US20140367509A1 - Aircraft with freewheeling engine - Google Patents

Aircraft with freewheeling engine Download PDF

Info

Publication number
US20140367509A1
US20140367509A1 US14/251,850 US201414251850A US2014367509A1 US 20140367509 A1 US20140367509 A1 US 20140367509A1 US 201414251850 A US201414251850 A US 201414251850A US 2014367509 A1 US2014367509 A1 US 2014367509A1
Authority
US
United States
Prior art keywords
aircraft
fuselage
engines
engine
parachute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/251,850
Inventor
Frick A. Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/581,321 external-priority patent/US7874513B1/en
Priority claimed from US13/012,763 external-priority patent/US8152096B2/en
Application filed by Individual filed Critical Individual
Priority to US14/251,850 priority Critical patent/US20140367509A1/en
Publication of US20140367509A1 publication Critical patent/US20140367509A1/en
Priority to US15/204,547 priority patent/US9688397B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/14Windows; Doors; Hatch covers or access panels; Surrounding frame structures; Canopies; Windscreens accessories therefor, e.g. pressure sensors, water deflectors, hinges, seals, handles, latches, windscreen wipers
    • B64C1/1407Doors; surrounding frames
    • B64C1/1415Cargo doors, e.g. incorporating ramps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/14Windows; Doors; Hatch covers or access panels; Surrounding frame structures; Canopies; Windscreens accessories therefor, e.g. pressure sensors, water deflectors, hinges, seals, handles, latches, windscreen wipers
    • B64C1/1476Canopies; Windscreens or similar transparent elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/26Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft characterised by provision of fixed wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/28Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with forward-propulsion propellers pivotable to act as lifting rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/52Tilting of rotor bodily relative to fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/22Load suspension
    • B64D17/24Rigging lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/22Load suspension
    • B64D17/34Load suspension adapted to control direction or rate of descent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/62Deployment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/62Deployment
    • B64D17/64Deployment by extractor parachute
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/80Parachutes in association with aircraft, e.g. for braking thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/16Power plant control systems; Arrangement of power plant control systems in aircraft for electric power plants
    • B64D31/18Power plant control systems; Arrangement of power plant control systems in aircraft for electric power plants for hybrid-electric power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D35/00Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
    • B64D35/04Transmitting power from power plants to propellers or rotors; Arrangements of transmissions characterised by the transmission driving a plurality of propellers or rotors
    • B64C2201/04
    • B64C2201/10
    • B64C2201/162
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/15UAVs specially adapted for particular uses or applications for conventional or electronic warfare
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • B64U30/12Variable or detachable wings, e.g. wings with adjustable sweep
    • B64U30/14Variable or detachable wings, e.g. wings with adjustable sweep detachable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • B64U50/14Propulsion using external fans or propellers ducted or shrouded

