WO2019061544A1 - 光器件装置、光组件、光器件、光线路终端 - Google Patents

光器件装置、光组件、光器件、光线路终端 Download PDF

Info

Publication number
WO2019061544A1
WO2019061544A1 PCT/CN2017/105164 CN2017105164W WO2019061544A1 WO 2019061544 A1 WO2019061544 A1 WO 2019061544A1 CN 2017105164 W CN2017105164 W CN 2017105164W WO 2019061544 A1 WO2019061544 A1 WO 2019061544A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
laser
eye
signal
chip
Prior art date
Application number
PCT/CN2017/105164
Other languages
English (en)
French (fr)
Inventor
文玥
林华枫
徐之光
杨素林
吴徐明
高建河
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780095474.0A priority Critical patent/CN111226401B/zh
Priority to PCT/CN2017/105164 priority patent/WO2019061544A1/zh
Priority to EP17927386.7A priority patent/EP3678305B1/en
Publication of WO2019061544A1 publication Critical patent/WO2019061544A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/58Compensation for non-linear transmitter output
    • H04B10/588Compensation for non-linear transmitter output in external modulation systems

Definitions

  • the present application relates to the field of optical signal modulation technologies, and in particular, to an optical device device, an optical component, an optical device, and an optical line terminal.
  • the current optical component includes a laser, a laser driver, and a matching network.
  • the matching network includes a resistor and an inductor. Specifically, the manufacturer of the optical component adjusts a bias current and a modulated voltage signal of the laser before the optical component is shipped from the factory. The amplitude, matching inductance and resistance in the network, etc., make the laser's transmit power, extinction ratio and eye pattern performance meet the standard requirements. However, the power consumption of the existing optical components is large, and the power consumption of the optical components is greater, and the performance of the optical components is more affected.
  • an optical device device including:
  • the board is provided with at least one driving unit, the driving unit includes: a laser driver, a matching network and a first connecting member respectively connected to the output end of the laser driver;
  • At least one optical component comprising an electroabsorption modulation laser and a second connector coupled to the electroabsorption modulation laser, wherein the first connector and the second connector are detachably electrically connected;
  • the laser driver outputs a modulation signal, the modulation signal is input to the electroabsorption modulation laser via the first connector and the second connector, and the electroabsorption modulation laser outputs a laser signal according to the modulation signal;
  • An eye diagram determining chip wherein the eye pattern determining chip is configured to adjust an impedance of the matching network according to a laser signal output by the electroabsorption modulation laser until an eye pattern performance of the laser signal output by the electroabsorption modulation laser satisfies a preset standard.
  • the optical device device provided by the embodiment of the present application is configured to dispose the laser driver on the single board, thereby reducing the size of the optical component, reducing power consumption of the optical component, and improving performance of the optical component. Moreover, the optical device device provided by the embodiment of the present application can use the eye diagram to determine that the chip automatically adjusts the impedance value of the matching network in the driving unit connected to the optical component according to the laser signal output by the optical component, thereby making the light The eye curve of the optical signal output by the component satisfies the preset standard.
  • the first connecting member is a card seat
  • the second connecting member is a plug or a gold finger
  • the first connecting member is a plug or a gold finger
  • the second connecting member is Card holder.
  • the eye diagram determining chip is integrated on the single board, and each of the driving units is correspondingly integrated with one eye diagram determining chip, and the input end of the eye diagram determining chip passes the first A connecting member is connected to the second connecting member, and the eye diagram determines that the output end of the chip is connected to a matching network of the corresponding driving unit.
  • the optical component further includes: a beam splitter, wherein the beam splitter is configured to split the laser signal output by the electroabsorption modulation laser into a first light signal and a second light according to a splitting ratio of the beam splitter a receiver for converting the second optical signal into a current signal; a transimpedance amplifier for converting the current signal into a voltage signal and then sequentially via the second
  • the connector and the first connector are output to the eye diagram determining chip; at the output end, the first optical signal is outputted through the output terminal to respectively match the eye diagram determining chip with the driving unit Automatic adjustment of the matching network impedance is achieved without any additional manual intervention.
  • the input end of the eye diagram determining chip is provided with a retractable optical fiber, and the eye judging chip is connected to the optical component to be adjusted through the retractable optical fiber.
  • the input end of the eye diagram determining chip is provided with a fiber flange interface, and the eye diagram determines that the fiber flange interface of the chip is connected to the optical component to be adjusted through an external optical fiber.
  • the eye diagram determining chip is integrated on the board, and each of the boards is provided with one eye diagram determining chip, and the eye diagram determines an output end of the chip and a board thereof
  • the matching network connection of each of the driving units is such that a plurality of driving units on the single board share one eye pattern determining chip, which improves the integration degree of the optical device device and reduces the volume of the optical device device.
  • the optical device device further includes a main control board, the eye diagram determining chip is integrated on the main control board, and the output of the eye diagram determining chip and each of the main control boards
  • the matching network of each driving unit of the single board is connected, so that a plurality of driving units on the plurality of boards share one eye judging chip, thereby improving integration of the optical device and reducing the optical device.
  • the volume of the device is improved.
  • the eye diagram determination chip is a handheld device such that the eye diagram determination chip can be independently fabricated and used.
  • the eye diagram determining chip generates an eye diagram curve according to the laser signal output by the electroabsorption modulation laser, and adjusts an impedance of the matching network when the eye diagram curve does not satisfy the preset criterion Until the eye curve of the laser signal output by the electroabsorption modulation laser satisfies the preset criterion.
  • the eye diagram determining chip adjusts an impedance of the matching network to one of a plurality of preset impedance values, until the The eye pattern curve of the laser signal output from the absorption modulation laser satisfies the preset standard.
  • an embodiment of the present application provides an optical component, including an electroabsorption modulation laser and a second connector connected to the electroabsorption modulation laser, wherein the second connector is used for external
  • the component is detachably electrically connected; the electroabsorption modulation laser outputs a laser signal according to a modulation signal output by the external component;
  • the optical component further includes:
  • the beam splitter is configured to split the laser signal output by the electroabsorption modulation laser into a first light signal and a second light signal according to a splitting ratio of the beam splitter;
  • a receiver for converting the second optical signal into a current signal
  • the transimpedance amplifier is configured to convert the current signal into a voltage signal, and then output to the external component via the first output end and the second connecting component in sequence;
  • the first optical signal is output via the output.
  • the optical component provided by the embodiment of the present application does not include a laser driver, so that the size of the optical component can be reduced, the power consumption of the optical component can be reduced, and the performance of the optical component can be improved.
  • the optical component provided by the embodiment of the present application includes a beam splitter, a receiver, and a transimpedance amplifier, so that the second optical signal can be separated from the laser signal output by the electroabsorption modulation laser, through the receiver and the The transimpedance amplifier is converted and output to the external component, so that the eye diagram determining chip in the external component adjusts the impedance of the matching network in the driving component corresponding to the optical component in the external component according to the second optical signal, so that the light is
  • the impedance of the matching network in the corresponding driving unit of the component is matched with the optical component, so that the eye curve of the first optical signal output by the optical component meets a preset standard.
  • an embodiment of the present application provides an optical device, where the optical device includes:
  • the board is provided with at least one driving unit, the driving unit includes: a laser driver, a matching network and a first connecting component respectively connected to the output end of the laser driver; and the first connecting component Removable electrical connection to external components;
  • the laser driver outputs a modulation signal, the modulation signal being output to the external component via the first connector;
  • An eye diagram determining chip wherein an output end of the eye judging chip is connected to the matching network, and an input end of the eye judging chip is connected to the external component, and the eye judging chip receives the external component according to And modulating the laser signal fed back by the signal, and adjusting an impedance of the matching network according to the laser signal until an eye pattern performance of the laser signal fed back by the external component meets a preset standard.
  • the laser driver and the matching network are disposed on the board, so that when the optical component is connected, the laser driver and the matching network may not be disposed in the optical component, thereby reducing
  • the size of the optical component reduces the power consumption of the optical component and improves the performance of the optical component.
  • the optical device provided by the embodiment of the present application can use the eye diagram to determine that the chip automatically adjusts the impedance value of the matching network in the driving unit connected to the optical component according to the laser signal output by the optical component, thereby making the optical component The eye curve of the output optical signal satisfies the preset criteria.
  • an embodiment of the present application provides an optical line terminal, where the optical line terminal includes the optical component and the optical device, or the optical line terminal includes the optical device device provided by any one of the foregoing.
  • the laser driver and the matching network are disposed on the board, thereby reducing the size of the optical component, reducing power consumption of the optical component, and improving The performance of the optical component.
  • the optical line terminal and the optical network system provided by the embodiments of the present application can use the eye diagram determination chip to automatically adjust the impedance value of the matching network in the driving unit connected to the optical component according to the laser signal output by the optical component, thereby The eye curve of the optical signal output by the optical component satisfies a preset standard.
  • FIG. 1 is a schematic structural diagram of an optical device device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an optical device device according to another embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an optical device device according to still another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an optical component in an optical device device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an optical component package in an optical device device according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of an optical device device according to still another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an eye diagram determining chip in an optical device device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of an eye diagram determining chip in an optical device device according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an optical device device according to still another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an optical device device according to still another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an optical device device according to still another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an optical component according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an optical device according to an embodiment of the present application.
  • the power consumption of existing optical components is large, and the greater the power consumption of optical components, the greater the impact of the performance of the optical components.
  • the embodiment of the present application provides an optical device device.
  • the optical device device includes:
  • the board is provided with at least one driving unit 10, the driving unit 10 includes: a laser driver 11, respectively, a matching network 12 and a first connecting member 13 connected to the output end of the laser driver 11;
  • At least one optical component 20 comprising an electroabsorption modulation laser 21 and a second connector 22 coupled to the electroabsorption modulation laser 21, wherein the first connector 13 and the second connector 22 detachable electrical connection;
  • the laser driver 11 outputs a modulation signal B, which is input to the electroabsorption modulation laser 21 via the first connector 13 and the second connector 22, the electroabsorption modulation laser 21
  • the modulation signal B outputs a laser signal
  • the eye diagram judges the chip 30 for adjusting the impedance of the matching network 12 according to the laser signal output from the electroabsorption modulation laser 21 until the eye of the laser signal output by the electroabsorption modulation laser 21
  • the graph performance meets the preset criteria.
  • the preset standard may be selected as a standard association in the field of the optical module. In the discussion, the requirement for outputting the laser signal of the optical module is not limited in this application, and is determined by the circumstances.
