilized as a Personal Air Vehicle (PAV) or an Unmanned Aerial Vehicle (UAV).
- PAV Personal Air Vehicle
- UAV Unmanned Aerial Vehicle
- the present disclosure is directed to an aircraft that contemplates no need for driving a car through traffic to and from airports.
- the capabilities and properties of this particular aircraft make it compact and versatile enough so as to enable a pilot to fly this aircraft from “door to door” without the requirement of an airport or highways.
- a person could lift off as with a helicopter from a space such as a driveway, back yard, parking garage, rooftop, helipad, or airport and then fly rather than drive to all the day's various appointments.
- Some embodiments of the present invention provide a versatile VTOL aircraft that is not only lightweight and powerful enough to take off and land vertically, but is also economical and powerful enough to take off, land and fly at a fast rate of speed, like an airplane. Therefore, it serves as a personal air vehicle (PAV) with a multitude of uses and configurations.
- PAV personal air vehicle
- the current invention is able to achieve its power from the placement and production of two (2) Axial Vector/Dyna-Cam type engines mounted sideways with respect to the fuselage of the aircraft (that is, the axis of rotation of the driveshaft of each engine may be oriented transverse to the longitudinal axis of the fuselage).
- These engines are lightweight and produce greater horsepower and three (3) times more torque per horsepower than conventional engines.
- Each engine may have a double-ended driveshaft which provides direct drive to the ducted fans/nacelles which are located outside of the fuselage.
- Each end of each double-ended driveshaft may turn one ducted fan, so two engines will power two (2) pairs of ducted fans for a total of four ducted fans.
- a first engine may be placed in the front section of the aircraft fuselage, and the driveshafts from the ends of the first engine may run through a front canard wing on the aircraft to a front pair of ducted fans located at the ends of the canard wing. These front ducted fans may be mounted far enough out from the fuselage to prevent propeller wash in the rear ducted fans.
- a second engine may be mounted behind the passenger cabin and toward the rear of the fuselage. This engine may power an of pair of ducted fans which are attached to the fuselage, so the driveshaft for this engine may connect directly through a transfer case to differentials in the ducted fans.
- the rear engine may be slightly elevated above the center line of the side of the fuselage.
- the two sideways mounted engines may be placed in-line in the fuselage so the passenger cabin and the rear engine receive less wind resistance, thus reducing drag on the airplane and increasing fuel efficiency.
- Dr. Claude Dornier used the in-line configuration in his German built Dornier DO335.
- the Cessna Skymaster 336 was using in-line engines, and presently the Adams A500 designed by Burt Rutan is utilizing the configuration. Since the engines are located inside the fuselage rather than outside in the ducted fans or at the end of a main wing, as on the Bell Boeing V-22 Osprey, a better in-line center of gravity is established thereby resulting in quicker response, better balance and increased stability in flight and/or in hover.
- the aircraft may have a fixed wing and four aerodynamically designed tilt ducted fans.
- the Bell X-22A was one of the first aircraft to fly using tilt ducted fans.
- Moller's “Skycar” (U.S. Pat. No. 5,115,996) is a vehicle which includes ducted fans with directional vanes and two engines in each duct for a total of eight engines.
- some embodiments of this invention use only two sideways placed engines in the fuselage with direct drive from the driveshafts into differentials in the ducted fans to power four ducted fans, with no intervening transmission between the rotor of each engine and the driveshaft or between the driveshaft and the differentials.
- the elimination of a transmission in such a direct drive embodiment saves weight and increases efficiency and performance.
- the aerodynamic shape of the front of the ducted fans is such that the bottom of each duct protrudes forward and the top of each duct slopes down to the bottom.
- This lifting air intake duct design creates low pressure in the bottom front of the duct which helps eliminate the need for more wing area and in turn reduces the weight of the aircraft. Willard Custer illustrated this lift principle with his Channelwing aircraft in the late 1930s. This technology is being researched even today at the Georgia Institute of Technology.
- Another result of extending the bottom of the ducts is a reduction of the noise created by the turning blades. In a UAV stealth design, this will also help cover the radar signature from the turning blades.
- ducted fans permit the aircraft to take off and land in either conventional or VTOL mode. Since the fan blades may be encased in ducts, the ducts can be rotated to align horizontally with the fuselage, and the aircraft may take off and land conventionally. In some embodiments, such ducted fans may provide greater flexibility in terms of sizing, thrust, and ground clearance than if unducted propellers are used. In some embodiments, a double row of counter-rotating fan blades in the ducted fans may provide sufficient thrust so that the duct diameter may be small enough for sufficient ground clearance.
- conventional take-off and landing may also be provided because the double row of counter-rotating blades in the ducted fans allow the ducted fans to be small enough to clear the ground when oriented horizontally.
- VTOL is possible because the ducted fans may rotate to a vertical orientation and provide sufficient thrust for take-off and landing.
- the aircraft body itself may be an aerodynamically designed lifting body.
- Burnelli Aircraft was building a lifting body airframe (U.S. Pat. No. 1,758,498).
- the Space Shuttle still utilizes that technology. With the engines mounted sideways with respect to the fuselage, this design lends itself to a lifting body application.
- Some embodiments of the current invention include a power boosted emergency parachute assembly which can be used in hover or flight conditions, should the aircraft lose one or more of its engines, thus allowing the pilot to continue to maneuver the aircraft to a safe landing.
- Some embodiments of the current invention incorporate a computer controlled fly-by-wire system which calculates gyroscopic stability and sends information to one or more ducted fans or propeller blades to adjust them to the correct pitch for controlled flight.
- the aircraft may have a fixed level, dihedral, or anhedral wing to provide for forward flight in airplane mode.
- Sections of the aircraft wings may be bolted on or removed to create various wing lengths for different applications, such as for short distances as in a city setting or long distances for long range travel and for easy transporting of the aircraft, as on a trailer or truck or in a shipping container.
- extensions on the main wing may enable an aircraft to fly at high altitude and/or to loiter for long periods of time.
- a personal air vehicle may become a new mode of transportation.
- the embodiments set forth herein are merely examples of various configurations of the aircraft, and many new models can result from this invention. Different embodiments of this aircraft could range from a variety and number of passenger seating arrangements to a model with no passengers; i.e., a UAV.
- the aircraft may serve as a personal air vehicle, an air taxi, an observation aircraft, an emergency rescue vehicle, a military vehicle or a UAV, or for other purposes.
- Some embodiments may be constructed of lightweight material and the airframe may be designed as a lifting body, which helps reduce the weight and the square footage area of the wings.
- Some embodiments may have the vertical take-off, landing and flight capabilities of a helicopter and the conventional take-off, landing and flight capabilities of an airplane. Some embodiments may transition back and forth between VTOL and forward flight. If the aircraft is in hover position, air deflectors (which may be mounted on the rear of each ducted fan) may enable the aircraft to move sideways and to counter rotate, and the tilted ducted fans may enable it to move forward and backward safely in tight spaces. Since some embodiments of the aircraft may use significant power to accommodate its VTOL capabilities, the aircraft may also be designed to take advantage of this power and transform it into maximum airspeed in forward flight.
- Some embodiments of the current invention can lift off and set down like a helicopter, but can also utilize the speed of an airplane to provide quick “door to door” service for convenience and for the saving of time and fuel.
- the aircraft can take off like an airplane, it may be capable of handling more weight—such as that of passengers, fuel and freight—on takeoff and then traveling a longer distance.
- the aircraft may land in a conventional aircraft mode on a runway, if desired, or the aircraft may land vertically in a smaller space or without a runway.
- the compact nature of the aircraft, combined with the use of ducted fans, may provide a large spectrum of landing locations for it as a VTOL vehicle.
- the aircraft may not be as fast as the new light jets currently being developed and soon to be offered for air taxi service, the aircraft nonetheless saves overall time because it can take off and land in locations other than a landing strip. Time commuting to and from an airport can be significant, and some embodiments of this aircraft may provide a means to bypass airports by leaving from and returning to a nearby convenient location.
- one advantage of the fixed wing aircraft is the ability to throttle back the engines and use lift from the wing to help the engines conserve fuel while flying.
- either engine may be shut off, and the aircraft can cruise on one engine for improved fuel economy. For example, Burt Rutan's Voyager took off using both engines, then shut down one engine and flew around the world—using one engine—without refueling.
- the wing may be dihedral, which may improve the stability of the aircraft.
- the aircraft can fly on either of its engines and continue to an airport to land conventionally. If both engines are lost while in flight, the aircraft's glide slope is excellent. The pilot can glide the aircraft to a landing site or use a guidable emergency parachute to float to a safe location.
- another advantage derives from the fact that the engines are not in the ducts but are instead mounted in the fuselage, providing an in-line center of gravity for better stability and increased response (as opposed to having the weight of the engines on the wingtips). Additionally, the front engine may break the air for both the cabin and the rear engine, thus creating a very aerodynamic lifting body aircraft.
- the elevation of the rear engine may allow for air intake scoops to be mounted on the front of each side of the engine, thereby providing for air cooling of the rear engine while still maintaining the aircraft's aerodynamic design.
- this elevation may also improve the flare of the aircraft upon landing and derotation and may allow the rear landing gears to hit the runway first. It also may improve take-off and rotation because the front landing gear of the aircraft may lift off first.
- another advantage in landing an aircraft as described herein is that, in the case of an engine being lost, the two ducted fans attached to that engine may stop also. Consequently, the critical engine problem which causes yaw and then roll, usually experienced when a twin engine aircraft loses an engine, may be eliminated. Additionally, if an engine is lost, some embodiments of the aircraft are capable of auto feathering the fan blades of the two ducted fans associated with that engine, thereby reducing drag through the duct.
- the sideways placement of the engines may provide the ability to power two ducted fans with one engine having a double-ended driveshaft.
- the cost of construction and operation of the aircraft may be less, for example, because only two engines may be used to power four ducted fans.
- one or more driveshafts of the rear engine may be shortened going into the associated rear ducted fans because the ducted fans may be mounted on the side of the fuselage, and one or more driveshafts of the front engine may be shortened going through a canard wing which may not be as long as a main wing.
- This configuration not only may reduce the weight of the one or more driveshafts, but may also provide an enhanced safety factor. Since a driveshaft may enter the middle of a differential in a ducted fan, the driveshaft may naturally turn two output shafts of the ducted fan in a counter rotating motion. This reliable yet simple design may also add to the safety of the aircraft.
- the aircraft may use an Axial Vector/Dyna-Cam type engine which may provide many advantages, including very smooth operation with little vibration and utilization of a variety of fuels and high fuel efficiency.
- the Axial Vector/Dyna-Cam type engine is a lightweight, small and compact internal combustion engine with high horsepower and high torque.
- a high torque engine may allow a high angle of attack on variable pitch blades, which may provide quick response with little variation in the rpm of the engine.
- the ducts of the ducted fans may be aerodynamically designed to create lift thereby reducing the weight of the aircraft because of less square footage of wing area than otherwise may be required. Since no engines are located in the ducts, more area is available for airflow through the ducts, thus creating more lift and thrust.
- the front pair of ducts may be mounted far enough out on the canard wing to allow the rear ducts to receive undisturbed air.
- two rows of blades in a ducted fan may turn in a counter rotating motion thereby creating more thrust and reducing the overall diameter of the duct. This reduced diameter may provide sufficient ground clearance for a conventional aircraft take-off and landing mode as well as VTOL and VSTOL capability.
- Tilt ducted fans may provide the ability to get full thrust on lift and forward flight.
- the aerodynamic shape of the lifting duct may provide for more lift with less weight since a shorter wing may be used.
- the blades in each row of a ducted fan may have variable pitch.
- the pitch angle of the blades may be determined and controlled by a computer in communication with gyros in a fly-by-wire system, thus controlling pitch for stability in a hover mode or adjusting pitch while in forward flight.
- the blades may have the capability of self feathering and lining up in an identical configuration behind one another within each duct to help reduce drag and increase air flow through the ducts should an engine be lost or shut down. This capability may extend the range which can be flown with one engine.
- the use of ducted fans instead of un-ducted propellers may provide for safer VTOL.
- no exposed propellers are involved, so the aircraft can land in tight spaces or get close to people or to stationary objects. For example, it could hover next to buildings for rescues, land in fields with electrical wires, and/or land in neighborhoods or a regular parking lot.
- the ducted fans may be quieter, enabling the aircraft to take off and land with less noise than is typically associated with helicopters.
- This ducted fan design may also help reduce or cover the radar signature from the turning blades in a UAV stealth design.
- NASA has been researching and developing its “highway in the sky” which provides synthetic vision and GPS guidance in aircraft so that pilots can bypass the large congested airport hubs and land at smaller airports. That technology may be included in some embodiments of this invention, which may allow pilots to bypass even the small airports and land at or near their actual destinations, and it may assist in handling bad weather such as fog.
- Some embodiments of this invention may include an emergency parachute system that provides for quick deployment and rapid expansion to prevent significant altitude loss while in hover or for a delayed deployment while in forward flight.
- the Ballistic Recovery System which was invented and patented by Boris Popov (U.S. Pat. No. 4,607,814) was originally created for ultralights and experimental aircraft and later retrofitted for larger aircraft.
- the BRS system is currently utilized by Cirrus Design for its lighter single engine airplanes.
- the emergency parachute system in the Cirrus aircraft allows a significant loss of altitude before the canopy is filled with air.
- the pilot has no control of the descent and therefore no control of the landing site.
- the rocketed parachute system in some embodiments of the present invention may rapidly deploy and expand the parachute and then allow the pilot to steer the parachute to get the aircraft to a preferred landing site.
- a sport plane embodiment of this aircraft may have a fuselage having a longitudinal axis, a left wing extending from the fuselage, a right wing extending from the fuselage, a tail section extending from a rear portion of the fuselage, a first ducted fan rotatably mounted to the left wing, a second ducted fan rotatably mounted to the right wing, and an engine disposed in the fuselage, the engine having a direct-drive, double-ended driveshaft having an axis of rotation oriented transverse to the longitudinal axis of the fuselage, wherein the first ducted fan includes a first differential operably connected between first and second rows of counter rotating fan blades, wherein the second ducted fan includes a second differential operably connected between third and fourth rows of counter rotating fan blades, and wherein one end of the driveshaft is directly connected to the first differential, and the other end of the driveshaft is directly connected to the second differential.
- FIG. 1 is a front perspective view of a four ducted fan aircraft embodiment of the current invention.
- FIG. 2 a is a top schematic cross-sectional view of the aircraft of FIG. 1 showing single engines serving the front and rear pairs of ducted fans.
- FIG. 2 b is a top schematic cross-sectional view of the aircraft of FIG. 1 showing pairs of engines serving the front and rear pairs of ducted fans.
- FIG. 3 a is a side schematic cross-sectional view of a ducted fan assembly.
- FIG. 3 b is a top schematic cross-sectional view of the ducted fan assembly of FIG. 3 a.
- FIG. 3 c is a front view of the ducted fan assembly of FIG. 3 a.
- FIG. 4 a is a side view of the aircraft of FIG. 1 in forward flight with rear thrust.
- FIG. 4 b is a side view of the aircraft of FIG. 1 in hover with downward thrust.
- FIG. 4 c is a side view of the aircraft of FIG. 1 in braking position with reverse thrust.
- FIG. 5 is a front perspective view of a Personal Air Vehicle (PAV) or an Unmanned Aerial Vehicle (UAV) embodiment.
- PAV Personal Air Vehicle
- UAV Unmanned Aerial Vehicle
- FIG. 6 is a front perspective view of a Sport Plane embodiment.
- a first embodiment of the current invention may have four ducted fans.
- This embodiment is a VTOL aircraft with two (2) engines—one fore 201 and one aft 202 —placed sideways with respect to an elongated lifting body fuselage 100 , which may be made of lightweight composite materials, aluminum, or other suitable materials.
- This embodiment may have a canard wing 123 on the front, a fixed main wing 113 in the middle of the fuselage 100 with winglets 114 attached on each end of the main wing 113 , two vertical stabilizers 120 on the rear, a horizontal stabilizer 122 across the top of the tail, a pair of ducted fans 106 R and 106 L fore, and a pair of ducted fans 706 R and 706 L aft on each side of the fuselage 100 for a total of four (4) ducted fans.
- the canard wing 123 and the main wing 113 may be level, dihedral, or anhedral, depending on the overall aerodynamic design of the aircraft.
- all four ducted fans may have the same design and are sometimes referred to as element 106 in the discussion of this embodiment.
- the ducted fans may not all have the same design.
- un-ducted propellers may be used instead of ducted fans, or a combination of ducted fans and un-ducted propellers may be used.
- the engines 201 , 202 may be Axial Vector/Dyna-Cam type engines or other suitable engines.
- the Axial Vector engine from Axial Vector Engine Corporation is a six piston twelve cylinder radial design with high horsepower and torque.
- the engine is small, lightweight and produces three times the torque per horsepower as compared to some other available engines, thus improving the power-to-weight ratio. It is fuel efficient and can use a variety of fuels. It has fewer parts and produces less vibration than some other available engines.
- the passenger cabin may have a lightweight frame made of composite, aluminum, or other suitable material with one stationary front wraparound transparent canopy 127 which serves as the windshield, and two pivotally hinged gull wing style doors 126 which are wraparound door frames with transparent window material encompassing most of the surface to serve as the side windows and skylights on each side of the fuselage 100 .
- the doors 126 may also be made of composite, aluminum, or other suitable material. To clarify, these doors 126 , when closed, may serve as skylights on the top and windows on the side.
- the pilot and front passenger side of the cabin may have transparent material of oval or other suitable shape in the floorboard which may provide for downward viewing and may also provide an emergency escape hatch.
- the side door 126 may pivot wide open to allow for loading/unloading of large loads; e.g., an emergency stretcher or large cargo. It may open large enough to accommodate the ingress and egress of both the front and rear passengers.
- large loads e.g., an emergency stretcher or large cargo. It may open large enough to accommodate the ingress and egress of both the front and rear passengers.
- Some embodiments of the present invention may have a four-seat cabin, but other embodiments may include fewer or more than four seats, and still other embodiments may be utilized as an unmanned aerial vehicle (UAV) with no seats.
- UAV unmanned aerial vehicle
- the headlights/landing lights encasement 101 may have a streamlined transparent protective covering located on the nose of the fuselage 100 and one front air intake 102 may be located on each side of the nose of the fuselage 100 .
- a canard wing 123 may be attached to the front fuselage 100 , with a ducted fan 106 attached to each end of the canard wing by a duct rotation actuator 124 . Elevators 116 on the trailing edge of the canard wing may facilitate in controlling the pitch of the aircraft.
- Each of the ducted fans 106 may house a front blade actuator assembly 107 which controls the pitch angle of a front row of blades 108 and a rear blade actuator assembly 210 which controls the pitch angle of a rear row of counter rotating blades 109 (hidden in FIG. 1 ; see FIGS. 2 a , 2 b , 3 a , 3 b ).
