WO2019059469A1 - 요철을 가지는 압력 센서 및 이의 제조 방법 - Google Patents

요철을 가지는 압력 센서 및 이의 제조 방법 Download PDF

Info

Publication number
WO2019059469A1
WO2019059469A1 PCT/KR2018/001596 KR2018001596W WO2019059469A1 WO 2019059469 A1 WO2019059469 A1 WO 2019059469A1 KR 2018001596 W KR2018001596 W KR 2018001596W WO 2019059469 A1 WO2019059469 A1 WO 2019059469A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
pressure
sensor portion
region
convex
Prior art date
Application number
PCT/KR2018/001596
Other languages
English (en)
French (fr)
Inventor
김주용
최민기
Original Assignee
숭실대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교 산학협력단 filed Critical 숭실대학교 산학협력단
Priority to US16/616,685 priority Critical patent/US11287343B2/en
Priority to CN201880031318.2A priority patent/CN110678724A/zh
Publication of WO2019059469A1 publication Critical patent/WO2019059469A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors

Definitions

  • Embodiments of the present invention relate to a pressure sensor and a method of manufacturing the pressure sensor in which various sensing performance is achieved by stacking pressure sensor portions having concave and convex portions in multiple layers.
  • the pressure sensor is a device for sensing the pressure in the vertical direction.
  • There are various types according to the principle of sensing the pressure for example, a pressure resistance type pressure sensor, a pressure type pressure sensor, a capacitance type pressure sensor, a textile pressure sensor .
  • a pressure sensor using a rubber hereinafter referred to as a "rubber pressure sensor" is sensitive to pressure by monitoring the occurrence of a change in an electrical signal as conductive particles included in the rubber move.
  • the rubber pressure sensor is controlled in pressure sensitivity according to the pressure elastic modulus (modulus) or the amount of the conductive particles contained in the rubber. That is, the smaller the pressure elastic modulus or the larger the amount of the conductive particles, the higher the pressure sensitivity, and the smaller the pressure elastic modulus or the smaller the amount of conductive particles, the lower the pressure sensitivity. This is as shown in Fig.
  • a rubber pressure sensor having a low pressure elastic modulus or a large amount of conductive particles is a sensor having a high pressure sensitivity, and the minimum sensing pressure and the maximum sensing pressure are low.
  • rubber pressure sensors with high pressure sensitivity are characterized by their ability to react at low pressures but not at high pressures.
  • a rubber pressure sensor having a high pressure elastic modulus or a small amount of conductive particles is a sensor with low sensitivity, and has a minimum sensing pressure and a maximum sensing pressure.
  • rubber pressure sensors with low pressure sensitivity are characterized by their ability to react at high pressures but not at low pressures.
  • the conventional single-layer rubber pressure sensor described above has a low minimum sensing pressure and a maximum sensing pressure (FIG. 1 (a)), or both the minimum sensing pressure and the maximum sensing pressure are high b), the range of sensing pressure is limited.
  • the present invention proposes a pressure sensor and a method of manufacturing the pressure sensor that laminate a plurality of pressure sensor parts formed with irregularities to realize various sensing performance.
  • a pressure sensor for sensing a pressure in a vertical direction, the pressure sensor comprising: a first pressure sensor unit; Wherein the first pressure sensor part and the second pressure sensor part are laminated and the upper surface of the first pressure sensor part and the lower surface of the second pressure sensor part are formed with irregularities A pressure sensor is provided.
  • a pressure sensor for sensing a pressure in a vertical direction
  • the pressure sensor comprising: N pressure sensor parts stacked in N layers (an integer of 3 or more) Wherein concave and convex portions are formed on upper and lower surfaces of the pressure sensor portion excluding the pressure sensor portion of the lowermost pressure sensor portion and the pressure sensor portion of the uppermost layer and the pressure sensor portion of the lowermost pressure sensor portion, / RTI >
  • a method of manufacturing a pressure sensor for sensing a pressure in a vertical direction comprising: forming concavities and convexities on at least one surface of an upper surface and a lower surface of a plurality of pressure sensor portions; And a plurality of pressure sensor units having the concavities and convexities, wherein the concavities and convexities include a convex region and a concave region, and the pressure sensor unit A and the pressure sensor unit B of the plurality of pressure sensor units are adjacent to each other, Wherein the convex region of the pressure sensor portion A is inserted into the concave region of the corresponding pressure sensor portion B and the convex region of the pressure sensor portion B is inserted into the concave region of the corresponding pressure sensor portion A.
  • a method of manufacturing a sensor is provided.
  • the pressure sensor according to the present invention has an advantage that various sensing performance can be realized.
  • 1 is a view showing a concept of a conventional rubber pressure sensor.
  • FIG. 2 is a view showing a schematic configuration of a pressure sensor according to an embodiment of the present invention.
  • FIG. 3 is a view for explaining the operation concept of the pressure sensor according to the embodiment of the present invention.
  • FIGS. 4 and 5 are views showing a schematic configuration of a pressure sensor according to another embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a method of manufacturing a pressure sensor according to an embodiment of the present invention.
  • FIG. 2 is a view showing a schematic configuration of a pressure sensor according to an embodiment of the present invention.
  • the pressure sensor 200 is a sensor for sensing a pressure in a vertical direction, and may be used in a wearable device product (shoes, clothes, bedding, etc.)
  • a first pressure sensor unit 210, and a second pressure sensor unit 220 are examples of a wearable device product.
  • the first pressure sensor part 210 is a single-layer pressure sensor and is disposed on the first layer of the pressure sensor 200.
  • the second pressure sensor unit 220 is also a single-layer pressure sensor, and is disposed in the second layer of the pressure sensor 200. That is, the pressure sensor 200 according to an embodiment of the present invention has a structure in which two different pressure sensor units 210 and 220 are laminated.
  • the first pressure sensor part 210 and the second pressure sensor part 220 may be made of a rubber material including conductive particles.