  • the laser driver 11 further outputs a driving signal A, and the driving signal A is input to the electroabsorption modulation via the first connecting member 13 and the second connecting member 22.
  • the laser 21, the electroabsorption modulation laser 21 operates under the drive of the drive signal A.
  • the matching network 12 includes at least one of an adjustable resistor, an adjustable inductor, and a tunable capacitor.
  • the electroabsorption modulation laser 21 includes a laser 211 and an electroabsorption modulator 212 connected to the laser 211, and the electroabsorption modulator 212 is under the control of a modulation signal B outputted by the single board. The laser signal generated by the laser 211 is modulated and output.
  • the laser driver 11 is disposed on the board to reduce the size of the optical component 20, reduce power consumption of the optical component 20, and improve performance of the optical component 20.
  • the laser driver, the matching network, and the electro-absorption modulation laser are all disposed on the optical component, and the matching network and the optical component are in one-to-one correspondence.
  • the optical component can ensure that the optical device device maintains performance in subsequent operations as long as the parameters are adjusted before leaving the factory.
  • the matching network and the electro-absorption modulation laser are separately disposed, and even if the board adjusts parameters of the matching network before leaving the factory, the optical device device is difficult to be used in subsequent use.
  • the matching network of the driving unit on the board and the corresponding optical component are ensured to be paired, which causes the matching network and the optical component to be mismatched.
  • the frequency response of the different optical components is different. Therefore, when the matching network of the driving unit on the board connected to the optical component does not match the optical component, the eye diagram performance of the optical device device is difficult to meet. Preset criteria, there are eye pattern defects that affect the eye pattern performance of the optical device device.
  • the optical device device provided by the embodiment of the present application further includes an eye diagram determining chip 30 for adjusting the impedance of the matching network 12 according to the laser signal output by the electroabsorption modulation laser 21 until The eye pattern performance of the laser signal output from the electroabsorption modulation laser 21 satisfies a preset standard.
  • the eye diagram is used to determine the chip 30 according to the
  • the laser signal outputted by the electroabsorption modulation laser 21 adjusts the impedance of the matching network 12 in the corresponding driving unit of the optical component until the eye pattern performance of the laser signal output by the electroabsorption modulation laser 21 satisfies a preset standard, and then The laser signal output from the electroabsorption modulation laser 21 is output to the outside so that the matching network 12 of the driving unit in the optical device device matches the optical component 20 connected to the driving unit.
  • the first connecting member 13 is a card seat
  • the second connecting member 22 is a plug or a gold finger
  • the assembly 20 is detachably connected by the card holder and the plug (or gold finger).
  • the first connecting member 13 is a plug or a gold finger
  • the second connecting member 22 is a card holder
  • the single board and the optical component 20 pass through the card holder and The plug (or gold finger) achieves a detachable connection.
  • the single board and The optical component 20 can also be detachably connected by other means, which is not limited in this application, as the case may be.
  • the eye diagram determining chip 30 is integrated on the single board, and each of the driving units 10 is integrated with one.
  • the eye diagram determining chip 30, the input end of the eye diagram determining chip 30 is connected to the second connecting component 22 via the first connecting member 13, and the output end of the eye diagram determining chip 30 corresponds to the corresponding A matching network connection of the driving unit, so that the laser signal output by the electro-absorption modulation laser 21 in the optical component 20 can be sequentially outputted to the eye diagram via the second connector 22 and the first connector 13 Chip 30.
  • the optical component 20 further includes:
  • a beam splitter 23 wherein the beam splitter 23 is configured to split the optical signal output by the electro-absorption modulation laser 21 into a first optical signal and a second optical signal according to a splitting ratio of the beam splitter 23;
  • a receiver 24 wherein the receiver 24 is configured to convert the second optical signal into a current signal
  • the transimpedance amplifier 25 is configured to convert the current signal into a voltage signal, and then output to the eye diagram determining chip 30 via the second connecting member 22 and the first connecting member 13 in sequence. ;
  • the output terminal Out the first optical signal is output via the output terminal Out.
  • the laser beam outputted by the electro-absorption modulation laser 21 is first divided into a first optical signal and a second optical signal by using the beam splitter 23, and then the receiving is performed.
  • the machine 24 and the transimpedance amplifier 25 convert the second optical signal into a voltage signal and output it to the eye diagram determining chip 30, so that the eye diagram determining chip 30 adjusts the matching according to the second optical signal.
  • the impedance of the network 12 is outputted through the output terminal Out after the eye pattern performance of the second optical signal satisfies a preset standard.
  • the splitting ratio is 5:95, that is, the second optical signal accounts for 5% of the output laser signal of the electro-absorption modulation laser 21,
  • the splitting ratio is 5:95, that is, the second optical signal accounts for 5% of the output laser signal of the electro-absorption modulation laser 21,
  • the transimpedance amplifier 25 converts the current signal into After the voltage signal, the voltage signal is also amplified, but this application does not limit this, as the case may be.
  • FIG. 4 is a schematic structural diagram of an optical component 20 according to an embodiment of the present application
  • FIG. 5 is a schematic structural view of the optical component 20 in the embodiment of the present application.
  • the optical component 20 includes:
  • thermoelectric cooler fixed to the first header 26 and An electroabsorption modulation laser 21 fixed to the thermoelectric cooler 27, wherein the thermoelectric cooler 27 is configured to adjust an operating temperature of the electroabsorption modulation laser 21;
  • a beam splitter 23 wherein the beam splitter 23 is configured to split the laser signal output by the electro-absorption modulation laser 21 into a first light signal and a second light signal according to a splitting ratio of the beam splitter 23;
  • a receiver 24 wherein the receiver 24 is configured to convert the second optical signal into a current signal
  • transimpedance amplifier (not shown) for converting the current signal into a voltage signal and sequentially outputting the eye diagram to the eye via the second connector and the first connector chip;
  • the first optical signal is sequentially transmitted via the first lens 28 and projected by the filter 29 to emit the optical component 20;
  • a second lens 34 located between the reflective surface of the filter 29 and the other receiver 32, and an external optical signal incident on the optical component 20 is reflected by the filter 29 via the second lens 34 is directed to the other receiver 32, received by the other receiver 32, converted to a current signal, and output via the other transimpedance amplifier 34.
  • the optical device device provided by the embodiment of the present application includes a thermoelectric cooler 27, a thermoelectric cooler pin (not shown), an electroabsorption modulation laser 21, and the electroabsorption modulation laser 21.
  • the laser in the middle provides a bias current pin 35 for driving the signal, and the beam splitter 23, and includes a receiver 24, a biasing pin 36 for biasing the receiver 24, and an output signal tube of the receiver 24.
  • the foot 37 and the like are not limited in the present invention, and are specifically determined as the case may be.
  • the optical component 20 further includes a thermal sensor (not shown) for sensing the electro-absorption modulation laser 21 Working temperature.
  • the eye diagram determining chip 30 is specifically configured to generate an eye diagram curve according to the laser signal output by the electroabsorption modulation laser 21, and determine the eye diagram. Whether the curve exists satisfies a preset criterion, and when the eye curve does not satisfy the preset criterion, the impedance of the matching network 12 is adjusted until the eye curve of the electroabsorption modulation laser 21 satisfies a preset criterion.
  • the eye diagram determining chip first converts a voltage signal output by the transimpedance amplifier into a digital signal, and samples a point from the data signal to generate the eye curve. And comparing the eye curve with an eye template in a standard protocol.
  • the eye curve can be placed in the eye template, the eye curve meets a preset standard, and no eye exists.
  • the eye template includes an eye image and a frame located in the eye image, and specifically comparing the eye curve with the eye template. Determining whether the eye curve can be placed in the box, but the invention is not limited thereto. In other embodiments of the present invention, the box in the eye image may also be Replace with other shapes, as appropriate.
  • the eye diagram determining chip 30 adjusts the impedance of the matching network 12 into multiple presets when the eye curve does not meet the preset criterion. One of the impedance values until the eye curve of the laser signal output from the electroabsorption modulation laser 21 satisfies a preset standard, and there is no longer an eye defect.
  • the matching network 12 includes an adjustable resistor, an adjustable inductor, and a tunable capacitor, wherein the adjustable resistor includes 20 resistors, and each resistor has a resistance of 10 ohms.
  • the tunable capacitor includes 10 capacitors, each capacitor has a capacitance value of 0.2 nF, the tunable inductor includes 10 inductors, each inductor has an inductance value of 0.1 nH, and the matching network 12 includes multiple a switch having the same number of combinations of resistance, capacitance and inductance in the matching network 12, such that one switch corresponds to one impedance value, that is, the matching network 12 has a plurality of preset impedance values Each impedance value corresponds to a combination of an inductor, a resistor, and a capacitor in the matching network 12.
  • the combination of the 1124th switch is a 20 ohm resistor, a 1 nH inductor, and a 2 pF capacitor.
  • the eye diagram determining chip 30 adjusts the impedance of the matching network 12 into one of a plurality of preset impedance values according to the eye diagram curve. Until the selection of a certain switch causes the eye curve of the laser signal output from the electroabsorption modulation laser 21 to satisfy the preset standard, there is no longer an eye defect.
  • the eye diagram determining chip 30 adjusts the impedance of the matching network 12 according to the eye curve.
  • the impedance of the matching network 12 is adjusted to be one of a plurality of preset impedance values, until a certain switch is selected such that the eye curve of the laser signal output by the electroabsorption modulation laser 21 satisfies
  • the impedance of the matching network 12 may be adjusted to one of a plurality of preset impedance values in sequence, in which the impedance values of the matching network are gradually decreased, until a certain switch is selected to enable the electrical The eye curve of the laser signal outputted by the
  • the adjustable resistor, the adjustable inductor, and the adjustable capacitor are integrated on one chip to improve the The degree of integration of the boards reduces the size of the boards.
  • the eye diagram determining chip 30 is integrated on the single board 100, and each of the single board 100 is provided with one eye judging chip 30.
  • the eye diagram determines that the output of the chip 30 is connected to the matching network of each of the drive units of the board in which it is located.
  • the single board 100 when the single board 100 has multiple driving units, the single board 100 is connected to the plurality of optical components 20, and the eye diagram determining chip is used before the single board 100 is in communication communication.
  • the matching network of the driving units corresponding to the optical components 20 is sequentially adjusted, so that the plurality of driving units on the same single board 100 share one eye determining chip 30, and the size of the single board 100 is reduced.
  • an electrical switch is disposed on each of the connection paths between the output end of the eye diagram determining chip 30 and the matching network connected to each of the driving units.
  • the driving unit When the optical component is connected to its corresponding driving unit, the driving unit is activated, and the driving unit is controlled to provide a driving signal and a modulation signal for the optical component, and simultaneously controls the eye diagram determining chip and the driving unit.
  • the electrical switch is turned on to adjust the matching network of the corresponding driving unit of the optical component.
  • the electrical switch between the eye diagram determining chip and the matching network connected to each of the driving units may be controlled by an external component or may be controlled by the single board, which is not limited in this application. , depending on the situation.
  • the input end of the eye diagram determining chip 30 is provided with a retractable optical fiber 40, and the eye diagram determining chip 30 passes the
  • the optical fibers 40 are sequentially connected to the optical component 20 to be adjusted, and the impedances of the matching networks in the driving units corresponding to the optical components 20 to be adjusted are adjusted, so that the eye curve of the laser signals output by the optical components 20 meets preset standards. .
  • the input end of the eye diagram determining chip 30 is provided with a fiber flange interface 50, and the eye diagram determines the fiber flange interface 50 of the chip 30 to be adjusted.
  • the optical component 20 is connected by an external optical fiber, that is, the optical fiber flange interface 50 of the eye diagram determining chip 30 is sequentially connected to the optical component 20 to be adjusted and its corresponding driving unit through an external optical fiber to adjust the light to be adjusted.
  • the impedance of the matching network in the corresponding driving unit of the optical component 20 is such that the eye curve of the laser signal output by each optical component 20 satisfies a preset standard.
