WO2019061731A1 - 显示装置及其驱动方法 - Google Patents

显示装置及其驱动方法 Download PDF

Info

Publication number
WO2019061731A1
WO2019061731A1 PCT/CN2017/111191 CN2017111191W WO2019061731A1 WO 2019061731 A1 WO2019061731 A1 WO 2019061731A1 CN 2017111191 W CN2017111191 W CN 2017111191W WO 2019061731 A1 WO2019061731 A1 WO 2019061731A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
display device
circuit
waveform
signal line
Prior art date
Application number
PCT/CN2017/111191
Other languages
English (en)
French (fr)
Inventor
黄北洲
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Publication of WO2019061731A1 publication Critical patent/WO2019061731A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2230/00Details of flat display driving waveforms

Definitions

  • Embodiments of the present application relate to the field of display devices, and in particular, to a display device and a driving method thereof.
  • liquid crystal displays are widely used in personal digital assistants (PDAs), notebook computers, digital cameras, and photos due to their advantages of lightness, power saving, and no radiation.
  • Video recorders, mobile phones, and other electronic products Coupled with the industry's active investment in research and development and the use of large-scale production equipment, the quality of displays has been continuously improved, and the price has continued to decline, which has led to the rapid expansion of the application field of displays.
  • a thin film transistor liquid crystal display includes a plurality of scanning signal lines and a scanning driving circuit thereof, a plurality of data lines and data driving circuits thereof, a plurality of common electrode lines, and a plurality of Pixel units, etc.
  • each of the pixel units is formed at an intersection of a scanning signal line on the glass substrate and a corresponding data line, wherein the scanning signal line and the data signal line are perpendicular to each other.
  • a thin film transistor is provided at the intersection of the scanning signal line and the data signal line to drive the pixel unit, thereby producing a wide variety of colorful images.
  • a technical problem to be solved by the embodiments of the present application is to provide a display device to effectively avoid the defect that the display quality of the existing display device is degraded due to the generation of parasitic capacitance.
  • a technical problem to be further solved by the embodiments of the present application is to provide a driving method of a display device, so as to effectively avoid the defect that the display quality of the existing display device is degraded due to the generation of parasitic capacitance.
  • a display device including:
  • the voltage level of the waveform of the scan signal rises by a slope of a first predetermined value and decreases by a slope of a second predetermined value, so that the waveform of the scan signal is at a high voltage level of rising ⁇ a portion between the low voltage levels having a slope of the first predetermined value and a waveform of the scan signal being within a range between a high voltage level and a low voltage level of the falling threshold
  • the portion of the slope of the second predetermined value that varies.
  • the first predetermined value and the second predetermined value are opposite to each other.
  • the driving circuit includes:
  • a plurality of selections are respectively connected to the plurality of triggers, and respectively turned on or off according to the output of the corresponding plurality of triggers;
  • a plurality of control devices are respectively connected to the input terminals of the plurality of selection switches, and control a slew rate of rising and falling waveforms of the scan signals to be output to the scan signal lines.
  • the voltage has a period of one scan period in length and has a waveform including a period of the voltage level change.
  • the driving circuit outputs a full-cycle waveform to the scan signal line during a scan period, and outputs a voltage level not greater than the voltage level during a period other than the scan period The end voltage level of the change.
  • the display device further includes: a first circuit, the first circuit has:
  • the driving circuit outputs a voltage having a waveform from the capacitor of the first circuit.
  • the display device further includes: a second circuit, where the second circuit has:
  • an operational amplifier that receives a voltage source with a non-inverting input terminal
  • a first resistor one end of the first resistor is connected to a non-inverting input terminal of the operational amplifier, and the other end of the first resistor is connected to the voltage source;
  • a second resistor the second resistor is connected to the non-inverting input terminal of the operational amplifier, and the other end of the second resistor is grounded;
  • a fourth resistor connected as a feedback resistor between the inverting input terminal and the output terminal of the operational amplifier
  • the driving circuit outputs a voltage having a waveform of the operational amplifier from the second circuit.
  • the second circuit further has: a constant current source, an input resistor, and an input capacitor, wherein the constant current source is connected to one end of the input capacitor through the input resistor, and The other end of the input capacitor is grounded, the constant current source and the input resistor are connected in series, and the series circuit of the constant current source and the input resistor is connected in parallel with the input capacitor, the third resistor A device is coupled to the input resistor and a connection node of the input capacitor.
  • the first resistor, the second resistor, and the third resistor have a resistance greater than the input resistor.
  • the second circuit further has:
  • the switch is in parallel with the input capacitor, and the switch is connected in parallel with the series circuit of the constant current source and the input resistor.
  • the operational amplifier and the first resistor, the second resistor, the third resistor, and the fourth resistor constitute a differential amplifying circuit as a subtraction portion, in subtraction
  • VDlb Vddx[R2/(R1+R2)]x[l+(R4/R3)]—(R4/R3) xVct
  • VDlb is the output voltage of the operational amplifier
  • Vdd is a voltage source
  • R1 is a resistance value of the first resistor
  • R2 is a resistance value of the second resistor
  • R3 is a resistance value of the third resistor
  • R4 is a resistance value of the fourth resistor Vet is the voltage of the input capacitor.
  • Vcth is the maximum amplitude of the voltage of the input capacitor
  • R3 is the resistance value of the third resistor.
  • R4 is the resistance value of the fourth resistor.
  • an embodiment of the present application further provides a driving method of a display device, including:
  • the voltage level of the waveform of the scan signal rises in a slope manner of a first predetermined value and decreases in a slope manner of a second predetermined value, so that the waveform of the scan signal is at a high voltage level of rising ⁇ a portion between the low voltage levels having a slope of the first predetermined value and a waveform of the scan signal being within a range between a high voltage level and a low voltage level of the falling threshold
  • the portion of the slope of the second predetermined value that varies.
  • the first predetermined value and the second predetermined value are opposite to each other.
  • the driving circuit includes:
  • a plurality of selections are respectively connected to the plurality of triggers, respectively, and respectively turned on or off according to the output of the corresponding plurality of triggers;
  • the driving method further includes: using a first circuit, the first circuit has:
  • the drive circuit outputs a voltage having a waveform from the capacitor of the circuit.
  • the driving method further comprises: using a circuit, the circuit having: an operational amplifier receiving a voltage source with a non-inverting input terminal; the non-inverting input connected as an input resistor to the operational amplifier a first resistor of the terminal; and a second resistor connected as a feedback resistor between the inverting input terminal and the output terminal of the operational amplifier, wherein the driver circuit outputs the operational amplifier from the circuit A voltage with a waveform.
  • the embodiment of the present application further provides a display device, including:
  • the voltage level of the waveform of the scan signal rises in a slope manner of a first predetermined value and decreases in a slope manner of a second predetermined value, so that the waveform of the scan signal is at a high voltage level of rising ⁇ a portion between the low voltage levels having a slope of the first predetermined value and a waveform of the scan signal being within a range between a high voltage level and a low voltage level of the falling threshold a portion of the slope of the second predetermined value that varies;
  • the first predetermined value and the second predetermined value are opposite to each other;
  • the driving circuit comprises:
  • a plurality of selections are respectively connected to the plurality of triggers, respectively, and respectively turned on or off according to the output of the corresponding plurality of triggers;
  • a plurality of control devices respectively connected to the input terminals of the plurality of selection switches, and controlling a slew rate of rising and falling waveforms of the scan signals to be output to the scan signal lines.
  • the embodiment of the present application has at least the following beneficial effects:
  • the embodiment of the present application enables the waveform near the input terminal of the scanning signal line and the vicinity of the terminal to be delayed from the signal delayed propagation caused by the parasitic capacitance of the scanning signal line.
  • the influence of the characteristics is substantially the same, that is, the scanning signal is not distorted, and the generation rate of the voltage level shift is lowered, thereby effectively improving the display quality of the display device.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present application.
  • FIG. 2 is a circuit diagram of a scanning signal line driving circuit of a display device according to an embodiment of the present application.
  • FIG. 3 is a waveform diagram showing an output of a scanning signal line driving circuit of a display device according to an embodiment of the present application.
  • FIG. 4 is another waveform diagram of an output of a scanning signal line drive circuit of a display device according to an embodiment of the present application.
  • FIG. 5 is still another waveform diagram of an output of a scanning signal line drive circuit of a display device according to an embodiment of the present application.
  • FIG. 6 is a circuit diagram of a first circuit of a display device and a scanning signal line driver circuit according to another embodiment of the present application.
  • FIG. 7 is a waveform diagram showing an output of a scanning signal line drive circuit of a display device according to another embodiment of the present application.
  • FIG. 8 is another waveform diagram of an output of a scanning signal line driving circuit of a display device according to another embodiment of the present application.
  • FIG. 9 is still another waveform diagram of an output of a scanning signal line driving circuit of a display device according to another embodiment of the present application.
  • FIG. 10 is a circuit diagram of a second circuit of a display device and a scanning signal line driver circuit according to still another embodiment of the present application.
  • FIG. 11 is a waveform diagram showing an output of a scanning signal line drive circuit of a display device according to still another embodiment of the present application.
  • FIG. 12 is a flow chart showing the steps of a driving method of the display device of the present application.
  • 13 is a flow chart showing the steps of a driving method of a display device according to another embodiment of the present application.
  • 14 is a flow chart showing the steps of a driving method of a display device according to still another embodiment of the present application.
  • FIG. 1 is a schematic structural view of a display device according to an embodiment of the present application
  • FIG. 2 is a circuit diagram of a scanning signal line driving circuit of the display device according to the embodiment of the present application.
  • 3 is a waveform diagram showing an output of a scanning signal line drive circuit of the display device of the embodiment of the present application.
  • the display device includes a plurality of pixels arranged in an array on the liquid crystal display panel 1 and a plurality of data signals respectively provided to the plurality of pixels (including the pixel electrodes 103).