  • the material of the pressure sensor units 210 and 220 is not limited thereto, and the pressure sensor units 210 and 220 having various materials may be used.
  • the first pressure sensor part 210 and the second pressure sensor part 220 are rubber materials.
  • the first pressure sensor part 210 and the second pressure sensor part 220 have a pressure elastic modulus (modulus) of a specific size.
  • Pressure sensitivity is high when the modulus of elasticity of the pressure is low and the drape property is high, and the pressure sensitivity is low when the modulus of elasticity is high and the drapeability is low.
  • the pressure elastic modulus of the first pressure sensor part 210 and the pressure elastic modulus of the second pressure sensor part 220 may be different from each other. There is an advantage in that the range of the sensing pressure of the pressure sensor 200 can be widened.
  • the first pressure sensor unit 210 is a single-layer pressure sensor having a first-order pressure elastic modulus
  • the second pressure sensor unit 220 is a pressure sensor having a second-
  • the branch may be a single layer pressure sensor. That is, the pressure elastic modulus of the first pressure sensor part 210 may be greater than the pressure elastic modulus of the second pressure sensor part 220.
  • the pressure sensor having a low pressure elastic modulus senses the pressure change and the sensor responds to the minimum pressure (That is, the second pressure sensor portion 220) and the pressure sensor having a high pressure elastic modulus (that is, a pressure sensor having a high pressure elastic modulus), when the maximum pressure is applied to the pressure sensor 200 ,
  • the first pressure sensor unit 210) all sense the pressure change (Fig. 3 (c)). Accordingly, the pressure sensor 200 is capable of detecting both the minimum pressure and the maximum pressure (multi-sensor), and has a wide range of sensing pressure than that of the single-layer pressure sensor.
  • a highly efficient sensor can be manufactured in which the resistance changes to the maximum pressure while the resistance changes to the minimum pressure.
  • a pressure sensor of a single layer can be stacked according to a performance range required by the user, thereby manufacturing a customized pressure sensor.
  • the upper surface of the first pressure sensor part 210 and the lower surface of the second pressure sensor part 220 may have irregularities. This is as shown in FIG. 2 and FIG.
  • the irregularities formed on the upper surface of the first pressure sensor part 210 include at least one first convex area 211 and at least one first concave area 212, and the second pressure sensor part 220 ) Includes at least one second convex region (221) and at least one second concave region (222).
  • each of the at least one first convex regions 211 is inserted into the corresponding at least one second concave region 222, and each of the at least one second convex regions 221 corresponds to at least one corresponding first Can be inserted into the concave region 212.
  • each of the at least one first convex regions 211 and the size of each of the at least one second concave regions 222 corresponding to the at least one first convex regions 211 may be the same .
  • the size of each of the at least one second convex regions 221 and the corresponding at least one first concave region 212 may be the same or different from each other. This is as shown in FIG.
  • the pressure sensor 200 has an advantage in that the performance of the sensor can be adjusted by laminating the pressure sensor units 210 and 220 having the same or different irregularities on the surfaces contacting with each other as described above.
  • the pressure sensor portion may have the same performance as that of the stacked pressure sensor.
  • a pressure sensor in which two pressure sensor parts without concavities and convexities are stacked Can be measured.
  • the concavo-convex formed on the first pressure sensor part 210 is long or thin, deformation is more likely to occur than unevenness having a constant size.
  • the pressure sensor 200 having a desired performance can be manufactured according to the performance range required by the customer (customized pressure sensor).
  • FIG. 5 shows a pressure sensor including N pressure sensor portions stacked in N (N is an integer of 3 or more) layers.
  • the pressure elastic modulus of each of the N pressure sensor parts may be different from each other.
  • the stacking order can be determined based on the magnitude of the pressure elastic modulus of the N pressure sensor parts.
  • FIG. 5 shows an example in which a plurality of pressure sensor units are stacked in the order of increasing pressure elastic modulus of the plurality of pressure sensor units. That is, the pressure sensor part of the uppermost layer among the N pressure sensor parts has the highest pressure elastic modulus, and the pressure sensor part of the lowest one of the plurality of pressure sensor parts has the lowest pressure elastic modulus. Based on the pressure sensor part of the uppermost layer, A plurality of pressure sensor portions may be stacked in descending order of elastic modulus.
  • the upper and lower surfaces of the pressure sensor portion of the lowermost pressure sensor portion and the upper and lower surfaces of the pressure sensor portion excluding the pressure sensor portion of the uppermost layer and the pressure sensor portion of the lowermost pressure sensor portion may be formed.
  • FIG. 6 is a flowchart illustrating a method of manufacturing a pressure sensor according to an embodiment of the present invention. Hereinafter, a process performed in each step will be described.
  • step 610 irregularities are formed on at least one of the upper surface and the lower surface of the plurality of pressure sensor portions.
  • concaves and convexes may be formed on the lower surface of the pressure sensor part on the upper surface and the upper surface of the pressure sensor part on the lower side. At this time, the sizes of the irregularities may be different from each other.
  • concaves and convexes may be formed on the upper surface of the lower pressure sensor part, the lower surface of the upper pressure sensor part, and the upper and lower surfaces of the intermediate pressure sensor part. At this time, the sizes of the irregularities may be different from each other.
  • step 620 a plurality of pressure sensor units having unevenness are laminated.
  • the irregularities formed in each of the plurality of pressure sensor portions may include a convex region and a concave region.
  • a convex region of the pressure sensor portion A is inserted into a concave region of the corresponding pressure sensor portion B, and a convex region of the pressure sensor portion B is inserted into the concave region of the corresponding pressure sensor portion B, It can be inserted into the concave region of the corresponding pressure sensor portion A.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