Definitions

  • This invention relates generally to Vertical Take-Off and Landing (VTOL) aircraft and more specifically to a compact VTOL aircraft with a fixed wing which can be utilized as a Personal Air Vehicle (PAV) or an Unmanned Aerial Vehicle (UAV).
  • PAV Personal Air Vehicle
  • UAV Unmanned Aerial Vehicle
  • the present disclosure is directed to an aircraft that contemplates no need for driving a car through traffic to and from airports.
  • the capabilities and properties of this particular aircraft make it compact and versatile enough so as to enable a pilot to fly this aircraft from “door to door” without the requirement of an airport or highways.
  • a person could lift off as with a helicopter from a space such as a driveway, back yard, parking garage, rooftop, helipad, or airport and then fly rather than drive to all the day's various appointments.
  • Some embodiments of the present invention provide a versatile VTOL aircraft that is not only lightweight and powerful enough to take off and land vertically, but is also economical and powerful enough to take off, land and fly at a fast rate of speed, like an airplane. Therefore, it serves as a personal air vehicle (PAV) with a multitude of uses and configurations.
  • PAV personal air vehicle
  • the current invention is able to achieve its power from the placement and production of two (2) Axial Vector/Dyna-Cam type engines mounted sideways with respect to the fuselage of the aircraft (that is, the axis of rotation of the driveshaft of each engine may be oriented transverse to the longitudinal axis of the fuselage).
  • These engines are lightweight and produce greater horsepower and three (3) times more torque per horsepower than conventional engines.
  • Each engine may have a double-ended driveshaft which provides direct drive to the ducted fans/nacelles which are located outside of the fuselage.
  • Each end of each double-ended driveshaft may turn one ducted fan, so two engines will power two (2) pairs of ducted fans for a total of four ducted fans.
  • a first engine may be placed in the front section of the aircraft fuselage, and the driveshafts from the ends of the first engine may run through a front canard wing on the aircraft to a front pair of ducted fans located at the ends of the canard wing. These front ducted fans may be mounted far enough out from the fuselage to prevent propeller wash in the rear ducted fans.
  • a second engine may be mounted behind the passenger cabin and toward the rear of the fuselage. This engine may power an of pair of ducted fans which are attached to the fuselage, so the driveshaft for this engine may connect directly through a transfer case to differentials in the ducted fans.
  • the rear engine may be slightly elevated above the center line of the side of the fuselage.
  • the two sideways mounted engines may be placed in-line in the fuselage so the passenger cabin and the rear engine receive less wind resistance, thus reducing drag on the airplane and increasing fuel efficiency.
  • Dr. Claude Dornier used the in-line configuration in his German built Dornier DO335.
  • the Cessna Skymaster 336 was using in-line engines, and presently the Adams A500 designed by Burt Rutan is utilizing the configuration. Since the engines are located inside the fuselage rather than outside in the ducted fans or at the end of a main wing, as on the Bell Boeing V-22 Osprey, a better in-line center of gravity is established thereby resulting in quicker response, better balance and increased stability in flight and/or in hover.
  • the aircraft may have a fixed wing and four aerodynamically designed tilt ducted fans.
  • the Bell X-22A was one of the first aircraft to fly using tilt ducted fans.
  • Moller's “Skycar” (U.S. Pat. No. 5,115,996) is a vehicle which includes ducted fans with directional vanes and two engines in each duct for a total of eight engines.
  • some embodiments of this invention use only two sideways placed engines in the fuselage with direct drive from the driveshafts into differentials in the ducted fans to power four ducted fans, with no intervening transmission between the rotor of each engine and the driveshaft or between the driveshaft and the differentials.
  • the elimination of a transmission in such a direct drive embodiment saves weight and increases efficiency and performance.
  • the aerodynamic shape of the front of the ducted fans is such that the bottom of each duct protrudes forward and the top of each duct slopes down to the bottom.
  • This lifting air intake duct design creates low pressure in the bottom front of the duct which helps eliminate the need for more wing area and in turn reduces the weight of the aircraft. Willard Custer illustrated this lift principle with his Channelwing aircraft in the late 1930s. This technology is being researched even today at the Georgia Institute of Technology.
  • Another result of extending the bottom of the ducts is a reduction of the noise created by the turning blades. In a UAV stealth design, this will also help cover the radar signature from the turning blades.
  • ducted fans permit the aircraft to take off and land in either conventional or VTOL mode. Since the fan blades may be encased in ducts, the ducts can be rotated to align horizontally with the fuselage, and the aircraft may take off and land conventionally. In some embodiments, such ducted fans may provide greater flexibility in terms of sizing, thrust, and ground clearance than if unducted propellers are used. In some embodiments, a double row of counter-rotating fan blades in the ducted fans may provide sufficient thrust so that the duct diameter may be small enough for sufficient ground clearance.
  • conventional take-off and landing may also be provided because the double row of counter-rotating blades in the ducted fans allow the ducted fans to be small enough to clear the ground when oriented horizontally.
  • VTOL is possible because the ducted fans may rotate to a vertical orientation and provide sufficient thrust for take-off and landing.
  • the aircraft body itself may be an aerodynamically designed lifting body.
  • Burnelli Aircraft was building a lifting body airframe (U.S. Pat. No. 1,758,498).
  • the Space Shuttle still utilizes that technology. With the engines mounted sideways with respect to the fuselage, this design lends itself to a lifting body application.
  • Some embodiments of the current invention include a power boosted emergency parachute assembly which can be used in hover or flight conditions, should the aircraft lose one or more of its engines, thus allowing the pilot to continue to maneuver the aircraft to a safe landing.
  • Some embodiments of the current invention incorporate a computer controlled fly-by-wire system which calculates gyroscopic stability and sends information to one or more ducted fans or propeller blades to adjust them to the correct pitch for controlled flight.
  • the aircraft may have a fixed level, dihedral, or anhedral wing to provide for forward flight in airplane mode.
  • Sections of the aircraft wings may be bolted on or removed to create various wing lengths for different applications, such as for short distances as in a city setting or long distances for long range travel and for easy transporting of the aircraft, as on a trailer or truck or in a shipping container.
  • extensions on the main wing may enable an aircraft to fly at high altitude and/or to loiter for long periods of time.
  • a personal air vehicle may become a new mode of transportation.
  • the embodiments set forth herein are merely examples of various configurations of the aircraft, and many new models can result from this invention. Different embodiments of this aircraft could range from a variety and number of passenger seating arrangements to a model with no passengers; i.e., a UAV.
  • the aircraft may serve as a personal air vehicle, an air taxi, an observation aircraft, an emergency rescue vehicle, a military vehicle or a UAV, or for other purposes.
  • Some embodiments may be constructed of lightweight material and the airframe may be designed as a lifting body, which helps reduce the weight and the square footage area of the wings.
  • Some embodiments may have the vertical take-off, landing and flight capabilities of a helicopter and the conventional take-off, landing and flight capabilities of an airplane. Some embodiments may transition back and forth between VTOL and forward flight. If the aircraft is in hover position, air deflectors (which may be mounted on the rear of each ducted fan) may enable the aircraft to move sideways and to counter rotate, and the tilted ducted fans may enable it to move forward and backward safely in tight spaces. Since some embodiments of the aircraft may use significant power to accommodate its VTOL capabilities, the aircraft may also be designed to take advantage of this power and transform it into maximum airspeed in forward flight.
  • Some embodiments of the current invention can lift off and set down like a helicopter, but can also utilize the speed of an airplane to provide quick “door to door” service for convenience and for the saving of time and fuel.
  • the aircraft can take off like an airplane, it may be capable of handling more weight—such as that of passengers, fuel and freight—on takeoff and then traveling a longer distance.
  • the aircraft may land in a conventional aircraft mode on a runway, if desired, or the aircraft may land vertically in a smaller space or without a runway.
  • the compact nature of the aircraft, combined with the use of ducted fans, may provide a large spectrum of landing locations for it as a VTOL vehicle.
  • the aircraft may not be as fast as the new light jets currently being developed and soon to be offered for air taxi service, the aircraft nonetheless saves overall time because it can take off and land in locations other than a landing strip. Time commuting to and from an airport can be significant, and some embodiments of this aircraft may provide a means to bypass airports by leaving from and returning to a nearby convenient location.
  • one advantage of the fixed wing aircraft is the ability to throttle back the engines and use lift from the wing to help the engines conserve fuel while flying.
  • either engine may be shut off, and the aircraft can cruise on one engine for improved fuel economy. For example, Burt Rutan's Voyager took off using both engines, then shut down one engine and flew around the world—using one engine—without refueling.
  • the wing may be dihedral, which may improve the stability of the aircraft.
  • the aircraft can fly on either of its engines and continue to an airport to land conventionally. If both engines are lost while in flight, the aircraft's glide slope is excellent. The pilot can glide the aircraft to a landing site or use a guidable emergency parachute to float to a safe location.
  • another advantage derives from the fact that the engines are not in the ducts but are instead mounted in the fuselage, providing an in-line center of gravity for better stability and increased response (as opposed to having the weight of the engines on the wingtips). Additionally, the front engine may break the air for both the cabin and the rear engine, thus creating a very aerodynamic lifting body aircraft.
  • the elevation of the rear engine may allow for air intake scoops to be mounted on the front of each side of the engine, thereby providing for air cooling of the rear engine while still maintaining the aircraft's aerodynamic design.
  • this elevation may also improve the flare of the aircraft upon landing and derotation and may allow the rear landing gears to hit the runway first. It also may improve take-off and rotation because the front landing gear of the aircraft may lift off first.
  • another advantage in landing an aircraft as described herein is that, in the case of an engine being lost, the two ducted fans attached to that engine may stop also. Consequently, the critical engine problem which causes yaw and then roll, usually experienced when a twin engine aircraft loses an engine, may be eliminated. Additionally, if an engine is lost, some embodiments of the aircraft are capable of auto feathering the fan blades of the two ducted fans associated with that engine, thereby reducing drag through the duct.
  • the sideways placement of the engines may provide the ability to power two ducted fans with one engine having a double-ended driveshaft.
  • the cost of construction and operation of the aircraft may be less, for example, because only two engines may be used to power four ducted fans.
  • one or more driveshafts of the rear engine may be shortened going into the associated rear ducted fans because the ducted fans may be mounted on the side of the fuselage, and one or more driveshafts of the front engine may be shortened going through a canard wing which may not be as long as a main wing.
  • This configuration not only may reduce the weight of the one or more driveshafts, but may also provide an enhanced safety factor. Since a driveshaft may enter the middle of a differential in a ducted fan, the driveshaft may naturally turn two output shafts of the ducted fan in a counter rotating motion. This reliable yet simple design may also add to the safety of the aircraft.
  • the aircraft may use an Axial Vector/Dyna-Cam type engine which may provide many advantages, including very smooth operation with little vibration and utilization of a variety of fuels and high fuel efficiency.
  • the Axial Vector/Dyna-Cam type engine is a lightweight, small and compact internal combustion engine with high horsepower and high torque.
  • a high torque engine may allow a high angle of attack on variable pitch blades, which may provide quick response with little variation in the rpm of the engine.
  • the ducts of the ducted fans may be aerodynamically designed to create lift thereby reducing the weight of the aircraft because of less square footage of wing area than otherwise may be required. Since no engines are located in the ducts, more area is available for airflow through the ducts, thus creating more lift and thrust.
  • the front pair of ducts may be mounted far enough out on the canard wing to allow the rear ducts to receive undisturbed air.
  • two rows of blades in a ducted fan may turn in a counter rotating motion thereby creating more thrust and reducing the overall diameter of the duct. This reduced diameter may provide sufficient ground clearance for a conventional aircraft take-off and landing mode as well as VTOL and VSTOL capability.
  • Tilt ducted fans may provide the ability to get full thrust on lift and forward flight.
  • the aerodynamic shape of the lifting duct may provide for more lift with less weight since a shorter wing may be used.
  • the blades in each row of a ducted fan may have variable pitch.
  • the pitch angle of the blades may be determined and controlled by a computer in communication with gyros in a fly-by-wire system, thus controlling pitch for stability in a hover mode or adjusting pitch while in forward flight.
  • the blades may have the capability of self feathering and lining up in an identical configuration behind one another within each duct to help reduce drag and increase air flow through the ducts should an engine be lost or shut down. This capability may extend the range which can be flown with one engine.
  • the use of ducted fans instead of un-ducted propellers may provide for safer VTOL.
  • no exposed propellers are involved, so the aircraft can land in tight spaces or get close to people or to stationary objects. For example, it could hover next to buildings for rescues, land in fields with electrical wires, and/or land in neighborhoods or a regular parking lot.
  • the ducted fans may be quieter, enabling the aircraft to take off and land with less noise than is typically associated with helicopters.
  • This ducted fan design may also help reduce or cover the radar signature from the turning blades in a UAV stealth design.
  • NASA has been researching and developing its “highway in the sky” which provides synthetic vision and GPS guidance in aircraft so that pilots can bypass the large congested airport hubs and land at smaller airports. That technology may be included in some embodiments of this invention, which may allow pilots to bypass even the small airports and land at or near their actual destinations, and it may assist in handling bad weather such as fog.
  • Some embodiments of this invention may include an emergency parachute system that provides for quick deployment and rapid expansion to prevent significant altitude loss while in hover or for a delayed deployment while in forward flight.
  • the Ballistic Recovery System which was invented and patented by Boris Popov (U.S. Pat. No. 4,607,814) was originally created for ultralights and experimental aircraft and later retrofitted for larger aircraft.
  • the BRS system is currently utilized by Cirrus Design for its lighter single engine airplanes.
  • the emergency parachute system in the Cirrus aircraft allows a significant loss of altitude before the canopy is filled with air.
  • the pilot has no control of the descent and therefore no control of the landing site.
  • the rocketed parachute system in some embodiments of the present invention may rapidly deploy and expand the parachute and then allow the pilot to steer the parachute to get the aircraft to a preferred landing site.
  • a sport plane embodiment of this aircraft may have a fuselage having a longitudinal axis, a left wing extending from the fuselage, a right wing extending from the fuselage, a tail section extending from a rear portion of the fuselage, a first ducted fan rotatably mounted to the left wing, a second ducted fan rotatably mounted to the right wing, and an engine disposed in the fuselage, the engine having a direct-drive, double-ended driveshaft having an axis of rotation oriented transverse to the longitudinal axis of the fuselage, wherein the first ducted fan includes a first differential operably connected between first and second rows of counter rotating fan blades, wherein the second ducted fan includes a second differential operably connected between third and fourth rows of counter rotating fan blades, and wherein one end of the driveshaft is directly connected to the first differential, and the other end of the driveshaft is directly connected to the second differential.
  • FIG. 1 is a front perspective view of a four ducted fan aircraft embodiment of the current invention.
  • FIG. 2 a is a top schematic cross-sectional view of the aircraft of FIG. 1 showing single engines serving the front and rear pairs of ducted fans.
  • FIG. 2 b is a top schematic cross-sectional view of the aircraft of FIG. 1 showing pairs of engines serving the front and rear pairs of ducted fans.
  • FIG. 3 a is a side schematic cross-sectional view of a ducted fan assembly.
  • FIG. 3 b is a top schematic cross-sectional view of the ducted fan assembly of FIG. 3 a.
  • FIG. 3 c is a front view of the ducted fan assembly of FIG. 3 a.
  • FIG. 4 a is a side view of the aircraft of FIG. 1 in forward flight with rear thrust.
  • FIG. 4 b is a side view of the aircraft of FIG. 1 in hover with downward thrust.
  • FIG. 4 c is a side view of the aircraft of FIG. 1 in braking position with reverse thrust.
  • FIG. 5 is a front perspective view of a Personal Air Vehicle (PAV) or an Unmanned Aerial Vehicle (UAV) embodiment.
  • PAV Personal Air Vehicle
  • UAV Unmanned Aerial Vehicle
  • FIG. 6 is a front perspective view of a Sport Plane embodiment.
  • a first embodiment of the current invention may have four ducted fans.
  • This embodiment is a VTOL aircraft with two (2) engines—one fore 201 and one aft 202 —placed sideways with respect to an elongated lifting body fuselage 100 , which may be made of lightweight composite materials, aluminum, or other suitable materials.
  • This embodiment may have a canard wing 123 on the front, a fixed main wing 113 in the middle of the fuselage 100 with winglets 114 attached on each end of the main wing 113 , two vertical stabilizers 120 on the rear, a horizontal stabilizer 122 across the top of the tail, a pair of ducted fans 106 R and 106 L fore, and a pair of ducted fans 706 R and 706 L aft on each side of the fuselage 100 for a total of four (4) ducted fans.
  • the canard wing 123 and the main wing 113 may be level, dihedral, or anhedral, depending on the overall aerodynamic design of the aircraft.
  • all four ducted fans may have the same design and are sometimes referred to as element 106 in the discussion of this embodiment.
  • the ducted fans may not all have the same design.
  • un-ducted propellers may be used instead of ducted fans, or a combination of ducted fans and un-ducted propellers may be used.
  • the engines 201 , 202 may be Axial Vector/Dyna-Cam type engines or other suitable engines.
  • the Axial Vector engine from Axial Vector Engine Corporation is a six piston twelve cylinder radial design with high horsepower and torque.
  • the engine is small, lightweight and produces three times the torque per horsepower as compared to some other available engines, thus improving the power-to-weight ratio. It is fuel efficient and can use a variety of fuels. It has fewer parts and produces less vibration than some other available engines.
  • the passenger cabin may have a lightweight frame made of composite, aluminum, or other suitable material with one stationary front wraparound transparent canopy 127 which serves as the windshield, and two pivotally hinged gull wing style doors 126 which are wraparound door frames with transparent window material encompassing most of the surface to serve as the side windows and skylights on each side of the fuselage 100 .
  • the doors 126 may also be made of composite, aluminum, or other suitable material. To clarify, these doors 126 , when closed, may serve as skylights on the top and windows on the side.
  • the pilot and front passenger side of the cabin may have transparent material of oval or other suitable shape in the floorboard which may provide for downward viewing and may also provide an emergency escape hatch.
  • the side door 126 may pivot wide open to allow for loading/unloading of large loads; e.g., an emergency stretcher or large cargo. It may open large enough to accommodate the ingress and egress of both the front and rear passengers.
  • large loads e.g., an emergency stretcher or large cargo. It may open large enough to accommodate the ingress and egress of both the front and rear passengers.
  • Some embodiments of the present invention may have a four-seat cabin, but other embodiments may include fewer or more than four seats, and still other embodiments may be utilized as an unmanned aerial vehicle (UAV) with no seats.
  • UAV unmanned aerial vehicle
  • the headlights/landing lights encasement 101 may have a streamlined transparent protective covering located on the nose of the fuselage 100 and one front air intake 102 may be located on each side of the nose of the fuselage 100 .
  • a canard wing 123 may be attached to the front fuselage 100 , with a ducted fan 106 attached to each end of the canard wing by a duct rotation actuator 124 . Elevators 116 on the trailing edge of the canard wing may facilitate in controlling the pitch of the aircraft.
  • Each of the ducted fans 106 may house a front blade actuator assembly 107 which controls the pitch angle of a front row of blades 108 and a rear blade actuator assembly 210 which controls the pitch angle of a rear row of counter rotating blades 109 (hidden in FIG. 1 ; see FIGS. 2 a , 2 b , 3 a , 3 b ).
  • a duct air deflector 110 may be located on the rear of each ducted fan 106 .
  • Each of the four ducted fans 106 on the aircraft may contain the same front and rear blade assemblies and configuration, and each may or may not have a duct air deflector 110 on the rear of the ducted fan 110 .
  • the ducted fans 106 may not all be of the same design.
  • the forward ducted fans 106 may be of one design, and the rear ducted fans 106 may be of a different design.
  • the air deflector 110 may facilitate control of the transition from forward flight to hover and back to forward flight or from hover to forward flight and back to hover, and control of the sideways and counter rotating motion when in hover.
  • One front tire 103 may be located on the front bottom of each side of the fuselage and may be attached to a fixed front landing gear spar 105 and may be partially covered by a streamlined fairing 104 which is wrapped around each tire 103 .
  • the tires 103 and associated landing gear may be retractable into the fuselage 100 or the canard wing 123 .
  • the spars 105 may be fixed, and the tires 103 may be pivoting to provide a tight turning radius.
  • a first avionics bay 128 for storing the aircraft's computer, gyroscopic equipment, etc. may be located inside the nose cone.
  • This avionics bay 128 may house the flight computers and gyroscopes which handle guidance, navigation and control; for example, it may serve as a data bus which takes the flight instrumentation, weather and additional data, along with pilot input, to control flight.
  • a second bay may be located in the back (not shown) for redundancy.
  • the main wing 113 may be attached to the bottom of the fuselage 100 below the passenger cabin doors 126 . Alternatively, the main wing 113 may be attached to the top of the fuselage 100 or to some intermediate portion of the fuselage 100 .
  • a speed brake 111 may be located toward the center of the wing 113 on each side of the fuselage to enable the aircraft to slow while in forward flight.
  • the wing 113 may include winglets 114 to help reduce drag and thereby increase speed and lift; ailerons 115 to help control roll while in forward flight; and flaps 112 to help reduce landing speed, move into transitional speed while switching from horizontal to vertical and/or back to horizontal flight, and decrease the surface area of the wing thus resulting in less drag on vertical take-off.
  • other control surfaces may be employed in combination with or in lieu of speed brakes 111 , ailerons 115 , and flaps 112 .
  • One rear tire (not shown in FIG. 1 ) may be attached to a fixed or retractable rear landing gear spar 117 on each side of the fuselage 100 toward the aft section of the aircraft.
  • Each of these rear tires may be fixed and covered by a streamlined fairing 104 or retractable into the aft portion of the fuselage 100 and may be equipped with brakes.
  • a ducted fan 106 may be located on each side of the fuselage 100 with the attachment point located behind the rear passenger cabin/canopy 126 .
  • the rear engine 202 may be mounted slightly higher than the front engine 201 to provide room for air intake cooling which may be accomplished through an air intake scoop 118 located behind the passenger cabin/canopy 126 and on each side of the fuselage 100 .
  • One fixed vertical stabilizer 120 may be attached on each side and at the end of the fuselage 100 to minimize or eliminate the yaw/roll oscillations and to reduce the drag off the aft end of the lifting body fuselage 100 .
  • a rudder assembly 119 attached to the rear of each vertical stabilizer 120 may help provide yaw control.
  • a horizontal stabilizer 122 may be attached, with a rear elevator 121 located on the trailing edge of the horizontal stabilizer 122 for pitch control.
  • An emergency parachute with deployment rocket launchers may be stored in a storage location compartment 125 in the rear fuselage 100 , just behind the passenger cabin/canopy 126 and above the rear engine 202 .
  • the parachute cables may be attached to the aircraft at four attachment points 129 (three not shown). Two of these attachment points 129 may be located on each side of the aircraft, with two fore and two aft.
  • the front parachute cable on each side may be routed from the attachment point 129 on the front of the aircraft, up the side of the fuselage 100 between the front canopy 127 and rear canopy 126 , across the top of the fuselage 100 between the left and right hinged gull wing doors 126 , and back to the parachute storage compartment 125 .
  • the rear attachment points 129 may be located behind and above the air intake scoop 118 on each side of the aircraft.
  • the rear parachute cable on each side may be routed up the side of the aircraft from the attachment point 129 to the storage compartment 125 . All the parachute cable routings may be concealed in a recessed channel under a non-protruding breakaway covering (not shown) which is aerodynamically flush with the fuselage 100 .
  • two double-ended, direct driveshaft engines 201 , 202 may be mounted longitudinally in-line with one another in the fuselage 100 , with one fore and one aft.
  • Engines 201 and 202 may be oriented “sideways” with respect to the fuselage 100 such that the axis of rotation of the driveshaft 204 and 219 , respectively, of each engine is oriented transverse to the longitudinal axis of the fuselage.
  • a first engine 201 may be placed sideways in the front portion of and with respect to the fuselage 100
  • a second engine 202 may be placed sideways in the rear portion of and with respect to the fuselage 100 .
  • Each engine 201 , 202 may have a double-ended driveshaft 204 or 219 , respectively, which powers a pair of ducted fans 106 R and 106 L forward, and 706 R and 706 L aft.
  • One ducted fan 106 R, 106 L may be mounted on each end of the front canard wing 123
  • one ducted fan 706 R, 706 L may be mounted on each side of the fuselage 100 behind the passenger cabin/canopy 126 .
  • this embodiment of the current invention includes a first power generation device or engine 201 forward in the fuselage, which is used to power a first driveshaft that serves a ducted fan or propeller on the right canard wing and to power a second driveshaft that serves another ducted fan or propeller on the left canard wing.
  • the first power generation device may be a single engine, and the first driveshaft and the second driveshaft may be a single continuous driveshaft 226 that goes through the engine and protrudes out each end of the engine.
  • the first power generation device may be two or more engines in alignment, and the first and second driveshafts may be a single continuous driveshaft or may be separate distinct driveshafts, which may be coupled together to act as a single driveshaft. The same is true for the rear power generation device or engine 202 and its associated driveshaft(s).
  • the front engine 201 may be mounted in a sideways position with respect to the fuselage 100 between the nose of the aircraft and the front section of the cabin/canopy 127 .
  • each side of the driveshaft 204 runs in an opposite direction and exits the fuselage 100 through a transfer case 203 , continues span-wise through the canard wing 123 and duct rotator actuator 124 , and connects to an internal duct differential 212 in a mid portion of the ducted fans 106 L and 106 R.
  • the portion of the driveshaft 204 that exits the left end of the engine 201 runs to the left to power the left front ducted fan 106 L; the section of the driveshaft 204 that exits the right end of the engine 201 runs to the right to power the right front ducted fan 106 R.
  • the rear engine 202 may be mounted in a sideways position with respect to the fuselage 100 behind the passenger cabin/canopy 126 .
  • Rear engine 202 may be located in-line with the front engine 201 and may be slightly elevated above the center line of the fuselage 100 .
  • Two air intake scoops 118 with one mounted on each side of the fuselage in front of the rear engine 202 , may provide for air cooling of the rear engine 202 .
  • the rear direct driveshaft 219 may be shorter than the front driveshaft 204 because the rear ducted fans 706 L and 706 R may be mounted on each side of the fuselage 100 just behind the passenger cabin/canopy 126 .
  • the double-ended direct driveshaft 219 exits each end of the rear engine 202 , and each side of the driveshaft 219 runs in an opposite direction and exits the fuselage 100 through a transfer case 218 , continues through a duct rotator actuator 124 , and connects to an internal duct differential 212 in a mid portion of the ducted fans 706 L and 706 R.
  • the front transfer case 203 and the rear transfer case 218 may be connected by a transfer case supplemental driveshaft 217 which runs just inside of each side of the fuselage 100 between the transfer cases 203 and 218 .
  • These supplemental driveshafts 217 are not normally engaged; however, should one engine lose power (sometimes referred to herein as a “dead,” “lost,” or “non-working” engine), a computer or other controller may engage the supplemental driveshafts 217 in the transfer cases 203 , 218 thereby bypassing the non-working engine.
  • the working engine may provide power to operate the pair of ducted fans 106 R and 106 L, or 706 R and 706 L, as the case may be, of the non-working engine and thus keep the aircraft in a stable position.
  • each of the ducted fans 106 R and 106 L may be identical except for the entry of the driveshaft 204 through the duct rotator actuator 124 into the duct.
  • the front 204 and rear 219 driveshafts extending from the right sides of the engines 201 , 202 enter the right front and right rear ducted fans 106 R and 706 R from the left; and the front 204 and rear 219 driveshafts running from the left sides of the engines 201 , 202 enter the left front and left rear ducted fans 106 L and 706 L from the right.
  • a differential casing 213 may house the differential 212 and two differential output driveshafts 225 .
  • the differential 212 may turn the two differential output driveshafts 225 in a counter rotating motion with one shaft powering a row of variable pitch blades 108 at a front low pressure air intake opening 206 and one powering another row of variable pitch blades 109 at a rear air output expansion chamber 216 of each ducted fan 106 .
  • These blades 108 , 109 may turn in a counter rotating motion with two computer controlled actuator assemblies—one front 107 and one rear 210 —determining the pitch of the blades.
  • FIGS. 3 a , 3 b , and 3 c show enlarged illustrations of the ducted fans 106
  • FIGS. 4 a , 4 b , and 4 c illustrate various rotational positions of the ducted fans 106 and how they affect take-off, flight, hover, and braking.
  • each of the ducted fans 106 is a ducted tilt rotor, which may be composed of a lightweight composite, aluminum, or other suitable material.
  • the rows of blades 108 , 109 inside the ducts may be driven by a direct driveshaft 315 from a double-ended engine 201 , 202 which is mounted sideways with respect to the aircraft fuselage 100 as described above.
  • driveshaft 315 may be located in either the front of the aircraft as shown by element 204 or in the rear of the aircraft as shown by element 219 .
  • the driveshaft 315 may enter each ducted fan 106 from the side and connect inside the differential casing 213 with the differential 212 in a mid portion of the ducted fan 106 .
  • a forward output shaft 307 and a rear output shaft 310 may respectively drive a forward row of fan blades 108 in a front portion of each ducted fan 106 and a rear row of fan blades 109 in a rear portion of each ducted fan 106 .
  • the fan blades 108 , 109 may turn in a counter rotating motion which may create more thrust and reduce the overall diameter of the ducted fans 106 , thereby providing sufficient ground clearance for conventional aircraft take-off and landing mode as well as VTOL capability.
  • FIG. 3 a and FIG. 3 b illustrate the aerodynamic shape of the front of each of the ducted fans 106 , with the bottom of each ducted fan 106 protruding forward as a lower front induction scoop 301 and with the top of each ducted fan 106 sloping down from an upper front induction scoop 302 to the lower front induction scoop 301 , thereby creating more lift and less drag.
  • This lifting air intake duct design may create a low pressure area 206 in the bottom front of the duct which in turn creates lift. This design may reduce or eliminate the need for more wing area and in turn may reduce the weight of the aircraft.
  • FIG. 3 a also shows a high pressure inner compression chamber 306 located between the two rows of rotating fan blades—front 108 and rear 109 —in each ducted fan 106 .
  • the front blade actuator 107 changes the pitch of the front blades 108 .
  • the rear blade actuator 210 changes the pitch of the rear row of blades 109 .
  • the rear blades 109 pull the air from the high pressure inner compression chamber 306 and exhaust the air through the low pressure expansion chamber 216 thereby creating forward thrust.
  • the blades in each row may have variable pitch controlled by fly-by-wire computers which relay information to the front blade actuator 107 and to the rear blade actuator 210 to adjust the angle of the blades.
  • Gyros located in the avionics bays may send a computer signal to the blade actuators 107 , 210 to help control the stability of the aircraft in hover.
  • the blades may be capable of self feathering and lining up in an identical configuration behind one another within each ducted fan 106 to help reduce drag and to increase air flow through the ducts, should an engine be lost or shut down. This feathering feature may extend the range which can be flown with one engine.
  • Each ducted fan 106 may also have a rear air deflector 110 mounted vertically, horizontally, or in another desired configuration on the rear of the ducted fan 106 when positioned for forward flight or other flight condition.
  • This deflector 110 may be controlled by a fly-by-wire actuator 300 and may divert air to the left, right, or other desired direction to help stabilize the aircraft when it transitions from flight to hover or undergoes another desired maneuver. While in hover mode, the deflector 110 may divert the air to provide the ducted fans 106 with the capability of moving the aircraft sideways. Additionally, the air deflector 110 on the rear of the front ducted fans 106 may move one way while the air deflector 110 on the back of the rear ducted fans 106 may divert in the opposite direction or another desired direction, thus giving the aircraft counter-rotation capabilities.
  • FIGS. 4 a , 4 b and 4 c show the position of the ducted fans 106 in forward flight, hover, and reverse, respectively.
  • FIG. 4 a shows the position of the ducted fans 106 for forward flight and for take-off in conventional fixed wing mode.
  • FIG. 4 b illustrates the position of the ducted fans 106 in hover and for vertical take-off.
  • forward movement may be accomplished by a computer controlled duct rotator actuator 124 rotating the ducted fans 106 forward toward the position shown in FIG. 4 a to create forward movement until such speed is reached that sufficient airflow over the lifting surfaces creates lift, and the aircraft transitions from vertical to horizontal flight.
  • the ducted fans 106 While in forward flight as shown in FIG. 4 a , the ducted fans 106 may remain in aerodynamic alignment with the fuselage 100 as with a conventional fixed wing aircraft.
  • the duct actuators 124 When transitioning from horizontal flight to vertical flight, the duct actuators 124 may be rotated upward to slow the forward motion as shown in FIG. 4 b . This decreases the air speed thus reducing the airflow over the lifting surfaces, and as the ducted fan 106 is rotated back to the upward position, it may increase the vertical thrust of the variable pitch blades.
  • the actuators 124 may turn the ducted fans 106 past vertical as shown in FIG. 4 c to slow the aircraft to a complete stop of forward motion.
  • the tilted duct rotator actuator 124 may also control forward and reverse motion in hover by moving the ducts 106 forward or backward, respectively.
  • the aircraft may be adapted to perform as an unmanned aerial vehicle or UAV.
  • This embodiment may include the sideways engine placement and in-line alignment and the fans encased in ducts as described for previous examples above. Most of the configuration of the aforementioned embodiment may remain intact, but some differences may be provided to help reduce the radar signature and to help provide for the carrying of weapons, large payloads, surveillance equipment, or the like.
  • the aircraft and the engine may be scaled up or scaled down to accommodate different weight and/or mission objectives.
  • the UAV embodiment may include the same tail configuration of the previous examples, that is, the vertical stabilizers with the horizontal tail atop them, or as pictured in FIG. 5 , it may utilize a V-tail assembly 501 and may include horizontal stabilizers 502 attached to the sides of and/or to the rear of the ducts (not shown).
  • This V-tail configuration is similar to that of the Raptor F-22.
  • the cabin canopy may be manufactured of an opaque material rather than a transparent material and may become more aerodynamically streamlined by incorporating a lower profile. Bomb bay doors which open at the bottom of the aircraft for deployment of weapons, emergency food supplies, or the like may improve stealth capabilities because those items may be hidden and encased in the fuselage rather than placed on the wings.
  • the UAV embodiment may be used for military and reconnaissance operations for close in support.
  • the UAV embodiment may also be used as an emergency vehicle to pick up wounded or stranded people in a dangerous location.
  • the bolt-on or foldable wings may allow it to be trailered to a nearby or safe location before being sent on a mission. Thinner and longer wing extensions may accommodate higher altitudes and longer loitering.
  • the ability of the aircraft to fly with one engine shut down and to take-off and land in close proximity to a target area may increase the distance the aircraft can fly on its designated fuel allowance.
  • the engine may have the ability to alternate piston firings which also may increase fuel economy while keeping the aircraft aloft using very little horsepower.
  • the fan blades may be encased in ducts, and since ducted fans are quieter than propellers or jet engines, less radar signature may be produced. Also, since the engines may be mounted in the fuselage, less infrared signature may be produced. Stealth may therefore be much improved.
  • most or all of the cabin area between the two engines may be used for storage of weapons, cargo and supplies, and/or surveillance equipment.
  • VTOL capabilities may allow the aircraft to get closer to a target or to get into tight areas as for a rescue.
  • the ability to take off and land in conventional mode may provide for more carrying capacity because the wings may be used for lift so the aircraft may carry more fuel and weight. Once the fuel has burned off on a long flight, a vertical landing is possible.
  • V-tail configuration 501 could also be utilized on the passenger embodiments to improve the speed of the aircraft.
  • FIG. 6 shows an alternative embodiment of this invention as a VTOL sport plane.
  • This embodiment may be comprised of an elongated aerodynamic fuselage with one double-ended driveshaft engine mounted sideways with respect to the fuselage and with a rotatable ducted fan 106 on each end of a main fixed wing 605 for a total of two ducted fans.
  • the wing 605 may be level, dihedral, or anhedral.
  • a passenger compartment/cabin 600 in the front portion of the fuselage may accommodate one or two people, and the engine may be located in the fuselage just behind cabin 600 and in line with the wing 605 .
  • An emergency parachute compartment may be located behind the passenger cabin 600 and just above the engine.
  • the aircraft may have a fixed or retractable tricycle landing gear with one attached to the front 601 of the fuselage and two 602 —one left and one right—attached to the bottom of the fuselage behind and below the passenger compartment 600 .
  • the engine, driveshaft, transfer case, duct rotator actuator, and ducted fans 106 may be provided for wing 605 in like manner as described above for canard wing 123 (see FIGS. 1 , 2 a , 2 b ).
  • the double-ended driveshaft from each end of the engine may exit the fuselage through a transfer case, bearing, or other suitable support, run inside the main fixed wing 605 , continue through a duct rotator actuator, and continue through a side of the ducted fan 106 and into a mid portion of the ducted fan 106 where it connects to a differential.
  • the driveshaft exits the right end of the engine, it runs through the right side of the wing and enters the right ducted fan 106 through the left side; and as the driveshaft exits the left end of the engine, it runs through the left side of the wing and enters the left ducted fan 106 through the right side.
  • the differential may have two output shafts with each one turning one row of blades. Therefore, the two output shafts may respectively turn two rows of counter rotating blades in each ducted fan 106 .
  • Two air deflectors may be attached to the rear of each ducted fan 106 . These deflectors may employ a DSS (Duct Stabilization System) and may use splitting capabilities to control the output thrust for increased stability.
  • the horizontal air deflector may move the aircraft forward and backward, and may provide counter rotation of the aircraft in hover.
  • the vertical air deflector may move the aircraft sideways in hover. In conventional airplane mode, the horizontal air deflector may control the roll.
  • the rear fuselage of the aircraft may be long and streamlined with a cruciform shaped tail comprised of one left 604 and one right (not shown) horizontal surface and one top 603 and one bottom vertical surface (not shown) controlling pitch and yaw, respectively, while the aircraft is in conventional airplane mode.
  • two or more engines may be provided fore, and two or more engines may be provided aft.
  • Each set of engines may be placed end to end and sideways with respect to the fuselage.
  • a common driveshaft or coupled driveshafts which act as one driveshaft 226 may run through the multiple engine blocks, with the shaft output on the outside ends of the outside engines running a pair of propellers or ducted fan blades.
  • a transfer case may not be necessary for a backup for a dead engine, although a transfer case and supplemental drive shaft may be provided for further redundancy.
  • the dead engine shaft may be driven by the running engine and/or engines with the dead engine freewheeling.
  • the propellers or ducted fan blades may keep turning but at reduced power.
  • freewheeling may be accomplished by coupling multiple engines (two or more) in-line with a continuous or coupled driveshaft and/or camshaft to effectively create a single power source and to provide for the freewheeling of one or more engines or for all of the engines, further described as follows.
  • the freewheeling system may be formed by placing two or more engines (power sources) end to end and with each combined engine having a common driveshaft (which may be one integral, continuous shaft or multiple shafts coupled together) enabling the other engine or engines to freewheel.
  • the sizes, horsepower, and types of power sources for such embodiments may be identical or varied.
  • Output shafts for freewheeling can be utilized from each end, or from only one end, or from the middle of the coupled or continuous shafts.
  • Coupling of multiple power sources may provide for the capability of freewheeling of one or more power sources while one or more other power sources are providing power to the other end of the freewheeling engine(s). It may also provide for all of the power sources to run together or for all power sources to freewheel together. If one power source fails, the other power source(s) will continue to turn the driveshaft, thus providing redundancy and enhanced safety.
  • each of the power sources may provide a different power level for the coupled unit; e.g., if three power sources are coupled, one power source could be at idle, one could be at medium power, and one could be at full power, or alternatively all the power sources could be working at full power. More generally, each power source may be utilized at any selected power level. Significant fuel savings may result from regulating the power to only what is necessary at a given flight condition. In addition, any combination of the power sources could be selected to power or freewheel, and the power sources may be alternately selected so that the hours on each of the power sources may be maintained at a similar level if needed.
  • coupling of the power sources with the resultant freewheeling capability may eliminate the need between units for clutches, transmissions, torque converters and/or differentials. This may simplify manufacturing and operations, thereby reducing costs of operation and maintenance and increasing safety.
  • various freewheeling devices may be interposed between a power source and the driveshaft if needed.
  • coupling two or more different types of power sources may provide for various capabilities.
  • the heat source may be utilized to turn an electric source into a generator, thus letting the heat source charge batteries, for example.
  • the heat source may provide power while freewheeling the electric source.
  • the electric source may provide power by freewheeling the heat source, or both the heat source and the electric source may be used together to provide hybrid power.
  • both sources may be freewheeled and used in a regenerating mode to turn the electric source into a generator and provide braking and electrical current to charge batteries.
  • the multi-source unit being used to power a generator(s) may continue to generate power—even with the loss of an engine—because the other engine(s) may accelerate to compensate for the dead engine, thus eliminating or minimizing loss of power.
  • some of the power units for which this freewheeling concept may work best may be power sources which produce very little friction when the power source is freewheeling and the continuous or coupled driveshaft(s) are in-line, thus using internal driveshafts/crankshafts/cam shafts as the drive line.
  • the internal mechanical parts of the engine may be used as the continuous drive line which turns the output shaft with power from the other power source(s).
  • coupling the engines for freewheeling may make it possible for one drive shaft from one end of the coupled power units to turn one propeller unit.
  • This configuration may eliminate the need for other drive shafts when a back-up engine is needed, thereby reducing drag while still providing the “back-up” safety element of conventional twin engines or multi-engines.
  • the freewheeling system may also work inside nacelles; e.g., by placing propellers on one end of multiple engines, between the engines, or at each end of the engines. This configuration may also be used to retrofit an existing aircraft by placing a propeller at one end of combined engines.
  • this coupled and freewheeling power generating unit may provide both power and back-up power from each end or from one end of the coupled power unit and may be used in a VTOL aircraft to provide for powering the aircraft. It may also be used to improve the powering of existing VTOL aircraft currently in design, production, and/or use. Currently, many of these aircraft have propellers and blades at the end of the engines or in the ducts with their power units creating safety issues if one engine fails. In some embodiments, coupling engines together may allow the use of smaller engines thereby reducing the cost of manufacturing, especially for electric motors, since smaller engines generally cost less to manufacture.
  • reduced friction power units may include engines such as the PerlexTM, Axial VectorTM, Sinusoidal CamTM, Dyna-CamTM, RadmaxTM, Rand-CamTM, WankelTM, and any cylindrical rotor, rotor, rotary, mill, vane, turbine, jet, electric and any other reduced friction power units capable of using its internal drive shafts in freewheeling applications as described herein.
  • engines such as the PerlexTM, Axial VectorTM, Sinusoidal CamTM, Dyna-CamTM, RadmaxTM, Rand-CamTM, WankelTM, and any cylindrical rotor, rotor, rotary, mill, vane, turbine, jet, electric and any other reduced friction power units capable of using its internal drive shafts in freewheeling applications as described herein.
  • some conventional engines may be used if the amount of friction produced in them may be reduced.
  • freewheeling may be provided in connection with actuators and servo motors. As shown in FIGS. 3A and 3B , a common shaft 307 , 310 may be provided between the two actuators 107 and 210 , which may be connected to allow redundancy for the control of the variable pitch blades 108 and 109 by allowing the freewheeling of a failed actuator.
  • common shaft 307 , 310 may be hollow with a rod traversing through the middle, with the outer portion of the shaft serving to power blades 108 , 109 and the inner rod serving to connect actuators 107 , 210 , such that if one of the actuators 107 , 210 loses power the other of the actuators 107 , 210 may continue to control the pitch of the first and second rows of blades 108 , 109 .
  • This type of application may also be applied to many different scenarios for backup systems.
  • actuators and servo motors may be stacked (i.e., operably engaged with a common driveshaft) like the multiple engines described above, or separated and equipped with separate power sources in the event one power source fails. Such actuators and servo motors may be connected by a common shaft thus allowing freewheeling of a dead actuator or servo motor.
  • Some embodiments may have two engines fore and two engines aft with each pair of engines comprising a first engine fore and a next engine aft.
  • Each pair of engines may be placed end to end and in-line and sideways with respect to the fuselage.
  • Each engine may be controlled separately with the driveshaft from the right engine turning the propellers or ducted fan blades on the right side of the aircraft and with the driveshaft from the left engine turning the propellers or ducted fan blades on the left side of the aircraft.
  • Transfer cases may be used in this example to pick up the power from the other engines.
  • This embodiment may use modifications to provide for an emergency rescue vehicle.
  • the changes comprise shortened wings, a stubby nose, a front canopy that would fold or retract backwards, and a platform addition which would facilitate emergency escapes.
  • the emergency vehicle could nose in to a building, cliff, or the like to provide an escape route for people trapped in, for example, a burning building.
  • the stubby nose and retractable canopy may allow access to the aircraft.
  • An extendible/retractable ramp in the nose section may provide a stable emergency escape route.
  • Various embodiments of the aircraft described herein may utilize one or more of various types of engines, including Axial Vector, Dyna-Cam type engines, internal combustion, radial, piston, reciprocating, rotary, rotor, StarRotor, vane, mill, electric, hybrid, diesel, or similar type engines, alone or in combination, mounted in-line and sideways with respect to the fuselage.
  • Hybrid engines may include one or more of each of a plurality of engine types.
  • a hybrid engine may include a diesel portion and an electric portion.
  • an electric engine may have a first mode in which the electric engine drives the driveshaft and a second mode in which the electric engine serves as a generator driven by the driveshaft and charges a battery electrically connected to the electric engine.
  • the electric engine may operate in the first mode during take-off and the electric engine may operate in the second mode after take-off.
  • the front ducted fans may be mounted at the end of the canard wing, and the rear ducted fans may be mounted on each side of the fuselage just behind the passenger canopy.
  • the ducted fans may be mounted on each side of the front part of the fuselage, on each end of the main wing, and/or on the tail, depending upon the configuration of the aircraft.
  • propellers may be utilized to handle larger loads with less horsepower, and the engines may be mounted in a higher position on the fuselage to provide clearance for the propellers. This configuration may accommodate from six to ten passengers or a large payload, for example.
  • the aircraft may be equipped with a parafoil type parachute and one or more deployment rockets for emergencies.
  • the deployment rockets may be solid fuel, liquid fuel, gaseous fuel, or a combination thereof.
  • the parachute may primarily be used while in hover mode or at slow speeds, but may be used in other flight conditions if necessary or desired.
  • the parachute and rockets may be mounted in the top of the rear portion of the fuselage behind the rear cabin, with one rocket on each side, for example.
  • a cable system may be imbedded in the fuselage with a breakaway covering as described above.
  • the supporting cables may be attached to the airframe at four attachment points as described above—two in the front fuselage near the outside end of the front engine and two in the rear fuselage near the outside end of the rear engine.
  • the risers from the parachute may be attached to the supporting cables.
  • the emergency parachute may be deployed by the pilot via an emergency hand lever if the aircraft is in forward flight, or it may be automatically deployed by a computer if an engine loses power or the aircraft becomes unstable in hover or other flight condition.
  • the parachute system may deploy the rockets, shooting them out at an angle and pulling the ends of the parafoil parachute in opposite directions, thereby moving the parachute away from the aircraft appendages and stretching the canopy to the full length of the parachute.
  • Airbag technology with small elongated tubes embedded in the parachute canopy cords and the outer edges of the parachute system may be utilized to immediately expand the parachute into the ultimate shape of a fully deployed parachute.
  • the canopy may then be ready to receive the air, and this may result in the aircraft suffering a very slight loss of altitude from the time the parachute deploys until it is filled with air.
  • computer controlled air sensors may determine if a need exists to apply or delay deployment of the airbag expander of the air canopy. This may minimize the shock from the forward air speed.
  • the parachute When the parachute is opened, it may be steered via controls inside the aircraft.
  • the parafoil parachute may give the aircraft a forward motion to help steer the aircraft to a safe area for a landing while descending under the parachute. If one engine is still operating, the parachute may act as a parasail to help keep the aircraft aloft while the pilot leaves a dangerous area and searches for a safe landing site.
  • the emergency parachute may be computer controlled in hover or other flight condition, it is possible the emergency backup transfer case and supplemental driveshafts may be bypassed or eliminated from certain embodiments thereby streamlining and simplifying the design of the output shafts from the engine to each differential. This may significantly reduce the weight of the aircraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