  • the optical device device further includes a main control board 200, and the main control board 200 is configured to provide a software loading program for controlling the work of the single board 100, and control The single board 100 works. It should be noted that when the optical device device includes multiple boards 100, the plurality of boards 100 share one main control board 200, and the main control board 200 is used for working for each of the boards 100. A software loading program is provided to control the operation of each of the boards 100.
  • the eye diagram determining chip 30 is integrated on the main control board 200, and one of the main control boards 200 corresponds to one eye diagram determining chip 30.
  • the output of the eye diagram determining chip is connected to the matching network of each driving unit of each board of the main control board.
  • the eye diagram is judged.
  • the chip 30 sequentially determines the impedance of the matching network of each driving unit on each of the boards 100 such that the eye curve of the laser signal output by the optical unit 20 corresponding to each driving unit satisfies a preset standard.
  • an electrical switch is disposed on each of the connection paths between the output end of the eye diagram determining chip 30 and the matching network connected to each of the driving units.
  • the driving unit is activated, and the driving unit is controlled to provide a driving signal and a modulation signal for the optical component, and simultaneously controls the eye diagram determining chip and the The electrical switch between the driving units is turned on, and the matching network of the corresponding driving unit of the optical component is adjusted.
  • an electrical switch between the eye diagram determining chip and a matching network connected to each of the driving units may be controlled by the main control board, but the present application Not limited, depending on the situation.
  • the input end of the eye diagram determining chip 30 is provided with a retractable optical fiber, and the eye judging chip 30 sequentially and the single through the retractable optical fiber.
  • the optical components 20 to be adjusted corresponding to the driving units of the driving unit are connected to each other, and the impedances of the matching networks in the driving units corresponding to the optical components 20 to be adjusted are adjusted, so that the eye curve of the laser signals output by the optical components 20 meets the preset. standard.
  • the input end of the eye diagram determining chip 30 is provided with a fiber flange interface, and the optical fiber flange interface of the eye diagram determining chip 30 corresponds to each driving unit in each single board 100.
  • the optical component 20 to be adjusted is connected by an external optical fiber, that is, the optical fiber flange interface of the eye diagram determining chip 30 is sequentially connected to the optical component 20 to be adjusted and its corresponding driving unit through an external optical fiber to adjust each to be adjusted.
  • the impedance of the matching network in the corresponding driving unit of the optical component 20 is such that the eye curve of the laser signal output by each optical component 20 satisfies a preset standard.
  • the optical device apparatus when the eye diagram determining chip 30 is integrated on the main control board 200, the optical device apparatus further includes a backplane 300, and the backplane 300 simultaneously
  • the main control board 200 and each of the single boards 100 are connected to each other to provide driving signals and control commands for each of the single boards 100.
  • the optical component 20 in the optical device device needs to be manually configured.
  • the single board 100 has four first connectors, and only one first connection is included.
  • the optical component 20 is connected to the device, and the corresponding driving unit of the optical component 20 is artificially activated, and the connection path between the eye diagram determining chip and the driving unit is controlled to be turned on, based on the laser output by the optical component 20.
  • the signal adjusts the matching network in the corresponding drive unit of the optical component 20. And when the eye diagram determining chip 30 adjusts the matching impedance corresponding to the electroabsorption modulation laser 21 according to the laser signal output by the electroabsorption modulation laser 21, the adjustment command sequentially passes through the main control board 200 and the back. The routing of the board 300 and the board 100 is transmitted to the matching network to adjust the impedance of the matching network 2.
  • the matching network when the matching network is an integrated chip, an integrated chip including the matching network passes through an I 2 C interface and the optical device device.
  • the other constituent elements are connected.
  • the present application does not limit this.
  • the integrated chip including the matching network may also be connected to other components in the optical device device through other communication interfaces, as the case may be. .
  • the eye diagram determining chip 30 is a handheld device, that is, independent of the single board 100 and the main control board 200. Before the board 100 is in communication with the service, the eye diagram determining chip 30 sequentially determines the impedance of the matching network of each driving unit on each board 100, so that the eye curve of the laser signal output by the optical component corresponding to each driving unit is Meet the preset criteria.
  • the input end of the eye diagram determining chip 30 is provided with a retractable optical fiber, and the eye judging chip 30 sequentially and the single through the retractable optical fiber.
  • An optical component to be adjusted corresponding to each driving unit of the board is connected, and an impedance of a matching network in the driving unit corresponding to each optical component 20 to be adjusted is adjusted, so that an eye curve of the laser signal output by each optical component 20 meets a preset standard. .
  • the input end of the eye diagram determining chip 30 is provided with a fiber flange interface, and the optical fiber flange interface of the eye diagram determining chip 30 corresponds to each driving unit in each single board 100.
  • the optical component 20 to be adjusted is connected by an external optical fiber, that is, the optical fiber flange interface of the eye diagram determining chip 30 is sequentially connected to the optical component 20 to be adjusted and its corresponding driving unit through an external optical fiber to adjust each to be adjusted.
  • the impedance of the matching network in the corresponding driving unit of the optical component 20 is such that the eye curve of the laser signal output by each optical component 20 satisfies a preset standard.
  • the eye diagram determining chip 30 when the eye diagram determining chip 30 is a handheld device, the An optical interface and an electrical interface are disposed in the eye diagram determining chip 30, wherein the optical fiber interface is connected to the optical component 20 through an optical fiber, and the electrical interface is connected to the main control board 200 through a USB cable or other electrical signal cable.
  • Electrical interfaces (USB interface or other type of electrical interface) are connected to receive the laser signal output by the optical component 20 through the optical fiber, and transmit the adjustment command to the device through the USB cable or other electrical signal cable
  • the main control board is configured to adjust the impedance of the matching network corresponding to the optical component 20.
  • the main control board is connected to each driving unit network of each single board, and the main control board controls the impedance when adjusting the impedance of the matching network of each driving unit.
  • the connection between the main control board and the driving unit to be adjusted is turned on, and the adjustment signal is transmitted to the matching network to adjust the impedance of the matching network, but the application does not limit this, as the case may be.
  • the optical device device provided by the embodiment of the present application sets the laser driver on the single board, thereby reducing the size of the optical component, reducing the power consumption of the optical component, and improving The performance of the optical component.
  • the optical device device provided by the embodiment of the present application can use the eye diagram to determine that the chip automatically adjusts the impedance value of the matching network in the driving unit connected to the optical component according to the laser signal output by the optical component, thereby making the light The eye curve of the optical signal output by the component satisfies the preset standard.
  • the embodiment of the present application further provides an optical component, as shown in FIG. 12, the optical component includes an electro-absorption modulation laser 21 and a second connecting member 22 connected to the electro-absorption modulation laser 21, wherein
  • the second connecting member 21 is configured to be detachably and electrically connected to an external component; the electroabsorption modulation laser 21 outputs a laser signal according to a modulation signal output by the external component;
  • the optical component further includes:
  • a beam splitter 23 wherein the beam splitter 23 is configured to split the optical signal output by the electro-absorption modulation laser 21 into a first optical signal and a second optical signal according to a splitting ratio of the beam splitter 23;
  • a receiver 24 wherein the receiver 24 is configured to convert the second optical signal into a current signal
  • the transimpedance amplifier 25 is configured to convert the current signal into a voltage signal, and then output to the external component via the second connecting member 22 and the first connecting member 13 in sequence;
  • the output terminal Out the first optical signal is output via the output terminal Out.
  • the optical component provided by the embodiment of the present application does not include a laser driver, so that the size of the optical component can be reduced, the power consumption of the optical component can be reduced, and the performance of the optical component can be improved.
  • the optical component provided by the embodiment of the present application includes a beam splitter, a receiver, and a transimpedance amplifier, so that the second optical signal can be separated from the laser signal output by the electroabsorption modulation laser, through the receiver and the The transimpedance amplifier is converted and output to the external component, so that the eye diagram determining chip in the external component adjusts the impedance of the matching network in the driving component corresponding to the optical component in the external component according to the second optical signal, so that the light is
  • the impedance of the matching network in the corresponding driving unit of the component is matched with the optical component, so that the eye curve of the first optical signal output by the optical component meets a preset standard.
  • the embodiment of the present application further provides an optical device.
  • the optical device includes:
  • the board is provided with at least one driving unit 10, the driving unit 10 includes: a laser driver 11, a matching network 12 and a first connecting member 13 respectively connected to the output end of the laser driver 11;
  • the first connecting member 13 is configured to be detachably and electrically connected to an external component (ie, an optical component);
  • the laser driver 11 outputs a modulation signal B, which is output to the external component via the first connector 13;
  • An eye diagram determining chip 30, an output end of the eye diagram determining chip 30 is connected to the matching network 12, and an input end of the eye diagram determining chip 30 is connected to the external component, and the eye diagram determining chip 30 receives
  • the external component adjusts the impedance of the matching network 12 according to the laser signal fed back by the modulation signal B, and the eye pattern performance of the laser signal fed back by the external component satisfies a preset standard.
  • the laser driver 11 further outputs a driving signal A, and the driving signal A is input to an external component via the first connecting member 13, and the external component is in the driving signal A.
  • the matching network 12 includes at least one of an adjustable resistor, an adjustable inductor, and a tunable capacitor.
  • the laser driver and the matching network are disposed on the board, so that when the optical component is connected, the laser driver and the matching network may not be disposed in the optical component, thereby reducing
  • the size of the optical component reduces the power consumption of the optical component and improves the performance of the optical component.
  • the optical device provided by the embodiment of the present application can use the eye diagram to determine that the chip automatically adjusts the impedance value of the matching network in the driving unit connected to the optical component according to the laser signal output by the optical component, thereby making the optical component The eye curve of the output optical signal satisfies the preset criteria.
  • the embodiment of the present application further provides an optical line terminal and an optical network system, where the optical line terminal includes the optical component provided by any of the foregoing embodiments, and the optical device provided by any of the foregoing embodiments, or The optical line terminal includes the optical device device provided by any of the above embodiments.
  • the optical network system includes the above optical line terminal and optical network unit. Since the structure of the optical network unit is well known to those skilled in the art, this application does not describe it in detail.
  • the laser driver and the matching network are disposed on the board, thereby reducing the size of the optical component, reducing power consumption of the optical component, and improving The performance of the optical component.
  • the optical line terminal and the optical network system provided by the embodiments of the present application can use the eye diagram determination chip to automatically adjust the impedance value of the matching network in the driving unit connected to the optical component according to the laser signal output by the optical component, thereby The eye curve of the optical signal output by the optical component satisfies a preset standard.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种光器件装置、光组件(20)、光器件及一种光线路终端,光器件装置包括:单板(100),单板(100)上设置有至少一个驱动单元(10),驱动单元(10)包括:激光器驱动器(11),分别与激光驱动器(11)的输出端连接的匹配网络(12)和第一连接件(13);至少一个光组件(20),光组件(20)包括电吸收调制激光器(21)和与电吸收调制激光器(21)连接的第二连接件(22),第一连接件(13)和第二连接件(22)可拆卸电连接;激光器驱动器(11)输出调制信号(B)给电吸收调制激光器(21),电吸收调制激光器(21)根据调制信号(B)输出激光信号;眼图判断芯片(30),眼图判断芯片(30)根据电吸收调制激光器(21)输出的激光信号调节匹配网络(12)的阻抗,直至电吸收调制激光器(21)输出的激光信号的眼图性能满足预设标准。光器件装置可减小光组件(20)的尺寸,降低光组件(20)的功耗,提高光组件(20)的性能。