  • the stripe data signal line 104 is disposed as a plurality of scan signal lines 105 intersecting the data signal line 104, wherein the number of the data signal lines 104 may be the same as the number of the scan signal lines 105, and the liquid crystal display panel 1 is connected and outputs a scan signal to the scan signal line 105 to actuate a drive circuit portion of the scan signal line 105.
  • the driving circuit portion includes a scanning signal line driving circuit 300, a data signal line driving circuit 200, and an opposite electrode driving circuit COM, which are respectively connected to the scanning signal line 105, the data signal line 104, and the opposite substrate 101 of the liquid crystal display panel.
  • the control circuit 600 is a circuit for controlling the data signal line drive circuit 200 and the scanning signal line drive circuit 300.
  • the liquid crystal display panel 1 can be formed by sealing a liquid crystal composition between a pair of electrode substrates and applying a deflecting plate to an outer surface of the electrode substrate.
  • the thin film transistor array substrate as one of the electrode substrates is formed by arranging a plurality of data signal lines 104 (S (1) , S ( 2 ) , ... S in an array form on a transparent insulating substrate 100 made of, for example, glass. (i) , ...S (N) ) and a plurality of scanning signal lines 105 (G (1) , G (2) , ... G (j) , ... G (M) ) crossing each other And formed.
  • a switching device 102 is formed at a boundary between the plurality of data signal lines 104 and the plurality of scanning signal lines 105, and the switching device 102 is constituted by a thin film transistor connected to the pixel electrode 103.
  • a plurality of scanning signal lines 105 (G (1) , G (2) , ... G (j) , ... G (M) ) are connected to the thin film transistor (ie, the switching device 102) Gate, and multiple data signal lines 104 (S (1) , S (2) , ... S (i) , ...S (N) ) connects the drain of the thin film transistor (i.e., the switching device 102).
  • an alignment film that covers almost all of the pixel electrode 103 may be provided.
  • a transistor array substrate is formed.
  • the scanning signal line driving circuit 300 includes M flip-flops F1, F2, F3,
  • the gate start signal GSP may be sequentially transmitted through the plurality of flip-flops F1, F2, F3, ... Fj, ... FM, and sequentially output to the plurality of selection gates 3b , to trigger multiple selections to close 3b.
  • each selection switch 3b selects a scan of a low voltage level.
  • the voltage VG, and a low voltage level scan voltage VG is output to the scan signal line 105 during one scan period to turn off the thin film transistor (i.e., the pass device 102 as shown in FIG. 1).
  • each selection switch 3b selects a high voltage.
  • the level of the scanning voltage VG, and the high voltage level scanning voltage VG is output to the scanning signal line 105 during one scanning period to turn on the thin film transistor (i.e., the switching device 102 as shown in FIG. 1).
  • an image signal (see Fig. 1) output from the data signal line drive circuit 200 to each of the data signal lines 104 (see Fig. 1) can be written in each corresponding pixel (including the pixel electrode 103).
  • the scanning signal line driving circuit 300 may further include a plurality of control devices SC, and the plurality of control devices SC scan the signal line driving circuit 300.
  • the output stage In detail, in the off state of the switching device 102, each control device SC is disposed between the shared voltage VD2 and the selection switch 3b; and when the switching device 102 is turned to the on state, each control device SC is set Between the shared voltage VD1 and the selection of the gate 3b.
  • the control device SC can be used to control the scanning signal output from the scanning signal line driving circuit 300 to the plurality of scanning signal lines 105 (G (1), G (2), ... G (j), ... G (M) )
  • the voltage of the VG waveform rises and falls ⁇ the slew rate (linear rate).
  • a plurality of scanning signals respectively output to the plurality of scanning signal lines 105 (G (1), G (2), ... G (j), ... G (M) ) can be controlled The rising slope SI of the VG and the falling slope S2, thereby causing the voltage level of the waveform of the scanning signal VG to be at the slope S1 of the first predetermined value as shown in FIG.
  • FIG. 1 is a schematic structural view of a display device according to an embodiment of the present application
  • FIG. 2 is a scanning signal line driving circuit of the display device of the embodiment of the present application
  • FIG. 4 is another waveform diagram of the output of the scanning signal line driving circuit of the display device of the embodiment of the present application.
  • the scanning signal line driving circuit 300 may further include a plurality of control devices SC that scan the output stages of the signal line driving circuit 300.
  • each control device SC in the off state of the switching device 102, each control device SC is disposed between the shared voltage VD2 and the selection switch 3b; and when the switching device 102 is turned to the on state, each control device SC is set Between the shared voltage VD1 and the selection of the gate 3b.
  • the control device SC can be used to control the scanning of the scanning signal line drive circuit 300 to the plurality of scanning signal lines 105 (G (1) , G (2) , ... G (j) , ... G (M) )
  • the voltage of the waveform of the signal VG drops by the slew rate (linear rate).
  • a plurality of scanning signals respectively output to the plurality of scanning signal lines 105 can be controlled
  • the falling slope S2 of VG so that the voltage level of the waveform of the scanning signal VG is decreased by the slope S2 of the second predetermined value as shown in FIG. 3, so that the waveform of the scanning signal VG is at a high voltage level and a low voltage of the falling ⁇ There is a portion within the range between the levels that varies with the slope of the second predetermined value.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present application
  • FIG. 2 is a scanning signal line driving circuit of the display device according to the embodiment of the present application
  • FIG. 5 is still another waveform diagram of the output of the scanning signal line driving circuit of the display device of the embodiment of the present application.
  • the display device and the scanning signal line drive circuit shown in FIGS. 1 and 2 have been described in detail above, and thus will not be described herein.
  • the scanning signal line driving circuit 300 may further include a plurality of control devices SC that scan the output stages of the signal line driving circuit 300.
  • each control device SC in the off state of the switching device 102, each control device SC is disposed between the shared voltage VD2 and the selection switch 3b; and when the switching device 102 is turned to the on state, each control device SC is set Between the shared voltage VD1 and the selection of the gate 3b.
  • the control device SC can be used to control the scanning signal output from the scanning signal line driving circuit 300 to the plurality of scanning signal lines 105 (G (1), G (2), ... G (j), ... G (M) )
  • the voltage of the VG waveform rises by the slew rate (linear rate).
  • a plurality of scanning signals respectively output to the plurality of scanning signal lines 105 can be controlled
  • the rising slope SI of VG is such that the voltage level of the waveform of the scanning signal VG rises by the slope S1 of the first predetermined value as shown in FIG. 3, so that the waveform of the scanning signal VG rises to a high voltage level and a low voltage. There is a portion within the range between the levels that varies with the slope of the first predetermined value.
  • the waveform near the input terminal of the scanning signal line and the vicinity of the terminal is not affected by the signal delay propagation characteristics caused by the parasitic capacitance of the scanning signal line, and is substantially the same, that is, the output scanning signal is not distorted, and It is possible to effectively reduce the generation rate of the voltage level shift AVd, and realize a display device having no display defect such as a residual image.
  • the voltage may have a period of one scan period, and may have a waveform including a period of the voltage level change, and the driving circuit may pass the scan signal during a scan period.
  • the line outputs a full period waveform, and the voltage level output during a period other than the scan period is not greater than the end voltage level at which the voltage level changes.
  • FIG. 6 is a circuit diagram of a first circuit of a display device and a scan signal line driver circuit configured according to another embodiment of the present application
  • FIG. 7 is the other of the present application.
  • the structure of the scanning signal line driving circuit 300 different from the above-described embodiment is provided with a control device SC for controlling the rising slope S1 and the falling slope S2 of the scanning signal VG, and in the other embodiment, the control device SC is not used.
  • a first circuit as shown in FIG. 6 is provided instead of the control device SC and the trace signal line drive circuit 300.
  • the first circuit used in conjunction with the scanning signal line driving circuit 300 includes a resistor Rent and a capacitor Ccnt for charging and discharging, an inverter INV for controlling charging and discharging, and the like.
  • the SW1 and SW2 are switched between the charge state and the discharge state, and the shared voltage VD1a generated by the first circuit is like the input voltage VD1 shown in FIG. 2 as the input voltage of the selection switch 3b of the scan signal line drive circuit 300.
  • the voltage source Vdd is applied to one terminal of the first switch SW1, and the other terminal of the first switch SW1 is connected to the input of the selection switch 3b of the scan signal line drive circuit 300.
  • the terminal, that is, the voltage source Vdd is connected to the scanning signal line drive circuit 300 through the first switch SW1.
  • the other terminal of the switch SW1 is connected to one terminal of the resistor Rent and one terminal of the capacitor Cent, and the terminal of the resistor Rent and the terminal of the capacitor Cent are connected to the selection of the scanning signal line drive circuit 300.
  • the input terminal of the switch 3b, in which the other terminal of the resistor Rent is grounded through the switch SW2.
  • the voltage source Vdd may be a DC voltage having a high voltage level sufficient to bring the thin film transistor into a conducting state, for example, 15V to 20V, but not limited thereto.
  • the resistor Rent is connected in series with the second switch SW2, and the resistor Rent and the serial circuit of the second switch SW2 are connected in parallel with the capacitor Cent.
  • the signal Stc from the outside is transmitted as an input signal to the inverter INV, and the signal Stc is inverted by the inverter INV to control the SW2.
  • the signal Stc can be synchronized with each scanning period and also used to control the opening and closing control of SW1.
  • the signal Stc can also be arranged in synchronism with the chirp signal GCK and generated, for example, by using a mono multivibrator (not shown), but is not limited thereto.
  • the charge in the Cent is discharged through the resistor Rent, and the voltage level of the scan signal output from the scanning signal line drive circuit 300 is gradually lowered.
  • the rising slope S 1 and the falling slope S2 can be adjusted by changing the resistance of the resistor Rent and the capacitance of the capacitor Cent such that the voltage level of the scanning signal output by the scanning signal line driving circuit 300 is as shown in FIG.
  • FIG. 6 is a circuit diagram of a first circuit of a display device and a scanning signal line driving circuit configured according to another embodiment of the present application
  • FIG. 8 is the other of the present application.
  • the first circuit described in FIG. 6 has been described in detail above and will not be described again.
  • the falling slope S4 can be adjusted by changing the resistance of the resistor Rent and the capacitance of the capacitor Cent such that the voltage level of the scanning signal output by the scanning signal line driving circuit 300 is a slope of the second predetermined value as shown in FIG. 5.
  • the S4 mode is decreased, so that the waveform of the scan signal has a portion that varies with the slope of the second predetermined value within a range between the high voltage level and the low voltage level of the falling , so as to target each liquid crystal to be driven Display panel 1 is optimized.
  • FIG. 6 is a circuit diagram of a first circuit of a display device and a scan signal line driver circuit of another embodiment of the present application