요철을 가지는 압력 센서 및 이의 제조 방법이 개시된다. 개시된 압력 센서는 수직 방향의 압력을 센싱하는 압력 센서로서, 제1 압력 센서부; 및 제2 압력 센서부;를 포함하되, 상기 제1 압력 센서부 및 상기 제2 압력 센서부는 적층되고, 상기 제1 압력 센서부의 상면 및 상기 제2 압력 센서부의 하면에는 요철이 형성된다.

Description

요철을 가지는 압력 센서 및 이의 제조 방법
본 발명의 실시예들은 요철이 형성된 압력 센서부를 다층으로 적층하여 다양한 감지 성능을 구현하는 압력 센서 및 이의 제조 방법에 관한 것이다.
압력 센서는 수직 방향의 압력의 센싱하는 장치로서, 압력을 감지하는 원리에 따라 다양한 종류가 존재하며, 일례로, 압저항형 압력 센서, 압전형 압력 센서, 정전용량형 압력 센서, 텍스타일 압력 센서 등이 있다. 특히, 고무를 이용한 압력 센서(이하, "고무 압력 센서"라고 호칭함)는 고무에 포함된 전도성 입자가 움직여서 전기 신호의 변화가 발생하고 이를 모니터링함으로써 압력이 센싱된다.
한편, 고무 압력 센서는 압력 탄성 계수(모듈러스) 또는 고무에 포함되는 전도성 입자의 양에 따라서 압력 민감도가 조절된다. 즉, 압력 탄성 계수가 작거나 전도성 입자의 양이 많을수록 압력 민감도가 높아지고, 압력 탄성 계수가 크거나 전도성 입자의 양이 적을수록 압력 민감도가 낮아진다. 이는 도 1에 도시된 바와 같다.
이 때, 낮은 압력 탄성 계수를 갖거나 전도성 입자의 양이 많은 고무 압력 센서(도 1의 (a))는 압력 민감도가 높은 센서로서, 최소 감지 압력 및 최대 감지 압력이 낮다. 다시 말해, 높은 압력 민감도를 가지는 고무 압력 센서는 낮은 압력에는 반응할 수 있지만 높은 압력에는 반응할 수 없는 특징이 있다.
그리고, 높은 압력 탄성 계수를 갖거나 전도성 입자의 양이 적은 고무 압력 센서(도 1의 (b))는 민감도가 낮은 센서로서, 최소 감지 압력 및 최대 감지 압력이 높다. 다시 말해, 낮은 압력 민감도를 가지는 고무 압력 센서는 높은 압력에는 반응할 수 있지만 낮은 압력에는 반응할 수 없는 특징이 있다.
즉, 상기에서 설명한 종래의 단층의 고무 압력 센서는 최소 감지 압력 및 최대 감지 압력이 모두 낮거나(도 1의 (a)), 또는 최소 감지 압력 및 최대 감지 압력이 모두 높기 때문에(도 1의 (b)), 감지 압력의 범위가 한정되어 있는 문제점이 있다.
상기한 바와 같은 종래기술의 문제점을 해결하기 위해, 본 발명에서는 요철이 형성된 압력 센서부를 다층으로 적층하여 다양한 감지 성능을 구현하는 압력 센서 및 이의 제조 방법을 제안하고자 한다.
본 발명의 다른 목적들은 하기의 실시예를 통해 당업자에 의해 도출될 수 있을 것이다.
상기한 목적을 달성하기 위해 본 발명의 바람직한 일 실시예에 따르면, 수직 방향의 압력을 센싱하는 압력 센서에 있어서, 제1 압력 센서부; 및 제2 압력 센서부;를 포함하되, 상기 제1 압력 센서부 및 상기 제2 압력 센서부는 적층되고, 상기 제1 압력 센서부의 상면 및 상기 제2 압력 센서부의 하면에는 요철이 형성되는 것을 특징으로 하는 압력 센서가 제공된다.
또한, 본 발명의 다른 실시예에 따르면, 수직 방향의 압력을 센싱하는 압력 센서에 있어서, N(3 이상의 정수)개 이상의 층으로 적층된 N개의 압력 센서부;를 포함하되, 상기 N개의 압력 센서부 중에서, 최하층의 압력 센서부의 상면, 최상층의 압력 센서부의 하면 및 상기 최하층의 압력 센서부와 상기 최상층의 압력 센서부를 제외한 나머지 압력 센서부의 상면 및 하면에는 요철이 형성되는 것을 특징으로 하는 압력 센서가 제공된다.
또한, 본 발명의 또 다른 실시예에 따르면, 수직 방향의 압력을 센싱하는 압력 센서의 제조 방법에 있어서, 다수 개의 압력 센서부의 상면 및 하면 중 적어도 하나의 면에 요철을 형성하는 단계; 및 상기 요철이 형성된 다수 개의 압력 센서부를 적층하는 단계;를 포함하되, 상기 요철은 볼록 영역 및 오목 영역을 포함하고, 상기 다수 개의 압력 센서부 중 압력 센서부 A 및 압력 센서부 B가 인접하되, 상기 압력 센서부 A의 볼록 영역은 대응되는 상기 압력 센서부 B의 오목 영역으로 삽입되고, 상기 압력 센서부 B의 볼록 영역은 대응되는 상기 압력 센서부 A의 오목 영역으로 삽입되는 것을 특징으로 하는 압력 센서의 제조 방법이 제공된다.
본 발명에 따른 압력 센서는 다양한 감지 성능을 구현할 수 있는 장점이 있다.
또한, 본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 종래의 고무 압력 센서의 개념을 도시한 도면이다.
도 2은 본 발명의 일 실시예에 따른 압력 센서의 개략적인 구성을 도시한 도면이다.
