WO2019061729A1 - Display device and drive method therefor - Google Patents

Display device and drive method therefor Download PDF

Info

Publication number
WO2019061729A1
WO2019061729A1 PCT/CN2017/111189 CN2017111189W WO2019061729A1 WO 2019061729 A1 WO2019061729 A1 WO 2019061729A1 CN 2017111189 W CN2017111189 W CN 2017111189W WO 2019061729 A1 WO2019061729 A1 WO 2019061729A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
display device
circuit
signal line
waveform
Prior art date
Application number
PCT/CN2017/111189
Other languages
French (fr)
Chinese (zh)
Inventor
黄北洲
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Publication of WO2019061729A1 publication Critical patent/WO2019061729A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • Embodiments of the present application relate to the field of display devices, and in particular, to a display device and a driving method thereof.
  • liquid crystal displays have a large number of applications for personal digital assistants (PDAs), notebook computers, digital cameras, and photos due to their advantages of lightness, power saving, and no radiation.
  • PDAs personal digital assistants
  • Video recorders, mobile phones and other electronic products Coupled with the industry's active investment in research and development and the use of large-scale production equipment, the quality of displays has been continuously improved, and the price has continued to rise, which has led to the rapid expansion of the application field of liquid crystal displays.
  • a thin film transistor liquid crystal display includes a plurality of scanning signal lines and a scanning driving circuit thereof, a plurality of data lines and data driving circuits thereof, a plurality of common electrode lines, and a plurality of Pixel units, etc.
  • each of the pixel units is formed at an intersection of a scanning signal line on the glass substrate and a corresponding data line, wherein the scanning signal line and the data signal line are perpendicular to each other.
  • a thin film transistor is provided at the intersection of the scanning signal line and the data signal line to drive the pixel unit, thereby producing a wide variety of colorful images.
  • a technical problem to be solved by embodiments of the present application is to provide a display device to effectively avoid the defect that an existing display device has an increase in display quality due to generation of parasitic capacitance.
  • a technical problem to be further solved by the embodiments of the present application is to provide a driving method of a display device, so as to effectively avoid the defect that the display device has an increase in display quality due to the generation of parasitic capacitance.
  • the embodiment of the present application first provides a display device, including:
  • the voltage level of the waveform of the scan signal rises in a slope manner of a first predetermined value, so that the waveform of the scan signal is within a range between a high voltage level and a low voltage level of the rising threshold A portion that varies with the slope of the first predetermined value.
  • the driving circuit includes:
  • a plurality of selections are respectively connected to the plurality of triggers, and respectively turned on or off according to the output of the corresponding plurality of triggers;
  • a plurality of control devices are respectively connected to the input terminals of the plurality of selection switches, and control a slew rate of a waveform of the scan signal to be outputted to the scan signal line.
  • the voltage has a period of one scan period in length and has a waveform including a period of the voltage level change.
  • the driving circuit outputs a full-cycle waveform to the scan signal line during a scan period, and outputs a voltage level not greater than the voltage level during a period other than the scan period The end voltage level of the change.
  • the number of the data signal lines is the same as the number of the scanning signal lines.
  • the display device further includes: a first circuit, the first circuit has:
  • the display device further includes:
  • the second circuit having:
  • an operational amplifier that receives a voltage source with a non-inverting input terminal
  • a first resistor one end of the first resistor is connected to a non-inverting input terminal of the operational amplifier, and the other end of the first resistor is connected to the voltage source;
  • a second resistor the second resistor is connected to the non-inverting input terminal of the operational amplifier, and the other end of the second resistor is grounded;
  • a fourth resistor connected as a feedback resistor between the inverting input terminal and the output terminal of the operational amplifier
  • the driving circuit outputs a voltage having a waveform from the operational amplifier of the circuit.
  • the second circuit further has: a constant current source, an input resistor, and an input capacitor, wherein the constant current source is connected to one end of the input capacitor through the input resistor, and The other end of the input capacitor is grounded, the constant current source and the input resistor are connected in series, and the series circuit of the constant current source and the input resistor is connected in parallel with the input capacitor, the third resistor A device is coupled to the input resistor and a connection node of the input capacitor.
  • the first resistor, the second resistor, and the third resistor have a resistance greater than the input resistor.
  • the second circuit further has: a switch, the switch is connected in parallel with the input capacitor, and the switch is connected in parallel with the series circuit of the constant current source and the input resistor .
  • the operational amplifier and the first resistor, the second resistor, the third resistor, and the fourth resistor constitute a differential amplifying circuit as a subtraction portion, in the subtraction
  • VDlb is the output voltage of the operational amplifier
  • Vdd is the voltage source
  • R1 is a resistance value of the first resistor
  • R2 is a resistance value of the second resistor
  • R3 is a resistance value of the third resistor
  • R4 is a resistance value of the fourth resistor
  • Vcth is the maximum amplitude of the voltage of the input capacitor
  • R3 is the resistance value of the third resistor
  • R4 is the resistance value of the fourth resistor.
  • an embodiment of the present application further provides a driving method of a display device, including:
  • the voltage level of the waveform of the scan signal rises in a slope manner of a first predetermined value, so that the waveform of the scan signal is within a range between a high voltage level and a low voltage level of the rising threshold A portion that varies with the slope of the first predetermined value.
  • the driving circuit includes:
  • a plurality of selections are respectively connected to the plurality of triggers, respectively, and respectively turned on or off according to the output of the corresponding plurality of triggers;
  • a plurality of control devices respectively connected to the input terminals of the plurality of selection switches, and controlling a slew rate of a rising waveform of the scan signal to be output to the scan signal line.
  • the driving method further includes: using a first circuit, where the first circuit has:
  • the drive circuit outputs a voltage having a waveform from the capacitor of the circuit.
  • the embodiment of the present application further provides a display device, including: [0054] a plurality of pixels;
  • the voltage level of the waveform of the scan signal rises in a slope manner of a first predetermined value and decreases in a slope manner of a second predetermined value, so that the waveform of the scan signal is at a high voltage level of rising ⁇ a portion between the low voltage levels having a slope of the first predetermined value and a waveform of the scan signal being within a range between a high voltage level and a low voltage level of the falling threshold a portion of the slope of the second predetermined value that varies;
  • the first predetermined value and the second predetermined value are opposite to each other;
  • the driving circuit comprises:
  • a plurality of selections are respectively connected to the plurality of triggers, and respectively turned on or off according to the output of the corresponding plurality of triggers;
  • a plurality of control devices are respectively connected to the input terminals of the plurality of selection switches, and control a slew rate of rising and falling waveforms of the scan signals to be output to the scan signal lines.
  • the embodiment of the present application has at least the following beneficial effects:
  • the embodiment of the present application enables the waveform near the input terminal of the scanning signal line and the vicinity of the terminal to be delayed from being delayed by the parasitic capacitance of the scanning signal line.
  • the influence of the characteristics is substantially the same, that is, the scanning signal is not distorted, and the generation rate of the voltage level shift is lowered, thereby effectively improving the display quality of the display device.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present application.
  • FIG. 2 is a circuit diagram of a scanning signal line driving circuit of a display device according to an embodiment of the present application.
  • FIG. 3 is a waveform diagram showing an output of a scanning signal line drive circuit of a display device according to an embodiment of the present application.
  • FIG. 4 is another waveform diagram of an output of a scanning signal line drive circuit of a display device according to an embodiment of the present application.
  • FIG. 5 is still another waveform diagram of an output of a scanning signal line drive circuit of a display device according to an embodiment of the present application.
  • FIG. 6 is a first circuit diagram of a circuit of a display device and a scanning signal line drive circuit of another embodiment of the present application.
  • FIG. 7 is a waveform diagram showing an output of a scanning signal line driving circuit of a display device according to another embodiment of the present application.
  • FIG. 8 is another waveform diagram of an output of a scanning signal line driving circuit of a display device according to another embodiment of the present application.
  • FIG. 9 is another waveform diagram of an output of a scanning signal line driving circuit of a display device according to another embodiment of the present application.
  • FIG. 10 is a circuit diagram of a second circuit of a display device and a scanning signal line driver circuit according to still another embodiment of the present application.
  • FIG. 11 is a waveform diagram showing an output of a scanning signal line drive circuit of a display device according to still another embodiment of the present application.
  • FIG. 12 is a flow chart showing the steps of a driving method of the display device of the present application.
  • FIG. 13 is a flow chart showing the steps of a driving method of a display device according to another embodiment of the present application.
  • FIG. 14 is a flow chart showing the steps of a driving method of a display device according to still another embodiment of the present application.
  • FIG. 1 is a schematic structural view of a display device according to an embodiment of the present application
  • FIG. 2 is a circuit diagram of a scanning signal line driving circuit of the display device according to the embodiment of the present application.
  • 3 is a waveform diagram showing an output of a scanning signal line drive circuit of the display device of the embodiment of the present application.
  • the display device provided by the embodiment of the present application includes an array arranged on the display panel 1 .
  • a plurality of data signal lines 104 respectively providing data signals to the plurality of pixels (including the pixel electrodes 103), and a plurality of scanning signal lines 105 disposed to intersect the data signal lines 104, wherein the data signals
  • the number of lines 104 may be the same as the number of the scanning signal lines 105, and a driving circuit portion connected to the display panel 1 and outputting a scanning signal to the scanning signal lines 105 to actuate the scanning signal lines 105.
  • the driving circuit portion includes a scanning signal line driving circuit 300, a data signal line driving circuit 200, and a counter electrode driving circuit COM, which are respectively connected to the scanning signal line 105, the data signal line 104, and the opposite substrate 101 of the display panel.
  • the control circuit 600 is a circuit for controlling the data signal line drive circuit 200 and the scan signal line drive circuit 300.
  • the display panel 1 can be formed by sealing a composition between a pair of electrode substrates and applying a deflecting plate to the outer surface of the electrode substrate.
  • the thin film transistor array substrate as one of the electrode substrates is formed by arranging a plurality of data signal lines 104 (S (1) , S ( 2 ) , ... S in an array form on a transparent insulating substrate 100 made of, for example, glass. (i) , ...S (N) ) and a plurality of scanning signal lines 105 (G (1) , G (2) , ... G (j) , ... G (M) ) crossing each other And formed.
  • a switching device 102 is formed at the boundary of the plurality of data signal lines 104 and the plurality of scanning signal lines 105, and the switching device 102 is constituted by a thin film transistor connected to the pixel electrode 103.
  • a plurality of scanning signal lines 105 (G (1) , G (2) , ... G (j) , ... G (M) ) are connected to the thin film transistor (ie, the switching device 102) a gate, and a plurality of data signal lines 104 (S (1), S (2), ... S (i), ... S (N)) are connected to the thin film transistor (ie, the switching device 102)
  • the drain Further, an alignment film which covers almost all of the pixel electrode 103 may be provided.
  • a transistor array substrate is formed.
  • the scanning signal line drive circuit 300 includes a shift register portion 3a composed of cascades of M flip-flops F1, F2, F3, ..., Fj, ... FM, and a flip-flop F1.
  • the selection of F2, F3, ...Fj, ...FM is turned on or off.
  • the gate start signal GSP may be sequentially transmitted through the plurality of flip-flops F1, F2, F3, ..., Fj . . . FM, and sequentially output to the plurality of selection gates 3b , to trigger multiple selections to close 3b.
  • each selection switch 3b selects a scan of a low voltage level.
  • the voltage VG, and a low voltage level scan voltage VG is output to the scan signal line 105 during one scan period to turn off the thin film transistor (i.e., the pass device 102 as shown in FIG. 1).
  • this ⁇ when choosing each of the other 3b The input terminals supply a shared voltage VD1 that is sufficient to bring the switching device 102 (see FIG.
  • each selection switch 3b selects a high voltage level of the scan voltage VG and applies a high voltage during one scan period.
  • the level of the scanning voltage VG is output to the scanning signal line 105 to turn on the thin film transistor (i.e., the switching device 102 as shown in FIG. 1).
  • an image signal (see Fig. 1) output from the data signal line drive circuit 200 to each of the data signal lines 104 (see Fig. 1) can be written in each corresponding pixel (including the pixel electrode 103).
  • the scan signal line drive circuit 300 may further include a plurality of control devices SC that scan the output of the signal line drive circuit 300. level.
  • each control device SC in the off state of the switching device 102, each control device SC is disposed between the shared voltage VD2 and the selection switch 3b; and when the switching device 102 is turned to the on state, each control device SC is set Between the shared voltage VD1 and the selection of the gate 3b.
  • the control device SC can be used to control the scanning signal output from the scanning signal line driving circuit 300 to the plurality of scanning signal lines 105 (G (1) , G (2) , ... G (j ) , ... G (M) )
  • the voltage of the VG waveform rises by the slew rate (linear rate).
  • the rising slope SI of VG is such that the voltage level of the waveform of the scanning signal VG rises by the slope S1 of the first predetermined value as shown in FIG. 3, so that the waveform of the scanning signal VG rises to a high voltage level and a low voltage. There is a portion within the range between the levels that varies with the slope of the first predetermined value.
  • FIG. 1 is a schematic structural view of a display device according to an embodiment of the present application
  • FIG. 2 is a scanning signal line driving circuit of the display device of the embodiment of the present application
  • FIG. 4 is another waveform diagram of the output of the scanning signal line driving circuit of the display device of the embodiment of the present application.
  • the scanning signal line driving circuit 300 may further include a plurality of control devices SC that scan the output of the signal line driving circuit 300 level.
  • each control device SC in the off state of the switching device 102, each control device SC is disposed between the shared voltage VD2 and the selection switch 3b; and when the switching device 102 is turned to the on state, each control device SC is set Between the shared voltage VD1 and the selection of the gate 3b.
  • Control device SC can be used to control the sweep The voltage of the waveform of the scanning signal VG outputted to the plurality of scanning signal lines 105 (G (1), G (2), ... G (j), ... G (M)) by the signal line driving circuit 300 rises And falling yaw rate (linear rate)
  • a plurality of scanning signals respectively output to the plurality of scanning signal lines 105 (G (1), G (2), ... G (j), ... G (M) ) can be controlled The rising slope SI of the VG and the falling slope S2, so that the voltage level of the waveform of the scanning signal VG rises by the slope S1 of the first predetermined value and decreases by the slope S2 of the second predetermined value, as shown in FIG.
  • the waveform of the scan signal VG has a portion that varies with the slope of the first predetermined value within a range between the high voltage level and the low voltage level of the rising ⁇ , and causes the waveform of the scan signal VG to be at a high voltage of the falling ⁇ a portion between the flat and low voltage levels having a slope that varies with the second predetermined value, wherein the absolute values of the first predetermined value and the second predetermined value may be the same (ie, the first The predetermined value and the second predetermined value are opposite to each other, and may be different, which means that the rising slope S1 and the falling slope S2 of the waveform of the scanning signal VG may be the same (ie, the rising slope S1 and the falling value) Slope S2 mutual For the opposite, it can be different.
  • FIG. 1 is a schematic structural view of a display device according to an embodiment of the present application
  • FIG. 2 is a scanning signal line driving circuit of the display device according to the embodiment of the present application
  • FIG. 5 is still another waveform diagram of the output of the scanning signal line driving circuit of the display device of the embodiment of the present application.
  • the scanning signal line driving circuit 300 may further include a plurality of control devices SC that scan the output stages of the signal line driving circuit 300.