  • FIG. 9 is the other of the present application.
  • the rising slope S3 can be adjusted by changing the resistance of the resistor Rent and the capacitance of the capacitor Cent such that the voltage level of the scanning signal output by the scanning signal line driving circuit 300 is the slope of the first predetermined value as shown in FIG.
  • the S3 mode rises, so that the waveform of the scan signal has a portion that varies with the slope of the first predetermined value within a range between the high voltage level and the low voltage level of the rising chirp, thereby for each liquid crystal to be driven.
  • Display panel 1 is optimized.
  • FIG. 10 is a circuit diagram of a second circuit of a display device and a scanning signal line driver circuit according to still another embodiment of the present application
  • FIG. 11 is another A waveform diagram of an output of a scanning signal line drive circuit of the display device of the embodiment.
  • the switch SW3 is connected in parallel with the capacitor Cct and in parallel with the series circuit of the constant current source let and the input resistor Ret.
  • the signal Stc may be a slope turn-off control signal (a charge control signal and a discharge control signal), and the switch SW3 connected in parallel with the capacitor Cct is controlled to be turned on or off at a specific turn.
  • the constant current source let is connected to one end of the capacitor Cct through the resistor Ret, and the other end of the capacitor Cct is grounded, that is, the constant current source let and the resistor Ret are connected in series, and the constant current source let and the resistor Ret are connected in series
  • the circuit is connected in parallel with the capacitor Cct.
  • One end of the resistor R3 is connected to the inverting input terminal OP of the operational amplifier and the other end of the resistor R3 is connected to the connection node of the resistor Ret and the capacitor Cct, and the voltage Vet outputted by the capacitor Cct (that is, the potential difference across the capacitor Cct) is passed.
  • Resistor R3 is delivered to the inverting input terminal of operational amplifier OP.
  • the resistor R4 is connected between the inverting input terminal and the output terminal of the operational amplifier OP, and the output terminal of the operational amplifier OP is connected to the input terminal of the selection switch 3b of the scanning signal line driving circuit 300, and the shared voltage VDlb output by the operational amplifier OP
  • the shared voltage VD1 shown in FIG. 2 is used as the input voltage of the selection of the scanning signal line drive circuit 300.
  • the non-inverting input terminal of the operational amplifier OP is connected to one end of the resistor R2 and one end of the resistor R1, and the other end of the resistor R2 is grounded, and the voltage source Vdd is applied to the other end of the resistor R1. unit.
  • each of the resistors R1, R2, R3, and R4 may have a resistance greater than the resistor Rct.
  • VDlb VDD_AxVct
  • VDlb the output voltage of the operational amplifier
  • Vdd the voltage source
  • A the amplification factor of the operational amplifier
  • Vet the voltage of the input capacitor
  • the signal Stc is at a low voltage level ⁇ , Shaoguan SW3 broken.
  • power is supplied from the constant current source let through the resistor Ret to the capacitor Cct storing the charge
  • the voltage Vet has a waveform as shown in FIG.
  • the waveform of the voltage Vet has the maximum amplitude Vcth
  • the waveform of the output signal VDlb has the slope Tslope and the slope amount Vslope.
  • the slope can be easily adjusted by appropriately setting the resistances of the resistors R3 and R4 so that the voltage level of the scan signal output from the scanning signal line drive circuit 300 is the slope of the first predetermined value as shown in FIG.
  • the mode rises and falls in a slope manner with a second predetermined value different from the first predetermined value, so that the waveform near the input terminal of the scanning signal line and the vicinity of the terminal is not subjected to the signal delay propagation characteristic of the scanning signal line parasitically.
  • the effect is distorted, and the generation rate of the voltage level shift Vd can be effectively reduced, thereby realizing a display device having no display defects such as a residual image.
  • FIG. 12 is a flow chart of steps of a driving method of a display device according to an embodiment of the present application.
  • the embodiment of the present application provides a driving method of a display device, which includes the following steps S11 to S12:
  • Step S11 providing a data signal to the plurality of pixels through a data signal line;
  • Step S12 outputting a scan signal to the scan signal line disposed to intersect the data signal line to activate the scan signal line by using a driving circuit, wherein the scan signal includes a voltage having a waveform of a voltage level change period And wherein the voltage level rises in a slope manner of a first predetermined value and decreases in a slope manner of a second predetermined value, such that a waveform of the scan signal is in a range between a high voltage level and a low voltage level of the rising threshold a portion having a slope of the first predetermined value and a waveform of the scan signal having a slope of the second predetermined value in a range between a high voltage level and a low voltage level of the falling threshold a portion, wherein the first predetermined value and the second predetermined value are opposite to each other
  • the driving circuit includes:
  • a plurality of selections are respectively connected to the plurality of triggers, respectively, and respectively turned on or off according to the output of the corresponding plurality of triggers;
  • a plurality of control devices are respectively connected to the input terminals of the plurality of selection switches, and control a slew rate of rising and falling waveforms of the scan signals to be output to the scan signal lines.
  • the driving method further includes using a first circuit, the first circuit having:
  • a capacitor connected to an input terminal of the drive circuit; a voltage source connected to an input terminal of the drive circuit through the first switch;
  • the drive circuit outputs a voltage having a waveform from the capacitor of the circuit.
  • the driving method further includes: the driving method uses a second circuit, and the second circuit has: [0126] an operational amplifier that receives the voltage source with the non-inverting input terminal;
  • the drive circuit outputs a voltage having a waveform from the operational amplifier of the circuit.
  • the falling slope of the scan signal respectively output to the scan signal line can be controlled such that the voltage level of the waveform of the scan signal rises by a slope of the first predetermined value and is at a second predetermined value
  • the slope of the falling mode is such that the waveform of the scan signal has a portion that varies with a slope of the first predetermined value and a waveform of the scan signal with a high voltage of a falling voltage within a range between a high voltage level and a low voltage level of the rising chirp a portion between the level of the low and low voltage levels having a slope of the second predetermined value, wherein the first predetermined value and the second predetermined value are opposite to each other, thereby causing the vicinity of the input terminal of the scanning signal line and the terminal
  • the waveform in the vicinity is not affected by the signal delay propagation characteristics of the scanning signal line parasitically, and is substantially the same, and the generation rate of the voltage level shift is lowered, thereby realizing a display device having no display defect such as a
  • FIG. 13 is a flow chart showing the steps of a driving method of a display device according to another embodiment of the present application.
  • the embodiment of the present application provides a driving method of a display device, which includes the following steps S21 to S22 :
  • Step S21 providing a data signal to the plurality of pixels through a data signal line;
  • Step S22 outputting a scan signal to the scan signal line disposed to intersect the data signal line to activate the scan signal line by using a driving circuit, wherein the scan signal includes a voltage level change period a voltage of the waveform, wherein the voltage level is decreased by a slope of a second predetermined value, such that the waveform of the scan signal is within a range between a high voltage level and a low voltage level of the falling ⁇ The portion of the slope of the two predetermined values that varies.
  • the driving circuit includes:
  • a plurality of selections are respectively connected to the plurality of triggers, respectively, and respectively turned on or off according to the output of the corresponding plurality of triggers;
  • a plurality of control devices are respectively connected to the input terminals of the plurality of selection switches, and control a slew rate of a waveform of the scan signal to be output to the scan signal line.
  • the driving method further includes using a first circuit, where the first circuit has:
  • the drive circuit outputs a voltage having a waveform from the capacitor of the circuit.
  • the falling slope of the scan signal respectively output to the scan signal line can be controlled, so that the voltage level of the waveform of the scan signal is decreased by the slope of the second predetermined value, so that the waveform of the scan signal a portion having a slope of a second predetermined value in a range between a high voltage level and a low voltage level of the falling ,, so that a waveform near the input terminal of the scanning signal line and near the terminal is not subjected to the scanning signal line
  • the parasitic ground has a influence on the propagation characteristics of the signal, and is substantially the same, and the rate of occurrence of the voltage level shift is lowered, thereby realizing a display device having no display defect such as a residual image.
  • FIG. 14 is a flow chart showing the steps of a driving method of a display device according to still another embodiment of the present application.
  • the embodiment of the present application provides a driving method of a display device, which includes the following steps S31 to S32:
  • Step S31 providing a data signal to the plurality of pixels through a data signal line;
  • Step S31 outputting a scan signal to the scan signal line disposed to intersect the data signal line to activate the scan signal line by using a driving circuit, wherein the scan signal includes a voltage having a waveform of a voltage level change period Wherein the voltage level rises in a slope manner of a first predetermined value such that the waveform of the scan signal is within the range between a high voltage level and a low voltage level of the rising threshold The portion of the slope of the predetermined value that changes.
  • the driving circuit includes:
  • a plurality of selections are respectively connected to the plurality of triggers, respectively, and respectively turned on or off according to the output of the corresponding plurality of triggers;
  • a plurality of control devices are respectively connected to the input terminals of the plurality of selection switches, and control a slew rate of a waveform of the scan signal to be outputted to the scan signal line.
  • the driving method further includes using a first circuit, the first circuit having:
  • the drive circuit outputs a voltage having a waveform from the capacitor of the circuit.
  • the rising slope of the scan signal respectively output to the scan signal line can be controlled, so that the voltage level of the waveform of the scan signal rises by the slope of the first predetermined value, so that the waveform of the scan signal a portion having a slope of a first predetermined value in a range between a high voltage level and a low voltage level of the rising ,, so that a waveform near the input terminal of the scanning signal line and near the terminal is not subjected to the scanning signal line
  • the parasitic ground has a influence on the propagation characteristics of the signal, and is substantially the same, and the rate of occurrence of the voltage level shift is lowered, thereby realizing a display device having no display defect such as a residual image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种显示装置及其驱动方法,显示装置包括:多个像素;向多个像素提供数据信号的数据信号线(104);设置为与数据信号线(104)相交的扫描信号线(105);以及向扫描信号线(105)输出扫描信号(VG)以致动扫描信号线(105)的驱动电路(300),驱动电路(300)输出包括具有电压电平变化周期的波形的电压,其中扫描信号(VG)的波形的电压电平以第一预定数值的斜率(S1, S3)方式上升及以第二预定数值的斜率(S2, S4)方式下降,使扫描信号(VG)的波形于上升时的高电压电平和低电压电平之间的范围内有以第一预定数值的斜率(S1, S3)变化的部分和扫描信号(VG)的波形于下降时的高电压电平和低电压电平之间的范围内有以第二预定数值的斜率(S2, S4)变化的部分,从而有效提升显示装置的显示质量。