Description

光器件装置、光组件、光器件、光线路终端 技术领域
本申请涉及光信号调制技术领域,尤其涉及一种光器件装置、一种光组件、一种光器件以及一种光线路终端。
背景技术
目前的光组件包括激光器、激光器驱动器以及匹配网络,所述匹配网络包括电阻、电感,具体的,所述光组件的厂家在所述光组件出厂前会调整激光器的偏置电流、调制电压信号的幅度、匹配网络中的电感和电阻等,使得所述激光器的发射功率、消光比和眼图性能满足标准需求。但是,现有光组件的功耗较大,而光组件的功耗越大,所述光组件的性能受到的影响也越大。
发明内容
第一方面,本申请实施例提供了一种光器件装置,包括:
单板,所述单板上设置有至少一个驱动单元,所述驱动单元包括:激光器驱动器,分别与所述激光驱动器的输出端连接的匹配网络和第一连接件;
至少一个光组件,所述光组件包括电吸收调制激光器和与所述电吸收调制激光器连接的第二连接件,其中,所述第一连接件和所述第二连接件可拆卸电连接;
所述激光器驱动器输出调制信号,所述调制信号经由所述第一连接件和第二连接件输入至所述电吸收调制激光器,所述电吸收调制激光器根据所述调制信号输出激光信号;
眼图判断芯片,所述眼图判断芯片用于根据所述电吸收调制激光器输出的激光信号调节所述匹配网络的阻抗,直至所述电吸收调制激光器输出的激光信号的眼图性能满足预设标准。
本申请实施例所提供的光器件装置,将所述激光器驱动器设置在所述单板上,从而减小所述光组件的尺寸,降低所述光组件的功耗,提高所述光组件的性能。而且,本申请实施例所提供的光器件装置,可以利用眼图判断芯片根据所述光组件输出的激光信号,自动调节该光组件连接的驱动单元中匹配网络的阻抗值,从而使得所述光组件输出的光信号的眼图曲线满足预设标准。
在一种实现方式中,所述第一连接件为卡座,所述第二连接件为插头或金手指;或者,所述第一连接件为插头或金手指,所述第二连接件为卡座。
在一种实现方式中,所述眼图判断芯片集成在所述单板上,每一所述驱动单元对应集成一个所述眼图判断芯片,所述眼图判断芯片的输入端经由所述第一连接件与所述第二连接件连接,所述眼图判断芯片的输出端与其所对应的驱动单元的匹配网络连接。
在一种实现方式中,所述光组件还包括:分光片,所述分光片用于将所述电吸收调制激光器输出的激光信号按照该分光片的分光比分成第一光信号和第二光信号;接收机,所述接收机用于将所述第二光信号转换成电流信号;跨阻放大器,所述跨阻放大器用于将所述电流信号转换成电压信号后依次经由所述第二连接件和所述第一连接件输出给所述眼图判断芯片;输出端,所述第一光信号经由所述输出端输出,以将所述眼图判断芯片与所述驱动单元一一对应,在不需要任何额外人工参与的情况下,实现所述匹配网络阻抗的自动调节。
在一种实现方式中,所述眼图判断芯片的输入端设置有可伸缩光纤,所述眼图判断芯片通过所述可伸缩光纤与待调节光组件相连。
在一种实现方式中,所述眼图判断芯片的输入端设置有光纤法兰接口,所述眼图判断芯片的光纤法兰接口与待调节光组件通过外部光纤相连。
在一种实现方式中,所述眼图判断芯片集成在所述单板上,且每一所述单板设置一所述眼图判断芯片,所述眼图判断芯片的输出端与其所在单板的各所述驱动单元的匹配网络连接,以使得所述单板上的多个驱动单元共用一个眼图判断芯片,提高所述光器件装置的集成度,减小所述光器件装置的体积。
在一种实现方式中,所述光器件装置还包括主控板,所述眼图判断芯片集成在所述主控板上,所述眼图判断芯片的输出端与所述主控板上各所述单板的各驱动单元的匹配网络连接,以使得多个所述单板上的多个驱动单元共用一个眼图判断芯片,提高所述光器件装置的集成度,减小所述光器件装置的体积。
在一种实现方式中,所述眼图判断芯片为手持装置,以使得所述眼图判断芯片可以独立制作和使用。
在一种实现方式中,所述眼图判断芯片根据所述电吸收调制激光器输出的激光信号生成眼图曲线,当所述眼图曲线不满足所述预设标准时,调节所述匹配网络的阻抗,直至所述电吸收调制激光器输出的激光信号的眼图曲线满足所述预设标准。
在一种实现方式中,所述眼图判断芯片在所述眼图曲线不满足所述预设标准时,调节所述匹配网络的阻抗依次为多个预设阻抗值中的一个,直至所述电吸收调制激光器输出的激光信号的眼图曲线满足所述预设标准。
第二方面,本申请实施例提供一种光组件,所述光组件包括电吸收调制激光器和与所述电吸收调制激光器连接的第二连接件,其中,所述第二连接件用于与外部组件可拆卸电连接;所述电吸收调制激光器根据所述外部组件输出的调制信号输出激光信号;
所述光组件还包括:
分光片,所述分光片用于将所述电吸收调制激光器输出的激光信号按照该分光片的分光比分成第一光信号和第二光信号;
接收机,所述接收机用于将所述第二光信号转换成电流信号;
跨阻放大器,所述跨阻放大器用于将所述电流信号转换成电压信号后依次经由所述第一输出端和所述第二连接件输出给所述外部组件;
输出端,所述第一光信号经由所述输出端输出。
本申请实施例所提供的光组件不包括激光器驱动器,从而可以减小所述光组件的尺寸,降低所述光组件的功耗,提高所述光组件的性能。而且,本申请实施例所提供的光组件包括分光片、接收机和跨阻放大器,从而可以从所述电吸收调制激光器输出的激光信号中分出第二光信号,经所述接收机和所述跨阻放大器转换后输出给外部组件,以供外部组件中的眼图判断芯片根据所述第二光信号调节外部组件中与该光组件对应的驱动单元中匹配网络的阻抗,使得与该光组件对应的驱动单元中匹配网络的阻抗和该光组件匹配,进而使得该光组件输出的第一光信号的眼图曲线满足预设标准。
第三方面,本申请实施例提供了一种光器件,所述光器件包括:
单板,所述单板上设置有至少一个驱动单元,所述驱动单元包括:激光器驱动器,分别与所述激光驱动器的输出端连接的匹配网络和第一连接件;所述第一连接件用于与外部组件可拆卸电连接;
所述激光器驱动器输出调制信号,所述调制信号经由所述第一连接件输出至所述外部组件;
眼图判断芯片,所述眼图判断芯片的输出端与所述匹配网络连接,且所述眼图判断芯片的输入端与所述外部组件连接,所述眼图判断芯片接收所述外部组件根据所述调制信号反馈的激光信号,并根据所述激光信号调节所述匹配网络的阻抗,直至所述外部组件反馈的激光信号的眼图性能满足预设标准。
本申请实施例所提供的光器件,将所述激光器驱动器和匹配网络设置在所述单板上,从而在和光组件连接时,可以不再所述光组件中设置激光器驱动器和匹配网络,减小所述光组件的尺寸,降低所述光组件的功耗,提高所述光组件的性能。而且,本申请实施例所提供的光器件,可以利用眼图判断芯片根据所述光组件输出的激光信号,自动调节该光组件连接的驱动单元中匹配网络的阻抗值,从而使得所述光组件输出的光信号的眼图曲线满足预设标准。
第四方面,本申请实施例提供了一种光线路终端,所述光线路终端包括上述光组件和上述光器件,或者,所述光线路终端包括上述任一项所提供的光器件装置。
本申请实施例所提供的光线路终端和光网络系统,将所述激光器驱动器和匹配网络设置在所述单板上,从而减小所述光组件的尺寸,降低所述光组件的功耗,提高所述光组件的性能。而且,本申请实施例所提供的光线路终端和光网络系统,可以利用眼图判断芯片根据所述光组件输出的激光信号,自动调节该光组件连接的驱动单元中匹配网络的阻抗值,从而使得所述光组件输出的光信号的眼图曲线满足预设标准。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一个实施例所提供的光器件装置的结构示意图;
图2为本申请另一个实施例所提供的光器件装置的结构示意图;
图3为本申请又一个实施例所提供的光器件装置的结构示意图;
图4为本申请一个实施例所提供的光器件装置中光组件的结构示意图;
图5为本申请一个实施例所提供的光器件装置中光组件封装后的结构示意图;
图6为本申请又一个实施例所提供的光器件装置的结构示意图;
图7为本申请一个实施例所提供的光器件装置中眼图判断芯片的结构示意图;
图8为本申请另一个实施例所提供的光器件装置中眼图判断芯片的结构示意图;
图9为本申请再一个实施例所提供的光器件装置的结构示意图;
图10为本申请又一个实施例所提供的光器件装置的结构示意图;
图11为本申请再一个实施例所提供的光器件装置的结构示意图;
图12为本申请一个实施例所提供的光组件的结构示意图;
图13为本申请一个实施例所提供的光器件的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是本申请还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似推广,因此本申请不受下面公开的具体实施例的限制。
正如背景技术部分所述,现有光组件的功耗较大,而光组件的功耗越大,所述光组件的性能受到的影响也越大。
有鉴于此,本申请实施例提供了一种光器件装置,如图1所示,该光器件装置包括:
单板,所述单板上设置有至少一个驱动单元10,所述驱动单元10包括:激光器驱动器11,分别于所述激光器驱动器11的输出端连接的匹配网络12和第一连接件13;
至少一个光组件20,所述光组件20包括电吸收调制激光器21和与所述电吸收调制激光器21连接的第二连接件22,其中,所述第一连接件13和所述第二连接件22可拆卸电连接;
所述激光器驱动器11输出调制信号B,所述调制信号B经由所述第一连接件13和所述第二连接件22输入至所述电吸收调制激光器21,所述电吸收调制激光器21根据所述调制信号B输出激光信号;
眼图判断芯片30,所述眼图判断芯片30用于根据所述电吸收调制激光器21输出的激光信号调节所述匹配网络12的阻抗,直至所述电吸收调制激光器21输出的激光信号的眼图性能满足预设标准。其中,所述预设标准可选为所述光模块领域中标准协 议里,对所述光模块输出激光信号的要求,本申请对此并不做限定,具体视情况而定。