도 3는 본 발명의 일 실시예에 따른 압력 센서의 동작 개념을 설명하기 위한 도면이다.
도 4 및 도 5는 본 발명의 다른 실시예에 따른 압력 센서의 개략적인 구성을 도시한 도면이다.
도 6는 본 발명의 일 실시예에 따른 압력 센서의 제조 방법의 흐름도를 도시한 도면이다.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다. 또한, 명세서에 기재된 "...부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.
이하, 본 발명의 다양한 실시예들을 첨부된 도면을 참조하여 상술한다.
도 2는 본 발명의 일 실시예에 따른 압력 센서의 개략적인 구성을 도시한 도면이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 압력 센서(200)는 수직 방향의 압력을 센싱하는 센서로서, 웨어러블 디바이스 제품(신발, 의류, 침구류 등), 바이오 센서 등에 이용될 수 있으며, 제1 압력 센서부(210) 및 제2 압력 센서부(220)를 포함한다.
제1 압력 센서부(210)는 단층의 압력 센서로서, 압력 센서(200)의 제1 층에 배치된다. 그리고, 제2 압력 센서부(220) 역시 단층의 압력 센서로서, 압력 센서(200)의 제2 층에 배치된다. 즉, 본 발명의 일 실시예에 따른 압력 센서(200)는 서로 다른 2개의 압력 센서부(210, 220)가 적층되어 있는 구조를 가진다.
이 때, 제1 압력 센서부(210) 및 제2 압력 센서부(220)는 전도성 입자를 포함하는 고무의 재질일 수 있다. 한편, 압력 센서부들(210, 220)의 재질은 이에 한정되지 않으며, 다양한 재질의 압력 센서부들(210, 220)이 사용될 수 있다. 이하, 설명의 편의를 위해, 제1 압력 센서부(210) 및 제2 압력 센서부(220)가 고무의 재질인 것으로 가정하여 설명한다.
한편, 제1 압력 센서부(210) 및 제2 압력 센서부(220)는 특정 크기의 압력 탄성 계수(모듈러스)을 가진다. 압력 탄성 계수가 낮고 드레이프성이 높은 경우 압력 민감도가 커지고, 압력 탄성 계수가 높고 드레이프성이 낮은 경우 압력 민감도가 낮아진다.
본 발명의 일 실시예에 따르면, 제1 압력 센서부(210)의 압력 탄성 계수와 제2 압력 센서부(220)의 압력 탄성 계수는 서로 다를 수 있다. 이를 통해 압력 센서(200)의 감지 압력의 범위를 넓힐 수 있는 장점이 있다.
보다 상세하게, 제1 압력 센서부(210)는 제1 크기의 압력 탄성 계수를 가지는 단층의 압력 센서이고, 제2 압력 센서부(220)는 제1 크기보다 작은 제2 크기의 압력 탄성 계수를 가지는 단층의 압력 센서일 수 있다. 즉, 제1 압력 센서부(210)의 압력 탄성 계수는 제2 압력 센서부(220)의 압력 탄성 계수보다 클 수 있다.
다시 말해, 도 3을 참조하면, 낮은 압력 탄성 계수를 갖는 압력 센서를 상부에, 높은 압력 탄성 계수를 갖는 압력 센서를 하부에 적층하여 다층의 압력 센서(200)를 구성하는 경우에 있어(도 3의 (a)), 최소의 압력이 압력 센서(200)에 인가되면 낮은 압력 탄성 계수의 압력 센서(즉, 제2 압력 센서부(220))가 압력 변화를 감지하여 최소 압력에도 센서가 반응하며(도 3의 (b)), 최대의 압력이 압력 센서(200)에 인가되면 낮은 압력 탄성 계수의 압력 센서(즉, 제2 압력 센서부(220))와 높은 압력 탄성 계수의 압력 센서(즉, 제1 압력 센서부(210)) 모두가 압력 변화를 감지한다(도 3의 (c)). 따라서, 압력 센서(200)는 최소 압력 및 최대 압력을 모두 감지할 수 있게 되며(멀티 센서), 단층의 압력 센서보다 감지 압력의 범위가 넓은 장점이 있다.
즉, 서로 다른 압력 민감도를 가지는 단층의 압력 센서를 적층하여 하나의 압력 센서로 제작하면 최소의 압력에도 저항이 변화하면서 최대의 압력에도 저항이 변화하는 고효율의 센서를 제작할 수 있다. 또한, 단층의 압력 센서를 사용자가 필요한 성능 범위에 따라 적층하여 커스터마이징된 압력 센서를 제작할 수 있다.
또한, 본 발명이 일 실시예에 따르면, 제1 압력 센서부(210)의 상면 및 제2 압력 센서부(220)의 하면에는 요철이 형성될 수 있다. 이는 도 2 및 도 3에 도시된 바와 같다.
보다 상세하게, 제1 압력 센서부(210)의 상면에 형성된 요철은 적어도 하나의 제1 볼록 영역(211) 및 적어도 하나의 제1 오목 영역(212)을 포함하고, 제2 압력 센서부(220)의 하면에 형성된 요철은 적어도 하나의 제2 볼록 영역(221) 및 적어도 하나의 제2 오목 영역(222)을 포함한다. 이 때, 적어도 하나의 제1 볼록 영역(211) 각각은 대응되는 적어도 하나의 제2 오목 영역(222)에 삽입되고, 적어도 하나의 제2 볼록 영역(221) 각각은 대응되는 적어도 하나의 제1 오목 영역(212)에 삽입될 수 있다.