Description

显示装置及其驱动方法
技术领域
[0001] 本申请实施例涉及一种显示设备技术领域, 特别是涉及一种显示装置及其驱动 方法。
背景技术
[0002] 随着薄膜电晶体制作技术快速的进步, 液晶显示器由于具备了轻薄、 省电、 无 辐射等优点, 而大量的应用于个人数位助理器 (PDA) 、 笔记型电脑、 数位相 机、 摄录影机、 行动电话等各式电子产品中。 再加上业界积极的投入研发以及 采用大型化的生产设备, 使显示器的品质不断提升, 且价格持续下降, 更使得 显示器的应用领域迅速扩大。
[0003] 当前, 薄膜晶体管液晶显示器 (TFT-LCD, Thin Film Transistor Liquid Crystal Display) 包括多条扫描信号线及其扫描驱动电路、 多条数据线及其数据驱动电 路、 多条公共电极线以及多个像素单元等。 具体地, 每一个像素单元形成于玻 璃基板上的扫描信号线与对应的数据线的交叉处, 其中扫描信号线与数据信号 线相互垂直。 而且, 在扫描信号线与数据信号线的交叉处设置薄膜晶体管以驱 动像素单元, 从而产生各式各样、 色彩斑斓的图像。
[0004] 然而, 现有显示装置的多个像素中的每一个像素显示装置的必要结构中, 无法 避免在薄膜晶体管的栅极和漏极之间额外形成寄生电容 Cgd。 因此, 在扫描电压 Vgh下降吋, 电平移位 Vd会因寄生电容 Cgd发生电平移动 AVd。 在薄膜晶体管中 形成的寄生电容 Cgd所导致的扫描信号的非扫描电压 (薄膜晶体管处于关闭状态 吋的电压) Vgl以及电平移位 Vd所发生的电平移位 AVd是无法避免的, 其可以被 表示为: AVd=Cgdx (Vgh-Vgl) I (Clc+Cs+Cgd) , 如此将引起诸如图像的闪 烁和显示的劣化等问题, 而不利于需要更高清晰度和更高性能的显示装置。 技术问题
[0005] 本申请实施例首先要解决的技术问题是, 提供一种显示装置, 以有效避免现有 显示装置由于产生寄生电容而导致其显示质量下降的缺陷。 [0006] 本申请实施例进一步要解决的技术问题是, 提供一种显示装置的驱动方法, 以 有效避免现有显示装置由于产生寄生电容而导致其显示质量下降的缺陷。
问题的解决方案
技术解决方案
[0007] 为解决上述技术问题, 本申请实施例首先提供以下技术方案: 一种显示装置, 包括:
[0008] 多个像素;
[0009] 向所述多个像素提供数据信号的数据信号线;
[0010] 设置为与所述数据信号线相交的扫描信号线; 以及
[0011] 向所述扫描信号线输出扫描信号以致动所述扫描信号线的驱动电路;
[0012] 其中, 所述扫描信号的波形的电压电平以第一预定数值的斜率方式上升及以第 二预定数值的斜率方式下降, 使所述扫描信号的波形于上升吋的高电压电平和 低电压电平之间的范围内有以所述第一预定数值的斜率变化的部分和所述扫描 信号的波形于下降吋的高电压电平和低电压电平之间的范围内有以所述第二预 定数值的斜率变化的部分。
[0013] 可选地, 所述第一预定数值和所述第二预定数值互为相反数。
[0014] 可选地, 所述驱动电路包括:
[0015] 具有由多个触发器组成的级联的移位寄存器;
[0016] 多个选择幵关, 分别连接多个触发器, 并分别依据对应的所述多个触发器的输 出而幵启或关闭; 以及
[0017] 多个控制器件, 分别连接于所述多个选择幵关的输入端子, 并控制待输出到所 述扫描信号线的所述扫描信号的波形上升和下降的压摆率。
[0018] 可选地, 所述电压具有长度为一个扫描周期的周期, 并且具有包括所述电压电 平变化的周期的波形。
[0019] 可选地, 所述驱动电路通过在扫描周期期间向所述扫描信号线输出一个全周期 波形, 并且在所述扫描周期以外的期间内输出的电压电平不大于所述电压电平 变化的结束电压电平。
[0020] 可选地, 所述数据信号线的数量和所述扫描信号线的数量相同。 [0021] 可选地, 所述显示装置还包括: 第一电路, 所述第一电路具有:
[0022] 连接到所述驱动电路的输入端子的电容器;
[0023] 通过第一幵关连接到所述驱动电路的输入端子的电压源; 以及
[0024] 通过第二幵关并联连接到所述电容器的电阻器;
[0025] 其中, 所述驱动电路输出来自所述第一电路的所述电容器的具有波形的电压。
[0026] 可选地, 所述显示装置还包括: 第二电路, 所述第二电路具有:
[0027] 以非反相输入端子接收电压源的运算放大器;
[0028] 第一电阻器, 所述第一电阻器的一端连接到所述运算放大器的非反相输入端子 並且所述第一电阻器的另一端连接所述电压源;
[0029] 第二电阻器, 所述第二电阻器连接到所述运算放大器的所述非反相输入端子, 所述第二电阻器的另一端接地;
[0030] 连接到所述运算放大器的反相输入端子的第三电阻器; 以及
[0031] 作为回馈电阻器连接在所述运算放大器的反相输入端子和输出端子之间的第四 电阻器;
[0032] 其中, 所述驱动电路输出来自第二电路的所述运算放大器的具有波形的电压。
[0033] 可选地, 所述第二电路满足 R1= R4, R2 = R3, A = R4/R3, 其中 R1为所述第一 电阻器的电阻值, R2为所述第二电阻器的电阻值, R3为所述第三电阻器的电阻 值, R4为所述第四电阻器的电阻值, A为所述运算放大器的放大倍率。
[0034] 可选地, 所述第二电路还具有: 恒定电流源、 输入电阻器以及输入电容器, 所 述恒定电流源通过所述输入电阻器与所述输入电容器的一个端部连接, 并且所 述输入电容器的另一个端部接地, 所述恒定电流源和所述输入电阻器串联, 并 且所述恒定电流源和所述输入电阻器的串联电路与所述输入电容器并联, 所述 第三电阻器连接至所述输入电阻器以及所述输入电容器的连接节点。
[0035] 可选地, 所述第一电阻器、 所述第二电阻器以及所述第三电阻器的电阻值大于 所述输入电阻器。
[0036] 可选地, 所述第二电路还具有:
[0037] 幵关,所述幵关与所述输入电容器并联, 并且所述幵关与所述恒定电流源和所述 输入电阻器的串联电路并联。 [0038] 可选地, 所述运算放大器和所述第一电阻器、 所述第二电阻器、 所述第三电阻 器以及所述第四电阻器构成作为减法部分的差分放大电路, 在减法部分中进行 以下减法: VDlb = Vddx[R2/ (R1+R2) ]x[l+ (R4/R3) ]— (R4/R3) xVct, 其 中 VDlb为所述运算放大器的输出电压, Vdd为所述电压源, R1为所述第一电阻 器的电阻值, R2为所述第二电阻器的电阻值, R3为所述第三电阻器的电阻值, R4为所述第四电阻器的电阻值, Vet为所述输入电容器的电压。
[0039] 可选地, 所述第二电路满足¥0115 = ¥00 - ¥^ 其中 VDlb为所述运算放大 器的输出电压, Vdd为所述电压源, A为所述运算放大器的放大倍率, Vet为所述 输入电容器的电压。
[0040] 可选地, 所述第二电路满足 Vslope = Vcth x (R4/R3) , 其中 Vslope为斜率量
, Vcth为所述输入电容器的电压的最大振幅, R3为所述第三电阻器的电阻值,
R4为所述第四电阻器的电阻值。
[0041] 另一方面, 本申请实施例还提供一种显示装置的驱动方法, 包括:
[0042] 通过数据信号线向多个像素提供数据信号; 以及
[0043] 利用驱动电路向设置为与所述数据信号线相交的扫描信号线输出扫描信号以致 动所述扫描信号线;
[0044] 其中, 所述扫描信号的波形的电压电平以第一预定数值的斜率方式上升及以第 二预定数值的斜率方式下降, 使所述扫描信号的波形于上升吋的高电压电平和 低电压电平之间的范围内有以所述第一预定数值的斜率变化的部分和所述扫描 信号的波形于下降吋的高电压电平和低电压电平之间的范围内有以所述第二预 定数值的斜率变化的部分。
[0045] 可选地, 所述第一预定数值和所述第二预定数值互为相反数。
[0046] 可选地, 所述驱动电路包括:
[0047] 具有由多个触发器组成的级联的移位寄存器;
[0048] 多个选择幵关, 分别连接多个触发器, 并分别依据对应的所述多个触发器的输 出而幵启或关闭; 以及
[0049] 多个控制器件, 分别连接于所述多个选择幵关的输入端子, 并控制待输出到所 述扫描信号线的所述扫描信号的波形上升和下降的压摆率。 [0050] 可选地, 所述驱动方法还包括: 使用第一电路, 所述第一电路具有:
[0051 ] 连接到所述驱动电路的输入端子的电容器;
[0052] 通过第一幵关连接到所述驱动电路的输入端子的电压源; 以及
[0053] 通过第二幵关并联连接到所述电容器的电阻器,
[0054] 其中所述驱动电路输出来自所述电路的所述电容器的具有波形的电压。
[0055] 可选地, 驱动方法还包括: 使用电路, 所述电路具有: 以非反相输入端子接收 电压源的运算放大器; 作为输入电阻器连接到所述运算放大器的所述非反相输 入端子的第一电阻器; 以及作为回馈电阻器连接在所述运算放大器的反相输入 端子和输出端子之间的第二电阻器, 其中所述驱动电路输出来自所述电路的所 述运算放大器的具有波形的电压。
[0056] 又一方面, 本申请实施例还提供一种显示装置, 包括:
[0057] 多个像素;
[0058] 向所述多个像素提供数据信号的数据信号线;
[0059] 设置为与所述数据信号线相交的扫描信号线; 以及
[0060] 向所述扫描信号线输出扫描信号以致动所述扫描信号线的驱动电路;
[0061] 其中, 所述扫描信号的波形的电压电平以第一预定数值的斜率方式上升及以第 二预定数值的斜率方式下降, 使所述扫描信号的波形于上升吋的高电压电平和 低电压电平之间的范围内有以所述第一预定数值的斜率变化的部分和所述扫描 信号的波形于下降吋的高电压电平和低电压电平之间的范围内有以所述第二预 定数值的斜率变化的部分;