需要说明的是,在上述实施例中,所述激光器驱动器11还输出驱动信号A,所述驱动信号A经由所述第一连接件13和所述第二连接件22输入至所述电吸收调制激光器21,所述电吸收调制激光器21在所述驱动信号A的驱动下工作。
在上述实施例的基础上,在本申请的一个具体实施例中,所述匹配网络12包括可调电阻、可调电感和可调电容中的至少一个。如图2所示,所述电吸收调制激光器21包括激光器211和与所述激光器211连接的电吸收调制器212,所述电吸收调制器212在所述单板输出的调制信号B的控制下,将所述激光器211产生的激光信号进行调制后输出。
由于所述光组件20的尺寸越大,所述光组件20的功耗越大,对所述光组件20的性能影响越大,本申请实施例所提供的光器件装置,将所述激光器驱动器11设置在所述单板上,从而减小所述光组件20的尺寸,降低所述光组件20的功耗,提高所述光组件20的性能。
需要说明的是,传统光器件装置中,所述激光器驱动器、匹配网络和所述电吸收调制激光器都设置在所述光组件上,所述匹配网络和所述光组件是一一对应的,因此,所述光组件只要在出厂前调整好参数后,即可以保证所述光器件装置在后续工作中保持性能不变。而本申请实施例中,所述匹配网络和所述电吸收调制激光器分开设置,即便单板在出厂前调整好所述匹配网络的参数,所述光器件装置在后续使用过程中,也很难保证所述单板上驱动单元的匹配网络和其对应的光组件配对连接,造成所述匹配网络和所述光组件不匹配的现象。而不同的光组件的频率响应存在差异,因此,当与所述光组件连接的单板上驱动单元的匹配网络与该光组件不匹配时,会导致所述光器件装置的眼图性能难以满足预设标准,存在眼图缺陷,影响所述光器件装置的眼图性能。
而本申请实施例所提供的光器件装置还包括眼图判断芯片30,所述眼图判断芯片30用于根据所述电吸收调制激光器21输出的激光信号调节所述匹配网络12的阻抗,直至所述电吸收调制激光器21输出的激光信号的眼图性能满足预设标准。因此,本申请实施例所提供的光器件装置在后续工作时,可以在所述光组件20和所述单板连接之后,所述单板业务通信之前,先利用所述眼图判断芯片30根据所述电吸收调制激光器21输出的激光信号调节所述光组件对应的驱动单元中匹配网络12的阻抗,直至所述电吸收调制激光器21输出的激光信号的眼图性能满足预设标准后,再将所述电吸收调制激光器21输出的激光信号向外输出,以使得所述光器件装置中所述驱动单元的匹配网络12和与所述驱动单元连接的光组件20相匹配。
在上述实施例的基础上,在本申请的另一个实施例中,所述第一连接件13为卡座,所述第二连接件22为插头或金手指,所述单板和所述光组件20通过所述卡座和所述插头(或金手指)实现可拆卸连接。在本申请的另一个实施例中,所述第一连接件13为插头或金手指,所述第二连接件22为卡座,所述单板和所述光组件20通过所述卡座和所述插头(或金手指)实现可拆卸连接。在本申请的其他实施例中,所述单板和 所述光组件20还可以通过其他方式实现可拆卸连接,本申请对此并不做限定,具体视情况而定。
在上述任一实施例的基础上,在本申请的一个实施例中,如图3所示,所述眼图判断芯片30集成在所述单板上,每一所述驱动单元10对应集成一个所述眼图判断芯片30,所述眼图判断芯片30的输入端经由所述第一连接件13与所述第二连接件22连接,所述眼图判断芯片30的输出端与其所对应的驱动单元的匹配网络连接,从而使得所述光组件20中的电吸收调制激光器21输出的激光信号可以依次经由所述第二连接件22和所述第一连接件13输出给所述眼图判断芯片30。
在上述实施例的基础上,在本申请的一个实施例中,继续如图3所示,所述光组件20还包括:
分光片23,所述分光片23用于将所述电吸收调制激光器21输出的光信号按照该分光片23的分光比分成第一光信号和第二光信号;
接收机24,所述接收机24用于将所述第二光信号转换成电流信号;
跨阻放大器25,所述跨阻放大器25用于将所述电流信号转换成电压信号后,依次经由所述第二连接件22和所述第一连接件13输出给所述眼图判断芯片30;
输出端Out,所述第一光信号经由所述输出端Out输出。
在本申请实施例中,所述光器件装置工作时,先利用所述分光片23将所述电吸收调制激光器21输出的激光信号分成第一光信号和第二光信号,再利用所述接收机24和所述跨阻放大器25将所述第二光信号转换成电压信号输出给所述眼图判断芯片30,以便于所述眼图判断芯片30根据所述第二光信号调整所述匹配网络12的阻抗,直至所述第二光信号的眼图性能满足预设标准后,再将所述第一光信号经所述输出端Out输出。
在上述实施例的基础上,在本申请的一个具体实施例中,所述分光比为5:95,即所述第二光信号占所述电吸收调制激光器21输出激光信号的5%,以保证所述光器件工作时,所述电吸收调制激光器21输出的激光信号大部分可以经由所述光组件20的输出端Out输出。
需要说明的是,由于所述第二光信号对所述电吸收调制激光器21输出激光信号的百分比较小,为了保证所述第二光信号可以被所述眼图判断芯片30快速识别,并根据所述第二光信号转换后的电压信号获得所述电吸收调制激光器21输出激光信号的眼图曲线,在本申请的一个实施例中,所述跨阻放大器25再将所述电流信号转换成电压信号后,还具有将所述电压信号放大的作用,但本申请对此并不做限定,具体视情况而定。
具体的,如图4和图5所示,图4为本申请一个实施例所提供的光组件20的结构示意图,图5示出了该光组件20的立体结构示意图,在本申请实施例中,所述光组件20包括:
第一管座26;
固定在所述第一管座26上的热电制冷器27(Thermoelectric cooling,TEC)以及 固定在所述热电制冷器27上的电吸收调制激光器21,其中,所述热电制冷器27用于调节所述电吸收调制激光器21的工作温度;
分光片23,所述分光片23用于将所述电吸收调制激光器21输出的激光信号按照该分光片23的分光比分成第一光信号和第二光信号;
接收机24,所述接收机24用于将所述第二光信号转换成电流信号;
跨阻放大器(图中未示出),所述跨阻放大器用于将所述电流信号转换成电压信号后依次经由所述第二连接件和所述第一连接件输出给所述眼图判断芯片;
位于所述第一光信号光路上的第一透镜28和滤波器29,所述第一光信号依次经由所述第一透镜28传输和所述滤波器29投射后射出所述光组件20;
第二管座31;
固定在所述第二管座31上的另一接收机32和另一跨阻放大器33;
位于所述滤波器29的反射面和所述另一接收机32之间的第二透镜34,外界射入所述光组件20的光信号经所述滤波器29反射后经由所述第二透镜34射向所述另一接收机32,被所述另一接收机32接收后,转换为电流信号,经所述另一跨阻放大器34输出。
如图5所示,本申请实施例所提供的光器件装置除包括为热电制冷器27、热电制冷器管脚(图中未标示)、电吸收调制激光器21、为所述电吸收调制激光器21中的激光器提供驱动信号的偏置电流管脚35、分光片23外,还包括接收机24,给所述接收机24提供偏压的偏压管脚36以及所述接收机24的输出信号管脚37等,本发明对此并不做限定,具体视情况而定。
在上述实施例的基础上,在本申请的一个实施例中,所述光组件20还包括热敏传感器(图中未示出),所述热敏传感器用于感知所述电吸收调制激光器21的工作温度。
在上述任一实施例的基础上,在本申请的一个实施例中,所述眼图判断芯片30具体用于根据所述电吸收调制激光器21输出的激光信号生成眼图曲线,判断该眼图曲线是否存在满足预设标准,当该眼图曲线不满足预设标准时,调节所述匹配网络12的阻抗,直至所述电吸收调制激光器21的眼图曲线满足预设标准。需要说明的是,在本申请实施例中,所述眼图曲线是否存在缺陷即使所述眼图曲线是否满足预设标准,当所述眼图曲线满足预设标准时,所述眼图曲线不存在眼图缺陷,当所述眼图曲线不满足预设标准时,所述眼图曲线存在眼图缺陷。
具体的,在本申请的一个实施例中,所述眼图判断芯片先将所述跨阻放大器输出的电压信号转换成数字信号,并从该数据信号中采样取点,生成所述眼图曲线,再将所述眼图曲线与标准协议里的眼图模板进行比对,当所述眼图曲线可以放进所述眼图模板中时,所述眼图曲线满足预设标准,不存在眼图缺陷,当所述眼图曲线无法放进所述眼图模板中时,所述眼图曲线不满足预设标准,存在眼图缺陷。可选的,在本申请的一个实施例中,所述眼图模板包括眼部图像以及位于眼部图像中的方框,具体将所述眼图曲线与所述眼图模板进行比对时,判断所述眼图曲线是否可以放进该方框中,但本发明对此并不做限定,在本发明的其他实施例中,所述眼部图像中的方框还可以 替换为其他形状,具体视情况而定。
在上述实施例的基础上,在本申请的一个实施例中,所述眼图判断芯片30在所述眼图曲线不满足预设标准时,调节所述匹配网络12的阻抗依次为多个预设阻抗值中的一个,直至所述电吸收调制激光器21输出的激光信号的眼图曲线满足预设标准,不再存在眼图缺陷。
如,在本申请的一个实施例中,所述匹配网络12包括可调电阻、可调电感和可调电容,其中,所述可调电阻包括20个电阻,每个电阻的阻值为10欧姆,所述可调电容包括10个电容,每个电容的电容值为0.2nF,所述可调电感包括10个电感,每个电感的电感值为0.1nH,且所述匹配网络12中包括多个开关,所述开关的个数与所述匹配网络12中电阻、电容和电感的组合个数相同,从而使得一个开关对应一个阻抗值,即所述匹配网络12中具有多个预设阻抗值,每个阻抗值对应所述匹配网络12中一个电感、电阻和电容的组合,比如第1124个开关对应的组合为20欧姆的电阻、1nH电感和2pF的电容。具体调节时,当所述眼图曲线不满足预设标准时,所述眼图判断芯片30根据所述眼图曲线,调节所述匹配网络12的阻抗依次为多个预设阻抗值中的一个,直至选择某个开关使得所述电吸收调制激光器21输出的激光信号的眼图曲线满足预设标准,不再存在眼图缺陷。