한편, 적어도 하나의 제1 볼록 영역(211) 각각의 사이즈(즉, 길이, 폭, 높이) 및 이와 대응되는 적어도 하나의 제2 오목 영역(222) 각각의 사이즈는 동일할 수도 있지만 서로 다를 수도 있다. 마찬가지로, 적어도 하나의 제2 볼록 영역(221) 각각의 사이즈 및 이와 대응되는 적어도 하나의 제1 오목 영역(212)이 사이즈는 동일할 수도 있지만 서로 다를 수도 있다. 이는 도 4에 도시된 바와 같다.
상기와 같이 접하는 면에 동일 또는 상이한 요철이 형성된 압력 센서부(210, 220)를 적층함으로써, 본 발명의 일 실시예에 따른 압력 센서(200)는 센서의 성능을 조절할 수 있는 장점이 있다.
즉, 압력 센서(200)에 압력을 인가할 때, 제1 압력 센서부(210)에 형성된 요철과 제2 압력 센서부(220)에 형성된 요철의 크기가 일정한 경우, 요철이 존재하지 않는 2개의 압력 센서부가 적층된 압력 센서와 동일한 성능을 가질 수도 있다. 그러나, 제1 압력 센서부(210) 및 제2 압력 센서부(220)에 형성된 요철이 서로 다른 형상을 가지는 경우, 요철이 존재하지 않는 2개의 압력 센서부가 적층된 압력 센서와 다른 범위의 압력을 측정할 수 있다. 일례로, 제1 압력 센서부(210)에 형성된 요철이 길거나 얇으면 일정한 사이즈를 가지는 요철보다 변형이 잘 일어나게 되고, 요철이 넓고 굵게 되어 있으면 변형이 잘 일어나지 않으므로, 요철의 형상에 따라 다른 압력 범위를 측정할 수 있다. 따라서, 요철의 형상을 조절하여 원하는 성능의 압력 센서(200)를 수요자가 필요한 성능 범위에 따라 제작할 수 있게 된다(커스터마이징된 압력 센서).
또한, 상기에서 설명한 내용은 3 이상의 단층의 압력 센서를 적층하는 압력 센서의 경우에도 적용될 수 있다.
도 5에서는 N개(N는 3 이상이 정수임)의 층으로 적층된 N개의 압력 센서부를 포함하는 압력 센서를 도시하고 있다.
도 5를 참조하면, N개의 압력 센서부 각각의 압력 탄성 계수는 서로 다를 수 있다. 이 경우, N개의 압력 센서부는 압력 탄성 계수의 크기를 기준으로 하여 적층 순서가 결정될 수 있다. 일례로, 도 5에서는 다수 개의 압력 센서부의 압력 탄성 계수가 큰 순서부터 다수 개의 압력 센서부를 적층하는 일례를 도시하고 있다. 즉, N개의 압력 센서부 중 최고층의 압력 센서부는 가장 높은 압력 탄성 계수를 가지고, 다수 개의 압력 센서부 중 최저층의 압력 센서부는 가장 낮은 압력 탄성 계수를 가지며, 최고층의 압력 센서부를 기준으로 하여, 압력 탄성 계수의 내림 차순으로 다수 개의 압력 센서부가 적층될 수 있다.
또한, N개의 압력 센서부 중에서 최하층의 압력 센서부의 상면, 최상층의 압력 센서부의 하면 및 최하층의 압력 센서부와 최상층의 압력 센서부를 제외한 나머지 압력 센서부의 상면 및 하면에는 요철이 형성될 수 있다.
도 6는 본 발명의 일 실시예에 따른 압력 센서의 제조 방법의 흐름도를 도시한 도면이다. 이하, 각 단계 별로 수행되는 과정을 설명하기로 한다.
먼저, 단계(610)에서는, 다수 개의 압력 센서부의 상면 및 하면 중 적어도 하나의 면에 요철을 형성한다.
일례로, 압력 센서부가 2개인 경우, 아래쪽의 압력 센서부의 상면 및 윗쪽의 압력 센서부의 하면에 요철이 형성될 수 있다. 이 때, 요철의 사이즈는 서로 다를 수 있다.
다른 일례로, 압력 센서부가 3개인 경우, 아래쪽의 압력 센서부의 상면, 윗쪽의 압력 센서부의 하면 및 중간의 압력 센서부의 상면 및 하면 모두에 요철이 형성될 수 있다. 이 때, 요철 각각의 사이즈는 서로 다를 수 있다.
다음으로, 단계(620)에서는, 요철이 형성된 다수 개의 압력 센서부를 적층한다.
본 발명의 일 실시예에 따르면, 다수 개의 압력 센서부 각각에 형성된 요철은 볼록 영역 및 오목 영역을 포함할 수 있다. 그리고, 다수 개의 압력 센서부 중 압력 센서부 A 및 압력 센서부 B가 인접하되, 압력 센서부 A의 볼록 영역은 대응되는 압력 센서부 B의 오목 영역으로 삽입되고, 압력 센서부 B의 볼록 영역은 대응되는 압력 센서부 A의 오목 영역으로 삽입될 수 있다.
지금까지 본 발명에 따른 압력 센서의 제조 방법의 실시예들에 대하여 설명하였고, 앞서 도 2 내지 도 5에서 설명한 압력 센서(200)에 관한 구성이 본 실시예에도 그대로 적용 가능하다. 이에, 보다 상세한 설명은 생략하기로 한다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (10)

  1. 수직 방향의 압력을 센싱하는 압력 센서에 있어서,
    제1 압력 센서부; 및
    제2 압력 센서부;를 포함하되,
    상기 제1 압력 센서부 및 상기 제2 압력 센서부는 적층되고, 상기 제1 압력 센서부의 상면 및 상기 제2 압력 센서부의 하면에는 요철이 형성되는 것을 특징으로 하는 압력 센서.
  2. 제1항에 있어서,
    상기 제1 압력 센서부 및 상기 제2 압력 센서부의 압력 탄성 계수 및 단위 면적당 전도성 입자의 양 중에서 적어도 하나는 서로 다른 것을 특징을 하는 압력 센서.
  3. 제2항에 있어서,
    상기 제1 압력 센서부의 상면에 형성된 요철은 적어도 하나의 제1 볼록 영역 및 적어도 하나의 제1 오목 영역을 포함하고, 상기 제2 압력 센서부의 하면에 형성된 요철은 적어도 하나의 제2 볼록 영역 및 적어도 하나의 제2 오목 영역을 포함하는 것을 특징으로 하는 압력 센서.
  4. 제3항에 있어서,
    상기 적어도 하나의 제1 볼록 영역 각각은 대응되는 상기 적어도 하나의 제2 오목 영역에 삽입되고, 상기 적어도 하나의 제2 볼록 영역 각각은 대응되는 상기 적어도 하나의 제1 오목 영역에 삽입되는 것을 특징으로 하는 압력 센서.
  5. 제4항에 있어서,
    상기 적어도 하나의 제1 볼록 영역 및 상기 적어도 하나의 제2 볼록 영역 각각의 사이즈는 서로 다른 것을 특징으로 하는 압력 센서.
  6. 제2항에 있어서,
    상기 제2 압력 센서부의 압력 탄성 계수는 상기 제1 압력 센서부의 압력 탄성 계수보다 작고, 상기 제2 압력 센서부의 상기 단위 면적당 전도성 입자의 양은 상기 제1 압력 센서부의 상기 단위 면적당 전도성 입자의 양보다 큰 것을 특징으로 하는 압력 센서.
  7. 제1항에 있어서,
    상기 제1 압력 센서부 및 상기 제2 압력 센서부 각각은 전도성 고무 재질인 것을 특징으로 하는 압력 센서.
  8. 수직 방향의 압력을 센싱하는 압력 센서에 있어서,
    N(3 이상의 정수)개 이상의 층으로 적층된 N개의 압력 센서부;를 포함하되,
    상기 N개의 압력 센서부 중에서, 최하층의 압력 센서부의 상면, 최상층의 압력 센서부의 하면 및 상기 최하층의 압력 센서부와 상기 최상층의 압력 센서부를 제외한 나머지 압력 센서부의 상면 및 하면에는 요철이 형성되는 것을 특징으로 하는 압력 센서.
  9. 제8항에 있어서,
    상기 N개의 압력 센서부 각각의 압력 탄성 계수는 서로 다르고, 압력 탄성 계수의 크기를 기준으로 하여 적층 순서가 결정되되, 상기 N개의 압력 센서부의 압력 탄성 계수가 큰 순서부터 상기 다수 개의 압력 센서부가 적층되는 것을 특징으로 하는 압력 센서.
  10. 수직 방향의 압력을 센싱하는 압력 센서의 제조 방법에 있어서,
    다수 개의 압력 센서부의 상면 및 하면 중 적어도 하나의 면에 요철을 형성하는 단계; 및
    상기 요철이 형성된 다수 개의 압력 센서부를 적층하는 단계;를 포함하되,
    상기 요철은 볼록 영역 및 오목 영역을 포함하고, 상기 다수 개의 압력 센서부 중 압력 센서부 A 및 압력 센서부 B가 인접하되, 상기 압력 센서부 A의 볼록 영역은 대응되는 상기 압력 센서부 B의 오목 영역으로 삽입되고, 상기 압력 센서부 B의 볼록 영역은 대응되는 상기 압력 센서부 A의 오목 영역으로 삽입되는 것을 특징으로 하는 압력 센서의 제조 방법.
PCT/KR2018/001596 2017-09-20 2018-02-06 요철을 가지는 압력 센서 및 이의 제조 방법 WO2019059469A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/616,685 US11287343B2 (en) 2017-09-20 2018-02-06 Pressure sensor having unevenness and manufacturing method therefor
CN201880031318.2A CN110678724A (zh) 2017-09-20 2018-02-06 具有凹凸部的压力传感器及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0121132 2017-09-20
KR20170121132 2017-09-20

Publications (1)

Publication Number Publication Date
WO2019059469A1 true WO2019059469A1 (ko) 2019-03-28

Family

ID=65810337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001596 WO2019059469A1 (ko) 2017-09-20 2018-02-06 요철을 가지는 압력 센서 및 이의 제조 방법

Country Status (4)

Country Link
US (1) US11287343B2 (ko)
KR (1) KR102010175B1 (ko)
CN (1) CN110678724A (ko)
WO (1) WO2019059469A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7264136B2 (ja) * 2020-08-28 2023-04-25 横河電機株式会社 力検出装置、力検出システム及び力検出装置の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020194919A1 (en) * 2001-06-09 2002-12-26 Dae-Sung Lee Differential capacitive pressure sensor and fabricating method therefor
US20130205908A1 (en) * 2012-02-10 2013-08-15 Metrodyne Microsystem Corporation, R.O.C. Mems pressure sensor device and manufacturing method thereof
KR101554543B1 (ko) * 2015-02-17 2015-09-21 고려대학교 산학협력단 압력센서
EP2899521B1 (de) * 2014-01-27 2017-08-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Volumenkompressible kapazitive flächige flexible Sensormatte zur Messung von Druck oder Druckverteilungen und/oder zur Messung oder Detektion von Deformationen

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004317403A (ja) * 2003-04-18 2004-11-11 Alps Electric Co Ltd 面圧分布センサ
WO2005072098A2 (en) * 2004-01-23 2005-08-11 Minebea Co., Ltd Electrode tool for electrochemical machining and method for manufacturing same
US7295724B2 (en) * 2004-03-01 2007-11-13 University Of Washington Polymer based distributive waveguide sensor for pressure and shear measurement
US7791066B2 (en) * 2005-05-20 2010-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof and method for writing memory element
US7645398B2 (en) * 2005-12-07 2010-01-12 Electronics And Telecommunications Research Institute Pressure sensor for electronic skin and fabrication method of pressure sensor for electronic skin
WO2008133942A2 (en) * 2007-04-23 2008-11-06 Sierra Scientific Instruments, Inc. Suspended membrane pressure sensing array
EP2071312B1 (en) * 2007-12-13 2015-09-16 Yamaha Corporation Pressure sensor and data input apparatus
CN102112947B (zh) * 2008-12-25 2013-07-24 日本写真印刷株式会社 具有按压检测功能的触摸面板及该触摸面板用压敏传感器
CA2784997C (en) * 2009-12-30 2018-06-19 Jacques Beauvais Carbon nanotubes based sensing elements and system for monitoring and mapping force, strain and stress
WO2013044226A2 (en) * 2011-09-24 2013-03-28 President And Fellows Of Harvard College Artificial skin and elastic strain sensor
US10602965B2 (en) * 2013-09-17 2020-03-31 Medibotics Wearable deformable conductive sensors for human motion capture including trans-joint pitch, yaw, and roll
US8997588B2 (en) * 2012-09-29 2015-04-07 Stryker Corporation Force detecting mat with multiple sensor types
WO2014106871A1 (en) * 2013-01-07 2014-07-10 Hitachi, Ltd. Storage system which realizes asynchronous remote copy using cache memory composed of flash memory, and control method thereof
EP3071939B1 (en) * 2013-11-18 2019-07-31 President and Fellows of Harvard College Printed stretchable strain sensor
JP2015187561A (ja) * 2014-03-26 2015-10-29 株式会社日本自動車部品総合研究所 圧力センサ
WO2016092494A1 (en) * 2014-12-09 2016-06-16 Technion Research & Development Foundation Limited High resolution pressure sensing
KR101650827B1 (ko) * 2015-04-16 2016-08-25 한국세라믹기술원 압저항 특성을 갖는 전도성 복합체 조성물 및 이를 이용한 압저항 소자
KR101691910B1 (ko) * 2015-09-14 2017-01-03 서울대학교 산학협력단 스트레인 센서 및 그 제조 방법
US20170153738A1 (en) * 2015-11-30 2017-06-01 Flex Ltd. Dual layer force sensitive resistor sensor
US10473539B2 (en) * 2016-06-30 2019-11-12 Tekscan, Inc. Stretchable force sensor having undulating patterned electrodes
US10267690B2 (en) * 2016-09-13 2019-04-23 The Board Of Trustees Of The Leland Stanford Junior University Capacitive force/torque sensor
US10598558B2 (en) * 2017-02-28 2020-03-24 Electronics And Telecommunications Research Institute Pressure sensing element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020194919A1 (en) * 2001-06-09 2002-12-26 Dae-Sung Lee Differential capacitive pressure sensor and fabricating method therefor
US20130205908A1 (en) * 2012-02-10 2013-08-15 Metrodyne Microsystem Corporation, R.O.C. Mems pressure sensor device and manufacturing method thereof
EP2899521B1 (de) * 2014-01-27 2017-08-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Volumenkompressible kapazitive flächige flexible Sensormatte zur Messung von Druck oder Druckverteilungen und/oder zur Messung oder Detektion von Deformationen
KR101554543B1 (ko) * 2015-02-17 2015-09-21 고려대학교 산학협력단 압력센서

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNG, CHO-LONG ET AL.: "The Biomimetic Skin-type Tactile Sensor", THE KOREAN SOCIETY OF MECHANICAL ENGINEERS SPRING AUTUMN CONFERENCE, December 2016 (2016-12-01) *

Also Published As

Publication number Publication date
KR102010175B1 (ko) 2019-08-13
CN110678724A (zh) 2020-01-10
US20200209088A1 (en) 2020-07-02
KR20190032988A (ko) 2019-03-28
US11287343B2 (en) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2017039401A1 (ko) 압력 센서
WO2017061749A1 (ko) 터치 압력 감지 장치
US9983744B2 (en) Capacitive tactile sensor with nested matrix electrodes
KR100885730B1 (ko) 단순한 적층 구조를 갖는 접촉위치 감지 패널
US5311779A (en) Pressure-sensitive sensor
US9166582B2 (en) Capacitive touch panel having first and second electrode strings disposed in differing directions in which at least one of the electrode strings comprises disconnected portions distributed in the same direction
US20170356812A1 (en) Flexible transparent sensor with ionically-conductive material
WO2011103808A1 (zh) 柔性压力传感器及柔性压力传感列阵
KR20180031028A (ko) 전자 디바이스 내의 투명 변형 센서들
WO2017204514A1 (ko) 압력 감지 센서 및 이를 포함하는 압력 감지 인솔
SG174496A1 (en) Sensor
WO2016095324A1 (zh) 光纤感应层及其监测系统
WO2017161975A1 (zh) 厚度检测装置
WO2017099508A1 (ko) 압력 감지 센서 장치
WO2019059469A1 (ko) 요철을 가지는 압력 센서 및 이의 제조 방법
KR20210065108A (ko) 신장성 배선에 연결된 센서
WO2021141395A1 (ko) 전도사 압력센서
WO2014115957A1 (en) Transparent fingerprint recognizing sensor array
WO2020045739A1 (ko) 정전식 센서와 저항식 센서를 통합한 하이브리드 대면적 압력 센서
WO2017082613A1 (ko) 압력 감지 인솔
WO2017010653A1 (ko) 방향 감지 장치
WO2009091180A2 (ko) 다중터치인식이 가능한 저항막 방식 터치스크린
US9246485B2 (en) Single layer sensor pattern
FI20185027A1 (en) Power and / or pressure sensors with at least two electrode bearings
WO2012153899A1 (ko) 접촉 감지 패널

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858347

Country of ref document: EP

Kind code of ref document: A1