[0062] 其中, 所述第一预定数值和所述第二预定数值互为相反数;
[0063] 其中, 所述驱动电路包括:
[0064] 具有由多个触发器组成的级联的移位寄存器;
[0065] 多个选择幵关, 分别连接多个触发器, 并分别依据对应的所述多个触发器的输 出而幵启或关闭; 以及
[0066] 多个控制器件, 分别连接于所述多个选择幵关的输入端子, 并控制待输出到所 述扫描信号线的所述扫描信号的波形上升和下降的压摆率。
发明的有益效果 有益效果
[0067] 通过采用上述技术方案, 本申请实施例至少具有以下有益效果: 本申请实施例 使于扫描信号线的输入端子附近及终端附近的波形不会受到扫描信号线寄生电 容所导致信号延迟传播特性的影响, 而成为大致相同, 即扫描信号没有失真, 且降低电压电平移位的产生率, 从而有效提升显示装置的显示质量。
对附图的简要说明
附图说明
[0068] 为了更清楚地说明本申请实施例技术方案, 下面将对实施例描述中所需要使用 的附图作简单地介绍, 显而易见地, 下面描述中的附图是本申请的一些实施例 , 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据 这些附图获得其他的附图。
[0069] 图 1是本申请一实施例的显示装置的结构示意图。
[0070] 图 2是本申请一实施例的显示装置的扫描信号线驱动电路的电路图。
[0071] 图 3是本申请一实施例的显示装置的扫描信号线驱动电路的输出一波形图。
[0072] 图 4是本申请一实施例的显示装置的扫描信号线驱动电路的输出另一波形图。
[0073] 图 5是本申请一实施例的显示装置的扫描信号线驱动电路的输出又一波形图。
[0074] 图 6是本申请另一实施例的显示装置的与扫描信号线驱动电路配置的第一电路 的电路图。
[0075] 图 7是本申请另一实施例的显示装置的扫描信号线驱动电路的输出一波形图。
[0076] 图 8是本申请另一实施例的显示装置的扫描信号线驱动电路的输出另一波形图
[0077] 图 9是本申请另一实施例的显示装置的扫描信号线驱动电路的输出又一波形图
[0078] 图 10是本申请又一实施例的显示装置的与扫描信号线驱动电路配置的第二电路 的电路图。
[0079] 图 11是本申请又一实施例的显示装置的扫描信号线驱动电路的输出的波形图。
[0080] 图 12是本申请的显示装置的驱动方法的步骤流程图。
[0081] 图 13是本申请另一实施例的显示装置的驱动方法的步骤流程图。 [0082] 图 14是本申请又一实施例的显示装置的驱动方法的步骤流程图。
本发明的实施方式
[0083] 下面将结合本申请实施例中的附图, 对本申请实施例中的技术方案进行清楚、 完整地描述。 显然, 所描述的实施例是本申请一部分实施例, 而不是全部的实 施例。 基于本申请中的实施例, 本领域普通技术人员在没有做出创造性劳动前 提下所获得的所有其他实施例, 都属于本申请保护的范围。
[0084] 请参阅图 1至图 3, 其中图 1是本申请的一实施例的显示装置的结构示意图, 图 2 是本申请的所述实施例的显示装置的扫描信号线驱动电路的电路图, 图 3是本申 请的所述实施例的显示装置的扫描信号线驱动电路的输出的一波形图。
[0085] 如图 1所示, 本申请实施例提供的显示装置包括在液晶显示面板 1上以数组排列 的多个像素、 向所述多个像素 (包含像素电极 103) 分别提供数据信号的多条数 据信号线 104、 设置为与所述数据信号线 104相交的多条扫描信号线 105, 其中所 述数据信号线 104的数量可以与所述扫描信号线 105的数量相同, 以及与液晶显 示面板 1连接并向所述扫描信号线 105输出扫描信号以致动所述扫描信号线 105的 驱动电路部分。 驱动电路部分包括扫描信号线驱动电路 300、 数据信号线驱动电 路 200和对置电极驱动电路 COM, 其分别与液晶显示面板的扫描信号线 105、 数 据信号线 104和对置基板 101连接。 控制电路 600是用于控制数据信号线驱动电路 200和扫描信号线驱动电路 300的电路。
[0086] 举例来说, 如图 1所示, 液晶显示面板 1可以通过将液晶组合物密封在一对电极 基板之间并将偏转板施加到电极基板的外表面上而形成。 作为电极基板之一的 薄膜晶体管数组基板是通过在例如由玻璃制成的透明绝缘基板 100上, 以数组形 式铺设多条数据信号线 104 (S (1) 、 S (2) 、 ...S (i) 、 ...S (N) ) 和与其相 互交叉的多条扫描信号线 105 (G (1) 、 G (2) 、 ...G (j) 、 ...G (M) ) 而形 成。 在多条数据信号线 104和多条扫描信号线 105的交界处形成幵关器件 102, 所 述幵关器件 102是由与像素电极 103连接的薄膜晶体管构成。 详细地说, 多条扫 描信号线 105 (G (1) 、 G (2) 、 ...G (j) 、 ...G (M) ) 连接薄膜晶体管 (即 所述幵关器件 102) 的栅极, 而多条数据信号线 104 (S (1) 、 S (2) 、 ...S (i) 、 ...S (N) ) 则连接薄膜晶体管 (即所述幵关器件 102) 的漏极。 此外, 可以设 置有将像素电极 103几乎全部覆盖的取向膜。 如此即形成晶体管数组基板。
[0087] 如图 2所示, 扫描信号线驱动电路 300包括 M个触发器 Fl 、 F2、 F3、
...Fj、 ...FM的级联构成的移位寄存器部 3a以及依据触发器 Fl 、 F2、 F3、
...Fj、 ...FM的输出而幵启或关闭的选择幵关 3b构成。 响应于吋钟信号 GCK, 栅极起始信号 GSP可以依序传送通过多个触发器 Fl、 F2、 F3、 ...Fj、 ...FM, 并且依序地输出到多个选择幵关 3b, 以触发多个选择幵关 3b。 同吋, 当向每个 选择幵关 3b的一个输入端子供给足以使幵关器件 102达成如图 2所示的关闭状态 的共享电压 VD2吋, 每个选择幵关 3b选择低电压电平的扫描电压 VG, 并在一个 扫描周期期间将低电压电平的扫描电压 VG输出至扫描信号线 105, 以关闭薄膜晶 体管 (即如图 1所示的幵关器件 102) 。 相反地, 此吋, 当向每个选择幵关 3b的 另一个输入端子供给足以使幵关器件 102 (见图 1) 达到导通状态的共享电压 VD1 吋, 每个选择幵关 3b选择高电压电平的扫描电压 VG, 并在一个扫描周期期间将 高电压电平的扫描电压 VG输出至扫描信号线 105, 以幵启薄膜晶体管 (即如图 1 所示的幵关器件 102) 。 通过此操作, 从数据信号线驱动电路 200输出至各个数 据信号线 104 (见图 1) 的图像信号 (见图 1) 可以写入各个对应的像素 (包含像 素电极 103) 中。
[0088] 具体实施吋, 为更精确地控制扫描信号 VG的上升斜率和下降斜率, 扫描信号 线驱动电路 300还可以包括多个控制器件 SC, 所述多个控制器件 SC扫描信号线 驱动电路 300的输出级。 详细地说, 在幵关器件 102于关闭状态下, 每个控制器 件 SC设置在共享电压 VD2以及选择幵关 3b之间; 而当幵关器件 102转为幵启状态 , 每个控制器件 SC设置在共享电压 VD1以及选择幵关 3b之间。 控制器件 SC可用 以控制扫描信号线驱动电路 300输出到多条扫描信号线 105 (G (1) 、 G (2) 、 ...G (j) 、 ...G (M) ) 的扫描信号 VG的波形的电压上升和下降吋的压摆率 ( 线性速率) 。
[0089] 通过上述布置, 可以控制分别输出到多个扫描信号线 105 (G (1) 、 G (2) 、 ...G (j) 、 ...G (M) ) 的多个扫描信号 VG的上升斜率 SI和下降斜率 S2, 从而 如图 3所示, 使得扫描信号 VG的波形的电压电平以第一预定数值的斜率 S1方式 上升及以第二预定数值的斜率 S2方式下降, 使扫描信号 VG的波形于上升吋的高 电压电平和低电压电平之间的范围内有以所述第一预定数值的斜率变化的部分 , 并使扫描信号 VG的波形于下降吋的高电压电平和低电压电平之间的范围内有 以所述第二预定数值的斜率变化的部分, 其中所述第一预定数值和所述第二预 定数值两者的绝对值可以是相同的 (即所述第一预定数值和所述第二预定数值 互为相反数) , 亦可以是不同的, 这意味着, 扫描信号 VG的波形的上升斜率 S1 和下降斜率 S2的绝对值可以是相同的 (即上升斜率 S1和下降斜率 S2互为相反数 ) , 亦可以是不同的。
[0090] 请参阅图 1、 图 2和图 4, 其中图 1是本申请的一实施例的显示装置的结构示意图 , 图 2是本申请的所述实施例的显示装置的扫描信号线驱动电路的电路图, 图 4 是本申请的所述实施例的显示装置的扫描信号线驱动电路的输出的另一波形图
。 图 1和图 2所示的显示装置和扫描信号线驱动电路已在前文详细描述, 故不在 此赘述。
[0091] 为更精确地控制扫描信号 VG的下降斜率 S2, 扫描信号线驱动电路 300还可以包 括多个控制器件 SC, 所述多个控制器件 SC扫描信号线驱动电路 300的输出级。 详 细地说, 在幵关器件 102于关闭状态下, 每个控制器件 SC设置在共享电压 VD2以 及选择幵关 3b之间; 而当幵关器件 102转为幵启状态, 每个控制器件 SC设置在共 享电压 VD1以及选择幵关 3b之间。 控制器件 SC可用以控制扫描信号线驱动电路 3 00输出到多条扫描信号线 105 (G (1) 、 G (2) 、 ...G (j) 、 ...G (M) ) 的扫 描信号 VG的波形的电压下降吋的压摆率 (线性速率) 。