- a duct air deflector 110 may be located on the rear of each ducted fan 106 .
- Each of the four ducted fans 106 on the aircraft may contain the same front and rear blade assemblies and configuration, and each may or may not have a duct air deflector 110 on the rear of the ducted fan 110 .
- the ducted fans 106 may not all be of the same design.
- the forward ducted fans 106 may be of one design, and the rear ducted fans 106 may be of a different design.
- the air deflector 110 may facilitate control of the transition from forward flight to hover and back to forward flight or from hover to forward flight and back to hover, and control of the sideways and counter rotating motion when in hover.
- One front tire 103 may be located on the front bottom of each side of the fuselage and may be attached to a fixed front landing gear spar 105 and may be partially covered by a streamlined fairing 104 which is wrapped around each tire 103 .
- the tires 103 and associated landing gear may be retractable into the fuselage 100 or the canard wing 123 .
- the spars 105 may be fixed, and the tires 103 may be pivoting to provide a tight turning radius.
- a first avionics bay 128 for storing the aircraft's computer, gyroscopic equipment, etc. may be located inside the nose cone.
- This avionics bay 128 may house the flight computers and gyroscopes which handle guidance, navigation and control; for example, it may serve as a data bus which takes the flight instrumentation, weather and additional data, along with pilot input, to control flight.
- a second bay may be located in the back (not shown) for redundancy.
- the main wing 113 may be attached to the bottom of the fuselage 100 below the passenger cabin doors 126 . Alternatively, the main wing 113 may be attached to the top of the fuselage 100 or to some intermediate portion of the fuselage 100 .
- a speed brake 111 may be located toward the center of the wing 113 on each side of the fuselage to enable the aircraft to slow while in forward flight.
- the wing 113 may include winglets 114 to help reduce drag and thereby increase speed and lift; ailerons 115 to help control roll while in forward flight; and flaps 112 to help reduce landing speed, move into transitional speed while switching from horizontal to vertical and/or back to horizontal flight, and decrease the surface area of the wing thus resulting in less drag on vertical take-off.
- other control surfaces may be employed in combination with or in lieu of speed brakes 111 , ailerons 115 , and flaps 112 .
- One rear tire (not shown in FIG. 1 ) may be attached to a fixed or retractable rear landing gear spar 117 on each side of the fuselage 100 toward the aft section of the aircraft.
- Each of these rear tires may be fixed and covered by a streamlined fairing 104 or retractable into the aft portion of the fuselage 100 and may be equipped with brakes.
- a ducted fan 106 may be located on each side of the fuselage 100 with the attachment point located behind the rear passenger cabin/canopy 126 .
- the rear engine 202 may be mounted slightly higher than the front engine 201 to provide room for air intake cooling which may be accomplished through an air intake scoop 118 located behind the passenger cabin/canopy 126 and on each side of the fuselage 100 .
- One fixed vertical stabilizer 120 may be attached on each side and at the end of the fuselage 100 to minimize or eliminate the yaw/roll oscillations and to reduce the drag off the aft end of the lifting body fuselage 100 .
- a rudder assembly 119 attached to the rear of each vertical stabilizer 120 may help provide yaw control.
- a horizontal stabilizer 122 may be attached, with a rear elevator 121 located on the trailing edge of the horizontal stabilizer 122 for pitch control.
- An emergency parachute with deployment rocket launchers may be stored in a storage location compartment 125 in the rear fuselage 100 , just behind the passenger cabin/canopy 126 and above the rear engine 202 .
- the parachute cables may be attached to the aircraft at four attachment points 129 (three not shown). Two of these attachment points 129 may be located on each side of the aircraft, with two fore and two aft.
- the front parachute cable on each side may be routed from the attachment point 129 on the front of the aircraft, up the side of the fuselage 100 between the front canopy 127 and rear canopy 126 , across the top of the fuselage 100 between the left and right hinged gull wing doors 126 , and back to the parachute storage compartment 125 .
- the rear attachment points 129 may be located behind and above the air intake scoop 118 on each side of the aircraft.
- the rear parachute cable on each side may be routed up the side of the aircraft from the attachment point 129 to the storage compartment 125 . All the parachute cable routings may be concealed in a recessed channel under a non-protruding breakaway covering (not shown) which is aerodynamically flush with the fuselage 100 .
- two double-ended, direct driveshaft engines 201 , 202 may be mounted longitudinally in-line with one another in the fuselage 100 , with one fore and one aft.
- Engines 201 and 202 may be oriented “sideways” with respect to the fuselage 100 such that the axis of rotation of the driveshaft 204 and 219 , respectively, of each engine is oriented transverse to the longitudinal axis of the fuselage.
- a first engine 201 may be placed sideways in the front portion of and with respect to the fuselage 100
- a second engine 202 may be placed sideways in the rear portion of and with respect to the fuselage 100 .
- Each engine 201 , 202 may have a double-ended driveshaft 204 or 219 , respectively, which powers a pair of ducted fans 106 R and 106 L forward, and 706 R and 706 L aft.
- One ducted fan 106 R, 106 L may be mounted on each end of the front canard wing 123
- one ducted fan 706 R, 706 L may be mounted on each side of the fuselage 100 behind the passenger cabin/canopy 126 .
- this embodiment of the current invention includes a first power generation device or engine 201 forward in the fuselage, which is used to power a first driveshaft that serves a ducted fan or propeller on the right canard wing and to power a second driveshaft that serves another ducted fan or propeller on the left canard wing.
- the first power generation device may be a single engine, and the first driveshaft and the second driveshaft may be a single continuous driveshaft 226 that goes through the engine and protrudes out each end of the engine.
- the first power generation device may be two or more engines in alignment, and the first and second driveshafts may be a single continuous driveshaft or may be separate distinct driveshafts, which may be coupled together to act as a single driveshaft. The same is true for the rear power generation device or engine 202 and its associated driveshaft(s).
- the front engine 201 may be mounted in a sideways position with respect to the fuselage 100 between the nose of the aircraft and the front section of the cabin/canopy 127 .
- each side of the driveshaft 204 runs in an opposite direction and exits the fuselage 100 through a transfer case 203 , continues span-wise through the canard wing 123 and duct rotator actuator 124 , and connects to an internal duct differential 212 in a mid portion of the ducted fans 106 L and 106 R.
- the portion of the driveshaft 204 that exits the left end of the engine 201 runs to the left to power the left front ducted fan 106 L; the section of the driveshaft 204 that exits the right end of the engine 201 runs to the right to power the right front ducted fan 106 R.
- the rear engine 202 may be mounted in a sideways position with respect to the fuselage 100 behind the passenger cabin/canopy 126 .
- Rear engine 202 may be located in-line with the front engine 201 and may be slightly elevated above the center line of the fuselage 100 .
- Two air intake scoops 118 with one mounted on each side of the fuselage in front of the rear engine 202 , may provide for air cooling of the rear engine 202 .
- the rear direct driveshaft 219 may be shorter than the front driveshaft 204 because the rear ducted fans 706 L and 706 R may be mounted on each side of the fuselage 100 just behind the passenger cabin/canopy 126 .
- the double-ended direct driveshaft 219 exits each end of the rear engine 202 , and each side of the driveshaft 219 runs in an opposite direction and exits the fuselage 100 through a transfer case 218 , continues through a duct rotator actuator 124 , and connects to an internal duct differential 212 in a mid portion of the ducted fans 706 L and 706 R.
- the front transfer case 203 and the rear transfer case 218 may be connected by a transfer case supplemental driveshaft 217 which runs just inside of each side of the fuselage 100 between the transfer cases 203 and 218 .
- These supplemental driveshafts 217 are not normally engaged; however, should one engine lose power (sometimes referred to herein as a “dead,” “lost,” or “non-working” engine), a computer or other controller may engage the supplemental driveshafts 217 in the transfer cases 203 , 218 thereby bypassing the non-working engine.
- the working engine may provide power to operate the pair of ducted fans 106 R and 106 L, or 706 R and 706 L, as the case may be, of the non-working engine and thus keep the aircraft in a stable position.
- each of the ducted fans 106 R and 106 L may be identical except for the entry of the driveshaft 204 through the duct rotator actuator 124 into the duct.
- the front 204 and rear 219 driveshafts extending from the right sides of the engines 201 , 202 enter the right front and right rear ducted fans 106 R and 706 R from the left; and the front 204 and rear 219 driveshafts running from the left sides of the engines 201 , 202 enter the left front and left rear ducted fans 106 L and 706 L from the right.
- a differential casing 213 may house the differential 212 and two differential output driveshafts 225 .
- the differential 212 may turn the two differential output driveshafts 225 in a counter rotating motion with one shaft powering a row of variable pitch blades 108 at a front low pressure air intake opening 206 and one powering another row of variable pitch blades 109 at a rear air output expansion chamber 216 of each ducted fan 106 .
- These blades 108 , 109 may turn in a counter rotating motion with two computer controlled actuator assemblies—one front 107 and one rear 210 —determining the pitch of the blades.
- FIGS. 3 a , 3 b , and 3 c show enlarged illustrations of the ducted fans 106
- FIGS. 4 a , 4 b , and 4 c illustrate various rotational positions of the ducted fans 106 and how they affect take-off, flight, hover, and braking.
- each of the ducted fans 106 is a ducted tilt rotor, which may be composed of a lightweight composite, aluminum, or other suitable material.
- the rows of blades 108 , 109 inside the ducts may be driven by a direct driveshaft 315 from a double-ended engine 201 , 202 which is mounted sideways with respect to the aircraft fuselage 100 as described above.
- driveshaft 315 may be located in either the front of the aircraft as shown by element 204 or in the rear of the aircraft as shown by element 219 .
- the driveshaft 315 may enter each ducted fan 106 from the side and connect inside the differential casing 213 with the differential 212 in a mid portion of the ducted fan 106 .
- a forward output shaft 307 and a rear output shaft 310 may respectively drive a forward row of fan blades 108 in a front portion of each ducted fan 106 and a rear row of fan blades 109 in a rear portion of each ducted fan 106 .
- the fan blades 108 , 109 may turn in a counter rotating motion which may create more thrust and reduce the overall diameter of the ducted fans 106 , thereby providing sufficient ground clearance for conventional aircraft take-off and landing mode as well as VTOL capability.
- FIG. 3 a and FIG. 3 b illustrate the aerodynamic shape of the front of each of the ducted fans 106 , with the bottom of each ducted fan 106 protruding forward as a lower front induction scoop 301 and with the top of each ducted fan 106 sloping down from an upper front induction scoop 302 to the lower front induction scoop 301 , thereby creating more lift and less drag.
- This lifting air intake duct design may create a low pressure area 206 in the bottom front of the duct which in turn creates lift. This design may reduce or eliminate the need for more wing area and in turn may reduce the weight of the aircraft.
- FIG. 3 a also shows a high pressure inner compression chamber 306 located between the two rows of rotating fan blades—front 108 and rear 109 —in each ducted fan 106 .
- the front blade actuator 107 changes the pitch of the front blades 108 .
- the rear blade actuator 210 changes the pitch of the rear row of blades 109 .
- the rear blades 109 pull the air from the high pressure inner compression chamber 306 and exhaust the air through the low pressure expansion chamber 216 thereby creating forward thrust.
- the blades in each row may have variable pitch controlled by fly-by-wire computers which relay information to the front blade actuator 107 and to the rear blade actuator 210 to adjust the angle of the blades.
- Gyros located in the avionics bays may send a computer signal to the blade actuators 107 , 210 to help control the stability of the aircraft in hover.
- the blades may be capable of self feathering and lining up in an identical configuration behind one another within each ducted fan 106 to help reduce drag and to increase air flow through the ducts, should an engine be lost or shut down. This feathering feature may extend the range which can be flown with one engine.
- Each ducted fan 106 may also have a rear air deflector 110 mounted vertically, horizontally, or in another desired configuration on the rear of the ducted fan 106 when positioned for forward flight or other flight condition.
- This deflector 110 may be controlled by a fly-by-wire actuator 300 and may divert air to the left, right, or other desired direction to help stabilize the aircraft when it transitions from flight to hover or undergoes another desired maneuver. While in hover mode, the deflector 110 may divert the air to provide the ducted fans 106 with the capability of moving the aircraft sideways. Additionally, the air deflector 110 on the rear of the front ducted fans 106 may move one way while the air deflector 110 on the back of the rear ducted fans 106 may divert in the opposite direction or another desired direction, thus giving the aircraft counter-rotation capabilities.
- FIGS. 4 a , 4 b and 4 c show the position of the ducted fans 106 in forward flight, hover, and reverse, respectively.
- FIG. 4 a shows the position of the ducted fans 106 for forward flight and for take-off in conventional fixed wing mode.
- FIG. 4 b illustrates the position of the ducted fans 106 in hover and for vertical take-off.
- forward movement may be accomplished by a computer controlled duct rotator actuator 124 rotating the ducted fans 106 forward toward the position shown in FIG. 4 a to create forward movement until such speed is reached that sufficient airflow over the lifting surfaces creates lift, and the aircraft transitions from vertical to horizontal flight.
- the ducted fans 106 While in forward flight as shown in FIG. 4 a , the ducted fans 106 may remain in aerodynamic alignment with the fuselage 100 as with a conventional fixed wing aircraft.
- the duct actuators 124 When transitioning from horizontal flight to vertical flight, the duct actuators 124 may be rotated upward to slow the forward motion as shown in FIG. 4 b . This decreases the air speed thus reducing the airflow over the lifting surfaces, and as the ducted fan 106 is rotated back to the upward position, it may increase the vertical thrust of the variable pitch blades.
- the actuators 124 may turn the ducted fans 106 past vertical as shown in FIG. 4 c to slow the aircraft to a complete stop of forward motion.
- the tilted duct rotator actuator 124 may also control forward and reverse motion in hover by moving the ducts 106 forward or backward, respectively.
- the aircraft may be adapted to perform as an unmanned aerial vehicle or UAV.
- This embodiment may include the sideways engine placement and in-line alignment and the fans encased in ducts as described for previous examples above. Most of the configuration of the aforementioned embodiment may remain intact, but some differences may be provided to help reduce the radar signature and to help provide for the carrying of weapons, large payloads, surveillance equipment, or the like.
- the aircraft and the engine may be scaled up or scaled down to accommodate different weight and/or mission objectives.
- the UAV embodiment may include the same tail configuration of the previous examples, that is, the vertical stabilizers with the horizontal tail atop them, or as pictured in FIG. 5 , it may utilize a V-tail assembly 501 and may include horizontal stabilizers 502 attached to the sides of and/or to the rear of the ducts (not shown).
- This V-tail configuration is similar to that of the Raptor F-22.
- the cabin canopy may be manufactured of an opaque material rather than a transparent material and may become more aerodynamically streamlined by incorporating a lower profile. Bomb bay doors which open at the bottom of the aircraft for deployment of weapons, emergency food supplies, or the like may improve stealth capabilities because those items may be hidden and encased in the fuselage rather than placed on the wings.
- the UAV embodiment may be used for military and reconnaissance operations for close in support.
- the UAV embodiment may also be used as an emergency vehicle to pick up wounded or stranded people in a dangerous location.
- the bolt-on or foldable wings may allow it to be trailered to a nearby or safe location before being sent on a mission. Thinner and longer wing extensions may accommodate higher altitudes and longer loitering.
- the ability of the aircraft to fly with one engine shut down and to take-off and land in close proximity to a target area may increase the distance the aircraft can fly on its designated fuel allowance.
- the engine may have the ability to alternate piston firings which also may increase fuel economy while keeping the aircraft aloft using very little horsepower.
- the fan blades may be encased in ducts, and since ducted fans are quieter than propellers or jet engines, less radar signature may be produced. Also, since the engines may be mounted in the fuselage, less infrared signature may be produced. Stealth may therefore be much improved.
- most or all of the cabin area between the two engines may be used for storage of weapons, cargo and supplies, and/or surveillance equipment.
- VTOL capabilities may allow the aircraft to get closer to a target or to get into tight areas as for a rescue.
- the ability to take off and land in conventional mode may provide for more carrying capacity because the wings may be used for lift so the aircraft may carry more fuel and weight. Once the fuel has burned off on a long flight, a vertical landing is possible.
- V-tail configuration 501 could also be utilized on the passenger embodiments to improve the speed of the aircraft.
- FIG. 6 shows an alternative embodiment of this invention as a VTOL sport plane.
- This embodiment may be comprised of an elongated aerodynamic fuselage with one double-ended driveshaft engine mounted sideways with respect to the fuselage and with a rotatable ducted fan 106 on each end of a main fixed wing 605 for a total of two ducted fans.
- the wing 605 may be level, dihedral, or anhedral.
- a passenger compartment/cabin 600 in the front portion of the fuselage may accommodate one or two people, and the engine may be located in the fuselage just behind cabin 600 and in line with the wing 605 .
- An emergency parachute compartment may be located behind the passenger cabin 600 and just above the engine.
- the aircraft may have a fixed or retractable tricycle landing gear with one attached to the front 601 of the fuselage and two 602 —one left and one right—attached to the bottom of the fuselage behind and below the passenger compartment 600 .
- the engine, driveshaft, transfer case, duct rotator actuator, and ducted fans 106 may be provided for wing 605 in like manner as described above for canard wing 123 (see FIGS. 1 , 2 a , 2 b ).
- the double-ended driveshaft from each end of the engine may exit the fuselage through a transfer case, bearing, or other suitable support, run inside the main fixed wing 605 , continue through a duct rotator actuator, and continue through a side of the ducted fan 106 and into a mid portion of the ducted fan 106 where it connects to a differential.
- the driveshaft exits the right end of the engine, it runs through the right side of the wing and enters the right ducted fan 106 through the left side; and as the driveshaft exits the left end of the engine, it runs through the left side of the wing and enters the left ducted fan 106 through the right side.
- the differential may have two output shafts with each one turning one row of blades. Therefore, the two output shafts may respectively turn two rows of counter rotating blades in each ducted fan 106 .
- Two air deflectors may be attached to the rear of each ducted fan 106 . These deflectors may employ a DSS (Duct Stabilization System) and may use splitting capabilities to control the output thrust for increased stability.
- the horizontal air deflector may move the aircraft forward and backward, and may provide counter rotation of the aircraft in hover.
- the vertical air deflector may move the aircraft sideways in hover. In conventional airplane mode, the horizontal air deflector may control the roll.
- the rear fuselage of the aircraft may be long and streamlined with a cruciform shaped tail comprised of one left 604 and one right (not shown) horizontal surface and one top 603 and one bottom vertical surface (not shown) controlling pitch and yaw, respectively, while the aircraft is in conventional airplane mode.
- two or more engines may be provided fore, and two or more engines may be provided aft.
- Each set of engines may be placed end to end and sideways with respect to the fuselage.