  • each control device SC in the off state of the switching device 102, each control device SC is disposed between the shared voltage VD2 and the selection switch 3b; and when the switching device 102 is turned to the on state, each control device SC is set Between the shared voltage VD1 and the selection of the gate 3b.
  • the control device SC can be used to control the scanning signal output from the scanning signal line driving circuit 300 to the plurality of scanning signal lines 105 (G (1), G (2), ... G (j), ... G (M) )
  • the voltage of the VG waveform drops by the slew rate (linear rate).
  • a plurality of scanning signals respectively output to the plurality of scanning signal lines 105 can be controlled VG's falling slope S2, so as shown in Figure 3,
  • the voltage level of the waveform of the scan signal VG is decreased by the slope S2 of the second predetermined value, so that the waveform of the scan signal VG is within the range between the high voltage level and the low voltage level of the falling ⁇ The portion of the slope of the predetermined value that changes.
  • the waveform near the input terminal of the scanning signal line and the vicinity of the terminal is not affected by the signal delay propagation characteristics caused by the parasitic capacitance of the scanning signal line, and is substantially the same, that is, the output scanning signal is not distorted. Further, it is possible to effectively reduce the generation rate of the voltage level shift AVd, and realize a display device having no display defect such as a residual image.
  • the voltage may have a period of one scan period, and may have a waveform including a period of the voltage level change, and the driving circuit may pass the scan signal during a scan period.
  • the line outputs a full period waveform, and the voltage level output during a period other than the scan period is not greater than the end voltage level at which the voltage level changes.
  • FIG. 6 is a circuit diagram of a first circuit of a display device and a scan signal line driver circuit according to another embodiment of the present application
  • FIG. 7 is the other of the present application.
  • the structure of the scanning signal line driving circuit 300 different from the above-described embodiment is provided with a control device SC for controlling the rising slope S3 of the scanning signal VG.
  • the control device SC is not used, but The first circuit shown in FIG. 6 is provided in place of the control device SC and the trace signal line drive circuit 300.
  • the first circuit used in conjunction with the scanning signal line driving circuit 300 includes a resistor Rent and a capacitor Ccnt for charging and discharging, an inverter INV for controlling charging and discharging, and the like.
  • the switching states SW1 and SW2 are switched between the charging state and the discharging state, and the shared voltage VD11 generated by the first circuit is like the input voltage VD1 shown in FIG. 2 as the input voltage of the selection signal of the scanning signal line driving circuit 300.
  • the voltage source Vdd is applied to one terminal of the first switch SW1, and the other terminal of the first switch SW1 is connected to the input of the selection switch 3b of the scan signal line drive circuit 300.
  • the terminal, that is, the voltage source Vdd is connected to the scanning signal line drive circuit 300 through the first switch SW1.
  • the other terminal of the switch SW1 is connected to one terminal of the resistor Rent and one terminal of the capacitor Cent, and the terminal of the resistor Rent and the terminal of the capacitor Cent are connected to the selection of the scanning signal line drive circuit 300.
  • the input terminal of the gate 3b, wherein the other terminal of the resistor Rent passes through the gate SW2 is grounded.
  • the voltage source Vdd may be a DC voltage having a high voltage level, which is sufficient for the thin film transistor to be in an on state, for example, 15V to 20V, but not limited thereto.
  • the resistor Rent is connected in series with the second switch SW2, and the serial circuit of the resistor Rent and the second switch SW2 is connected in parallel with the capacitor Cent.
  • the signal Stc from the outside is transmitted as an input signal to the inverter INV, and the signal Stc is inverted by the inverter INV to control the SW2.
  • the signal Stc can be synchronized with each scanning period and also used to control the opening and closing control of SW1.
  • the signal Stc can also be arranged in synchronism with the chirp signal GCK and generated, for example, by using a mono multivibrator (not shown), but is not limited thereto.
  • the switch SW1 when the signal Stc is at a high voltage level (charge control signal) ⁇ , the switch SW1 is closed, and the switch SW2 is broken due to the low voltage level applied to the switch SW2 through the inverter INV.
  • the voltage source Vdd is supplied with power to the capacitor Cent to cause the capacitor Cent to start storing the electric charge, and the shared voltage VDla is output as a high voltage level to one input terminal of the selection switch 3b of the scanning signal line drive circuit 300.
  • the signal Stc is at a low voltage level (discharge control signal)
  • the switch SW1 when the signal Stc is at a low voltage level (discharge control signal), the switch SW1 is turned off, and the switch SW2 is closed due to the high voltage level voltage applied to the switch SW2 through the inverter INV, and is stored in the capacitor.
  • the charge in the Cent is discharged by the resistor Rent, and the voltage level of the scan signal output from the scanning signal line drive circuit 300 is gradually lowered.
  • the rising slope S3 can be adjusted by changing the resistance of the resistor Rent and the capacitance of the capacitor Cent.
  • the voltage level of the scan signal outputted by the scanning signal line drive circuit 300 is increased by a slope S3 of a first predetermined value as shown in FIG. 7, so that the waveform of the scan signal is at a high voltage level and a low voltage of rising ⁇ . There is a portion in the range between the levels that varies with the slope of the first predetermined value, thereby optimizing for each display panel 1 to be driven.
  • FIG. 6 is a circuit diagram of a first circuit of a display device and a scanning signal line driver circuit of another embodiment of the present application
  • FIG. 8 is another embodiment of the present application.
  • the first circuit described in FIG. 6 has been described in detail above, and thus will not be described again.
  • the rising slope S3 and the falling can be adjusted by changing the resistance of the resistor Rent and the capacitance of the capacitor Cent.
  • the slope S4 causes the voltage level of the scan signal outputted by the scanning signal line drive circuit 300 to rise as shown by the slope S3 of the first predetermined value and decrease by the slope S4 of the second predetermined value as shown in FIG.
  • the waveform of the signal has a portion that varies with the slope of the first predetermined value and a waveform of the scan signal at a high voltage level and a low voltage of the falling ⁇ in a range between a high voltage level and a low voltage level of the rising ⁇
  • the portion between the levels has a portion that varies with the slope of the second predetermined value, thereby optimizing for each of the liquid crystal display panels 1 to be driven.
  • FIG. 6 is a circuit diagram of a first circuit of a display device and a scanning signal line driver circuit configured according to another embodiment of the present application
  • FIG. 9 is the other of the present application.
  • the first circuit described in FIG. 6 has been described in detail above, and thus will not be described again.
  • the falling slope S4 can be adjusted by changing the resistance of the resistor Rent and the capacitance of the capacitor Cent such that the voltage level of the scanning signal output by the scanning signal line driving circuit 300 is a slope of the second predetermined value as shown in FIG.
  • the S4 mode is decreased such that the waveform of the scan signal has a portion that varies with the slope of the second predetermined value within a range between the high voltage level and the low voltage level of the falling chirp, thereby for each display to be driven Panel 1 is optimized.
  • FIG. 10 is a circuit diagram of a second circuit of a display device and a scanning signal line driver circuit according to still another embodiment of the present application
  • FIG. 11 is another A waveform diagram of an output of a scanning signal line drive circuit of the display device of the embodiment.
  • the switch SW3 is connected in parallel with the capacitor Cct and in parallel with the series circuit of the constant current source let and the input resistor Ret.
  • the signal Stc may be a slope turn-off control signal (a charge control signal and a discharge control signal), and the switch SW3 connected in parallel with the capacitor Cct is controlled to be turned on or off at a specific turn.
  • the constant current source let is connected to one end of the capacitor Cct through the resistor Ret, and the other end of the capacitor Cct is grounded, that is, the constant current source let and the resistor Ret are connected in series, and the constant current source let and the resistor Ret are connected in series
  • the circuit is connected in parallel with the capacitor Cct.
  • resistor R3 One end of the resistor R3 is connected to the inverting input terminal OP of the operational amplifier and the other end of the resistor R3 is connected to the connection node of the resistor Ret and the capacitor Cct, and the voltage Vet outputted by the capacitor Cct (that is, the potential difference across the capacitor Cct) is passed.
  • Resistor R3 is delivered to the inverting input terminal of operational amplifier OP.
  • the resistor R4 is connected between the inverting input terminal and the output terminal of the operational amplifier OP, the output terminal of the operational amplifier OP and the input terminal of the selection of the scanning signal line driving circuit 300 Connected, the shared voltage VD1b output from the operational amplifier OP is like the input voltage VD1 shown in FIG.
  • each of the resistors R1, R2, R3, and R4 may have a resistance greater than the resistor Rct.
  • the operational amplifier OP and the resistors R1, R2, R3, and R4 constitute a differential amplifying circuit as a subtraction portion.
  • VDlb Vdd x [R2/ (Rl + R2) ]x[l + (R4/R3) ] - (R4/R3) x Vct, where VDlb is the output voltage of the op amp Vdd is the voltage source, and Vet is the voltage of the input capacitor.
  • the switch SW3 is closed. Therefore, the electric charge stored in the capacitor Cct is discharged through the switch SW3, and the voltage output from the capacitor Cct becomes zero.
  • the waveform of the voltage Vet has the maximum amplitude Vcth
  • the waveform of the output signal VDlb has the slope Tslope and the slope amount Vslop e .
  • the slope can be easily adjusted by appropriately setting the resistances of the resistors R3 and R4 so that the voltage level of the scan signal outputted by the scanning signal line drive circuit 300 is inclined by the first predetermined value as shown in FIG.
  • the rate mode is increased, so that the waveform near the input terminal of the scanning signal line and the vicinity of the terminal is not distorted by the signal delay propagation characteristics of the scanning signal line parasitically, and the voltage level shift Vd can be effectively reduced.
  • the rate further realizes a display device having no display defects such as a residual image.
  • FIG. 12 is a flow chart of the steps of the driving method of the display device of the present application.
  • the present application provides a driving method for a display device including the following steps S11 ⁇ S12:
  • Step S11 providing a data signal to the plurality of pixels through a data signal line;
  • Step S12 outputting a scan signal to the scan signal line disposed to intersect the data signal line to activate the scan signal line by using a driving circuit, wherein the scan signal includes a voltage having a waveform of a voltage level change period And wherein the voltage level rises in a slope manner of a first predetermined value such that a waveform of the scan signal has a first predetermined value within a range between a high voltage level and a low voltage level of the rising chirp The part of the slope change.
  • the driving circuit includes:
  • a plurality of selections are respectively connected to the plurality of triggers, respectively, and respectively turned on or off according to the output of the corresponding plurality of triggers;
  • a plurality of control devices are respectively connected to the input terminals of the plurality of selection switches, and control a slew rate of a waveform of the scan signal to be output to the scan signal line.
  • the driving method further includes using a first circuit, where the first circuit has:
  • the drive circuit outputs a voltage having a waveform from the capacitor of the circuit.
  • the rising slope of the scan signal respectively output to the scan signal line can be controlled, so that the voltage level of the waveform of the scan signal rises by the slope of the first predetermined value, so that the waveform of the scan signal a portion having a slope of a first predetermined value in a range between a high voltage level and a low voltage level of the rising ,, so that a waveform near the input terminal of the scanning signal line and near the terminal is not subjected to the scanning signal line
  • the influence of the signal delay propagation characteristics of the parasitic ground is substantially the same, and the generation rate of the voltage level shift is lowered, and display of display defects such as no-image residual image is realized.
  • FIG. 13 is a flow chart showing the steps of a driving method of a display device according to another embodiment of the present application.
  • the application method for driving a display device further includes the following steps S21 to S22 :
  • Step S21 providing a data signal to the plurality of pixels through a data signal line;
  • Step S22 outputting a scan signal to the scan signal line disposed to intersect the data signal line to activate the scan signal line by using a driving circuit, wherein the scan signal includes a voltage having a waveform of a voltage level change period And wherein the voltage level rises in a slope manner of a first predetermined value and decreases in a slope manner of a second predetermined value, such that a waveform of the scan signal is in a range between a high voltage level and a low voltage level of the rising threshold a portion having a slope of the first predetermined value and a waveform of the scan signal having a slope of the second predetermined value in a range between a high voltage level and a low voltage level of the falling threshold And wherein the first predetermined value and the second predetermined value may be opposite to each other.
  • the driving circuit includes:
  • a plurality of selections are respectively connected to the plurality of triggers, respectively, and respectively turned on or off according to the output of the corresponding plurality of triggers;
  • a plurality of control devices are respectively connected to the input terminals of the plurality of selection switches, and control a slew rate of rising and falling waveforms of the scan signals to be output to the scan signal lines.
  • the driving method further includes using a first circuit, the circuit having:
  • the drive circuit outputs a voltage having a waveform from the capacitor of the circuit.
  • the driving method further includes: the driving method uses a circuit, and the circuit has:
  • an operational amplifier that receives a voltage source with a non-inverting input terminal
  • the drive circuit outputs a voltage having a waveform from the operational amplifier of the circuit.
  • the falling slope of the scan signal respectively output to the scan signal line can be controlled such that the voltage level of the waveform of the scan signal rises by a slope of the first predetermined value and is at a second predetermined value.
  • the slope of the falling mode is such that the waveform of the scan signal has a portion that varies with a slope of the first predetermined value and a waveform of the scan signal with a high voltage of a falling voltage within a range between a high voltage level and a low voltage level of the rising chirp a portion between the level of the low and low voltage levels having a slope of the second predetermined value, wherein the first predetermined value and the second predetermined value are opposite to each other, thereby causing the vicinity of the input terminal of the scanning signal line and the terminal
  • the nearby waveform is not affected by the signal delay propagation characteristics of the scanning signal line parasitically, and is substantially the same, and the rate of occurrence of the voltage level shift is lowered, thereby realizing a display device having no display defect such as
  • FIG. 14 is a flow chart showing the steps of a driving method of a display device according to still another embodiment of the present application.
  • the present application provides a driving method for a display device, which further includes the following steps S31 ⁇ S32:
  • Step S31 providing a data signal to the plurality of pixels through a data signal line;
  • Step S32 outputting, by the driving circuit, a scan signal to the scan signal line disposed to intersect the data signal line to actuate the scan signal line, wherein the scan signal includes a waveform having a voltage level change period a voltage, wherein the voltage level is decreased by a slope of a second predetermined value such that a waveform of the scan signal has a second predetermined value within a range between a high voltage level and a low voltage level of the falling chirp The part of the slope changes.
  • the driving circuit includes:
  • a plurality of selections are respectively connected to the plurality of triggers, and respectively turned on or off according to the output of the corresponding plurality of triggers;
  • a plurality of control devices are respectively connected to the input terminals of the plurality of selection switches, and control a slew rate of a waveform of the scan signal to be output to the scan signal line.
  • the driving method further includes using a first circuit, where the first circuit has:
  • a voltage source connected to an input terminal of the driving circuit through the first switch; [0152] connected to the resistor of the capacitor in parallel by the second switch;
  • the drive circuit outputs a voltage having a waveform from the capacitor of the circuit.
  • the falling slope of the scan signal respectively output to the scan signal line can be controlled, so that the voltage level of the waveform of the scan signal is decreased by the slope of the second predetermined value, so that the waveform of the scan signal a portion having a slope of a second predetermined value in a range between a high voltage level and a low voltage level of the falling ,, so that a waveform near the input terminal of the scanning signal line and near the terminal is not subjected to the scanning signal line
  • the parasitic ground has a influence on the propagation characteristics of the signal, and is substantially the same, and reduces the rate of occurrence of the voltage level shift, thereby realizing a display device having no display defect such as a residual image.