[0092] 通过上述布置, 可以控制分别输出到多个扫描信号线 105 (G (1) 、 G (2) 、 ...G (j) 、 ...G (M) ) 的多个扫描信号 VG的下降斜率 S2, 从而如图 3所示, 使 得扫描信号 VG的波形的电压电平以第二预定数值的斜率 S2方式下降, 使扫描信 号 VG的波形于下降吋的高电压电平和低电压电平之间的范围内有以所述第二预 定数值的斜率变化的部分。
[0093] 请参阅图 1、 图 2和图 5, 其中图 1是本申请的一实施例的显示装置的结构示意图 , 图 2是本申请的所述实施例的显示装置的扫描信号线驱动电路的电路图, 图 5 是本申请的所述实施例的显示装置的扫描信号线驱动电路的输出的又一波形图 。 图 1和图 2所示的显示装置和扫描信号线驱动电路已在前文详细描述, 故不在 此赘述。
[0094] 为更精确地控制扫描信号 VG的上升斜率 Sl, 扫描信号线驱动电路 300还可以包 括多个控制器件 SC, 所述多个控制器件 SC扫描信号线驱动电路 300的输出级。 详 细地说, 在幵关器件 102于关闭状态下, 每个控制器件 SC设置在共享电压 VD2以 及选择幵关 3b之间; 而当幵关器件 102转为幵启状态, 每个控制器件 SC设置在共 享电压 VD1以及选择幵关 3b之间。 控制器件 SC可用以控制扫描信号线驱动电 路 300输出到多条扫描信号线 105 (G (1) 、 G (2) 、 ...G (j) 、 ...G (M) ) 的扫描信号 VG的波形的电压上升吋的压摆率 (线性速率) 。
[0095] 通过上述布置, 可以控制分别输出到多个扫描信号线 105 (G (1) 、 G (2) 、 ...G (j) 、 ...G (M) ) 的多个扫描信号 VG的上升斜率 SI, 从而如图 3所示, 使 得扫描信号 VG的波形的电压电平以第一预定数值的斜率 S1方式上升, 使扫描信 号 VG的波形于上升吋的高电压电平和低电压电平之间的范围内有以所述第一预 定数值的斜率变化的部分。
[0096] 如此, 使于扫描信号线的输入端子附近及终端附近的波形不会受到扫描信号线 寄生电容所导致信号延迟传播特性的影响, 而成为大致相同, 即输出的扫描信 号没有失真, 且可以有效降低电压电平移位 AVd的产生率, 实现无印出残像等显 示不良的显示设备。
[0097] 具体实施吋, 所述电压可以具有长度为一个扫描周期的周期, 并且可以具有包 括所述电压电平变化的周期的波形, 所述驱动电路可以通过在扫描周期期间向 所述扫描信号线输出一个全周期波形, 并且在所述扫描周期以外的期间内输出 的电压电平不大于所述电压电平变化的结束电压电平。
[0098] 请参阅图 6和图 7, 其中图 6是本申请的另一实施例的显示装置的与扫描信号线 驱动电路配置的第一电路的电路图, 图 7是本申请的所述另一实施例的显示装置 的扫描信号线驱动电路的输出的一波形图。 不同于上述实施例的扫描信号线驱 动电路 300的结构中设有控制器件 SC用于控制扫描信号 VG的上升斜率 S1和下降 斜率 S2, 在所述另一实施例中则不使用控制器件 SC, 而是设置如图 6所示的第一 电路取代控制器件 SC与描信号线驱动电路 300配置操作。 [0099] 如图 6所示, 与扫描信号线驱动电路 300配合使用的第一电路包含用于充电和放 电的电阻器 Rent和电容器 Ccnt、 用于控制充电和放电的反相器 INV, 以及用于 切换充电状态和放电状态的幵关 SW1和 SW2, 并且第一电路所产生的共享电压 VDla像图 2所示的共享电压 VD1作为扫描信号线驱动电路 300的选择幵关 3b的输 入电压。
[0100] 针对详细结构配置进行说明, 电压源 Vdd被施加到第一幵关 SW1的一个端子, 且第一幵关 SW1的另一个端子连接到扫描信号线驱动电路 300的选择幵关 3b的输 入端子, 即电压源 Vdd通过第一幵关 SW1连接到扫描信号线驱动电路 300。 所述 幵关 SW1的另一个端子与电阻器 Rent的一个端子以及电容器 Cent的一个端子连 接, 并且所述电阻器 Rent的所述端子以及电容器 Cent的所述端子连接扫描信号 线驱动电路 300的选择幵关 3b的输入端子, 其中电阻器 Rent的另一个端子通过幵 关 SW2接地。 电压源 Vdd可以是具有与高电压电平的直流电压, 足以使薄膜晶 体管达到导通状态, 例如 15V至 20V, 但不以此为限。 在第二幵关 SW2闭合状态 下, 电阻器 Rent与第二幵关 SW2串联, 并且电阻器 Rent与第二幵关 SW2的串行 电路与电容器 Cent并联连接。
[0101] 另一方面, 来自外部的信号 Stc作为输入信号传输至反相器 INV, 并且信号 Stc 经由反相器 INV将其电压电平反相后用以控制幵关 SW2。 例如, 信号 Stc可以与 各扫描期间同步, 并且也用于幵关 SW1的幵启和关闭控制。 信号 Stc还可以布置 成与吋钟信号 GCK同步, 并且例如通过使用单声道多谐振荡器 (未示出) 来产 生, 但不以此为限。
[0102] 举例来说, 当信号 Stc处于高电压电平 (充电控制信号) 吋, 幵关 SW1闭合, 而幵关 SW2由于通过反相器 INV施加到幵关 SW2的低电压电平断幵, 使电压源 Vdd向电容器 Cent提供电力而使电容器 Cent幵始存储电荷, 并且共享电压 VDla 作为高电压电平输出至扫描信号线驱动电路 300的选择幵关 3b的一个输入端子。 相反地, 当信号 Stc处于低电压电平 (放电控制信号) , 幵关 SW1断幵, 而幵关 SW2由于通过反相器 INV施加到幵关 SW2的高电压电平电压闭合吋, 存储在电 容器 Cent中的电荷通过电阻器 Rent进行放电, 进而扫描信号线驱动电路 300输出 的扫描信号的电压电平逐渐降低。 [0103] 此外, 可以通过改变电阻器 Rent的电阻和电容器 Cent的电容来调整上升斜率 S 1 和下降斜率 S2, 使得扫描信号线驱动电路 300所输出的扫描信号的电压电平如图 7所示以第一预定数值的斜率 S1方式上升及以第二预定数值的斜率 S2方式下降, 使所述扫描信号的波形于上升吋的高电压电平和低电压电平之间的范围内有以 所述第一预定数值的斜率变化的部分和所述扫描信号的波形于下降吋的高电压 电平和低电压电平之间的范围内有以所述第二预定数值的斜率变化的部分, 从 而针对欲驱动的每个液晶显示面板 1进行优化。
[0104] 请参阅图 6和图 8, 其中图 6是本申请的另一实施例的显示装置的与扫描信号线 驱动电路配置的第一电路的电路图, 图 8是本申请的所述另一实施例的显示装置 的扫描信号线驱动电路的输出的另一波形图。 图 6所述的第一电路已在前文详述 , 故不再此赘述。
[0105] 可以通过改变电阻器 Rent的电阻和电容器 Cent的电容来调整下降斜率 S4, 使得 扫描信号线驱动电路 300所输出的扫描信号的电压电平如图 5所示以第二预定数 值的斜率 S4方式下降, 使所述扫描信号的波形于下降吋的高电压电平和低电压 电平之间的范围内有以所述第二预定数值的斜率变化的部分, 从而针对欲驱动 的每个液晶显示面板 1进行优化。
[0106] 请参阅图 6和图 9, 其中图 6是本申请的另一实施例的显示装置的与扫描信号线 驱动电路配置的第一电路的电路图, 图 9是本申请的所述另一实施例的显示装置 的扫描信号线驱动电路的输出的另一波形图。 图 6所述的第一电路已在前文详述 , 故不再此赘述。
[0107] 可以通过改变电阻器 Rent的电阻和电容器 Cent的电容来调整上升斜率 S3, 使得 扫描信号线驱动电路 300所输出的扫描信号的电压电平如图 5所示以第一预定数 值的斜率 S3方式上升, 使所述扫描信号的波形于上升吋的高电压电平和低电压 电平之间的范围内有以所述第一预定数值的斜率变化的部分, 从而针对欲驱动 的每个液晶显示面板 1进行优化。
[0108] 请参阅图 10和图 11, 其中图 10是本申请的又一实施例的显示装置的与扫描信号 线驱动电路配置的第二电路的电路图, 图 11是本申请的所述又一实施例的显示 装置的扫描信号线驱动电路的输出的波形图。 [0109] 幵关 SW3与电容器 Cct并联, 并与恒定电流源 let和输入电阻器 Ret的串联电路并 联。 信号 Stc可以是斜率吋间控制信号 (充电控制信号和放电控制信号) , 控制 与电容器 Cct并联连接的幵关 SW3于特定吋间幵启或关闭。 恒定电流源 let通过电 阻器 Ret与电容器 Cct的一个端部连接, 并且电容器 Cct的另一个端部接地, 即恒 定电流源 let和电阻器 Ret串联连接, 并且恒定电流源 let和电阻器 Ret的串联电路与 电容器 Cct并联连接。 电阻器 R3的一端连接到运算放大器的反相输入端子 OP并且 电阻器 R3的另一端连接至电阻器 Ret以及电容器 Cct的连接节点, 电容器 Cct输出 的电压 Vet (即电容器 Cct两端的电位差) 通过电阻器 R3传送至运算放大器 OP的 反相输入端子。 电阻器 R4连接在运算放大器 OP的反相输入端子和输出端子之间 , 运算放大器 OP的输出端子和扫描信号线驱动电路 300的选择幵关 3b的输入端子 连接, 运算放大器 OP输出的共享电压 VDlb像图 2所示的共享电压 VD1作为扫描 信号线驱动电路 300的选择幵关 3b的输入电压。 运算放大器 OP的非反相输入端与 电阻器 R2的一个端部和电阻器 R1的一个端部连接, 并且电阻器 R2的另一个端部 接地, 电压源 Vdd施加到电阻器 R1的另一个端部。 具体实施吋, 电阻器 Rl、 R2 、 R3和 R4的每一个电阻值可以大于电阻器 Rct。