An aircraft may have a fuselage, a left wing extending from the fuselage, a right wing extending from the fuselage, a tail section extending from a rear portion of the fuselage, and a first engine and a second engine operably connected by a common driveshaft, wherein the first and second engines are configured for freewheeling such that if one of the first and second engines loses power the other of the first and second engines continues to power the aircraft.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. application Ser. No. 13/012,763 filed Jan. 24, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 11/581,321 filed Oct. 16, 2006, which claims priority to U.S. Provisional Patent Application No. 60/727,798 filed Oct. 18, 2005, the disclosures of each of which are incorporated herein by reference.
  • FIELD
  • This invention relates generally to Vertical Take-Off and Landing (VTOL) aircraft and more specifically to a compact VTOL aircraft with a fixed wing which can be utilized as a Personal Air Vehicle (PAV) or an Unmanned Aerial Vehicle (UAV).
  • BACKGROUND
  • Inventors have long contemplated and attempted to design vehicles which would serve as a combination car/airplane. That creation could be driven as a car to an airport where it would be converted with wings and then flown like an airplane. Upon landing, the aircraft would be converted back to a car and then driven on a roadway to a destination. The Aerocar (1959) by Molt Taylor and the recent “Transition” flying car by Massachusetts Institute of Technology graduate student Carl Dietrich and the MIT team show a continuation of that dream. However, that dream has not been fully realized, and a need still remains for an aircraft that may operate without being constrained to airports or roadways.
  • SUMMARY
  • The present disclosure is directed to an aircraft that contemplates no need for driving a car through traffic to and from airports. The capabilities and properties of this particular aircraft make it compact and versatile enough so as to enable a pilot to fly this aircraft from “door to door” without the requirement of an airport or highways. For example, a person could lift off as with a helicopter from a space such as a driveway, back yard, parking garage, rooftop, helipad, or airport and then fly rather than drive to all the day's various appointments. Some embodiments of the present invention provide a versatile VTOL aircraft that is not only lightweight and powerful enough to take off and land vertically, but is also economical and powerful enough to take off, land and fly at a fast rate of speed, like an airplane. Therefore, it serves as a personal air vehicle (PAV) with a multitude of uses and configurations. The ability to transition from vertical flight to forward flight and back again provides unlimited possibilities because it combines the flexibility and best attributes of both types of aircraft.
  • In some embodiments, the current invention is able to achieve its power from the placement and production of two (2) Axial Vector/Dyna-Cam type engines mounted sideways with respect to the fuselage of the aircraft (that is, the axis of rotation of the driveshaft of each engine may be oriented transverse to the longitudinal axis of the fuselage). These engines are lightweight and produce greater horsepower and three (3) times more torque per horsepower than conventional engines. Each engine may have a double-ended driveshaft which provides direct drive to the ducted fans/nacelles which are located outside of the fuselage. Each end of each double-ended driveshaft may turn one ducted fan, so two engines will power two (2) pairs of ducted fans for a total of four ducted fans.
  • Forward Engine
  • In some embodiments, a first engine may be placed in the front section of the aircraft fuselage, and the driveshafts from the ends of the first engine may run through a front canard wing on the aircraft to a front pair of ducted fans located at the ends of the canard wing. These front ducted fans may be mounted far enough out from the fuselage to prevent propeller wash in the rear ducted fans.
  • Rear Engine
  • In some embodiments, a second engine may be mounted behind the passenger cabin and toward the rear of the fuselage. This engine may power an of pair of ducted fans which are attached to the fuselage, so the driveshaft for this engine may connect directly through a transfer case to differentials in the ducted fans. The rear engine may be slightly elevated above the center line of the side of the fuselage.
  • In-Line Configuration
  • The two sideways mounted engines may be placed in-line in the fuselage so the passenger cabin and the rear engine receive less wind resistance, thus reducing drag on the airplane and increasing fuel efficiency. As early as 1937, Dr. Claude Dornier used the in-line configuration in his German built Dornier DO335. By the 1960s, the Cessna Skymaster 336 was using in-line engines, and presently the Adams A500 designed by Burt Rutan is utilizing the configuration. Since the engines are located inside the fuselage rather than outside in the ducted fans or at the end of a main wing, as on the Bell Boeing V-22 Osprey, a better in-line center of gravity is established thereby resulting in quicker response, better balance and increased stability in flight and/or in hover.
  • Ducted Fans
  • In some embodiments, the aircraft may have a fixed wing and four aerodynamically designed tilt ducted fans. As early as the 1960s, the Bell X-22A was one of the first aircraft to fly using tilt ducted fans. More recently, Moller's “Skycar” (U.S. Pat. No. 5,115,996) is a vehicle which includes ducted fans with directional vanes and two engines in each duct for a total of eight engines. Unlike the X-22 with its four engines and Moeller's car with its eight engines, some embodiments of this invention use only two sideways placed engines in the fuselage with direct drive from the driveshafts into differentials in the ducted fans to power four ducted fans, with no intervening transmission between the rotor of each engine and the driveshaft or between the driveshaft and the differentials. The elimination of a transmission in such a direct drive embodiment saves weight and increases efficiency and performance.
  • The fact that only a differential rather than a motor is located in the ducted fans of some embodiments of this invention creates a larger volume of airflow through the ducted fans. Eliminating the weight of the motors or engines outboard of the fuselage also reduces the weight on the side of the fuselage and/or the wing tips, thereby using less horsepower and torque and in turn making the aircraft more responsive and stable.
  • Most ducted fans have a problem when reaching higher speeds because of a tendency to push air out in front of the duct. In some embodiments of the current invention, the aerodynamic shape of the front of the ducted fans is such that the bottom of each duct protrudes forward and the top of each duct slopes down to the bottom. This lifting air intake duct design creates low pressure in the bottom front of the duct which helps eliminate the need for more wing area and in turn reduces the weight of the aircraft. Willard Custer illustrated this lift principle with his Channelwing aircraft in the late 1930s. This technology is being researched even today at the Georgia Institute of Technology.
  • Another result of extending the bottom of the ducts is a reduction of the noise created by the turning blades. In a UAV stealth design, this will also help cover the radar signature from the turning blades.
  • In some embodiments, ducted fans permit the aircraft to take off and land in either conventional or VTOL mode. Since the fan blades may be encased in ducts, the ducts can be rotated to align horizontally with the fuselage, and the aircraft may take off and land conventionally. In some embodiments, such ducted fans may provide greater flexibility in terms of sizing, thrust, and ground clearance than if unducted propellers are used. In some embodiments, a double row of counter-rotating fan blades in the ducted fans may provide sufficient thrust so that the duct diameter may be small enough for sufficient ground clearance. In some embodiments, conventional take-off and landing may also be provided because the double row of counter-rotating blades in the ducted fans allow the ducted fans to be small enough to clear the ground when oriented horizontally. In some embodiments, VTOL is possible because the ducted fans may rotate to a vertical orientation and provide sufficient thrust for take-off and landing.
  • Lifting Body Airframe
  • In some embodiments, the aircraft body itself may be an aerodynamically designed lifting body. As far back as the 1920s, Burnelli Aircraft was building a lifting body airframe (U.S. Pat. No. 1,758,498). Today, the Space Shuttle still utilizes that technology. With the engines mounted sideways with respect to the fuselage, this design lends itself to a lifting body application.
  • Emergency Parachute
  • Some embodiments of the current invention include a power boosted emergency parachute assembly which can be used in hover or flight conditions, should the aircraft lose one or more of its engines, thus allowing the pilot to continue to maneuver the aircraft to a safe landing.
  • Fly-by-Wire Control System
  • Some embodiments of the current invention incorporate a computer controlled fly-by-wire system which calculates gyroscopic stability and sends information to one or more ducted fans or propeller blades to adjust them to the correct pitch for controlled flight.
  • Fixed Wing with Removable Sections
  • In some embodiments, the aircraft may have a fixed level, dihedral, or anhedral wing to provide for forward flight in airplane mode. Sections of the aircraft wings may be bolted on or removed to create various wing lengths for different applications, such as for short distances as in a city setting or long distances for long range travel and for easy transporting of the aircraft, as on a trailer or truck or in a shipping container. For example, extensions on the main wing may enable an aircraft to fly at high altitude and/or to loiter for long periods of time.
  • By combining the attributes of a fixed wing airplane and a helicopter to a lightweight and compact aircraft, a personal air vehicle may become a new mode of transportation. The embodiments set forth herein are merely examples of various configurations of the aircraft, and many new models can result from this invention. Different embodiments of this aircraft could range from a variety and number of passenger seating arrangements to a model with no passengers; i.e., a UAV. In other applications, the aircraft may serve as a personal air vehicle, an air taxi, an observation aircraft, an emergency rescue vehicle, a military vehicle or a UAV, or for other purposes.
  • Some embodiments may be constructed of lightweight material and the airframe may be designed as a lifting body, which helps reduce the weight and the square footage area of the wings.
  • Some embodiments may have the vertical take-off, landing and flight capabilities of a helicopter and the conventional take-off, landing and flight capabilities of an airplane. Some embodiments may transition back and forth between VTOL and forward flight. If the aircraft is in hover position, air deflectors (which may be mounted on the rear of each ducted fan) may enable the aircraft to move sideways and to counter rotate, and the tilted ducted fans may enable it to move forward and backward safely in tight spaces. Since some embodiments of the aircraft may use significant power to accommodate its VTOL capabilities, the aircraft may also be designed to take advantage of this power and transform it into maximum airspeed in forward flight.
  • All these capabilities make this a truly unique aircraft, capable of a multitude of uses. Some embodiments of the current invention can lift off and set down like a helicopter, but can also utilize the speed of an airplane to provide quick “door to door” service for convenience and for the saving of time and fuel.
  • Since some embodiments of the aircraft can take off like an airplane, it may be capable of handling more weight—such as that of passengers, fuel and freight—on takeoff and then traveling a longer distance. In some embodiments, the aircraft may land in a conventional aircraft mode on a runway, if desired, or the aircraft may land vertically in a smaller space or without a runway. In some embodiments, the compact nature of the aircraft, combined with the use of ducted fans, may provide a large spectrum of landing locations for it as a VTOL vehicle.
  • Although some embodiments of the aircraft may not be as fast as the new light jets currently being developed and soon to be offered for air taxi service, the aircraft nonetheless saves overall time because it can take off and land in locations other than a landing strip. Time commuting to and from an airport can be significant, and some embodiments of this aircraft may provide a means to bypass airports by leaving from and returning to a nearby convenient location.
  • In some embodiments, one advantage of the fixed wing aircraft is the ability to throttle back the engines and use lift from the wing to help the engines conserve fuel while flying. In some dual engine embodiments, either engine may be shut off, and the aircraft can cruise on one engine for improved fuel economy. For example, Burt Rutan's Voyager took off using both engines, then shut down one engine and flew around the world—using one engine—without refueling. Additionally, the wing may be dihedral, which may improve the stability of the aircraft.
  • In some dual engine embodiments, if one engine is lost, the aircraft can fly on either of its engines and continue to an airport to land conventionally. If both engines are lost while in flight, the aircraft's glide slope is excellent. The pilot can glide the aircraft to a landing site or use a guidable emergency parachute to float to a safe location.
  • In some embodiments, another advantage derives from the fact that the engines are not in the ducts but are instead mounted in the fuselage, providing an in-line center of gravity for better stability and increased response (as opposed to having the weight of the engines on the wingtips). Additionally, the front engine may break the air for both the cabin and the rear engine, thus creating a very aerodynamic lifting body aircraft.
  • In some embodiments, the elevation of the rear engine may allow for air intake scoops to be mounted on the front of each side of the engine, thereby providing for air cooling of the rear engine while still maintaining the aircraft's aerodynamic design. In conventional airplane mode, this elevation may also improve the flare of the aircraft upon landing and derotation and may allow the rear landing gears to hit the runway first. It also may improve take-off and rotation because the front landing gear of the aircraft may lift off first.
  • In some embodiments, another advantage in landing an aircraft as described herein is that, in the case of an engine being lost, the two ducted fans attached to that engine may stop also. Consequently, the critical engine problem which causes yaw and then roll, usually experienced when a twin engine aircraft loses an engine, may be eliminated. Additionally, if an engine is lost, some embodiments of the aircraft are capable of auto feathering the fan blades of the two ducted fans associated with that engine, thereby reducing drag through the duct.
  • In some embodiments, the sideways placement of the engines may provide the ability to power two ducted fans with one engine having a double-ended driveshaft. In such embodiments, the cost of construction and operation of the aircraft may be less, for example, because only two engines may be used to power four ducted fans.
  • In some embodiments, one or more driveshafts of the rear engine may be shortened going into the associated rear ducted fans because the ducted fans may be mounted on the side of the fuselage, and one or more driveshafts of the front engine may be shortened going through a canard wing which may not be as long as a main wing. This configuration not only may reduce the weight of the one or more driveshafts, but may also provide an enhanced safety factor. Since a driveshaft may enter the middle of a differential in a ducted fan, the driveshaft may naturally turn two output shafts of the ducted fan in a counter rotating motion. This reliable yet simple design may also add to the safety of the aircraft.
  • In some embodiments, the aircraft may use an Axial Vector/Dyna-Cam type engine which may provide many advantages, including very smooth operation with little vibration and utilization of a variety of fuels and high fuel efficiency. The Axial Vector/Dyna-Cam type engine is a lightweight, small and compact internal combustion engine with high horsepower and high torque. A high torque engine may allow a high angle of attack on variable pitch blades, which may provide quick response with little variation in the rpm of the engine.
  • In some embodiments, the ducts of the ducted fans may be aerodynamically designed to create lift thereby reducing the weight of the aircraft because of less square footage of wing area than otherwise may be required. Since no engines are located in the ducts, more area is available for airflow through the ducts, thus creating more lift and thrust. In some embodiments, the front pair of ducts may be mounted far enough out on the canard wing to allow the rear ducts to receive undisturbed air.
  • In some embodiments, two rows of blades in a ducted fan may turn in a counter rotating motion thereby creating more thrust and reducing the overall diameter of the duct. This reduced diameter may provide sufficient ground clearance for a conventional aircraft take-off and landing mode as well as VTOL and VSTOL capability.
  • Tilt ducted fans may provide the ability to get full thrust on lift and forward flight. The aerodynamic shape of the lifting duct may provide for more lift with less weight since a shorter wing may be used.
  • In some embodiments, the blades in each row of a ducted fan may have variable pitch. The pitch angle of the blades may be determined and controlled by a computer in communication with gyros in a fly-by-wire system, thus controlling pitch for stability in a hover mode or adjusting pitch while in forward flight. The blades may have the capability of self feathering and lining up in an identical configuration behind one another within each duct to help reduce drag and increase air flow through the ducts should an engine be lost or shut down. This capability may extend the range which can be flown with one engine.
  • In some embodiments, the use of ducted fans instead of un-ducted propellers may provide for safer VTOL. In such embodiments, no exposed propellers are involved, so the aircraft can land in tight spaces or get close to people or to stationary objects. For example, it could hover next to buildings for rescues, land in fields with electrical wires, and/or land in neighborhoods or a regular parking lot. In such embodiments, since ducts surround the fan blades, the ducted fans may be quieter, enabling the aircraft to take off and land with less noise than is typically associated with helicopters. This ducted fan design may also help reduce or cover the radar signature from the turning blades in a UAV stealth design.
  • NASA has been researching and developing its “highway in the sky” which provides synthetic vision and GPS guidance in aircraft so that pilots can bypass the large congested airport hubs and land at smaller airports. That technology may be included in some embodiments of this invention, which may allow pilots to bypass even the small airports and land at or near their actual destinations, and it may assist in handling bad weather such as fog.
  • Some embodiments of this invention may include an emergency parachute system that provides for quick deployment and rapid expansion to prevent significant altitude loss while in hover or for a delayed deployment while in forward flight. Most of the currently used emergency parachutes—often referred to as whole-airplane recovery parachute systems—require too much time to fill with air, resulting in a significant loss of altitude before the parachute can take effect.
  • The Ballistic Recovery System (BRS) which was invented and patented by Boris Popov (U.S. Pat. No. 4,607,814) was originally created for ultralights and experimental aircraft and later retrofitted for larger aircraft. The BRS system is currently utilized by Cirrus Design for its lighter single engine airplanes. However, the emergency parachute system in the Cirrus aircraft allows a significant loss of altitude before the canopy is filled with air. Once the Cirrus is descending under the parachute, the pilot has no control of the descent and therefore no control of the landing site. The rocketed parachute system in some embodiments of the present invention may rapidly deploy and expand the parachute and then allow the pilot to steer the parachute to get the aircraft to a preferred landing site.
  • A sport plane embodiment of this aircraft may have a fuselage having a longitudinal axis, a left wing extending from the fuselage, a right wing extending from the fuselage, a tail section extending from a rear portion of the fuselage, a first ducted fan rotatably mounted to the left wing, a second ducted fan rotatably mounted to the right wing, and an engine disposed in the fuselage, the engine having a direct-drive, double-ended driveshaft having an axis of rotation oriented transverse to the longitudinal axis of the fuselage, wherein the first ducted fan includes a first differential operably connected between first and second rows of counter rotating fan blades, wherein the second ducted fan includes a second differential operably connected between third and fourth rows of counter rotating fan blades, and wherein one end of the driveshaft is directly connected to the first differential, and the other end of the driveshaft is directly connected to the second differential.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a front perspective view of a four ducted fan aircraft embodiment of the current invention.
  • FIG. 2 a is a top schematic cross-sectional view of the aircraft of FIG. 1 showing single engines serving the front and rear pairs of ducted fans.
  • FIG. 2 b is a top schematic cross-sectional view of the aircraft of FIG. 1 showing pairs of engines serving the front and rear pairs of ducted fans.
  • FIG. 3 a is a side schematic cross-sectional view of a ducted fan assembly.
  • FIG. 3 b is a top schematic cross-sectional view of the ducted fan assembly of FIG. 3 a.
  • FIG. 3 c is a front view of the ducted fan assembly of FIG. 3 a.
  • FIG. 4 a is a side view of the aircraft of FIG. 1 in forward flight with rear thrust.
  • FIG. 4 b is a side view of the aircraft of FIG. 1 in hover with downward thrust.
  • FIG. 4 c is a side view of the aircraft of FIG. 1 in braking position with reverse thrust.
  • FIG. 5 is a front perspective view of a Personal Air Vehicle (PAV) or an Unmanned Aerial Vehicle (UAV) embodiment.
  • FIG. 6 is a front perspective view of a Sport Plane embodiment.
  • DETAILED DESCRIPTION
  • As used herein, the following terms should be understood to have the indicated meanings:
  • When an item is introduced by “a” or “an,” it should be understood to mean one or more of that item.
  • “Comprises” means includes but is not limited to.
  • “Comprising” means including but not limited to.
  • “Having” means including but not limited to.
  • “Including” means including but not limited to.
  • VTOL Aircraft with Sideways Mounted Engines
  • As shown in FIGS. 1 and 2 a, a first embodiment of the current invention may have four ducted fans. This embodiment is a VTOL aircraft with two (2) engines—one fore 201 and one aft 202—placed sideways with respect to an elongated lifting body fuselage 100, which may be made of lightweight composite materials, aluminum, or other suitable materials. This embodiment may have a canard wing 123 on the front, a fixed main wing 113 in the middle of the fuselage 100 with winglets 114 attached on each end of the main wing 113, two vertical stabilizers 120 on the rear, a horizontal stabilizer 122 across the top of the tail, a pair of ducted fans 106R and 106L fore, and a pair of ducted fans 706R and 706L aft on each side of the fuselage 100 for a total of four (4) ducted fans. The canard wing 123 and the main wing 113 may be level, dihedral, or anhedral, depending on the overall aerodynamic design of the aircraft. In this example, all four ducted fans may have the same design and are sometimes referred to as element 106 in the discussion of this embodiment. Alternatively, the ducted fans may not all have the same design. In other alternative embodiments, un-ducted propellers may be used instead of ducted fans, or a combination of ducted fans and un-ducted propellers may be used.
  • The engines 201, 202 may be Axial Vector/Dyna-Cam type engines or other suitable engines. The Axial Vector engine from Axial Vector Engine Corporation is a six piston twelve cylinder radial design with high horsepower and torque. The engine is small, lightweight and produces three times the torque per horsepower as compared to some other available engines, thus improving the power-to-weight ratio. It is fuel efficient and can use a variety of fuels. It has fewer parts and produces less vibration than some other available engines.
  • Passenger Cabin
  • In this example, the passenger cabin may have a lightweight frame made of composite, aluminum, or other suitable material with one stationary front wraparound transparent canopy 127 which serves as the windshield, and two pivotally hinged gull wing style doors 126 which are wraparound door frames with transparent window material encompassing most of the surface to serve as the side windows and skylights on each side of the fuselage 100. The doors 126 may also be made of composite, aluminum, or other suitable material. To clarify, these doors 126, when closed, may serve as skylights on the top and windows on the side. The pilot and front passenger side of the cabin may have transparent material of oval or other suitable shape in the floorboard which may provide for downward viewing and may also provide an emergency escape hatch. The side door 126 may pivot wide open to allow for loading/unloading of large loads; e.g., an emergency stretcher or large cargo. It may open large enough to accommodate the ingress and egress of both the front and rear passengers. Some embodiments of the present invention may have a four-seat cabin, but other embodiments may include fewer or more than four seats, and still other embodiments may be utilized as an unmanned aerial vehicle (UAV) with no seats.
  • Forward Section of the Aircraft
  • The headlights/landing lights encasement 101 may have a streamlined transparent protective covering located on the nose of the fuselage 100 and one front air intake 102 may be located on each side of the nose of the fuselage 100. A canard wing 123 may be attached to the front fuselage 100, with a ducted fan 106 attached to each end of the canard wing by a duct rotation actuator 124. Elevators 116 on the trailing edge of the canard wing may facilitate in controlling the pitch of the aircraft.
  • Each of the ducted fans 106 may house a front blade actuator assembly 107 which controls the pitch angle of a front row of blades 108 and a rear blade actuator assembly 210 which controls the pitch angle of a rear row of counter rotating blades 109 (hidden in FIG. 1; see FIGS. 2 a, 2 b, 3 a, 3 b). A duct air deflector 110 may be located on the rear of each ducted fan 106. Each of the four ducted fans 106 on the aircraft may contain the same front and rear blade assemblies and configuration, and each may or may not have a duct air deflector 110 on the rear of the ducted fan 110. Alternatively, the ducted fans 106 may not all be of the same design. For example, in some embodiments, the forward ducted fans 106 may be of one design, and the rear ducted fans 106 may be of a different design. The air deflector 110 may facilitate control of the transition from forward flight to hover and back to forward flight or from hover to forward flight and back to hover, and control of the sideways and counter rotating motion when in hover.
  • One front tire 103 may be located on the front bottom of each side of the fuselage and may be attached to a fixed front landing gear spar 105 and may be partially covered by a streamlined fairing 104 which is wrapped around each tire 103. Alternatively, the tires 103 and associated landing gear may be retractable into the fuselage 100 or the canard wing 123. The spars 105 may be fixed, and the tires 103 may be pivoting to provide a tight turning radius. A first avionics bay 128 for storing the aircraft's computer, gyroscopic equipment, etc. may be located inside the nose cone. This avionics bay 128 may house the flight computers and gyroscopes which handle guidance, navigation and control; for example, it may serve as a data bus which takes the flight instrumentation, weather and additional data, along with pilot input, to control flight. A second bay may be located in the back (not shown) for redundancy.
  • Center of the Aircraft
  • The main wing 113 may be attached to the bottom of the fuselage 100 below the passenger cabin doors 126. Alternatively, the main wing 113 may be attached to the top of the fuselage 100 or to some intermediate portion of the fuselage 100. A speed brake 111 may be located toward the center of the wing 113 on each side of the fuselage to enable the aircraft to slow while in forward flight. The wing 113 may include winglets 114 to help reduce drag and thereby increase speed and lift; ailerons 115 to help control roll while in forward flight; and flaps 112 to help reduce landing speed, move into transitional speed while switching from horizontal to vertical and/or back to horizontal flight, and decrease the surface area of the wing thus resulting in less drag on vertical take-off. In some embodiments, other control surfaces may be employed in combination with or in lieu of speed brakes 111, ailerons 115, and flaps 112.
  • Rear Section of the Aircraft
  • One rear tire (not shown in FIG. 1) may be attached to a fixed or retractable rear landing gear spar 117 on each side of the fuselage 100 toward the aft section of the aircraft. Each of these rear tires may be fixed and covered by a streamlined fairing 104 or retractable into the aft portion of the fuselage 100 and may be equipped with brakes.
  • A ducted fan 106 may be located on each side of the fuselage 100 with the attachment point located behind the rear passenger cabin/canopy 126.
  • The rear engine 202 may be mounted slightly higher than the front engine 201 to provide room for air intake cooling which may be accomplished through an air intake scoop 118 located behind the passenger cabin/canopy 126 and on each side of the fuselage 100.
  • One fixed vertical stabilizer 120 may be attached on each side and at the end of the fuselage 100 to minimize or eliminate the yaw/roll oscillations and to reduce the drag off the aft end of the lifting body fuselage 100. A rudder assembly 119 attached to the rear of each vertical stabilizer 120 may help provide yaw control. Atop the vertical stabilizers 120, a horizontal stabilizer 122 may be attached, with a rear elevator 121 located on the trailing edge of the horizontal stabilizer 122 for pitch control.
  • An emergency parachute with deployment rocket launchers may be stored in a storage location compartment 125 in the rear fuselage 100, just behind the passenger cabin/canopy 126 and above the rear engine 202. The parachute cables may be attached to the aircraft at four attachment points 129 (three not shown). Two of these attachment points 129 may be located on each side of the aircraft, with two fore and two aft. The front parachute cable on each side may be routed from the attachment point 129 on the front of the aircraft, up the side of the fuselage 100 between the front canopy 127 and rear canopy 126, across the top of the fuselage 100 between the left and right hinged gull wing doors 126, and back to the parachute storage compartment 125. The rear attachment points 129 may be located behind and above the air intake scoop 118 on each side of the aircraft. The rear parachute cable on each side may be routed up the side of the aircraft from the attachment point 129 to the storage compartment 125. All the parachute cable routings may be concealed in a recessed channel under a non-protruding breakaway covering (not shown) which is aerodynamically flush with the fuselage 100.