Abstract

A display device and a drive method, the display device comprises: multiple pixels, data signal lines (104, S(1), S(2), ... S(i), ... S(N)) that provide data signals to the multiple pixels; scan signal lines (105, G(1), G(2), ... G(j), ... G(M)) arranged to intersect the data signal lines (104, S(1), S(2), ... S(i), ... S(N)); and a driver circuit (300) that outputs a scan signal (VG) to the scan signal lines (105, G(1), G(2), ... G(j), ... G(M)) so as to actuate the scan signal lines (105, G(1), G(2), ... G(j), ... G(M)); the driver circuit (300) outputs a voltage having a waveform that has a voltage level change cycle, where the voltage level of the waveform of the scan signal (VG) rises at a slope (S1, S3) of a first pre-configured value, such that when the waveform of the scan signal (VG) rises, the waveform has a portion that changes at the slope (S1, S3) of the first pre-configured value in the range between the high voltage level and the low voltage level, thereby enabling a display device not to have an afterimage.

Description

显示装置及其驱动方法  Display device and driving method thereof
技术领域  Technical field
[0001] 本申请实施例涉及一种显示设备技术领域, 特别是涉及一种显示装置及其驱动 方法。  [0001] Embodiments of the present application relate to the field of display devices, and in particular, to a display device and a driving method thereof.
背景技术  Background technique
[0002] 随着薄膜电晶体制作技术快速的进步, 液晶显示器由于具备了轻薄、 省电、 无 辐射等优点, 而大量的应用于个人数位助理器 (PDA) 、 笔记型电脑、 数码相 机、 摄录影机、 移动电话等各式电子产品中。 再加上业界积极的投入研发以及 采用大型化的生产设备, 使显示器的品质不断提升, 且价格持续上升, 更使得 液晶显示器的应用领域迅速扩大。  [0002] With the rapid advancement of thin film transistor manufacturing technology, liquid crystal displays have a large number of applications for personal digital assistants (PDAs), notebook computers, digital cameras, and photos due to their advantages of lightness, power saving, and no radiation. Video recorders, mobile phones and other electronic products. Coupled with the industry's active investment in research and development and the use of large-scale production equipment, the quality of displays has been continuously improved, and the price has continued to rise, which has led to the rapid expansion of the application field of liquid crystal displays.
[0003] 当前, 薄膜晶体管液晶显示器 (TFT-LCD, Thin Film Transistor Liquid Crystal Display) 包括多条扫描信号线及其扫描驱动电路、 多条数据线及其数据驱动电 路、 多条公共电极线以及多个像素单元等。 具体地, 每一个像素单元形成于玻 璃基板上的扫描信号线与对应的数据线的交叉处, 其中扫描信号线与数据信号 线相互垂直。 而且, 在扫描信号线与数据信号线的交叉处设置薄膜晶体管以驱 动像素单元, 从而产生各式各样、 色彩斑斓的图像。  [0003] Currently, a thin film transistor liquid crystal display (TFT-LCD) includes a plurality of scanning signal lines and a scanning driving circuit thereof, a plurality of data lines and data driving circuits thereof, a plurality of common electrode lines, and a plurality of Pixel units, etc. Specifically, each of the pixel units is formed at an intersection of a scanning signal line on the glass substrate and a corresponding data line, wherein the scanning signal line and the data signal line are perpendicular to each other. Moreover, a thin film transistor is provided at the intersection of the scanning signal line and the data signal line to drive the pixel unit, thereby producing a wide variety of colorful images.
[0004] 然而, 现有显示装置的多个像素中的每一个像素的必要结构中, 无法避免在薄 膜晶体管的栅极和漏极之间额外形成寄生电容 Cgd。 因此, 在扫描电压 Vgh上升 吋, 电平移位 Vd会因寄生电容 Cgd发生电平移动 AVd。 在薄膜晶体管中形成的寄 生电容 Cgd所导致的扫描信号的非扫描电压 (薄膜晶体管处于关闭状态吋的电压 ) Vgl以及电平移位 Vd所发生的电平移位 AVd是无法避免的, 其可以被表示为: AVd=Cgdx (Vgh-Vgl) I (Clc+Cs+Cgd) , 如此将引起诸如图像的闪烁和显示 的劣化等问题, 而不利于需要更高清晰度和更高性能的显示装置。  [0004] However, in a necessary structure of each of a plurality of pixels of the conventional display device, it is unavoidable to additionally form a parasitic capacitance Cgd between the gate and the drain of the thin film transistor. Therefore, when the scanning voltage Vgh rises, the level shift Vd shifts by the level of the parasitic capacitance Cgd AVd. The level shift AVd of the non-scanning voltage of the scan signal (the voltage at which the thin film transistor is in the off state) Vgl and the level shift Vd caused by the parasitic capacitance Cgd formed in the thin film transistor is unavoidable, which can be expressed It is: AVd = Cgdx (Vgh - Vgl) I (Clc + Cs + Cgd) , which causes problems such as flickering of an image and deterioration of display, which is disadvantageous for a display device requiring higher definition and higher performance.
技术问题  technical problem
[0005] 本申请实施例要解决的技术问题是, 提供一种显示装置, 以有效避免现有显示 装置由于产生寄生电容而导致其显示质量上升的缺陷。 [0006] 本申请实施例进一步要解决的技术问题是, 提供一种显示装置的驱动方法, 以 有效避免现有显示装置由于产生寄生电容而导致其显示质量上升的缺陷。 [0005] A technical problem to be solved by embodiments of the present application is to provide a display device to effectively avoid the defect that an existing display device has an increase in display quality due to generation of parasitic capacitance. A technical problem to be further solved by the embodiments of the present application is to provide a driving method of a display device, so as to effectively avoid the defect that the display device has an increase in display quality due to the generation of parasitic capacitance.
问题的解决方案  Problem solution
技术解决方案  Technical solution
[0007] 要解决上述技术问题, 本申请实施例首先提供一种显示装置, 包括:  [0007] To solve the above technical problem, the embodiment of the present application first provides a display device, including:
[0008] 多个像素; a plurality of pixels;
[0009] 向所述多个像素提供数据信号的数据信号线;  Providing a data signal line of the data signal to the plurality of pixels;
[0010] 设置为与所述数据信号线相交的扫描信号线; 以及  [0010] being set to a scanning signal line that intersects the data signal line;
[0011] 向所述扫描信号线输出扫描信号以致动所述扫描信号线的驱动电路;  [0011] outputting a scan signal to the scan signal line to actuate a drive circuit of the scan signal line;
[0012] 其中, 所述扫描信号的波形的电压电平以第一预定数值的斜率方式上升, 使所 述扫描信号的波形于上升吋的高电压电平和低电压电平之间的范围内有以所述 第一预定数值的斜率变化的部分。  [0012] wherein, the voltage level of the waveform of the scan signal rises in a slope manner of a first predetermined value, so that the waveform of the scan signal is within a range between a high voltage level and a low voltage level of the rising threshold A portion that varies with the slope of the first predetermined value.
[0013] 可选地, 所述驱动电路包括: [0013] Optionally, the driving circuit includes:
[0014] 具有由多个触发器组成的级联的移位寄存器; [0014] having a cascaded shift register composed of a plurality of flip-flops;
[0015] 多个选择幵关, 分别连接多个触发器, 并分别依据对应的所述多个触发器的输 出而幵启或关闭; 以及  [0015] a plurality of selections are respectively connected to the plurality of triggers, and respectively turned on or off according to the output of the corresponding plurality of triggers;
[0016] 多个控制器件, 分别连接于所述多个选择幵关的输入端子, 并控制待输出到所 述扫描信号线的所述扫描信号的波形上升的压摆率。 [0016] A plurality of control devices are respectively connected to the input terminals of the plurality of selection switches, and control a slew rate of a waveform of the scan signal to be outputted to the scan signal line.
[0017] 可选地, 所述电压具有长度为一个扫描周期的周期, 并且具有包括所述电压电 平变化的周期的波形。 [0017] Optionally, the voltage has a period of one scan period in length and has a waveform including a period of the voltage level change.
[0018] 可选地, 所述驱动电路通过在扫描周期期间向所述扫描信号线输出一个全周期 波形, 并且在所述扫描周期以外的期间内输出的电压电平不大于所述电压电平 变化的结束电压电平。  [0018] Optionally, the driving circuit outputs a full-cycle waveform to the scan signal line during a scan period, and outputs a voltage level not greater than the voltage level during a period other than the scan period The end voltage level of the change.
[0019] 可选地, 所述数据信号线的数量和所述扫描信号线的数量相同。 [0019] Optionally, the number of the data signal lines is the same as the number of the scanning signal lines.
[0020] 可选地, 所述显示装置还包括: 第一电路, 所述第一电路具有: [0020] Optionally, the display device further includes: a first circuit, the first circuit has:
[0021 ] 连接到所述驱动电路的输入端子的电容器; [0021] a capacitor connected to an input terminal of the drive circuit;
[0022] 通过第一幵关连接到所述驱动电路的输入端子的电压源; 以及 [0022] a voltage source connected to an input terminal of the driving circuit by the first switch;
[0023] 通过第二幵关并联连接到所述电容器的电阻器; [0024] 其中, 所述驱动电路输出来自所述电路的所述电容器的具有波形的电压。 [0023] connected to the resistor of the capacitor in parallel by the second switch; [0024] wherein the drive circuit outputs a voltage having a waveform from the capacitor of the circuit.
[0025] 可选地, 所述显示装置还包括:  [0025] Optionally, the display device further includes:
[0026] 第二电路, 所述第二电路具有:  a second circuit, the second circuit having:
[0027] 以非反相输入端子接收电压源的运算放大器;  [0027] an operational amplifier that receives a voltage source with a non-inverting input terminal;
[0028] 第一电阻器, 所述第一电阻器的一端连接到所述运算放大器的非反相输入端子 並且所述第一电阻器的另一端连接所述电压源;  [0028] a first resistor, one end of the first resistor is connected to a non-inverting input terminal of the operational amplifier, and the other end of the first resistor is connected to the voltage source;
[0029] 第二电阻器, 所述第二电阻器连接到所述运算放大器的所述非反相输入端子, 所述第二电阻器的另一端接地; [0029] a second resistor, the second resistor is connected to the non-inverting input terminal of the operational amplifier, and the other end of the second resistor is grounded;
[0030] 连接到所述运算放大器的反相输入端子的第三电阻器; 以及 [0030] a third resistor connected to the inverting input terminal of the operational amplifier;
[0031] 作为回馈电阻器连接在所述运算放大器的反相输入端子和输出端子之间的第四 电阻器; [0031] a fourth resistor connected as a feedback resistor between the inverting input terminal and the output terminal of the operational amplifier;
[0032] 其中, 所述驱动电路输出来自所述电路的所述运算放大器的具有波形的电压。  [0032] wherein the driving circuit outputs a voltage having a waveform from the operational amplifier of the circuit.
[0033] 可选地, 所述第二电路满足 R1= R4, R2 = R3, A = R4/R3, 其中 R1为所述第一 电阻器的电阻值, R2为所述第二电阻器的电阻值, R3为所述第三电阻器的电阻 值, R4为所述第四电阻器的电阻值, A为所述运算放大器的放大倍率。  [0033] Optionally, the second circuit satisfies R1=R4, R2=R3, A=R4/R3, where R1 is a resistance value of the first resistor, and R2 is a resistance of the second resistor A value, R3 is a resistance value of the third resistor, R4 is a resistance value of the fourth resistor, and A is a magnification of the operational amplifier.
[0034] 可选地, 所述第二电路还具有: 恒定电流源、 输入电阻器以及输入电容器, 所 述恒定电流源通过所述输入电阻器与所述输入电容器的一个端部连接, 并且所 述输入电容器的另一个端部接地, 所述恒定电流源和所述输入电阻器串联, 并 且所述恒定电流源和所述输入电阻器的串联电路与所述输入电容器并联, 所述 第三电阻器连接至所述输入电阻器以及所述输入电容器的连接节点。  [0034] Optionally, the second circuit further has: a constant current source, an input resistor, and an input capacitor, wherein the constant current source is connected to one end of the input capacitor through the input resistor, and The other end of the input capacitor is grounded, the constant current source and the input resistor are connected in series, and the series circuit of the constant current source and the input resistor is connected in parallel with the input capacitor, the third resistor A device is coupled to the input resistor and a connection node of the input capacitor.
[0035] 可选地, 所述第一电阻器、 所述第二电阻器以及所述第三电阻器的电阻值大于 所述输入电阻器。  [0035] Optionally, the first resistor, the second resistor, and the third resistor have a resistance greater than the input resistor.
[0036] 可选地, 所述第二电路还具有: 幵关,所述幵关与所述输入电容器并联, 并且所 述幵关与所述恒定电流源和所述输入电阻器的串联电路并联。  [0036] Optionally, the second circuit further has: a switch, the switch is connected in parallel with the input capacitor, and the switch is connected in parallel with the series circuit of the constant current source and the input resistor .
[0037] 可选地, 所述运算放大器和所述第一电阻器、 所述第二电阻器、 所述第三电阻 器以及所述第四电阻器构成作为减法部分的差分放大电路, 在减法部分中进行 以下减法: VDlb=Vddx[R2/ (R1+R2) ]x[l+ (R4/R3) ]  [0037] Optionally, the operational amplifier and the first resistor, the second resistor, the third resistor, and the fourth resistor constitute a differential amplifying circuit as a subtraction portion, in the subtraction The following subtraction is performed in the section: VDlb=Vddx[R2/ (R1+R2) ]x[l+ (R4/R3) ]
- (R4/R3) xVct, 其中 VDlb为所述运算放大器的输出电压, Vdd为所述电压源 , Rl为所述第一电阻器的电阻值, R2为所述第二电阻器的电阻值, R3为所述第 三电阻器的电阻值, R4为所述第四电阻器的电阻值, Vet为所述输入电容器的电 压。 - (R4/R3) xVct, where VDlb is the output voltage of the operational amplifier, and Vdd is the voltage source R1 is a resistance value of the first resistor, R2 is a resistance value of the second resistor, R3 is a resistance value of the third resistor, and R4 is a resistance value of the fourth resistor, Vet Is the voltage of the input capacitor.
[0038] 可选地, 所述第二电路满足 VDlb=VDD -AxVct, 其中 VDlb为所述运算放大器 的输出电压, Vdd为所述电压源, A为所述运算放大器的放大倍率, Vet为所述输 入电容器的电压。  [0038] Optionally, the second circuit satisfies VDlb=VDD−AxVct, where VDlb is an output voltage of the operational amplifier, Vdd is the voltage source, A is a magnification of the operational amplifier, and Vet is The voltage of the input capacitor.
[0039] 可选地, 所述第二电路满足 Vslope=Vcthx (R4/R3) , 其中 Vslope为斜率量, [0039] Optionally, the second circuit satisfies Vslope=Vcthx (R4/R3), where Vslope is a slope amount,
Vcth为所述输入电容器的电压的最大振幅, R3为所述第三电阻器的电阻值, R4 为所述第四电阻器的电阻值。 Vcth is the maximum amplitude of the voltage of the input capacitor, R3 is the resistance value of the third resistor, and R4 is the resistance value of the fourth resistor.
[0040] 另一方面, 本申请实施例还提供一种显示装置的驱动方法, 包括:  [0040] On the other hand, an embodiment of the present application further provides a driving method of a display device, including:
[0041] 通过数据信号线向多个像素提供数据信号; 以及  [0041] providing a data signal to a plurality of pixels through a data signal line;
[0042] 利用驱动电路向设置为与所述数据信号线相交的扫描信号线输出扫描信号以致 动所述扫描信号线;  [0042] outputting a scan signal to a scan signal line disposed to intersect the data signal line to drive the scan signal line by using a driving circuit;