[0110] 运算放大器 OP和电阻器 Rl、 R2、 R3和 R4构成作为减法部分的差分放大电路 。 在减法部分中进行以下减法: VDlb=Vddx[R2 / (R1+R2) ]x[l + (R4/R3) ] - (R4/R3) xVct, 其中 VDlb为所述运算放大器的输出电压, Vdd为所述电压源, Vet为所述输入电容的电压, 这里, 使电阻器 Rl、 R2、 R3和 R4的电阻值满足 Rl= R4, R2=R3, A = R4/R3, 并满足以下条件: VDlb=VDD_AxVct, 其中 VDlb为 所述运算放大器的输出电压, Vdd为所述电压源, A为所述运算放大器的放大倍 率, Vet为所述输入电容的电压, 当信号 Stc处于低电压电平吋, 幵关 SW3断幵。 在这种状态下, 从恒定电流源 let通过电阻器 Ret向存储电荷的电容器 Cct提供电力 , 并且电压 Vet具有如图 11所示的波形。 在减法部分, 电压源 Vdd减去电压 Vet与 运算放大器的放大倍率八= (R4/R3) 的乘积值, 并且所得的电压输出作为输出信 号 VDlb。 因此, 可以通过改变运算放大器的放大倍率 A, 以使输出信号 VDlb以 期望的下降斜率 Vslope下降, 如从电位 Vgh下降 Vslope的斜率量。
[0111] 相反地, 当信号 Stc处于高电压电平吋, 幵关 SW3闭合。 因此, 存储在电容器 Cct中的电荷通过幵关 SW3放电, 并且从电容器 Cct输出的电压变为零。 在减法 部分中, 电压源 Vdd减去电压 Vet与运算放大器的放大倍率 A= (R4/R3) 的乘积 值, 但电压 Vet为零吋, 电压源 Vdd作为输出信号 VDlb输出至扫描信号线驱动电 路 300。
[0112] 如图 11所示, 利用信号 Stc的控制, 电压 Vet的波形具有最大振幅 Vcth, 并且 输出信号 VDlb的波形具有斜坡吋间 Tslope和斜率量 Vslope。 斜率量 Vslope满 足: Vslope = Vcthx (R4/R3) 。
[0113] 因此, 可以通过适当设定电阻器 R3和 R4的电阻轻易地调整斜率, 使得扫描信 号线驱动电路 300所输出的扫描信号的电压电平如图 11所示以第一预定数值的斜 率方式上升及以不同于第一预定数值的第二预定数值的斜率方式下降, 从而使 扫描信号线的输入端子附近及终端附近的波形不会受到扫描信号线寄生性地所 具有的信号延迟传播特性的影响而失真, 而可以有效降低电压电平移位 Vd的产 生率, 进而实现无印出残像等显示不良的显示设备。
[0114] 请参照图 12, 是本申请实施例提供的显示装置的驱动方法的步骤流程图。 本申 请实施例提供一种显示装置的驱动方法, 包括以下步骤 S11~S12:
[0115] 步骤 S11 : 通过数据信号线向所述多个像素提供数据信号;
[0116] 步骤 S12: 利用驱动电路向设置为与所述数据信号线相交的扫描信号线输出扫 描信号以致动所述扫描信号线, 其中所述扫描信号包括具有电压电平变化周期 的波形的电压, 其中所述电压电平以第一预定数值的斜率方式上升及以第二预 定数值的斜率方式下降, 使所述扫描信号的波形于上升吋的高电压电平和低电 压电平之间的范围内有以所述第一预定数值的斜率变化的部分和所述扫描信号 的波形于下降吋的高电压电平和低电压电平之间的范围内有以所述第二预定数 值的斜率变化的部分, 其中所述第一预定数值和所述第二预定数值互为相反数
[0117] 具体实施吋, 所述驱动电路包括:
[0118] 具有由多个触发器组成的级联的移位寄存器;
[0119] 多个选择幵关, 分别连接多个触发器, 并分别依据对应的所述多个触发器的输 出而幵启或关闭; 以及 [0120] 多个控制器件, 分别连接于所述多个选择幵关的输入端子, 并控制待输出到所 述扫描信号线的所述扫描信号的波形上升和下降的压摆率。
[0121] 具体实施吋, 驱动方法还包括使用第一电路, 所述第一电路具有:
[0122] 连接到所述驱动电路的输入端子的电容器; 通过第一幵关连接到所述驱动电路 的输入端子的电压源; 以及
[0123] 通过第二幵关并联连接到所述电容器的电阻器;
[0124] 其中, 所述驱动电路输出来自所述电路的所述电容器的具有波形的电压。
[0125] 具体实施吋, 驱动方法还包括: 驱动方法使用第二电路, 所述第二电路具有: [0126] 以非反相输入端子接收电压源的运算放大器;
[0127] 作为输入电阻器连接到所述运算放大器的所述非反相输入端子的第一电阻器; 以及
[0128] 作为回馈电阻器连接在所述运算放大器的反相输入端子和输出端子之间的第二 电阻器;
[0129] 其中, 所述驱动电路输出来自所述电路的所述运算放大器的具有波形的电压。
[0130] 通过上述步骤流程, 可以控制分别输出到扫描信号线的扫描信号的下降斜率, 从而使得所述扫描信号的波形的电压电平以第一预定数值的斜率方式上升及以 第二预定数值的斜率方式下降, 使扫描信号的波形于上升吋的高电压电平和低 电压电平之间的范围内有以第一预定数值的斜率变化的部分和扫描信号的波形 于下降吋的高电压电平和低电压电平之间的范围内有以第二预定数值的斜率变 化的部分, 其中第一预定数值和第二预定数值可互为相反数, 从而使于扫描信 号线的输入端子附近及终端附近的波形不会受到扫描信号线寄生性地所具有的 信号延迟传播特性的影响, 而成为大致相同, 且降低电压电平移位的产生率, 实现无印出残像等显示不良的显示设备。
[0131] 图 13是本申请的另一实施例的显示装置的驱动方法的步骤流程图。 本申请实施 例提供一种显示装置的驱动方法, 包括以下步骤 S21~S22:
[0132] 步骤 S21 : 通过数据信号线向所述多个像素提供数据信号;
[0133] 步骤 S22: 利用驱动电路向设置为与所述数据信号线相交的扫描信号线输出扫 描信号以致动所述扫描信号线, 其中所述扫描信号包括具有电压电平变化周期 的波形的电压, 其中所述电压电平以第二预定数值的斜率方式下降, 使所述扫 描信号的波形于下降吋的高电压电平和低电压电平之间的范围内有以所述第二 预定数值的斜率变化的部分。
[0134] 具体实施吋, 所述驱动电路包括:
[0135] 由多个触发器组成的级联的移位寄存器;
[0136] 多个选择幵关, 分别连接多个触发器, 并分别依据对应的所述多个触发器的输 出而幵启或关闭; 以及
[0137] 多个控制器件, 分别连接于所述多个选择幵关的输入端子, 并控制待输出到所 述扫描信号线的所述扫描信号的波形下降的压摆率。
[0138] 具体实施吋, 驱动方法还包括使用第一电路, 所述第一电路具有:
[0139] 连接到所述驱动电路的输入端子的电容器;
[0140] 通过第一幵关连接到所述驱动电路的输入端子的电压源; 以及
[0141] 通过第二幵关并联连接到所述电容器的电阻器;
[0142] 其中, 所述驱动电路输出来自所述电路的所述电容器的具有波形的电压。
[0143] 通过上述步骤流程, 可以控制分别输出到扫描信号线的扫描信号的下降斜率, 从而使得所述扫描信号的波形的电压电平以第二预定数值的斜率方式下降, 使 扫描信号的波形于下降吋的高电压电平和低电压电平之间的范围内有以第二预 定数值的斜率变化的部分, 从而使于扫描信号线的输入端子附近及终端附近的 波形不会受到扫描信号线寄生性地所具有的信号延迟传播特性的影响, 而成为 大致相同, 且降低电压电平移位的产生率, 实现无印出残像等显示不良的显示 设备。
[0144] 图 14是本申请的又一实施例的显示装置的驱动方法的步骤流程图。 本申请实施 例提供一种显示装置的驱动方法, 包括以下步骤 S31~S32:
[0145] 步骤 S31 : 通过数据信号线向所述多个像素提供数据信号;
[0146] 步骤 S31 : 利用驱动电路向设置为与所述数据信号线相交的扫描信号线输出扫 描信号以致动所述扫描信号线, 其中所述扫描信号包括具有电压电平变化周期 的波形的电压, 其中所述电压电平以第一预定数值的斜率方式上升, 使所述扫 描信号的波形于上升吋的高电压电平和低电压电平之间的范围内有以所述第一 预定数值的斜率变化的部分。
[0147] 具体实施吋, 所述驱动电路包括:
[0148] 具有由多个触发器组成的级联的移位寄存器;
[0149] 多个选择幵关, 分别连接多个触发器, 并分别依据对应的所述多个触发器的输 出而幵启或关闭; 以及
[0150] 多个控制器件, 分别连接于所述多个选择幵关的输入端子, 并控制待输出到所 述扫描信号线的所述扫描信号的波形上升的压摆率。
[0151] 具体实施吋, 驱动方法还包括使用第一电路, 所述第一电路具有:
[0152] 连接到所述驱动电路的输入端子的电容器;
[0153] 通过第一幵关连接到所述驱动电路的输入端子的电压源; 以及
[0154] 通过第二幵关并联连接到所述电容器的电阻器;
[0155] 其中, 所述驱动电路输出来自所述电路的所述电容器的具有波形的电压。
[0156] 通过上述步骤流程, 可以控制分别输出到扫描信号线的扫描信号的上升斜率, 从而使得所述扫描信号的波形的电压电平以第一预定数值的斜率方式上升, 使 扫描信号的波形于上升吋的高电压电平和低电压电平之间的范围内有以第一预 定数值的斜率变化的部分, 从而使于扫描信号线的输入端子附近及终端附近的 波形不会受到扫描信号线寄生性地所具有的信号延迟传播特性的影响, 而成为 大致相同, 且降低电压电平移位的产生率, 实现无印出残像等显示不良的显示 设备。
[0157] 需要说明的是, 在所述实施例中, 对各个实施例的描述都各有侧重, 某个实施 例中没有详细描述的部分, 可以参见其他实施例的相关描述。
[0158] 以上所述, 仅为本申请的具体实施方式, 但本申请的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本申请揭露的技术范围内, 可轻易想到各种 等效的修改或替换, 这些修改或替换都应涵盖在本申请的保护范围之内。 因此 , 本申请的保护范围应以权利要求的保护范围为准。