可选的,在本申请的一个实施例中,当所述眼图曲线不满足预设标准时,所述眼图判断芯片30根据所述眼图曲线,调节所述匹配网络12的阻抗依次为多个预设阻抗值中的一个,直至选择某个开关使得所述电吸收调制激光器21输出的激光信号的眼图曲线满足预设标准,不再存在眼图缺陷时可以按照所述匹配网络的阻抗值逐渐的增大的顺序,调节所述匹配网络12的阻抗依次为多个预设阻抗值中的一个,直至选择某个开关使得所述电吸收调制激光器21输出的激光信号的眼图曲线满足预设标准,也可以按照所述匹配网络的阻抗值逐渐的减小的顺序,调节所述匹配网络12的阻抗依次为多个预设阻抗值中的一个,直至选择某个开关使得所述电吸收调制激光器21输出的激光信号的眼图曲线满足预设标准,本申请对此并不做限定,具体视情况而定。
需要说明的是,在上述实施例的基础上,在本申请的一个可选实施例中,所述可调电阻、所述可调电感和所述可调电容集成在一个芯片上,以提高所述单板的集成度,减小所述单板的尺寸。
在本申请的另一个实施例中,如图6所示,所述眼图判断芯片30集成在所述单板100上,每一所述单板100设置一个所述眼图判断芯片30,所述眼图判断芯片30的输出端与其所在单板的各所述驱动单元的匹配网络连接。在本申请实施例中,当所述单板100上具有多个驱动单元时,所述单板100与多个光组件20连接,在所述单板100业务通信之前,所述眼图判断芯片30依次调节各光组件20对应的驱动单元的匹配网络,以使得同一单板100上的多个驱动单元共用一个眼图判断芯片30,减小所述单板100的尺寸。
具体的,所述在本申请的一个实施例中,所述眼图判断芯片30的输出端和与其相连各所述驱动单元的匹配网络之间的连接通路上各设有一个电开关,所述光器件在工 作时,将所述光组件与其对应的驱动单元连接后,启动该驱动单元,控制该驱动单元为所述光组件提供驱动信号和调制信号,同时控制所述眼图判断芯片与该驱动单元之间的电开关导通,调节该光组件对应的驱动单元的匹配网络。需要说明的是,所述眼图判断芯片和与其相连各所述驱动单元的匹配网络之间的电开关可以通过外部元件控制,也可以通过所述单板控制,本申请对此并不做限定,具体视情况而定。
在上述实施例的基础上,在本申请的一个实施例中,如图7所示,所述眼图判断芯片30的输入端设置有可伸缩光纤40,所述眼图判断芯片30通过所述可伸缩光纤40依次与待调节光组件20相连,调节各待调节光光组件20对应的驱动单元中的匹配网络的阻抗,以使得各光组件20输出的激光信号的眼图曲线满足预设标准。
在本申请的另一个实施例中,如图8所示,所述眼图判断芯片30的输入端设置有光纤法兰接口50,所述眼图判断芯片30的光纤法兰接口50与待调节光组件20通过外部光纤相连,即具体工作时,所述眼图判断芯片30的光纤法兰接口50通过外部光纤依次与待调节光组件20及其对应的驱动单元相连,以调节各待调节光光组件20对应的驱动单元中的匹配网络的阻抗,以使得各光组件20输出的激光信号的眼图曲线满足预设标准。
在本申请的又一个实施例中,如图9所示,所述光器件装置还包括主控板200,所述主控板200用于为所述单板100的工作提供软件加载程序,控制所述单板100工作。需要说明的是,当所述光器件装置包括多个单板100时,所述多个单板100共用一个主控板200,所述主控板200用于为各所述单板100的工作提供软件加载程序,控制各所述单板100工作。
在上述实施例的基础上,在本申请的一个实施例中,所述眼图判断芯片30集成在所述主控板200上,一个所述主控板200对应一个所述眼图判断芯片30,所述眼图判断芯片的输出端与所述主控板上各所述单板的各驱动单元的匹配网络连接,具体工作时,在所述单板100业务通信之前,所述眼图判断芯片30依次判断各单板100上的各驱动单元的匹配网络的阻抗,以使得各驱动单元对应的光组件20输出的激光信号的眼图曲线满足预设标准。
具体的,所述在本申请的一个实施例中,所述眼图判断芯片30的输出端和与其相连各所述驱动单元的匹配网络之间的连接通路上各设有一个电开关,所述光器件在工作时,将所述光组件与其对应的驱动单元连接后,启动该驱动单元,控制该驱动单元为所述光组件提供驱动信号和调制信号,同时控制所述眼图判断芯片与该驱动单元之间的电开关导通,调节该光组件对应的驱动单元的匹配网络。可选的,在本申请的一个实施例中,所述眼图判断芯片和与其相连各所述驱动单元的匹配网络之间的电开关可以通过所述主控板控制,但本申请对此并不做限定,具体视情况而定。
在上述实施例的基础上,在本申请的一个实施例中,所述眼图判断芯片30的输入端设置有可伸缩光纤,所述眼图判断芯片30通过所述可伸缩光纤依次与各单板中各驱动单元对应的待调节光组件20相连,调节各待调节光光组件20对应的驱动单元中的匹配网络的阻抗,以使得各光组件20输出的激光信号的眼图曲线满足预设标准。
在本申请的另一个实施例中,所述眼图判断芯片30的输入端设置有光纤法兰接口,所述眼图判断芯片30的光纤法兰接口与各单板100中各驱动单元对应的待调节光组件20通过外部光纤相连,即具体工作时,所述眼图判断芯片30的光纤法兰接口通过外部光纤依次与待调节光组件20及其对应的驱动单元相连,以调节各待调节光光组件20对应的驱动单元中的匹配网络的阻抗,以使得各光组件20输出的激光信号的眼图曲线满足预设标准。
需要说明的是,如图10所示,当所述眼图判断芯片30集成在所述主控板200上时,所述光器件装置还包括背板300,所述背板300同时与所述主控板200、各所述单板100连接,为各所述单板100提供驱动信号和控制指令。还需要说明的是,在本申请实施例中,所述光器件装置中的光组件20是需要人为配置的,比如所述单板100上具有四个第一连接件,其中只有一个第一连接件处连接有光组件20,则人为启动该光组件20对应的驱动单元,同时控制所述眼图判断芯片与该驱动单元之间的连接通路导通,以基于所述光组件20输出的激光信号调节该光组件20对应的驱动单元中的匹配网络。且在所述眼图判断芯片30在根据所述电吸收调制激光器21输出的激光信号调节该电吸收调制激光器21对应的匹配阻抗时,其调节指令依次通过所述主控板200、所述背板300和所述单板100的走线传输给所述匹配网络,调节所述匹配网络2的阻抗。
具体的,在上述实施例的基础上,在本申请的一个实施例中,当所述匹配网络为一集成芯片时,包括该匹配网络的集成芯片通过I2C接口与所述光器件装置中的其他组成元件相连。但本申请对此并不做限定,在本申请的其他实施例中,包括该匹配网络的集成芯片还可以通过其他通信接口与所述光器件装置中的其他组成元件相连,具体视情况而定。
在本申请的再一个实施例中,如图11所示,所述眼图判断芯片30为手持装置,即独立于所述单板100和所述主控板200之外,具体工作时,在所述单板100业务通信之前,所述眼图判断芯片30依次判断各单板100上的各驱动单元的匹配网络的阻抗,以使得各驱动单元对应的光组件输出的激光信号的眼图曲线满足预设标准。
在上述实施例的基础上,在本申请的一个实施例中,所述眼图判断芯片30的输入端设置有可伸缩光纤,所述眼图判断芯片30通过所述可伸缩光纤依次与各单板中各驱动单元对应的待调节光组件相连,调节各待调节光光组件20对应的驱动单元中的匹配网络的阻抗,以使得各光组件20输出的激光信号的眼图曲线满足预设标准。
在本申请的另一个实施例中,所述眼图判断芯片30的输入端设置有光纤法兰接口,所述眼图判断芯片30的光纤法兰接口与各单板100中各驱动单元对应的待调节光组件20通过外部光纤相连,即具体工作时,所述眼图判断芯片30的光纤法兰接口通过外部光纤依次与待调节光组件20及其对应的驱动单元相连,以调节各待调节光光组件20对应的驱动单元中的匹配网络的阻抗,以使得各光组件20输出的激光信号的眼图曲线满足预设标准。
需要说明的是,在本申请实施例中,当所述眼图判断芯片30为手持装置时,所述 眼图判断芯片30中设置有光纤接口和电接口,其中,所述光纤接口通过光纤与光组件20相连,所述电接口通过USB线缆或其他电信号线缆与所述主控板200上的电接口(USB接口或其他类型的电接口)相连,以通过所述光纤接收所述光组件20输出的激光信号,并通过所述USB线缆或其他电信号线缆将调节指令传输给所述主控板,从而调节该光组件20对应的匹配网络的阻抗。
可选的,在本申请的一个实施例中,所述主控板与各单板的各驱动单元网络连接,所述主控板在调节各驱动单元的匹配网络的阻抗时,通过控制所述主控板与待调节驱动单元之间连接通路的导通,将所述调节信号传输给该匹配网络,调节该匹配网络的阻抗,但本申请对此并不做限定,具体视情况而定。
由上所述可知,本申请实施例所提供的光器件装置,将所述激光器驱动器设置在所述单板上,从而减小所述光组件的尺寸,降低所述光组件的功耗,提高所述光组件的性能。而且,本申请实施例所提供的光器件装置,可以利用眼图判断芯片根据所述光组件输出的激光信号,自动调节该光组件连接的驱动单元中匹配网络的阻抗值,从而使得所述光组件输出的光信号的眼图曲线满足预设标准。
此外,本申请实施例还提供了一种光组件,如图12所示,所述光组件包括电吸收调制激光器21和与所述电吸收调制激光器21连接的第二连接件22,其中,所述第二连接件21用于与外部组件可拆卸电连接;所述电吸收调制激光器21根据所述外部组件输出的调制信号输出激光信号;
所述光组件还包括:
分光片23,所述分光片23用于将所述电吸收调制激光器21输出的光信号按照该分光片23的分光比分成第一光信号和第二光信号;
接收机24,所述接收机24用于将所述第二光信号转换成电流信号;
跨阻放大器25,所述跨阻放大器25用于将所述电流信号转换成电压信号后,依次经由所述第二连接件22和所述第一连接件13输出给外部组件;