- a common driveshaft or coupled driveshafts which act as one driveshaft 226 may run through the multiple engine blocks, with the shaft output on the outside ends of the outside engines running a pair of propellers or ducted fan blades.
- a transfer case may not be necessary for a backup for a dead engine, although a transfer case and supplemental drive shaft may be provided for further redundancy.
- the dead engine shaft may be driven by the running engine and/or engines with the dead engine freewheeling.
- the propellers or ducted fan blades may keep turning but at reduced power.
- freewheeling may be accomplished by coupling multiple engines (two or more) in-line with a continuous or coupled driveshaft and/or camshaft to effectively create a single power source and to provide for the freewheeling of one or more engines or for all of the engines, further described as follows.
- the freewheeling system may be formed by placing two or more engines (power sources) end to end and with each combined engine having a common driveshaft (which may be one integral, continuous shaft or multiple shafts coupled together) enabling the other engine or engines to freewheel.
- the sizes, horsepower, and types of power sources for such embodiments may be identical or varied.
- Output shafts for freewheeling can be utilized from each end, or from only one end, or from the middle of the coupled or continuous shafts.
- Coupling of multiple power sources may provide for the capability of freewheeling of one or more power sources while one or more other power sources are providing power to the other end of the freewheeling engine(s). It may also provide for all of the power sources to run together or for all power sources to freewheel together. If one power source fails, the other power source(s) will continue to turn the driveshaft, thus providing redundancy and enhanced safety.
- each of the power sources may provide a different power level for the coupled unit; e.g., if three power sources are coupled, one power source could be at idle, one could be at medium power, and one could be at full power, or alternatively all the power sources could be working at full power. More generally, each power source may be utilized at any selected power level. Significant fuel savings may result from regulating the power to only what is necessary at a given flight condition. In addition, any combination of the power sources could be selected to power or freewheel, and the power sources may be alternately selected so that the hours on each of the power sources may be maintained at a similar level if needed.
- coupling of the power sources with the resultant freewheeling capability may eliminate the need between units for clutches, transmissions, torque converters and/or differentials. This may simplify manufacturing and operations, thereby reducing costs of operation and maintenance and increasing safety.
- various freewheeling devices may be interposed between a power source and the driveshaft if needed.
- coupling two or more different types of power sources may provide for various capabilities.
- the heat source may be utilized to turn an electric source into a generator, thus letting the heat source charge batteries, for example.
- the heat source may provide power while freewheeling the electric source.
- the electric source may provide power by freewheeling the heat source, or both the heat source and the electric source may be used together to provide hybrid power.
- both sources may be freewheeled and used in a regenerating mode to turn the electric source into a generator and provide braking and electrical current to charge batteries.
- the multi-source unit being used to power a generator(s) may continue to generate power—even with the loss of an engine—because the other engine(s) may accelerate to compensate for the dead engine, thus eliminating or minimizing loss of power.
- some of the power units for which this freewheeling concept may work best may be power sources which produce very little friction when the power source is freewheeling and the continuous or coupled driveshaft(s) are in-line, thus using internal driveshafts/crankshafts/cam shafts as the drive line.
- the internal mechanical parts of the engine may be used as the continuous drive line which turns the output shaft with power from the other power source(s).
- coupling the engines for freewheeling may make it possible for one drive shaft from one end of the coupled power units to turn one propeller unit.
- This configuration may eliminate the need for other drive shafts when a back-up engine is needed, thereby reducing drag while still providing the “back-up” safety element of conventional twin engines or multi-engines.
- the freewheeling system may also work inside nacelles; e.g., by placing propellers on one end of multiple engines, between the engines, or at each end of the engines. This configuration may also be used to retrofit an existing aircraft by placing a propeller at one end of combined engines.
- this coupled and freewheeling power generating unit may provide both power and back-up power from each end or from one end of the coupled power unit and may be used in a VTOL aircraft to provide for powering the aircraft. It may also be used to improve the powering of existing VTOL aircraft currently in design, production, and/or use. Currently, many of these aircraft have propellers and blades at the end of the engines or in the ducts with their power units creating safety issues if one engine fails. In some embodiments, coupling engines together may allow the use of smaller engines thereby reducing the cost of manufacturing, especially for electric motors, since smaller engines generally cost less to manufacture.
- reduced friction power units may include engines such as the PerlexTM, Axial VectorTM, Sinusoidal CamTM, Dyna-CamTM, RadmaxTM, Rand-CamTM, WankelTM, and any cylindrical rotor, rotor, rotary, mill, vane, turbine, jet, electric and any other reduced friction power units capable of using its internal drive shafts in freewheeling applications as described herein.
- engines such as the PerlexTM, Axial VectorTM, Sinusoidal CamTM, Dyna-CamTM, RadmaxTM, Rand-CamTM, WankelTM, and any cylindrical rotor, rotor, rotary, mill, vane, turbine, jet, electric and any other reduced friction power units capable of using its internal drive shafts in freewheeling applications as described herein.
- some conventional engines may be used if the amount of friction produced in them may be reduced.
- freewheeling may be provided in connection with actuators and servo motors. As shown in FIGS. 3A and 3B , a common shaft 307 , 310 may be provided between the two actuators 107 and 210 , which may be connected to allow redundancy for the control of the variable pitch blades 108 and 109 by allowing the freewheeling of a failed actuator.
- common shaft 307 , 310 may be hollow with a rod traversing through the middle, with the outer portion of the shaft serving to power blades 108 , 109 and the inner rod serving to connect actuators 107 , 210 , such that if one of the actuators 107 , 210 loses power the other of the actuators 107 , 210 may continue to control the pitch of the first and second rows of blades 108 , 109 .
- This type of application may also be applied to many different scenarios for backup systems.
- actuators and servo motors may be stacked (i.e., operably engaged with a common driveshaft) like the multiple engines described above, or separated and equipped with separate power sources in the event one power source fails. Such actuators and servo motors may be connected by a common shaft thus allowing freewheeling of a dead actuator or servo motor.
- Some embodiments may have two engines fore and two engines aft with each pair of engines comprising a first engine fore and a next engine aft.
- Each pair of engines may be placed end to end and in-line and sideways with respect to the fuselage.
- Each engine may be controlled separately with the driveshaft from the right engine turning the propellers or ducted fan blades on the right side of the aircraft and with the driveshaft from the left engine turning the propellers or ducted fan blades on the left side of the aircraft.
- Transfer cases may be used in this example to pick up the power from the other engines.
- This embodiment may use modifications to provide for an emergency rescue vehicle.
- the changes comprise shortened wings, a stubby nose, a front canopy that would fold or retract backwards, and a platform addition which would facilitate emergency escapes.
- the emergency vehicle could nose in to a building, cliff, or the like to provide an escape route for people trapped in, for example, a burning building.
- the stubby nose and retractable canopy may allow access to the aircraft.
- An extendible/retractable ramp in the nose section may provide a stable emergency escape route.
- Various embodiments of the aircraft described herein may utilize one or more of various types of engines, including Axial Vector, Dyna-Cam type engines, internal combustion, radial, piston, reciprocating, rotary, rotor, StarRotor, vane, mill, electric, hybrid, diesel, or similar type engines, alone or in combination, mounted in-line and sideways with respect to the fuselage.
- Hybrid engines may include one or more of each of a plurality of engine types.
- a hybrid engine may include a diesel portion and an electric portion.
- an electric engine may have a first mode in which the electric engine drives the driveshaft and a second mode in which the electric engine serves as a generator driven by the driveshaft and charges a battery electrically connected to the electric engine.
- the electric engine may operate in the first mode during take-off and the electric engine may operate in the second mode after take-off.
- the front ducted fans may be mounted at the end of the canard wing, and the rear ducted fans may be mounted on each side of the fuselage just behind the passenger canopy.
- the ducted fans may be mounted on each side of the front part of the fuselage, on each end of the main wing, and/or on the tail, depending upon the configuration of the aircraft.
- propellers may be utilized to handle larger loads with less horsepower, and the engines may be mounted in a higher position on the fuselage to provide clearance for the propellers. This configuration may accommodate from six to ten passengers or a large payload, for example.
- the aircraft may be equipped with a parafoil type parachute and one or more deployment rockets for emergencies.
- the deployment rockets may be solid fuel, liquid fuel, gaseous fuel, or a combination thereof.
- the parachute may primarily be used while in hover mode or at slow speeds, but may be used in other flight conditions if necessary or desired.
- the parachute and rockets may be mounted in the top of the rear portion of the fuselage behind the rear cabin, with one rocket on each side, for example.
- a cable system may be imbedded in the fuselage with a breakaway covering as described above.
- the supporting cables may be attached to the airframe at four attachment points as described above—two in the front fuselage near the outside end of the front engine and two in the rear fuselage near the outside end of the rear engine.
- the risers from the parachute may be attached to the supporting cables.
- the emergency parachute may be deployed by the pilot via an emergency hand lever if the aircraft is in forward flight, or it may be automatically deployed by a computer if an engine loses power or the aircraft becomes unstable in hover or other flight condition.
- the parachute system may deploy the rockets, shooting them out at an angle and pulling the ends of the parafoil parachute in opposite directions, thereby moving the parachute away from the aircraft appendages and stretching the canopy to the full length of the parachute.
- Airbag technology with small elongated tubes embedded in the parachute canopy cords and the outer edges of the parachute system may be utilized to immediately expand the parachute into the ultimate shape of a fully deployed parachute.
- the canopy may then be ready to receive the air, and this may result in the aircraft suffering a very slight loss of altitude from the time the parachute deploys until it is filled with air.
- computer controlled air sensors may determine if a need exists to apply or delay deployment of the airbag expander of the air canopy. This may minimize the shock from the forward air speed.
- the parachute When the parachute is opened, it may be steered via controls inside the aircraft.
- the parafoil parachute may give the aircraft a forward motion to help steer the aircraft to a safe area for a landing while descending under the parachute. If one engine is still operating, the parachute may act as a parasail to help keep the aircraft aloft while the pilot leaves a dangerous area and searches for a safe landing site.
- the emergency parachute may be computer controlled in hover or other flight condition, it is possible the emergency backup transfer case and supplemental driveshafts may be bypassed or eliminated from certain embodiments thereby streamlining and simplifying the design of the output shafts from the engine to each differential. This may significantly reduce the weight of the aircraft.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Abstract
An aircraft may have a fuselage, a left wing extending from the fuselage, a right wing extending from the fuselage, a tail section extending from a rear portion of the fuselage, and a first engine and a second engine operably connected by a common driveshaft, wherein the first and second engines are configured for freewheeling such that if one of the first and second engines loses power the other of the first and second engines continues to power the aircraft.
Description
- This application is a continuation-in-part of U.S. application Ser. No. 13/012,763 filed Jan. 24, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 11/581,321 filed Oct. 16, 2006, which claims priority to U.S. Provisional Patent Application No. 60/727,798 filed Oct. 18, 2005, the disclosures of each of which are incorporated herein by reference.
- This invention relates generally to Vertical Take-Off and Landing (VTOL) aircraft and more specifically to a compact VTOL aircraft with a fixed wing which can be utilized as a Personal Air Vehicle (PAV) or an Unmanned Aerial Vehicle (UAV).
- Inventors have long contemplated and attempted to design vehicles which would serve as a combination car/airplane. That creation could be driven as a car to an airport where it would be converted with wings and then flown like an airplane. Upon landing, the aircraft would be converted back to a car and then driven on a roadway to a destination. The Aerocar (1959) by Molt Taylor and the recent “Transition” flying car by Massachusetts Institute of Technology graduate student Carl Dietrich and the MIT team show a continuation of that dream. However, that dream has not been fully realized, and a need still remains for an aircraft that may operate without being constrained to airports or roadways.
- The present disclosure is directed to an aircraft that contemplates no need for driving a car through traffic to and from airports. The capabilities and properties of this particular aircraft make it compact and versatile enough so as to enable a pilot to fly this aircraft from “door to door” without the requirement of an airport or highways. For example, a person could lift off as with a helicopter from a space such as a driveway, back yard, parking garage, rooftop, helipad, or airport and then fly rather than drive to all the day's various appointments. Some embodiments of the present invention provide a versatile VTOL aircraft that is not only lightweight and powerful enough to take off and land vertically, but is also economical and powerful enough to take off, land and fly at a fast rate of speed, like an airplane. Therefore, it serves as a personal air vehicle (PAV) with a multitude of uses and configurations. The ability to transition from vertical flight to forward flight and back again provides unlimited possibilities because it combines the flexibility and best attributes of both types of aircraft.
- In some embodiments, the current invention is able to achieve its power from the placement and production of two (2) Axial Vector/Dyna-Cam type engines mounted sideways with respect to the fuselage of the aircraft (that is, the axis of rotation of the driveshaft of each engine may be oriented transverse to the longitudinal axis of the fuselage). These engines are lightweight and produce greater horsepower and three (3) times more torque per horsepower than conventional engines. Each engine may have a double-ended driveshaft which provides direct drive to the ducted fans/nacelles which are located outside of the fuselage. Each end of each double-ended driveshaft may turn one ducted fan, so two engines will power two (2) pairs of ducted fans for a total of four ducted fans.
- In some embodiments, a first engine may be placed in the front section of the aircraft fuselage, and the driveshafts from the ends of the first engine may run through a front canard wing on the aircraft to a front pair of ducted fans located at the ends of the canard wing. These front ducted fans may be mounted far enough out from the fuselage to prevent propeller wash in the rear ducted fans.
- In some embodiments, a second engine may be mounted behind the passenger cabin and toward the rear of the fuselage. This engine may power an of pair of ducted fans which are attached to the fuselage, so the driveshaft for this engine may connect directly through a transfer case to differentials in the ducted fans. The rear engine may be slightly elevated above the center line of the side of the fuselage.
- The two sideways mounted engines may be placed in-line in the fuselage so the passenger cabin and the rear engine receive less wind resistance, thus reducing drag on the airplane and increasing fuel efficiency. As early as 1937, Dr. Claude Dornier used the in-line configuration in his German built Dornier DO335. By the 1960s, the Cessna Skymaster 336 was using in-line engines, and presently the Adams A500 designed by Burt Rutan is utilizing the configuration. Since the engines are located inside the fuselage rather than outside in the ducted fans or at the end of a main wing, as on the Bell Boeing V-22 Osprey, a better in-line center of gravity is established thereby resulting in quicker response, better balance and increased stability in flight and/or in hover.
- In some embodiments, the aircraft may have a fixed wing and four aerodynamically designed tilt ducted fans. As early as the 1960s, the Bell X-22A was one of the first aircraft to fly using tilt ducted fans. More recently, Moller's “Skycar” (U.S. Pat. No. 5,115,996) is a vehicle which includes ducted fans with directional vanes and two engines in each duct for a total of eight engines. Unlike the X-22 with its four engines and Moeller's car with its eight engines, some embodiments of this invention use only two sideways placed engines in the fuselage with direct drive from the driveshafts into differentials in the ducted fans to power four ducted fans, with no intervening transmission between the rotor of each engine and the driveshaft or between the driveshaft and the differentials. The elimination of a transmission in such a direct drive embodiment saves weight and increases efficiency and performance.
- The fact that only a differential rather than a motor is located in the ducted fans of some embodiments of this invention creates a larger volume of airflow through the ducted fans. Eliminating the weight of the motors or engines outboard of the fuselage also reduces the weight on the side of the fuselage and/or the wing tips, thereby using less horsepower and torque and in turn making the aircraft more responsive and stable.
- Most ducted fans have a problem when reaching higher speeds because of a tendency to push air out in front of the duct. In some embodiments of the current invention, the aerodynamic shape of the front of the ducted fans is such that the bottom of each duct protrudes forward and the top of each duct slopes down to the bottom. This lifting air intake duct design creates low pressure in the bottom front of the duct which helps eliminate the need for more wing area and in turn reduces the weight of the aircraft. Willard Custer illustrated this lift principle with his Channelwing aircraft in the late 1930s. This technology is being researched even today at the Georgia Institute of Technology.
- Another result of extending the bottom of the ducts is a reduction of the noise created by the turning blades. In a UAV stealth design, this will also help cover the radar signature from the turning blades.
- In some embodiments, ducted fans permit the aircraft to take off and land in either conventional or VTOL mode. Since the fan blades may be encased in ducts, the ducts can be rotated to align horizontally with the fuselage, and the aircraft may take off and land conventionally. In some embodiments, such ducted fans may provide greater flexibility in terms of sizing, thrust, and ground clearance than if unducted propellers are used. In some embodiments, a double row of counter-rotating fan blades in the ducted fans may provide sufficient thrust so that the duct diameter may be small enough for sufficient ground clearance. In some embodiments, conventional take-off and landing may also be provided because the double row of counter-rotating blades in the ducted fans allow the ducted fans to be small enough to clear the ground when oriented horizontally. In some embodiments, VTOL is possible because the ducted fans may rotate to a vertical orientation and provide sufficient thrust for take-off and landing.
- In some embodiments, the aircraft body itself may be an aerodynamically designed lifting body. As far back as the 1920s, Burnelli Aircraft was building a lifting body airframe (U.S. Pat. No. 1,758,498). Today, the Space Shuttle still utilizes that technology. With the engines mounted sideways with respect to the fuselage, this design lends itself to a lifting body application.
- Some embodiments of the current invention include a power boosted emergency parachute assembly which can be used in hover or flight conditions, should the aircraft lose one or more of its engines, thus allowing the pilot to continue to maneuver the aircraft to a safe landing.
- Some embodiments of the current invention incorporate a computer controlled fly-by-wire system which calculates gyroscopic stability and sends information to one or more ducted fans or propeller blades to adjust them to the correct pitch for controlled flight.
- Fixed Wing with Removable Sections
- In some embodiments, the aircraft may have a fixed level, dihedral, or anhedral wing to provide for forward flight in airplane mode. Sections of the aircraft wings may be bolted on or removed to create various wing lengths for different applications, such as for short distances as in a city setting or long distances for long range travel and for easy transporting of the aircraft, as on a trailer or truck or in a shipping container. For example, extensions on the main wing may enable an aircraft to fly at high altitude and/or to loiter for long periods of time.
- By combining the attributes of a fixed wing airplane and a helicopter to a lightweight and compact aircraft, a personal air vehicle may become a new mode of transportation. The embodiments set forth herein are merely examples of various configurations of the aircraft, and many new models can result from this invention. Different embodiments of this aircraft could range from a variety and number of passenger seating arrangements to a model with no passengers; i.e., a UAV. In other applications, the aircraft may serve as a personal air vehicle, an air taxi, an observation aircraft, an emergency rescue vehicle, a military vehicle or a UAV, or for other purposes.
- Some embodiments may be constructed of lightweight material and the airframe may be designed as a lifting body, which helps reduce the weight and the square footage area of the wings.