[0043] 其中, 所述扫描信号的波形的电压电平以第一预定数值的斜率方式上升, 使所 述扫描信号的波形于上升吋的高电压电平和低电压电平之间的范围内有以所述 第一预定数值的斜率变化的部分。  [0043] wherein, the voltage level of the waveform of the scan signal rises in a slope manner of a first predetermined value, so that the waveform of the scan signal is within a range between a high voltage level and a low voltage level of the rising threshold A portion that varies with the slope of the first predetermined value.
[0044] 可选地, 所述驱动电路包括:  [0044] Optionally, the driving circuit includes:
[0045] 具有由多个触发器组成的级联的移位寄存器;  [0045] having a cascaded shift register composed of a plurality of flip-flops;
[0046] 多个选择幵关, 分别连接多个触发器, 并分别依据对应的所述多个触发器的输 出而幵启或关闭; 以及  [0046] a plurality of selections are respectively connected to the plurality of triggers, respectively, and respectively turned on or off according to the output of the corresponding plurality of triggers;
[0047] 多个控制器件, 分别连接于所述多个选择幵关的输入端子, 并控制待输出到所 述扫描信号线的所述扫描信号的波形上升的压摆率。 And a plurality of control devices respectively connected to the input terminals of the plurality of selection switches, and controlling a slew rate of a rising waveform of the scan signal to be output to the scan signal line.
[0048] 可选地, 所述驱动方法还包括: 使用第一电路, 所述第一电路具有: [0048] Optionally, the driving method further includes: using a first circuit, where the first circuit has:
[0049] 连接到所述驱动电路的输入端子的电容器; a capacitor connected to an input terminal of the drive circuit;
[0050] 通过第一幵关连接到所述驱动电路的输入端子的电压源; 以及 [0050] a voltage source connected to an input terminal of the driving circuit through the first switch;
[0051] 通过第二幵关并联连接到所述电容器的电阻器; [0051] a resistor connected in parallel to the capacitor through the second switch;
[0052] 其中, 所述驱动电路输出来自所述电路的所述电容器的具有波形的电压。  [0052] wherein the drive circuit outputs a voltage having a waveform from the capacitor of the circuit.
[0053] 又一方面, 本申请实施例还提供一种显示装置, 包括: [0054] 多个像素; [0053] In another aspect, the embodiment of the present application further provides a display device, including: [0054] a plurality of pixels;
[0055] 向所述多个像素提供数据信号的数据信号线;  [0055] providing a data signal line of the data signal to the plurality of pixels;
[0056] 设置为与所述数据信号线相交的扫描信号线; 以及  [0056] being set to a scanning signal line that intersects the data signal line;
[0057] 向所述扫描信号线输出扫描信号以致动所述扫描信号线的驱动电路;  [0057] outputting a scan signal to the scan signal line to actuate a drive circuit of the scan signal line;
[0058] 其中, 所述扫描信号的波形的电压电平以第一预定数值的斜率方式上升及以第 二预定数值的斜率方式下降, 使所述扫描信号的波形于上升吋的高电压电平和 低电压电平之间的范围内有以所述第一预定数值的斜率变化的部分和所述扫描 信号的波形于下降吋的高电压电平和低电压电平之间的范围内有以所述第二预 定数值的斜率变化的部分;  [0058] wherein, the voltage level of the waveform of the scan signal rises in a slope manner of a first predetermined value and decreases in a slope manner of a second predetermined value, so that the waveform of the scan signal is at a high voltage level of rising 吋a portion between the low voltage levels having a slope of the first predetermined value and a waveform of the scan signal being within a range between a high voltage level and a low voltage level of the falling threshold a portion of the slope of the second predetermined value that varies;
[0059] 其中, 所述第一预定数值和所述第二预定数值互为相反数;  [0059] wherein, the first predetermined value and the second predetermined value are opposite to each other;
[0060] 其中, 所述驱动电路包括:  [0060] wherein the driving circuit comprises:
[0061] 具有由多个触发器组成的级联的移位寄存器;  [0061] having a cascaded shift register composed of a plurality of flip-flops;
[0062] 多个选择幵关, 分别连接多个触发器, 并分别依据对应的所述多个触发器的输 出而幵启或关闭; 以及  [0062] a plurality of selections are respectively connected to the plurality of triggers, and respectively turned on or off according to the output of the corresponding plurality of triggers;
[0063] 多个控制器件, 分别连接于所述多个选择幵关的输入端子, 并控制待输出到所 述扫描信号线的所述扫描信号的波形上升和下降的压摆率。 [0063] A plurality of control devices are respectively connected to the input terminals of the plurality of selection switches, and control a slew rate of rising and falling waveforms of the scan signals to be output to the scan signal lines.
发明的有益效果  Advantageous effects of the invention
有益效果  Beneficial effect
[0064] 通过采用上述技术方案, 本申请实施例至少具有以下有益效果: 本申请实施例 使于扫描信号线的输入端子附近及终端附近的波形不会受到扫描信号线寄生电 容所导致信号延迟传播特性的影响, 而成为大致相同, 即的扫描信号没有失真 , 且降低电压电平移位的产生率, 从而有效提升显示装置的显示质量。  [0064] By adopting the above technical solution, the embodiment of the present application has at least the following beneficial effects: The embodiment of the present application enables the waveform near the input terminal of the scanning signal line and the vicinity of the terminal to be delayed from being delayed by the parasitic capacitance of the scanning signal line. The influence of the characteristics is substantially the same, that is, the scanning signal is not distorted, and the generation rate of the voltage level shift is lowered, thereby effectively improving the display quality of the display device.
对附图的简要说明  Brief description of the drawing
附图说明  DRAWINGS
[0065] 为了更清楚地说明本申请实施例技术方案, 下面将对实施例描述中所需要使用 的附图作简单地介绍, 显而易见地, 下面描述中的附图是本申请的一些实施例 , 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据 这些附图获得其他的附图。 [0066] 图 1是本申请一实施例的显示装置的结构示意图。 [0065] In order to more clearly illustrate the technical solutions of the embodiments of the present application, the drawings used in the description of the embodiments will be briefly described below. It is obvious that the drawings in the following description are some embodiments of the present application. Other drawings may also be obtained from those of ordinary skill in the art in view of the drawings. 1 is a schematic structural diagram of a display device according to an embodiment of the present application.
[0067] 图 2是本申请一实施例的显示装置的扫描信号线驱动电路的电路图。  2 is a circuit diagram of a scanning signal line driving circuit of a display device according to an embodiment of the present application.
[0068] 图 3是本申请一实施例的显示装置的扫描信号线驱动电路的输出一波形图。  3 is a waveform diagram showing an output of a scanning signal line drive circuit of a display device according to an embodiment of the present application.
[0069] 图 4是本申请一实施例的显示装置的扫描信号线驱动电路的输出另一波形图。  4 is another waveform diagram of an output of a scanning signal line drive circuit of a display device according to an embodiment of the present application.
[0070] 图 5是本申请一实施例的显示装置的扫描信号线驱动电路的输出又一波形图。  5 is still another waveform diagram of an output of a scanning signal line drive circuit of a display device according to an embodiment of the present application.
[0071] 图 6是本申请另一实施例的显示装置的与扫描信号线驱动电路配置的电路的第 一电路图。  6 is a first circuit diagram of a circuit of a display device and a scanning signal line drive circuit of another embodiment of the present application.
[0072] 图 7是本申请另一实施例的显示装置的扫描信号线驱动电路的输出一波形图。  7 is a waveform diagram showing an output of a scanning signal line driving circuit of a display device according to another embodiment of the present application.
[0073] 图 8是本申请另一实施例的显示装置的扫描信号线驱动电路的输出另一波形图  8 is another waveform diagram of an output of a scanning signal line driving circuit of a display device according to another embodiment of the present application.
[0074] 图 9是本申请另一实施例的显示装置的扫描信号线驱动电路的输出又一波形图 9 is another waveform diagram of an output of a scanning signal line driving circuit of a display device according to another embodiment of the present application.
[0075] 图 10是本申请又一实施例的显示装置的与扫描信号线驱动电路配置的第二电路 的电路图。 10 is a circuit diagram of a second circuit of a display device and a scanning signal line driver circuit according to still another embodiment of the present application.
[0076] 图 11是本申请又一实施例的显示装置的扫描信号线驱动电路的输出的波形图。  11 is a waveform diagram showing an output of a scanning signal line drive circuit of a display device according to still another embodiment of the present application.
[0077] 图 12是本申请的显示装置的驱动方法的步骤流程图。  12 is a flow chart showing the steps of a driving method of the display device of the present application.
[0078] 图 13是本申请另一实施例的显示装置的驱动方法的步骤流程图。  13 is a flow chart showing the steps of a driving method of a display device according to another embodiment of the present application.
[0079] 图 14是本申请又一实施例的显示装置的驱动方法的步骤流程图。  14 is a flow chart showing the steps of a driving method of a display device according to still another embodiment of the present application.
本发明的实施方式 Embodiments of the invention
[0080] 下面将结合本申请实施例中的附图, 对本申请实施例中的技术方案进行清楚、 完整地描述。 显然, 所描述的实施例是本申请一部分实施例, 而不是全部的实 施例。 基于本申请中的实施例, 本领域普通技术人员在没有做出创造性劳动前 提下所获得的所有其他实施例, 都属于本申请保护的范围。  [0080] The technical solutions in the embodiments of the present application are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present application. It is apparent that the described embodiments are part of the embodiments of the present application, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present application, without departing from the inventive work, are within the scope of the present application.
[0081] 请参阅图 1至图 3, 其中图 1是本申请的一实施例的显示装置的结构示意图, 图 2 是本申请的所述实施例的显示装置的扫描信号线驱动电路的电路图, 图 3是本申 请的所述实施例的显示装置的扫描信号线驱动电路的输出的波形图。  1 is a schematic structural view of a display device according to an embodiment of the present application, and FIG. 2 is a circuit diagram of a scanning signal line driving circuit of the display device according to the embodiment of the present application. 3 is a waveform diagram showing an output of a scanning signal line drive circuit of the display device of the embodiment of the present application.
[0082] 如图 1所示, 本申请实施例提供的显示装置包括在显示面板 1上以数组排列的多 个像素、 向所述多个像素 (包含像素电极 103) 分别提供数据信号的多条数据信 号线 104、 设置为与所述数据信号线 104相交的多条扫描信号线 105, 其中所述数 据信号线 104的数量可以与所述扫描信号线 105的数量相同, 以及与显示面板 1连 接并向所述扫描信号线 105输出扫描信号以致动所述扫描信号线 105的驱动电路 部分。 驱动电路部分包括扫描信号线驱动电路 300、 数据信号线驱动电路 200和 对置电极驱动电路 COM, 其分别与显示面板的扫描信号线 105、 数据信号线 104 和对置基板 101连接。 控制电路 600是用于控制数据信号线驱动电路 200和扫描信 号线驱动电路 300的电路。 [0082] As shown in FIG. 1 , the display device provided by the embodiment of the present application includes an array arranged on the display panel 1 . a plurality of data signal lines 104 respectively providing data signals to the plurality of pixels (including the pixel electrodes 103), and a plurality of scanning signal lines 105 disposed to intersect the data signal lines 104, wherein the data signals The number of lines 104 may be the same as the number of the scanning signal lines 105, and a driving circuit portion connected to the display panel 1 and outputting a scanning signal to the scanning signal lines 105 to actuate the scanning signal lines 105. The driving circuit portion includes a scanning signal line driving circuit 300, a data signal line driving circuit 200, and a counter electrode driving circuit COM, which are respectively connected to the scanning signal line 105, the data signal line 104, and the opposite substrate 101 of the display panel. The control circuit 600 is a circuit for controlling the data signal line drive circuit 200 and the scan signal line drive circuit 300.
[0083] 举例来说, 如图 1所示, 显示面板 1可以通过将组合物密封在一对电极基板之间 并将偏转板施加到电极基板的外表面上而形成。 作为电极基板之一的薄膜晶体 管数组基板是通过在例如由玻璃制成的透明绝缘基板 100上, 以数组形式铺设多 条数据信号线 104 (S (1) 、 S (2) 、 ...S (i) 、 ...S (N) ) 和与其相互交叉的 多条扫描信号线 105 (G (1) 、 G (2) 、 ...G (j) 、 ...G (M) ) 而形成。 在多 条数据信号线 104和多条扫描信号线 105的交界处形成幵关器件 102, 所述幵关器 件 102是由与像素电极 103连接的薄膜晶体管构成。 详细地说, 多条扫描信号线 105 (G (1) 、 G (2) 、 ...G (j) 、 ...G (M) ) 连接薄膜晶体管 (即所述幵关 器件 102) 的栅极, 而多条数据信号线 104 (S (1) 、 S (2) 、 ...S (i) 、 ...S ( N) ) 则连接薄膜晶体管 (即所述幵关器件 102) 的漏极。 此外, 可以设置有将 像素电极 103几乎全部覆盖的取向膜。 如此即形成晶体管数组基板。  [0083] For example, as shown in FIG. 1, the display panel 1 can be formed by sealing a composition between a pair of electrode substrates and applying a deflecting plate to the outer surface of the electrode substrate. The thin film transistor array substrate as one of the electrode substrates is formed by arranging a plurality of data signal lines 104 (S (1) , S ( 2 ) , ... S in an array form on a transparent insulating substrate 100 made of, for example, glass. (i) , ...S (N) ) and a plurality of scanning signal lines 105 (G (1) , G (2) , ... G (j) , ... G (M) ) crossing each other And formed. A switching device 102 is formed at the boundary of the plurality of data signal lines 104 and the plurality of scanning signal lines 105, and the switching device 102 is constituted by a thin film transistor connected to the pixel electrode 103. In detail, a plurality of scanning signal lines 105 (G (1) , G (2) , ... G (j) , ... G (M) ) are connected to the thin film transistor (ie, the switching device 102) a gate, and a plurality of data signal lines 104 (S (1), S (2), ... S (i), ... S (N)) are connected to the thin film transistor (ie, the switching device 102) The drain. Further, an alignment film which covers almost all of the pixel electrode 103 may be provided. Thus, a transistor array substrate is formed.