输出端Out,所述第一光信号经由所述输出端Out输出。
本申请实施例所提供的光组件不包括激光器驱动器,从而可以减小所述光组件的尺寸,降低所述光组件的功耗,提高所述光组件的性能。而且,本申请实施例所提供的光组件包括分光片、接收机和跨阻放大器,从而可以从所述电吸收调制激光器输出的激光信号中分出第二光信号,经所述接收机和所述跨阻放大器转换后输出给外部组件,以供外部组件中的眼图判断芯片根据所述第二光信号调节外部组件中与该光组件对应的驱动单元中匹配网络的阻抗,使得与该光组件对应的驱动单元中匹配网络的阻抗和该光组件匹配,进而使得该光组件输出的第一光信号的眼图曲线满足预设标准。本申请实施例所提供的光组件的具体细节可以参照上述实施例,在此不再赘述。
相应的,本申请实施例还提供了一种光器件,如图13所示,所述光器件包括:
单板,所述单板上设置有至少一个驱动单元10,所述驱动单元10包括:激光器驱动器11,分别与所述激光驱动器11的输出端连接的匹配网络12和第一连接件13;所述第一连接件13用于与外部组件(即光组件)可拆卸电连接;
所述激光器驱动器11输出调制信号B,所述调制信号B经由所述第一连接件13输出至所述外部组件;
眼图判断芯片30,所述眼图判断芯片30的输出端与所述匹配网络12连接,且所述眼图判断芯片30的输入端与所述外部组件连接,所述眼图判断芯片30接收所述外部组件根据所述调制信号B反馈的激光信号,并根据所述激光信号调节所述匹配网络12的阻抗,直至所述外部组件反馈的激光信号的眼图性能满足预设标准。
需要说明的是,在上述实施例中,所述激光器驱动器11还输出驱动信号A,所述驱动信号A经由所述第一连接件13输入至外部组件,所述外部组件在所述驱动信号A的驱动下工作。在上述实施例的基础上,在本申请的一个具体实施例中,所述匹配网络12包括可调电阻、可调电感和可调电容中的至少一个。
本申请实施例所提供的光器件,将所述激光器驱动器和匹配网络设置在所述单板上,从而在和光组件连接时,可以不再所述光组件中设置激光器驱动器和匹配网络,减小所述光组件的尺寸,降低所述光组件的功耗,提高所述光组件的性能。而且,本申请实施例所提供的光器件,可以利用眼图判断芯片根据所述光组件输出的激光信号,自动调节该光组件连接的驱动单元中匹配网络的阻抗值,从而使得所述光组件输出的光信号的眼图曲线满足预设标准。本申请实施例所提供的光器件的具体细节可以参照上述实施例中关于单板、眼图判断芯片等的描述,在此不再赘述。
另外,本申请实施例还提供了一种光线路终端以及一种光网络系统,所述光线路终端包括上述任一实施例所提供的光组件和上述任一实施例所提供的光器件,或者,所述光线路终端包括上述任一实施例所提供的光器件装置。所述光网络系统包括上述光线路终端和光网络单元。由于光网络单元的结构已为本领域技术人员所熟知,本申请对此不再详细赘述。
本申请实施例所提供的光线路终端和光网络系统,将所述激光器驱动器和匹配网络设置在所述单板上,从而减小所述光组件的尺寸,降低所述光组件的功耗,提高所述光组件的性能。而且,本申请实施例所提供的光线路终端和光网络系统,可以利用眼图判断芯片根据所述光组件输出的激光信号,自动调节该光组件连接的驱动单元中匹配网络的阻抗值,从而使得所述光组件输出的光信号的眼图曲线满足预设标准。
本说明书中各个部分采用递进的方式描述,每个部分重点说明的都是与其他部分的不同之处,各个部分之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种光器件装置,其特征在于,包括:
    单板,所述单板上设置有至少一个驱动单元,所述驱动单元包括:激光器驱动器,分别与所述激光驱动器的输出端连接的匹配网络和第一连接件;
    至少一个光组件,所述光组件包括电吸收调制激光器和与所述电吸收调制激光器连接的第二连接件,其中,所述第一连接件和所述第二连接件可拆卸电连接;
    所述激光器驱动器输出调制信号,所述调制信号经由所述第一连接件和第二连接件输入至所述电吸收调制激光器,所述电吸收调制激光器根据所述调制信号输出激光信号;
    眼图判断芯片,所述眼图判断芯片用于根据所述电吸收调制激光器输出的激光信号调节所述匹配网络的阻抗,直至所述电吸收调制激光器输出的激光信号的眼图性能满足预设标准。
  2. 根据权利要求1所述的光器件装置,其特征在于,所述第一连接件为卡座,所述第二连接件为插头或金手指;或者,所述第一连接件为插头或金手指,所述第二连接件为卡座。
  3. 根据权利要求1或2所述的光器件装置,其特征在于,所述眼图判断芯片集成在所述单板上,每一所述驱动单元对应集成一个所述眼图判断芯片,所述眼图判断芯片的输入端经由所述第一连接件与所述第二连接件连接,所述眼图判断芯片的输出端与其所对应的驱动单元的匹配网络连接。
  4. 根据权利要求3所述的光器件装置,其特征在于,所述光组件还包括:
    分光片,所述分光片用于将所述电吸收调制激光器输出的激光信号按照该分光片的分光比分成第一光信号和第二光信号;
    接收机,所述接收机用于将所述第二光信号转换成电流信号;
    跨阻放大器,所述跨阻放大器用于将所述电流信号转换成电压信号后依次经由所述第二连接件和所述第一连接件输出给所述眼图判断芯片;
    输出端,所述第一光信号经由所述输出端输出。
  5. 根据权利要求1或2所述的光器件装置,其特征在于,所述眼图判断芯片的输入端设置有可伸缩光纤,所述眼图判断芯片通过所述可伸缩光纤与待调节光组件相连。
  6. 根据权利要求1或2所述的光器件装置,其特征在于,所述眼图判断芯片的输入端设置有光纤法兰接口,所述眼图判断芯片的光纤法兰接口与待调节光组件通过外部光纤相连。
  7. 根据权利要求5或6所述的光器件装置,其特征在于,所述眼图判断芯片集成在所述单板上,且每一所述单板设置一所述眼图判断芯片,所述眼图判断芯片的输出端与其所在单板的各所述驱动单元的匹配网络连接。
  8. 根据权利要求5或6所述的光器件装置,其特征在于,所述光器件装置还包括主控板,所述眼图判断芯片集成在所述主控板上,所述眼图判断芯片的输出端与所述主控板上各所述单板的各驱动单元的匹配网络连接。
  9. 根据权利要求5或6所述的光器件装置,其特征在于,所述眼图判断芯片为手持装置。
  10. 根据权利要求1所述的光器件装置,其特征在于,所述眼图判断芯片根据所述电吸收调制激光器输出的激光信号生成眼图曲线,当所述眼图曲线不满足所述预设标准时,调节所述匹配网络的阻抗,直至所述电吸收调制激光器输出的激光信号的眼图曲线满足所述预设标准。
  11. 根据权利要求10所述的光器件装置,其特征在于,所述眼图判断芯片在所述眼图曲线不满足所述预设标准时,调节所述匹配网络的阻抗依次为多个预设阻抗值中的一个,直至所述电吸收调制激光器输出的激光信号的眼图曲线满足所述预设标准。
  12. 一种光组件,其特征在于,所述光组件包括电吸收调制激光器和与所述电吸收调制激光器连接的第二连接件,其中,所述第二连接件用于与外部组件可拆卸电连接;所述电吸收调制激光器根据所述外部组件输出的调制信号输出激光信号;
    所述光组件还包括:
    分光片,所述分光片用于将所述电吸收调制激光器输出的激光信号按照该分光片的分光比分成第一光信号和第二光信号;
    接收机,所述接收机用于将所述第二光信号转换成电流信号;
    跨阻放大器,所述跨阻放大器用于将所述电流信号转换成电压信号后依次经由所述第一输出端和所述第二连接件输出给所述外部组件;
    输出端,所述第一光信号经由所述输出端输出。
  13. 一种光器件,其特征在于,所述光器件包括:
    单板,所述单板上设置有至少一个驱动单元,所述驱动单元包括:激光器驱动器,分别与所述激光驱动器的输出端连接的匹配网络和第一连接件;所述第一连接件用于与外部组件可拆卸电连接;
    所述激光器驱动器输出调制信号,所述调制信号经由所述第一连接件输出至所述外部组件;
    眼图判断芯片,所述眼图判断芯片的输出端与所述匹配网络连接,且所述眼图判断芯片的输入端与所述外部组件连接,所述眼图判断芯片接收所述外部组件根据所述调制信号反馈的激光信号,并根据所述激光信号调节所述匹配网络的阻抗,直至所述外部组件反馈的激光信号的眼图性能满足预设标准。
  14. 一种光线路终端,其特征在于,所述光线路终端包括如权利要求12所述的光组件和权利要求13所述的光器件,或者,所述光线路终端包括入权利要求1至11任一项所述的光器件装置。
PCT/CN2017/105164 2017-09-30 2017-09-30 光器件装置、光组件、光器件、光线路终端 WO2019061544A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780095474.0A CN111226401B (zh) 2017-09-30 2017-09-30 光器件装置、光组件、光器件、光线路终端
PCT/CN2017/105164 WO2019061544A1 (zh) 2017-09-30 2017-09-30 光器件装置、光组件、光器件、光线路终端
EP17927386.7A EP3678305B1 (en) 2017-09-30 2017-09-30 Optical device apparatus comprising an electro-absorption modulated laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/105164 WO2019061544A1 (zh) 2017-09-30 2017-09-30 光器件装置、光组件、光器件、光线路终端

Publications (1)

Publication Number Publication Date
WO2019061544A1 true WO2019061544A1 (zh) 2019-04-04

Family

ID=65903546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105164 WO2019061544A1 (zh) 2017-09-30 2017-09-30 光器件装置、光组件、光器件、光线路终端

Country Status (3)

Country Link
EP (1) EP3678305B1 (zh)
CN (1) CN111226401B (zh)
WO (1) WO2019061544A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113709443A (zh) * 2020-07-21 2021-11-26 深圳Tcl新技术有限公司 一种阻抗适配方法、装置、存储介质及计算机设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809631B (zh) * 2020-06-16 2023-05-09 华为技术有限公司 通信装置、中心设备及通信系统
CN113092867A (zh) * 2021-03-29 2021-07-09 上海橙科微电子科技有限公司 通过方波测试光模块发送系统阻抗的连续性的方法、系统及介质
CN116192580B (zh) * 2023-04-24 2023-07-04 成都英思嘉半导体技术有限公司 一种基于直流耦合的高速电吸收调制驱动器芯片
CN117375551B (zh) * 2023-10-13 2024-04-26 苏州异格技术有限公司 共享io管脚的频率补偿系统、方法、装置、设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702489A (zh) * 2009-11-05 2010-05-05 中兴通讯股份有限公司 一种电吸收调制激光器的偏置电路及其调试方法
CN102761366A (zh) * 2012-07-10 2012-10-31 青岛海信宽带多媒体技术有限公司 应用于十吉比特无源光网络中的光线路终端光模块
US20120301151A1 (en) * 2011-05-24 2012-11-29 Zhaoyang Hu Low Power Consumption, Long Range, Pluggable Transceiver, Circuits and Devices Therefor, and Method(s) of Using the Same
CN103650388A (zh) * 2013-07-29 2014-03-19 华为技术有限公司 光组件和无源光网络pon系统
CN105099557A (zh) * 2012-11-08 2015-11-25 青岛海信宽带多媒体技术有限公司 光模块以及应用于光模块的光器件
CN106059673A (zh) * 2016-05-18 2016-10-26 青岛海信宽带多媒体技术有限公司 一种光模块及光线路终端设备
CN106253975A (zh) * 2016-08-11 2016-12-21 青岛海信宽带多媒体技术有限公司 一种光模块

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060221427A1 (en) * 2005-03-31 2006-10-05 Wu Xin M Impedance matching circuit for optical transmitter
CN203133636U (zh) * 2013-03-27 2013-08-14 深圳新飞通光电子技术有限公司 自动温度控制电路及包含其的光收发模块
CN106253988B (zh) * 2013-05-24 2019-02-12 青岛海信宽带多媒体技术有限公司 光模块及其工作温度调节方法
CN103916193B (zh) * 2014-03-19 2016-10-05 绍兴中科通信设备有限公司 一种调制器双臂可独立调制的光收发模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702489A (zh) * 2009-11-05 2010-05-05 中兴通讯股份有限公司 一种电吸收调制激光器的偏置电路及其调试方法
US20120301151A1 (en) * 2011-05-24 2012-11-29 Zhaoyang Hu Low Power Consumption, Long Range, Pluggable Transceiver, Circuits and Devices Therefor, and Method(s) of Using the Same
CN102761366A (zh) * 2012-07-10 2012-10-31 青岛海信宽带多媒体技术有限公司 应用于十吉比特无源光网络中的光线路终端光模块
CN105099557A (zh) * 2012-11-08 2015-11-25 青岛海信宽带多媒体技术有限公司 光模块以及应用于光模块的光器件
CN103650388A (zh) * 2013-07-29 2014-03-19 华为技术有限公司 光组件和无源光网络pon系统
CN106059673A (zh) * 2016-05-18 2016-10-26 青岛海信宽带多媒体技术有限公司 一种光模块及光线路终端设备
CN106253975A (zh) * 2016-08-11 2016-12-21 青岛海信宽带多媒体技术有限公司 一种光模块

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113709443A (zh) * 2020-07-21 2021-11-26 深圳Tcl新技术有限公司 一种阻抗适配方法、装置、存储介质及计算机设备

Also Published As

Publication number Publication date
EP3678305A4 (en) 2020-09-16
CN111226401B (zh) 2022-02-18
EP3678305A1 (en) 2020-07-08
EP3678305B1 (en) 2023-11-01
CN111226401A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2019061544A1 (zh) 光器件装置、光组件、光器件、光线路终端
CN109889273B (zh) 波分复用无源光网络中的收发机及波长调整方法
US8750711B2 (en) Optical transceivers with closed-loop digital diagnostics
USRE44107E1 (en) Multi-data-rate optical transceiver
US7650077B2 (en) Multi-data-rate optical transceiver
US7512166B2 (en) Apparatus and method for controlling optical power and extinction ratio
US10224696B2 (en) Optical module
KR101344165B1 (ko) 통신 버스와 통신 버스에 결합된 장치 사이에 멀티레벨통신 신호를 전달하기 위한 버스 인터페이스 및 방법
US9653878B2 (en) Circuit, optical module, methods and optical communication system for dual rate power point compensation
WO2020135164A1 (zh) 自由空间中光信号对准传输装置、系统及方法
CN106797106A (zh) 光发送器、有源光缆、以及光发送方法
CN115001523B (zh) 基于epon搭配eml的10g速率olt端收发一体芯片
CN115173946A (zh) 基于xgpon搭配eml的10g速率olt端收发一体芯片
US20130243439A1 (en) Optical transceiver, method for controlling the optical transceiver and non-transitory computer readable medium embodying instructions for controlling a device
WO2018161686A1 (zh) 内置信号校准电路的双速率dml器件、模块及信号校准方法
US5602665A (en) Optical transmitting/receiving apparatus for bidirectional communication systems
US9264135B2 (en) Bidirectional pentaplex system and method
CN105204124A (zh) 光模块与光纤耦合检测方法
CN108011671A (zh) 控制包括半导体光放大器的半导体光学装置的方法
US20030108281A1 (en) Interface device for a fiberoptic communication network and methods of using such a device
JP4712557B2 (ja) プログラム可能な信号パラメータを備えた送受信器
US7626439B2 (en) Cross-point adjustment circuit
CN201263185Y (zh) 光纤接入型电视机
JP7205734B2 (ja) 高電力及び高品質のレーザシステム及び方法
CN109921849B (zh) 用于优化光通信系统的传输性能的控制装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017927386

Country of ref document: EP

Effective date: 20200330