- Some embodiments may have the vertical take-off, landing and flight capabilities of a helicopter and the conventional take-off, landing and flight capabilities of an airplane. Some embodiments may transition back and forth between VTOL and forward flight. If the aircraft is in hover position, air deflectors (which may be mounted on the rear of each ducted fan) may enable the aircraft to move sideways and to counter rotate, and the tilted ducted fans may enable it to move forward and backward safely in tight spaces. Since some embodiments of the aircraft may use significant power to accommodate its VTOL capabilities, the aircraft may also be designed to take advantage of this power and transform it into maximum airspeed in forward flight.
- All these capabilities make this a truly unique aircraft, capable of a multitude of uses. Some embodiments of the current invention can lift off and set down like a helicopter, but can also utilize the speed of an airplane to provide quick “door to door” service for convenience and for the saving of time and fuel.
- Since some embodiments of the aircraft can take off like an airplane, it may be capable of handling more weight—such as that of passengers, fuel and freight—on takeoff and then traveling a longer distance. In some embodiments, the aircraft may land in a conventional aircraft mode on a runway, if desired, or the aircraft may land vertically in a smaller space or without a runway. In some embodiments, the compact nature of the aircraft, combined with the use of ducted fans, may provide a large spectrum of landing locations for it as a VTOL vehicle.
- Although some embodiments of the aircraft may not be as fast as the new light jets currently being developed and soon to be offered for air taxi service, the aircraft nonetheless saves overall time because it can take off and land in locations other than a landing strip. Time commuting to and from an airport can be significant, and some embodiments of this aircraft may provide a means to bypass airports by leaving from and returning to a nearby convenient location.
- In some embodiments, one advantage of the fixed wing aircraft is the ability to throttle back the engines and use lift from the wing to help the engines conserve fuel while flying. In some dual engine embodiments, either engine may be shut off, and the aircraft can cruise on one engine for improved fuel economy. For example, Burt Rutan's Voyager took off using both engines, then shut down one engine and flew around the world—using one engine—without refueling. Additionally, the wing may be dihedral, which may improve the stability of the aircraft.
- In some dual engine embodiments, if one engine is lost, the aircraft can fly on either of its engines and continue to an airport to land conventionally. If both engines are lost while in flight, the aircraft's glide slope is excellent. The pilot can glide the aircraft to a landing site or use a guidable emergency parachute to float to a safe location.
- In some embodiments, another advantage derives from the fact that the engines are not in the ducts but are instead mounted in the fuselage, providing an in-line center of gravity for better stability and increased response (as opposed to having the weight of the engines on the wingtips). Additionally, the front engine may break the air for both the cabin and the rear engine, thus creating a very aerodynamic lifting body aircraft.
- In some embodiments, the elevation of the rear engine may allow for air intake scoops to be mounted on the front of each side of the engine, thereby providing for air cooling of the rear engine while still maintaining the aircraft's aerodynamic design. In conventional airplane mode, this elevation may also improve the flare of the aircraft upon landing and derotation and may allow the rear landing gears to hit the runway first. It also may improve take-off and rotation because the front landing gear of the aircraft may lift off first.
- In some embodiments, another advantage in landing an aircraft as described herein is that, in the case of an engine being lost, the two ducted fans attached to that engine may stop also. Consequently, the critical engine problem which causes yaw and then roll, usually experienced when a twin engine aircraft loses an engine, may be eliminated. Additionally, if an engine is lost, some embodiments of the aircraft are capable of auto feathering the fan blades of the two ducted fans associated with that engine, thereby reducing drag through the duct.
- In some embodiments, the sideways placement of the engines may provide the ability to power two ducted fans with one engine having a double-ended driveshaft. In such embodiments, the cost of construction and operation of the aircraft may be less, for example, because only two engines may be used to power four ducted fans.
- In some embodiments, one or more driveshafts of the rear engine may be shortened going into the associated rear ducted fans because the ducted fans may be mounted on the side of the fuselage, and one or more driveshafts of the front engine may be shortened going through a canard wing which may not be as long as a main wing. This configuration not only may reduce the weight of the one or more driveshafts, but may also provide an enhanced safety factor. Since a driveshaft may enter the middle of a differential in a ducted fan, the driveshaft may naturally turn two output shafts of the ducted fan in a counter rotating motion. This reliable yet simple design may also add to the safety of the aircraft.
- In some embodiments, the aircraft may use an Axial Vector/Dyna-Cam type engine which may provide many advantages, including very smooth operation with little vibration and utilization of a variety of fuels and high fuel efficiency. The Axial Vector/Dyna-Cam type engine is a lightweight, small and compact internal combustion engine with high horsepower and high torque. A high torque engine may allow a high angle of attack on variable pitch blades, which may provide quick response with little variation in the rpm of the engine.
- In some embodiments, the ducts of the ducted fans may be aerodynamically designed to create lift thereby reducing the weight of the aircraft because of less square footage of wing area than otherwise may be required. Since no engines are located in the ducts, more area is available for airflow through the ducts, thus creating more lift and thrust. In some embodiments, the front pair of ducts may be mounted far enough out on the canard wing to allow the rear ducts to receive undisturbed air.
- In some embodiments, two rows of blades in a ducted fan may turn in a counter rotating motion thereby creating more thrust and reducing the overall diameter of the duct. This reduced diameter may provide sufficient ground clearance for a conventional aircraft take-off and landing mode as well as VTOL and VSTOL capability.
- Tilt ducted fans may provide the ability to get full thrust on lift and forward flight. The aerodynamic shape of the lifting duct may provide for more lift with less weight since a shorter wing may be used.
- In some embodiments, the blades in each row of a ducted fan may have variable pitch. The pitch angle of the blades may be determined and controlled by a computer in communication with gyros in a fly-by-wire system, thus controlling pitch for stability in a hover mode or adjusting pitch while in forward flight. The blades may have the capability of self feathering and lining up in an identical configuration behind one another within each duct to help reduce drag and increase air flow through the ducts should an engine be lost or shut down. This capability may extend the range which can be flown with one engine.
- In some embodiments, the use of ducted fans instead of un-ducted propellers may provide for safer VTOL. In such embodiments, no exposed propellers are involved, so the aircraft can land in tight spaces or get close to people or to stationary objects. For example, it could hover next to buildings for rescues, land in fields with electrical wires, and/or land in neighborhoods or a regular parking lot. In such embodiments, since ducts surround the fan blades, the ducted fans may be quieter, enabling the aircraft to take off and land with less noise than is typically associated with helicopters. This ducted fan design may also help reduce or cover the radar signature from the turning blades in a UAV stealth design.
- NASA has been researching and developing its “highway in the sky” which provides synthetic vision and GPS guidance in aircraft so that pilots can bypass the large congested airport hubs and land at smaller airports. That technology may be included in some embodiments of this invention, which may allow pilots to bypass even the small airports and land at or near their actual destinations, and it may assist in handling bad weather such as fog.
- Some embodiments of this invention may include an emergency parachute system that provides for quick deployment and rapid expansion to prevent significant altitude loss while in hover or for a delayed deployment while in forward flight. Most of the currently used emergency parachutes—often referred to as whole-airplane recovery parachute systems—require too much time to fill with air, resulting in a significant loss of altitude before the parachute can take effect.
- The Ballistic Recovery System (BRS) which was invented and patented by Boris Popov (U.S. Pat. No. 4,607,814) was originally created for ultralights and experimental aircraft and later retrofitted for larger aircraft. The BRS system is currently utilized by Cirrus Design for its lighter single engine airplanes. However, the emergency parachute system in the Cirrus aircraft allows a significant loss of altitude before the canopy is filled with air. Once the Cirrus is descending under the parachute, the pilot has no control of the descent and therefore no control of the landing site. The rocketed parachute system in some embodiments of the present invention may rapidly deploy and expand the parachute and then allow the pilot to steer the parachute to get the aircraft to a preferred landing site.
- A sport plane embodiment of this aircraft may have a fuselage having a longitudinal axis, a left wing extending from the fuselage, a right wing extending from the fuselage, a tail section extending from a rear portion of the fuselage, a first ducted fan rotatably mounted to the left wing, a second ducted fan rotatably mounted to the right wing, and an engine disposed in the fuselage, the engine having a direct-drive, double-ended driveshaft having an axis of rotation oriented transverse to the longitudinal axis of the fuselage, wherein the first ducted fan includes a first differential operably connected between first and second rows of counter rotating fan blades, wherein the second ducted fan includes a second differential operably connected between third and fourth rows of counter rotating fan blades, and wherein one end of the driveshaft is directly connected to the first differential, and the other end of the driveshaft is directly connected to the second differential.
-
FIG. 1 is a front perspective view of a four ducted fan aircraft embodiment of the current invention. -
FIG. 2 a is a top schematic cross-sectional view of the aircraft ofFIG. 1 showing single engines serving the front and rear pairs of ducted fans. -
FIG. 2 b is a top schematic cross-sectional view of the aircraft ofFIG. 1 showing pairs of engines serving the front and rear pairs of ducted fans. -
FIG. 3 a is a side schematic cross-sectional view of a ducted fan assembly. -
FIG. 3 b is a top schematic cross-sectional view of the ducted fan assembly ofFIG. 3 a. -
FIG. 3 c is a front view of the ducted fan assembly ofFIG. 3 a. -
FIG. 4 a is a side view of the aircraft ofFIG. 1 in forward flight with rear thrust. -
FIG. 4 b is a side view of the aircraft ofFIG. 1 in hover with downward thrust. -
FIG. 4 c is a side view of the aircraft ofFIG. 1 in braking position with reverse thrust. -
FIG. 5 is a front perspective view of a Personal Air Vehicle (PAV) or an Unmanned Aerial Vehicle (UAV) embodiment. -
FIG. 6 is a front perspective view of a Sport Plane embodiment. - As used herein, the following terms should be understood to have the indicated meanings:
- When an item is introduced by “a” or “an,” it should be understood to mean one or more of that item.
- “Comprises” means includes but is not limited to.
- “Comprising” means including but not limited to.
- “Having” means including but not limited to.
- “Including” means including but not limited to.
- VTOL Aircraft with Sideways Mounted Engines
- As shown in
FIGS. 1 and 2 a, a first embodiment of the current invention may have four ducted fans. This embodiment is a VTOL aircraft with two (2) engines—onefore 201 and one aft 202—placed sideways with respect to an elongatedlifting body fuselage 100, which may be made of lightweight composite materials, aluminum, or other suitable materials. This embodiment may have acanard wing 123 on the front, a fixedmain wing 113 in the middle of thefuselage 100 withwinglets 114 attached on each end of themain wing 113, twovertical stabilizers 120 on the rear, ahorizontal stabilizer 122 across the top of the tail, a pair ofducted fans ducted fans fuselage 100 for a total of four (4) ducted fans. Thecanard wing 123 and themain wing 113 may be level, dihedral, or anhedral, depending on the overall aerodynamic design of the aircraft. In this example, all four ducted fans may have the same design and are sometimes referred to aselement 106 in the discussion of this embodiment. Alternatively, the ducted fans may not all have the same design. In other alternative embodiments, un-ducted propellers may be used instead of ducted fans, or a combination of ducted fans and un-ducted propellers may be used. - The
engines - In this example, the passenger cabin may have a lightweight frame made of composite, aluminum, or other suitable material with one stationary front wraparound
transparent canopy 127 which serves as the windshield, and two pivotally hinged gullwing style doors 126 which are wraparound door frames with transparent window material encompassing most of the surface to serve as the side windows and skylights on each side of thefuselage 100. Thedoors 126 may also be made of composite, aluminum, or other suitable material. To clarify, thesedoors 126, when closed, may serve as skylights on the top and windows on the side. The pilot and front passenger side of the cabin may have transparent material of oval or other suitable shape in the floorboard which may provide for downward viewing and may also provide an emergency escape hatch. Theside door 126 may pivot wide open to allow for loading/unloading of large loads; e.g., an emergency stretcher or large cargo. It may open large enough to accommodate the ingress and egress of both the front and rear passengers. Some embodiments of the present invention may have a four-seat cabin, but other embodiments may include fewer or more than four seats, and still other embodiments may be utilized as an unmanned aerial vehicle (UAV) with no seats. - The headlights/landing lights encasement 101 may have a streamlined transparent protective covering located on the nose of the
fuselage 100 and onefront air intake 102 may be located on each side of the nose of thefuselage 100. Acanard wing 123 may be attached to thefront fuselage 100, with aducted fan 106 attached to each end of the canard wing by aduct rotation actuator 124.Elevators 116 on the trailing edge of the canard wing may facilitate in controlling the pitch of the aircraft. - Each of the
ducted fans 106 may house a frontblade actuator assembly 107 which controls the pitch angle of a front row ofblades 108 and a rearblade actuator assembly 210 which controls the pitch angle of a rear row of counter rotating blades 109 (hidden inFIG. 1 ; seeFIGS. 2 a, 2 b, 3 a, 3 b). Aduct air deflector 110 may be located on the rear of eachducted fan 106. Each of the fourducted fans 106 on the aircraft may contain the same front and rear blade assemblies and configuration, and each may or may not have aduct air deflector 110 on the rear of theducted fan 110. Alternatively, theducted fans 106 may not all be of the same design. For example, in some embodiments, the forwardducted fans 106 may be of one design, and the rearducted fans 106 may be of a different design. Theair deflector 110 may facilitate control of the transition from forward flight to hover and back to forward flight or from hover to forward flight and back to hover, and control of the sideways and counter rotating motion when in hover. - One
front tire 103 may be located on the front bottom of each side of the fuselage and may be attached to a fixed frontlanding gear spar 105 and may be partially covered by astreamlined fairing 104 which is wrapped around eachtire 103. Alternatively, thetires 103 and associated landing gear may be retractable into thefuselage 100 or thecanard wing 123. Thespars 105 may be fixed, and thetires 103 may be pivoting to provide a tight turning radius. Afirst avionics bay 128 for storing the aircraft's computer, gyroscopic equipment, etc. may be located inside the nose cone. Thisavionics bay 128 may house the flight computers and gyroscopes which handle guidance, navigation and control; for example, it may serve as a data bus which takes the flight instrumentation, weather and additional data, along with pilot input, to control flight. A second bay may be located in the back (not shown) for redundancy. - The
main wing 113 may be attached to the bottom of thefuselage 100 below thepassenger cabin doors 126. Alternatively, themain wing 113 may be attached to the top of thefuselage 100 or to some intermediate portion of thefuselage 100. Aspeed brake 111 may be located toward the center of thewing 113 on each side of the fuselage to enable the aircraft to slow while in forward flight. Thewing 113 may includewinglets 114 to help reduce drag and thereby increase speed and lift;ailerons 115 to help control roll while in forward flight; and flaps 112 to help reduce landing speed, move into transitional speed while switching from horizontal to vertical and/or back to horizontal flight, and decrease the surface area of the wing thus resulting in less drag on vertical take-off. In some embodiments, other control surfaces may be employed in combination with or in lieu ofspeed brakes 111,ailerons 115, and flaps 112. - One rear tire (not shown in
FIG. 1 ) may be attached to a fixed or retractable rearlanding gear spar 117 on each side of thefuselage 100 toward the aft section of the aircraft. Each of these rear tires may be fixed and covered by astreamlined fairing 104 or retractable into the aft portion of thefuselage 100 and may be equipped with brakes. - A
ducted fan 106 may be located on each side of thefuselage 100 with the attachment point located behind the rear passenger cabin/canopy 126. - The
rear engine 202 may be mounted slightly higher than thefront engine 201 to provide room for air intake cooling which may be accomplished through anair intake scoop 118 located behind the passenger cabin/canopy 126 and on each side of thefuselage 100. - One fixed
vertical stabilizer 120 may be attached on each side and at the end of thefuselage 100 to minimize or eliminate the yaw/roll oscillations and to reduce the drag off the aft end of the liftingbody fuselage 100. Arudder assembly 119 attached to the rear of eachvertical stabilizer 120 may help provide yaw control. Atop thevertical stabilizers 120, ahorizontal stabilizer 122 may be attached, with arear elevator 121 located on the trailing edge of thehorizontal stabilizer 122 for pitch control. - An emergency parachute with deployment rocket launchers may be stored in a
storage location compartment 125 in therear fuselage 100, just behind the passenger cabin/canopy 126 and above therear engine 202. The parachute cables may be attached to the aircraft at four attachment points 129 (three not shown). Two of these attachment points 129 may be located on each side of the aircraft, with two fore and two aft. The front parachute cable on each side may be routed from theattachment point 129 on the front of the aircraft, up the side of thefuselage 100 between thefront canopy 127 andrear canopy 126, across the top of thefuselage 100 between the left and right hingedgull wing doors 126, and back to theparachute storage compartment 125. The rear attachment points 129 may be located behind and above theair intake scoop 118 on each side of the aircraft. The rear parachute cable on each side may be routed up the side of the aircraft from theattachment point 129 to thestorage compartment 125. All the parachute cable routings may be concealed in a recessed channel under a non-protruding breakaway covering (not shown) which is aerodynamically flush with thefuselage 100. - As shown in
FIG. 2 a, two double-ended,direct driveshaft engines fuselage 100, with one fore and one aft.Engines fuselage 100 such that the axis of rotation of thedriveshaft first engine 201 may be placed sideways in the front portion of and with respect to thefuselage 100, and asecond engine 202 may be placed sideways in the rear portion of and with respect to thefuselage 100. Eachengine driveshaft ducted fans ducted fan front canard wing 123, and oneducted fan fuselage 100 behind the passenger cabin/canopy 126. - In general, this embodiment of the current invention includes a first power generation device or
engine 201 forward in the fuselage, which is used to power a first driveshaft that serves a ducted fan or propeller on the right canard wing and to power a second driveshaft that serves another ducted fan or propeller on the left canard wing. In some embodiments, the first power generation device may be a single engine, and the first driveshaft and the second driveshaft may be a singlecontinuous driveshaft 226 that goes through the engine and protrudes out each end of the engine. In other embodiments described below, the first power generation device may be two or more engines in alignment, and the first and second driveshafts may be a single continuous driveshaft or may be separate distinct driveshafts, which may be coupled together to act as a single driveshaft. The same is true for the rear power generation device orengine 202 and its associated driveshaft(s). - The
front engine 201 may be mounted in a sideways position with respect to thefuselage 100 between the nose of the aircraft and the front section of the cabin/canopy 127. As the double-endeddirect driveshaft 204 exits each end of thefront engine 201, each side of thedriveshaft 204 runs in an opposite direction and exits thefuselage 100 through atransfer case 203, continues span-wise through thecanard wing 123 andduct rotator actuator 124, and connects to an internal duct differential 212 in a mid portion of theducted fans driveshaft 204 that exits the left end of theengine 201 runs to the left to power the left frontducted fan 106L; the section of thedriveshaft 204 that exits the right end of theengine 201 runs to the right to power the right frontducted fan 106R. - The