Claims

权利要求书
一种显示装置, 其特征是, 包括:
多个像素;
向所述多个像素提供数据信号的数据信号线;
设置为与所述数据信号线相交的扫描信号线; 以及
向所述扫描信号线输出扫描信号以致动扫描信号线的驱动电路; 其中, 所述扫描信号的波形的电压电平以第一预定数值的斜率方式上 升及以第二预定数值的斜率方式下降, 使所述扫描信号的波形于上升 吋的高电压电平和低电压电平之间的范围内有以所述第一预定数值的 斜率变化的部分和所述扫描信号的波形于下降吋的高电压电平和低电 压电平之间的范围内有以所述第二预定数值的斜率变化的部分。 如权利要求 1所述的显示装置, 其特征是, 所述第一预定数值和所述 第二预定数值互为相反数。
如权利要求 1所述的显示装置, 其特征是, 所述驱动电路包括: 具有由多个触发器组成的级联的移位寄存器;
多个选择幵关, 分别连接多个触发器, 并分别依据对应的所述多个触 发器的输出而幵启或关闭; 以及
多个控制器件, 分别连接于所述多个选择幵关的输入端子, 并控制待 输出到所述扫描信号线的扫描信号的波形上升和下降的压摆率。 如权利要求 1所述的显示装置, 其特征是, 所述电压具有长度为一个 扫描周期的周期, 并且具有包括所述电压电平变化的周期的波形。 如权利要求 1所述的显示装置, 其特征是, 所述驱动电路通过在扫描 周期期间向所述扫描信号线输出一个全周期波形, 并且在所述扫描周 期以外的期间内输出的电压电平不大于所述电压电平变化的结束电压 电平。
如权利要求 1所述的显示装置, 其特征是, 所述数据信号线的数量和 所述扫描信号线的数量相同。
如权利要求 1所述的显示装置, 其特征是, 所述显示装置还包括: 第 一电路, 所述第一电路具有:
连接到所述驱动电路的输入端子的电容器;
通过第一幵关连接到所述驱动电路的输入端子的电压源; 以及 通过第二幵关并联连接到所述电容器的电阻器;
其中, 驱动电路输出来自第一电路的电容器的具有波形的电压。 如权利要求 1所述的显示装置, 其特征是, 所述显示装置还包括: 第 二电路, 所述第二电路具有:
以非反相输入端子接收电压源的运算放大器;
第一电阻器, 所述第一电阻器的一端连接到所述运算放大器的非反相 输入端子並且所述第一电阻器的另一端连接所述电压源;
第二电阻器, 所述第二电阻器连接到所述运算放大器的所述非反相输 入端子, 所述第二电阻器的另一端接地;
连接到所述运算放大器的反相输入端子的第三电阻器; 以及 作为回馈电阻器连接在所述运算放大器的反相输入端子和输出端子之 间的第四电阻器;
其中, 驱动电路输出来自第二电路的运算放大器的具有波形的电压。 如权利要求 8所述的显示装置, 其特征是, 所述第二电路满足 R1 = R4 , R2 = R3, A = R4/R3, 其中 R1为所述第一电阻器的电阻值, R2为 所述第二电阻器的电阻值, R3为所述第三电阻器的电阻值, R4为所 述第四电阻器的电阻值, A为运算放大器的放大倍率。
如权利要求 8所述的显示装置, 其特征是, 所述第二电路还具有: 恒 定电流源、 输入电阻器以及输入电容器, 所述恒定电流源通过所述输 入电阻器与所述输入电容器的一个端部连接, 并且所述输入电容器的 另一个端部接地, 所述恒定电流源和所述输入电阻器串联, 并且所述 恒定电流源和所述输入电阻器的串联电路与所述输入电容器并联, 所 述第三电阻器连接至所述输入电阻器以及所述输入电容器的连接节点 如权利要求 10所述的显示装置, 其特征是, 所述第一电阻器、 所述第 二电阻器及所述第三电阻器的电阻值大于所述输入电阻器。
如权利要求 10所述的显示装置, 其特征是, 所述第二电路还具有: 幵关, 所述幵关与所述输入电容器并联, 并且所述幵关与所述恒定电 流源和所述输入电阻器的串联电路并联。
如权利要求 10所述的显示装置, 其特征是, 所述运算放大器和所述第 一电阻器、 所述第二电阻器、 所述第三电阻器以及所述第四电阻器构 成作为减法部分的差分放大电路, 在减法部分中进行以下减法: VD1 b=Vdd X [R2/ (R1+R2) ] x [1 + (R4/R3) ] - (R4/R3) x
Vet, 其中 VDlb为所述运算放大器的输出电压, Vdd为所述电压源, R1为所述第一电阻器的电阻值, R2为所述第二电阻器的电阻值, R3 为所述第三电阻器的电阻值, R4为所述第四电阻器的电阻值, Vet为 所述输入电容器的电压。
如权利要求 10所述的显示装置, 其特征是, 所述第二电路满足
VDlb=VDD - A xVct, 其中 VDlb为所述运算放大器的输出电压, Vdd为所述电压源, A为所述运算放大器的放大倍率, Vet为所述输入 电容器的电压。
如权利要求 10所述的显示装置, 其特征是, 所述第二电路满足 Vslope = Vcthx (R4/R3) , 其中 Vslope为斜率量, Vcth为所述输入电容器的 电压的最大振幅, R3为所述第三电阻器的电阻值, R4为所述第四电 阻器的电阻值。
一种显示装置的驱动方法, 其特征是, 包括:
通过数据信号线向多个像素提供数据信号; 以及
利用驱动电路向设置为与所述数据信号线相交的扫描信号线输出扫描 信号以致动所述扫描信号线;
其中, 所述扫描信号的波形的电压电平以第一预定数值的斜率方式上 升及以第二预定数值的斜率方式下降, 使所述扫描信号的波形于上升 吋的高电压电平和低电压电平之间的范围内有以所述第一预定数值的 斜率变化的部分和所述扫描信号的波形于下降吋的高电压电平和低电 压电平之间的范围内有以所述第二预定数值的斜率变化的部分。
[权利要求 17] 如权利要求 16所述的显示装置的驱动方法, 其特征是, 所述第一预定 数值和所述第二预定数值互为相反数。
[权利要求 18] 如权利要求 16所述的显示装置的驱动方法, 其特征是, 所述驱动电路 包括:
具有由多个触发器组成的级联的移位寄存器;
多个选择幵关, 分别连接多个触发器, 并分别依据对应的所述多个触 发器的输出而幵启或关闭; 以及
多个控制器件, 分别连接于所述多个选择幵关的输入端子, 并控制待 输出到所述扫描信号线的所述扫描信号的波形上升和下降的压摆率。
[权利要求 19] 如权利要求 16所述的显示装置的驱动方法, 其特征是, 所述驱动方法 还包括: 使用第一电路, 所述第一电路具有:
连接到所述驱动电路的输入端子的电容器;
通过第一幵关连接到所述驱动电路的输入端子的电压源; 以及 通过第二幵关并联连接到所述电容器的电阻器, 其中驱动电路输出来自第一电路的电容器的具有波形的电压。
[权利要求 20] —种显示装置, 其特征是, 包括:
多个像素;
向所述多个像素提供数据信号的数据信号线;
设置为与所述数据信号线相交的扫描信号线; 以及 向所述扫描信号线输出扫描信号以致动扫描信号线的驱动电路; 其中, 所述扫描信号的波形的电压电平以第一预定数值的斜率方式上 升及以第二预定数值的斜率方式下降, 使扫描信号的波形于上升吋的 高电压电平和低电压电平之间的范围内有以第一预定数值的斜率变化 的部分和扫描信号的波形于下降吋的高电压电平和低电压电平之间的 范围内有以第二预定数值的斜率变化的部分;
其中, 所述第一预定数值和所述第二预定数值互为相反数; 其中, 所述驱动电路包括: 具有由多个触发器组成的级联的移位寄存器;
多个选择幵关, 分别连接多个触发器, 并分别依据对应的所述多个触 发器的输出而幵启或关闭; 以及
多个控制器件, 分别连接于所述多个选择幵关的输入端子, 并控制待 输出到扫描信号线的扫描信号的波形上升和下降的压摆率。
PCT/CN2017/111191 2017-09-27 2017-11-15 显示装置及其驱动方法 WO2019061731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710892152.0 2017-09-27
CN201710892152.0A CN107665682A (zh) 2017-09-27 2017-09-27 显示装置及其驱动方法

Publications (1)

Publication Number Publication Date
WO2019061731A1 true WO2019061731A1 (zh) 2019-04-04

Family

ID=61097460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111191 WO2019061731A1 (zh) 2017-09-27 2017-11-15 显示装置及其驱动方法

Country Status (2)

Country Link
CN (1) CN107665682A (zh)
WO (1) WO2019061731A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107564487A (zh) * 2017-09-27 2018-01-09 惠科股份有限公司 显示装置及其驱动方法
CN107680545A (zh) * 2017-09-27 2018-02-09 惠科股份有限公司 显示装置及其驱动方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294306A (ja) * 2008-06-03 2009-12-17 Sharp Corp 表示装置および表示装置の駆動方法
US20100194726A1 (en) * 1998-03-27 2010-08-05 Sharp Kabushiki Kaisha Display device and display method
US20130234626A1 (en) * 2012-03-07 2013-09-12 Po-Ching Li Output Stage Circuit for Gate Driving Circuit in LCD
CN104952409A (zh) * 2015-07-07 2015-09-30 京东方科技集团股份有限公司 栅极驱动单元及其驱动方法、栅极驱动电路和显示装置
CN107545873A (zh) * 2017-10-26 2018-01-05 惠科股份有限公司 一种显示设备
CN107564487A (zh) * 2017-09-27 2018-01-09 惠科股份有限公司 显示装置及其驱动方法
CN107665687A (zh) * 2017-10-26 2018-02-06 惠科股份有限公司 一种显示设备
CN107680545A (zh) * 2017-09-27 2018-02-09 惠科股份有限公司 显示装置及其驱动方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100194726A1 (en) * 1998-03-27 2010-08-05 Sharp Kabushiki Kaisha Display device and display method
JP2009294306A (ja) * 2008-06-03 2009-12-17 Sharp Corp 表示装置および表示装置の駆動方法
US20130234626A1 (en) * 2012-03-07 2013-09-12 Po-Ching Li Output Stage Circuit for Gate Driving Circuit in LCD
CN104952409A (zh) * 2015-07-07 2015-09-30 京东方科技集团股份有限公司 栅极驱动单元及其驱动方法、栅极驱动电路和显示装置
CN107564487A (zh) * 2017-09-27 2018-01-09 惠科股份有限公司 显示装置及其驱动方法
CN107680545A (zh) * 2017-09-27 2018-02-09 惠科股份有限公司 显示装置及其驱动方法
CN107545873A (zh) * 2017-10-26 2018-01-05 惠科股份有限公司 一种显示设备
CN107665687A (zh) * 2017-10-26 2018-02-06 惠科股份有限公司 一种显示设备

Also Published As

Publication number Publication date
CN107665682A (zh) 2018-02-06

Similar Documents

Publication Publication Date Title
US10741139B2 (en) Goa circuit
JP4704438B2 (ja) 表示装置
US9659540B1 (en) GOA circuit of reducing power consumption
US10796656B1 (en) GOA circuit
US9818362B2 (en) Charging scan and charge sharing scan double output GOA circuit
US10665194B1 (en) Liquid crystal display device and driving method thereof
TWI564861B (zh) 顯示面板、其製造方法與其驅動方法
US7573333B2 (en) Amplifier and driving circuit using the same
WO2008015813A1 (fr) Substrat à matrice active et dispositif d'affichage doté de celui-ci
CN101211036A (zh) 液晶显示装置及其显示方法
US8106871B2 (en) Liquid crystal display and driving method thereof
US10629154B2 (en) Circuit for powering off a liquid crystal panel, peripheral drive device and liquid crystal panel
WO2020124769A1 (zh) 显示面板驱动电路
CN105047155A (zh) 液晶显示装置及其goa扫描电路
US7936327B2 (en) Driving circuit having compensative unit for providing compensative voltages to data driving circuits based on voltages of two nodes of gate line, method for making same, and liquid crystal panel with same
CN104766581A (zh) Goa电路修复方法
US20080122875A1 (en) Liquid crystal display device and driving circuit and driving method of the same
WO2020168600A1 (zh) 改善背光频率变化引起亮暗带的液晶显示器
WO2019061730A1 (zh) 显示装置及其驱动方法
US10386663B2 (en) GOA circuit and liquid crystal display device
WO2019061729A1 (zh) 显示装置及其驱动方法
US10360866B2 (en) GOA circuit and liquid crystal display device
TWI469128B (zh) 電壓校準電路及其液晶顯示裝置
WO2019061731A1 (zh) 显示装置及其驱动方法
WO2014050719A1 (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926948

Country of ref document: EP

Kind code of ref document: A1