[0084] 如图 2所示, 扫描信号线驱动电路 300包括 M个触发器 Fl 、 F2、 F3、 ...Fj 、 ...FM的级联构成的移位寄存器部 3a以及依据触发器 Fl 、 F2、 F3、 ...Fj 、 ...FM的输出而幵启或关闭的选择幵关 3b构成。 响应于吋钟信号 GCK, 栅 极起始信号 GSP可以依序传送通过多个触发器 Fl、 F2、 F3、 ...Fj . ...FM, 并且 依序地输出到多个选择幵关 3b, 以触发多个选择幵关 3b。 同吋, 当向每个选择 幵关 3b的一个输入端子供给足以使幵关器件 102达成如图 2所示的关闭状态的共 享电压 VD2吋, 每个选择幵关 3b选择低电压电平的扫描电压 VG, 并在一个扫描 周期期间将低电压电平的扫描电压 VG输出至扫描信号线 105, 以关闭薄膜晶体管 (即如图 1所示的幵关器件 102) 。 相反地, 此吋, 当向每个选择幵关 3b的另一 个输入端子供给足以使幵关器件 102 (见图 1) 达到导通状态的共享电压 VD1吋, 每个选择幵关 3b选择高电压电平的扫描电压 VG, 并在一个扫描周期期间将高电 压电平的扫描电压 VG输出至扫描信号线 105, 以幵启薄膜晶体管 (即如图 1所示 的幵关器件 102) 。 通过此操作, 从数据信号线驱动电路 200输出至各个数据信 号线 104 (见图 1) 的图像信号 (见图 1) 可以写入各个对应的像素 (包含像素电 极 103) 中。 [0084] As shown in FIG. 2, the scanning signal line drive circuit 300 includes a shift register portion 3a composed of cascades of M flip-flops F1, F2, F3, ..., Fj, ... FM, and a flip-flop F1. The selection of F2, F3, ...Fj, ...FM is turned on or off. In response to the chopping clock signal GCK, the gate start signal GSP may be sequentially transmitted through the plurality of flip-flops F1, F2, F3, ..., Fj . . . FM, and sequentially output to the plurality of selection gates 3b , to trigger multiple selections to close 3b. In the same manner, when an input terminal of each of the selection switches 3b is supplied with a shared voltage VD2 that is sufficient for the switching device 102 to achieve the off state as shown in FIG. 2, each selection switch 3b selects a scan of a low voltage level. The voltage VG, and a low voltage level scan voltage VG is output to the scan signal line 105 during one scan period to turn off the thin film transistor (i.e., the pass device 102 as shown in FIG. 1). Conversely, this 吋, when choosing each of the other 3b The input terminals supply a shared voltage VD1 that is sufficient to bring the switching device 102 (see FIG. 1) to an on state, and each selection switch 3b selects a high voltage level of the scan voltage VG and applies a high voltage during one scan period. The level of the scanning voltage VG is output to the scanning signal line 105 to turn on the thin film transistor (i.e., the switching device 102 as shown in FIG. 1). By this operation, an image signal (see Fig. 1) output from the data signal line drive circuit 200 to each of the data signal lines 104 (see Fig. 1) can be written in each corresponding pixel (including the pixel electrode 103).
[0085] 具体实施吋, 为更精确地控制扫描信号 VG的上升斜率 S1, 扫描信号线驱动电 路 300还可以包括多个控制器件 SC, 所述多个控制器件 SC扫描信号线驱动电路 300的输出级。 详细地说, 在幵关器件 102于关闭状态下, 每个控制器件 SC设置 在共享电压 VD2以及选择幵关 3b之间; 而当幵关器件 102转为幵启状态, 每个控 制器件 SC设置在共享电压 VD1以及选择幵关 3b之间。 控制器件 SC可用以控制 扫描信号线驱动电路 300输出到多条扫描信号线 105 (G (1) 、 G (2) 、 ...G (j ) 、 ...G (M) ) 的扫描信号 VG的波形的电压上升吋的压摆率 (线性速率) 。  [0085] Specifically, in order to more accurately control the rising slope S1 of the scan signal VG, the scan signal line drive circuit 300 may further include a plurality of control devices SC that scan the output of the signal line drive circuit 300. level. In detail, in the off state of the switching device 102, each control device SC is disposed between the shared voltage VD2 and the selection switch 3b; and when the switching device 102 is turned to the on state, each control device SC is set Between the shared voltage VD1 and the selection of the gate 3b. The control device SC can be used to control the scanning signal output from the scanning signal line driving circuit 300 to the plurality of scanning signal lines 105 (G (1) , G (2) , ... G (j ) , ... G (M) ) The voltage of the VG waveform rises by the slew rate (linear rate).
[0086] 通过上述布置, 可以控制分别输出到多个扫描信号线 105 (G (1) 、 G (2) 、 ...G (j) 、 ...G (M) ) 的多个扫描信号 VG的上升斜率 SI, 从而如图 3所示, 使 得扫描信号 VG的波形的电压电平以第一预定数值的斜率 S1方式上升, 使扫描信 号 VG的波形于上升吋的高电压电平和低电压电平之间的范围内有以所述第一预 定数值的斜率变化的部分。  [0086] With the above arrangement, it is possible to control a plurality of scanning signals respectively output to the plurality of scanning signal lines 105 (G (1), G (2), ... G (j), ... G (M) ) The rising slope SI of VG is such that the voltage level of the waveform of the scanning signal VG rises by the slope S1 of the first predetermined value as shown in FIG. 3, so that the waveform of the scanning signal VG rises to a high voltage level and a low voltage. There is a portion within the range between the levels that varies with the slope of the first predetermined value.
[0087] 请参阅图 1、 图 2和图 4, 其中图 1是本申请的一实施例的显示装置的结构示意图 , 图 2是本申请的所述实施例的显示装置的扫描信号线驱动电路的电路图, 图 4 是本申请的所述实施例的显示装置的扫描信号线驱动电路的输出的另一波形图 1 is a schematic structural view of a display device according to an embodiment of the present application, and FIG. 2 is a scanning signal line driving circuit of the display device of the embodiment of the present application. FIG. 4 is another waveform diagram of the output of the scanning signal line driving circuit of the display device of the embodiment of the present application.
。 图 1和图 2所示的显示装置和扫描信号线驱动电路已在上方详细描述, 故不在 此赘述。 . The display device and the scanning signal line drive circuit shown in Figs. 1 and 2 have been described in detail above, and therefore will not be described again.
[0088] 为更精确地控制扫描信号 VG的上升斜率 S1和下降斜率 S2, 扫描信号线驱动 电路 300还可以包括多个控制器件 SC, 所述多个控制器件 SC扫描信号线驱动电路 300的输出级。 详细地说, 在幵关器件 102于关闭状态下, 每个控制器件 SC设置 在共享电压 VD2以及选择幵关 3b之间; 而当幵关器件 102转为幵启状态, 每个控 制器件 SC设置在共享电压 VD1以及选择幵关 3b之间。 控制器件 SC可用以控制扫 描信号线驱动电路 300输出到多条扫描信号线 105 (G (1) 、 G (2) 、 ...G (j) 、 ...G (M) ) 的扫描信号 VG的波形的电压上升和下降吋的压摆率 (线性速率 [0088] In order to more precisely control the rising slope S1 and the falling slope S2 of the scanning signal VG, the scanning signal line driving circuit 300 may further include a plurality of control devices SC that scan the output of the signal line driving circuit 300 level. In detail, in the off state of the switching device 102, each control device SC is disposed between the shared voltage VD2 and the selection switch 3b; and when the switching device 102 is turned to the on state, each control device SC is set Between the shared voltage VD1 and the selection of the gate 3b. Control device SC can be used to control the sweep The voltage of the waveform of the scanning signal VG outputted to the plurality of scanning signal lines 105 (G (1), G (2), ... G (j), ... G (M)) by the signal line driving circuit 300 rises And falling yaw rate (linear rate)
[0089] 通过上述布置, 可以控制分别输出到多个扫描信号线 105 (G (1) 、 G (2) 、 ...G (j) 、 ...G (M) ) 的多个扫描信号 VG的上升斜率 SI和下降斜率 S2, 从而 如图 3所示, 使得扫描信号 VG的波形的电压电平以第一预定数值的斜率 S1方式 上升及以第二预定数值的斜率 S2方式下降, 使扫描信号 VG的波形于上升吋的高 电压电平和低电压电平之间的范围内有以所述第一预定数值的斜率变化的部分 , 并使扫描信号 VG的波形于下降吋的高电压电平和低电压电平之间的范围内有 以所述第二预定数值的斜率变化的部分, 其中所述第一预定数值和所述第二预 定数值的绝对值可以是相同的 (即所述第一预定数值和所述第二预定数值互为 相反数) , 亦可以是不同的, 这意味着, 扫描信号 VG的波形的上升斜率 S1和下 降斜率 S2可以是相同的 (即上升斜率 S1和下降斜率 S2互为相反数) , 亦可以是 不同的。 [0089] Through the above arrangement, a plurality of scanning signals respectively output to the plurality of scanning signal lines 105 (G (1), G (2), ... G (j), ... G (M) ) can be controlled The rising slope SI of the VG and the falling slope S2, so that the voltage level of the waveform of the scanning signal VG rises by the slope S1 of the first predetermined value and decreases by the slope S2 of the second predetermined value, as shown in FIG. The waveform of the scan signal VG has a portion that varies with the slope of the first predetermined value within a range between the high voltage level and the low voltage level of the rising 吋, and causes the waveform of the scan signal VG to be at a high voltage of the falling 吋a portion between the flat and low voltage levels having a slope that varies with the second predetermined value, wherein the absolute values of the first predetermined value and the second predetermined value may be the same (ie, the first The predetermined value and the second predetermined value are opposite to each other, and may be different, which means that the rising slope S1 and the falling slope S2 of the waveform of the scanning signal VG may be the same (ie, the rising slope S1 and the falling value) Slope S2 mutual For the opposite, it can be different.
[0090] 请参阅图 1、 图 2和图 5, 其中图 1是本申请的一实施例的显示装置的结构示意图 , 图 2是本申请的所述实施例的显示装置的扫描信号线驱动电路的电路图, 图 5 是本申请的所述实施例的显示装置的扫描信号线驱动电路的输出的又一波形图 1 is a schematic structural view of a display device according to an embodiment of the present application, and FIG. 2 is a scanning signal line driving circuit of the display device according to the embodiment of the present application. FIG. 5 is still another waveform diagram of the output of the scanning signal line driving circuit of the display device of the embodiment of the present application.
。 图 1和图 2所示的显示装置和扫描信号线驱动电路已在上方详细描述, 故不在 此赘述。 . The display device and the scanning signal line drive circuit shown in Figs. 1 and 2 have been described in detail above, and therefore will not be described again.
[0091] 为更精确地控制扫描信号 VG的下降斜率 S2, 扫描信号线驱动电路 300还可以包 括多个控制器件 SC, 所述多个控制器件 SC扫描信号线驱动电路 300的输出级。 详 细地说, 在幵关器件 102于关闭状态下, 每个控制器件 SC设置在共享电压 VD2以 及选择幵关 3b之间; 而当幵关器件 102转为幵启状态, 每个控制器件 SC设置在共 享电压 VD1以及选择幵关 3b之间。 控制器件 SC可用以控制扫描信号线驱动电路 300输出到多条扫描信号线 105 (G (1) 、 G (2) 、 ...G (j) 、 ...G (M) ) 的 扫描信号 VG的波形的电压下降吋的压摆率 (线性速率) 。  In order to more precisely control the falling slope S2 of the scanning signal VG, the scanning signal line driving circuit 300 may further include a plurality of control devices SC that scan the output stages of the signal line driving circuit 300. In detail, in the off state of the switching device 102, each control device SC is disposed between the shared voltage VD2 and the selection switch 3b; and when the switching device 102 is turned to the on state, each control device SC is set Between the shared voltage VD1 and the selection of the gate 3b. The control device SC can be used to control the scanning signal output from the scanning signal line driving circuit 300 to the plurality of scanning signal lines 105 (G (1), G (2), ... G (j), ... G (M) ) The voltage of the VG waveform drops by the slew rate (linear rate).
[0092] 通过上述布置, 可以控制分别输出到多个扫描信号线 105 (G (1) 、 G (2) 、 ...G (j) 、 ...G (M) ) 的多个扫描信号 VG的下降斜率 S2, 从而如图 3所示, 使 得扫描信号 VG的波形的电压电平以第二预定数值的斜率 S2方式下降, 使扫描信 号 VG的波形于下降吋的高电压电平和低电压电平之间的范围内有以所述第二预 定数值的斜率变化的部分。 [0092] With the above arrangement, a plurality of scanning signals respectively output to the plurality of scanning signal lines 105 (G (1), G (2), ... G (j), ... G (M)) can be controlled VG's falling slope S2, so as shown in Figure 3, The voltage level of the waveform of the scan signal VG is decreased by the slope S2 of the second predetermined value, so that the waveform of the scan signal VG is within the range between the high voltage level and the low voltage level of the falling 吋The portion of the slope of the predetermined value that changes.
[0093] 如此即可使于扫描信号线的输入端子附近及终端附近的波形不会受到扫描信号 线寄生电容所导致信号延迟传播特性的影响, 而成为大致相同, 即输出的扫描 信号没有失真, 且可以有效降低电压电平移位 AVd的产生率, 实现无印出残像等 显示不良的显示装置。 [0093] In this way, the waveform near the input terminal of the scanning signal line and the vicinity of the terminal is not affected by the signal delay propagation characteristics caused by the parasitic capacitance of the scanning signal line, and is substantially the same, that is, the output scanning signal is not distorted. Further, it is possible to effectively reduce the generation rate of the voltage level shift AVd, and realize a display device having no display defect such as a residual image.
[0094] 具体实施吋, 所述电压可以具有长度为一个扫描周期的周期, 并且可以具有包 括所述电压电平变化的周期的波形, 所述驱动电路可以通过在扫描周期期间向 所述扫描信号线输出一个全周期波形, 并且在所述扫描周期以外的期间内输出 的电压电平不大于所述电压电平变化的结束电压电平。  [0094] In particular, the voltage may have a period of one scan period, and may have a waveform including a period of the voltage level change, and the driving circuit may pass the scan signal during a scan period. The line outputs a full period waveform, and the voltage level output during a period other than the scan period is not greater than the end voltage level at which the voltage level changes.
[0095] 请参阅图 6和图 7, 其中图 6是本申请的另一实施例的显示装置的与扫描信号线 驱动电路配置的第一电路的电路图, 图 7是本申请的所述另一实施例的显示装置 的扫描信号线驱动电路的输出的一波形图。 不同于上方所述实施例的扫描信号 线驱动电路 300的结构中设有控制器件 SC用于控制扫描信号 VG的上升斜率 S3, 在所述另一实施例中则不使用控制器件 SC, 而是设置如图 6所示的第一电路取代 控制器件 SC与描信号线驱动电路 300配置操作。  6 and FIG. 7, wherein FIG. 6 is a circuit diagram of a first circuit of a display device and a scan signal line driver circuit according to another embodiment of the present application, and FIG. 7 is the other of the present application. A waveform diagram of the output of the scanning signal line drive circuit of the display device of the embodiment. The structure of the scanning signal line driving circuit 300 different from the above-described embodiment is provided with a control device SC for controlling the rising slope S3 of the scanning signal VG. In the other embodiment, the control device SC is not used, but The first circuit shown in FIG. 6 is provided in place of the control device SC and the trace signal line drive circuit 300.
[0096] 如图 6所示, 与扫描信号线驱动电路 300配合使用的第一电路包含用于充电和 放电的电阻器 Rent和电容器 Ccnt、 用于控制充电和放电的反相器 INV, 以及用 于切换充电状态和放电状态的幵关 SW1和 SW2, 并且第一电路所产生的共享电 压 VDla像图 2所示的共享电压 VD1作为扫描信号线驱动电路 300的选择幵关 3b 的输入电压。  As shown in FIG. 6, the first circuit used in conjunction with the scanning signal line driving circuit 300 includes a resistor Rent and a capacitor Ccnt for charging and discharging, an inverter INV for controlling charging and discharging, and the like. The switching states SW1 and SW2 are switched between the charging state and the discharging state, and the shared voltage VD11 generated by the first circuit is like the input voltage VD1 shown in FIG. 2 as the input voltage of the selection signal of the scanning signal line driving circuit 300.
[0097] 针对详细结构配置进行说明, 电压源 Vdd被施加到第一幵关 SW1的一个端子, 且第一幵关 SW1的另一个端子连接到扫描信号线驱动电路 300的选择幵关 3b的 输入端子, 即电压源 Vdd通过第一幵关 SW1连接到扫描信号线驱动电路 300。 所 述幵关 SW1的另一个端子与电阻器 Rent的一个端子以及电容器 Cent的一个端子连 接, 并且所述电阻器 Rent的所述端子以及电容器 Cent的所述端子连接扫描信号线 驱动电路 300的选择幵关 3b的输入端子, 其中电阻器 Rent的另一个端子通过幵关 SW2接地。 电压源 Vdd可以是具有与高电压电平的直流电压, 足以使薄膜晶体管 达到导通状态, 例如 15V至 20V, 但不以此为限。 在第二幵关 SW2闭合状态下, 电阻器 Rent与第二幵关 SW2串联, 并且电阻器 Rent与第二幵关 SW2的串行电路 与电容器 Cent并联连接。 [0097] For the detailed structural configuration, the voltage source Vdd is applied to one terminal of the first switch SW1, and the other terminal of the first switch SW1 is connected to the input of the selection switch 3b of the scan signal line drive circuit 300. The terminal, that is, the voltage source Vdd is connected to the scanning signal line drive circuit 300 through the first switch SW1. The other terminal of the switch SW1 is connected to one terminal of the resistor Rent and one terminal of the capacitor Cent, and the terminal of the resistor Rent and the terminal of the capacitor Cent are connected to the selection of the scanning signal line drive circuit 300. The input terminal of the gate 3b, wherein the other terminal of the resistor Rent passes through the gate SW2 is grounded. The voltage source Vdd may be a DC voltage having a high voltage level, which is sufficient for the thin film transistor to be in an on state, for example, 15V to 20V, but not limited thereto. In the closed state of the second switch SW2, the resistor Rent is connected in series with the second switch SW2, and the serial circuit of the resistor Rent and the second switch SW2 is connected in parallel with the capacitor Cent.
[0098] 另一方面, 来自外部的信号 Stc作为输入信号传输至反相器 INV, 并且信号 Stc 经由反相器 INV将其电压电平反相后用以控制幵关 SW2。 例如, 信号 Stc可以与 各扫描期间同步, 并且也用于幵关 SW1的幵启和关闭控制。 信号 Stc还可以布置 成与吋钟信号 GCK同步, 并且例如通过使用单声道多谐振荡器 (未示出) 来产 生, 但不以此为限。 On the other hand, the signal Stc from the outside is transmitted as an input signal to the inverter INV, and the signal Stc is inverted by the inverter INV to control the SW2. For example, the signal Stc can be synchronized with each scanning period and also used to control the opening and closing control of SW1. The signal Stc can also be arranged in synchronism with the chirp signal GCK and generated, for example, by using a mono multivibrator (not shown), but is not limited thereto.
[0099] 举例来说, 当信号 Stc处于高电压电平 (充电控制信号) 吋, 幵关 SW1闭合, 而幵关 SW2由于通过反相器 INV施加到幵关 SW2的低电压电平断幵, 使电压 源 Vdd向电容器 Cent提供电力而使电容器 Cent幵始存储电荷, 并且共享电压 VDla作为高电压电平输出至扫描信号线驱动电路 300的选择幵关 3b的一个输入 端子。 相反地, 当信号 Stc处于低电压电平 (放电控制信号) , 幵关 SW1断幵, 而幵关 SW2由于通过反相器 INV施加到幵关 SW2的高电压电平电压闭合吋, 存 储在电容器  [0099] For example, when the signal Stc is at a high voltage level (charge control signal) 吋, the switch SW1 is closed, and the switch SW2 is broken due to the low voltage level applied to the switch SW2 through the inverter INV. The voltage source Vdd is supplied with power to the capacitor Cent to cause the capacitor Cent to start storing the electric charge, and the shared voltage VDla is output as a high voltage level to one input terminal of the selection switch 3b of the scanning signal line drive circuit 300. Conversely, when the signal Stc is at a low voltage level (discharge control signal), the switch SW1 is turned off, and the switch SW2 is closed due to the high voltage level voltage applied to the switch SW2 through the inverter INV, and is stored in the capacitor.
Cent中的电荷通过电阻器 Rent进行放电, 进而扫描信号线驱动电路 300输出的扫 描信号的电压电平逐渐降低。  The charge in the Cent is discharged by the resistor Rent, and the voltage level of the scan signal output from the scanning signal line drive circuit 300 is gradually lowered.
[0100] 此外, 可以通过改变电阻器 Rent的电阻和电容器 Cent的电容来调整上升斜率 S3[0100] In addition, the rising slope S3 can be adjusted by changing the resistance of the resistor Rent and the capacitance of the capacitor Cent.
, 使得扫描信号线驱动电路 300所输出的扫描信号的电压电平如图 7所示以第一 预定数值的斜率 S3方式上升, 使所述扫描信号的波形于上升吋的高电压电平和 低电压电平之间的范围内有以所述第一预定数值的斜率变化的部分, 从而针对 欲驱动的每个显示面板 1进行优化。 The voltage level of the scan signal outputted by the scanning signal line drive circuit 300 is increased by a slope S3 of a first predetermined value as shown in FIG. 7, so that the waveform of the scan signal is at a high voltage level and a low voltage of rising 吋. There is a portion in the range between the levels that varies with the slope of the first predetermined value, thereby optimizing for each display panel 1 to be driven.
[0101] 请参阅图 6和图 8, 其中图 6是本申请的另一实施例的显示装置的与扫描信号线 驱动电路配置的第一电路的电路图, 图 8是本申请的所述另一实施例的显示装置 的扫描信号线驱动电路的输出的另一波形图。 图 6所述的第一电路已在上方详述 , 故不再此赘述。 6 and FIG. 8, wherein FIG. 6 is a circuit diagram of a first circuit of a display device and a scanning signal line driver circuit of another embodiment of the present application, and FIG. 8 is another embodiment of the present application. Another waveform diagram of the output of the scanning signal line drive circuit of the display device of the embodiment. The first circuit described in FIG. 6 has been described in detail above, and thus will not be described again.
[0102] 可以通过改变电阻器 Rent的电阻和电容器 Cent的电容来调整上升斜率 S3和下降 斜率 S4, 使得扫描信号线驱动电路 300所输出的扫描信号的电压电平如图 7所示 以第一预定数值的斜率 S3方式上升及以第二预定数值的斜率 S4方式下降, 使所 述扫描信号的波形于上升吋的高电压电平和低电压电平之间的范围内有以所述 第一预定数值的斜率变化的部分和所述扫描信号的波形于下降吋的高电压电平 和低电压电平之间的范围内有以所述第二预定数值的斜率变化的部分, 从而针 对欲驱动的每个液晶显示面板 1进行优化。 [0102] The rising slope S3 and the falling can be adjusted by changing the resistance of the resistor Rent and the capacitance of the capacitor Cent. The slope S4 causes the voltage level of the scan signal outputted by the scanning signal line drive circuit 300 to rise as shown by the slope S3 of the first predetermined value and decrease by the slope S4 of the second predetermined value as shown in FIG. The waveform of the signal has a portion that varies with the slope of the first predetermined value and a waveform of the scan signal at a high voltage level and a low voltage of the falling 吋 in a range between a high voltage level and a low voltage level of the rising 吋The portion between the levels has a portion that varies with the slope of the second predetermined value, thereby optimizing for each of the liquid crystal display panels 1 to be driven.
[0103] 请参阅图 6和图 9, 其中图 6是本申请的另一实施例的显示装置的与扫描信号线 驱动电路配置的第一电路的电路图, 图 9是本申请的所述另一实施例的显示装置 的扫描信号线驱动电路的输出的又一波形图。 图 6所述的第一电路已在上方详述 , 故不再此赘述。 6 and FIG. 9, wherein FIG. 6 is a circuit diagram of a first circuit of a display device and a scanning signal line driver circuit configured according to another embodiment of the present application, and FIG. 9 is the other of the present application. Still another waveform diagram of the output of the scanning signal line drive circuit of the display device of the embodiment. The first circuit described in FIG. 6 has been described in detail above, and thus will not be described again.
[0104] 可以通过改变电阻器 Rent的电阻和电容器 Cent的电容来调整下降斜率 S4, 使得 扫描信号线驱动电路 300所输出的扫描信号的电压电平如图 7所示以第二预定数 值的斜率 S4方式下降, 使所述扫描信号的波形于下降吋的高电压电平和低电压 电平之间的范围内有以所述第二预定数值的斜率变化的部分, 从而针对欲驱动 的每个显示面板 1进行优化。  [0104] The falling slope S4 can be adjusted by changing the resistance of the resistor Rent and the capacitance of the capacitor Cent such that the voltage level of the scanning signal output by the scanning signal line driving circuit 300 is a slope of the second predetermined value as shown in FIG. The S4 mode is decreased such that the waveform of the scan signal has a portion that varies with the slope of the second predetermined value within a range between the high voltage level and the low voltage level of the falling chirp, thereby for each display to be driven Panel 1 is optimized.
[0105] 请参阅图 10和图 11, 其中图 10是本申请的又一实施例的显示装置的与扫描信号 线驱动电路配置的第二电路的电路图, 图 11是本申请的所述又一实施例的显示 装置的扫描信号线驱动电路的输出的波形图。 10 and FIG. 11, wherein FIG. 10 is a circuit diagram of a second circuit of a display device and a scanning signal line driver circuit according to still another embodiment of the present application, and FIG. 11 is another A waveform diagram of an output of a scanning signal line drive circuit of the display device of the embodiment.
[0106] 幵关 SW3与电容器 Cct并联, 并与恒定电流源 let和输入电阻器 Ret的串联电路并 联。 信号 Stc可以是斜率吋间控制信号 (充电控制信号和放电控制信号) , 控制 与电容器 Cct并联连接的幵关 SW3于特定吋间幵启或关闭。 恒定电流源 let通过电 阻器 Ret与电容器 Cct的一个端部连接, 并且电容器 Cct的另一个端部接地, 即恒 定电流源 let和电阻器 Ret串联连接, 并且恒定电流源 let和电阻器 Ret的串联电路与 电容器 Cct并联连接。 电阻器 R3的一端连接到运算放大器的反相输入端子 OP并且 电阻器 R3的另一端连接至电阻器 Ret以及电容器 Cct的连接节点, 电容器 Cct输出 的电压 Vet (即电容器 Cct两端的电位差) 通过电阻器 R3传送至运算放大器 OP的 反相输入端子。 电阻器 R4连接在运算放大器 OP的反相输入端子和输出端子之间 , 运算放大器 OP的输出端子和扫描信号线驱动电路 300的选择幵关 3b的输入端子 连接, 运算放大器 OP输出的共享电压 VDlb像图 2所示的共享电压 VD1作为扫描 信号线驱动电路 300的选择幵关 3b的输入电压。 运算放大器 OP的非反相输入端与 电阻器 R2的一个端部和电阻器 R1的一个端部连接, 并且电阻器 R2的另一个端部 接地, 电压源 Vdd施加到电阻器 R1的另一个端部。 具体实施吋, 电阻器 Rl、 R2 、 R3和 R4的每一个电阻值可以大于电阻器 Rct。 [0106] The switch SW3 is connected in parallel with the capacitor Cct and in parallel with the series circuit of the constant current source let and the input resistor Ret. The signal Stc may be a slope turn-off control signal (a charge control signal and a discharge control signal), and the switch SW3 connected in parallel with the capacitor Cct is controlled to be turned on or off at a specific turn. The constant current source let is connected to one end of the capacitor Cct through the resistor Ret, and the other end of the capacitor Cct is grounded, that is, the constant current source let and the resistor Ret are connected in series, and the constant current source let and the resistor Ret are connected in series The circuit is connected in parallel with the capacitor Cct. One end of the resistor R3 is connected to the inverting input terminal OP of the operational amplifier and the other end of the resistor R3 is connected to the connection node of the resistor Ret and the capacitor Cct, and the voltage Vet outputted by the capacitor Cct (that is, the potential difference across the capacitor Cct) is passed. Resistor R3 is delivered to the inverting input terminal of operational amplifier OP. The resistor R4 is connected between the inverting input terminal and the output terminal of the operational amplifier OP, the output terminal of the operational amplifier OP and the input terminal of the selection of the scanning signal line driving circuit 300 Connected, the shared voltage VD1b output from the operational amplifier OP is like the input voltage VD1 shown in FIG. 2 as the input voltage of the selection of the scanning signal line drive circuit 300. The non-inverting input terminal of the operational amplifier OP is connected to one end of the resistor R2 and one end of the resistor R1, and the other end of the resistor R2 is grounded, and the voltage source Vdd is applied to the other end of the resistor R1. unit. Specifically, each of the resistors R1, R2, R3, and R4 may have a resistance greater than the resistor Rct.
[0107] 运算放大器 OP和电阻器 Rl、 R2、 R3和 R4构成作为减法部分的差分放大电路。 [0107] The operational amplifier OP and the resistors R1, R2, R3, and R4 constitute a differential amplifying circuit as a subtraction portion.
在减法部分中进行以下减法: VDlb=Vdd x [R2/ (Rl + R2) ]x[l + (R4/R3) ] - (R4/R3) x Vct, 其中 VDlb为所述运算放大器的输出电压, Vdd为所述电压源 , Vet为所述输入电容的电压, 这里, 使电阻器 Rl 、 R2、 R3和 R4的电阻值 满足 R1= R4, R2 = R3, A = R4/R3, 并满足以下条件: VDlb=VDD _AxVct, 其 中 VDlb为所述运算放大器的输出电压, Vdd为所述电压源, A为所述运算放大 器的放大倍率, Vet为所述输入电容的电压, 当信号 Stc处于低电压电平吋, 幵关 SW3断幵。 在这种状态下, 从恒定电流源 let通过电阻器 Ret向存储电荷的电容器 Cct提供电力, 并且电压 Vet具有如图 11所示的波形。 在减法部分, 电压源 Vdd 减去电压 Vet与运算放大器的放大倍率 A= (R4/R3) 的乘积值, 并且所得的电压 输出作为输出信号 VDlb。 因此, 可以通过改变运算放大器的放大倍率 A, 以使 输出信号 VDlb以期望的上升斜率 Vslope上升, 如从电位 Vgh上升 Vslope的斜率  Perform the following subtraction in the subtraction section: VDlb=Vdd x [R2/ (Rl + R2) ]x[l + (R4/R3) ] - (R4/R3) x Vct, where VDlb is the output voltage of the op amp Vdd is the voltage source, and Vet is the voltage of the input capacitor. Here, the resistance values of the resistors R1, R2, R3 and R4 are made to satisfy R1=R4, R2=R3, A=R4/R3, and satisfy the following Condition: VDlb=VDD_AxVct, where VDlb is the output voltage of the operational amplifier, Vdd is the voltage source, A is the amplification factor of the operational amplifier, Vet is the voltage of the input capacitor, and when the signal Stc is at a low voltage The level is 吋, and the SW3 is broken. In this state, power is supplied from the constant current source let through the resistor Ret to the capacitor Cct storing the charge, and the voltage Vet has a waveform as shown in FIG. In the subtraction section, the voltage source Vdd subtracts the product of the voltage Vet from the operational amplifier's amplification ratio A = (R4/R3), and the resulting voltage output is used as the output signal VDlb. Therefore, the output signal VDlb can be raised by the desired rising slope Vslope by changing the amplification factor A of the operational amplifier, such as the slope of the Vslope from the potential Vgh.
[0108] 相反地, 当信号 Stc处于高电压电平吋, 幵关 SW3闭合。 因此, 存储在电容 器 Cct中的电荷通过幵关 SW3放电, 并且从电容器 Cct输出的电压变为零。 在减 法部分中, 电压源 Vdd减去电压 Vet与运算放大器的放大倍率 A= (R4/R3) 的乘 积值, 但电压 Vet为零吋, 电压源 Vdd作为输出信号 VDlb输出至扫描信号线驱动 电路 300。 Conversely, when the signal Stc is at the high voltage level 幵, the switch SW3 is closed. Therefore, the electric charge stored in the capacitor Cct is discharged through the switch SW3, and the voltage output from the capacitor Cct becomes zero. In the subtraction portion, the voltage source Vdd subtracts the product of the voltage Vet and the amplification factor A=(R4/R3) of the operational amplifier, but the voltage Vet is zero, and the voltage source Vdd is output as the output signal VDlb to the scanning signal line driving circuit. 300.
[0109] 如图 11所示, 利用信号 Stc的控制, 电压 Vet的波形具有最大振幅 Vcth, 并且 输出信号 VDlb的波形具有斜坡吋间 Tslope和斜率量 Vslope。 斜率量 Vslope满足 : Vslope=Vcthx (R4 / R3) 。 As shown in FIG. 11, with the control of the signal Stc, the waveform of the voltage Vet has the maximum amplitude Vcth, and the waveform of the output signal VDlb has the slope Tslope and the slope amount Vslop e . The slope amount Vslope satisfies: Vslope=Vcthx (R4 / R3) .
[0110] 因此, 可以通过适当设定电阻器 R3和 R4的电阻轻易地调整斜率, 使得扫描信 号线驱动电路 300所输出的扫描信号的电压电平如图 4所示以第一预定数值的斜 率方式上升, 从而使扫描信号线的输入端子附近及终端附近的波形不会受到扫 描信号线寄生性地所具有的信号延迟传播特性的影响而失真, 而可以有效降低 电压电平移位 Vd的产生率, 进而实现无印出残像等显示不良的显示装置。 Therefore, the slope can be easily adjusted by appropriately setting the resistances of the resistors R3 and R4 so that the voltage level of the scan signal outputted by the scanning signal line drive circuit 300 is inclined by the first predetermined value as shown in FIG. The rate mode is increased, so that the waveform near the input terminal of the scanning signal line and the vicinity of the terminal is not distorted by the signal delay propagation characteristics of the scanning signal line parasitically, and the voltage level shift Vd can be effectively reduced. The rate further realizes a display device having no display defects such as a residual image.
[0111] 请参照图 12, 其是本申请的显示装置的驱动方法的步骤流程图。 本申请提供一 种显示装置的驱动方法包括以下步骤 S11~S12:  Please refer to FIG. 12, which is a flow chart of the steps of the driving method of the display device of the present application. The present application provides a driving method for a display device including the following steps S11~S12:
[0112] 步骤 S11 : 通过数据信号线向所述多个像素提供数据信号;  [0112] Step S11: providing a data signal to the plurality of pixels through a data signal line;
[0113] 步骤 S12: 利用驱动电路向设置为与所述数据信号线相交的扫描信号线输出扫 描信号以致动所述扫描信号线, 其中所述扫描信号包括具有电压电平变化周期 的波形的电压, 其中所述电压电平以第一预定数值的斜率方式上升, 使所述扫 描信号的波形于上升吋的高电压电平和低电压电平之间的范围内有以所述第一 预定数值的斜率变化的部分。  [0113] Step S12: outputting a scan signal to the scan signal line disposed to intersect the data signal line to activate the scan signal line by using a driving circuit, wherein the scan signal includes a voltage having a waveform of a voltage level change period And wherein the voltage level rises in a slope manner of a first predetermined value such that a waveform of the scan signal has a first predetermined value within a range between a high voltage level and a low voltage level of the rising chirp The part of the slope change.
[0114] 具体实施吋, 所述驱动电路包括:  [0114] Specifically, the driving circuit includes:
[0115] 具有由多个触发器组成的级联的移位寄存器;  [0115] having a cascaded shift register composed of a plurality of flip-flops;
[0116] 多个选择幵关, 分别连接多个触发器, 并分别依据对应的所述多个触发器的输 出而幵启或关闭; 以及  [0116] a plurality of selections are respectively connected to the plurality of triggers, respectively, and respectively turned on or off according to the output of the corresponding plurality of triggers;
[0117] 多个控制器件, 分别连接于所述多个选择幵关的输入端子, 并控制待输出到所 述扫描信号线的所述扫描信号的波形上升的压摆率。 [0117] A plurality of control devices are respectively connected to the input terminals of the plurality of selection switches, and control a slew rate of a waveform of the scan signal to be output to the scan signal line.
[0118] 具体实施吋, 驱动方法还包括使用第一电路, 所述第一电路具有: [0118] Specifically, the driving method further includes using a first circuit, where the first circuit has:
[0119] 连接到所述驱动电路的输入端子的电容器; [0119] a capacitor connected to an input terminal of the drive circuit;
[0120] 通过第一幵关连接到所述驱动电路的输入端子的电压源; 以及 [0120] a voltage source connected to an input terminal of the driving circuit through the first switch;
[0121] 通过第二幵关并联连接到所述电容器的电阻器; [0121] a resistor connected in parallel to the capacitor through the second switch;
[0122] 其中, 所述驱动电路输出来自所述电路的所述电容器的具有波形的电压。  [0122] wherein the drive circuit outputs a voltage having a waveform from the capacitor of the circuit.
[0123] 通过上述步骤流程, 可以控制分别输出到扫描信号线的扫描信号的上升斜率, 从而使得所述扫描信号的波形的电压电平以第一预定数值的斜率方式上升, 使 扫描信号的波形于上升吋的高电压电平和低电压电平之间的范围内有以第一预 定数值的斜率变化的部分, 从而使于扫描信号线的输入端子附近及终端附近的 波形不会受到扫描信号线寄生性地所具有的信号延迟传播特性的影响, 而成为 大致相同, 且降低电压电平移位的产生率, 实现无印出残像等显示不良的显示 装置。 [0123] Through the above step flow, the rising slope of the scan signal respectively output to the scan signal line can be controlled, so that the voltage level of the waveform of the scan signal rises by the slope of the first predetermined value, so that the waveform of the scan signal a portion having a slope of a first predetermined value in a range between a high voltage level and a low voltage level of the rising ,, so that a waveform near the input terminal of the scanning signal line and near the terminal is not subjected to the scanning signal line The influence of the signal delay propagation characteristics of the parasitic ground is substantially the same, and the generation rate of the voltage level shift is lowered, and display of display defects such as no-image residual image is realized. Device.
[0124] 图 13是本申请的另一实施例的显示装置的驱动方法的步骤流程图。 本申请提供 一种显示装置的驱动方法还包括以下步骤 S21~S22: 13 is a flow chart showing the steps of a driving method of a display device according to another embodiment of the present application. The application method for driving a display device further includes the following steps S21 to S22 :
[0125] 步骤 S21 : 通过数据信号线向所述多个像素提供数据信号; [0125] Step S21: providing a data signal to the plurality of pixels through a data signal line;
[0126] 步骤 S22: 利用驱动电路向设置为与所述数据信号线相交的扫描信号线输出扫 描信号以致动所述扫描信号线, 其中所述扫描信号包括具有电压电平变化周期 的波形的电压, 其中所述电压电平以第一预定数值的斜率方式上升及以第二预 定数值的斜率方式下降, 使所述扫描信号的波形于上升吋的高电压电平和低电 压电平之间的范围内有以所述第一预定数值的斜率变化的部分和所述扫描信号 的波形于下降吋的高电压电平和低电压电平之间的范围内有以所述第二预定数 值的斜率变化的部分, 其中所述第一预定数值和所述第二预定数值可以互为相 反数。 [0126] Step S22: outputting a scan signal to the scan signal line disposed to intersect the data signal line to activate the scan signal line by using a driving circuit, wherein the scan signal includes a voltage having a waveform of a voltage level change period And wherein the voltage level rises in a slope manner of a first predetermined value and decreases in a slope manner of a second predetermined value, such that a waveform of the scan signal is in a range between a high voltage level and a low voltage level of the rising threshold a portion having a slope of the first predetermined value and a waveform of the scan signal having a slope of the second predetermined value in a range between a high voltage level and a low voltage level of the falling threshold And wherein the first predetermined value and the second predetermined value may be opposite to each other.
[0127] 具体实施吋, 所述驱动电路包括:  [0127] Specifically, the driving circuit includes:
[0128] 具有由多个触发器组成的级联的移位寄存器;  [0128] having a cascaded shift register composed of a plurality of flip-flops;
[0129] 多个选择幵关, 分别连接多个触发器, 并分别依据对应的所述多个触发器的输 出而幵启或关闭; 以及  [0129] a plurality of selections are respectively connected to the plurality of triggers, respectively, and respectively turned on or off according to the output of the corresponding plurality of triggers;
[0130] 多个控制器件, 分别连接于所述多个选择幵关的输入端子, 并控制待输出到所 述扫描信号线的所述扫描信号的波形上升和下降的压摆率。 [0130] A plurality of control devices are respectively connected to the input terminals of the plurality of selection switches, and control a slew rate of rising and falling waveforms of the scan signals to be output to the scan signal lines.
[0131] 具体实施吋, 驱动方法还包括使用第一电路, 所述电路具有: [0131] In one embodiment, the driving method further includes using a first circuit, the circuit having:
[0132] 连接到所述驱动电路的输入端子的电容器; [0132] a capacitor connected to an input terminal of the drive circuit;
[0133] 通过第一幵关连接到所述驱动电路的输入端子的电压源; 以及 [0133] a voltage source connected to an input terminal of the driving circuit through the first switch;
[0134] 通过第二幵关并联连接到所述电容器的电阻器; [0134] a resistor connected in parallel to the capacitor through the second switch;
[0135] 其中, 所述驱动电路输出来自所述电路的所述电容器的具有波形的电压。  [0135] wherein the drive circuit outputs a voltage having a waveform from the capacitor of the circuit.
[0136] 具体实施吋, 驱动方法还包括: 驱动方法使用电路, 所述电路具有: [0136] Specifically, the driving method further includes: the driving method uses a circuit, and the circuit has:
[0137] 以非反相输入端子接收电压源的运算放大器; [0137] an operational amplifier that receives a voltage source with a non-inverting input terminal;
[0138] 作为输入电阻器连接到所述运算放大器的所述非反相输入端子的第一电阻器; 以及  [0138] a first resistor connected as an input resistor to the non-inverting input terminal of the operational amplifier;
[0139] 作为回馈电阻器连接在所述运算放大器的反相输入端子和输出端子之间的第二 电阻器; [0139] as a feedback resistor connected to the second between the inverting input terminal and the output terminal of the operational amplifier Resistor;
[0140] 其中, 所述驱动电路输出来自所述电路的所述运算放大器的具有波形的电压。  [0140] wherein the drive circuit outputs a voltage having a waveform from the operational amplifier of the circuit.
[0141] 通过上述步骤流程, 可以控制分别输出到扫描信号线的扫描信号的下降斜率, 从而使得所述扫描信号的波形的电压电平以第一预定数值的斜率方式上升及以 第二预定数值的斜率方式下降, 使扫描信号的波形于上升吋的高电压电平和低 电压电平之间的范围内有以第一预定数值的斜率变化的部分和扫描信号的波形 于下降吋的高电压电平和低电压电平之间的范围内有以第二预定数值的斜率变 化的部分, 其中第一预定数值和第二预定数值可互为相反数, 从而使于扫描信 号线的输入端子附近及终端附近的波形不会受到扫描信号线寄生性地所具有的 信号延迟传播特性的影响, 而成为大致相同, 且降低电压电平移位的产生率, 实现无印出残像等显示不良的显示装置。  [0141] Through the above step flow, the falling slope of the scan signal respectively output to the scan signal line can be controlled such that the voltage level of the waveform of the scan signal rises by a slope of the first predetermined value and is at a second predetermined value. The slope of the falling mode is such that the waveform of the scan signal has a portion that varies with a slope of the first predetermined value and a waveform of the scan signal with a high voltage of a falling voltage within a range between a high voltage level and a low voltage level of the rising chirp a portion between the level of the low and low voltage levels having a slope of the second predetermined value, wherein the first predetermined value and the second predetermined value are opposite to each other, thereby causing the vicinity of the input terminal of the scanning signal line and the terminal The nearby waveform is not affected by the signal delay propagation characteristics of the scanning signal line parasitically, and is substantially the same, and the rate of occurrence of the voltage level shift is lowered, thereby realizing a display device having no display defect such as a residual image.
[0142] 图 14是本申请的又一实施例的显示装置的驱动方法的步骤流程图。 本申请提供 一种显示装置的驱动方法还包括以下步骤 S31~S32:  14 is a flow chart showing the steps of a driving method of a display device according to still another embodiment of the present application. The present application provides a driving method for a display device, which further includes the following steps S31~S32:
[0143] 步骤 S31 : 通过数据信号线向所述多个像素提供数据信号;  [0143] Step S31: providing a data signal to the plurality of pixels through a data signal line;
[0144] 步骤 S32: 利用驱动电路向设置为与所述数据信号线相交的扫描信号线输出扫 描信号以致动所述扫描信号线, 其中, 所述扫描信号包括具有电压电平变化周 期的波形的电压, 其中所述电压电平以第二预定数值的斜率方式下降, 使所述 扫描信号的波形于下降吋的高电压电平和低电压电平之间的范围内有以所述第 二预定数值的斜率变化的部分。  [0144] Step S32: outputting, by the driving circuit, a scan signal to the scan signal line disposed to intersect the data signal line to actuate the scan signal line, wherein the scan signal includes a waveform having a voltage level change period a voltage, wherein the voltage level is decreased by a slope of a second predetermined value such that a waveform of the scan signal has a second predetermined value within a range between a high voltage level and a low voltage level of the falling chirp The part of the slope changes.
[0145] 具体实施吋, 所述驱动电路包括:  [0145] Specifically, the driving circuit includes:
[0146] 具有由多个触发器组成的级联的移位寄存器;  [0146] having a cascaded shift register composed of a plurality of flip-flops;
[0147] 多个选择幵关, 分别连接多个触发器, 并分别依据对应的所述多个触发器的输 出而幵启或关闭; 以及  [0147] a plurality of selections are respectively connected to the plurality of triggers, and respectively turned on or off according to the output of the corresponding plurality of triggers;
[0148] 多个控制器件, 分别连接于所述多个选择幵关的输入端子, 并控制待输出到所 述扫描信号线的所述扫描信号的波形下降的压摆率。 [0148] A plurality of control devices are respectively connected to the input terminals of the plurality of selection switches, and control a slew rate of a waveform of the scan signal to be output to the scan signal line.
[0149] 具体实施吋, 驱动方法还包括使用第一电路, 所述第一电路具有: [0149] Specifically, the driving method further includes using a first circuit, where the first circuit has:
[0150] 连接到所述驱动电路的输入端子的电容器; [0150] a capacitor connected to an input terminal of the drive circuit;
[0151] 通过第一幵关连接到所述驱动电路的输入端子的电压源; 以及 [0152] 通过第二幵关并联连接到所述电容器的电阻器; [0151] a voltage source connected to an input terminal of the driving circuit through the first switch; [0152] connected to the resistor of the capacitor in parallel by the second switch;
[0153] 其中, 所述驱动电路输出来自所述电路的所述电容器的具有波形的电压。  [0153] wherein the drive circuit outputs a voltage having a waveform from the capacitor of the circuit.
[0154] 通过上述步骤流程, 可以控制分别输出到扫描信号线的扫描信号的下降斜率, 从而使得所述扫描信号的波形的电压电平以第二预定数值的斜率方式下降, 使 扫描信号的波形于下降吋的高电压电平和低电压电平之间的范围内有以第二预 定数值的斜率变化的部分, 从而使于扫描信号线的输入端子附近及终端附近的 波形不会受到扫描信号线寄生性地所具有的信号延迟传播特性的影响, 而成为 大致相同, 且降低电压电平移位的产生率, 实现无印出残像等显示不良的显示 装置。 [0154] Through the above step flow, the falling slope of the scan signal respectively output to the scan signal line can be controlled, so that the voltage level of the waveform of the scan signal is decreased by the slope of the second predetermined value, so that the waveform of the scan signal a portion having a slope of a second predetermined value in a range between a high voltage level and a low voltage level of the falling ,, so that a waveform near the input terminal of the scanning signal line and near the terminal is not subjected to the scanning signal line The parasitic ground has a influence on the propagation characteristics of the signal, and is substantially the same, and reduces the rate of occurrence of the voltage level shift, thereby realizing a display device having no display defect such as a residual image.
[0155] 需要说明的是, 在所述实施例中, 对各个实施例的描述都各有侧重, 某个实施 例中没有详细描述的部分, 可以参见其他实施例的相关描述。  [0155] It should be noted that, in the embodiments, the descriptions of the various embodiments are different, and the parts that are not described in detail in an embodiment may refer to related descriptions of other embodiments.
[0156] 以上所述, 仅为本申请的具体实施方式, 但本申请的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本申请揭露的技术范围内, 可轻易想到各种 等效的修改或替换, 这些修改或替换都应涵盖在本申请的保护范围之内。 因此 , 本申请的保护范围应以权利要求的保护范围为准。  The above description is only a specific embodiment of the present application, but the scope of protection of the present application is not limited thereto, and any person skilled in the art can easily think of various kinds within the technical scope disclosed in the present application. Equivalent modifications or substitutions are intended to be included within the scope of the present application. Therefore, the scope of protection of this application shall be subject to the scope of protection of the claims.

Claims

权利要求书 Claim
一种显示装置, 其特征是, 包括: A display device, comprising:
多个像素; Multiple pixels;
向所述多个像素提供数据信号的数据信号线; Providing a data signal line of the data signal to the plurality of pixels;
设置为与所述数据信号线相交的扫描信号线; 以及 a scan signal line disposed to intersect the data signal line;
向所述扫描信号线输出扫描信号以致动扫描信号线的驱动电路; 其中, 所述扫描信号的波形的电压电平以第一预定数值的斜率方式上 升, 使所述扫描信号的波形于上升吋的高电压电平和低电压电平之间 的范围内有以所述第一预定数值的斜率变化的部分。 a driving circuit that outputs a scanning signal to the scanning signal line to actuate the scanning signal line; wherein a voltage level of a waveform of the scanning signal rises in a slope of a first predetermined value, so that a waveform of the scanning signal rises There is a portion in the range between the high voltage level and the low voltage level that varies with the slope of the first predetermined value.
如权利要求 1所述的显示装置, 其特征是, 所述驱动电路包括: 具有由多个触发器组成的级联的移位寄存器; The display device according to claim 1, wherein said driving circuit comprises: a cascaded shift register having a plurality of flip-flops;
多个选择幵关, 分别连接多个触发器, 并分别依据对应的所述多个触 发器的输出而幵启或关闭; 以及 a plurality of selections are respectively connected to the plurality of triggers and respectively turned on or off according to the outputs of the corresponding plurality of triggers;
多个控制器件, 分别连接于所述多个选择幵关的输入端子, 并控制待 输出到所述扫描信号线的扫描信号的波形上升的压摆率。 A plurality of control devices are respectively connected to the input terminals of the plurality of selection switches, and control a slew rate of a waveform of a scan signal to be outputted to the scan signal line.
如权利要求 1所述的显示装置, 其特征是, 所述电压具有长度为一个 扫描周期的周期, 并且具有包括所述电压电平变化的周期的波形。 如权利要求 1所述的显示装置, 其特征是, 所述驱动电路通过在扫描 周期期间向所述扫描信号线输出一个全周期波形, 并且在所述扫描周 期以外的期间内输出的电压电平不大于所述电压电平变化的结束电压 电平。 A display device according to claim 1, wherein said voltage has a period of one scanning period and has a waveform including a period of said voltage level change. The display device according to claim 1, wherein said driving circuit outputs a full-period waveform to said scanning signal line during a scanning period, and outputs a voltage level during a period other than said scanning period Not more than the end voltage level of the voltage level change.
如权利要求 1所述的显示装置, 其特征是, 所述数据信号线的数量和 所述扫描信号线的数量相同。 The display device according to claim 1, wherein the number of the data signal lines is the same as the number of the scanning signal lines.
如权利要求 1所述的显示装置, 其特征是, 所述显示装置还包括: 第 一电路, 所述第一电路具有: The display device as claimed in claim 1, wherein the display device further comprises: a first circuit, the first circuit having:
连接到所述驱动电路的输入端子的电容器; a capacitor connected to an input terminal of the drive circuit;
通过第一幵关连接到所述驱动电路的输入端子的电压源; 以及 通过第二幵关并联连接到所述电容器的电阻器; 其中, 驱动电路输出来自第一电路的电容器的具有波形的电压。 a voltage source connected to an input terminal of the driving circuit through a first switch; and a resistor connected in parallel to the capacitor through a second switch; Wherein the driving circuit outputs a voltage having a waveform from a capacitor of the first circuit.
[权利要求 7] 如权利要求 1所述的显示装置, 其特征是, 所述显示装置还包括: 第二电路, 所述第二电路具有: [Claim 7] The display device according to claim 1, wherein the display device further comprises: a second circuit, the second circuit having:
以非反相输入端子接收电压源的运算放大器;  An operational amplifier that receives a voltage source with a non-inverting input terminal;
第一电阻器, 所述第一电阻器的一端连接到所述运算放大器的非反相 输入端子並且所述第一电阻器的另一端连接所述电压源;  a first resistor, one end of the first resistor is connected to a non-inverting input terminal of the operational amplifier; and the other end of the first resistor is connected to the voltage source;
第二电阻器, 所述第二电阻器连接到所述运算放大器的所述非反相输 入端子, 所述第二电阻器的另一端接地;  a second resistor, the second resistor is connected to the non-inverting input terminal of the operational amplifier, and the other end of the second resistor is grounded;
连接到所述运算放大器的反相输入端子的第三电阻器; 以及 作为回馈电阻器连接在所述运算放大器的反相输入端子和输出端子之 间的第四电阻器输入电阻器;  a third resistor connected to the inverting input terminal of the operational amplifier; and a fourth resistor input resistor connected as a feedback resistor between the inverting input terminal and the output terminal of the operational amplifier;
其中, 所述驱动电路输出来自所述电路的所述运算放大器的具有波形 的电压。  Wherein the drive circuit outputs a voltage having a waveform from the operational amplifier of the circuit.
[权利要求 8] 如权利要求 7所述的显示装置, 其特征是, 所述第二电路满足 R1= R4  [Claim 8] The display device according to claim 7, wherein the second circuit satisfies R1 = R4
, R2 = R3, A = R4 / R3, 其中 R1为所述第一电阻器的电阻值, R2为 所述第二电阻器的电阻值, R3为所述第三电阻器的电阻值, R4为所 述第四电阻器的电阻值, A为运算放大器的放大倍率。  , R2 = R3, A = R4 / R3, where R1 is the resistance value of the first resistor, R2 is the resistance value of the second resistor, R3 is the resistance value of the third resistor, R4 is The resistance value of the fourth resistor, A is the amplification factor of the operational amplifier.
[权利要求 9] 如权利要求 7所述的显示装置, 其特征是, 所述第二电路还具有: 恒 定电流源、 输入电阻器以及输入电容器, 所述恒定电流源通过所述输 入电阻器与所述输入电容器的一个端部连接, 并且所述输入电容器的 另一个端部接地, 所述恒定电流源和所述输入电阻器串联, 并且所述 恒定电流源和所述输入电阻器的串联电路与所述输入电容器并联, 所 述第三电阻器连接至所述输入电阻器以及所述输入电容器的连接节点 [Claim 9] The display device according to claim 7, wherein the second circuit further has: a constant current source, an input resistor, and an input capacitor, wherein the constant current source passes through the input resistor One end of the input capacitor is connected, and the other end of the input capacitor is grounded, the constant current source is connected in series with the input resistor, and the series circuit of the constant current source and the input resistor In parallel with the input capacitor, the third resistor is connected to the input resistor and a connection node of the input capacitor
[权利要求 10] 如权利要求 9所述的显示装置, 其特征是, 所述第一电阻器、 所述第 二电阻器及所述第三电阻器的电阻值大于所述输入电阻器。 [Claim 10] The display device according to claim 9, wherein the first resistor, the second resistor, and the third resistor have a resistance greater than the input resistor.
[权利要求 11] 如权利要求 9所述的显示装置, 其特征是, 所述第二电路还具有: 幵关, 所述幵关与所述输入电容器并联, 并且所述幵关与所述恒定电 流源和所述输入电阻器的串联电路并联。 [Claim 11] The display device according to claim 9, wherein the second circuit further has: a switch, the switch is connected in parallel with the input capacitor, and the switch and the constant Electricity A series connection of the current source and the input resistor is connected in parallel.
如权利要求 9所述的显示装置, 其特征是, 所述运算放大器和所述第 一电阻器、 所述第二电阻器、 所述第三电阻器以及所述第四电阻器构 成作为减法部分的差分放大电路, 在减法部分中进行以下减法: VD1 b=Vddx[R2/ (R1+R2) ]x[l+ (R4/R3) ] The display device according to claim 9, wherein said operational amplifier and said first resistor, said second resistor, said third resistor, and said fourth resistor constitute a subtraction portion The differential amplifier circuit performs the following subtraction in the subtraction section: VD1 b=Vddx[R2/ (R1+R2) ]x[l+ (R4/R3) ]
- (R4/R3) xVct, 其中 VDlb为所述运算放大器的输出电压, Vdd为 所述电压源, R1为所述第一电阻器的电阻值, R2为所述第二电阻器 的电阻值, R3为所述第三电阻器的电阻值, R4为所述第四电阻器的 电阻值, Vet为所述输入电容器的电压。  - (R4/R3) xVct, where VDlb is the output voltage of the operational amplifier, Vdd is the voltage source, R1 is the resistance value of the first resistor, and R2 is the resistance value of the second resistor, R3 is a resistance value of the third resistor, R4 is a resistance value of the fourth resistor, and Vet is a voltage of the input capacitor.
如权利要求 9所述的显示装置, 其特征是, 所述第二电路满足 VDlb=VDD-AxVct, 其中 VDlb为所述运算放大器的输出电压, Vdd为所述电压源, A为所述运算放大器的放大倍率, Vet为所述输入 电容器的电压。 A display device according to claim 9, wherein said second circuit satisfies VDlb = VDD - AxVct, wherein VDlb is an output voltage of said operational amplifier, Vdd is said voltage source, and A is said operational amplifier Magnification, Vet is the voltage of the input capacitor.
如权利要求 9 所述的显示装置, 其特征是, 所述第二电路满足 Vslope=Vcthx (R4/R3) , 其中 Vslope为斜率量, Vcth为所述输入电 容器的电压的最大振幅, R3为所述第三电阻器的电阻值, R4为所述 第四电阻器的电阻值。 A display device according to claim 9, wherein said second circuit satisfies Vslope = Vcthx (R4/R3), wherein Vslope is a slope amount, Vcth is a maximum amplitude of a voltage of said input capacitor, and R3 is The resistance value of the third resistor, and R4 is the resistance value of the fourth resistor.
一种显示装置的驱动方法, 其特征是, 包括: A driving method of a display device, comprising:
通过数据信号线向多个像素提供数据信号; 以及 Providing a data signal to a plurality of pixels through a data signal line;
利用驱动电路向设置为与所述数据信号线相交的扫描信号线输出扫描 信号以致动所述扫描信号线; Outputting a scan signal to a scan signal line disposed to intersect the data signal line by a driving circuit to actuate the scan signal line;
其中, 所述扫描信号的波形的电压电平以第一预定数值的斜率方式上 升, 使所述扫描信号的波形于上升吋的高电压电平和低电压电平之间 的范围内有以所述第一预定数值的斜率变化的部分。 The voltage level of the waveform of the scan signal is increased by a slope of a first predetermined value, so that the waveform of the scan signal is within a range between a high voltage level and a low voltage level of the rising threshold. The portion of the slope of the first predetermined value that varies.
如权利要求 15所述的显示装置的驱动方法, 其特征是, 所述驱动电路 包括: The driving method of a display device according to claim 15, wherein the driving circuit comprises:
具有由多个触发器组成的级联的移位寄存器; a cascaded shift register having a plurality of flip flops;
多个选择幵关, 分别连接多个触发器, 并分别依据对应的所述多个触 发器的输出而幵启或关闭; 以及 a plurality of selections are respectively connected to the plurality of triggers, and respectively according to the corresponding plurality of touches The output of the transmitter is turned on or off;
多个控制器件, 分别连接于所述多个选择幵关的输入端子, 并控制待 输出到所述扫描信号线的扫描信号的波形上升的压摆率。  A plurality of control devices are respectively connected to the input terminals of the plurality of selection switches, and control a slew rate of a waveform of a scan signal to be outputted to the scan signal line.
[权利要求 17] 如权利要求 15所述的显示装置的驱动方法, 其特征是, 所述驱动方法 还包括: 使用第一电路, 所述第一电路具有:  [Claim 17] The driving method of the display device according to claim 15, wherein the driving method further comprises: using a first circuit, the first circuit having:
连接到所述驱动电路的输入端子的电容器;  a capacitor connected to an input terminal of the drive circuit;
通过第一幵关连接到所述驱动电路的输入端子的电压源; 以及 通过第二幵关并联连接到所述电容器的电阻器; 其中, 驱动电路输出来自第一电路的电容器的具有波形的电压。  a voltage source connected to an input terminal of the driving circuit through a first switch; and a resistor connected in parallel to the capacitor through a second switch; wherein the driving circuit outputs a waveform having a waveform from a capacitor of the first circuit .
[权利要求 18] —种显示装置, 其特征是, 包括:  [Claim 18] A display device, comprising:
多个像素;  Multiple pixels;
向所述多个像素提供数据信号的数据信号线;  Providing a data signal line of the data signal to the plurality of pixels;
设置为与所述数据信号线相交的扫描信号线; 以及 向所述扫描信号线输出扫描信号以致动扫描信号线的驱动电路; 其中, 所述扫描信号的波形的电压电平以第一预定数值的斜率方式上 升及以第二预定数值的斜率方式下降, 使扫描信号的波形于上升吋的 高电压电平和低电压电平之间的范围内有以第一预定数值的斜率变化 的部分和扫描信号的波形于下降吋的高电压电平和低电压电平之间的 范围内有以第二预定数值的斜率变化的部分;  a scan signal line disposed to intersect the data signal line; and a drive circuit that outputs a scan signal to the scan signal line to actuate the scan signal line; wherein a voltage level of a waveform of the scan signal is at a first predetermined value The slope mode is increased and decreased by the slope of the second predetermined value, so that the waveform of the scan signal has a portion that changes with a slope of the first predetermined value and scans within a range between the high voltage level and the low voltage level of the rising 吋The waveform of the signal has a portion that varies with a slope of the second predetermined value within a range between the high voltage level and the low voltage level of the falling chirp;
其中, 所述第一预定数值和所述第二预定数值互为相反数; 其中, 所述驱动电路包括:  The first predetermined value and the second predetermined value are opposite to each other; wherein the driving circuit comprises:
具有由多个触发器组成的级联的移位寄存器;  a cascaded shift register having a plurality of flip flops;
多个选择幵关, 分别连接多个触发器, 并分别依据对应的所述多个触 发器的输出而幵启或关闭; 以及  a plurality of selections are respectively connected to the plurality of triggers and respectively turned on or off according to the outputs of the corresponding plurality of triggers;
多个控制器件, 分别连接于所述多个选择幵关的输入端子, 并控制待 输出到扫描信号线的扫描信号的波形上升和下降的压摆率。  A plurality of control devices are respectively connected to the input terminals of the plurality of selection switches, and control the slew rate of the rising and falling waveforms of the scanning signals to be output to the scanning signal lines.
PCT/CN2017/111189 2017-09-27 2017-11-15 Display device and drive method therefor WO2019061729A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710892118.3 2017-09-27
CN201710892118.3A CN107564487A (en) 2017-09-27 2017-09-27 Display device and its driving method

Publications (1)

Publication Number Publication Date
WO2019061729A1 true WO2019061729A1 (en) 2019-04-04

Family

ID=60983454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111189 WO2019061729A1 (en) 2017-09-27 2017-11-15 Display device and drive method therefor

Country Status (2)

Country Link
CN (1) CN107564487A (en)
WO (1) WO2019061729A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107665682A (en) * 2017-09-27 2018-02-06 惠科股份有限公司 Display device and its driving method
CN107680545A (en) * 2017-09-27 2018-02-09 惠科股份有限公司 Display device and its driving method
CN112542128A (en) * 2020-12-29 2021-03-23 天津市滨海新区微电子研究院 Micro display panel driving circuit and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294306A (en) * 2008-06-03 2009-12-17 Sharp Corp Display device and driving method of display device
US20100194726A1 (en) * 1998-03-27 2010-08-05 Sharp Kabushiki Kaisha Display device and display method
US20130234626A1 (en) * 2012-03-07 2013-09-12 Po-Ching Li Output Stage Circuit for Gate Driving Circuit in LCD
CN104952409A (en) * 2015-07-07 2015-09-30 京东方科技集团股份有限公司 Gate drive unit, drive method of gate drive unit, gate drive circuit and display device
CN107665682A (en) * 2017-09-27 2018-02-06 惠科股份有限公司 Display device and its driving method
CN107680545A (en) * 2017-09-27 2018-02-09 惠科股份有限公司 Display device and its driving method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100194726A1 (en) * 1998-03-27 2010-08-05 Sharp Kabushiki Kaisha Display device and display method
JP2009294306A (en) * 2008-06-03 2009-12-17 Sharp Corp Display device and driving method of display device
US20130234626A1 (en) * 2012-03-07 2013-09-12 Po-Ching Li Output Stage Circuit for Gate Driving Circuit in LCD
CN104952409A (en) * 2015-07-07 2015-09-30 京东方科技集团股份有限公司 Gate drive unit, drive method of gate drive unit, gate drive circuit and display device
CN107665682A (en) * 2017-09-27 2018-02-06 惠科股份有限公司 Display device and its driving method
CN107680545A (en) * 2017-09-27 2018-02-09 惠科股份有限公司 Display device and its driving method

Also Published As

Publication number Publication date
CN107564487A (en) 2018-01-09

Similar Documents

Publication Publication Date Title
US10741139B2 (en) Goa circuit
US9530371B2 (en) GOA circuit for tablet display and display device
JP4704438B2 (en) Display device
CN100543530C (en) Liquid crystal indicator and display packing thereof
CN105469754A (en) GOA (Gate-Driver-on-Array) circuit for reducing feed-through voltage
CN105489180A (en) Goa circuit
CN105469761A (en) GOA circuit used in narrow-frame liquid crystal display panel
CN104966500A (en) GOA (Gate Driver on Array) circuit capable of reducing power consumption
CN103680451A (en) GOA circuit and display device applied to liquid crystal display
CN105336302A (en) GOA circuit based on LTPS semiconductor film transistor
CN105469760A (en) GOA circuit based on LTPS semiconductor film transistor
US10665194B1 (en) Liquid crystal display device and driving method thereof
CN105355187A (en) GOA (gate driver on array) circuit based on LTPS (low temperature poly-silicon) semiconductor thin film transistor
CN104882107A (en) Gate drive circuit
WO2013143195A1 (en) Feed-through voltage compensation circuit, liquid crystal display device and feed-through voltage compensation method
CN109410880B (en) Display panel driving circuit
CN104766576A (en) GOA circuit based on P type thin film transistors
CN105469756A (en) GOA circuit based on LTPS semiconductor thin-film transistors
CN105427792A (en) Pixel compensation circuit and driving method thereof, display panel, and display apparatus
US10629154B2 (en) Circuit for powering off a liquid crystal panel, peripheral drive device and liquid crystal panel
CN104700801A (en) PMOS (P-channel Metal Oxide Semiconductor) grid-driven circuit
CN105047155A (en) Liquid crystal display apparatus and GOA scanning circuit
WO2019061729A1 (en) Display device and drive method therefor
WO2020168600A1 (en) Liquid crystal display improving light and dark bands caused by change in backlighting frequency
WO2019061730A1 (en) Display device and drive method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927301

Country of ref document: EP

Kind code of ref document: A1