  • As shown in FIG. 2 a, two double-ended, direct driveshaft engines 201, 202 may be mounted longitudinally in-line with one another in the fuselage 100, with one fore and one aft. Engines 201 and 202 may be oriented “sideways” with respect to the fuselage 100 such that the axis of rotation of the driveshaft 204 and 219, respectively, of each engine is oriented transverse to the longitudinal axis of the fuselage. A first engine 201 may be placed sideways in the front portion of and with respect to the fuselage 100, and a second engine 202 may be placed sideways in the rear portion of and with respect to the fuselage 100. Each engine 201, 202 may have a double-ended driveshaft 204 or 219, respectively, which powers a pair of ducted fans 106R and 106L forward, and 706R and 706L aft. One ducted fan 106R, 106L may be mounted on each end of the front canard wing 123, and one ducted fan 706R, 706L may be mounted on each side of the fuselage 100 behind the passenger cabin/canopy 126.
  • In general, this embodiment of the current invention includes a first power generation device or engine 201 forward in the fuselage, which is used to power a first driveshaft that serves a ducted fan or propeller on the right canard wing and to power a second driveshaft that serves another ducted fan or propeller on the left canard wing. In some embodiments, the first power generation device may be a single engine, and the first driveshaft and the second driveshaft may be a single continuous driveshaft 226 that goes through the engine and protrudes out each end of the engine. In other embodiments described below, the first power generation device may be two or more engines in alignment, and the first and second driveshafts may be a single continuous driveshaft or may be separate distinct driveshafts, which may be coupled together to act as a single driveshaft. The same is true for the rear power generation device or engine 202 and its associated driveshaft(s).
  • Forward Engine
  • The front engine 201 may be mounted in a sideways position with respect to the fuselage 100 between the nose of the aircraft and the front section of the cabin/canopy 127. As the double-ended direct driveshaft 204 exits each end of the front engine 201, each side of the driveshaft 204 runs in an opposite direction and exits the fuselage 100 through a transfer case 203, continues span-wise through the canard wing 123 and duct rotator actuator 124, and connects to an internal duct differential 212 in a mid portion of the ducted fans 106L and 106R. The portion of the driveshaft 204 that exits the left end of the engine 201 runs to the left to power the left front ducted fan 106L; the section of the driveshaft 204 that exits the right end of the engine 201 runs to the right to power the right front ducted fan 106R.
  • Rear Engine
  • The rear engine 202 may be mounted in a sideways position with respect to the fuselage 100 behind the passenger cabin/canopy 126. Rear engine 202 may be located in-line with the front engine 201 and may be slightly elevated above the center line of the fuselage 100. Two air intake scoops 118, with one mounted on each side of the fuselage in front of the rear engine 202, may provide for air cooling of the rear engine 202. The rear direct driveshaft 219 may be shorter than the front driveshaft 204 because the rear ducted fans 706L and 706R may be mounted on each side of the fuselage 100 just behind the passenger cabin/canopy 126. Similar to the front engine 201, the double-ended direct driveshaft 219 exits each end of the rear engine 202, and each side of the driveshaft 219 runs in an opposite direction and exits the fuselage 100 through a transfer case 218, continues through a duct rotator actuator 124, and connects to an internal duct differential 212 in a mid portion of the ducted fans 706L and 706R.
  • In this embodiment, the front transfer case 203 and the rear transfer case 218 may be connected by a transfer case supplemental driveshaft 217 which runs just inside of each side of the fuselage 100 between the transfer cases 203 and 218. These supplemental driveshafts 217 are not normally engaged; however, should one engine lose power (sometimes referred to herein as a “dead,” “lost,” or “non-working” engine), a computer or other controller may engage the supplemental driveshafts 217 in the transfer cases 203, 218 thereby bypassing the non-working engine. Through the transfer cases 203, 218 and supplemental driveshafts 217, the working engine may provide power to operate the pair of ducted fans 106R and 106L, or 706R and 706L, as the case may be, of the non-working engine and thus keep the aircraft in a stable position.
  • The mechanics inside each of the ducted fans 106R and 106L may be identical except for the entry of the driveshaft 204 through the duct rotator actuator 124 into the duct. The front 204 and rear 219 driveshafts extending from the right sides of the engines 201, 202 enter the right front and right rear ducted fans 106R and 706R from the left; and the front 204 and rear 219 driveshafts running from the left sides of the engines 201, 202 enter the left front and left rear ducted fans 106L and 706L from the right.
  • In each of the four ducted fans 106, a differential casing 213 may house the differential 212 and two differential output driveshafts 225. The differential 212 may turn the two differential output driveshafts 225 in a counter rotating motion with one shaft powering a row of variable pitch blades 108 at a front low pressure air intake opening 206 and one powering another row of variable pitch blades 109 at a rear air output expansion chamber 216 of each ducted fan 106. These blades 108, 109 may turn in a counter rotating motion with two computer controlled actuator assemblies—one front 107 and one rear 210—determining the pitch of the blades. As the actuator assembly 107, 210 increases the pitch of the blades 108, 109 in each of the ducted fans 106, air flow is increased through the front air intake 206, is compressed in the high pressure chamber 306, and is exhausted by the rear row of blades 109 through the expansion chamber 216. This creates the thrust for takeoff in either vertical or forward flight. FIGS. 3 a, 3 b, and 3 c show enlarged illustrations of the ducted fans 106, and FIGS. 4 a, 4 b, and 4 c illustrate various rotational positions of the ducted fans 106 and how they affect take-off, flight, hover, and braking.
  • As shown in FIGS. 3 a, 3 b and 3 c, each of the ducted fans 106 is a ducted tilt rotor, which may be composed of a lightweight composite, aluminum, or other suitable material. The rows of blades 108, 109 inside the ducts may be driven by a direct driveshaft 315 from a double-ended engine 201, 202 which is mounted sideways with respect to the aircraft fuselage 100 as described above. Referring also to FIGS. 2 a and 2 b, driveshaft 315 may be located in either the front of the aircraft as shown by element 204 or in the rear of the aircraft as shown by element 219. The driveshaft 315 may enter each ducted fan 106 from the side and connect inside the differential casing 213 with the differential 212 in a mid portion of the ducted fan 106. Extending from the differential 212, a forward output shaft 307 and a rear output shaft 310 may respectively drive a forward row of fan blades 108 in a front portion of each ducted fan 106 and a rear row of fan blades 109 in a rear portion of each ducted fan 106. The fan blades 108, 109 may turn in a counter rotating motion which may create more thrust and reduce the overall diameter of the ducted fans 106, thereby providing sufficient ground clearance for conventional aircraft take-off and landing mode as well as VTOL capability.
  • FIG. 3 a and FIG. 3 b illustrate the aerodynamic shape of the front of each of the ducted fans 106, with the bottom of each ducted fan 106 protruding forward as a lower front induction scoop 301 and with the top of each ducted fan 106 sloping down from an upper front induction scoop 302 to the lower front induction scoop 301, thereby creating more lift and less drag. This lifting air intake duct design may create a low pressure area 206 in the bottom front of the duct which in turn creates lift. This design may reduce or eliminate the need for more wing area and in turn may reduce the weight of the aircraft.
  • FIG. 3 a also shows a high pressure inner compression chamber 306 located between the two rows of rotating fan blades—front 108 and rear 109—in each ducted fan 106. The front blade actuator 107 changes the pitch of the front blades 108. By increasing the pitch of the front row of blades 108, air is pulled in and compressed in the high pressure inner compression chamber 306. The rear blade actuator 210 changes the pitch of the rear row of blades 109. The rear blades 109 pull the air from the high pressure inner compression chamber 306 and exhaust the air through the low pressure expansion chamber 216 thereby creating forward thrust.
  • The blades in each row may have variable pitch controlled by fly-by-wire computers which relay information to the front blade actuator 107 and to the rear blade actuator 210 to adjust the angle of the blades. Gyros located in the avionics bays may send a computer signal to the blade actuators 107, 210 to help control the stability of the aircraft in hover. The blades may be capable of self feathering and lining up in an identical configuration behind one another within each ducted fan 106 to help reduce drag and to increase air flow through the ducts, should an engine be lost or shut down. This feathering feature may extend the range which can be flown with one engine.
  • Each ducted fan 106 may also have a rear air deflector 110 mounted vertically, horizontally, or in another desired configuration on the rear of the ducted fan 106 when positioned for forward flight or other flight condition. This deflector 110 may be controlled by a fly-by-wire actuator 300 and may divert air to the left, right, or other desired direction to help stabilize the aircraft when it transitions from flight to hover or undergoes another desired maneuver. While in hover mode, the deflector 110 may divert the air to provide the ducted fans 106 with the capability of moving the aircraft sideways. Additionally, the air deflector 110 on the rear of the front ducted fans 106 may move one way while the air deflector 110 on the back of the rear ducted fans 106 may divert in the opposite direction or another desired direction, thus giving the aircraft counter-rotation capabilities.
  • FIGS. 4 a, 4 b and 4 c show the position of the ducted fans 106 in forward flight, hover, and reverse, respectively.
  • FIG. 4 a shows the position of the ducted fans 106 for forward flight and for take-off in conventional fixed wing mode.
  • FIG. 4 b illustrates the position of the ducted fans 106 in hover and for vertical take-off. As the aircraft is lifting vertically as shown in FIG. 4 b, forward movement may be accomplished by a computer controlled duct rotator actuator 124 rotating the ducted fans 106 forward toward the position shown in FIG. 4 a to create forward movement until such speed is reached that sufficient airflow over the lifting surfaces creates lift, and the aircraft transitions from vertical to horizontal flight.
  • While in forward flight as shown in FIG. 4 a, the ducted fans 106 may remain in aerodynamic alignment with the fuselage 100 as with a conventional fixed wing aircraft. When transitioning from horizontal flight to vertical flight, the duct actuators 124 may be rotated upward to slow the forward motion as shown in FIG. 4 b. This decreases the air speed thus reducing the airflow over the lifting surfaces, and as the ducted fan 106 is rotated back to the upward position, it may increase the vertical thrust of the variable pitch blades. The actuators 124 may turn the ducted fans 106 past vertical as shown in FIG. 4 c to slow the aircraft to a complete stop of forward motion. The tilted duct rotator actuator 124 may also control forward and reverse motion in hover by moving the ducts 106 forward or backward, respectively.
  • Description of Alternative Embodiment—UAV
  • In this embodiment, the aircraft may be adapted to perform as an unmanned aerial vehicle or UAV. This embodiment may include the sideways engine placement and in-line alignment and the fans encased in ducts as described for previous examples above. Most of the configuration of the aforementioned embodiment may remain intact, but some differences may be provided to help reduce the radar signature and to help provide for the carrying of weapons, large payloads, surveillance equipment, or the like. The aircraft and the engine may be scaled up or scaled down to accommodate different weight and/or mission objectives.
  • The UAV embodiment may include the same tail configuration of the previous examples, that is, the vertical stabilizers with the horizontal tail atop them, or as pictured in FIG. 5, it may utilize a V-tail assembly 501 and may include horizontal stabilizers 502 attached to the sides of and/or to the rear of the ducts (not shown). This V-tail configuration is similar to that of the Raptor F-22.
  • Other differences may include a retractable landing gear instead of a fixed landing gear, foldable wings or changeable wings for high altitude and other applications, a large compartment in place of a passenger cabin, and a camera location in the nose cone for surveillance. The cabin canopy may be manufactured of an opaque material rather than a transparent material and may become more aerodynamically streamlined by incorporating a lower profile. Bomb bay doors which open at the bottom of the aircraft for deployment of weapons, emergency food supplies, or the like may improve stealth capabilities because those items may be hidden and encased in the fuselage rather than placed on the wings.
  • The UAV embodiment may be used for military and reconnaissance operations for close in support. The UAV embodiment may also be used as an emergency vehicle to pick up wounded or stranded people in a dangerous location. The bolt-on or foldable wings may allow it to be trailered to a nearby or safe location before being sent on a mission. Thinner and longer wing extensions may accommodate higher altitudes and longer loitering. The ability of the aircraft to fly with one engine shut down and to take-off and land in close proximity to a target area may increase the distance the aircraft can fly on its designated fuel allowance. The engine may have the ability to alternate piston firings which also may increase fuel economy while keeping the aircraft aloft using very little horsepower.
  • Since the fan blades may be encased in ducts, and since ducted fans are quieter than propellers or jet engines, less radar signature may be produced. Also, since the engines may be mounted in the fuselage, less infrared signature may be produced. Stealth may therefore be much improved.
  • In some embodiments, most or all of the cabin area between the two engines may be used for storage of weapons, cargo and supplies, and/or surveillance equipment. VTOL capabilities may allow the aircraft to get closer to a target or to get into tight areas as for a rescue. The ability to take off and land in conventional mode may provide for more carrying capacity because the wings may be used for lift so the aircraft may carry more fuel and weight. Once the fuel has burned off on a long flight, a vertical landing is possible.
  • The V-tail configuration 501 could also be utilized on the passenger embodiments to improve the speed of the aircraft.
  • Description of Alternative Embodiment—Sport Plane
  • FIG. 6 shows an alternative embodiment of this invention as a VTOL sport plane. This embodiment may be comprised of an elongated aerodynamic fuselage with one double-ended driveshaft engine mounted sideways with respect to the fuselage and with a rotatable ducted fan 106 on each end of a main fixed wing 605 for a total of two ducted fans. The wing 605 may be level, dihedral, or anhedral. A passenger compartment/cabin 600 in the front portion of the fuselage may accommodate one or two people, and the engine may be located in the fuselage just behind cabin 600 and in line with the wing 605. An emergency parachute compartment may be located behind the passenger cabin 600 and just above the engine. The aircraft may have a fixed or retractable tricycle landing gear with one attached to the front 601 of the fuselage and two 602—one left and one right—attached to the bottom of the fuselage behind and below the passenger compartment 600.
  • In this embodiment, the engine, driveshaft, transfer case, duct rotator actuator, and ducted fans 106 may be provided for wing 605 in like manner as described above for canard wing 123 (see FIGS. 1, 2 a, 2 b). The double-ended driveshaft from each end of the engine may exit the fuselage through a transfer case, bearing, or other suitable support, run inside the main fixed wing 605, continue through a duct rotator actuator, and continue through a side of the ducted fan 106 and into a mid portion of the ducted fan 106 where it connects to a differential. As the driveshaft exits the right end of the engine, it runs through the right side of the wing and enters the right ducted fan 106 through the left side; and as the driveshaft exits the left end of the engine, it runs through the left side of the wing and enters the left ducted fan 106 through the right side. Inside each ducted fan 106, the differential may have two output shafts with each one turning one row of blades. Therefore, the two output shafts may respectively turn two rows of counter rotating blades in each ducted fan 106.
  • Two air deflectors—one vertical 110 and one horizontal (not shown in FIG. 6)—may be attached to the rear of each ducted fan 106. These deflectors may employ a DSS (Duct Stabilization System) and may use splitting capabilities to control the output thrust for increased stability. The horizontal air deflector may move the aircraft forward and backward, and may provide counter rotation of the aircraft in hover. The vertical air deflector may move the aircraft sideways in hover. In conventional airplane mode, the horizontal air deflector may control the roll.
  • The rear fuselage of the aircraft may be long and streamlined with a cruciform shaped tail comprised of one left 604 and one right (not shown) horizontal surface and one top 603 and one bottom vertical surface (not shown) controlling pitch and yaw, respectively, while the aircraft is in conventional airplane mode.
  • Description of Further Alternative Embodiments Multiple Engines Placed End to End
  • In this embodiment, as shown in FIG. 2 b, two or more engines may be provided fore, and two or more engines may be provided aft. Each set of engines may be placed end to end and sideways with respect to the fuselage. A common driveshaft or coupled driveshafts which act as one driveshaft 226 may run through the multiple engine blocks, with the shaft output on the outside ends of the outside engines running a pair of propellers or ducted fan blades. In this example, a transfer case may not be necessary for a backup for a dead engine, although a transfer case and supplemental drive shaft may be provided for further redundancy. The dead engine shaft may be driven by the running engine and/or engines with the dead engine freewheeling. The propellers or ducted fan blades may keep turning but at reduced power.
  • In some embodiments, freewheeling may be accomplished by coupling multiple engines (two or more) in-line with a continuous or coupled driveshaft and/or camshaft to effectively create a single power source and to provide for the freewheeling of one or more engines or for all of the engines, further described as follows. The freewheeling system may be formed by placing two or more engines (power sources) end to end and with each combined engine having a common driveshaft (which may be one integral, continuous shaft or multiple shafts coupled together) enabling the other engine or engines to freewheel. The sizes, horsepower, and types of power sources for such embodiments may be identical or varied. Output shafts for freewheeling can be utilized from each end, or from only one end, or from the middle of the coupled or continuous shafts. Coupling of multiple power sources may provide for the capability of freewheeling of one or more power sources while one or more other power sources are providing power to the other end of the freewheeling engine(s). It may also provide for all of the power sources to run together or for all power sources to freewheel together. If one power source fails, the other power source(s) will continue to turn the driveshaft, thus providing redundancy and enhanced safety.
  • In some embodiments, each of the power sources may provide a different power level for the coupled unit; e.g., if three power sources are coupled, one power source could be at idle, one could be at medium power, and one could be at full power, or alternatively all the power sources could be working at full power. More generally, each power source may be utilized at any selected power level. Significant fuel savings may result from regulating the power to only what is necessary at a given flight condition. In addition, any combination of the power sources could be selected to power or freewheel, and the power sources may be alternately selected so that the hours on each of the power sources may be maintained at a similar level if needed.
  • In some embodiments, coupling of the power sources with the resultant freewheeling capability may eliminate the need between units for clutches, transmissions, torque converters and/or differentials. This may simplify manufacturing and operations, thereby reducing costs of operation and maintenance and increasing safety. Alternatively, various freewheeling devices may be interposed between a power source and the driveshaft if needed.
  • In some embodiments, coupling two or more different types of power sources—such as one heat source (e.g., internal combustion or jet engine) and one electrical source, for example—may provide for various capabilities. The heat source may be utilized to turn an electric source into a generator, thus letting the heat source charge batteries, for example. The heat source may provide power while freewheeling the electric source. Alternatively, the electric source may provide power by freewheeling the heat source, or both the heat source and the electric source may be used together to provide hybrid power. As another alternative, both sources may be freewheeled and used in a regenerating mode to turn the electric source into a generator and provide braking and electrical current to charge batteries.
  • In some embodiments, the multi-source unit being used to power a generator(s) may continue to generate power—even with the loss of an engine—because the other engine(s) may accelerate to compensate for the dead engine, thus eliminating or minimizing loss of power.
  • In some embodiments, some of the power units for which this freewheeling concept may work best may be power sources which produce very little friction when the power source is freewheeling and the continuous or coupled driveshaft(s) are in-line, thus using internal driveshafts/crankshafts/cam shafts as the drive line. The internal mechanical parts of the engine may be used as the continuous drive line which turns the output shaft with power from the other power source(s).
  • In some conventional aircraft applications, coupling the engines for freewheeling may make it possible for one drive shaft from one end of the coupled power units to turn one propeller unit. This configuration may eliminate the need for other drive shafts when a back-up engine is needed, thereby reducing drag while still providing the “back-up” safety element of conventional twin engines or multi-engines.
  • In some embodiments, the freewheeling system may also work inside nacelles; e.g., by placing propellers on one end of multiple engines, between the engines, or at each end of the engines. This configuration may also be used to retrofit an existing aircraft by placing a propeller at one end of combined engines.
  • In some embodiments, this coupled and freewheeling power generating unit may provide both power and back-up power from each end or from one end of the coupled power unit and may be used in a VTOL aircraft to provide for powering the aircraft. It may also be used to improve the powering of existing VTOL aircraft currently in design, production, and/or use. Currently, many of these aircraft have propellers and blades at the end of the engines or in the ducts with their power units creating safety issues if one engine fails. In some embodiments, coupling engines together may allow the use of smaller engines thereby reducing the cost of manufacturing, especially for electric motors, since smaller engines generally cost less to manufacture.
  • Some examples of reduced friction power units that may be used for coupling may include engines such as the Perlex™, Axial Vector™, Sinusoidal Cam™, Dyna-Cam™, Radmax™, Rand-Cam™, Wankel™, and any cylindrical rotor, rotor, rotary, mill, vane, turbine, jet, electric and any other reduced friction power units capable of using its internal drive shafts in freewheeling applications as described herein. Alternatively, some conventional engines may be used if the amount of friction produced in them may be reduced.
  • In some embodiments, freewheeling may be provided in connection with actuators and servo motors. As shown in FIGS. 3A and 3B, a common shaft 307, 310 may be provided between the two actuators 107 and 210, which may be connected to allow redundancy for the control of the variable pitch blades 108 and 109 by allowing the freewheeling of a failed actuator. In some embodiments, common shaft 307, 310 may be hollow with a rod traversing through the middle, with the outer portion of the shaft serving to power blades 108, 109 and the inner rod serving to connect actuators 107, 210, such that if one of the actuators 107, 210 loses power the other of the actuators 107, 210 may continue to control the pitch of the first and second rows of blades 108, 109. This type of application may also be applied to many different scenarios for backup systems. For example, actuators and servo motors may be stacked (i.e., operably engaged with a common driveshaft) like the multiple engines described above, or separated and equipped with separate power sources in the event one power source fails. Such actuators and servo motors may be connected by a common shaft thus allowing freewheeling of a dead actuator or servo motor.
  • Some embodiments may have two engines fore and two engines aft with each pair of engines comprising a first engine fore and a next engine aft. Each pair of engines may be placed end to end and in-line and sideways with respect to the fuselage. Each engine may be controlled separately with the driveshaft from the right engine turning the propellers or ducted fan blades on the right side of the aircraft and with the driveshaft from the left engine turning the propellers or ducted fan blades on the left side of the aircraft. Transfer cases may be used in this example to pick up the power from the other engines.
  • Emergency Rescue Vehicle
  • This embodiment may use modifications to provide for an emergency rescue vehicle. The changes comprise shortened wings, a stubby nose, a front canopy that would fold or retract backwards, and a platform addition which would facilitate emergency escapes. The emergency vehicle could nose in to a building, cliff, or the like to provide an escape route for people trapped in, for example, a burning building. Ducted fans—as opposed to propellers—may permit the aircraft to get next to structures or into tight areas. The stubby nose and retractable canopy may allow access to the aircraft. An extendible/retractable ramp in the nose section may provide a stable emergency escape route.
  • Various embodiments of the aircraft described herein may utilize one or more of various types of engines, including Axial Vector, Dyna-Cam type engines, internal combustion, radial, piston, reciprocating, rotary, rotor, StarRotor, vane, mill, electric, hybrid, diesel, or similar type engines, alone or in combination, mounted in-line and sideways with respect to the fuselage. Hybrid engines may include one or more of each of a plurality of engine types. For example, a hybrid engine may include a diesel portion and an electric portion.
  • In some embodiments, an electric engine may have a first mode in which the electric engine drives the driveshaft and a second mode in which the electric engine serves as a generator driven by the driveshaft and charges a battery electrically connected to the electric engine. For example, the electric engine may operate in the first mode during take-off and the electric engine may operate in the second mode after take-off.
  • In some embodiments, the front ducted fans may be mounted at the end of the canard wing, and the rear ducted fans may be mounted on each side of the fuselage just behind the passenger canopy. However, in other embodiments, the ducted fans may be mounted on each side of the front part of the fuselage, on each end of the main wing, and/or on the tail, depending upon the configuration of the aircraft.
  • In some embodiments, propellers may be utilized to handle larger loads with less horsepower, and the engines may be mounted in a higher position on the fuselage to provide clearance for the propellers. This configuration may accommodate from six to ten passengers or a large payload, for example.
  • Any or all of the embodiments may utilize an emergency parachute system. The aircraft may be equipped with a parafoil type parachute and one or more deployment rockets for emergencies. The deployment rockets may be solid fuel, liquid fuel, gaseous fuel, or a combination thereof. The parachute may primarily be used while in hover mode or at slow speeds, but may be used in other flight conditions if necessary or desired. The parachute and rockets may be mounted in the top of the rear portion of the fuselage behind the rear cabin, with one rocket on each side, for example. A cable system may be imbedded in the fuselage with a breakaway covering as described above. The supporting cables may be attached to the airframe at four attachment points as described above—two in the front fuselage near the outside end of the front engine and two in the rear fuselage near the outside end of the rear engine. The risers from the parachute may be attached to the supporting cables.
  • The emergency parachute may be deployed by the pilot via an emergency hand lever if the aircraft is in forward flight, or it may be automatically deployed by a computer if an engine loses power or the aircraft becomes unstable in hover or other flight condition. The parachute system may deploy the rockets, shooting them out at an angle and pulling the ends of the parafoil parachute in opposite directions, thereby moving the parachute away from the aircraft appendages and stretching the canopy to the full length of the parachute.
  • Airbag technology with small elongated tubes embedded in the parachute canopy cords and the outer edges of the parachute system may be utilized to immediately expand the parachute into the ultimate shape of a fully deployed parachute. The canopy may then be ready to receive the air, and this may result in the aircraft suffering a very slight loss of altitude from the time the parachute deploys until it is filled with air.
  • If the aircraft is moving in forward flight, computer controlled air sensors may determine if a need exists to apply or delay deployment of the airbag expander of the air canopy. This may minimize the shock from the forward air speed. When the parachute is opened, it may be steered via controls inside the aircraft. The parafoil parachute may give the aircraft a forward motion to help steer the aircraft to a safe area for a landing while descending under the parachute. If one engine is still operating, the parachute may act as a parasail to help keep the aircraft aloft while the pilot leaves a dangerous area and searches for a safe landing site.
  • Since the emergency parachute may be computer controlled in hover or other flight condition, it is possible the emergency backup transfer case and supplemental driveshafts may be bypassed or eliminated from certain embodiments thereby streamlining and simplifying the design of the output shafts from the engine to each differential. This may significantly reduce the weight of the aircraft.
  • The embodiments described above are some examples of the current invention. Various modifications, applications, substitutions, and changes of the current invention will be apparent to those skilled in the art. Further, it is contemplated that features disclosed in connection with any one embodiment, system, or method may be used in connection with any other embodiment, system, or method. The scope of the invention is defined by the claims, and considering the doctrine of equivalents, and is not limited to the specific examples described herein.

Claims (21)

1-14. (canceled)
15. An aircraft comprising:
a fuselage having a longitudinal axis;
a first engine disposed in said fuselage;
a second engine disposed in said fuselage;
said first and second engines being operably connected to a common driveshaft traversing through said first and second engines and having an axis of rotation oriented transverse to said longitudinal axis of said fuselage;
a first propeller operably connected to said common driveshaft; and
a second propeller operably connected to said common driveshaft;
wherein said first and second engines are configured for freewheeling such that if one of said first and second engines loses power the other of said first and second engines continues to power said first and second propellers.
16. The aircraft of claim 15 wherein each of said first and second propellers comprises a ducted fan.
17. The aircraft of claim 16 wherein said ducted fans are tiltable to facilitate VTOL and forward flight.
18. The aircraft of claim 17 wherein each of said ducted fans is mounted to a wing extending from said fuselage.
19. The aircraft of claim 16 wherein each of said ducted fans comprises counter-rotating blades.
20. The aircraft of claim 15 wherein each of said first and second engines is operable at a selected power level.
21. The aircraft of claim 20 wherein said first and second engines are selectable such that the hours on each of said first and second engines are maintainable at a similar level.
22. The aircraft of claim 15 further comprising a nose section having an extendable and retractable ramp.
23. The aircraft of claim 15 further comprising a retractable canopy.
24. The aircraft of claim 15 further comprising a parachute attached to said fuselage.
25. The aircraft of claim 24 wherein said parachute is mounted in a rear portion of said fuselage.
26. The aircraft of claim 24 further comprising one or more rockets configured for deploying said parachute.
27. The aircraft of claim 24 further comprising cables configured for attaching said parachute to said fuselage, wherein said cables are concealed in a recessed channel under a non-protruding breakaway covering which is aerodynamically flush with said fuselage.
28. The aircraft of claim 27 wherein said cables are attached to said fuselage at four attachment points.
29. The aircraft of claim 24 wherein said parachute is automatically deployable by a computer if said aircraft becomes unstable.
30. The aircraft of claim 24 wherein said parachute is manually deployable by a lever.
31. The aircraft of claim 24 further comprising an airbag expander configured for expanding said parachute into a fully deployed condition.
32. The aircraft of claim 31 wherein said airbag expander comprises elongated tubes embedded in canopy cords and outer edges of said parachute.
33. The aircraft of claim 31 further comprising computer controlled air sensors configured for determining whether to apply or delay deployment of said airbag expander.
34. The aircraft of claim 24 wherein said parachute is steerable via controls inside said aircraft.
US14/251,850 2005-10-18 2014-04-14 Aircraft with freewheeling engine Abandoned US20140367509A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/251,850 US20140367509A1 (en) 2005-10-18 2014-04-14 Aircraft with freewheeling engine
US15/204,547 US9688397B2 (en) 2005-10-18 2016-07-07 Aircraft with a plurality of engines driving a common driveshaft

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US72779805P 2005-10-18 2005-10-18
US11/581,321 US7874513B1 (en) 2005-10-18 2006-10-16 Apparatus and method for vertical take-off and landing aircraft
US13/012,763 US8152096B2 (en) 2005-10-18 2011-01-24 Apparatus and method for vertical take-off and landing aircraft
US13/442,544 US8720814B2 (en) 2005-10-18 2012-04-09 Aircraft with freewheeling engine
US14/251,850 US20140367509A1 (en) 2005-10-18 2014-04-14 Aircraft with freewheeling engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/442,544 Continuation US8720814B2 (en) 2005-10-18 2012-04-09 Aircraft with freewheeling engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/204,547 Continuation US9688397B2 (en) 2005-10-18 2016-07-07 Aircraft with a plurality of engines driving a common driveshaft

Publications (1)

Publication Number Publication Date
US20140367509A1 true US20140367509A1 (en) 2014-12-18

Family

ID=46827703

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/442,544 Active US8720814B2 (en) 2005-10-18 2012-04-09 Aircraft with freewheeling engine
US14/251,850 Abandoned US20140367509A1 (en) 2005-10-18 2014-04-14 Aircraft with freewheeling engine
US15/204,547 Active US9688397B2 (en) 2005-10-18 2016-07-07 Aircraft with a plurality of engines driving a common driveshaft

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/442,544 Active US8720814B2 (en) 2005-10-18 2012-04-09 Aircraft with freewheeling engine

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/204,547 Active US9688397B2 (en) 2005-10-18 2016-07-07 Aircraft with a plurality of engines driving a common driveshaft

Country Status (1)

Country Link
US (3) US8720814B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140097290A1 (en) * 2012-10-05 2014-04-10 Markus Leng Electrically powered aerial vehicles and flight control methods
US20150274289A1 (en) * 2014-03-31 2015-10-01 The Boeing Corporation Vertically landing aircraft
CN105346715A (en) * 2015-09-29 2016-02-24 上海圣尧智能科技有限公司 Vertical take-off and landing unmanned plane
US20170113805A1 (en) * 2015-10-26 2017-04-27 General Electric Company Method and system for cross engine debris avoidance
CN106800089A (en) * 2015-11-25 2017-06-06 中航贵州飞机有限责任公司 A kind of rotor wing unmanned aerial vehicle of electric tilting three
US9676477B1 (en) * 2014-08-25 2017-06-13 Amazon Techonlogies, Inc. Adjustable unmanned aerial vehicles
CN107399433A (en) * 2017-06-07 2017-11-28 常州市沃兰特电子有限公司 A kind of manned aerial device and its application process
CN107628244A (en) * 2017-09-29 2018-01-26 清华大学 A kind of double lift culvert vertical take-off and landing aircrafts based on tilting duct
JP2018537348A (en) * 2015-12-21 2018-12-20 エアバス ヘリコプターズ ドイチェランド ゲーエムベーハー Multi-rotor aircraft with redundant security architecture
CN109415125A (en) * 2016-07-11 2019-03-01 小鹰公司 More rocket type projector deployment systems
WO2019062256A1 (en) * 2017-09-29 2019-04-04 清华大学 Single lift force ducted vertical take-off and landing aircraft based on tilt duct
KR20200028375A (en) * 2017-01-26 2020-03-16 에어버스 헬리콥터스 도이칠란트 게엠베하 A thrust producing unit with at least two rotor assemblies and a shrouding
CN111196346A (en) * 2019-11-20 2020-05-26 湖北航天飞行器研究所 Distributed electric propulsion tilt rotor unmanned aerial vehicle
JP2020097419A (en) * 2020-02-27 2020-06-25 中松 義郎 Wing rotatable vertical takeoff and landing long-range aircraft
JP2020100396A (en) * 2020-02-27 2020-07-02 中松 義郎 Drone with wings
US11148799B2 (en) * 2018-11-26 2021-10-19 Textron Innovations Inc. Tilting duct compound helicopter
US11256253B2 (en) 2016-07-11 2022-02-22 Kitty Hawk Corporation Automated aircraft recovery system
US11459113B2 (en) 2016-07-11 2022-10-04 Kitty Hawk Corporation Multimodal aircraft recovery system

Families Citing this family (209)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD821917S1 (en) * 2002-10-01 2018-07-03 Tiger T G Zhou Amphibious unmanned vertical takeoff and landing flying automobile
USD801222S1 (en) * 2003-09-30 2017-10-31 Tiger T G Zhou Vertical takeoff and landing flying automobile
USD808861S1 (en) * 2003-09-30 2018-01-30 Dylan T X Zhou Amphibious unmanned vertical takeoff and landing flying motorcycle
US8720814B2 (en) * 2005-10-18 2014-05-13 Frick A. Smith Aircraft with freewheeling engine
ES2332400B2 (en) * 2009-08-05 2011-06-07 Universidad Politecnica De Madrid SYSTEM AND METHOD FOR ASSISTING THE EARTHLESS WITHOUT TRACK OF CONVENTIONAL AIRCRAFT OF ALA FIJA.
CN101837195B (en) * 2010-01-21 2012-02-08 罗之洪 Model airplane with vertical takeoff and landing
DE102010021025B4 (en) * 2010-05-19 2014-05-08 Eads Deutschland Gmbh Hybrid helicopter
DE102010021024B4 (en) 2010-05-19 2014-07-03 Eads Deutschland Gmbh Main rotor drive for helicopters
DE102010021026A1 (en) 2010-05-19 2011-11-24 Eads Deutschland Gmbh Hybrid propulsion and power system for aircraft
GB201011843D0 (en) * 2010-07-14 2010-09-01 Airbus Operations Ltd Wing tip device
US9322917B2 (en) * 2011-01-21 2016-04-26 Farrokh Mohamadi Multi-stage detection of buried IEDs
WO2013105926A1 (en) 2011-03-22 2013-07-18 Aerovironment Inc. Invertible aircraft
US9329001B2 (en) * 2011-10-26 2016-05-03 Farrokh Mohamadi Remote detection, confirmation and detonation of buried improvised explosive devices
US9110168B2 (en) * 2011-11-18 2015-08-18 Farrokh Mohamadi Software-defined multi-mode ultra-wideband radar for autonomous vertical take-off and landing of small unmanned aerial systems
ITRM20120014A1 (en) * 2012-01-17 2013-07-18 Pavel Miodushevsky CONVERTIPLANO MULTIPLE.
DE102012104783B4 (en) * 2012-06-01 2019-12-24 Quantum-Systems Gmbh Aircraft, preferably UAV, drone and / or UAS
FR2996522B1 (en) * 2012-10-05 2014-12-26 Dassault Aviat FRONT POINT OF FLYING ENGINE AND FLYING ENGINE
GB201303860D0 (en) 2013-03-05 2013-04-17 Rolls Royce Plc Engine installation
US9387929B2 (en) * 2013-03-15 2016-07-12 Ian Todd Gaillimore Vertical takeoff and landing (“VTOL”) aircraft
US10569892B2 (en) * 2013-05-06 2020-02-25 Sikorsky Aircraft Corporation Supplemental power for reduction of prime mover
US9248908B1 (en) * 2013-06-12 2016-02-02 The Boeing Company Hybrid electric power helicopter
DE102013107654A1 (en) * 2013-07-18 2015-01-22 OIC-GmbH Aircraft for carrying one or more recording devices through the air
US9527581B2 (en) * 2013-07-25 2016-12-27 Joby Aviation, Inc. Aerodynamically efficient lightweight vertical take-off and landing aircraft with multi-configuration wing tip mounted rotors
ITRM20130473A1 (en) * 2013-08-12 2013-11-11 Unit 1 Srl CONVERTIPLATE WITH NEW TECHNICAL AND AERODYNAMIC SOLUTIONS THAT CAN MAKE THE MEANS ALSO IN SAFE AND ULTRA-LIGHT AIRCRAFT SOLUTIONS
USD736140S1 (en) * 2013-08-23 2015-08-11 Moller International, Inc. Vertical takeoff and landing vehicle
DE102013109392A1 (en) * 2013-08-29 2015-03-05 Airbus Defence and Space GmbH Fast-flying, vertically launchable aircraft
USD803724S1 (en) * 2013-09-23 2017-11-28 Dylan T X Zhou Amphibious unmanned vertical takeoff and landing aircraft
USD801856S1 (en) * 2013-09-23 2017-11-07 Dylan T X Zhou Amphibious unmanned vertical takeoff and landing aircraft
USD806635S1 (en) * 2013-09-23 2018-01-02 Dylan T X Zhou Amphibious unmanned vertical takeoff and landing personal flying suit
USD809970S1 (en) * 2013-09-23 2018-02-13 Dylan T X Zhou Amphibious unmanned vertical takeoff and landing aircraft
US20150175258A1 (en) * 2013-12-20 2015-06-25 Hung-Fu Lee Helicopter with h-pattern structure
US10723442B2 (en) * 2013-12-26 2020-07-28 Flir Detection, Inc. Adaptive thrust vector unmanned aerial vehicle
WO2015096842A2 (en) * 2013-12-26 2015-07-02 Guerfi Mohamed Circular wing for vertical flight
US9708059B2 (en) * 2014-02-19 2017-07-18 The United States Of America As Represented By The Adminstrator Of The National Aeronautics And Space Administration Compound wing vertical takeoff and landing small unmanned aircraft system
US10046855B2 (en) * 2014-03-18 2018-08-14 Joby Aero, Inc. Impact resistant propeller system, fast response electric propulsion system and lightweight vertical take-off and landing aircraft using same
WO2016018486A2 (en) * 2014-05-07 2016-02-04 XTI Aircraft Company Vtol aircraft
US20160023751A1 (en) * 2014-07-28 2016-01-28 The Board of Regents of the Nevada System of High- er Education on Behalf of the University of Nevad Energy harvesting mechanism for gyroplanes and gyrocopters
IL233902B (en) 2014-07-31 2020-07-30 Israel Aerospace Ind Ltd Propulsion system
WO2016081041A1 (en) * 2014-08-29 2016-05-26 Reference Technologies Inc. Muiti-propulsion design for unmanned aerial systems
US9994313B2 (en) * 2014-11-26 2018-06-12 XCraft Enterprises, LLC High speed multi-rotor vertical takeoff and landing aircraft
CN104464440B (en) * 2014-12-19 2017-03-01 上海电机学院 The wing fills aviation simulator
US10000293B2 (en) 2015-01-23 2018-06-19 General Electric Company Gas-electric propulsion system for an aircraft
US9376208B1 (en) * 2015-03-18 2016-06-28 Amazon Technologies, Inc. On-board redundant power system for unmanned aerial vehicles
US9708065B2 (en) * 2015-04-07 2017-07-18 The Boeing Company Crown cabin configuration for an aircraft
GB201508139D0 (en) * 2015-05-13 2015-06-24 Rolls Royce Plc Aircraft propulsion system
CN106275421B (en) * 2015-06-04 2018-06-01 陈志石 A kind of unmanned transporter
US9789768B1 (en) * 2015-07-06 2017-10-17 Wendel Clifford Meier Full-segregated thrust hybrid propulsion for airplanes
WO2017004826A1 (en) * 2015-07-09 2017-01-12 华南农业大学 Anti-fall and anti-drift unmanned aerial vehicle
EP3124379B1 (en) 2015-07-29 2019-05-01 Airbus Defence and Space GmbH Hybrid-electric drive train for vtol drones
FR3041930B1 (en) * 2015-10-05 2022-02-25 La Broise Denis Pierre Marie De AIRCRAFT WITH VERTICAL TAKE-OFF AND LANDING, WITH CIRCULAR WINGS AND TIPPING COCKPIT, PILOTED BY DIFFERENTIAL PROPELLER CONTROL
CN105270625A (en) * 2015-10-23 2016-01-27 庆安集团有限公司 Multi-purpose vertical take-off and landing unmanned aerial vehicle
US10570926B2 (en) * 2015-12-03 2020-02-25 The Boeing Company Variable-geometry ducted fan
JP2017100651A (en) * 2015-12-04 2017-06-08 株式会社Soken Flight device
US10926874B2 (en) * 2016-01-15 2021-02-23 Aurora Flight Sciences Corporation Hybrid propulsion vertical take-off and landing aircraft
US10417918B2 (en) * 2016-01-20 2019-09-17 Honeywell International Inc. Methods and systems to assist in a search and rescue mission
US11807356B2 (en) * 2016-02-17 2023-11-07 SIA InDrones Multicopter with different purpose propellers
EP3366585A4 (en) * 2016-02-26 2019-07-31 IHI Corporation Vertical take-off and landing aircraft
US9764848B1 (en) 2016-03-07 2017-09-19 General Electric Company Propulsion system for an aircraft
USD810621S1 (en) 2016-04-12 2018-02-20 King Saud University Aerial vehicle
US9694906B1 (en) * 2016-04-18 2017-07-04 King Saud University Vertical takeoff and landing unmanned aerial vehicle
CN106672223A (en) * 2016-05-24 2017-05-17 周光翔 Hybrid tilt rotor aircraft with four coaxial contra-rotating propellers
US10464620B2 (en) * 2016-06-30 2019-11-05 Disney Enterprises, Inc. Vehicles configured for navigating surface transitions
US10618647B2 (en) 2016-07-01 2020-04-14 Textron Innovations Inc. Mission configurable aircraft having VTOL and biplane orientations
US10625853B2 (en) 2016-07-01 2020-04-21 Textron Innovations Inc. Automated configuration of mission specific aircraft
US10011351B2 (en) 2016-07-01 2018-07-03 Bell Helicopter Textron Inc. Passenger pod assembly transportation system
US10315761B2 (en) 2016-07-01 2019-06-11 Bell Helicopter Textron Inc. Aircraft propulsion assembly
US10737765B2 (en) 2016-07-01 2020-08-11 Textron Innovations Inc. Aircraft having single-axis gimbal mounted propulsion systems
US10981661B2 (en) 2016-07-01 2021-04-20 Textron Innovations Inc. Aircraft having multiple independent yaw authority mechanisms
US10870487B2 (en) 2016-07-01 2020-12-22 Bell Textron Inc. Logistics support aircraft having a minimal drag configuration
US10220944B2 (en) 2016-07-01 2019-03-05 Bell Helicopter Textron Inc. Aircraft having manned and unmanned flight modes
US10183746B2 (en) * 2016-07-01 2019-01-22 Bell Helicopter Textron Inc. Aircraft with independently controllable propulsion assemblies
US10597164B2 (en) 2016-07-01 2020-03-24 Textron Innovations Inc. Aircraft having redundant directional control
US11608173B2 (en) 2016-07-01 2023-03-21 Textron Innovations Inc. Aerial delivery systems using unmanned aircraft
US10232950B2 (en) 2016-07-01 2019-03-19 Bell Helicopter Textron Inc. Aircraft having a fault tolerant distributed propulsion system
US11027837B2 (en) 2016-07-01 2021-06-08 Textron Innovations Inc. Aircraft having thrust to weight dependent transitions
US11142311B2 (en) 2016-07-01 2021-10-12 Textron Innovations Inc. VTOL aircraft for external load operations
US11124289B2 (en) 2016-07-01 2021-09-21 Textron Innovations Inc. Prioritizing use of flight attitude controls of aircraft
US10737778B2 (en) 2016-07-01 2020-08-11 Textron Innovations Inc. Two-axis gimbal mounted propulsion systems for aircraft
US10633087B2 (en) 2016-07-01 2020-04-28 Textron Innovations Inc. Aircraft having hover stability in inclined flight attitudes
US10501193B2 (en) 2016-07-01 2019-12-10 Textron Innovations Inc. Aircraft having a versatile propulsion system
US11104446B2 (en) 2016-07-01 2021-08-31 Textron Innovations Inc. Line replaceable propulsion assemblies for aircraft
US11084579B2 (en) 2016-07-01 2021-08-10 Textron Innovations Inc. Convertible biplane aircraft for capturing drones
US10633088B2 (en) 2016-07-01 2020-04-28 Textron Innovations Inc. Aerial imaging aircraft having attitude stability during translation
US10227133B2 (en) 2016-07-01 2019-03-12 Bell Helicopter Textron Inc. Transportation method for selectively attachable pod assemblies
US10604249B2 (en) 2016-07-01 2020-03-31 Textron Innovations Inc. Man portable aircraft system for rapid in-situ assembly
US10214285B2 (en) 2016-07-01 2019-02-26 Bell Helicopter Textron Inc. Aircraft having autonomous and remote flight control capabilities
EP3494046A4 (en) * 2016-08-05 2020-04-08 Textron Aviation Inc. Hybrid aircraft with transversely oriented engine
US10252796B2 (en) * 2016-08-09 2019-04-09 Kitty Hawk Corporation Rotor-blown wing with passively tilting fuselage
US10301016B1 (en) * 2016-08-09 2019-05-28 Vimana, Inc. Stabilized VTOL flying apparatus and aircraft
US10479495B2 (en) 2016-08-10 2019-11-19 Bell Helicopter Textron Inc. Aircraft tail with cross-flow fan systems
US10377480B2 (en) 2016-08-10 2019-08-13 Bell Helicopter Textron Inc. Apparatus and method for directing thrust from tilting cross-flow fan wings on an aircraft
US10421541B2 (en) * 2016-08-10 2019-09-24 Bell Helicopter Textron Inc. Aircraft with tilting cross-flow fan wings
US10384773B2 (en) * 2016-09-08 2019-08-20 General Electric Company Tiltrotor propulsion system for an aircraft
US10392106B2 (en) * 2016-09-08 2019-08-27 General Electric Company Tiltrotor propulsion system for an aircraft
US10252797B2 (en) 2016-09-08 2019-04-09 General Electric Company Tiltrotor propulsion system for an aircraft
US10384774B2 (en) 2016-09-08 2019-08-20 General Electric Company Tiltrotor propulsion system for an aircraft
US10696390B2 (en) * 2016-09-08 2020-06-30 Hop Flyt Inc Aircraft having independently variable incidence channel wings with independently variable incidence channel canards
US10807707B1 (en) * 2016-09-15 2020-10-20 Draganfly Innovations Inc. Vertical take-off and landing (VTOL) aircraft having variable center of gravity
US10562623B1 (en) 2016-10-21 2020-02-18 Birdseyeview Aerobotics, Llc Remotely controlled VTOL aircraft
US10399673B1 (en) 2016-10-24 2019-09-03 Kitty Hawk Corporation Integrated float-wing
EP3535185B1 (en) * 2016-11-02 2022-01-05 Joby Aero, Inc. Vtol aircraft using rotors to simulate rigid wing dynamics
US10689105B2 (en) * 2016-11-21 2020-06-23 John Daniel Romo Passenger-carrying rotorcraft with fixed-wings for generating lift
CN108100207B (en) * 2016-11-24 2021-07-27 中航贵州飞机有限责任公司 Inflatable VTOL aircraft
US10654556B2 (en) * 2016-12-05 2020-05-19 Jiann-Chung CHANG VTOL aircraft with wings
CN106707749B (en) * 2016-12-14 2019-05-17 北京科技大学 A kind of control method for bionic flapping-wing flying robot
CN107021220A (en) * 2017-01-10 2017-08-08 北京航空航天大学 A kind of VSTOL rotorcycles of new layout
CN106628163B (en) * 2017-01-13 2018-12-28 厦门大学 A kind of supersonic speed unmanned fighter that big drag braking and VTOL can be achieved
US10059432B1 (en) * 2017-02-22 2018-08-28 Pratt & Whitney Canada Corp. Single lever control in twin turbopropeller aircraft
EP3366586B1 (en) 2017-02-27 2020-08-19 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A thrust producing unit with at least two rotor assemblies and a shrouding
RU2657642C1 (en) * 2017-03-02 2018-06-14 Михаил Юрьевич Артамонов Vertical take off and landing aerial vehicle
CN106927023B (en) * 2017-03-27 2018-11-06 上海珞鹏航空科技有限公司成都研发分公司 A kind of agricultural plant protection rudder face control culvert type unmanned plane
US11208197B2 (en) 2017-03-31 2021-12-28 Heka Aero LLC Gimbaled fan
EP3455129B1 (en) * 2017-05-05 2022-04-06 SZ DJI Technology Co., Ltd. Systems and methods related to transformable unmanned aerial vehicles
CN107176286B (en) * 2017-05-16 2023-08-22 华南理工大学 Double-duct fan power system-based foldable fixed wing vertical take-off and landing unmanned aerial vehicle
US10351232B2 (en) 2017-05-26 2019-07-16 Bell Helicopter Textron Inc. Rotor assembly having collective pitch control
US10618646B2 (en) 2017-05-26 2020-04-14 Textron Innovations Inc. Rotor assembly having a ball joint for thrust vectoring capabilities
US10442522B2 (en) 2017-05-26 2019-10-15 Bell Textron Inc. Aircraft with active aerosurfaces
US10329014B2 (en) 2017-05-26 2019-06-25 Bell Helicopter Textron Inc. Aircraft having M-wings
US10661892B2 (en) 2017-05-26 2020-05-26 Textron Innovations Inc. Aircraft having omnidirectional ground maneuver capabilities
US10730622B2 (en) 2017-06-14 2020-08-04 Bell Helicopter Textron Inc. Personal air vehicle with ducted fans
ES2955333T3 (en) * 2017-08-02 2023-11-30 Eyal Regev Hybrid aerial vehicle
USD875021S1 (en) * 2017-09-11 2020-02-11 Brendon G. Nunes Airbike
US10870486B2 (en) * 2017-09-22 2020-12-22 Stephen Lee Bailey Diamond quadcopter
CN107745809B (en) * 2017-10-14 2020-04-21 上海歌尔泰克机器人有限公司 Aircraft with a flight control device
CN107697279A (en) * 2017-10-16 2018-02-16 江富余 Vert afterbody high-speed helicopter
GB201717267D0 (en) * 2017-10-20 2017-12-06 Active Vtol Crash Prevention Ltd Emergency landing of an aircraft
KR102669208B1 (en) * 2017-11-03 2024-05-28 조비 에어로, 인크. VTOL M-wing configuration
USD875023S1 (en) * 2017-11-03 2020-02-11 Sang Hyun Lee Aircraft with multiple rotors
US10836481B2 (en) * 2017-11-09 2020-11-17 Bell Helicopter Textron Inc. Biplane tiltrotor aircraft
TWI647149B (en) * 2017-11-10 2019-01-11 林瑤章 Power transmission system
RU2671447C1 (en) * 2017-12-01 2018-10-31 Дмитрий Валентинович Рукавицын Individual aircraft (options) and methods of its flight
US11117657B2 (en) * 2018-01-19 2021-09-14 Aerhart, LLC Aeronautical apparatus
CN108382590A (en) * 2018-02-24 2018-08-10 浙江天遁航空科技有限公司 Composite wing unmanned plane
WO2019168044A1 (en) * 2018-02-28 2019-09-06 株式会社ナイルワークス Drone, drone control method, and drone control program
USD843919S1 (en) * 2018-03-12 2019-03-26 Kitty Hawk Corporation Aircraft
USD843306S1 (en) 2018-03-12 2019-03-19 Kitty Hawk Corporation Aircraft
US10894605B2 (en) * 2018-03-13 2021-01-19 U.S. Aeronautics, Inc. Efficient low-noise aircraft propulsion system
JP6731604B2 (en) * 2018-03-31 2020-07-29 中松 義郎 High-speed drones and other aircraft
CN108454819A (en) * 2018-04-23 2018-08-28 成都航空职业技术学院 Three-surface configuration VTOL general-purpose aircraft
CN108773475A (en) * 2018-04-28 2018-11-09 成都航空职业技术学院 The small-sized power general-purpose aircraft that verts of Three-wing-surface
USD872004S1 (en) * 2018-05-15 2020-01-07 Brendon G. Nunes Multicopter
EP3802322A4 (en) 2018-05-31 2022-02-23 Joby Aero, Inc. Electric power system architecture and fault tolerant vtol aircraft using same
US12006048B2 (en) 2018-05-31 2024-06-11 Joby Aero, Inc. Electric power system architecture and fault tolerant VTOL aircraft using same
USD864839S1 (en) * 2018-05-31 2019-10-29 Kitty Hawk Corporation Simulator cockpit
CN108958271B (en) * 2018-06-12 2020-12-15 北京航空航天大学 Coordinated control method for approach process of composite wing unmanned aerial vehicle
US10710741B2 (en) 2018-07-02 2020-07-14 Joby Aero, Inc. System and method for airspeed determination
US11964756B2 (en) * 2018-07-04 2024-04-23 Aerhart, LLC Aeronautical apparatus
US20210403161A1 (en) * 2018-07-04 2021-12-30 Aerhart, LLC Aeronautical Apparatus
US11603193B2 (en) * 2018-07-16 2023-03-14 Donghyun Kim Aircraft convertible between fixed-wing and hovering orientations
USD913904S1 (en) * 2018-07-20 2021-03-23 Great Wall Motor Company Limited Flying car
JP7149498B2 (en) * 2018-07-26 2022-10-07 パナソニックIpマネジメント株式会社 Unmanned flying object, information processing method and program
USD881106S1 (en) * 2018-08-22 2020-04-14 volans-i, Inc Aircraft
CN109080824A (en) * 2018-08-24 2018-12-25 中国民航大学 A kind of Fixed Wing AirVehicle with tilted propeller
US11097849B2 (en) 2018-09-10 2021-08-24 General Electric Company Aircraft having an aft engine
USD871511S1 (en) * 2018-09-12 2019-12-31 Saiqiang Wang Remotely piloted model aircraft
US11323214B2 (en) 2018-09-17 2022-05-03 Joby Aero, Inc. Aircraft control system
USD881107S1 (en) * 2018-10-13 2020-04-14 volans-i, Inc Aircraft
US10787255B2 (en) * 2018-11-30 2020-09-29 Sky Canoe Inc. Aerial vehicle with enhanced pitch control and interchangeable components
AU2019433213A1 (en) 2018-12-07 2021-07-22 Joby Aero, Inc. Aircraft control system and method
JP7401545B2 (en) 2018-12-07 2023-12-19 ジョビー エアロ インク Rotor blades and their design methods
US10845823B2 (en) 2018-12-19 2020-11-24 Joby Aero, Inc. Vehicle navigation system
USD887948S1 (en) * 2019-01-03 2020-06-23 Bell Helicopter Textron Inc. Aircraft
USD881286S1 (en) * 2019-01-07 2020-04-14 Guangdong Syma Model Aircraft Industrial Co., Ltd. Aircraft toy
USD894790S1 (en) * 2019-01-08 2020-09-01 Junxian Chen Drone
CN109720553B (en) * 2019-02-13 2021-07-27 深圳创壹通航科技有限公司 Fixed-wing unmanned aerial vehicle with vertical take-off and landing function, control method and medium
USD892222S1 (en) * 2019-03-12 2020-08-04 Beyonder Industries LLC Flight system
USD892224S1 (en) * 2019-03-12 2020-08-04 Beyonder Industries LLC Flight system
USD892223S1 (en) * 2019-03-12 2020-08-04 Beyonder Industries LLC Flight system
CN109919556A (en) * 2019-03-14 2019-06-21 辽宁工业大学 Based on digitlization cloud computing monitoring logistics transportation system and method
US11111010B2 (en) * 2019-04-15 2021-09-07 Textron Innovations Inc. Multimodal unmanned aerial systems having tiltable wings
US11230384B2 (en) 2019-04-23 2022-01-25 Joby Aero, Inc. Vehicle cabin thermal management system and method
WO2020219747A2 (en) 2019-04-23 2020-10-29 Joby Aero, Inc. Battery thermal management system and method
EP3959127A4 (en) 2019-04-25 2023-01-11 Joby Aero, Inc. Vtol aircraft
RU2723516C1 (en) * 2019-08-09 2020-06-11 Общество с ограниченной ответственностью "АДА БПЛА" Convertiplane
US11718395B2 (en) 2019-09-13 2023-08-08 Rolls-Royce Corporation Electrically controlled vertical takeoff and landing aircraft system and method
US11312491B2 (en) 2019-10-23 2022-04-26 Textron Innovations Inc. Convertible biplane aircraft for autonomous cargo delivery
USD919547S1 (en) * 2020-01-03 2021-05-18 Bell Textron Inc. Aircraft fuselage
USD920213S1 (en) * 2020-01-03 2021-05-25 Bell Textron Inc. Aircraft
US11851178B2 (en) * 2020-02-14 2023-12-26 The Aerospace Corporation Long range endurance aero platform system
RU199386U1 (en) * 2020-03-12 2020-08-31 Александр Александрович Долбиш Rotary jet-ventilated power plant DME
US11987349B2 (en) * 2020-04-22 2024-05-21 Jerrold Joseph Sheil Rotatable nacelle for centrifugal fan on aircraft
GB202007673D0 (en) * 2020-05-22 2020-07-08 Univ Nelson Mandela Metropolitan A vertical take-off and landing aircraft, methods and systems for controlling a vertical take-off and landing aircraft
CN111591440A (en) * 2020-05-27 2020-08-28 湖南省仙鸟科技有限公司 Sickle wing vertical take-off and landing aircraft
US11731779B2 (en) * 2020-06-01 2023-08-22 Textron Innovations Inc. Drivetrain for an aircraft including gearbox with coaxial input and output shafts
US11420760B2 (en) 2020-06-29 2022-08-23 Textron Innovations Inc. Sealed coaxial input and output shafts
WO2022008061A1 (en) * 2020-07-10 2022-01-13 Hw Aviation Ag Hybrid drone for landing on vertical structures
US11530035B2 (en) 2020-08-27 2022-12-20 Textron Innovations Inc. VTOL aircraft having multiple wing planforms
CN116096634A (en) * 2020-09-07 2023-05-09 株式会社爱隆未来 Flying body
US20230331379A1 (en) * 2020-09-29 2023-10-19 Alberto Carlos Pereira Filho Vertical-take-off aerial vehicle with aerofoil-shaped integrated fuselage and wings
US20220127011A1 (en) * 2020-10-27 2022-04-28 Wisk Aero Llc Power distribution circuits for electrically powered aircraft
US11319064B1 (en) 2020-11-04 2022-05-03 Textron Innovations Inc. Autonomous payload deployment aircraft
DE102020007836A1 (en) 2020-12-21 2022-06-23 BAAZ GmbH Aircraft with wings and operating procedures
US11630467B2 (en) 2020-12-23 2023-04-18 Textron Innovations Inc. VTOL aircraft having multifocal landing sensors
RU204467U1 (en) * 2020-12-25 2021-05-26 Сергей Олегович Никитин HIGH-SPEED COMBINED HELICOPTER (ROTOR WING)
US11975826B2 (en) * 2021-02-01 2024-05-07 Textron Innovations Inc Electric tiltrotor aircraft with fixed motors
EP4291489A1 (en) * 2021-02-09 2023-12-20 Joby Aero, Inc. Aircraft propulsion unit
FR3119605A1 (en) * 2021-02-10 2022-08-12 Safran Transmission Systems Upgraded Aircraft Propulsion Package
US11247783B1 (en) * 2021-03-08 2022-02-15 Heleng Inc. Aircraft
KR20220140944A (en) * 2021-04-12 2022-10-19 현대자동차주식회사 Control system of air vehicle for urban air mobility
USD1008889S1 (en) * 2021-08-18 2023-12-26 Vcraft Aeronautics Ab Aeroplane
US12084200B2 (en) 2021-11-03 2024-09-10 Textron Innovations Inc. Ground state determination systems for aircraft
US11932387B2 (en) 2021-12-02 2024-03-19 Textron Innovations Inc. Adaptive transition systems for VTOL aircraft
US11643207B1 (en) 2021-12-07 2023-05-09 Textron Innovations Inc. Aircraft for transporting and deploying UAVs
US11673662B1 (en) 2022-01-05 2023-06-13 Textron Innovations Inc. Telescoping tail assemblies for use on aircraft
US12103673B2 (en) 2022-01-10 2024-10-01 Textron Innovations Inc. Payload saddle assemblies for use on aircraft
CN114193990B (en) * 2022-01-27 2023-04-18 广东汇天航空航天科技有限公司 Arm and aerocar
US11565811B1 (en) 2022-01-28 2023-01-31 Blended Wing Aircraft, Inc. Blended wing body aircraft with transparent panels
US20240239531A1 (en) * 2022-08-09 2024-07-18 Pete Bitar Compact and Lightweight Drone Delivery Device called an ArcSpear Electric Jet Drone System Having an Electric Ducted Air Propulsion System and Being Relatively Difficult to Track in Flight
IL295691A (en) * 2022-08-17 2024-03-01 Bar Hagay drone/ Glider VZ

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123321A (en) 1964-03-03 Aircraft channel wing propeller combination
US1322976A (en) * 1919-11-25 Aeropiane
US821393A (en) 1903-03-23 1906-05-22 Orville Wright Flying-machine.
FR502554A (en) 1915-11-24 1920-05-19 Louis Renault Two-engine aircraft propeller control device
US1758498A (en) 1921-01-06 1930-05-13 R B Patent Corp Airplane
US1547434A (en) * 1923-08-27 1925-07-28 Michaud Joseph Aircraft
US1623613A (en) 1925-11-06 1927-04-05 Max M Arndt Flying machine
US1861336A (en) 1931-09-03 1932-05-31 Cox Patrick Airplane
US2437684A (en) 1940-08-31 1948-03-16 Willard R Custer Aircraft having high-lift wing channels
US2510959A (en) 1942-04-16 1950-06-13 Willard R Custer Airplane with high-lift channeled wings
US2514478A (en) 1947-08-14 1950-07-11 Willard R Custer Channel wing airplane
US2702168A (en) 1950-07-07 1955-02-15 Haviland H Platt Convertible aircraft
US2767939A (en) 1952-12-26 1956-10-23 Aerocar Inc Flying automotive vehicle assembly
US2929580A (en) * 1956-06-18 1960-03-22 Piasecki Aircraft Corp Aircraft for vertical or short takeoff, and integrated propulsion lifting and propeller slip stream deflecting unit therefor
US2936968A (en) 1957-08-14 1960-05-17 Vertol Aircraft Corp Convertiplane control system
US3291242A (en) 1965-04-23 1966-12-13 Anibal A Tinajero Combined vtol aircraft and ground effects machine
US3335977A (en) 1965-06-16 1967-08-15 Ludwig F Meditz Convertiplane
US3298633A (en) 1965-09-10 1967-01-17 Dastoli Joseph Separable aircraft
DE1481542A1 (en) 1967-01-18 1969-03-20 Entwicklungsring Sued Gmbh Especially designed for VTOL aircraft
DE1756894A1 (en) 1968-07-29 1970-12-03 Ver Flugtechnische Werke Vertical take off and landing aircraft with tiltable propellers in front of and behind the aircraft's center of gravity
FR2397978A1 (en) 1977-07-19 1979-02-16 Onera (Off Nat Aerospatiale) VTOL aircraft with convergent axis rotors - with resultant of rotor action varied in vertical plane parallel to aircraft axis
US4607814A (en) 1983-10-13 1986-08-26 Boris Popov Ballistic recovery system
US5115996A (en) 1990-01-31 1992-05-26 Moller International, Inc. Vtol aircraft
CA2072417A1 (en) 1991-08-28 1993-03-01 David E. Yates Aircraft engine nacelle having circular arc profile
US5419514A (en) 1993-11-15 1995-05-30 Duncan; Terry A. VTOL aircraft control method
US5890441A (en) 1995-09-07 1999-04-06 Swinson Johnny Horizontal and vertical take off and landing unmanned aerial vehicle
US5826827A (en) 1997-05-05 1998-10-27 Coyaso; Richard Air-chute safety system
EP1762416A3 (en) * 1998-07-21 2007-03-21 TOKYO R&D CO., LTD. Hybrid vehicle
IT1308096B1 (en) * 1999-06-02 2001-11-29 Finmeccanica Spa TILTROTOR
GB2365392B (en) 2000-03-22 2002-07-10 David Bernard Cassidy Aircraft
US6338457B1 (en) 2000-12-12 2002-01-15 The United States Of America As Represented By The Secretary Of The Navy Precision parachute recovery system
AU2002354809A1 (en) 2001-07-06 2003-01-21 The Charles Stark Draper Laboratory, Inc. Vertical takeoff and landing aerial vehicle
US6886776B2 (en) 2001-10-02 2005-05-03 Karl F. Milde, Jr. VTOL personal aircraft
JP2003137192A (en) 2001-10-31 2003-05-14 Mitsubishi Heavy Ind Ltd Vertical taking-off/landing craft
US6843447B2 (en) 2003-01-06 2005-01-18 Brian H. Morgan Vertical take-off and landing aircraft
US20050230519A1 (en) * 2003-09-10 2005-10-20 Hurley Francis X Counter-quad tilt-wing aircraft design
JP4223921B2 (en) 2003-10-24 2009-02-12 トヨタ自動車株式会社 Vertical take-off and landing flight device
US7472863B2 (en) 2004-07-09 2009-01-06 Steve Pak Sky hopper
US8152096B2 (en) 2005-10-18 2012-04-10 Smith Frick A Apparatus and method for vertical take-off and landing aircraft
US8720814B2 (en) * 2005-10-18 2014-05-13 Frick A. Smith Aircraft with freewheeling engine
ITBR20060004A1 (en) 2006-03-24 2007-09-25 Maio Gaetano Di COVERTIBLE AIRPLANE
WO2008105923A2 (en) 2006-08-24 2008-09-04 American Dynamics Flight Systems, Inc High torque aerial lift (htal)
DE102006056355A1 (en) 2006-11-29 2008-06-05 Airbus Deutschland Gmbh Drive device for aircraft, has energy converter e.g. gas turbine, for providing operating power of drive unit by two different fuels such as kerosene and hydrogen, and drive unit generating feed rate by operating power
DE102007055336A1 (en) 2007-01-15 2008-08-21 GIF Gesellschaft für Industrieforschung mbH Aircraft propeller drive, method for propelling an aircraft propeller and use of a bearing of an aircraft propeller drive and use of an electric machine
US20080184906A1 (en) 2007-02-07 2008-08-07 Kejha Joseph B Long range hybrid electric airplane
EP2668097A4 (en) 2011-01-24 2016-07-13 Frick A Smith Apparatus and method for vertical take-off and landing aircraft

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10272995B2 (en) * 2012-10-05 2019-04-30 Skykar Inc. Electrically powered personal vehicle and flight control method
US20140097290A1 (en) * 2012-10-05 2014-04-10 Markus Leng Electrically powered aerial vehicles and flight control methods
US9346542B2 (en) * 2012-10-05 2016-05-24 Skykar Inc. Electrically powered aerial vehicles and flight control methods
US20150274289A1 (en) * 2014-03-31 2015-10-01 The Boeing Corporation Vertically landing aircraft
US9908632B1 (en) 2014-08-25 2018-03-06 Amazon Technologies, Inc. Adjustable unmanned aerial vehicles with multiple lifting motors and propellers
US9676477B1 (en) * 2014-08-25 2017-06-13 Amazon Techonlogies, Inc. Adjustable unmanned aerial vehicles
US11338932B1 (en) 2014-08-25 2022-05-24 Amazon Technologies, Inc. Adjustable unmanned aerial vehicles with adjustable body portions
US11584533B1 (en) 2014-08-25 2023-02-21 Amazon Technologies, Inc. Adjustable unmanned aerial vehicles with adjustable body portions
US10259591B1 (en) 2014-08-25 2019-04-16 Amazon Technologies, Inc. Adjustable unmanned aerial vehicles with adjustable body portions
CN105346715A (en) * 2015-09-29 2016-02-24 上海圣尧智能科技有限公司 Vertical take-off and landing unmanned plane
US10442541B2 (en) * 2015-10-26 2019-10-15 General Electric Company Method and system for cross engine debris avoidance
CN107010230A (en) * 2015-10-26 2017-08-04 通用电气公司 For the method and system avoided across engine debris
US20170113805A1 (en) * 2015-10-26 2017-04-27 General Electric Company Method and system for cross engine debris avoidance
CN106800089A (en) * 2015-11-25 2017-06-06 中航贵州飞机有限责任公司 A kind of rotor wing unmanned aerial vehicle of electric tilting three
US11052998B2 (en) 2015-12-21 2021-07-06 Airbus Helicopters Deutschland GmbH Multirotor electric aircraft with redundant security architecture
JP2018537348A (en) * 2015-12-21 2018-12-20 エアバス ヘリコプターズ ドイチェランド ゲーエムベーハー Multi-rotor aircraft with redundant security architecture
US11919650B2 (en) 2016-07-11 2024-03-05 Kitty Hawk Corporation Multimodal aircraft recovery system
EP3481722A4 (en) * 2016-07-11 2020-01-01 Kitty Hawk Corporation Multi-rocket parachute deployment system
US11459113B2 (en) 2016-07-11 2022-10-04 Kitty Hawk Corporation Multimodal aircraft recovery system
CN109415125A (en) * 2016-07-11 2019-03-01 小鹰公司 More rocket type projector deployment systems
US11256253B2 (en) 2016-07-11 2022-02-22 Kitty Hawk Corporation Automated aircraft recovery system
US10981657B2 (en) 2016-07-11 2021-04-20 Kitty Hawk Corporation Multi-rocket parachute deployment system
US11947352B2 (en) 2016-07-11 2024-04-02 Kitty Hawk Corporation Automated aircraft recovery system
KR102242857B1 (en) * 2017-01-26 2021-04-21 에어버스 헬리콥터스 도이칠란트 게엠베하 A thrust producing unit with at least two rotor assemblies and a shrouding
US10737766B2 (en) 2017-01-26 2020-08-11 Airbus Helicopters Deutschland GmbH Thrust producing unit with at least two rotor assemblies and a shrouding
KR20200028375A (en) * 2017-01-26 2020-03-16 에어버스 헬리콥터스 도이칠란트 게엠베하 A thrust producing unit with at least two rotor assemblies and a shrouding
CN107399433A (en) * 2017-06-07 2017-11-28 常州市沃兰特电子有限公司 A kind of manned aerial device and its application process
WO2019062256A1 (en) * 2017-09-29 2019-04-04 清华大学 Single lift force ducted vertical take-off and landing aircraft based on tilt duct
CN107628244A (en) * 2017-09-29 2018-01-26 清华大学 A kind of double lift culvert vertical take-off and landing aircrafts based on tilting duct
US11148799B2 (en) * 2018-11-26 2021-10-19 Textron Innovations Inc. Tilting duct compound helicopter
CN111196346A (en) * 2019-11-20 2020-05-26 湖北航天飞行器研究所 Distributed electric propulsion tilt rotor unmanned aerial vehicle
JP2020100396A (en) * 2020-02-27 2020-07-02 中松 義郎 Drone with wings
JP2020097419A (en) * 2020-02-27 2020-06-25 中松 義郎 Wing rotatable vertical takeoff and landing long-range aircraft
JP2022059634A (en) * 2020-02-27 2022-04-13 義郎 中松 Drone with wings
JP7104427B2 (en) 2020-02-27 2022-07-21 義郎 中松 Winged drone

Also Published As

Publication number Publication date
US20160311530A1 (en) 2016-10-27
US8720814B2 (en) 2014-05-13
US9688397B2 (en) 2017-06-27
US20120234968A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
US9688397B2 (en) Aircraft with a plurality of engines driving a common driveshaft
US8152096B2 (en) Apparatus and method for vertical take-off and landing aircraft
US7874513B1 (en) Apparatus and method for vertical take-off and landing aircraft
EP2668097A1 (en) Apparatus and method for vertical take-off and landing aircraft
US12019439B2 (en) Free wing multirotor with vertical and horizontal rotors
WO2014007883A1 (en) Aircraft with freewheeling engine
JP7232834B2 (en) Wing tilt actuation system for electric vertical take-off and landing (VTOL) aircraft
US6974105B2 (en) High performance VTOL convertiplanes
US20210206487A1 (en) Aircraft and Modular Propulsion Unit
US10081424B2 (en) Flying car or drone
CN107074358B (en) Vertical take-off and landing aircraft
US11142309B2 (en) Convertible airplane with exposable rotors
US10287011B2 (en) Air vehicle
US6808140B2 (en) Vertical take-off and landing vehicles
US8857755B2 (en) Vertical/short take-off and landing passenger aircraft
JP2022532546A (en) An electric or hybrid VTOL vehicle that can travel and fly
WO2021010915A1 (en) A multi-function unmanned aerial vehicle with tilting co-axial, counter-rotating, folding propeller system
WO2024006164A1 (en) Industrial aerial robot systems and methods
AU2011356667A1 (en) Apparatus and method for vertical take-off and landing aircraft
RU2764311C1 (en) Aircraft with vertical takeoff and landing and/or vertical takeoff and landing with shortened run
IL303139A (en) A free wing multirotor with vertical and horizontal rotors
IL227275A (en) Air vehicle

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE