WO2019061208A1 - 一种数据传输方法、服务器及基站 - Google Patents

一种数据传输方法、服务器及基站 Download PDF

Info

Publication number
WO2019061208A1
WO2019061208A1 PCT/CN2017/104133 CN2017104133W WO2019061208A1 WO 2019061208 A1 WO2019061208 A1 WO 2019061208A1 CN 2017104133 W CN2017104133 W CN 2017104133W WO 2019061208 A1 WO2019061208 A1 WO 2019061208A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
message
base station
packet
type
Prior art date
Application number
PCT/CN2017/104133
Other languages
English (en)
French (fr)
Inventor
李晨琬
蔺波
薛剑韬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/104133 priority Critical patent/WO2019061208A1/zh
Priority to CN201780091628.9A priority patent/CN110832352A/zh
Priority to EP17926670.5A priority patent/EP3677930A4/en
Publication of WO2019061208A1 publication Critical patent/WO2019061208A1/zh
Priority to US16/832,579 priority patent/US20200229131A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/04Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing carrier phase data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/073Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections involving a network of fixed stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/10Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals
    • G01S19/12Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals wherein the cooperating elements are telecommunication base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac

Definitions

  • the present application relates to the field of positioning technologies, and in particular, to a data transmission method, a server, and a base station.
  • the global positioning system is a high-precision positioning navigation system widely used in various industries, but it is affected by satellite clock errors, ephemeris errors and ionospheric errors.
  • the accuracy achieved is on the ten meter level.
  • the introduction of technologies such as carrier phase difference (RTK) can effectively improve the positioning accuracy.
  • the positioning accuracy of RTK is up to centimeter.
  • the RTK server obtains reference data through the reference station, for example, a third-party correction number:
  • the user equipment UE
  • the coarse-grained position information is calculated and sent to the UE, and the UE calculates the position with high precision using the corrected number and the obtained GPS position.
  • the correction number is unicast as application layer data, and this makes the spectrum resource utilization efficiency relatively low.
  • the embodiment of the present application provides a data transmission method, a server, and a base station to solve the problem of low spectrum utilization efficiency in the current RTK positioning technology.
  • a first aspect of the present application provides a data transmission method, in which a base station receives a first message sent by a server, where the first message carries a first data packet including positioning assistance data, and then the base station will be the first The first data packet in the message is broadcasted to the terminal, so that the terminal can obtain the positioning assistance data after receiving the first data packet in the plurality of first messages, and correct the positioning information of the terminal according to the positioning assistance data.
  • the manner of broadcasting has strict requirements on the size of the data block, and a complete positioning auxiliary data is larger than the size of the data block, so in order to be able to broadcast
  • the positioning assistance data sent to the terminal is split and split into multiple first data packets for transmission, so that the spectrum resources can be fully utilized.
  • the splitting method can ensure that the positioning assistance data can be completely transmitted to the terminal. , thereby completing the correction of the position of the terminal.
  • each of the first messages carries a first identifier, where the first identifier is used to identify the first data packet in the first message; that is, the positioning assistance data includes multiple first data packets.
  • the first data packet to be sorted needs to be sorted according to the order of the positioning assistance data, and the first identifier is for the positioning of each first data packet in the positioning assistance data. That is, the first identifier may be a sequence number of each first data packet when the positioning assistance data is split into a plurality of first data packets.
  • the first message further carries a data type of the positioning assistance data in the first message, where the data type is used to distinguish different categories of the positioning assistance data.
  • the first message further carries a data type of the first message, the data type is a data type determined according to a global navigation satellite system (GNSS) type, and different GNSSs are different. Different data types, different GNSS can have different data, so as to be able to support data of various GNSS systems.
  • GNSS global navigation satellite system
  • the data type is a data type determined according to a GNSS type and a positioning type, and the GNSS types have different positioning types such that the same GNSS type and different positioning types can correspond to different data types, thereby enabling data
  • the classification of types is more detailed.
  • the data types can reflect more information, and no additional transmission resources are added. It is easier to transmit the first message of different data types.
  • the data type is a data type determined according to the GNSS type, the transmission band, and the positioning type, that is, different data types can also correspond to different frequency bands, thereby making the same GNSS and positioning type different.
  • the frequency bands can correspond to different data types, so that the classification of data types is more detailed, the data types can reflect more information, and no additional transmission resources are added, and the transmission of the first message of different data types is easier.
  • the data type may also be a type determined according to a different first parameter.
  • the first message further includes an empty packet indication, where the first message including the empty packet indication does not have the positioning assistance data, and the first message of this type may not include any data type positioning.
  • Auxiliary data that is, only the identification content such as the data type and the first identifier, does not contain any actual data. This situation occurs because the size of the positioning assistance data is uncertain, but the number of transmissions per unit time of the first data packet is determined, so when the positioning assistance data is small, the first data packet cannot be segmented.
  • the transmission is performed, so that some positioning data does not carry the positioning assistance data in the first data packet, and the embodiment of the present application adds an empty packet indication in the first data packet that does not have the actual positioning assistance data, so that the UE is in the After obtaining the null packet indication of the first data packet, the data portion of the first message is not parsed, thereby improving resource utilization.
  • the first message further includes a retransmission indication, where the retransmission indication is used to indicate that the first message is a data type retransmission message.
  • the method may further include that the base station adopts The first message that does not have the positioning assistance data retransmits the first message of the preset data type.
  • the first message may also be a retransmission message, where the retransmission is performed on a part of the first message after the plurality of first messages obtained by splitting the positioning assistance data.
  • the first message used may be the previously determined first message without the positioning assistance data, and the retransmission using the first message enables the first message without the positioning assistance data to be utilized to improve resource utilization. .
  • the first message further includes version information of the used standard of the positioning assistance data, and the positioning assistance data of a certain GNSS type may have multiple versions of the standard, so the positioning assistance data is actually performed.
  • the version information of the standard used by the positioning assistance data needs to be specified in the first message, so that the terminal can perform corresponding processing after receiving the positioning assistance data.
  • the base station also broadcasts at least one of the end packet indication, the first identifier, the positioning method, and the version information of the standard used by the positioning assistance data to the terminal.
  • the positioning assistance data may include public assistance data and GNSS assistance data, that is, portions that can be shared for different data types, and GNSS assistance data, which is related to the data type of the positioning assistance data. Correspondingly, therefore, when the GNSS types are different, the GNSS assistance data will be different.
  • positioning aid The assistance data may include public assistance data and satellite-based augmentation system (SBAS) assistance data, the SBAS assistance data also corresponding to the data type of the positioning assistance data, and the SBAS auxiliary data corresponding to different SBAS systems. It is not the same.
  • SBAS satellite-based augmentation system
  • the process of the base station broadcasting the first data packet in the first message to the UE may be that the base station first determines a visible field of the first message, that is, after the first data packet is broadcast, the UE It can be directly read without being received after receiving the message, so that the UE can not receive data that is not needed by itself;
  • the visible field includes the header of the first data packet, and the header can be in the following manner, the first way,
  • the header includes the first identifier and the data type; in a second manner, the header includes the first identifier, a subsequent first identifier of the first identifier, and the data type;
  • the packet sequence number of a data packet includes only the packet sequence number of the current packet, and the UE can identify that the first data packet is the first data packet in the positioning assistance data.
  • the second type of packet includes the packet sequence number of the current first data packet and the subsequent packet sequence number, so that the UE can know the packet sequence number of the subsequent one or more first data packets of the first data packet.
  • the first message further includes a second data packet.
  • the process of the base station broadcasting the first data packet in the first message to the UE may be, the base station first determining a visible field of the first message, The visible field includes a content of the second data packet, the second data includes the first identifier and the data type, or the second data packet includes the first identifier, a subsequent first of the first identifier And the data type; the second data packet is used to indicate to the first data packet; then, the base station sends the second data packet and the first data packet in the first message by way of broadcast.
  • the content of the second data packet plus the first data packet is equivalent to the content of the first data packet, and specifically, the second data packet is equivalent to the header of the first data packet.
  • the second data packet and the first data packet need to be two data packets adjacent in time, that is, the time difference between the two data packets may be several milliseconds, and the UE after the second data packet is parsed The first data packet is then parsed as the content indicated in the second data packet. In this way, the UE can only parse the second data packet, and only after the result of parsing the second data packet determines that the latter data is needed, the first data packet is parsed. Thereby saving the processing resources of the UE and improving the system efficiency.
  • the second data packet may further carry scheduling information of the resource location of the first data packet, so that after parsing the second data packet, the UE may know that the indicated first data packet is in time-frequency.
  • the specific location of the resource so that when the first data packet needs to be changed, the first data packet is searched according to the scheduling information, so that the physical downlink control channel (PDCCH) is not required to be parsed again.
  • the first packet may further carry scheduling information of the resource location of the first data packet, so that after parsing the second data packet, the UE may know that the indicated first data packet is in time-frequency.
  • the specific location of the resource so that when the first data packet needs to be changed, the first data packet is searched according to the scheduling information, so that the physical downlink control channel (PDCCH) is not required to be parsed again.
  • the first packet may further carry scheduling information of the resource location of the first data packet, so that after parsing the second data packet, the UE may know that the indicated first data packet is in time-frequency.
  • the base station receives the first request message sent by the server before sending the first message, and after receiving the first request message, the base station sends the first request message according to the first request message.
  • the server sends a first response message.
  • the base station further receives a first request message sent by the server, where the request message is used to acquire a rate or a data size of the positioning assistance data sent by the base station; and then, the base station
  • the configuration information of the SIB or the system information (SI) may be carried in the first response message by using the first response message to notify the server.
  • the information includes the amount of data sent and/or the transmission period. That is, before the server sends the first message containing the positioning assistance data to the base station, the amount of data and/or the transmission week of the base station when broadcasting the positioning assistance data is first acquired from the base station. Therefore, it is possible to determine the rate or amount of data to transmit positioning assistance data to the base station. Enhance the achievability of the solution of the present application.
  • the second aspect of the embodiment of the present application further provides a data transmission method, where the method may include: the server first generates a first message, where the first message carries a first data packet including positioning assistance data; and then, the server first Sending a message to the base station, so that the base station broadcasts the first data packet in the first message to the terminal, and causes the terminal to calculate positioning information of the terminal according to the positioning assistance data.
  • the manner of broadcasting has strict requirements on the size of the data block, and a complete positioning auxiliary data is larger than the size of the data block, so in order to be able to broadcast
  • the positioning assistance data sent to the base station is split, split into the first data packets in the plurality of first messages for transmission, so that the spectrum resources can be fully utilized, and the splitting manner can ensure that the positioning assistance data can be
  • the complete transmission to the terminal completes the terminal's correction of the location.
  • each of the first messages carries a first identifier, where the first identifier is used to identify a subset of the positioning assistance data in the first data packet in the first message.
  • the first message further carries a data type of the positioning assistance data in the first message, where the data type is used to distinguish different categories of the positioning assistance data.
  • the first message further carries a data type of the first message, the data type is a data type determined according to a GNSS type, and different GNSSs correspond to different data types, and different GNSSs may have different data. To be able to support data from a variety of different GNSS systems.
  • the data type is a data type determined according to a GNSS type and a positioning type, and the GNSS types have different positioning types such that the same GNSS type and different positioning types can correspond to different data types, thereby enabling data
  • the classification of types is more detailed.
  • the data types can reflect more information, and no additional transmission resources are added. It is easier to transmit the first message of different data types.
  • the data type is a data type determined according to the GNSS type, the transmission band, and the positioning type, that is, different data types can also correspond to different frequency bands, thereby making the same GNSS and positioning type different.
  • the frequency bands can correspond to different data types, so that the classification of data types is more detailed, the data types can reflect more information, and no additional transmission resources are added, and the transmission of the first message of different data types is easier.
  • the data type may also be a type determined according to a different first parameter.
  • the first message further includes an empty packet indication, where the first message including the empty packet indication does not have the positioning assistance data, and the first message of this type may not include any data type positioning.
  • Auxiliary data that is, only the identification content such as the data type and the first identifier, does not contain any actual data. This situation occurs because the size of the positioning assistance data is uncertain, but the number of transmissions per unit time of the first data packet is determined, so when the positioning assistance data is small, the first data packet cannot be segmented.
  • the transmission is performed, so that some positioning data does not carry the positioning assistance data in the first data packet, and the embodiment of the present application adds an empty packet indication in the first data packet that does not have the actual positioning assistance data, so that the UE is in the After obtaining the empty packet indication of the first packet, There is no need to parse the data portion of this first message, thereby increasing resource utilization.
  • the first message further includes a retransmission indication, where the retransmission indication is used to indicate that the first message is a data type retransmission message.
  • the method may further include that the base station adopts The first message that does not have the positioning assistance data retransmits the first message of the preset data type.
  • the first message may also be a retransmission message, where the retransmission is performed on a part of the first message after the plurality of first messages obtained by splitting the positioning assistance data.
  • the first message used may be the previously determined first message without the positioning assistance data, and the retransmission using the first message enables the first message without the positioning assistance data to be utilized to improve resource utilization. .
  • the first message further includes version information of the used standard of the positioning assistance data, and the positioning assistance data of a certain GNSS type may have multiple versions of the standard, so the positioning assistance data is actually performed.
  • the version information of the standard used by the positioning assistance data needs to be specified in the first message, so that the terminal can perform corresponding processing after receiving the positioning assistance data.
  • the positioning assistance data may include public assistance data and GNSS assistance data, that is, portions that can be shared for different data types, and GNSS assistance data, which is related to the data type of the positioning assistance data. Correspondingly, therefore, when the GNSS types are different, the GNSS assistance data will be different.
  • the positioning assistance data may include public assistance data and SBAS assistance data, the SBAS assistance data also corresponding to the data type of the positioning assistance data, and the SBAS assistance data corresponding to different SBAS systems are different.
  • the method may further include: first encrypting the first message by the server, and then, after transmitting the first message to the base station, correspondingly The first message is sent to the base station.
  • the base station does not actually decrypt the first message, but only broadcasts the encrypted first message to the terminal, and the terminal decrypts and acquires the data therein.
  • the server before sending the first message to the base station, the server first performs collection of positioning assistance data, and then sends a first request message to the base station to obtain a rate or data volume at which the base station sends the positioning assistance data.
  • the first message After receiving the first response message sent by the base station, the first message is sent according to the configuration information of the SIB or the SI carried in the first response message, where the configuration information of the SIB or SI includes the sent data volume. Size and / or transmission period. Thereby, the rate or the amount of data amount for transmitting the positioning assistance data to the base station can be determined. Enhance the achievability of the solution of the present application.
  • the third aspect of the present application provides a base station, where the base station includes at least one unit for performing the data transmission method provided in the first aspect or any one of the implementation manners of the first aspect.
  • a fourth aspect of the present application provides a server, the server comprising at least one unit for performing the data transmission method provided in the first aspect or any one of the implementation manners of the first aspect.
  • Yet another aspect of the present application provides a computer readable storage medium having program code stored therein that, when executed by a terminal, causes the computer to perform the methods described in the above aspects.
  • the storage medium includes, but is not limited to, a flash memory, a hard disk drive (HDD), or a solid state drive (SSD).
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • FIG. 1 is a schematic structural diagram of an RTK positioning technology
  • FIG. 2 is a schematic structural diagram of a data transmission method according to an embodiment of the present application.
  • FIG. 3 is a diagram of an embodiment of a data transmission method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a first identifier in a data transmission method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a data type of a GPS system divided according to a frequency division method
  • FIG. 6 is a schematic diagram of a data type of a GLONASS system divided according to a frequency division method
  • FIG. 7 is a schematic diagram of data types of a BDS system divided according to a frequency division manner
  • FIG. 8 is a schematic diagram of a data type of a Galileo system divided according to a frequency division manner
  • FIG. 9 is a schematic diagram of a data type of a QZSS system divided according to a method of distinguishing frequency points and correcting numbers;
  • FIG. 10 is a schematic diagram of a data type of a GPS system divided according to a method of distinguishing frequency points and correcting numbers;
  • FIG. 11 is a schematic diagram of a data type divided by a GLONASS system according to a method of distinguishing frequency points and correcting numbers;
  • FIG. 12 is a schematic diagram of a data type of a BDS system divided according to a method of distinguishing frequency points and correcting numbers;
  • FIG. 13 is a schematic diagram of a data type of a Galileo system divided according to a method of distinguishing frequency points and correcting numbers;
  • FIG. 14 is a diagram of an embodiment of a data transmission method according to an embodiment of the present application.
  • 15 is a diagram showing an embodiment of a data transmission method according to an embodiment of the present application.
  • 16 is a diagram showing an embodiment of a data transmission method according to an embodiment of the present application.
  • FIG. 17 is a schematic diagram of a base station according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a server according to an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a base station according to an embodiment of the present application.
  • 20 is a schematic diagram of a server in an embodiment of the present application.
  • the embodiment of the present application provides a data transmission method, a server, and a base station, which improve spectrum resource utilization efficiency by splitting the positioning assistance data into a plurality of first messages and broadcasting the base station to the terminal.
  • FIG. 1 is a schematic diagram of the architecture of the RTK positioning technology.
  • the specific positioning system takes the GPS system as an example.
  • the positioning process may specifically be that the UE 101 first reports its own GPS to the RTK server 102. Location information, then, the RTK server 102 obtains the third-party differential satellite correction number through the third-party satellite ground reference station 103. Specifically, the third-party satellite ground reference station 103 will determine its own actual location information and determined by GPS positioning technology.
  • the GPS position information is compared, and the correction number is obtained, and then the corrected number is sent to the RTK server 102, and the RTK server 102 calculates the corrected number of the UE 101 after acquiring the corrected number and the GPS position information reported by the UE. And sending to the UE, so that the UE can correct the GPS location information according to the correction number, and obtain more accurate location information.
  • the correction number generated by the RTK server 102 is unicast to the UE as application data, and the utilization rate of the spectrum resource is low.
  • the LTE positioning protocol LTE positioning protocol
  • the UE in the embodiment of the present application may support machine-to-machine communication (M2M), enhanced machine type communication (eMTC), and narrowband Internet of Things ( (narrow band internet of things, NB-IoT for short), long term evolution (LTE), wireless (new radio, NR for short) communication type terminal equipment.
  • M2M machine-to-machine communication
  • eMTC enhanced machine type communication
  • NB-IoT narrowband Internet of Things
  • LTE long term evolution
  • NR new radio
  • the base station may be an evolved base station (eNB), a base station (BS), an IoT eNB, and a gNB (name of a base station used in a 5G network).
  • eNB evolved base station
  • BS base station
  • IoT eNB IoT eNB
  • gNB name of a base station used in a 5G network
  • the server may include an evolved serving mobile location center (E-SMLC), a Gateway Mobile Location Center (GMLC), an RTK server, and the like.
  • E-SMLC evolved serving mobile location center
  • GMLC Gateway Mobile Location Center
  • RTK server RTK server
  • the embodiment of the present application introduces a cellular technology in the RTK technology, so that the auxiliary positioning data sent by the RTK server to the UE can be broadcast to the UE via the base station.
  • the base station is added between the RTK server and the terminal in the foregoing architecture, so as to form an architecture as shown in FIG. 2, and
  • FIG. 2 is a schematic structural diagram of a data transmission method in the embodiment of the present application, where the UE 201 and the server are in the architecture. 203 interacts with each other through the base station 202.
  • the uplink data of the UE 201 (for example, location information acquired by technologies such as GPS) is transmitted to the server 203 through the base station 202, and the downlink data of the server (for example, the calculated correction number for the UE, as positioning assistance data) may be first sent to the base station. 202.
  • the base station broadcasts to the UE 201 to improve spectrum resource utilization.
  • FIG. 3 is a schematic diagram of an embodiment of a data transmission method according to an embodiment of the present application.
  • the method may include:
  • the UE sends a positioning assistance data acquisition request to the base station.
  • the UE When the UE has a high-precision positioning requirement, the UE sends a positioning assistance data acquisition request to the server through the base station, and the positioning assistance data acquisition request is mainly used to obtain positioning assistance data from the server, and the server may be a positioning server or an E-SMLC.
  • the positioning server or the E-SMLC is mainly used to acquire positioning assistance data.
  • the base station sends the positioning assistance data acquisition request to the server.
  • the base station After receiving the positioning assistance data acquisition request, the base station sends the request to the positioning server or the E-SMLC.
  • the UE sends the positioning assistance data acquisition request in addition to being sent by the base station, and may also be sent by other means, such as connecting to the Internet, and sending the request to the positioning server or the E-SMLC through the Internet.
  • the server generates a first message.
  • the first message carries the first data packet that includes the positioning assistance data, and then the base station broadcasts the first data packet in the first message to the terminal, so that the terminal can obtain the positioning assistance after receiving the first message.
  • Data and calculate the location of the terminal based on the positioning assistance data.
  • the positioning assistance data is actually information of a correction number based on the location information of the UE or the base station.
  • the first message may include a first data packet or a manner in which the first message includes the first data packet and the second data packet.
  • the following description is based on the first message including only the first data packet transmission.
  • the subsequent broadcast mode may be a system information block (SIB) broadcast mode.
  • SIB system information block
  • the data transmission rate of the positioning auxiliary data is about 2 kbps - 10 kbps, and the data volume per second is about 250 bytes to 2 Kbytes.
  • the SIB broadcast mode has physical limitations, that is, the maximum transport block size (TBS) of the SIB broadcast is 277 bytes (bytes). Therefore, if the positioning auxiliary data is greater than 277 bytes, the positioning cannot be directly performed.
  • TBS transport block size
  • the auxiliary data is broadcast, and the positioning assistance data needs to be segmented or unpacked for transmission.
  • the SIB can transmit 217 bytes or 277 bytes at the maximum.
  • the positioning auxiliary data is 1K-2Kbyte in 1 second.
  • the minimum transmission period is selected.
  • the server can segment the data packets of the large positioning assistance data according to the size of the SIB transport block supported or configured by the base station or the upper limit of the SIB transport block, that is, according to the size of the SIB transport block.
  • the first data packet is used as an example, and the first data packet is identified by using the first identifier for each of the first data packets that are split, and the first identifier is used for Identifying the packet sequence number of the first data packet after the unpacking or identifying the location of the data packet in the positioning assistance data; that is, if a positioning assistance data includes multiple first data packets, the demodulation needs to be performed in the order of the positioning assistance data.
  • the separated first data packets are sorted, and the first identification is for the location of the positioning assistance data contained in each of the first data packets in the positioning assistance data.
  • the first identifier may be a sequence number of each first data packet when the positioning assistance data is split into a plurality of first data packets.
  • the first identifier may be a predefined end identifier, in addition to the identifier of the sequence number or the sequence number of each first data packet, and the end identifier indicates that the first data packet is the first data packet. The last first packet of the corresponding positioning assistance data.
  • FIG. 4 is a schematic diagram of a first identifier in a data transmission method according to an embodiment of the present application; wherein, in the “header” of the first first data packet, except that the current packet is indicated as GPS, also indicates the "header” information of the 11th to 12th first 11 data packets; the header of the second first data packet indicates the 2nd to the 12th total 11 firsts The "header" content of the data packet; the third first data packet, including the "header” content of the third to the twelfth first 10 data packets; and so on, the eleventh first data packet Only the "header” content of the 11th and 12th first packets is included; and the last 12th first packet contains only the 12th The "header" information of a packet itself.
  • each packet header information indicated herein refers to a data type in the data packet, and/or an empty packet indication information, and/or a retransmission indication information and/or whether it is the last data packet, and/or Segmented label information, etc.
  • the data type may be determined according to a type of the GNSS, and the data type may be used to distinguish different GNSS types, for example,
  • the positioning system is, for example, GPS used in the United States and the like, a global navigation satellite system (GLONASS) used in regions such as Russia, and a Galileo satellite navigation system (Galileo satellite navigation system, Galileo).
  • GLONASS global navigation satellite system
  • Galileo satellite navigation system Galileo satellite navigation system
  • BDS BeiDou navigation satellite system
  • it can also be related enhancement systems, such as the wide area augmentation system used in the United States and other regions.
  • WAAS European geostationary navigation overlay service
  • GNOS European geostationary navigation overlay service
  • M Multi-Functional Satellite Augmentation System
  • QZSS quasi-zenith satellite system
  • GNSS types include GPS, GLONASS, BDS, QZSS, Galileo, SBAS, and the like.
  • the data type may be determined according to different positioning methods, or may be determined according to the GNSS type and the positioning method.
  • GNSS there may be different positioning methods, that is, corresponding to the GNSS type of positioning type, different positioning types may have different correction type, and these positioning methods include position difference, pseudorange difference, phase smoothing and other pseudorange difference.
  • carrier phase difference local differential GPS, wide-area differential GPS, virtual reference station (VRS) network RTK, media access control (MAC) network RTK, regional correction parameter method (Flchenkorrekturparameter, referred to as FKP) network RTK, network pseudo-phase difference (RTD) and state space representation (SSR) methods, etc.; among them, differential global positioning system (DGPS) .
  • VRS virtual reference station
  • MAC media access control
  • FKP regional correction parameter method
  • RTK network pseudo-phase difference
  • SSR state space representation
  • These positioning methods are all calculated by using the correction number of the reference station near the UE to perform the correction number of the UE. Since the data type requires the GNSS type and the positioning type to be determined simultaneously, that is, the same GNSS type can have different data types in combination with different positioning types.
  • the data type is a data type determined according to the GNSS type, the transmission frequency band, and the positioning type, that is, different data types can also correspond to different frequency bands (or frequency points), because different GNSS types can be used. Corresponding to different frequency bands, therefore, different data types can be sent in different frequency bands.
  • the frequency bands in the embodiments of the present application may include L1, L2, L5, B1, B2, B3, L6, E1, E5a and E5b, etc.
  • the L1, L2 and L5 bands can be used for GPS systems; the L1 and L2 bands can be used for GLONASS systems, the B1, B2 and B3 bands can be used for BDS systems; the E1, E5a and E5b bands can be used for Galileo systems, while L1, L5 and L6
  • the frequency band can be used in the QZSS system.
  • Each GNSS corresponding to different frequency bands can also support different positioning methods, so that the three can determine the data type.
  • Different GNSS, different positioning methods, different frequency bands and different parameters can be different data types, and can also be combined to form a positioning type.
  • the data type when the data type is determined by the GNSS and the positioning method, the data type may be a GNSS and a positioning method to determine a data type. It is also possible to further distinguish different positioning method data types under a certain GNSS data type.
  • the same GNSS and the positioning type and different frequency bands can be matched to different data types, so that the classification of the data type is more refined, the data type can reflect the information more abundantly, and no additional transmission is added. Resources that make it easier to transfer the first message of a different data type.
  • FIG. 5 is a schematic diagram of data types divided by the GPS system according to the method of distinguishing frequency points
  • FIG. 6 is a schematic diagram of data types of the GLONASS system according to the method of distinguishing frequency points
  • FIG. 7 It is a schematic diagram of the data types divided by the BDS system according to the method of distinguishing frequency points
  • FIG. 8 is a schematic diagram of the data types of the Galileo system divided according to the method of distinguishing frequency points
  • FIG. 9 is a division of the QZSS system according to the method of distinguishing frequency points and correcting numbers. Schematic diagram of the data type
  • FIG. 5 is a schematic diagram of data types divided by the GPS system according to the method of distinguishing frequency points
  • FIG. 6 is a schematic diagram of data types of the GLONASS system according to the method of distinguishing frequency points
  • FIG. 7 It is a schematic diagram of the data types divided by the BDS system according to the method of distinguishing frequency points
  • FIG. 8 is a schematic diagram of the data types of the Galile
  • FIGS. 10 is a schematic diagram of the data type of the GPS system divided according to the method of distinguishing the frequency point and the correction number
  • FIG. 11 is a schematic diagram of the data type of the GLONASS system according to the method of distinguishing the frequency point and the correction number
  • FIG. 13 is a schematic diagram of a data type of the Galileo system divided according to a method of distinguishing frequency points and correcting numbers.
  • ephemeris refers to the precise position or trajectory table of celestial body movement over time in GPS measurement, which is a function of time.
  • SIB23, SIB24, SIB25, and SIB26 refer to the type of SIB.
  • the SIB types in FIGS. 5 to 13 are not limited to the SIB type in the figure, but may be changed.
  • the positioning assistance data in the embodiment of the present application may be sent by being uniformly segmented or split into multiple data packets.
  • the encrypted information and the standard version used for positioning the auxiliary data may also be carried.
  • Information as shown in Table 1 below:
  • the encrypted information refers to key information in which data is encrypted.
  • the positioning assistance data segmentation list is similar to the location of the data packet identified by the first identifier in FIG. 4, and the list lists the segments or data packets after the positioning assistance data is split.
  • the standard version information is the version information of the standard used to locate the auxiliary data.
  • the version information may include a version number and/or a version type by which the criteria used for the positioning assistance data can be uniquely determined.
  • the method of uniformly segmenting or splitting into multiple data packets for transmission may be adopted, and a method of separately transmitting data may be adopted, for example, a part of positioning assistance data is used as all GNSS.
  • the data that is applicable, that is, the public data part, and the other part can be classified according to different GNSS data, that is, the GNSS positioning auxiliary data part. Further, the data may be further classified under each GNSS, for example, when the GNSS type is SBAS, the classification may be further performed.
  • SBAS includes WAAS in the United States, Russia's system for differential corrections and monitoring (SDCM), Europe's EGNOS, Japan's MSAS, and India's GPS-assisted augmented navigation (GAGAN), the data is based on different SBAS Classification, such as some data belonging to WAAS.
  • the first message may carry a public data segment list, version information and public positioning assistance data packets, and GNSS and/or SBAS data lists, GNSS and/or SBAS data types, GNSS and/or SBAS positioning assistance.
  • the data transmission format can be as shown in Table 2 below:
  • the common data segment list or a specific type of positioning assistance data segment list of the GNSS and/or the specific SBAS is similar to the location of the data packet identified by the first identifier in FIG. 4, the common data segment
  • the segment list or a specific type of positioning assistance data segment list of the GNSS and/or SBAS specific SBAS will list the public positioning assistance data or a specific type of positioning assistance data of the GNSS or SBAS specific SBAS, in the split Subsequent segments or a list of packets.
  • the standard version information is the version information of the standard used to locate the auxiliary data.
  • the version information may include a version number and/or a version type by which the positioning assistance data of the GNSS or SBAS or the standard used for the public positioning assistance data can be uniquely determined.
  • each segment indicates version information, and specifically, a version information may be indicated by a certain segment list or a certain data type.
  • SBAS carries satellite navigation enhanced signal transponders through geostationary orbit (GEO) satellites, which can broadcast various correction information such as ephemeris error, satellite clock error and ionospheric delay to users, thus improving the positioning accuracy of the original satellite navigation system.
  • GEO geostationary orbit
  • the navigation satellites are monitored by a large number of widely distributed differential stations (known in position), and the original positioning data (pseudorange, phase of satellite broadcast, etc.) is obtained and sent to the central processing facility (master station), which passes Various positioning correction information of each satellite is calculated, and is sent to the GEO satellite through the uplink injection station, and finally the correction information is broadcasted to the majority of users, thereby achieving the purpose of improving the positioning accuracy.
  • master station which passes Various positioning correction information of each satellite is calculated, and is sent to the GEO satellite through the uplink injection station, and finally the correction information is broadcasted to the majority of users, thereby achieving the purpose of improving the positioning accuracy.
  • one of them is taken as a classification basis; according to several classifications, at least two are selected from the above list as the basis of at least two classifications; At least two of the above data are required for a classification as a classification basis.
  • the reference time may specifically include information such as the weekly time, the TOW, the uncertainty of the reference time, and the like, and may include different reference times of the GNSS.
  • the GNSS reference position refers to the reference position information.
  • the GNSS ionospheric model refers to the impact of the signal after the attenuation of the ionosphere.
  • the RTK common auxiliary data may include information such as the antenna descriptor.
  • the public positioning assistance data is mainly for scheduling transmission to send data together, and the specific content may also distinguish different GNSS, but only send together, and distinguish and utilize when the user receives.
  • the GNSS time may include reference times of different GNSSs. If the UE only supports GPS, only the GPS reference time may be used. But from a terminal perspective, this part of the message can be received regardless of which satellite system is supported.
  • the positioning assistance data related to the GNSS may be that different GNSSs are separately transmitted when the base station schedules transmission, and the UE may selectively receive data supported by itself.
  • a specific type can also be understood as a type determined by two types together. If the GNSS-time model, that is, a UTC model of a certain GNSS, such as a GPS UTC model, a BDS UTC model, etc. . In the GNSS-related positioning assistance data, for the GNSS-prefix data type, it is indicated that different GNSS parameters can be distinguished, and the specific distinguishing GNSS can be implemented by scheduling, such as by SIB1.
  • the specific UTC model refers to a set of parameters related to UTC for GNSS time.
  • the navigation model includes satellite information and ephemeris information for different GNSS, as well as clock corrections.
  • Real-time integrity refers to the trial state of the satellite navigation system.
  • GNSS-auxiliary information refers to auxiliary information of different GNSS.
  • the differential corrections include correction information for different satellite systems.
  • RTK general assistance data refers to auxiliary data of different GNSS. Such a data location server is sent to the base station to indicate a certain data type of a specific GNSS.
  • the specific positioning server indicates to the base station as follows.
  • the following fields are only examples, and are not limited to include one type, several types, and combinations.
  • different positioning methods may also be indicated. Table 4 below illustrates:
  • the positioning server when the positioning server sends data to the base station, it needs to indicate different data types.
  • the specific type may be indicated separately or combined with the indication and is not limited.
  • the first parameter in the embodiment of the present application may include one or more of the foregoing Table 4 and Combination, of course, the first parameter appearing in Table 4 is only schematic, and does not mean that only these parameters can be used as the first parameter.
  • the first parameter of the embodiment of the present application may also have more, depending on the actual application scenario. The difference is different and is not limited here.
  • all the above-mentioned unified types of data may be broadcasted by using one SIB; for public and non-public classification, public data may be broadcast by one or several SIBs, and the remaining SIB broadcasts.
  • the data is bound to the GNSS, which may be a default binding relationship, or a method corresponding to the SIB and the GNSS implemented in the scheduling.
  • different SIBs are used to transmit according to different data types or different data type change periods, that is, each data type uses one SIB for broadcast or several types of combinations to form one SIB for broadcast.
  • the positioning server when it sends data to the base station, it needs to indicate a specific data type, such as distinguishing between different parameters to indicate different GNSS types and/or SBAS types, or a certain GNSS type and/or a parameter under the SBAS type.
  • a specific data type such as distinguishing between different parameters to indicate different GNSS types and/or SBAS types, or a certain GNSS type and/or a parameter under the SBAS type.
  • the parameters here can refer to the time model in the above table, UTC model, correction number and so on.
  • different positioning methods, different version information, and key information can be indicated.
  • the types of data that need to be indicated herein include combinations of at least one or more of different GNSS types and/or SBAS types, different positioning methods, different parameters, and the like.
  • the server sends the first message to the base station.
  • the server sends the first message to the base station after generating the first message.
  • the server may send the first message by using LTE positioning protocol A (LPPA).
  • LPPA LTE positioning protocol A
  • the base station receives the first message.
  • the base station receives the first message sent by the server.
  • the base station broadcasts the first data packet in the first message.
  • the broadcast mode may be an SIB broadcast.
  • SIB broadcast the type of the SIB is different.
  • the scheduling information of the SIB may be carried by a master information block (MIB), where the MIB is mainly used to pass the physical
  • MIB master information block
  • PBCH broadcast channel
  • SIB1 system information including a non-access stratum (NAS) layer
  • SIB3 includes parameters for cell selection and reselection
  • SIB5 included for Parameters of the common physical channel configuration of the cell
  • SIB7 including information such as uplink interference and dynamic duration
  • SIB11 including measurement control information.
  • SIB18 Public Land Mobile Network (PLMN) identity of the adjacent cell in idle and connected mode.
  • SIB19 Contains frequencies and priorities between different system cells.
  • PLMN Public Land Mobile Network
  • the base station broadcasts the received multiple first data packets, and further includes an empty packet indication in each broadcast data packet or broadcast message, where the first data packet that includes the empty packet indication does not have Any positioning assistance data, the broadcast data may not include any data type of positioning assistance data, that is, only the data type and the first identifier and the like, and does not contain any actual auxiliary positioning data. This situation occurs because the size of the positioning assistance data is uncertain, but the number of transmissions per unit time of the first message is determined, so when the positioning assistance data is small, the first message cannot be segmented for transmission.
  • the embodiment of the present application adds an empty packet indication in the first message that does not have the actual positioning assistance data, so that the UE obtains the After the empty packet indication of the first message, there is no need to parse the number of such first messages. According to the section, thereby improving the utilization of resources.
  • the empty packet indication may be indicated in each packet, that is, an empty packet indication corresponding to the packet sequence number where the empty packet location occurs. Then, when receiving the indication information, the terminal device does not receive the data packet at the location with the null packet.
  • the broadcast data packet or the broadcast message further includes a retransmission indication, where the retransmission indication is used to indicate that the first data packet is a data packet retransmitted by a certain data type.
  • the base station may adopt The first data packet (ie, a null packet) having the positioning assistance data retransmits the preset data type.
  • the first message may also be a retransmission message, which is for a plurality of first messages obtained after splitting the positioning assistance data, for example, in the description of step 301, the actual 1s fixed transmission 10 or 12 data packets, but the first data packet after the positioning auxiliary data split has only 8 packets, so 2 or 4 empty packets will appear; for the data of a data type of 8 data packets, the 2 or 4 One of the empty packets is retransmitted, and the first data packet is retransmitted so that the empty packet can be utilized to improve the utilization of resources.
  • a retransmission message which is for a plurality of first messages obtained after splitting the positioning assistance data, for example, in the description of step 301, the actual 1s fixed transmission 10 or 12 data packets, but the first data packet after the positioning auxiliary data split has only 8 packets, so 2 or 4 empty packets will appear; for the data of a data type of 8 data packets, the 2 or 4 One of the empty packets is retransmitted, and the first data packet is
  • the process of the base station broadcasting the first message to the UE may be: the base station first determines a visible field of the first message, that is, after the broadcast, the UE can directly read the message without receiving the message and parsing It can be known that the UE can not receive data that is not needed by itself; the visible field includes a header of the first data packet, and the header can be in the following manner.
  • the packet header includes the first identifier and the data type.
  • the second mode the packet header includes the first identifier, the subsequent first identifier of the first identifier, and the data type.
  • the first identifier is a packet sequence number of the first data packet, for example, the first type
  • the header of the packet only contains the packet sequence number of the current packet, and the UE can identify that the first data packet is the first data packet in the positioning assistance data.
  • the second type of packet includes the packet sequence number of the current first data packet and the subsequent packet sequence number, so that the UE can know the packet sequence number and content of the subsequent one or more first data packets of the first data packet.
  • the end data packet indication when the first data packet is broadcasted by the base station, the end data packet indication, the first identifier, the positioning method, and the version information of the standard used by the positioning assistance data may be included. At least one broadcast to the terminal.
  • the end data packet indication is used to indicate that the current data type has no data packets, that is, all data packets of the current data type have been sent.
  • the first message may include the second data packet in addition to the first data packet transmission.
  • step 304 may be:
  • the base station determines the visible field of the first message.
  • the visible field includes the content of the second data packet, the second data includes the first identifier and the data type, or the second data packet includes the first identifier, and the subsequent of the first identifier a first identifier and the data type; a third data packet includes positioning assistance data, and a second data packet is used to indicate to the third data packet.
  • the base station sends the second data packet and the first data packet in the first message by means of broadcast.
  • the content of the second data packet plus the first data packet is equivalent to the content of the foregoing first data packet.
  • the second data packet portion is equivalent to the packet header of the first data packet.
  • the second data packet and the first data packet need to be two data packets adjacent in time.
  • the time difference between the two data packets may be several milliseconds instead of more than 80 milliseconds, and two packets are guaranteed.
  • the transmission period can be defined; after the second data packet is parsed by the UE, if the second data packet is found to be the data required by itself, the UE will parse the data packet.
  • the first data packet is followed by the content indicated in the second data packet.
  • the second data packet can be used without parsing the first data packet, and the first data packet is parsed only after the result of parsing the second data packet determines that the latter data is needed. Therefore, the UE can receive the data that is supported and needed by the UE, save the processing resources of the UE, save the power consumption of the UE on the one hand, and improve the system efficiency on the other hand.
  • FIG. 14 is a diagram of an embodiment of a data transmission method according to an embodiment of the present application, where, for a first group of data packets, a first data packet is a second data packet, including a content of a packet header.
  • the second data packet is the content of the GPS assisted positioning data.
  • the UE When receiving the second data packet and the first data packet by using the PDCCH, the UE first obtains the content of the second data packet by using the PDCCH, that is, the content in the packet header, and determines whether it is the UE according to the first identifier and the data in the packet header. The required data, if it is, will solve the PDCCH again to obtain the content of the subsequent GPS auxiliary positioning data.
  • the second data packet may further carry scheduling information of the resource location of the first data packet, so that after parsing the second data packet, the UE may know that the indicated third data packet is in the time-frequency resource.
  • the specific location so that when the first data packet needs to be changed, the first data packet is searched according to the scheduling information, so that on the one hand, there is no need to process the PDCCH again, and on the other hand, the second data packet and the first data packet are The high requirement on the transmission time difference can be that several packets are separated in the middle.
  • FIG. 15 is a diagram of an embodiment of a data transmission method according to an embodiment of the present application, where, for a first group of data packets, a first data packet is a second data packet, including a content of a packet header.
  • the second data packet is the content of the GPS assisted positioning data.
  • the UE When receiving the second data packet and the first data packet by using the PDCCH, the UE first obtains the content of the second data packet by using the PDCCH, that is, the content in the packet header, and determines whether it is the UE according to the first identifier and the data in the packet header.
  • the required data if yes, finds the first data packet according to the scheduling information of the resource location of the third data packet in the packet header, and acquires the content therein.
  • the base station when the base station broadcasts the first data packet and the second data packet, the base station may further indicate an end data packet indication, the first identifier, the positioning method, and a standard used by the positioning assistance data. At least one of the version information is broadcast to the terminal.
  • the UE receives the first message.
  • the UE can learn whether the broadcast data packet is the data that is required by itself and supported by the visible field, so the UE can selectively receive the broadcast data packet or select whether to decrypt the data, thereby achieving the purpose of saving power consumption of the UE. .
  • the data packet can be discarded.
  • the UE parses the first message to obtain positioning assistance data.
  • the UE may acquire the required type of data by using the manner shown in FIG. 4, FIG. 14 or FIG. 15 until the content in the acquired data packet can form the completed positioning assistance data. .
  • the embodiment of the present application may further add a rate or a data volume for acquiring the base station broadcast positioning assistance data.
  • FIG. 16 which is the present application.
  • the server collects positioning assistance data.
  • the positioning assistance data is data used by the terminal for positioning measurement or calculation.
  • the server sends a first request message to the base station.
  • the first request message is used to request the base station to send the positioning assistance data for broadcast configuration; the request message may carry the data rate or the data volume size of the positioning assistance data, and specifically, may include different data types. Data rate or amount of data.
  • the message can include at least one data type and rate or.
  • the corresponding broadcast configuration can be performed according to the received data rate or size information. For example, if the correction numbers of different GNSSs have different rates or data amounts, the positioning server can notify the base station.
  • the GPS correction rate is 200bps
  • the GLONASS correction rate is 300bps
  • UTC model of different GNSS and so on.
  • it can also be the data rate or the amount of data of different GNSS.
  • the data type can be a combination of types or types described herein, but does not limit the data type.
  • the first request information requests the configuration broadcast by the base station, and specifically, may include a broadcastable data amount size, and a transmission period. Therefore, the server needs to obtain the information from the base station to determine the rate or amount of data to send the positioning assistance data to the base station. That is, the first request message may also not include the data rate or the amount of data.
  • the message name can be an RTK information request.
  • the base station sends a first response message according to the first request message.
  • the first response message carries information such as the size of the SIB or the SI data volume and/or the transmission period, and the transmission period is, as described above, transmitting the data packet once every fixed duration, for example, 80 milliseconds.
  • the amount of data is the maximum amount of data that each packet can carry.
  • the information such as the amount of transmitted data and/or the transmission period will be carried in the configuration information of the SIB or SI.
  • the base station transmitting SIB or SI data size and/or transmission period may be associated with different data types.
  • the first response message does not previously limit the presence or absence of the first request message.
  • the base station may perform differential transmission according to the rate or the amount of data of different data types, that is, the size of the data packet allowed to be sent by different data types and / or the transmission cycle is different. If different data types are associated with different system messages, the base station can transmit the packet size and/or transmission period of the corresponding SIB.
  • An example is that the amount of data sent by the base station to the positioning server GPS is 100 bytes, the transmission period is 160 milliseconds, the amount of transmitted BDS data is 50 bytes, and the transmission period is 320 milliseconds, and the positioning server performs data segmentation or unpacking accordingly.
  • the data type definitions are as described in the above embodiments, but are not limited to these types.
  • the number of the base station sending to the positioning server is an upper limit, and the specific number of bytes is not limited, that is, the amount of data when the positioning server performs segmentation is not allowed to exceed the data amount.
  • the base station may indicate to the server the number of times the packet is repeatedly sent.
  • the server sends the first message to the base station according to the configuration information of the SIB or the SI in the first response message.
  • the server After the server obtains the configuration information of the SIB or the SI, the server can know the size and/or the transmission period of the data sent by the base station, so that the positioning assistance data can be segmented or split into multiple data packets. send.
  • the positioning assistance data may be classified and transmitted by using the same segmentation as described above, or distinguishing between public and non-public parts, and may also be classified according to one or a combination of several or several of the data given in Table 3.
  • the server sends an end packet indication to the base station, indicating that the data type indicates that the current data type has no data packet, that is, all data packets of the current data type. Sent completed. And the end data packet indication may be broadcast to the terminal when the base station broadcasts the first data packet or the first data packet and the second data packet, so that the terminal does not receive the data of the data type after receiving the end data packet indication. package.
  • the first message sent by the server to the base station may use any of the above embodiments, but is not limited to these manners.
  • FIG. 17 is a schematic diagram of a base station according to an embodiment of the present application, where the base station may include:
  • the transceiver module 1701 is configured to receive a first message sent by the server, where the first message carries a first data packet that includes positioning assistance data.
  • the broadcast module 1702 is configured to broadcast the first data packet in the first message to the terminal, so that the terminal calculates positioning information of the terminal according to the positioning assistance data.
  • the first message carries a first identifier, where the first identifier is used to identify a first data packet in the first message.
  • the first message further carries a data type of the positioning assistance data in the first message, where the data type is used to distinguish different categories of the positioning assistance data.
  • the data type is a data type determined according to a GNSS type of a global navigation satellite system.
  • the data type is a data type determined according to at least one of a transmission frequency band and a positioning method, and the GNSS type; or
  • the data type is a type determined according to different first parameters.
  • the first message further includes an empty packet indication, where the first message including the empty packet indication does not have the positioning assistance data.
  • the first message further includes a retransmission indication, where the retransmission indication is used to indicate that the first message is a data type retransmission message, and the broadcast module is further configured to:
  • the first message further includes version information of the used standard of the positioning assistance data.
  • the broadcast module is further configured to:
  • the positioning assistance data includes public assistance data and GNSS assistance data, where the GNSS assistance data corresponds to a data type of the positioning assistance data; or
  • the positioning assistance data includes satellite-based augmentation system SBAS assistance data in common assistance data and GNSS assistance data, and SBAS assistance data in the GNSS assistance data corresponds to a data type of the positioning assistance data.
  • the base station further includes a processing module 1703, configured to determine a visible field of the first message, where the visible field includes a header of the first data packet in the first message, where the packet header includes The first identifier and the data type, or the packet header includes the first identifier, a subsequent first identifier of the first identifier, and the data type;
  • the broadcast module 1702 is specifically configured to broadcast the first message to the terminal by using an SIB broadcast.
  • the first message further includes a second data packet
  • the processing module 1703 is configured to determine a visible field of the first message, where the visible field includes a second data packet, where the The second data packet includes the first identifier and the data type or, the second data packet includes the first identifier, a subsequent first identifier of the first identifier, and the data type; the second data a packet for indicating to the first data packet;
  • the broadcast module 1702 is specifically configured to broadcast the first data packet in the first message to the terminal by using an SIB broadcast.
  • the second data includes scheduling information indicating a resource location of the third data packet.
  • the transceiver module 1701 is further configured to receive a first request message sent by the server;
  • the transceiver module 1701 is further configured to send a first response message to the server according to the first request message, where the first response message carries configuration information of a system information block SIB or SI, where the SIB or SI
  • the configuration information includes the amount of transmitted data and/or the transmission period.
  • the first request message carries a rate or a data volume of the positioning assistance data
  • the processing module 1703 is further configured to:
  • the transceiver module 1701 is specifically configured to:
  • FIG. 18 is a schematic diagram of a server according to an embodiment of the present application, where the server may include:
  • the processing module 1801 is configured to generate a first message, where the first message carries a first data packet that includes positioning assistance data;
  • the transceiver module 1802 is configured to send the first message to the base station, so that the base station broadcasts the first data packet in the first message to the terminal, and causes the terminal to calculate the location according to the positioning assistance data. Terminal location letter interest.
  • the first message carries a first identifier, where the first identifier is used to identify a subset of the positioning assistance data in the first data packet in the first message in the positioning assistance data.
  • the first message further carries a data type of the positioning assistance data in the first message, where the data type is used to distinguish different categories of the positioning assistance data.
  • the data type is a data type determined according to a GNSS type of a global navigation satellite system.
  • the data type is a data type determined according to at least one of a transmission frequency band and a positioning method, and the GNSS type; or
  • the data type is a type determined according to different first parameters.
  • the first message further includes an empty packet indication, where the first message including the empty packet indication does not have the positioning assistance data.
  • the first message further includes a retransmission indication, where the retransmission indication is used to indicate that the first message is a data type retransmission message, and the broadcast module is further configured to:
  • the first message further includes version information of the used standard of the positioning assistance data.
  • the positioning assistance data includes public assistance data and GNSS assistance data, where the GNSS assistance data corresponds to a data type of the positioning assistance data; or
  • the positioning assistance data includes satellite-based augmentation system SBAS assistance data in common assistance data and GNSS assistance data, and SBAS assistance data in the GNSS assistance data corresponds to a data type of the positioning assistance data.
  • the processing module 1801 is further configured to encrypt the first message.
  • the transceiver module 1802 is further configured to send the encrypted first message to a base station.
  • the server further includes:
  • the transceiver module 1802 is further configured to send a first request message to the base station, where the first request message is used to acquire a rate or a data volume size of the positioning assistance data sent by the base station;
  • the transceiver module 1802 is further configured to receive a first response message sent by the base station, where the first response message carries configuration information of a system information block SIB or SI, and the configuration information of the SIB or SI includes a size of the sent data and / or transmission cycle.
  • FIG. 19 is a diagram of an embodiment of the device in the embodiment of the present application, where the base station 19 may include a phase. Connected at least one processor 1902, at least one transceiver 1901, and a memory 1903.
  • the base station involved in the embodiments of the present application may have more or fewer components than those shown in FIG. 19, and two or more components may be combined. Or, there may be different component configurations or arrangements, each component being implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • the processor 1902 can implement the function of the processing module 1703 of the base station in the embodiment shown in FIG. 17, and the transceiver 1901 can implement the embodiment in the embodiment shown in FIG. Base station transceiver module 1701 and wide
  • the function of the broadcast module 1702, the memory 1903 is used for program instructions, and the data transfer method of the embodiment shown in FIG. 3 or FIG. 16 is implemented by executing the program instructions.
  • FIG. 20 is a diagram of an embodiment of a server according to an embodiment of the present application, where the server 20 may include a phase.
  • the at least one processor 2002, the at least one transceiver 2001, and the memory 2003 are connected.
  • the server involved in the embodiment of the present application may have more or less components than those shown in FIG. 20, and two or more components may be combined. Or, there may be different component configurations or arrangements, each component being implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • the processor 2002 can implement the function of the processing module 1801 of the server in the embodiment shown in FIG. 18, and the transceiver 2001 can implement the embodiment in the embodiment shown in FIG.
  • the function of the transceiver module 1802 of the device, the combination of the processor 2002 and the transceiver 2001 can implement the function of the acquisition module 1803.
  • the specific processor 2002 sends a data acquisition request to the third-party reference station through the transceiver 2001, by the transceiver 2001.
  • the data fed back by the third-party reference station is received, and the positioning assistance data is calculated by the processor 2002;
  • the memory 1903 is used for program instructions, and the data transmission method of the embodiment shown in FIG. 3 or FIG. 16 is implemented by executing the program instruction.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in the embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请涉及定位技术领域,具体涉及一种数据传输方法、服务器及基站。该方法包括基站接收服务器发送的第一消息,所述第一消息中携带有包含定位辅助数据的第一数据包;所述基站将所述第一消息内的第一数据包广播至终端,以使得所述终端根据所述定位辅助数据校正计算所述终端的定位信息。本申请中将发送给终端的定位辅助数据进行拆分,拆分成多个第一消息进行发送,从而可以充分利用频谱资源,另外,拆分的方式能够保证定位辅助数据能够完整的发送到终端,从而完成终端对位置的校正。

Description

一种数据传输方法、服务器及基站 技术领域
本申请涉及定位技术领域,具体涉及一种数据传输方法、服务器及基站。
背景技术
全球定位系统(global positioning system,简称GPS)是一种高精度的定位导航系统,广泛应用在各行各业中,但是受卫星钟误差、星历误差以及电离层误差等的影响,该系统所能达到的精度在十米级别。而为满足的无人机,智能驾驶,垂直市场等应用场景,需要更高精度级别的定位。而载波相位差分(real tme kinematic,简称RTK)等技术的引入可以有效的提高定位精度,RTK的定位精度为可达厘米级。
RTK服务器通过参考站获得参考数据,例如第三方改正数:接着,要做定位的(user equipment,简称UE)向RTK服务器上报自身的GPS位置,然后RTK服务器根据接收的参考站的数据以及UE自身粗粒度的位置信息,计算出改正数并发送给UE,UE利用改正数和获得的GPS位置计算出高精度的位置。
然而,在RTK技术,改正数是作为应用层数据进行单播,而这样会使得频谱资源利用效率比较低。
发明内容
本申请实施例提供了一种数据传输方法、服务器及基站来解决目前RTK定位技术中的频谱利用效率低的问题。
本申请实施例的第一方面提供一种数据传输方法,该方法中,基站会接收服务器发送的第一消息,第一消息中携带有包含定位辅助数据的第一数据包,接着基站将第一消息内的第一数据包广播至终端,从而能够使得终端在接收到多个第一消息内的第一数据包后,提取获得定位辅助数据,并根据该定位辅助数据校正终端的定位信息。
可以看出,首先由于要进行广播的方式发送,而广播的方式对数据块的大小是有较为严格的要求,而一个完整的定位辅助数据会大于该数据块的大小,因此,为了能够进行广播,会将发送给终端的定位辅助数据进行拆分,拆分成多个第一数据包进行发送,从而可以充分利用频谱资源,另外,拆分的方式能够保证定位辅助数据能够完整的发送到终端,从而完成终端对位置的校正。
在一些实施例中,每个第一消息内均携带有第一标识,该第一标识主要用于标识所述第一消息中的第一数据包;即定位辅助数据包含多个第一数据包时,需要按照定位辅助数据的顺序对该拆分出的第一数据包进行排序,而该第一标识则是为了每个第一数据包在定位辅助数据中的定位。即,该第一标识可以是定位辅助数据拆分为多个第一数据包时,各第一数据包的序号。
在一些实施例中,第一消息中还携带有所述第一消息中的定位辅助数据的数据类型,所述数据类型用于区分定位辅助数据的不同类别。
在一些实施例中,第一消息中还携带有第一消息的数据类型,该数据类型为根据全球导航卫星系统(global navigation satellite system,简称GNSS)类型确定的数据类型,且不同的GNSS对应不同的数据类型,不同的GNSS可以具有不同的数据,从而能够支持各种不同的GNSS系统的数据。
在一些实施例中,数据类型是根据GNSS类型和定位类型确定的数据类型,并且GNSS类型具有不同的定位类型,从而相同的GNSS类型且不同的定位类型能够对应到不同的数据类型,从而使得数据类型的分类更为细化,数据类型能够反映出的信息更为丰富,且不增加额外的传输资源,更易于不同数据类型的第一消息的传输。
在一些实施例中,数据类型为根据所述GNSS类型、传输频段和所述定位类型确定的数据类型,即不同的数据类型还能对应到不同的频段,从而使得相同的GNSS和定位类型且不同的频段能够对应不同的数据类型,使得数据类型的分类更为细化,数据类型能够反映出的信息更为丰富,且不增加额外的传输资源,更易于不同数据类型的第一消息的传输。
在一些实施例中,该数据类型还可以是根据不同的第一参数确定的类型。
在一些实施例中,第一消息中还包括空包指示,包含所述空包指示的第一消息中不具有所述定位辅助数据,此类型的第一消息中可以不包含任何数据类型的定位辅助数据,即可以是仅有数据类型和第一标识等标识性内容,并不包含任何的实际数据。这种情况出现在由于定位辅助数据的大小是不确定的,但是第一数据包的单位时间内的传输数量是确定的,因此在定位辅助数据较少时,分割不出足够的第一数据包进行传输,从而出现有些第一数据包中并未携带定位辅助数据的情况,本申请实施例在这种不具有实际的定位辅助数据的第一数据包中会添加空包指示,从而使得UE在获取到这种第一数据包的空包指示后,不用去解析这种第一消息的数据部分,从而提升资源的利用率。
在一些实施例中,第一消息中还包括重传指示,所述重传指示用于指示所述第一消息为数据类型重传的消息,此时,该方法还可包括,所述基站采用不具有所述定位辅助数据的第一消息重传预设数据类型的第一消息。第一消息中还可以是一种重传消息,该重传是针对在将定位辅助数据拆分后得到的多个第一消息时,对其中的部分第一消息进行重传,而重传所采用的第一消息则可以是之前确定的不具有定位辅助数据的第一消息,采用这种第一消息进行重传使得能够对不具有定位辅助数据的第一消息加以利用,提升资源的利用率。
在一些实施例中,第一消息中还包括所述定位辅助数据的所使用的标准的版本信息,某一GNSS类型的定位辅助数据可以有多种版本的标准,因此在实际进行定位辅助数据的传输中,需要在第一消息中指明该定位辅助数据的所使用的标准的版本信息,以便于终端在接收到定位辅助数据后,能够进行相应的处理。
在一些实施例中,基站还会将结尾数据包指示、所述第一标识、所述定位定法以及所述所述定位辅助数据所使用的标准的版本信息之中的至少一个广播至终端。
在一些实施例中,定位辅助数据可以包括公共辅助数据和GNSS辅助数据,该公共辅助数据即对于不同的数据类型,可以共用的部分,而GNSS辅助数据,则是与定位辅助数据的数据类型相对应,因此,当GNSS类型不同时,GNSS辅助数据也会不相同。或者,定位辅 助数据可以包括公共辅助数据和星基增强系统(satellite-based augmentation system,简称SBAS)辅助数据,该SBAS辅助数据也与定位辅助数据的数据类型相对应,并且不同的SBAS系统对应的SBAS辅助数据是不相同的。
在一些实施例中,基站将第一消息内的第一数据包广播至UE的过程可以是,基站首先确定第一消息的可视字段,该可视字段即在第一数据包广播后,UE能够直接读取而无需接收到消息后解析才可知晓,使得UE可以不接收自身不需要的数据;该可视字段包括第一数据包的包头,该包头可以有以下方式,第一种方式,包头包括所述第一标识和所述数据类型;第二种方式,该包头包括所述第一标识、所述第一标识的后续第一标识和所述数据类型;以该第一标识是第一数据包的包序号为例,第一种的包头仅包含当前包的包序号,UE可以识别该第一数据包是定位辅助数据中的第几个数据包。第二种包头包含当前第一数据包的包序号以及后续包序号,从而使得UE能够知晓该第一数据包的后续的一个或者多个第一数据包的包序号。
在一些实施例中,第一消息还包括第二数据包,此情形下,基站将第一消息内的第一数据包广播至UE的过程可以是,基站首先确定第一消息的可视字段,该可视字段包括第二数据包的内容,该第二数据包括所述第一标识和所述数据类型或者,该第二数据包包括所述第一标识、所述第一标识的后续第一标识和所述数据类型;第二数据包用于指示至该第一数据包;接着,基站将该第一消息中第二数据包和第一数据包通过广播的方式发送。即该第二数据包加上第一数据包的内容相当于前述的第一数据包的内容,具体的,第二数据包相当于第一数据包的包头,。通过此拆分方式,第二数据包和第一数据包需要是时间上相邻的两个数据包,即两者之间的时差可以是几毫秒,UE在解析了第二数据包后,紧接着解析第一数据包即为第二数据包中所指示的内容。此方式使得UE仅解析第二数据包即可,只有通过解析第二数据包的结果确定需要后面的数据后,才会解析第一数据包。从而节省UE的处理资源,提升系统效率。
在一些实施例中,第二数据包中还可以携带第一数据包的资源位置的调度信息,从而UE在解析了第二数据包后,即可知晓其中的指示的第一数据包在时频资源中的具体位置,从而能够直接在需要改第一数据包时,根据该调度信息查找第一数据包,从而无需再次通过物理下行控制信道(physical downlink control channel,简称PDCCH)等解析方式解析出第一数据包。
在一些实施例中,基站在发送出第一消息之前,还会接收到服务器发送的第一请求消息,基站在接收到该第一请求消息后,便会根据所述第一请求消息向所述服务器发送第一响应消息。
在一些实施例中,基站在发送出第一消息之前,还会接收到服务器发送的第一请求消息,该请求消息用于获取基站发送所述定位辅助数据的速率或数据量大小;接着,基站会以第一响应消息的方式将发送数据量大小和/或传输周期通知给服务器,具体的可以在该第一响应消息中携带SIB或系统信息(system information,简称SI)的配置信息,该配置信息则包括发送数据量大小和/或传输周期。即服务器在向基站发送含有定位辅助数据的第一消息之前,会先从基站处获取到基站在广播定位辅助数据时的数据量大小和/或传输周 期,从而能够以此确定出向基站发送定位辅助数据的速率或者数据量大小。增强本申请方案的可实现性。
本申请实施例第二方面还提供一种数据传输方法,该方法可包括,服务器首先生成第一消息,第一消息中携带有包含定位辅助数据的第一数据包;接着,服务器将该第一消息发送至基站,以使得所述基站将所述第一消息内的第一数据包广播至终端,并使得所述终端根据所述定位辅助数据计算所述终端的定位信息。
可以看出,首先由于要进行广播的方式发送,而广播的方式对数据块的大小是有较为严格的要求,而一个完整的定位辅助数据会大于该数据块的大小,因此,为了能够进行广播,会将发送给基站的定位辅助数据进行拆分,拆分成多个第一消息内的第一数据包进行发送,从而可以充分利用频谱资源,另外,拆分的方式能够保证定位辅助数据能够完整的发送到终端,从而完成终端对位置的校正。
在一些实施例中,每个第一消息内均携带有第一标识,该第一标识主要用于标识所述第一消息中的第一数据包中的定位辅助数据中的子集在所述定位辅助数据中的位置;即定位辅助数据包含多个第一数据包时,需要按照定位辅助数据的顺序对该拆分出的第一数据包进行排序,而该第一标识则是为了每个第一数据包在定位辅助数据中的定位。即,该第一标识可以是定位辅助数据拆分为多个第一数据包时,各第一数据包的序号。
在一些实施例中,第一消息中还携带有所述第一消息中的定位辅助数据的数据类型,所述数据类型用于区分定位辅助数据的不同类别。
在一些实施例中,第一消息中还携带有第一消息的数据类型,该数据类型为根据GNSS类型确定的数据类型,且不同的GNSS对应不同的数据类型,不同的GNSS可以具有不同的数据,从而能够支持各种不同的GNSS系统的数据。
在一些实施例中,数据类型是根据GNSS类型和定位类型确定的数据类型,并且GNSS类型具有不同的定位类型,从而相同的GNSS类型且不同的定位类型能够对应到不同的数据类型,从而使得数据类型的分类更为细化,数据类型能够反映出的信息更为丰富,且不增加额外的传输资源,更易于不同数据类型的第一消息的传输。
在一些实施例中,数据类型为根据所述GNSS类型、传输频段和所述定位类型确定的数据类型,即不同的数据类型还能对应到不同的频段,从而使得相同的GNSS和定位类型且不同的频段能够对应不同的数据类型,使得数据类型的分类更为细化,数据类型能够反映出的信息更为丰富,且不增加额外的传输资源,更易于不同数据类型的第一消息的传输。
在一些实施例中,该数据类型还可以是根据不同的第一参数确定的类型。
在一些实施例中,第一消息中还包括空包指示,包含所述空包指示的第一消息中不具有所述定位辅助数据,此类型的第一消息中可以不包含任何数据类型的定位辅助数据,即可以是仅有数据类型和第一标识等标识性内容,并不包含任何的实际数据。这种情况出现在由于定位辅助数据的大小是不确定的,但是第一数据包的单位时间内的传输数量是确定的,因此在定位辅助数据较少时,分割不出足够的第一数据包进行传输,从而出现有些第一数据包中并未携带定位辅助数据的情况,本申请实施例在这种不具有实际的定位辅助数据的第一数据包中会添加空包指示,从而使得UE在获取到这种第一数据包的空包指示后, 不用去解析这种第一消息的数据部分,从而提升资源的利用率。
在一些实施例中,第一消息中还包括重传指示,所述重传指示用于指示所述第一消息为数据类型重传的消息,此时,该方法还可包括,所述基站采用不具有所述定位辅助数据的第一消息重传预设数据类型的第一消息。第一消息中还可以是一种重传消息,该重传是针对在将定位辅助数据拆分后得到的多个第一消息时,对其中的部分第一消息进行重传,而重传所采用的第一消息则可以是之前确定的不具有定位辅助数据的第一消息,采用这种第一消息进行重传使得能够对不具有定位辅助数据的第一消息加以利用,提升资源的利用率。
在一些实施例中,第一消息中还包括所述定位辅助数据的所使用的标准的版本信息,某一GNSS类型的定位辅助数据可以有多种版本的标准,因此在实际进行定位辅助数据的传输中,需要在第一消息中指明该定位辅助数据的所使用的标准的版本信息,以便于终端在接收到定位辅助数据后,能够进行相应的处理。
在一些实施例中,定位辅助数据可以包括公共辅助数据和GNSS辅助数据,该公共辅助数据即对于不同的数据类型,可以共用的部分,而GNSS辅助数据,则是与定位辅助数据的数据类型相对应,因此,当GNSS类型不同时,GNSS辅助数据也会不相同。或者,定位辅助数据可以包括公共辅助数据和SBAS辅助数据,该SBAS辅助数据也与定位辅助数据的数据类型相对应,并且不同的SBAS系统对应的SBAS辅助数据是不相同的。
在一些实施例中,服务器在将第一消息发送至基站之前,该方法还可包括,首先由服务器对该第一消息进行加密,接着,在向基站发送第一消息则相应的是将加密后的第一消息发送给基站。基站实际并不对该第一消息进行解密,而仅仅将该加密后的第一消息广播给终端,由终端进行解密获取其中的数据。
在一些实施例中,服务器在向基站发送第一消息之前,首先会进行定位辅助数据的收集,接着还会向基站发送第一请求消息,以获取基站发送所述定位辅助数据的速率或数据量大小;接着,在接收到基站发出的第一响应消息后,会根据第一响应消息中携带的SIB或SI的配置信息进行第一消息的发送,该SIB或SI的配置信息中包括发送数据量大小和/或传输周期。从而能够以此确定出向基站发送定位辅助数据的速率或者数据量大小。增强本申请方案的可实现性。
本申请第三方面提供了一种基站,该基站包括了用于执行第一方面或第一方面的任一种实现方式中提供的数据传输方法的至少一个单元。
本申请第四方面提供了一种服务器,该服务器包括了用于执行第一方面或第一方面的任一种实现方式中提供的数据传输方法的至少一个单元。
本申请又一方面提供了一种计算机可读存储介质,该存储介质中存储了程序代码,该程序代码被终端运行时,使得计算机执行上述各方面所述的方法。该存储介质包括但不限于快闪存储器(flash memory),硬盘(hard disk drive,简称HDD)或固态硬盘(solid state drive,简称SSD)。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1是RTK定位技术的架构示意图;
图2是本申请实施例的数据传输方法的架构示意图;
图3是本申请实施例的数据传输方法的一个实施例图;
图4是本申请实施例的数据传输方法中第一标识的示意图;
图5是GPS系统按照区分频点的方式划分的数据类型的示意图;
图6是GLONASS系统按照区分频点的方式划分的数据类型的示意图;
图7是BDS系统按照区分频点的方式划分的数据类型的示意图;
图8是Galileo系统按照区分频点的方式划分的数据类型的示意图;
图9是QZSS系统按照区分频点和改正数的方式划分的数据类型的示意图;
图10是GPS系统按照区分频点和改正数的方式划分的数据类型的示意图;
图11是GLONASS系统按照区分频点和改正数的方式划分的数据类型的示意图;
图12是BDS系统按照区分频点和改正数的方式划分的数据类型的示意图;
图13是Galileo系统按照区分频点和改正数的方式划分的数据类型的示意图;
图14是本申请实施例的数据传输方法的一个实施例图;
图15是本申请实施例的数据传输方法的一个实施例图;
图16是本申请实施例的数据传输方法的一个实施例图;
图17是本申请实施例的基站的一个示意图;
图18是本申请实施例的服务器的一个示意图;
图19是本申请实施例的基站的一个示意图;
图20是本申请实施例的服务器的一个示意图。
具体实施方式
本申请实施例提供了一种数据传输方法、服务器及基站,通过将定位辅助数据拆分成多个第一消息,并由基站广播至终端的方式提高频谱资源利用效率。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例进行描述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
请参阅图1,图1是RTK定位技术的架构示意图,以RTK定位技术为例,具体的定位系统以GPS系统为例,其定位过程具体可以是,UE101先向RTK服务器102上报自身的GPS 位置信息,接着,RTK服务器102会通过第三方卫星地基参考站103获取到第三方差分卫星改正数,具体的,该第三方卫星地基参考站103会自身的实际位置信息与通过GPS定位技术确定的GPS位置信息进行比对,获得该改正数,而后将该改正数发送至RTK服务器102,而RTK服务器102在获取了该改正数以及UE上报的GPS位置信息后,计算出该UE101的改正数,并发送给UE,从而使得UE能够根据改正数对GPS位置信息进行校正,得到更为精确的位置信息。而这种发送方式中,RTK服务器102生成的改正数是作为应用程序数据单播给UE,对频谱资源的利用率较低。对于直接将第一消息发送给UE101可以采用LTE定位协议(LTE positioning protocol,简称LPP)进行发送。
需要说明的是,本申请实施例中的UE可以是支持机器与机器之间的通信(machine to machine,简称M2M),增强型机器类通信(enhanced Machine Type Communication,简称eMTC),窄带物联网()(narrow band internet of things,简称NB-IoT),长期演进(long term evolution,简称LTE),无线接入(new radio,简称NR)等的通信类型的终端设备。
基站可以是演进型基站(evolved node B,简称eNB),基站(base station,简称BS),IoT eNB以及gNB(5G网络中使用的基站的命名)。
服务器则可以包括演进的服务移动位置中心(evolved serving mobile location center,简称E-SMLC),网关移动位置中心(Gateway Mobile Location Center,简称GMLC),RTK服务器等其他服务器。
本申请实施例在RTK技术中引入了蜂窝技术,从而使得RTK服务器向UE发送的辅助定位数据可以经由基站广播给UE。具体的,可以在上述架构中RTK服务器与终端之间添加基站,从而组成如图2所示的架构,图2是本申请实施例的数据传输方法的架构示意图,其中,该架构中UE201与服务器203之间通过基站202进行交互。UE201的上行数据(例如通过GPS等技术获取的位置信息)通过基站202发送给服务器203,而服务器的下行数据(例如计算出的针对UE的改正数,作为定位辅助数据)则可以先发送至基站202,再由基站广播给UE201来提高频谱资源利用率。
本申请实施例以传输定位辅助数据为例对数据传输方法进行说明,请参阅图3,图3是本申请实施例的数据传输方法的一个实施例图,该方法可包括:
上行方向:
UE向基站发送定位辅助数据获取请求。
其中,UE在具有高精度定位需求时,会向通过基站向服务器发送定位辅助数据获取请求,定位辅助数据获取请求主要用于从服务器获取定位辅助数据,该服务器可以是定位服务器或者是E-SMLC,该定位服务器或者E-SMLC主要用于获取定位辅助数据。
基站向服务器发送该定位辅助数据获取请求。
基站接收该定位辅助数据获取请求后,便会将该请求发送至定位服务器或者E-SMLC。
需要说明的是,UE发送定位辅助数据获取请求除了通过基站发送之外,还可以通过其他方式进行发送,例如连接至互联网,并通过互联网将该请求发送至定位服务器或者E-SMLC。
下行方向:
301、服务器生成第一消息。
其中,第一消息中携带有包含定位辅助数据的第一数据包,接着基站将第一消息内的第一数据包广播至终端,从而能够使得终端在接收到第一消息后,提取获得定位辅助数据,并根据该定位辅助数据计算终端的位置。该定位辅助数据实际为以UE或基站的位置信息为基础的改正数的信息。第一消息可以包括第一数据包或者第一消息包括第一数据包和第二数据包的方式。
下面以第一消息仅包括第一数据包发送进行说明。
由于后续采用广播方式可以是系统信息块(system information block,简称SIB)广播方式,该SIB广播中,定位辅助数据的数据传输速率大约为2kbps-10kbps,则每秒的数据量大约为250byte至2Kbyte,而由于SIB广播方式会有物理限制,即该SIB广播的最大传输块容量(transport block size,简称TBS)为277byte(字节),因此若定位辅助数据在大于277byte时,不能直接将该定位辅助数据进行广播,需要将该定位辅助数据进行分段或者拆包来发送。
举例来说,若以10kbps的速率传输定位辅助数据,若SIB最大可传输217byte或者277byte。定位辅助数据1秒内常见包为1K-2Kbyte,选择最小传输周期,传输周期80ms,1秒内最多传12个数据包,若每个数据包为217byte,217*12=2604byte,217*10=2170byte。则每秒传输10至12个数据包可以满足1-2Kbyte。因此若使用一个SIB传输,在传输周期固定后,可传输的数据包也是固定的。
因此,服务器在可以根据基站支持或者配置的SIB传输块大小,或者SIB传输块的上限,将大的定位辅助数据的数据包进行分段传输,即根据SIB传输块的大小进行传输。
需要说明的是,以第一消息包括第一数据包为例,对于拆分出的每个第一数据包,均会使用第一标识对第一数据包进行标识,该第一标识主要用于标识该第一数据包在拆包后的包序号或者标识在定位辅助数据中数据包的位置;即若一个定位辅助数据包括多个第一数据包时,需要按照定位辅助数据的顺序对该拆分出的第一数据包进行排序,而该第一标识则是为了每个第一数据包中包含的定位辅助数据在定位辅助数据中的位置。即,该第一标识可以是定位辅助数据拆分为多个第一数据包时,各第一数据包的序号。同时,该第一标识除了作为每个第一数据包的序号或者分段的序号之类的标识,还可以是预定义的结束标识,该结束标识表示该第一数据包是该第一数据包对应的定位辅助数据的最后一个第一数据包。
举例来说,请参阅图4,图4是本申请实施例的数据传输方法中第一标识的示意图;其中,在第1个第一数据包的“包头”中,除了会指示出当前包为GPS,还会指出后续第2个至第12个共11个第一数据包的“包头”的信息;第二个第一数据包的包头则指示第2个至第12个共11个第一数据包的“包头”内容;第3个第一数据包,包括第3个至第12个共10个第一数据包的“包头”内容;则依此类推,第11个第一数据包中仅包括第11个和第12个第一数据包的“包头”内容;而最后一个第12个第一数据包则仅包含第12个第 一数据包自身的“包头”信息。具体的,也可以仅指示后面的数据包,而不指示当前数据包的内容。这里的包头只是一种对可读信息的代称或者不包括具体数据部分的指示信息。具体的,这里指示的每个数据包包头信息指的是数据包里的数据类型,和/或空包指示信息,和/或重传指示信息和/或是否是最后一个数据包,和/或分段的标号信息等。
可选的,对于每个第一消息中的数据内容或至少一个数据包,均具有数据类型,该数据类型可以根据GNSS的类型来确定的,该数据类型可用于区分不同的GNSS类型,例如,该定位系统例如在美国等地区使用的GPS,在俄罗斯等地区使用的全球卫星导航系统(global navigation satellite system,简称GLONASS)、在欧洲等地区使用的伽利略卫星导航系统(Galileo satellite navigation system,简称Galileo)以及在中国等地区使用的北斗卫星导航系统(BeiDou navigation satellite system,简称BDS)等;当然还可以是相关的增强系统,如在美国等地区使用的广域增强系统(wide area augmentation system,简称WAAS),在欧洲等地区使用的欧洲静地导航重叠服务(European geostationary navigation overlay service,简称EGNOS),在日本等地区使用的多功能运输卫星增强系统(Multi-Functional Satellite Augmentation System,简称MSAS)以及准天顶卫星系统(quasi-zenith satellite system,简称QZSS)等。这些不同的定位以及相关的增强系统均可设置为不同的数据类型,从而使得UE在获取了该数据类型便可获知具体为何种定位以及相关的增强系统。以便于UE能够快速从广播的第一数据包中识别出所需的数据类型的数据。即GNSS类型包括GPS,GLONASS,BDS,QZSS,Galileo,SBAS等。
可选的,数据类型可以根据不同定位方法确定的,也可以根据GNSS类型和定位方法确定的数据类型。对于GNSS来说,可以具有不同的定位方法,即对应到GNSS类型的定位类型,不同的定位类型可以具有不同的改正数类型,这些定位方法包括位置差分,伪距差分,相位平滑等伪距差分,载波相位差分,局域差分GPS,广域差分GPS,虚拟参考站(Virtual Reference Station简称VRS)网络RTK,介质访问控制(media access control,简称MAC)网络RTK,区域改正参数法(Flchenkorrekturparameter,简称FKP)网络RTK,网络伪距相位差分(real time DGPS,简称RTD)以及状态空间表示(state space representation,简称SSR)方法等定位方法;其中,差分全球定位系统(differential global positioning system,简称DGPS)。这些定位方式均是采用UE附近的参考站的改正数来进行UE的改正数的计算得到。由于数据类型需要GNSS类型以及定位类型同时确定,即相同的GNSS类型配合不同的定位类型也能够具有不同的数据类型。
可选的,数据类型为根据所述GNSS类型、传输频段和所述定位类型确定的数据类型,即不同的数据类型还能对应到不同的频段(或称频点),由于不同的GNSS类型可以对应到不同的频段,因此,可以在不同的频段上发送不同的数据类型,本申请实施例中的频段可以包括L1,L2,L5,B1,B2,B3,L6,E1,E5a和E5b等,其中,L1,L2和L5频段可用于GPS系统;L1和L2频段可用于GLONASS系统,B1,B2和B3频段可用于BDS系统;E1,E5a和E5b频段可用于Galileo系统,而L1、L5和L6频段可用于QZSS系统。对应不同频段的每个GNSS也都可以支持不同的定位方法,由此三者可以确定数据类型。
不同的GNSS,不同的定位方法以及不同的频段和不同的参数都可以是不同数据类型,也可以结合组成一种定位类型。
举例来说,数据类型时GNSS和定位方法确定的数据类型,可以是某个GNSS和某个定位方法确定一种数据类型。也可以在某个GNSS的数据类型下,进一步区分不同的定位方法数据类型。
可以看出,能够使得相同的GNSS和定位类型且不同的频段能够对应不同的数据类型,使得数据类型的分类更为细化,数据类型能够反映出的信息更为丰富,且不增加额外的传输资源,更易于不同数据类型的第一消息的传输。
举例来说,请参阅图5至图13,图5是GPS系统按照区分频点的方式划分的数据类型的示意图,图6是GLONASS系统按照区分频点的方式划分的数据类型的示意图;图7是BDS系统按照区分频点的方式划分的数据类型的示意图;图8是Galileo系统按照区分频点的方式划分的数据类型的示意图;图9是QZSS系统按照区分频点和改正数的方式划分的数据类型的示意图;图10是GPS系统按照区分频点和改正数的方式划分的数据类型的示意图;图11是GLONASS系统按照区分频点和改正数的方式划分的数据类型的示意图;图12是BDS系统按照区分频点和改正数的方式划分的数据类型的示意图;图13是Galileo系统按照区分频点和改正数的方式划分的数据类型的示意图。其中,星历是指在GPS测量中,天体运行随时间而变的精确位置或轨迹表,它是时间的函数。SIB23、SIB24、SIB25和SIB26指的是SIB的类型,对于SIB来说,可以具有多种类型,图5至图13中的SIB类型并非限定为图中的SIB类型,而是可以进行更改的。
需要说明的是,本申请实施例中的定位辅助数据可以通过统一进行分段或者拆分成多个数据包来进行发送,此时,还可以携带加密信息以及定位辅助数据所采用的标准的版本信息;具体如下表1所示:
表1
组名称
加密信息
定位辅助数据分段列表
标准的版本信息
其中,该加密信息指的是数据被加密的密钥信息。;定位辅助数据分段列表即与图4所示中通过第一标识来标识数据包的位置类似,该列表会列出定位辅助数据拆分后的分段或者数据包的列表。标准的版本信息即定位辅助数据所采用的标准的版本信息。该版本信息可以包括版本号和/或版本类型,通过该版本号和/或版本类型能够唯一确定该定位辅助数据所采用的标准。
除了上述发送定位辅助数据时,均采用统一进行分段或者拆分成多个数据包来进行发送的方式外,还可以采用将数据进行区分发送的方式,例如将一部分定位辅助数据作为对所有GNSS都适用的数据,即公共数据部分,另一部分则可以按照不同的GNSS进行分类的数据,即GNSS定位辅助数据部分。进一步的,可以在每个GNSS下,进一步的对数据进行分类,如当GNSS类型为SBAS时,则可以进一步进行分类。因为SBAS又包括美国的WAAS、 俄罗斯的差分改正和监测系统(system for differential corrections and monitoring,简称SDCM)、欧洲的EGNOS、日本的MSAS以及印度的GPS辅助导航(GPS aided geo augmented navigation,简称GAGAN),则数据根据不同的SBAS进行分类,如有些数据属于WAAS。此时,第一消息中可以携带公共数据分段列表、版本信息和公共定位辅助数据数据包,以及GNSS和/或SBAS数据列表、GNSS和/或者SBAS数据类型,GNSS和/或SBAS的定位辅助数据分段列表、版本信息以及GNSS和/或SBAS的定位辅助数据;此外定位服务器发送数据给基站同时,也可发送版本信息和密钥信息给基站,具体的可以是一个密钥信息,也可以是针对不同的数据类型发送不同的密钥信息。数据发送格式可以具体如下表2所示:
表2
组名称
>公共数据分段列表
>>标准的版本信息
>>公共定位辅助数据数据包
>GNSS
>>GNSS类型
>>SBAS数据类型(可选)
>>GNSS或SBAS的定位辅助数据分段列表
>>>标准的版本信息
>>>GNSS或SBAS的定位辅助数据
其中,该公共数据分段列表或者是GNSS和/或具体SBAS的某一具体类型的定位辅助数据分段列表与图4所示中通过第一标识来标识数据包的位置类似,该公共数据分段列表或者是GNSS和/或SBAS具体SBAS的某一具体类型的定位辅助数据分段列表会列出公共定位辅助数据或者是GNSS或SBAS具体SBAS的某一具体类型的定位辅助数据,在拆分后的分段或者数据包的列表。标准的版本信息即定位辅助数据所采用的标准的版本信息。该版本信息可以包括版本号和/或版本类型,通过该版本号和/或版本类型能够唯一确定该GNSS或SBAS的定位辅助数据或者是公共定位辅助数据所采用的标准。在上述列表中,每个分段都指示版本信息,具体的也可以某一个分段列表或某一数据类型指示一个版本信息。
SBAS通过地球静止轨道(GEO)卫星搭载卫星导航增强信号转发器,可以向用户播发星历误差、卫星钟差、电离层延迟等多种修正信息,实现对于原有卫星导航系统定位精度的改进,从而成为各航天大国竞相发展的手段。目前,全球已经建立起了多个SBAS系统,如美国的WAAS、俄罗斯的差分改正和监测系统(system for differential corrections and monitoring,简称SDCM)、欧洲的EGNOS、日本的MSAS以及印度的GPS辅助导航(GPS aided geo augmented navigation,简称GAGAN)。这些SBAS系统的工作原理大致相同。首先,由大量分布极广的差分站(位置已知)对导航卫星进行监测,获得原始定位数据(伪距、卫星播发的相位等)并送至中央处理设施(主控站),后者通过计算得到各卫星的各种定位修正信息,通过上行注入站发给GEO卫星,最后将修正信息播发给广大用户,从而达到提高定位精度的目的。
当然,出上述按照统一方式或者区分公共以及非公共的定位辅助数据之外,还可以按照不同的数据进行分类,具体可以按照下表3中所列的数据中的一种或者几种或者几种的 组合进行分类;
表3
Figure PCTCN2017104133-appb-000001
其中,按照一种进行分类,即取其中的一种作为分类依据;按照几种进行分类,即从上述列表中选取至少两种作为至少两种分类的依据;按照几种的组合进行分类,即对于一个分类需要至少两种上述数据作为分类依据。
具体的上述数据类型分类里,参考时间具体可以包括的周时间,TOW,参考时间的不确定等信息,这里可以包括不同的GNSS的参考时间。GNSS参考位置指的的参考位置信息,GNSS电离层模型指的是信号经过电离层衰弱后的影响模拟影响,RTK公共辅助数据可以包括天线描述符等信息。
需要说明的是,公共的定位辅助数据主要是调度传输将数据一起发送,具体内容也可能区分不同的GNSS,只是一起发送,当用户接收时进行区分利用。如GNSS时间,具体可以包括不同GNSS的参考时间,如果UE只支持GPS,则可以仅使用GPS参考时间。但是从终端角度,不论支持何种卫星系统都可以接收这部分消息。而与GNSS相关的定位辅助数据,则可以是在基站调度传输时将不同的GNSS区分发送,UE可以选择性接收自己支持的数据。
对于与GNSS相关的定位辅助数据,具体的某一种类型也可以理解为两种类型共同确定的类型,如果GNSS-时间模型,即某一GNSS的UTC模型,如GPS UTC模型,BDS UTC模型等。在与GNSS相关的定位辅助数据中,对于GNSS-为前缀数据类型,表示可以区分不同的GNSS的参数,具体的区分GNSS可以通过调度时实现,如通过SIB1。具体的UTC模型指的是GNSS时间与UTC相关的一组参数。导航模型包括的不同GNSS的卫星信息和星历信息,以及时钟改正数等。实时完整性指的是卫星导航系统的试试状态。数据比特辅助用于跳变 时具体的卫星信号。GNSS-辅助信息指的是不同GNSS的辅助信息。差分改正数包括的是不同卫星系统的改正数信息。RTK一般辅助数据指的是不同GNSS的辅助数据。此类数据定位服务器在发送给基站是需要指示出是具体的某个GNSS的某一种数据类型。
具体定位服务器向基站指示可以如下所示,下述字段仅是示例,并不限制都包含,可以包括一种或者几种以及组合,此外也可以指示不同的定位方法,以下表4进行说明:
表4
组名称
>公共数据分段列表
>>标准的版本信息
>>公共定位辅助数据数据列表
GNSS-参考时间
GNSS-参考位置
GNSS-电离层模型
GNSS-地球定向参数
RTK公共辅助数据1
RTK公共辅助数据2
>GNSS
>>GNSS类型
>>SBAS类型(可选)
>>数据类型列表
>>>标准的版本信息
GNSS-时间模型
GNSS-差分改正数
GNSS-导航模型
GNSS-实时完整性(real-time integrity)
GNSS-数据比特辅助(data bit assistance)
GNSS-获取辅助数据
GNSS-年历
GNSS-UTC模型
GNSS-辅助信息(auxiliary information)
BDS-改正数
BDS-坐标模型参数-r12
RTK一般辅助数据1
RTK一般辅助数据2
即定位服务器在发送数据给基站时,需要指示出不同的数据类型,具体的类型可以单独指示也可以结合指示并不限制。
需要说明的是,本申请实施例中的第一参数可以包括上述表4中的一种或者几种以及 组合,当然表4中出现的第一参数仅仅是示意性的,并不代表仅有这些参数才能作为第一参数,本申请实施例的第一参数还可以具有更多,具体根据实际的应用场景的不同有所不同,此处并不作限定。
需要说明的是,在后续步骤304的广播中,可以使用一个SIB将所有上述统一类型的数据进行广播;对于公共和非公共分类方式,则可以通过一个或几个SIB广播公共数据,其余SIB广播数据与GNSS绑定,具体可以是默认的绑定关系,也可以是调度中实现的SIB与GNSS对应的方式。对于第三种类型,则根据不同的数据类型或者不同数据类型的改变周期使用不同SIB进行发送,即每个数据类型使用一个SIB进行广播或几个类型组合组成一个SIB进行广播。
也就是说定位服务器向基站发送数据时,需要指示出具体的数据类型,如某个参数下进行区分指示不同GNSS类型和/或SBAS类型,或者某个GNSS类型和/或SBAS类型下某个参数类型,这里的参数指的可以是上表中时间模型,UTC模型,改正数等等。此外还可以指示不同的定位的方法,不同版本信息,以及密钥信息等。
本文中需要指示的数据类型包括不同GNSS类型和/或SBAS类型,不同的定位的方法,不同的参数等等中的至少一种或几种的结合指示。
302、服务器将第一消息发送给基站。
其中,服务器在生成第一消息后,会将该第一消息发送给基站。服务器对于第一消息的发送可以采用LTE定位协议A(LTE positioning protocol A,简称LPPA)进行发送。
303、基站接收第一消息。
其中,基站会接收到服务器发送的第一消息。
304、基站广播第一消息内的第一数据包。
其中,该广播方式可以是SIB广播,对于SIB广播,其中的SIB的类型有多种,SIB的调度信息可通过主信息模块(master information block,简称MIB)承载,其中,MIB主要用于通过物理广播信道(physical broadcast channel,简称PBCH)传输系统需要的基本信息。例如,(1)SIB1:包含非接入层(non-access stratum,简称NAS)层的系统信息;(2)SIB3:包含用于小区选择和重选的参数;(3)SIB5:包含用于小区公共物理信道配置的参数;(4)SIB7:包含上行链路干扰和动态持续电平等信息;(5)SIB11:包含测量控制信息。(6)SIB18:空闲与连接模式下临近小区的公共陆地移动网络(Public Land Mobile Network,简称PLMN)标识。(7)SIB19:包含不同系统小区间的频率和优先级等。
可选的,基站将收到的多个第一数据包进行广播,并在每个广播的数据包或者广播消息中还包括空包指示,包含所述空包指示的第一数据包中不具有任何定位辅助数据,此时广播的数据中可以不包含任何数据类型的定位辅助数据,即可以是仅有数据类型和第一标识等标识性内容,并不包含任何的实际的辅助定位数据。这种情况出现在由于定位辅助数据的大小是不确定的,但是第一消息的单位时间内的传输数量是确定的,因此在定位辅助数据较少时,分割不出足够的第一消息进行传输,从而出现有些第一消息中并未携带定位辅助数据的情况,本申请实施例在这种不具有实际的定位辅助数据的第一消息中会添加空包指示,从而使得UE在获取到这种第一消息的空包指示后,不用去解析这种第一消息的数 据部分,从而提升资源的利用率。
可选的,空包指示可以在每个包中进行指示,即对出现空包位置的包序号下面对应空包指示。则接收到该指示信息时,终端设备在具有空包位置的不去接收数据包。
可选的,广播数据包或者广播消息中还包括重传指示,所述重传指示用于指示所述第一数据包为某一数据类型重传的数据包,此情形下,基站可以采用不具有所述定位辅助数据的第一数据包(即空包)重传预设数据类型。即第一消息中还可以是一种重传消息,该重传是针对在将定位辅助数据拆分后得到的多个第一消息时,例如针对步骤301的说明中,实际1s固定传输10或12个数据包,但是定位辅助数据拆分后的第一数据包仅有8个,因此会出现2个或4个空包;对8个数据包中某一数据类型的数据采用该2个或4空包中的一个进行重传,采用这种第一数据包进行重传使得能够对空包加以利用,提升资源的利用率。
可选的,基站将第一消息广播至UE的过程可以是,基站首先确定第一消息的可视字段,该可视字段即在广播后,UE能够直接读取而无需接收到消息后解析才可知晓,使得UE可以不接收自身不需要的数据;该可视字段包括第一数据包的包头,该包头可以有以下方式,第一种方式,包头包括所述第一标识和所述数据类型;第二种方式,该包头包括所述第一标识、所述第一标识的后续第一标识和所述数据类型;以该第一标识是第一数据包的包序号为例,第一种的包头仅包含当前包的包序号,UE可以识别该第一数据包是定位辅助数据中的第几个数据包。第二种包头包含当前第一数据包的包序号以及后续包序号,从而使得UE能够知晓该第一数据包的后续的一个或者多个第一数据包的包序号以及内容。
需要说明的是,基站在广播第一数据包的同时,还可以将结尾数据包指示、所述第一标识、所述定位定法以及所述所述定位辅助数据所使用的标准的版本信息之中的至少一个广播至终端。对于某一数据类型的第一数据包来说,该结尾数据包指示用于指示当前数据类型已经没有数据包,即当前数据类型的所有数据包已发送完成。
需要说明的是,本申请实施例中,第一消息除了包括第一数据包发送之外,第一消息还可包括第二数据包,此情形下,步骤304可以是:
首先,基站确定第一消息的可视字段。
其中,该可视字段包括第二数据包的内容,该第二数据包括所述第一标识和所述数据类型或者,该第二数据包包括所述第一标识、所述第一标识的后续第一标识和所述数据类型;第三数据包则包括定位辅助数据,且第二数据包用于指示至该第三数据包。
接着,基站将该第一消息中第二数据包和第一数据包通过广播的方式发送。
可以看出,该第二数据包加上第一数据包的内容相当于前述的第一数据包的内容,具体的,第二数据包部分相当于第一数据包的包头。通过此拆分方式,第二数据包和第一数据包需要是时间上相邻的两个数据包,例如两者之间的时差可以是几毫秒,而非相隔超过80毫秒,保证两个包在时间上是连续传输的数据包,在实际的应用场景中,可对传输周期进行定义;UE在解析了第二数据包后,若发现第二数据包是自身需求的数据,便会解析紧接着的第一数据包,并获得第二数据包中所指示的内容。此方式使得UE在识别阶段仅解析 第二数据包即可,而无需解析第一数据包,只有通过解析第二数据包的结果确定需要后面的数据后,才会解析第一数据包。从而使得UE可以接收自己支持且需要的数据,节省UE的处理资源,一方面节省UE的功耗,另一方面还能够提升系统效率。
举例来说,请参阅图14,图14是本申请实施例的数据传输方法的一个实施例图,其中,对于第一组数据包,第1个数据包为第二数据包,包括包头的内容,第2个数据包为GPS的辅助定位数据的内容。UE在通过PDCCH接收到该第二数据包和第一数据包时,首先通过解PDCCH获得第二数据包的内容,即包头内的内容,根据包头中的第一标识以及数据确定是否为UE所需的数据,若是,则会再次解PDCCH获得后续的GPS的辅助定位数据的内容。
可选的,第二数据包中还可以携带第一数据包的资源位置的调度信息,从而UE在解析了第二数据包后,即可知晓其中的指示的第三数据包在时频资源中的具体位置,从而能够直接在需要改第一数据包时,根据该调度信息查找第一数据包,从而一方面无需再次解PDCCH的过程,另一方面该第二数据包和第一数据包在传输时差上的高要求,即可以是中间相隔几个数据包。
举例来说,请参阅图15,图15是本申请实施例的数据传输方法的一个实施例图,其中,对于第一组数据包,第1个数据包为第二数据包,包括包头的内容,第2个数据包为GPS的辅助定位数据的内容。UE在通过PDCCH接收到该第二数据包和第一数据包时,首先通过解PDCCH获得第二数据包的内容,即包头内的内容,根据包头中的第一标识以及数据确定是否为UE所需的数据,若是,则根据包头中的第三数据包的资源位置的调度信息查找到第一数据包,并获取其中的内容。
需要说明的是,基站在广播第一数据包和第二数据包的同时,还可以将结尾数据包指示、所述第一标识、所述定位定法以及所述所述定位辅助数据所使用的标准的版本信息之中的至少一个广播至终端。
305、UE接收第一消息。
其中,UE由于可以通过可视字段获知广播的数据包是否为自身需求且支持的数据,因此UE可以有选择的对广播的数据包进行接收或者选择是否进行解密,从而达到UE节省功耗的目的。当UE收到数据包根据可视字段发现发送的内容不支持时,可以将数据包丢弃。
306、UE解析第一消息获取定位辅助数据。
其中,UE在接收了第一消息后,便可以通过图4、图14或者图15中所示的方式来获取所需类型的数据,直到获取的数据包中的内容能够组成完成的定位辅助数据。
需要说明的是,除上述实施方式之外,在步骤301之前,本申请实施例还可以添加获取基站广播定位辅助数据的速率或数据量大小,具体的,请参阅图16,图16是本申请实施例的数据传输方法的一个实施例图,该方法中步骤405至步骤步骤410与图3中的步骤301至步骤306类似,此处不再赘述;此外,该方法还包括:
401、服务器收集定位辅助数据。
其中,该定位辅助数据即用于终端进行定位测量或者计算的数据。
402、服务器向基站发送第一请求消息。
其中,该第一请求消息用于请求基站发送所述定位辅助数据进行广播的配置;该请求消息里可以携带定位辅助数据的数据速率或者数据量大小,具体的,可以包括不同的数据类型的不同数据速率或者数据量大小。该消息里可以包括至少一种数据类型以及速率或者。对于基站来说,可以根据收到的数据速率或者大小信息进行相应的广播配置。例如对于不同GNSS的改正数有不同的速率或者数据量,则定位服务器可以通知基站。如GPS改正数速率200bps,GLONASS改正数速率300bps.或者不同GNSS的UTC模型等等。当然也可以是不同GNSS的数据速率或者数据量。数据类型可以为本文所述的类型或类型的组合,但不限制数据类型。
或者,该第一请求信息请求基站广播的配置,具体的,可以包括可广播的数据量大小,以及传输周期。因此,服务器需要从基站处获取这些信息后,以此确定出向基站发送定位辅助数据的速率或者数据量大小。即第一请求消息也可以不包含数据速率或者数据量大小。
该消息名称可以为RTK信息请求。
403、基站根据第一请求消息向发送第一响应消息。
其中,该第一响应消息中会携带基站发送SIB或者SI数据量大小和/或传输周期等信息,该传输周期即如前述所述,每隔固定时长传输一次数据包,例如80毫秒。该数据量大小即每个数据包能够承载的最大数据量。该发送数据量大小和/或传输周期这些信息会被携带在SIB或者SI的配置信息中。基站发送SIB或者SI数据量大小和/或传输周期可以与不同的数据类型相关。
此外该第一响应消息之前不限制有无第一请求消息。
基站发送给定位服务器的SIB或者SI传输数据量的大小和/或周期,具体的,可以是基站根据不同数据类型的速率或者数据量进行区分发送,即不同的数据类型允许发送的数据包大小和/或传输周期不同。如果不同的数据类型和不同的系统消息相关联,则基站可以发送相应SIB的数据包大小和/或传输周期。一个示例为,基站发送给定位服务器GPS的数据量为100byte,传输周期为160毫秒,发送BDS数据量为50byte,传输周期是320毫秒,则定位服务器则相应的进行数据分段或者拆包。数据类型定义如上述实施例所述,但不限于这些类型。这里基站给定位服务器发送的数量为上限示意,并不限制具体的字节数,即定位服务器进行分段时数据量大小不允许超过该数据量。
每一组配置的示意如下表5所示:
表5
Figure PCTCN2017104133-appb-000002
可选的,基站可以向服务器指示重复发送该包的次数。
404、服务器根据第一响应消息中的SIB或者SI的配置信息向基站发送第一消息。
其中,服务器在获取到该SIB或者SI的配置信息后,即可能够知晓基站发送数据量大小和/或传输周期,从而能够据此对定位辅助数据进行分段或拆分成多个数据包进行发送。当然,定位辅助数据可以采用前述同一进行分段、或者区分公共和非公共部分以及还可以按照表3中给出的数据中的一种或者几种或者几种的组合的方式进行分类发送。
需要说明的是,服务器在完成某一数据类型的数据包后,会给基站发送一个结尾数据包指示,用于指示该数据类型指示当前数据类型已经没有数据包,即当前数据类型的所有数据包已发送完成。而该结尾数据包指示可以在基站广播第一数据包或者第一数据包和第二数据包时,广播给终端,使得终端在接收到该结尾数据包指示后,不再接收该数据类型的数据包。
服务器向基站发送的第一消息可以使用本文上述实施例中的任一种方式,但不限于这些方式。
上面对本申请实施例的数据传输方法进行了介绍,下面对本申请实施例的基站进行介绍,请参阅图17,图17是本申请实施例的基站的一个示意图,其中,该基站可包括:
收发模块1701,用于接收服务器发送的第一消息,所述第一消息中携带有包含定位辅助数据的第一数据包;
广播模块1702,用于将所述第一消息内的第一数据包广播至终端,以使得所述终端根据所述定位辅助数据计算所述终端的定位信息。
可选的,所述第一消息中携带有第一标识,所述第一标识用于标识所述第一消息中的第一数据包。
可选的,所述第一消息中还携带有所述第一消息中的定位辅助数据的数据类型,所述数据类型用于区分定位辅助数据的不同类别。
可选的,所述数据类型为根据全球导航卫星系统GNSS类型确定的数据类型;或,
所述数据类型为根据传输频段和定位方法之中的至少一种,以及所述GNSS类型确定的数据类型;或,
所述数据类型为根据不同的第一参数确定的类型。
可选的,所述第一消息中还包括空包指示,包含所述空包指示的第一消息中不具有所述定位辅助数据。
可选的,所述第一消息中还包括重传指示,所述重传指示用于指示所述第一消息为数据类型重传的消息,所述广播模块还用于:
采用不具有所述定位辅助数据的第一消息重传预设数据类型的第一消息。
可选的,所述第一消息中还包括所述定位辅助数据的所使用的标准的版本信息。
可选的,所述广播模块还用于:
将所述第一标识、所述定位定法以及所述所述定位辅助数据所使用的标准的版本信息之中的至少一个广播至终端。
可选的,所述定位辅助数据包括公共辅助数据和GNSS辅助数据,所述GNSS辅助数据与所述定位辅助数据的数据类型相对应;或,
所述定位辅助数据包括公共辅助数据和GNSS辅助数据中的星基增强系统SBAS辅助数据,所述GNSS辅助数据中的SBAS辅助数据与所述定位辅助数据的数据类型相对应。
可选的,所述基站还包括处理模块1703,用于确定所述第一消息的可视字段,所述可视字段包括所述第一消息中的第一数据包的包头,所述包头包括所述第一标识和所述数据类型,或者,所述包头包括所述第一标识、所述第一标识的后续第一标识和所述数据类型;
所述广播模块1702具体用于通过SIB广播将所述第一消息广播至终端。
可选的,所述第一消息中还包括第二数据包,所述处理模块1703,用于确定所述第一消息的可视字段,所述可视字段包括第二数据包,所述第二数据包包括所述第一标识和所述数据类型或者,所述第二数据包包括所述第一标识、所述第一标识的后续第一标识和所述数据类型;所述第二数据包用于指示至所述第一数据包;
所述广播模块1702具体用于通过SIB广播将所述第一消息内的第一数据包广播至终端。
可选的,所述第二数据包括指示所述第三数据包的资源位置的调度信息。
可选的,所述收发模块1701还用于接收服务器发送的第一请求消息;
所述收发模块1701还用于根据所述第一请求消息向所述服务器发送第一响应消息,所述第一响应消息中携带有系统信息块SIB或SI的配置信息,所述SIB或SI的配置信息包括发送数据量大小和/或传输周期。
可选的,所述第一请求消息中携带定位辅助数据的速率或数据量大小,所述处理模块1703还用于:
根据所述定位辅助数据的速率或数据量大小确定SIB或SI的配置信息;
所述收发模块1701具体用于:
向所述服务器发送所述第一响应消息。
上面对本申请实施例的基站进行了介绍,下面对本申请实施例的服务器进行介绍,请参阅图18,图18是本申请实施例的服务器的一个示意图,其中,该服务器可包括:
处理模块1801,用于生成第一消息,所述第一消息中携带包含定位辅助数据的第一数据包;
收发模块1802,用于将所述第一消息发送至基站,以使得所述基站将所述第一消息内的第一数据包广播至终端,并使得所述终端根据所述定位辅助数据计算所述终端的定位信 息。
可选的,所述第一消息中携带有第一标识,所述第一标识用于标识所述第一消息中的第一数据包中的定位辅助数据中的子集在所述定位辅助数据中的位置。
可选的,所述第一消息中还携带有所述第一消息中的定位辅助数据的数据类型,所述数据类型用于区分定位辅助数据的不同类别。
可选的,所述数据类型为根据全球导航卫星系统GNSS类型确定的数据类型;或,
所述数据类型为根据传输频段和定位方法之中的至少一种,以及所述GNSS类型确定的数据类型;或,
所述数据类型为根据不同的第一参数确定的类型。
可选的,所述第一消息中还包括空包指示,包含所述空包指示的第一消息中不具有所述定位辅助数据。
可选的,所述第一消息中还包括重传指示,所述重传指示用于指示所述第一消息为数据类型重传的消息,所述广播模块还用于:
采用不具有所述定位辅助数据的第一消息重传预设数据类型的第一消息。
可选的,所述第一消息中还包括所述定位辅助数据的所使用的标准的版本信息。
可选的,所述定位辅助数据包括公共辅助数据和GNSS辅助数据,所述GNSS辅助数据与所述定位辅助数据的数据类型相对应;或,
所述定位辅助数据包括公共辅助数据和GNSS辅助数据中的星基增强系统SBAS辅助数据,所述GNSS辅助数据中的SBAS辅助数据与所述定位辅助数据的数据类型相对应。
可选的,所述处理模块1801还用于对所述第一消息进行加密;
所述收发模块1802还用于将所述加密后的第一消息发送至基站。
可选的,所述服务器还包括:
采集模块1803,用于收集定位辅助数据;
所述收发模块1802还用于向基站发送第一请求消息,所述第一请求消息用于获取基站发送所述定位辅助数据的速率或数据量大小;
所述收发模块1802还用于接收基站发送的第一响应消息,所述第一响应消息中携带有系统信息块SIB或SI的配置信息,所述SIB或SI的配置信息包括发送数据量大小和/或传输周期。
上面对本申请实施例的服务器进行了介绍,下面对本申请实施例中基站的结构进行描述,请参阅图19,图19是本申请实施例的设备的一个实施例图,其中,基站19可包括相连接的至少一个处理器1902、至少一个收发器1901以及存储器1903,本申请实施例涉及的基站可以具有比图19所示出的更多或更少的部件,可以组合两个或更多个部件,或者可以具有不同的部件配置或设置,各个部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件或硬件和软件的组合实现。
具体的,对于图17所示的实施例来说,该处理器1902能实现图17所示实施例中的基站的处理模块1703的功能,该收发器1901能实现图8所示实施例中的基站的收发模块1701和广 播模块1702的功能,存储器1903用于程序指令,通过执行该程序指令实现图3或者图16所示实施例的数据传输方法。
上面对本申请实施例的服务器进行了介绍,下面对本申请实施例中服务器的结构进行描述,请参阅图20,图20是本申请实施例的服务器的一个实施例图,其中,服务器20可包括相连接的至少一个处理器2002、至少一个收发器2001以及存储器2003,本申请实施例涉及的服务器可以具有比图20所示出的更多或更少的部件,可以组合两个或更多个部件,或者可以具有不同的部件配置或设置,各个部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件或硬件和软件的组合实现。
具体的,对于图18所示的实施例来说,该处理器2002能实现图18所示实施例中的服务器的处理模块1801的功能,该收发器2001能实现图18所示实施例中的设备的收发模块1802的功能,该处理器2002和收发器2001相结合能实现所述采集模块1803的功能,具体处理器2002通过收发器2001向第三方参考站发送数据获取请求,由收发器2001接收第三方参考站反馈的数据,并由处理器2002计算出定位辅助数据;存储器1903用于程序指令,通过执行该程序指令实现图3或者图16所示实施例的数据传输方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案和范围。

Claims (42)

  1. 一种数据传输方法,其特征在于,包括:
    基站接收服务器发送的第一消息,所述第一消息中携带有包含定位辅助数据的第一数据包;
    所述基站将所述第一消息内的第一数据包广播至终端,以使得所述终端根据所述定位辅助数据计算所述终端的定位信息。
  2. 根据权利要求1所述的数据传输方法,其特征在于,所述第一消息中还携带有所述第一消息中的定位辅助数据的数据类型,所述数据类型用于区分定位辅助数据的不同类别。
  3. 根据权利要求1或2所述的数据传输方法,其特征在于,所述第一消息中携带有第一标识,所述第一标识用于标识所述第一消息中的第一数据包。
  4. 根据权3所述的数据传输方法,其特征在于,所述数据类型为根据全球导航卫星系统GNSS类型确定的数据类型;或,
    所述数据类型为根据传输频段和定位方法之中的至少一种,以及所述GNSS类型确定的数据类型;或,
    所述数据类型为根据不同的第一参数确定的类型。
  5. 根据权利要求4所述的数据传输方法,其特征在于,所述第一消息中还包括空包指示,包含所述空包指示的第一消息中不具有所述定位辅助数据。
  6. 根据权利要求5所述的数据传输方法,其特征在于,所述第一消息中还包括重传指示,所述重传指示用于指示所述第一消息为数据类型重传的消息,所述方法还包括:
    所述基站采用不具有所述定位辅助数据的第一消息重传预设数据类型的第一消息。
  7. 根据权利要求4至6中任一项所述的数据传输方法,其特征在于,所述第一消息中还包括所述定位辅助数据所使用的标准的版本信息。
  8. 根据权利要求7所述的数据传输方法,其特征在于,所述方法还包括:
    所述基站将结尾数据包指示、所述第一标识、所述定位定法以及所述定位辅助数据所使用的标准的版本信息之中的至少一个广播至终端。
  9. 根据权利要求1至7中任一项所述的数据传输方法,其特征在于,所述定位辅助数据包括公共辅助数据和GNSS辅助数据,所述GNSS辅助数据与所述定位辅助数据的数据类型相对应;或,
    所述定位辅助数据包括公共辅助数据和GNSS辅助数据中的星基增强系统SBAS辅助数据,所述GNSS辅助数据中的SBAS辅助数据与所述定位辅助数据的数据类型相对应。
  10. 根据权利要求3至9中任一项所述的数据传输方法,其特征在于,所述基站将所述第一消息内的第一数据包广播至终端包括:
    所述基站确定所述第一消息的可视字段,所述可视字段包括所述第一消息中的第一数据包的包头,所述包头包括所述第一标识和所述数据类型,或者,所述包头包括所述第一标识、所述第一标识的后续第一标识和所述数据类型;
    所述基站通过系统信息块SIB广播将所述第一消息内的第一数据包广播至终端。
  11. 根据权利要求3至10中任一项所述的数据传输方法,其特征在于,所述第一消息 中还包括第二数据包,所述基站将所述第一消息内的第一数据包广播至终端包括:
    所述基站确定所述第一消息的可视字段,所述可视字段包括第二数据包,所述第二数据包包括所述第一标识和所述数据类型或者,所述第二数据包包括所述第一标识、所述第一标识的后续第一标识和所述数据类型;所述第二数据包用于指示至所述第一数据包;
    所述基站通过SIB广播将所述第一消息内的第一数据包和第二数据包广播至终端。
  12. 根据权利要求11所述的数据传输方法,其特征在于,所述第二数据包括指示所述第一数据包的资源位置的调度信息。
  13. 根据权利要求1至12中任一项所述的数据传输方法,其特征在于,在基站接收服务器发送的第一消息之前,所述方法还包括:
    基站接收服务器发送的第一请求消息;
    基站根据所述第一请求消息向所述服务器发送第一响应消息,所述第一响应消息中携带有系统信息块SIB或SI的配置信息,所述SIB或SI的配置信息包括发送数据量大小和/或传输周期。
  14. 根据权利要求13所述的数据传输方法,其特征在于,所述第一请求消息中携带定位辅助数据的速率或数据量大小,所述基站根据所述第一请求消息向所述服务器发送第一响应消息包括:
    所述基站根据所述定位辅助数据的速率或数据量大小确定SIB或SI的配置信息;
    所述基站向所述服务器发送所述第一响应消息。
  15. 一种数据传输方法,其特征在于,包括:
    服务器生成第一消息,所述第一消息中携带有包含定位辅助数据的第一数据包;
    所述服务器将所述第一消息发送至基站,以使得所述基站将所述第一消息内的第一数据包广播至终端,并使得所述终端根据所述定位辅助数据计算所述终端的定位信息。
  16. 根据权利要求14所述的数据传输方法,其特征在于,所述第一消息中携带有第一标识,所述第一标识用于标识所述第一消息中的第一数据包。
  17. 根据权利要求15所述的数据传输方法,其特征在于,所述第一消息中还携带有所述第一消息中的定位辅助数据的数据类型,所述数据类型用于区分定位辅助数据的不同类别。
  18. 根据权利要求17所述的数据传输方法,其特征在于,所述数据类型为根据全球导航卫星系统GNSS类型确定的数据类型;或,
    所述数据类型为根据传输频段和定位方法之中的至少一种,以及所述GNSS类型确定的数据类型;或,
    所述数据类型为根据不同的第一参数确定的类型。
  19. 根据权利要求15至18中任一项所述的数据传输方法,其特征在于,所述服务器将所述第一消息发送至基站之前,所述方法还包括:
    所述服务器对所述第一消息进行加密;
    所述服务器将所述第一消息发送至基站包括:
    所述服务器将所述加密后的第一消息发送至基站。
  20. 根据权利要求15至19中任一项所述的数据传输方法,其特征在于,所述方法还包括:
    所述服务器收集定位辅助数据;
    所述服务器向基站发送第一请求消息,所述第一请求消息用于获取基站发送所述定位辅助数据的速率或数据量大小;
    所述服务器接收基站发送的第一响应消息,所述第一响应消息中携带有系统信息块SIB或SI的配置信息,所述SIB或SI的配置信息包括发送数据量大小和/或传输周期。
  21. 一种基站,其特征在于,包括:
    收发模块,用于接收服务器发送的第一消息,所述第一消息中携带有包含定位辅助数据的第一数据包;
    广播模块,用于将所述第一消息内的第一数据包广播至终端,以使得所述终端根据所述定位辅助数据计算所述终端的定位信息。
  22. 根据权利要求21所述的基站,其特征在于,所述第一消息中还携带有所述第一消息中的定位辅助数据的数据类型,所述数据类型用于区分定位辅助数据的不同类别。
  23. 根据权利要求21或22所述的基站,其特征在于,所述第一消息中携带有第一标识,所述第一标识用于标识所述第一消息中的第一数据包。
  24. 根据权利要求23所述的基站,其特征在于,所述数据类型为根据全球导航卫星系统GNSS类型确定的数据类型;或,
    所述数据类型为根据传输频段和定位方法之中的至少一种,以及所述GNSS类型确定的数据类型;或,
    所述数据类型为根据不同的第一参数确定的类型。
  25. 根据权利要求24所述的基站,其特征在于,所述第一消息中还包括空包指示,包含所述空包指示的第一消息中不具有所述定位辅助数据。
  26. 根据权利要求25所述的基站,其特征在于,所述第一消息中还包括重传指示,所述重传指示用于指示所述第一消息为数据类型重传的消息,所述广播模块还用于:
    采用不具有所述定位辅助数据的第一消息重传预设数据类型的第一消息。
  27. 根据权利要求23至26中任一项所述的基站,其特征在于,所述第一消息中还包括所述定位辅助数据的所使用的标准的版本信息。
  28. 根据权利要求27所述的基站,其特征在于,所述广播模块还用于:
    将结尾数据包指示、所述第一标识、所述定位定法以及所述定位辅助数据所使用的标准的版本信息之中的至少一个广播至终端。
  29. 根据权利要求21至26中任一项所述的基站,其特征在于,所述定位辅助数据包括公共辅助数据和GNSS辅助数据,所述GNSS辅助数据与所述定位辅助数据的数据类型相对应;或,
    所述定位辅助数据包括公共辅助数据和GNSS辅助数据中的星基增强系统SBAS辅助数据,所述GNSS辅助数据中的SBAS辅助数据与所述定位辅助数据的数据类型相对应。
  30. 根据权利要求24至29中任一项所述的基站,其特征在于,所述基站还包括处理 模块,用于确定所述第一消息的可视字段,所述可视字段包括所述第一消息中的第一数据包的包头,所述包头包括所述第一标识和所述数据类型,或者,所述包头包括所述第一标识、所述第一标识的后续第一标识和所述数据类型;
    所述广播模块具体用于通过SIB广播将所述第一消息内的第一数据包广播至终端。
  31. 根据权利要求24至29中任一项所述的基站,其特征在于,所述第一消息中还包括第二数据包,所述基站还包括处理模块,用于确定所述第一消息的可视字段,所述可视字段包括第二数据包,所述第二数据包包括所述第一标识和所述数据类型或者,所述第二数据包包括所述第一标识、所述第一标识的后续第一标识和所述数据类型;所述第二数据包用于指示至所述第一数据包;
    所述广播模块具体用于通过SIB广播将所述第一消息内的第一数据包和第二数据包广播至终端。
  32. 根据权利要求30所述的基站,其特征在于,所述第二数据包括指示所述第一数据包的资源位置的调度信息。
  33. 根据权利要求22至32中任一项所述的基站,其特征在于,所述收发模块还用于接收服务器发送的第一请求消息;
    所述收发模块还用于根据所述第一请求消息向所述服务器发送第一响应消息,所述第一响应消息中携带有系统信息块SIB或SI的配置信息,所述SIB或SI的配置信息包括发送数据量大小和/或传输周期。
  34. 根据权利要求33所述的基站,其特征在于,所述第一请求消息中携带定位辅助数据的速率或数据量大小,所述处理模块还用于:
    根据所述定位辅助数据的速率或数据量大小确定SIB或SI的配置信息;
    所述收发模块具体用于:
    向所述服务器发送所述第一响应消息。
  35. 一种服务器,其特征在于,包括:
    处理模块,用于生成第一消息,所述第一消息中携带包含定位辅助数据的第一数据包;
    收发模块,用于将所述第一消息发送至基站,以使得所述基站将所述第一消息内的第一数据包广播至终端,并使得所述终端根据所述定位辅助数据计算所述终端的定位信息。
  36. 根据权利要求35所述的服务器,其特征在于,所述第一消息中携带有第一标识,所述第一标识用于标识所述第一消息中的第一数据包。
  37. 根据权利要求36所述的服务器,其特征在于,所述第一消息中还携带有所述第一消息中的定位辅助数据的数据类型,所述数据类型用于区分定位辅助数据的不同类别。
  38. 根据权利要求37所述的服务器,其特征在于,所述数据类型为根据全球导航卫星系统GNSS类型确定的数据类型;或,
    所述数据类型为根据传输频段和定位方法之中的至少一种,以及所述GNSS类型确定的数据类型;或,
    所述数据类型为根据不同的第一参数确定的类型。
  39. 根据权利要求35至38中任一项所述的服务器,其特征在于,所述处理模块还用 于对所述第一消息进行加密;
    所述收发模块还用于将所述加密后的第一消息发送至基站。
  40. 根据权利要求36至39中任一项所述的服务器,其特征在于,所述服务器还包括:
    采集模块,用于收集定位辅助数据;
    所述收发模块还用于向基站发送第一请求消息,所述第一请求消息用于获取基站发送所述定位辅助数据的速率或数据量大小;
    所述收发模块还用于接收基站发送的第一响应消息,所述第一响应消息中携带有系统信息块SIB或SI的配置信息,所述SIB或SI的配置信息包括发送数据量大小和/或传输周期。
  41. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-14中任一项所述的报文处理方法或如权利要求15-20中任一项所述的报文处理方法。
  42. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1-14中任一项所述的报文处理方法或如权利要求15-20中任一项所述的报文处理方法。
PCT/CN2017/104133 2017-09-28 2017-09-28 一种数据传输方法、服务器及基站 WO2019061208A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2017/104133 WO2019061208A1 (zh) 2017-09-28 2017-09-28 一种数据传输方法、服务器及基站
CN201780091628.9A CN110832352A (zh) 2017-09-28 2017-09-28 一种数据传输方法、服务器及基站
EP17926670.5A EP3677930A4 (en) 2017-09-28 2017-09-28 DATA TRANSFER PROCEDURE, SERVER AND BASE STATION
US16/832,579 US20200229131A1 (en) 2017-09-28 2020-03-27 Data transmission method, server, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/104133 WO2019061208A1 (zh) 2017-09-28 2017-09-28 一种数据传输方法、服务器及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/832,579 Continuation US20200229131A1 (en) 2017-09-28 2020-03-27 Data transmission method, server, and base station

Publications (1)

Publication Number Publication Date
WO2019061208A1 true WO2019061208A1 (zh) 2019-04-04

Family

ID=65902243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104133 WO2019061208A1 (zh) 2017-09-28 2017-09-28 一种数据传输方法、服务器及基站

Country Status (4)

Country Link
US (1) US20200229131A1 (zh)
EP (1) EP3677930A4 (zh)
CN (1) CN110832352A (zh)
WO (1) WO2019061208A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021151933A1 (en) * 2020-01-31 2021-08-05 Sony Group Corporation Base station, access mobility management entity, evolved serving mobile location center and user equipment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166501B (zh) * 2018-02-11 2021-06-29 华为技术有限公司 一种定位方法、终端及服务器
CN111522028A (zh) * 2020-04-14 2020-08-11 西南交通大学 一种海量gnss终端的位置服务方法
CN112887934B (zh) * 2021-01-25 2023-02-17 爱驰汽车有限公司 基于共享定位辅助设备的定位方法、装置、服务器及介质
CN114527497A (zh) * 2022-02-08 2022-05-24 国汽大有时空科技(安庆)有限公司 一种基于ppp-rtk的定位增强信息传输方法
CN114660634B (zh) * 2022-02-23 2022-12-13 航天东方红卫星有限公司 一种提高卫星多源遥感数据记放比的方法
CN117349322B (zh) * 2023-12-05 2024-03-08 摩尔元数(福建)科技有限公司 基于分析控制图的spc实时分析方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925104A (zh) * 2009-06-16 2010-12-22 华为技术有限公司 一种定位数据的获取方法、装置及通信系统
US20110032859A1 (en) * 2008-04-14 2011-02-10 Lauri Wirola Providing positioning assistance data
CN101998625A (zh) * 2009-08-17 2011-03-30 中兴通讯股份有限公司 定位辅助数据的发送方法与装置及基站
CN104215969A (zh) * 2014-08-26 2014-12-17 北京邮电大学 一种发送定位辅助信息的方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6895249B2 (en) * 2000-07-14 2005-05-17 Qualcomm Incorporated Method and apparatus for broadcasting position location data in a wireless communication system
ATE499787T1 (de) * 2004-04-30 2011-03-15 Research In Motion Ltd System und verfahren zur sicherung von daten
CN101115307B (zh) * 2007-06-19 2010-06-16 中兴通讯股份有限公司 一种辅助全球定位过程中实现用户隐私安全的方法及系统
US20110200024A1 (en) * 2010-02-12 2011-08-18 Jeyhan Karaoguz Providing gnss assistance data via a wireless lan access point
US9651675B2 (en) * 2010-02-12 2017-05-16 Avago Technologies General Ip (Singapore) Pte. Ltd. Estimating frequency of a GNSS enabled device based on time stamps
US20150087341A1 (en) * 2013-09-20 2015-03-26 Qualcomm Incorporated Home node b (hnb) location services
US9119167B2 (en) * 2011-08-30 2015-08-25 Qualcomm Incorporated Generic broadcast of location assistance data
US9405010B2 (en) * 2012-05-02 2016-08-02 Raven Industries, Inc. Geospatial positioning using correction information provided over cellular control channels
CN105934982A (zh) * 2014-12-29 2016-09-07 华为技术有限公司 一种定位方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110032859A1 (en) * 2008-04-14 2011-02-10 Lauri Wirola Providing positioning assistance data
CN101925104A (zh) * 2009-06-16 2010-12-22 华为技术有限公司 一种定位数据的获取方法、装置及通信系统
CN101998625A (zh) * 2009-08-17 2011-03-30 中兴通讯股份有限公司 定位辅助数据的发送方法与装置及基站
CN104215969A (zh) * 2014-08-26 2014-12-17 北京邮电大学 一种发送定位辅助信息的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3677930A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021151933A1 (en) * 2020-01-31 2021-08-05 Sony Group Corporation Base station, access mobility management entity, evolved serving mobile location center and user equipment

Also Published As

Publication number Publication date
EP3677930A4 (en) 2020-08-19
CN110832352A (zh) 2020-02-21
US20200229131A1 (en) 2020-07-16
EP3677930A1 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
WO2019061208A1 (zh) 一种数据传输方法、服务器及基站
CN110786024B (zh) 一种定位辅助数据的发送方法、设备及系统
WO2018201501A1 (zh) 一种辅助数据传输方法、设备及系统
KR101645143B1 (ko) 무선 통신 네트워크에서 다양한 위성 포지셔닝 시스템과 관련된 보조 데이터를 요청/제공하기 위한 방법 및 장치
US8982716B2 (en) Providing positioning assistance data
CN111345070B (zh) 一种传输数据的方法、网络设备和服务器
CN102216799B (zh) 用于定位的dgnss校正
US20200229072A1 (en) System information change indication method and apparatus
KR102397168B1 (ko) 무선 통신 네트워크에서의 서버, 무선 네트워크 노드, 및 방법들
CN112055989B (zh) 用于定位系统信息的发送和接收的方法和装置
CN102077114B (zh) 用于在通信网络中传送发射机信息的方法和装置
CN102037374A (zh) 发射机传送位置信息作为对定位服务的帮助
RU2439604C2 (ru) Способ, система, оборудование пользователя, элемент сети и программный продукт для передачи вспомогательных данных позиционирования в универсальном формате
CN114430292B (zh) 识别gnss伪星数据的方法、装置以及相关设备
WO2019157729A1 (zh) 辅助数据的发送方法和装置
Alanen et al. From Divergence to Convergence, GNSS Assistance in Network Carrier Independent Format

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017926670

Country of ref document: EP

Effective date: 20200401