rear engine 202 may be mounted in a sideways position with respect to thefuselage 100 behind the passenger cabin/canopy 126.Rear engine 202 may be located in-line with thefront engine 201 and may be slightly elevated above the center line of thefuselage 100. Two air intake scoops 118, with one mounted on each side of the fuselage in front of therear engine 202, may provide for air cooling of therear engine 202. The reardirect driveshaft 219 may be shorter than thefront driveshaft 204 because the rearducted fans fuselage 100 just behind the passenger cabin/canopy 126. Similar to thefront engine 201, the double-endeddirect driveshaft 219 exits each end of therear engine 202, and each side of thedriveshaft 219 runs in an opposite direction and exits thefuselage 100 through atransfer case 218, continues through aduct rotator actuator 124, and connects to an internal duct differential 212 in a mid portion of theducted fans - In this embodiment, the
front transfer case 203 and therear transfer case 218 may be connected by a transfer casesupplemental driveshaft 217 which runs just inside of each side of thefuselage 100 between thetransfer cases supplemental driveshafts 217 are not normally engaged; however, should one engine lose power (sometimes referred to herein as a “dead,” “lost,” or “non-working” engine), a computer or other controller may engage thesupplemental driveshafts 217 in thetransfer cases transfer cases supplemental driveshafts 217, the working engine may provide power to operate the pair ofducted fans - The mechanics inside each of the
ducted fans driveshaft 204 through theduct rotator actuator 124 into the duct. The front 204 and rear 219 driveshafts extending from the right sides of theengines fans engines ducted fans - In each of the four
ducted fans 106, adifferential casing 213 may house the differential 212 and twodifferential output driveshafts 225. The differential 212 may turn the twodifferential output driveshafts 225 in a counter rotating motion with one shaft powering a row ofvariable pitch blades 108 at a front low pressureair intake opening 206 and one powering another row ofvariable pitch blades 109 at a rear airoutput expansion chamber 216 of eachducted fan 106. Theseblades front 107 and one rear 210—determining the pitch of the blades. As theactuator assembly blades ducted fans 106, air flow is increased through thefront air intake 206, is compressed in thehigh pressure chamber 306, and is exhausted by the rear row ofblades 109 through theexpansion chamber 216. This creates the thrust for takeoff in either vertical or forward flight.FIGS. 3 a, 3 b, and 3 c show enlarged illustrations of theducted fans 106, andFIGS. 4 a, 4 b, and 4 c illustrate various rotational positions of theducted fans 106 and how they affect take-off, flight, hover, and braking. - As shown in
FIGS. 3 a, 3 b and 3 c, each of theducted fans 106 is a ducted tilt rotor, which may be composed of a lightweight composite, aluminum, or other suitable material. The rows ofblades direct driveshaft 315 from a double-endedengine aircraft fuselage 100 as described above. Referring also toFIGS. 2 a and 2 b,driveshaft 315 may be located in either the front of the aircraft as shown byelement 204 or in the rear of the aircraft as shown byelement 219. Thedriveshaft 315 may enter eachducted fan 106 from the side and connect inside thedifferential casing 213 with the differential 212 in a mid portion of theducted fan 106. Extending from the differential 212, aforward output shaft 307 and arear output shaft 310 may respectively drive a forward row offan blades 108 in a front portion of eachducted fan 106 and a rear row offan blades 109 in a rear portion of eachducted fan 106. Thefan blades ducted fans 106, thereby providing sufficient ground clearance for conventional aircraft take-off and landing mode as well as VTOL capability. -
FIG. 3 a andFIG. 3 b illustrate the aerodynamic shape of the front of each of theducted fans 106, with the bottom of eachducted fan 106 protruding forward as a lowerfront induction scoop 301 and with the top of eachducted fan 106 sloping down from an upperfront induction scoop 302 to the lowerfront induction scoop 301, thereby creating more lift and less drag. This lifting air intake duct design may create alow pressure area 206 in the bottom front of the duct which in turn creates lift. This design may reduce or eliminate the need for more wing area and in turn may reduce the weight of the aircraft. -
FIG. 3 a also shows a high pressureinner compression chamber 306 located between the two rows of rotating fan blades—front 108 and rear 109—in eachducted fan 106. Thefront blade actuator 107 changes the pitch of thefront blades 108. By increasing the pitch of the front row ofblades 108, air is pulled in and compressed in the high pressureinner compression chamber 306. Therear blade actuator 210 changes the pitch of the rear row ofblades 109. Therear blades 109 pull the air from the high pressureinner compression chamber 306 and exhaust the air through the lowpressure expansion chamber 216 thereby creating forward thrust. - The blades in each row may have variable pitch controlled by fly-by-wire computers which relay information to the
front blade actuator 107 and to therear blade actuator 210 to adjust the angle of the blades. Gyros located in the avionics bays may send a computer signal to theblade actuators ducted fan 106 to help reduce drag and to increase air flow through the ducts, should an engine be lost or shut down. This feathering feature may extend the range which can be flown with one engine. - Each
ducted fan 106 may also have arear air deflector 110 mounted vertically, horizontally, or in another desired configuration on the rear of theducted fan 106 when positioned for forward flight or other flight condition. Thisdeflector 110 may be controlled by a fly-by-wire actuator 300 and may divert air to the left, right, or other desired direction to help stabilize the aircraft when it transitions from flight to hover or undergoes another desired maneuver. While in hover mode, thedeflector 110 may divert the air to provide theducted fans 106 with the capability of moving the aircraft sideways. Additionally, theair deflector 110 on the rear of the frontducted fans 106 may move one way while theair deflector 110 on the back of the rearducted fans 106 may divert in the opposite direction or another desired direction, thus giving the aircraft counter-rotation capabilities. -
FIGS. 4 a, 4 b and 4 c show the position of theducted fans 106 in forward flight, hover, and reverse, respectively. -
FIG. 4 a shows the position of theducted fans 106 for forward flight and for take-off in conventional fixed wing mode. -
FIG. 4 b illustrates the position of theducted fans 106 in hover and for vertical take-off. As the aircraft is lifting vertically as shown inFIG. 4 b, forward movement may be accomplished by a computer controlledduct rotator actuator 124 rotating theducted fans 106 forward toward the position shown inFIG. 4 a to create forward movement until such speed is reached that sufficient airflow over the lifting surfaces creates lift, and the aircraft transitions from vertical to horizontal flight. - While in forward flight as shown in
FIG. 4 a, theducted fans 106 may remain in aerodynamic alignment with thefuselage 100 as with a conventional fixed wing aircraft. When transitioning from horizontal flight to vertical flight, theduct actuators 124 may be rotated upward to slow the forward motion as shown inFIG. 4 b. This decreases the air speed thus reducing the airflow over the lifting surfaces, and as theducted fan 106 is rotated back to the upward position, it may increase the vertical thrust of the variable pitch blades. Theactuators 124 may turn theducted fans 106 past vertical as shown inFIG. 4 c to slow the aircraft to a complete stop of forward motion. The tiltedduct rotator actuator 124 may also control forward and reverse motion in hover by moving theducts 106 forward or backward, respectively. - In this embodiment, the aircraft may be adapted to perform as an unmanned aerial vehicle or UAV. This embodiment may include the sideways engine placement and in-line alignment and the fans encased in ducts as described for previous examples above. Most of the configuration of the aforementioned embodiment may remain intact, but some differences may be provided to help reduce the radar signature and to help provide for the carrying of weapons, large payloads, surveillance equipment, or the like. The aircraft and the engine may be scaled up or scaled down to accommodate different weight and/or mission objectives.
- The UAV embodiment may include the same tail configuration of the previous examples, that is, the vertical stabilizers with the horizontal tail atop them, or as pictured in
FIG. 5 , it may utilize a V-tail assembly 501 and may includehorizontal stabilizers 502 attached to the sides of and/or to the rear of the ducts (not shown). This V-tail configuration is similar to that of the Raptor F-22. - Other differences may include a retractable landing gear instead of a fixed landing gear, foldable wings or changeable wings for high altitude and other applications, a large compartment in place of a passenger cabin, and a camera location in the nose cone for surveillance. The cabin canopy may be manufactured of an opaque material rather than a transparent material and may become more aerodynamically streamlined by incorporating a lower profile. Bomb bay doors which open at the bottom of the aircraft for deployment of weapons, emergency food supplies, or the like may improve stealth capabilities because those items may be hidden and encased in the fuselage rather than placed on the wings.
- The UAV embodiment may be used for military and reconnaissance operations for close in support. The UAV embodiment may also be used as an emergency vehicle to pick up wounded or stranded people in a dangerous location. The bolt-on or foldable wings may allow it to be trailered to a nearby or safe location before being sent on a mission. Thinner and longer wing extensions may accommodate higher altitudes and longer loitering. The ability of the aircraft to fly with one engine shut down and to take-off and land in close proximity to a target area may increase the distance the aircraft can fly on its designated fuel allowance. The engine may have the ability to alternate piston firings which also may increase fuel economy while keeping the aircraft aloft using very little horsepower.
- Since the fan blades may be encased in ducts, and since ducted fans are quieter than propellers or jet engines, less radar signature may be produced. Also, since the engines may be mounted in the fuselage, less infrared signature may be produced. Stealth may therefore be much improved.
- In some embodiments, most or all of the cabin area between the two engines may be used for storage of weapons, cargo and supplies, and/or surveillance equipment. VTOL capabilities may allow the aircraft to get closer to a target or to get into tight areas as for a rescue. The ability to take off and land in conventional mode may provide for more carrying capacity because the wings may be used for lift so the aircraft may carry more fuel and weight. Once the fuel has burned off on a long flight, a vertical landing is possible.
- The V-
tail configuration 501 could also be utilized on the passenger embodiments to improve the speed of the aircraft. -
FIG. 6 shows an alternative embodiment of this invention as a VTOL sport plane. This embodiment may be comprised of an elongated aerodynamic fuselage with one double-ended driveshaft engine mounted sideways with respect to the fuselage and with a rotatableducted fan 106 on each end of a mainfixed wing 605 for a total of two ducted fans. Thewing 605 may be level, dihedral, or anhedral. A passenger compartment/cabin 600 in the front portion of the fuselage may accommodate one or two people, and the engine may be located in the fuselage just behindcabin 600 and in line with thewing 605. An emergency parachute compartment may be located behind thepassenger cabin 600 and just above the engine. The aircraft may have a fixed or retractable tricycle landing gear with one attached to thefront 601 of the fuselage and two 602—one left and one right—attached to the bottom of the fuselage behind and below thepassenger compartment 600. - In this embodiment, the engine, driveshaft, transfer case, duct rotator actuator, and ducted
fans 106 may be provided forwing 605 in like manner as described above for canard wing 123 (seeFIGS. 1 , 2 a, 2 b). The double-ended driveshaft from each end of the engine may exit the fuselage through a transfer case, bearing, or other suitable support, run inside the mainfixed wing 605, continue through a duct rotator actuator, and continue through a side of theducted fan 106 and into a mid portion of theducted fan 106 where it connects to a differential. As the driveshaft exits the right end of the engine, it runs through the right side of the wing and enters the rightducted fan 106 through the left side; and as the driveshaft exits the left end of the engine, it runs through the left side of the wing and enters the leftducted fan 106 through the right side. Inside eachducted fan 106, the differential may have two output shafts with each one turning one row of blades. Therefore, the two output shafts may respectively turn two rows of counter rotating blades in eachducted fan 106. - Two air deflectors—one vertical 110 and one horizontal (not shown in FIG. 6)—may be attached to the rear of each
ducted fan 106. These deflectors may employ a DSS (Duct Stabilization System) and may use splitting capabilities to control the output thrust for increased stability. The horizontal air deflector may move the aircraft forward and backward, and may provide counter rotation of the aircraft in hover. The vertical air deflector may move the aircraft sideways in hover. In conventional airplane mode, the horizontal air deflector may control the roll. - The rear fuselage of the aircraft may be long and streamlined with a cruciform shaped tail comprised of one left 604 and one right (not shown) horizontal surface and one
top 603 and one bottom vertical surface (not shown) controlling pitch and yaw, respectively, while the aircraft is in conventional airplane mode. - In this embodiment, as shown in
FIG. 2 b, two or more engines may be provided fore, and two or more engines may be provided aft. Each set of engines may be placed end to end and sideways with respect to the fuselage. A common driveshaft or coupled driveshafts which act as onedriveshaft 226 may run through the multiple engine blocks, with the shaft output on the outside ends of the outside engines running a pair of propellers or ducted fan blades. In this example, a transfer case may not be necessary for a backup for a dead engine, although a transfer case and supplemental drive shaft may be provided for further redundancy. The dead engine shaft may be driven by the running engine and/or engines with the dead engine freewheeling. The propellers or ducted fan blades may keep turning but at reduced power. - In some embodiments, freewheeling may be accomplished by coupling multiple engines (two or more) in-line with a continuous or coupled driveshaft and/or camshaft to effectively create a single power source and to provide for the freewheeling of one or more engines or for all of the engines, further described as follows. The freewheeling system may be formed by placing two or more engines (power sources) end to end and with each combined engine having a common driveshaft (which may be one integral, continuous shaft or multiple shafts coupled together) enabling the other engine or engines to freewheel. The sizes, horsepower, and types of power sources for such embodiments may be identical or varied. Output shafts for freewheeling can be utilized from each end, or from only one end, or from the middle of the coupled or continuous shafts. Coupling of multiple power sources may provide for the capability of freewheeling of one or more power sources while one or more other power sources are providing power to the other end of the freewheeling engine(s). It may also provide for all of the power sources to run together or for all power sources to freewheel together. If one power source fails, the other power source(s) will continue to turn the driveshaft, thus providing redundancy and enhanced safety.
- In some embodiments, each of the power sources may provide a different power level for the coupled unit; e.g., if three power sources are coupled, one power source could be at idle, one could be at medium power, and one could be at full power, or alternatively all the power sources could be working at full power. More generally, each power source may be utilized at any selected power level. Significant fuel savings may result from regulating the power to only what is necessary at a given flight condition. In addition, any combination of the power sources could be selected to power or freewheel, and the power sources may be alternately selected so that the hours on each of the power sources may be maintained at a similar level if needed.
- In some embodiments, coupling of the power sources with the resultant freewheeling capability may eliminate the need between units for clutches, transmissions, torque converters and/or differentials. This may simplify manufacturing and operations, thereby reducing costs of operation and maintenance and increasing safety. Alternatively, various freewheeling devices may be interposed between a power source and the driveshaft if needed.
- In some embodiments, coupling two or more different types of power sources—such as one heat source (e.g., internal combustion or jet engine) and one electrical source, for example—may provide for various capabilities. The heat source may be utilized to turn an electric source into a generator, thus letting the heat source charge batteries, for example. The heat source may provide power while freewheeling the electric source. Alternatively, the electric source may provide power by freewheeling the heat source, or both the heat source and the electric source may be used together to provide hybrid power. As another alternative, both sources may be freewheeled and used in a regenerating mode to turn the electric source into a generator and provide braking and electrical current to charge batteries.
- In some embodiments, the multi-source unit being used to power a generator(s) may continue to generate power—even with the loss of an engine—because the other engine(s) may accelerate to compensate for the dead engine, thus eliminating or minimizing loss of power.
- In some embodiments, some of the power units for which this freewheeling concept may work best may be power sources which produce very little friction when the power source is freewheeling and the continuous or coupled driveshaft(s) are in-line, thus using internal driveshafts/crankshafts/cam shafts as the drive line. The internal mechanical parts of the engine may be used as the continuous drive line which turns the output shaft with power from the other power source(s).
- In some conventional aircraft applications, coupling the engines for freewheeling may make it possible for one drive shaft from one end of the coupled power units to turn one propeller unit. This configuration may eliminate the need for other drive shafts when a back-up engine is needed, thereby reducing drag while still providing the “back-up” safety element of conventional twin engines or multi-engines.
- In some embodiments, the freewheeling system may also work inside nacelles; e.g., by placing propellers on one end of multiple engines, between the engines, or at each end of the engines. This configuration may also be used to retrofit an existing aircraft by placing a propeller at one end of combined engines.
- In some embodiments, this coupled and freewheeling power generating unit may provide both power and back-up power from each end or from one end of the coupled power unit and may be used in a VTOL aircraft to provide for powering the aircraft. It may also be used to improve the powering of existing VTOL aircraft currently in design, production, and/or use. Currently, many of these aircraft have propellers and blades at the end of the engines or in the ducts with their power units creating safety issues if one engine fails. In some embodiments, coupling engines together may allow the use of smaller engines thereby reducing the cost of manufacturing, especially for electric motors, since smaller engines generally cost less to manufacture.
- Some examples of reduced friction power units that may be used for coupling may include engines such as the Perlex™, Axial Vector™, Sinusoidal Cam™, Dyna-Cam™, Radmax™, Rand-Cam™, Wankel™, and any cylindrical rotor, rotor, rotary, mill, vane, turbine, jet, electric and any other reduced friction power units capable of using its internal drive shafts in freewheeling applications as described herein. Alternatively, some conventional engines may be used if the amount of friction produced in them may be reduced.
- In some embodiments, freewheeling may be provided in connection with actuators and servo motors. As shown in
FIGS. 3A and 3B , acommon shaft actuators variable pitch blades common shaft power blades actuators actuators actuators blades - Some embodiments may have two engines fore and two engines aft with each pair of engines comprising a first engine fore and a next engine aft. Each pair of engines may be placed end to end and in-line and sideways with respect to the fuselage. Each engine may be controlled separately with the driveshaft from the right engine turning the propellers or ducted fan blades on the right side of the aircraft and with the driveshaft from the left engine turning the propellers or ducted fan blades on the left side of the aircraft. Transfer cases may be used in this example to pick up the power from the other engines.
- This embodiment may use modifications to provide for an emergency rescue vehicle. The changes comprise shortened wings, a stubby nose, a front canopy that would fold or retract backwards, and a platform addition which would facilitate emergency escapes. The emergency vehicle could nose in to a building, cliff, or the like to provide an escape route for people trapped in, for example, a burning building. Ducted fans—as opposed to propellers—may permit the aircraft to get next to structures or into tight areas. The stubby nose and retractable canopy may allow access to the aircraft. An extendible/retractable ramp in the nose section may provide a stable emergency escape route.
- Various embodiments of the aircraft described herein may utilize one or more of various types of engines, including Axial Vector, Dyna-Cam type engines, internal combustion, radial, piston, reciprocating, rotary, rotor, StarRotor, vane, mill, electric, hybrid, diesel, or similar type engines, alone or in combination, mounted in-line and sideways with respect to the fuselage. Hybrid engines may include one or more of each of a plurality of engine types. For example, a hybrid engine may include a diesel portion and an electric portion.
- In some embodiments, an electric engine may have a first mode in which the electric engine drives the driveshaft and a second mode in which the electric engine serves as a generator driven by the driveshaft and charges a battery electrically connected to the electric engine. For example, the electric engine may operate in the first mode during take-off and the electric engine may operate in the second mode after take-off.
- In some embodiments, the front ducted fans may be mounted at the end of the canard wing, and the rear ducted fans may be mounted on each side of the fuselage just behind the passenger canopy. However, in other embodiments, the ducted fans may be mounted on each side of the front part of the fuselage, on each end of the main wing, and/or on the tail, depending upon the configuration of the aircraft.
- In some embodiments, propellers may be utilized to handle larger loads with less horsepower, and the engines may be mounted in a higher position on the fuselage to provide clearance for the propellers. This configuration may accommodate from six to ten passengers or a large payload, for example.
- Any or all of the embodiments may utilize an emergency parachute system. The aircraft may be equipped with a parafoil type parachute and one or more deployment rockets for emergencies. The deployment rockets may be solid fuel, liquid fuel, gaseous fuel, or a combination thereof. The parachute may primarily be used while in hover mode or at slow speeds, but may be used in other flight conditions if necessary or desired. The parachute and rockets may be mounted in the top of the rear portion of the fuselage behind the rear cabin, with one rocket on each side, for example. A cable system may be imbedded in the fuselage with a breakaway covering as described above. The supporting cables may be attached to the airframe at four attachment points as described above—two in the front fuselage near the outside end of the front engine and two in the rear fuselage near the outside end of the rear engine. The risers from the parachute may be attached to the supporting cables.
- The emergency parachute may be deployed by the pilot via an emergency hand lever if the aircraft is in forward flight, or it may be automatically deployed by a computer if an engine loses power or the aircraft becomes unstable in hover or other flight condition. The parachute system may deploy the rockets, shooting them out at an angle and pulling the ends of the parafoil parachute in opposite directions, thereby moving the parachute away from the aircraft appendages and stretching the canopy to the full length of the parachute.
- Airbag technology with small elongated tubes embedded in the parachute canopy cords and the outer edges of the parachute system may be utilized to immediately expand the parachute into the ultimate shape of a fully deployed parachute. The canopy may then be ready to receive the air, and this may result in the aircraft suffering a very slight loss of altitude from the time the parachute deploys until it is filled with air.
- If the aircraft is moving in forward flight, computer controlled air sensors may determine if a need exists to apply or delay deployment of the airbag expander of the air canopy. This may minimize the shock from the forward air speed. When the parachute is opened, it may be steered via controls inside the aircraft. The parafoil parachute may give the aircraft a forward motion to help steer the aircraft to a safe area for a landing while descending under the parachute. If one engine is still operating, the parachute may act as a parasail to help keep the aircraft aloft while the pilot leaves a dangerous area and searches for a safe landing site.
- Since the emergency parachute may be computer controlled in hover or other flight condition, it is possible the emergency backup transfer case and supplemental driveshafts may be bypassed or eliminated from certain embodiments thereby streamlining and simplifying the design of the output shafts from the engine to each differential. This may significantly reduce the weight of the aircraft.
- The embodiments described above are some examples of the current invention. Various modifications, applications, substitutions, and changes of the current invention will be apparent to those skilled in the art. Further, it is contemplated that features disclosed in connection with any one embodiment, system, or method may be used in connection with any other embodiment, system, or method. The scope of the invention is defined by the claims, and considering the doctrine of equivalents, and is not limited to the specific examples described herein.
Claims (21)
1-14. (canceled)
15. An aircraft comprising:
a fuselage having a longitudinal axis;
a first engine disposed in said fuselage;
a second engine disposed in said fuselage;
said first and second engines being operably connected to a common driveshaft traversing through said first and second engines and having an axis of rotation oriented transverse to said longitudinal axis of said fuselage;
a first propeller operably connected to said common driveshaft; and
a second propeller operably connected to said common driveshaft;
wherein said first and second engines are configured for freewheeling such that if one of said first and second engines loses power the other of said first and second engines continues to power said first and second propellers.
16. The aircraft of claim 15 wherein each of said first and second propellers comprises a ducted fan.
17. The aircraft of claim 16 wherein said ducted fans are tiltable to facilitate VTOL and forward flight.
18. The aircraft of claim 17 wherein each of said ducted fans is mounted to a wing extending from said fuselage.
19. The aircraft of claim 16 wherein each of said ducted fans comprises counter-rotating blades.
20. The aircraft of claim 15 wherein each of said first and second engines is operable at a selected power level.
21. The aircraft of claim 20 wherein said first and second engines are selectable such that the hours on each of said first and second engines are maintainable at a similar level.
22. The aircraft of claim 15 further comprising a nose section having an extendable and retractable ramp.
23. The aircraft of claim 15 further comprising a retractable canopy.
24. The aircraft of claim 15 further comprising a parachute attached to said fuselage.
25. The aircraft of claim 24 wherein said parachute is mounted in a rear portion of said fuselage.
26. The aircraft of claim 24 further comprising one or more rockets configured for deploying said parachute.
27. The aircraft of claim 24 further comprising cables configured for attaching said parachute to said fuselage, wherein said cables are concealed in a recessed channel under a non-protruding breakaway covering which is aerodynamically flush with said fuselage.
28. The aircraft of claim 27 wherein said cables are attached to said fuselage at four attachment points.
29. The aircraft of claim 24 wherein said parachute is automatically deployable by a computer if said aircraft becomes unstable.
30. The aircraft of claim 24 wherein said parachute is manually deployable by a lever.
31. The aircraft of claim 24 further comprising an airbag expander configured for expanding said parachute into a fully deployed condition.
32. The aircraft of claim 31 wherein said airbag expander comprises elongated tubes embedded in canopy cords and outer edges of said parachute.
33. The aircraft of claim 31 further comprising computer controlled air sensors configured for determining whether to apply or delay deployment of said airbag expander.
34. The aircraft of claim 24 wherein said parachute is steerable via controls inside said aircraft.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/251,850 US20140367509A1 (en) | 2005-10-18 | 2014-04-14 | Aircraft with freewheeling engine |
US15/204,547 US9688397B2 (en) | 2005-10-18 | 2016-07-07 | Aircraft with a plurality of engines driving a common driveshaft |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US72779805P | 2005-10-18 | 2005-10-18 | |
US11/581,321 US7874513B1 (en) | 2005-10-18 | 2006-10-16 | Apparatus and method for vertical take-off and landing aircraft |
US13/012,763 US8152096B2 (en) | 2005-10-18 | 2011-01-24 | Apparatus and method for vertical take-off and landing aircraft |
US13/442,544 US8720814B2 (en) | 2005-10-18 | 2012-04-09 | Aircraft with freewheeling engine |
US14/251,850 US20140367509A1 (en) | 2005-10-18 | 2014-04-14 | Aircraft with freewheeling engine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/442,544 Continuation US8720814B2 (en) | 2005-10-18 | 2012-04-09 | Aircraft with freewheeling engine |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/204,547 Continuation US9688397B2 (en) | 2005-10-18 | 2016-07-07 | Aircraft with a plurality of engines driving a common driveshaft |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140367509A1 true US20140367509A1 (en) | 2014-12-18 |
Family
ID=46827703
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/442,544 Active US8720814B2 (en) | 2005-10-18 | 2012-04-09 | Aircraft with freewheeling engine |
US14/251,850 Abandoned US20140367509A1 (en) | 2005-10-18 | 2014-04-14 | Aircraft with freewheeling engine |
US15/204,547 Active US9688397B2 (en) | 2005-10-18 | 2016-07-07 | Aircraft with a plurality of engines driving a common driveshaft |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/442,544 Active US8720814B2 (en) | 2005-10-18 | 2012-04-09 | Aircraft with freewheeling engine |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/204,547 Active US9688397B2 (en) | 2005-10-18 | 2016-07-07 | Aircraft with a plurality of engines driving a common driveshaft |
Country Status (1)
Country | Link |
---|---|
US (3) | US8720814B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140097290A1 (en) * | 2012-10-05 | 2014-04-10 | Markus Leng | Electrically powered aerial vehicles and flight control methods |
US20150274289A1 (en) * | 2014-03-31 | 2015-10-01 | The Boeing Corporation | Vertically landing aircraft |
CN105346715A (en) * | 2015-09-29 | 2016-02-24 | 上海圣尧智能科技有限公司 | Vertical take-off and landing unmanned plane |
US20170113805A1 (en) * | 2015-10-26 | 2017-04-27 | General Electric Company | Method and system for cross engine debris avoidance |
CN106800089A (en) * | 2015-11-25 | 2017-06-06 | 中航贵州飞机有限责任公司 | A kind of rotor wing unmanned aerial vehicle of electric tilting three |
US9676477B1 (en) * | 2014-08-25 | 2017-06-13 | Amazon Techonlogies, Inc. | Adjustable unmanned aerial vehicles |
CN107399433A (en) * | 2017-06-07 | 2017-11-28 | 常州市沃兰特电子有限公司 | A kind of manned aerial device and its application process |
CN107628244A (en) * | 2017-09-29 | 2018-01-26 | 清华大学 | A kind of double lift culvert vertical take-off and landing aircrafts based on tilting duct |
JP2018537348A (en) * | 2015-12-21 | 2018-12-20 | エアバス ヘリコプターズ ドイチェランド ゲーエムベーハー | Multi-rotor aircraft with redundant security architecture |
CN109415125A (en) * | 2016-07-11 | 2019-03-01 | 小鹰公司 | More rocket type projector deployment systems |
WO2019062256A1 (en) * | 2017-09-29 | 2019-04-04 | 清华大学 | Single lift force ducted vertical take-off and landing aircraft based on tilt duct |
KR20200028375A (en) * | 2017-01-26 | 2020-03-16 | 에어버스 헬리콥터스 도이칠란트 게엠베하 | A thrust producing unit with at least two rotor assemblies and a shrouding |
CN111196346A (en) * | 2019-11-20 | 2020-05-26 | 湖北航天飞行器研究所 | Distributed electric propulsion tilt rotor unmanned aerial vehicle |
JP2020097419A (en) * | 2020-02-27 | 2020-06-25 | 中松 義郎 | Wing rotatable vertical takeoff and landing long-range aircraft |
JP2020100396A (en) * | 2020-02-27 | 2020-07-02 | 中松 義郎 | Drone with wings |
US11148799B2 (en) * | 2018-11-26 | 2021-10-19 | Textron Innovations Inc. | Tilting duct compound helicopter |
US11256253B2 (en) | 2016-07-11 | 2022-02-22 | Kitty Hawk Corporation | Automated aircraft recovery system |
US11459113B2 (en) | 2016-07-11 | 2022-10-04 | Kitty Hawk Corporation | Multimodal aircraft recovery system |
Families Citing this family (209)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD821917S1 (en) * | 2002-10-01 | 2018-07-03 | Tiger T G Zhou | Amphibious unmanned vertical takeoff and landing flying automobile |
USD801222S1 (en) * | 2003-09-30 | 2017-10-31 | Tiger T G Zhou | Vertical takeoff and landing flying automobile |
USD808861S1 (en) * | 2003-09-30 | 2018-01-30 | Dylan T X Zhou | Amphibious unmanned vertical takeoff and landing flying motorcycle |
US8720814B2 (en) * | 2005-10-18 | 2014-05-13 | Frick A. Smith | Aircraft with freewheeling engine |
ES2332400B2 (en) * | 2009-08-05 | 2011-06-07 | Universidad Politecnica De Madrid | SYSTEM AND METHOD FOR ASSISTING THE EARTHLESS WITHOUT TRACK OF CONVENTIONAL AIRCRAFT OF ALA FIJA. |
CN101837195B (en) * | 2010-01-21 | 2012-02-08 | 罗之洪 | Model airplane with vertical takeoff and landing |
DE102010021025B4 (en) * | 2010-05-19 | 2014-05-08 | Eads Deutschland Gmbh | Hybrid helicopter |
DE102010021024B4 (en) | 2010-05-19 | 2014-07-03 | Eads Deutschland Gmbh | Main rotor drive for helicopters |
DE102010021026A1 (en) | 2010-05-19 | 2011-11-24 | Eads Deutschland Gmbh | Hybrid propulsion and power system for aircraft |
GB201011843D0 (en) * | 2010-07-14 | 2010-09-01 | Airbus Operations Ltd | Wing tip device |
US9322917B2 (en) * | 2011-01-21 | 2016-04-26 | Farrokh Mohamadi | Multi-stage detection of buried IEDs |
WO2013105926A1 (en) | 2011-03-22 | 2013-07-18 | Aerovironment Inc. | Invertible aircraft |
US9329001B2 (en) * | 2011-10-26 | 2016-05-03 | Farrokh Mohamadi | Remote detection, confirmation and detonation of buried improvised explosive devices |
US9110168B2 (en) * | 2011-11-18 | 2015-08-18 | Farrokh Mohamadi | Software-defined multi-mode ultra-wideband radar for autonomous vertical take-off and landing of small unmanned aerial systems |
ITRM20120014A1 (en) * | 2012-01-17 | 2013-07-18 | Pavel Miodushevsky | CONVERTIPLANO MULTIPLE. |
DE102012104783B4 (en) * | 2012-06-01 | 2019-12-24 | Quantum-Systems Gmbh | Aircraft, preferably UAV, drone and / or UAS |
FR2996522B1 (en) * | 2012-10-05 | 2014-12-26 | Dassault Aviat | FRONT POINT OF FLYING ENGINE AND FLYING ENGINE |
GB201303860D0 (en) | 2013-03-05 | 2013-04-17 | Rolls Royce Plc | Engine installation |
US9387929B2 (en) * | 2013-03-15 | 2016-07-12 | Ian Todd Gaillimore | Vertical takeoff and landing (“VTOL”) aircraft |
US10569892B2 (en) * | 2013-05-06 | 2020-02-25 | Sikorsky Aircraft Corporation | Supplemental power for reduction of prime mover |
US9248908B1 (en) * | 2013-06-12 | 2016-02-02 | The Boeing Company | Hybrid electric power helicopter |
DE102013107654A1 (en) * | 2013-07-18 | 2015-01-22 | OIC-GmbH | Aircraft for carrying one or more recording devices through the air |
US9527581B2 (en) * | 2013-07-25 | 2016-12-27 | Joby Aviation, Inc. | Aerodynamically efficient lightweight vertical take-off and landing aircraft with multi-configuration wing tip mounted rotors |
ITRM20130473A1 (en) * | 2013-08-12 | 2013-11-11 | Unit 1 Srl | CONVERTIPLATE WITH NEW TECHNICAL AND AERODYNAMIC SOLUTIONS THAT CAN MAKE THE MEANS ALSO IN SAFE AND ULTRA-LIGHT AIRCRAFT SOLUTIONS |
USD736140S1 (en) * | 2013-08-23 | 2015-08-11 | Moller International, Inc. | Vertical takeoff and landing vehicle |
DE102013109392A1 (en) * | 2013-08-29 | 2015-03-05 | Airbus Defence and Space GmbH | Fast-flying, vertically launchable aircraft |
USD803724S1 (en) * | 2013-09-23 | 2017-11-28 | Dylan T X Zhou | Amphibious unmanned vertical takeoff and landing aircraft |
USD801856S1 (en) * | 2013-09-23 | 2017-11-07 | Dylan T X Zhou | Amphibious unmanned vertical takeoff and landing aircraft |
USD806635S1 (en) * | 2013-09-23 | 2018-01-02 | Dylan T X Zhou | Amphibious unmanned vertical takeoff and landing personal flying suit |
USD809970S1 (en) * | 2013-09-23 | 2018-02-13 | Dylan T X Zhou | Amphibious unmanned vertical takeoff and landing aircraft |
US20150175258A1 (en) * | 2013-12-20 | 2015-06-25 | Hung-Fu Lee | Helicopter with h-pattern structure |
US10723442B2 (en) * | 2013-12-26 | 2020-07-28 | Flir Detection, Inc. | Adaptive thrust vector unmanned aerial vehicle |
WO2015096842A2 (en) * | 2013-12-26 | 2015-07-02 | Guerfi Mohamed | Circular wing for vertical flight |
US9708059B2 (en) * | 2014-02-19 | 2017-07-18 | The United States Of America As Represented By The Adminstrator Of The National Aeronautics And Space Administration | Compound wing vertical takeoff and landing small unmanned aircraft system |
US10046855B2 (en) * | 2014-03-18 | 2018-08-14 | Joby Aero, Inc. | Impact resistant propeller system, fast response electric propulsion system and lightweight vertical take-off and landing aircraft using same |
WO2016018486A2 (en) * | 2014-05-07 | 2016-02-04 | XTI Aircraft Company | Vtol aircraft |
US20160023751A1 (en) * | 2014-07-28 | 2016-01-28 | The Board of Regents of the Nevada System of High- er Education on Behalf of the University of Nevad | Energy harvesting mechanism for gyroplanes and gyrocopters |
IL233902B (en) | 2014-07-31 | 2020-07-30 | Israel Aerospace Ind Ltd | Propulsion system |
WO2016081041A1 (en) * | 2014-08-29 | 2016-05-26 | Reference Technologies Inc. | Muiti-propulsion design for unmanned aerial systems |
US9994313B2 (en) * | 2014-11-26 | 2018-06-12 | XCraft Enterprises, LLC | High speed multi-rotor vertical takeoff and landing aircraft |
CN104464440B (en) * | 2014-12-19 | 2017-03-01 | 上海电机学院 | The wing fills aviation simulator |
US10000293B2 (en) | 2015-01-23 | 2018-06-19 | General Electric Company | Gas-electric propulsion system for an aircraft |
US9376208B1 (en) * | 2015-03-18 | 2016-06-28 | Amazon Technologies, Inc. | On-board redundant power system for unmanned aerial vehicles |
US9708065B2 (en) * | 2015-04-07 | 2017-07-18 | The Boeing Company | Crown cabin configuration for an aircraft |
GB201508139D0 (en) * | 2015-05-13 | 2015-06-24 | Rolls Royce Plc | Aircraft propulsion system |
CN106275421B (en) * | 2015-06-04 | 2018-06-01 | 陈志石 | A kind of unmanned transporter |
US9789768B1 (en) * | 2015-07-06 | 2017-10-17 | Wendel Clifford Meier | Full-segregated thrust hybrid propulsion for airplanes |
WO2017004826A1 (en) * | 2015-07-09 | 2017-01-12 | 华南农业大学 | Anti-fall and anti-drift unmanned aerial vehicle |
EP3124379B1 (en) | 2015-07-29 | 2019-05-01 | Airbus Defence and Space GmbH | Hybrid-electric drive train for vtol drones |
FR3041930B1 (en) * | 2015-10-05 | 2022-02-25 | La Broise Denis Pierre Marie De | AIRCRAFT WITH VERTICAL TAKE-OFF AND LANDING, WITH CIRCULAR WINGS AND TIPPING COCKPIT, PILOTED BY DIFFERENTIAL PROPELLER CONTROL |
CN105270625A (en) * | 2015-10-23 | 2016-01-27 | 庆安集团有限公司 | Multi-purpose vertical take-off and landing unmanned aerial vehicle |
US10570926B2 (en) * | 2015-12-03 | 2020-02-25 | The Boeing Company | Variable-geometry ducted fan |
JP2017100651A (en) * | 2015-12-04 | 2017-06-08 | 株式会社Soken | Flight device |
US10926874B2 (en) * | 2016-01-15 | 2021-02-23 | Aurora Flight Sciences Corporation | Hybrid propulsion vertical take-off and landing aircraft |
US10417918B2 (en) * | 2016-01-20 | 2019-09-17 | Honeywell International Inc. | Methods and systems to assist in a search and rescue mission |
US11807356B2 (en) * | 2016-02-17 | 2023-11-07 | SIA InDrones | Multicopter with different purpose propellers |
EP3366585A4 (en) * | 2016-02-26 | 2019-07-31 | IHI Corporation | Vertical take-off and landing aircraft |
US9764848B1 (en) | 2016-03-07 | 2017-09-19 | General Electric Company | Propulsion system for an aircraft |
USD810621S1 (en) | 2016-04-12 | 2018-02-20 | King Saud University | Aerial vehicle |
US9694906B1 (en) * | 2016-04-18 | 2017-07-04 | King Saud University | Vertical takeoff and landing unmanned aerial vehicle |
CN106672223A (en) * | 2016-05-24 | 2017-05-17 | 周光翔 | Hybrid tilt rotor aircraft with four coaxial contra-rotating propellers |
US10464620B2 (en) * | 2016-06-30 | 2019-11-05 | Disney Enterprises, Inc. | Vehicles configured for navigating surface transitions |
US10618647B2 (en) | 2016-07-01 | 2020-04-14 | Textron Innovations Inc. | Mission configurable aircraft having VTOL and biplane orientations |
US10625853B2 (en) | 2016-07-01 | 2020-04-21 | Textron Innovations Inc. | Automated configuration of mission specific aircraft |
US10011351B2 (en) | 2016-07-01 | 2018-07-03 | Bell Helicopter Textron Inc. | Passenger pod assembly transportation system |
US10315761B2 (en) | 2016-07-01 | 2019-06-11 | Bell Helicopter Textron Inc. | Aircraft propulsion assembly |
US10737765B2 (en) | 2016-07-01 | 2020-08-11 | Textron Innovations Inc. | Aircraft having single-axis gimbal mounted propulsion systems |
US10981661B2 (en) | 2016-07-01 | 2021-04-20 | Textron Innovations Inc. | Aircraft having multiple independent yaw authority mechanisms |
US10870487B2 (en) | 2016-07-01 | 2020-12-22 | Bell Textron Inc. | Logistics support aircraft having a minimal drag configuration |
US10220944B2 (en) | 2016-07-01 | 2019-03-05 | Bell Helicopter Textron Inc. | Aircraft having manned and unmanned flight modes |
US10183746B2 (en) * | 2016-07-01 | 2019-01-22 | Bell Helicopter Textron Inc. | Aircraft with independently controllable propulsion assemblies |
US10597164B2 (en) | 2016-07-01 | 2020-03-24 | Textron Innovations Inc. | Aircraft having redundant directional control |
US11608173B2 (en) | 2016-07-01 | 2023-03-21 | Textron Innovations Inc. | Aerial delivery systems using unmanned aircraft |
US10232950B2 (en) | 2016-07-01 | 2019-03-19 | Bell Helicopter Textron Inc. | Aircraft having a fault tolerant distributed propulsion system |
US11027837B2 (en) | 2016-07-01 | 2021-06-08 | Textron Innovations Inc. | Aircraft having thrust to weight dependent transitions |
US11142311B2 (en) | 2016-07-01 | 2021-10-12 | Textron Innovations Inc. | VTOL aircraft for external load operations |
US11124289B2 (en) | 2016-07-01 | 2021-09-21 | Textron Innovations Inc. | Prioritizing use of flight attitude controls of aircraft |
US10737778B2 (en) | 2016-07-01 | 2020-08-11 | Textron Innovations Inc. | Two-axis gimbal mounted propulsion systems for aircraft |
US10633087B2 (en) | 2016-07-01 | 2020-04-28 | Textron Innovations Inc. | Aircraft having hover stability in inclined flight attitudes |
US10501193B2 (en) | 2016-07-01 | 2019-12-10 | Textron Innovations Inc. | Aircraft having a versatile propulsion system |
US11104446B2 (en) | 2016-07-01 | 2021-08-31 | Textron Innovations Inc. | Line replaceable propulsion assemblies for aircraft |
US11084579B2 (en) | 2016-07-01 | 2021-08-10 | Textron Innovations Inc. | Convertible biplane aircraft for capturing drones |
US10633088B2 (en) | 2016-07-01 | 2020-04-28 | Textron Innovations Inc. | Aerial imaging aircraft having attitude stability during translation |
US10227133B2 (en) | 2016-07-01 | 2019-03-12 | Bell Helicopter Textron Inc. | Transportation method for selectively attachable pod assemblies |
US10604249B2 (en) | 2016-07-01 | 2020-03-31 | Textron Innovations Inc. | Man portable aircraft system for rapid in-situ assembly |
US10214285B2 (en) | 2016-07-01 | 2019-02-26 | Bell Helicopter Textron Inc. | Aircraft having autonomous and remote flight control capabilities |
EP3494046A4 (en) * | 2016-08-05 | 2020-04-08 | Textron Aviation Inc. | Hybrid aircraft with transversely oriented engine |
US10252796B2 (en) * | 2016-08-09 | 2019-04-09 | Kitty Hawk Corporation | Rotor-blown wing with passively tilting fuselage |
US10301016B1 (en) * | 2016-08-09 | 2019-05-28 | Vimana, Inc. | Stabilized VTOL flying apparatus and aircraft |
US10479495B2 (en) | 2016-08-10 | 2019-11-19 | Bell Helicopter Textron Inc. | Aircraft tail with cross-flow fan systems |
US10377480B2 (en) | 2016-08-10 | 2019-08-13 | Bell Helicopter Textron Inc. | Apparatus and method for directing thrust from tilting cross-flow fan wings on an aircraft |
US10421541B2 (en) * | 2016-08-10 | 2019-09-24 | Bell Helicopter Textron Inc. | Aircraft with tilting cross-flow fan wings |
US10384773B2 (en) * | 2016-09-08 | 2019-08-20 | General Electric Company | Tiltrotor propulsion system for an aircraft |
US10392106B2 (en) * | 2016-09-08 | 2019-08-27 | General Electric Company | Tiltrotor propulsion system for an aircraft |
US10252797B2 (en) | 2016-09-08 | 2019-04-09 | General Electric Company | Tiltrotor propulsion system for an aircraft |
US10384774B2 (en) | 2016-09-08 | 2019-08-20 | General Electric Company | Tiltrotor propulsion system for an aircraft |
US10696390B2 (en) * | 2016-09-08 | 2020-06-30 | Hop Flyt Inc | Aircraft having independently variable incidence channel wings with independently variable incidence channel canards |
US10807707B1 (en) * | 2016-09-15 | 2020-10-20 | Draganfly Innovations Inc. | Vertical take-off and landing (VTOL) aircraft having variable center of gravity |
US10562623B1 (en) | 2016-10-21 | 2020-02-18 | Birdseyeview Aerobotics, Llc | Remotely controlled VTOL aircraft |
US10399673B1 (en) | 2016-10-24 | 2019-09-03 | Kitty Hawk Corporation | Integrated float-wing |
EP3535185B1 (en) * | 2016-11-02 | 2022-01-05 | Joby Aero, Inc. | Vtol aircraft using rotors to simulate rigid wing dynamics |
US10689105B2 (en) * | 2016-11-21 | 2020-06-23 | John Daniel Romo | Passenger-carrying rotorcraft with fixed-wings for generating lift |
CN108100207B (en) * | 2016-11-24 | 2021-07-27 | 中航贵州飞机有限责任公司 | Inflatable VTOL aircraft |
US10654556B2 (en) * | 2016-12-05 | 2020-05-19 | Jiann-Chung CHANG | VTOL aircraft with wings |
CN106707749B (en) * | 2016-12-14 | 2019-05-17 | 北京科技大学 | A kind of control method for bionic flapping-wing flying robot |
CN107021220A (en) * | 2017-01-10 | 2017-08-08 | 北京航空航天大学 | A kind of VSTOL rotorcycles of new layout |
CN106628163B (en) * | 2017-01-13 | 2018-12-28 | 厦门大学 | A kind of supersonic speed unmanned fighter that big drag braking and VTOL can be achieved |
US10059432B1 (en) * | 2017-02-22 | 2018-08-28 | Pratt & Whitney Canada Corp. | Single lever control in twin turbopropeller aircraft |
EP3366586B1 (en) | 2017-02-27 | 2020-08-19 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | A thrust producing unit with at least two rotor assemblies and a shrouding |
RU2657642C1 (en) * | 2017-03-02 | 2018-06-14 | Михаил Юрьевич Артамонов | Vertical take off and landing aerial vehicle |
CN106927023B (en) * | 2017-03-27 | 2018-11-06 | 上海珞鹏航空科技有限公司成都研发分公司 | A kind of agricultural plant protection rudder face control culvert type unmanned plane |
US11208197B2 (en) | 2017-03-31 | 2021-12-28 | Heka Aero LLC | Gimbaled fan |
EP3455129B1 (en) * | 2017-05-05 | 2022-04-06 | SZ DJI Technology Co., Ltd. | Systems and methods related to transformable unmanned aerial vehicles |
CN107176286B (en) * | 2017-05-16 | 2023-08-22 | 华南理工大学 | Double-duct fan power system-based foldable fixed wing vertical take-off and landing unmanned aerial vehicle |
US10351232B2 (en) | 2017-05-26 | 2019-07-16 | Bell Helicopter Textron Inc. | Rotor assembly having collective pitch control |
US10618646B2 (en) | 2017-05-26 | 2020-04-14 | Textron Innovations Inc. | Rotor assembly having a ball joint for thrust vectoring capabilities |
US10442522B2 (en) | 2017-05-26 | 2019-10-15 | Bell Textron Inc. | Aircraft with active aerosurfaces |
US10329014B2 (en) | 2017-05-26 | 2019-06-25 | Bell Helicopter Textron Inc. | Aircraft having M-wings |
US10661892B2 (en) | 2017-05-26 | 2020-05-26 | Textron Innovations Inc. | Aircraft having omnidirectional ground maneuver capabilities |
US10730622B2 (en) | 2017-06-14 | 2020-08-04 | Bell Helicopter Textron Inc. | Personal air vehicle with ducted fans |
ES2955333T3 (en) * | 2017-08-02 | 2023-11-30 | Eyal Regev | Hybrid aerial vehicle |
USD875021S1 (en) * | 2017-09-11 | 2020-02-11 | Brendon G. Nunes | Airbike |
US10870486B2 (en) * | 2017-09-22 | 2020-12-22 | Stephen Lee Bailey | Diamond quadcopter |
CN107745809B (en) * | 2017-10-14 | 2020-04-21 | 上海歌尔泰克机器人有限公司 | Aircraft with a flight control device |
CN107697279A (en) * | 2017-10-16 | 2018-02-16 | 江富余 | Vert afterbody high-speed helicopter |
GB201717267D0 (en) * | 2017-10-20 | 2017-12-06 | Active Vtol Crash Prevention Ltd | Emergency landing of an aircraft |
KR102669208B1 (en) * | 2017-11-03 | 2024-05-28 | 조비 에어로, 인크. | VTOL M-wing configuration |
USD875023S1 (en) * | 2017-11-03 | 2020-02-11 | Sang Hyun Lee | Aircraft with multiple rotors |
US10836481B2 (en) * | 2017-11-09 | 2020-11-17 | Bell Helicopter Textron Inc. | Biplane tiltrotor aircraft |
TWI647149B (en) * | 2017-11-10 | 2019-01-11 | 林瑤章 | Power transmission system |
RU2671447C1 (en) * | 2017-12-01 | 2018-10-31 | Дмитрий Валентинович Рукавицын | Individual aircraft (options) and methods of its flight |
US11117657B2 (en) * | 2018-01-19 | 2021-09-14 | Aerhart, LLC | Aeronautical apparatus |
CN108382590A (en) * | 2018-02-24 | 2018-08-10 | 浙江天遁航空科技有限公司 | Composite wing unmanned plane |
WO2019168044A1 (en) * | 2018-02-28 | 2019-09-06 | 株式会社ナイルワークス | Drone, drone control method, and drone control program |
USD843919S1 (en) * | 2018-03-12 | 2019-03-26 | Kitty Hawk Corporation | Aircraft |
USD843306S1 (en) | 2018-03-12 | 2019-03-19 | Kitty Hawk Corporation | Aircraft |
US10894605B2 (en) * | 2018-03-13 | 2021-01-19 | U.S. Aeronautics, Inc. | Efficient low-noise aircraft propulsion system |
JP6731604B2 (en) * | 2018-03-31 | 2020-07-29 | 中松 義郎 | High-speed drones and other aircraft |
CN108454819A (en) * | 2018-04-23 | 2018-08-28 | 成都航空职业技术学院 | Three-surface configuration VTOL general-purpose aircraft |
CN108773475A (en) * | 2018-04-28 | 2018-11-09 | 成都航空职业技术学院 | The small-sized power general-purpose aircraft that verts of Three-wing-surface |
USD872004S1 (en) * | 2018-05-15 | 2020-01-07 | Brendon G. Nunes | Multicopter |
EP3802322A4 (en) | 2018-05-31 | 2022-02-23 | Joby Aero, Inc. | Electric power system architecture and fault tolerant vtol aircraft using same |
US12006048B2 (en) | 2018-05-31 | 2024-06-11 | Joby Aero, Inc. | Electric power system architecture and fault tolerant VTOL aircraft using same |
USD864839S1 (en) * | 2018-05-31 | 2019-10-29 | Kitty Hawk Corporation | Simulator cockpit |
CN108958271B (en) * | 2018-06-12 | 2020-12-15 | 北京航空航天大学 | Coordinated control method for approach process of composite wing unmanned aerial vehicle |
US10710741B2 (en) | 2018-07-02 | 2020-07-14 | Joby Aero, Inc. | System and method for airspeed determination |
US11964756B2 (en) * | 2018-07-04 | 2024-04-23 | Aerhart, LLC | Aeronautical apparatus |
US20210403161A1 (en) * | 2018-07-04 | 2021-12-30 | Aerhart, LLC | Aeronautical Apparatus |
US11603193B2 (en) * | 2018-07-16 | 2023-03-14 | Donghyun Kim | Aircraft convertible between fixed-wing and hovering orientations |
USD913904S1 (en) * | 2018-07-20 | 2021-03-23 | Great Wall Motor Company Limited | Flying car |
JP7149498B2 (en) * | 2018-07-26 | 2022-10-07 | パナソニックIpマネジメント株式会社 | Unmanned flying object, information processing method and program |
USD881106S1 (en) * | 2018-08-22 | 2020-04-14 | volans-i, Inc | Aircraft |
CN109080824A (en) * | 2018-08-24 | 2018-12-25 | 中国民航大学 | A kind of Fixed Wing AirVehicle with tilted propeller |
US11097849B2 (en) | 2018-09-10 | 2021-08-24 | General Electric Company | Aircraft having an aft engine |
USD871511S1 (en) * | 2018-09-12 | 2019-12-31 | Saiqiang Wang | Remotely piloted model aircraft |
US11323214B2 (en) | 2018-09-17 | 2022-05-03 | Joby Aero, Inc. | Aircraft control system |
USD881107S1 (en) * | 2018-10-13 | 2020-04-14 | volans-i, Inc | Aircraft |
US10787255B2 (en) * | 2018-11-30 | 2020-09-29 | Sky Canoe Inc. | Aerial vehicle with enhanced pitch control and interchangeable components |
AU2019433213A1 (en) | 2018-12-07 | 2021-07-22 | Joby Aero, Inc. | Aircraft control system and method |
JP7401545B2 (en) | 2018-12-07 | 2023-12-19 | ジョビー エアロ インク | Rotor blades and their design methods |
US10845823B2 (en) | 2018-12-19 | 2020-11-24 | Joby Aero, Inc. | Vehicle navigation system |
USD887948S1 (en) * | 2019-01-03 | 2020-06-23 | Bell Helicopter Textron Inc. | Aircraft |
USD881286S1 (en) * | 2019-01-07 | 2020-04-14 | Guangdong Syma Model Aircraft Industrial Co., Ltd. | Aircraft toy |
USD894790S1 (en) * | 2019-01-08 | 2020-09-01 | Junxian Chen | Drone |
CN109720553B (en) * | 2019-02-13 | 2021-07-27 | 深圳创壹通航科技有限公司 | Fixed-wing unmanned aerial vehicle with vertical take-off and landing function, control method and medium |
USD892222S1 (en) * | 2019-03-12 | 2020-08-04 | Beyonder Industries LLC | Flight system |
USD892224S1 (en) * | 2019-03-12 | 2020-08-04 | Beyonder Industries LLC | Flight system |
USD892223S1 (en) * | 2019-03-12 | 2020-08-04 | Beyonder Industries LLC | Flight system |
CN109919556A (en) * | 2019-03-14 | 2019-06-21 | 辽宁工业大学 | Based on digitlization cloud computing monitoring logistics transportation system and method |
US11111010B2 (en) * | 2019-04-15 | 2021-09-07 | Textron Innovations Inc. | Multimodal unmanned aerial systems having tiltable wings |
US11230384B2 (en) | 2019-04-23 | 2022-01-25 | Joby Aero, Inc. | Vehicle cabin thermal management system and method |
WO2020219747A2 (en) | 2019-04-23 | 2020-10-29 | Joby Aero, Inc. | Battery thermal management system and method |
EP3959127A4 (en) | 2019-04-25 | 2023-01-11 | Joby Aero, Inc. | Vtol aircraft |
RU2723516C1 (en) * | 2019-08-09 | 2020-06-11 | Общество с ограниченной ответственностью "АДА БПЛА" | Convertiplane |
US11718395B2 (en) | 2019-09-13 | 2023-08-08 | Rolls-Royce Corporation | Electrically controlled vertical takeoff and landing aircraft system and method |
US11312491B2 (en) | 2019-10-23 | 2022-04-26 | Textron Innovations Inc. | Convertible biplane aircraft for autonomous cargo delivery |
USD919547S1 (en) * | 2020-01-03 | 2021-05-18 | Bell Textron Inc. | Aircraft fuselage |
USD920213S1 (en) * | 2020-01-03 | 2021-05-25 | Bell Textron Inc. | Aircraft |
US11851178B2 (en) * | 2020-02-14 | 2023-12-26 | The Aerospace Corporation | Long range endurance aero platform system |
RU199386U1 (en) * | 2020-03-12 | 2020-08-31 | Александр Александрович Долбиш | Rotary jet-ventilated power plant DME |
US11987349B2 (en) * | 2020-04-22 | 2024-05-21 | Jerrold Joseph Sheil | Rotatable nacelle for centrifugal fan on aircraft |
GB202007673D0 (en) * | 2020-05-22 | 2020-07-08 | Univ Nelson Mandela Metropolitan | A vertical take-off and landing aircraft, methods and systems for controlling a vertical take-off and landing aircraft |
CN111591440A (en) * | 2020-05-27 | 2020-08-28 | 湖南省仙鸟科技有限公司 | Sickle wing vertical take-off and landing aircraft |
US11731779B2 (en) * | 2020-06-01 | 2023-08-22 | Textron Innovations Inc. | Drivetrain for an aircraft including gearbox with coaxial input and output shafts |
US11420760B2 (en) | 2020-06-29 | 2022-08-23 | Textron Innovations Inc. | Sealed coaxial input and output shafts |
WO2022008061A1 (en) * | 2020-07-10 | 2022-01-13 | Hw Aviation Ag | Hybrid drone for landing on vertical structures |
US11530035B2 (en) | 2020-08-27 | 2022-12-20 | Textron Innovations Inc. | VTOL aircraft having multiple wing planforms |
CN116096634A (en) * | 2020-09-07 | 2023-05-09 | 株式会社爱隆未来 | Flying body |
US20230331379A1 (en) * | 2020-09-29 | 2023-10-19 | Alberto Carlos Pereira Filho | Vertical-take-off aerial vehicle with aerofoil-shaped integrated fuselage and wings |
US20220127011A1 (en) * | 2020-10-27 | 2022-04-28 | Wisk Aero Llc | Power distribution circuits for electrically powered aircraft |
US11319064B1 (en) | 2020-11-04 | 2022-05-03 | Textron Innovations Inc. | Autonomous payload deployment aircraft |
DE102020007836A1 (en) | 2020-12-21 | 2022-06-23 | BAAZ GmbH | Aircraft with wings and operating procedures |
US11630467B2 (en) | 2020-12-23 | 2023-04-18 | Textron Innovations Inc. | VTOL aircraft having multifocal landing sensors |
RU204467U1 (en) * | 2020-12-25 | 2021-05-26 | Сергей Олегович Никитин | HIGH-SPEED COMBINED HELICOPTER (ROTOR WING) |
US11975826B2 (en) * | 2021-02-01 | 2024-05-07 | Textron Innovations Inc | Electric tiltrotor aircraft with fixed motors |
EP4291489A1 (en) * | 2021-02-09 | 2023-12-20 | Joby Aero, Inc. | Aircraft propulsion unit |
FR3119605A1 (en) * | 2021-02-10 | 2022-08-12 | Safran Transmission Systems | Upgraded Aircraft Propulsion Package |
US11247783B1 (en) * | 2021-03-08 | 2022-02-15 | Heleng Inc. | Aircraft |
KR20220140944A (en) * | 2021-04-12 | 2022-10-19 | 현대자동차주식회사 | Control system of air vehicle for urban air mobility |
USD1008889S1 (en) * | 2021-08-18 | 2023-12-26 | Vcraft Aeronautics Ab | Aeroplane |
US12084200B2 (en) | 2021-11-03 | 2024-09-10 | Textron Innovations Inc. | Ground state determination systems for aircraft |
US11932387B2 (en) | 2021-12-02 | 2024-03-19 | Textron Innovations Inc. | Adaptive transition systems for VTOL aircraft |
US11643207B1 (en) | 2021-12-07 | 2023-05-09 | Textron Innovations Inc. | Aircraft for transporting and deploying UAVs |
US11673662B1 (en) | 2022-01-05 | 2023-06-13 | Textron Innovations Inc. | Telescoping tail assemblies for use on aircraft |
US12103673B2 (en) | 2022-01-10 | 2024-10-01 | Textron Innovations Inc. | Payload saddle assemblies for use on aircraft |
CN114193990B (en) * | 2022-01-27 | 2023-04-18 | 广东汇天航空航天科技有限公司 | Arm and aerocar |
US11565811B1 (en) | 2022-01-28 | 2023-01-31 | Blended Wing Aircraft, Inc. | Blended wing body aircraft with transparent panels |
US20240239531A1 (en) * | 2022-08-09 | 2024-07-18 | Pete Bitar | Compact and Lightweight Drone Delivery Device called an ArcSpear Electric Jet Drone System Having an Electric Ducted Air Propulsion System and Being Relatively Difficult to Track in Flight |
IL295691A (en) * | 2022-08-17 | 2024-03-01 | Bar Hagay | drone/ Glider VZ |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3123321A (en) | 1964-03-03 | Aircraft channel wing propeller combination | ||
US1322976A (en) * | 1919-11-25 | Aeropiane | ||
US821393A (en) | 1903-03-23 | 1906-05-22 | Orville Wright | Flying-machine. |
FR502554A (en) | 1915-11-24 | 1920-05-19 | Louis Renault | Two-engine aircraft propeller control device |
US1758498A (en) | 1921-01-06 | 1930-05-13 | R B Patent Corp | Airplane |
US1547434A (en) * | 1923-08-27 | 1925-07-28 | Michaud Joseph | Aircraft |
US1623613A (en) | 1925-11-06 | 1927-04-05 | Max M Arndt | Flying machine |
US1861336A (en) | 1931-09-03 | 1932-05-31 | Cox Patrick | Airplane |
US2437684A (en) | 1940-08-31 | 1948-03-16 | Willard R Custer | Aircraft having high-lift wing channels |
US2510959A (en) | 1942-04-16 | 1950-06-13 | Willard R Custer | Airplane with high-lift channeled wings |
US2514478A (en) | 1947-08-14 | 1950-07-11 | Willard R Custer | Channel wing airplane |
US2702168A (en) | 1950-07-07 | 1955-02-15 | Haviland H Platt | Convertible aircraft |
US2767939A (en) | 1952-12-26 | 1956-10-23 | Aerocar Inc | Flying automotive vehicle assembly |
US2929580A (en) * | 1956-06-18 | 1960-03-22 | Piasecki Aircraft Corp | Aircraft for vertical or short takeoff, and integrated propulsion lifting and propeller slip stream deflecting unit therefor |
US2936968A (en) | 1957-08-14 | 1960-05-17 | Vertol Aircraft Corp | Convertiplane control system |
US3291242A (en) | 1965-04-23 | 1966-12-13 | Anibal A Tinajero | Combined vtol aircraft and ground effects machine |
US3335977A (en) | 1965-06-16 | 1967-08-15 | Ludwig F Meditz | Convertiplane |
US3298633A (en) | 1965-09-10 | 1967-01-17 | Dastoli Joseph | Separable aircraft |
DE1481542A1 (en) | 1967-01-18 | 1969-03-20 | Entwicklungsring Sued Gmbh | Especially designed for VTOL aircraft |
DE1756894A1 (en) | 1968-07-29 | 1970-12-03 | Ver Flugtechnische Werke | Vertical take off and landing aircraft with tiltable propellers in front of and behind the aircraft's center of gravity |
FR2397978A1 (en) | 1977-07-19 | 1979-02-16 | Onera (Off Nat Aerospatiale) | VTOL aircraft with convergent axis rotors - with resultant of rotor action varied in vertical plane parallel to aircraft axis |
US4607814A (en) | 1983-10-13 | 1986-08-26 | Boris Popov | Ballistic recovery system |
US5115996A (en) | 1990-01-31 | 1992-05-26 | Moller International, Inc. | Vtol aircraft |
CA2072417A1 (en) | 1991-08-28 | 1993-03-01 | David E. Yates | Aircraft engine nacelle having circular arc profile |
US5419514A (en) | 1993-11-15 | 1995-05-30 | Duncan; Terry A. | VTOL aircraft control method |
US5890441A (en) | 1995-09-07 | 1999-04-06 | Swinson Johnny | Horizontal and vertical take off and landing unmanned aerial vehicle |
US5826827A (en) | 1997-05-05 | 1998-10-27 | Coyaso; Richard | Air-chute safety system |
EP1762416A3 (en) * | 1998-07-21 | 2007-03-21 | TOKYO R&D CO., LTD. | Hybrid vehicle |
IT1308096B1 (en) * | 1999-06-02 | 2001-11-29 | Finmeccanica Spa | TILTROTOR |
GB2365392B (en) | 2000-03-22 | 2002-07-10 | David Bernard Cassidy | Aircraft |
US6338457B1 (en) | 2000-12-12 | 2002-01-15 | The United States Of America As Represented By The Secretary Of The Navy | Precision parachute recovery system |
AU2002354809A1 (en) | 2001-07-06 | 2003-01-21 | The Charles Stark Draper Laboratory, Inc. | Vertical takeoff and landing aerial vehicle |
US6886776B2 (en) | 2001-10-02 | 2005-05-03 | Karl F. Milde, Jr. | VTOL personal aircraft |
JP2003137192A (en) | 2001-10-31 | 2003-05-14 | Mitsubishi Heavy Ind Ltd | Vertical taking-off/landing craft |
US6843447B2 (en) | 2003-01-06 | 2005-01-18 | Brian H. Morgan | Vertical take-off and landing aircraft |
US20050230519A1 (en) * | 2003-09-10 | 2005-10-20 | Hurley Francis X | Counter-quad tilt-wing aircraft design |
JP4223921B2 (en) | 2003-10-24 | 2009-02-12 | トヨタ自動車株式会社 | Vertical take-off and landing flight device |
US7472863B2 (en) | 2004-07-09 | 2009-01-06 | Steve Pak | Sky hopper |
US8152096B2 (en) | 2005-10-18 | 2012-04-10 | Smith Frick A | Apparatus and method for vertical take-off and landing aircraft |
US8720814B2 (en) * | 2005-10-18 | 2014-05-13 | Frick A. Smith | Aircraft with freewheeling engine |
ITBR20060004A1 (en) | 2006-03-24 | 2007-09-25 | Maio Gaetano Di | COVERTIBLE AIRPLANE |
WO2008105923A2 (en) | 2006-08-24 | 2008-09-04 | American Dynamics Flight Systems, Inc | High torque aerial lift (htal) |
DE102006056355A1 (en) | 2006-11-29 | 2008-06-05 | Airbus Deutschland Gmbh | Drive device for aircraft, has energy converter e.g. gas turbine, for providing operating power of drive unit by two different fuels such as kerosene and hydrogen, and drive unit generating feed rate by operating power |
DE102007055336A1 (en) | 2007-01-15 | 2008-08-21 | GIF Gesellschaft für Industrieforschung mbH | Aircraft propeller drive, method for propelling an aircraft propeller and use of a bearing of an aircraft propeller drive and use of an electric machine |
US20080184906A1 (en) | 2007-02-07 | 2008-08-07 | Kejha Joseph B | Long range hybrid electric airplane |
EP2668097A4 (en) | 2011-01-24 | 2016-07-13 | Frick A Smith | Apparatus and method for vertical take-off and landing aircraft |
-
2012
- 2012-04-09 US US13/442,544 patent/US8720814B2/en active Active
-
2014
- 2014-04-14 US US14/251,850 patent/US20140367509A1/en not_active Abandoned
-
2016
- 2016-07-07 US US15/204,547 patent/US9688397B2/en active Active
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10272995B2 (en) * | 2012-10-05 | 2019-04-30 | Skykar Inc. | Electrically powered personal vehicle and flight control method |
US20140097290A1 (en) * | 2012-10-05 | 2014-04-10 | Markus Leng | Electrically powered aerial vehicles and flight control methods |
US9346542B2 (en) * | 2012-10-05 | 2016-05-24 | Skykar Inc. | Electrically powered aerial vehicles and flight control methods |
US20150274289A1 (en) * | 2014-03-31 | 2015-10-01 | The Boeing Corporation | Vertically landing aircraft |
US9908632B1 (en) | 2014-08-25 | 2018-03-06 | Amazon Technologies, Inc. | Adjustable unmanned aerial vehicles with multiple lifting motors and propellers |
US9676477B1 (en) * | 2014-08-25 | 2017-06-13 | Amazon Techonlogies, Inc. | Adjustable unmanned aerial vehicles |
US11338932B1 (en) | 2014-08-25 | 2022-05-24 | Amazon Technologies, Inc. | Adjustable unmanned aerial vehicles with adjustable body portions |
US11584533B1 (en) | 2014-08-25 | 2023-02-21 | Amazon Technologies, Inc. | Adjustable unmanned aerial vehicles with adjustable body portions |
US10259591B1 (en) | 2014-08-25 | 2019-04-16 | Amazon Technologies, Inc. | Adjustable unmanned aerial vehicles with adjustable body portions |
CN105346715A (en) * | 2015-09-29 | 2016-02-24 | 上海圣尧智能科技有限公司 | Vertical take-off and landing unmanned plane |
US10442541B2 (en) * | 2015-10-26 | 2019-10-15 | General Electric Company | Method and system for cross engine debris avoidance |
CN107010230A (en) * | 2015-10-26 | 2017-08-04 | 通用电气公司 | For the method and system avoided across engine debris |
US20170113805A1 (en) * | 2015-10-26 | 2017-04-27 | General Electric Company | Method and system for cross engine debris avoidance |
CN106800089A (en) * | 2015-11-25 | 2017-06-06 | 中航贵州飞机有限责任公司 | A kind of rotor wing unmanned aerial vehicle of electric tilting three |
US11052998B2 (en) | 2015-12-21 | 2021-07-06 | Airbus Helicopters Deutschland GmbH | Multirotor electric aircraft with redundant security architecture |
JP2018537348A (en) * | 2015-12-21 | 2018-12-20 | エアバス ヘリコプターズ ドイチェランド ゲーエムベーハー | Multi-rotor aircraft with redundant security architecture |
US11919650B2 (en) | 2016-07-11 | 2024-03-05 | Kitty Hawk Corporation | Multimodal aircraft recovery system |
EP3481722A4 (en) * | 2016-07-11 | 2020-01-01 | Kitty Hawk Corporation | Multi-rocket parachute deployment system |
US11459113B2 (en) | 2016-07-11 | 2022-10-04 | Kitty Hawk Corporation | Multimodal aircraft recovery system |
CN109415125A (en) * | 2016-07-11 | 2019-03-01 | 小鹰公司 | More rocket type projector deployment systems |
US11256253B2 (en) | 2016-07-11 | 2022-02-22 | Kitty Hawk Corporation | Automated aircraft recovery system |
US10981657B2 (en) | 2016-07-11 | 2021-04-20 | Kitty Hawk Corporation | Multi-rocket parachute deployment system |
US11947352B2 (en) | 2016-07-11 | 2024-04-02 | Kitty Hawk Corporation | Automated aircraft recovery system |
KR102242857B1 (en) * | 2017-01-26 | 2021-04-21 | 에어버스 헬리콥터스 도이칠란트 게엠베하 | A thrust producing unit with at least two rotor assemblies and a shrouding |
US10737766B2 (en) | 2017-01-26 | 2020-08-11 | Airbus Helicopters Deutschland GmbH | Thrust producing unit with at least two rotor assemblies and a shrouding |
KR20200028375A (en) * | 2017-01-26 | 2020-03-16 | 에어버스 헬리콥터스 도이칠란트 게엠베하 | A thrust producing unit with at least two rotor assemblies and a shrouding |
CN107399433A (en) * | 2017-06-07 | 2017-11-28 | 常州市沃兰特电子有限公司 | A kind of manned aerial device and its application process |
WO2019062256A1 (en) * | 2017-09-29 | 2019-04-04 | 清华大学 | Single lift force ducted vertical take-off and landing aircraft based on tilt duct |
CN107628244A (en) * | 2017-09-29 | 2018-01-26 | 清华大学 | A kind of double lift culvert vertical take-off and landing aircrafts based on tilting duct |
US11148799B2 (en) * | 2018-11-26 | 2021-10-19 | Textron Innovations Inc. | Tilting duct compound helicopter |
CN111196346A (en) * | 2019-11-20 | 2020-05-26 | 湖北航天飞行器研究所 | Distributed electric propulsion tilt rotor unmanned aerial vehicle |
JP2020100396A (en) * | 2020-02-27 | 2020-07-02 | 中松 義郎 | Drone with wings |
JP2020097419A (en) * | 2020-02-27 | 2020-06-25 | 中松 義郎 | Wing rotatable vertical takeoff and landing long-range aircraft |
JP2022059634A (en) * | 2020-02-27 | 2022-04-13 | 義郎 中松 | Drone with wings |
JP7104427B2 (en) | 2020-02-27 | 2022-07-21 | 義郎 中松 | Winged drone |
Also Published As
Publication number | Publication date |
---|---|
US20160311530A1 (en) | 2016-10-27 |
US8720814B2 (en) | 2014-05-13 |
US9688397B2 (en) | 2017-06-27 |
US20120234968A1 (en) | 2012-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9688397B2 (en) | Aircraft with a plurality of engines driving a common driveshaft | |
US8152096B2 (en) | Apparatus and method for vertical take-off and landing aircraft | |
US7874513B1 (en) | Apparatus and method for vertical take-off and landing aircraft | |
EP2668097A1 (en) | Apparatus and method for vertical take-off and landing aircraft | |
US12019439B2 (en) | Free wing multirotor with vertical and horizontal rotors | |
WO2014007883A1 (en) | Aircraft with freewheeling engine | |
JP7232834B2 (en) | Wing tilt actuation system for electric vertical take-off and landing (VTOL) aircraft | |
US6974105B2 (en) | High performance VTOL convertiplanes | |
US20210206487A1 (en) | Aircraft and Modular Propulsion Unit | |
US10081424B2 (en) | Flying car or drone | |
CN107074358B (en) | Vertical take-off and landing aircraft | |
US11142309B2 (en) | Convertible airplane with exposable rotors | |
US10287011B2 (en) | Air vehicle | |
US6808140B2 (en) | Vertical take-off and landing vehicles | |
US8857755B2 (en) | Vertical/short take-off and landing passenger aircraft | |
JP2022532546A (en) | An electric or hybrid VTOL vehicle that can travel and fly | |
WO2021010915A1 (en) | A multi-function unmanned aerial vehicle with tilting co-axial, counter-rotating, folding propeller system | |
WO2024006164A1 (en) | Industrial aerial robot systems and methods | |
AU2011356667A1 (en) | Apparatus and method for vertical take-off and landing aircraft | |
RU2764311C1 (en) | Aircraft with vertical takeoff and landing and/or vertical takeoff and landing with shortened run | |
IL303139A (en) | A free wing multirotor with vertical and horizontal rotors | |
IL227275A (en) | Air vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |