WO2019059447A1 - 집진장치 및 이를 구비하는 청소기 - Google Patents

집진장치 및 이를 구비하는 청소기 Download PDF

Info

Publication number
WO2019059447A1
WO2019059447A1 PCT/KR2017/011382 KR2017011382W WO2019059447A1 WO 2019059447 A1 WO2019059447 A1 WO 2019059447A1 KR 2017011382 W KR2017011382 W KR 2017011382W WO 2019059447 A1 WO2019059447 A1 WO 2019059447A1
Authority
WO
WIPO (PCT)
Prior art keywords
outlet
dust
air
dust collecting
axial flow
Prior art date
Application number
PCT/KR2017/011382
Other languages
English (en)
French (fr)
Inventor
현기탁
이상철
이창건
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP17925756.3A priority Critical patent/EP3685725B1/en
Publication of WO2019059447A1 publication Critical patent/WO2019059447A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C7/00Apparatus not provided for in group B04C1/00, B04C3/00, or B04C5/00; Multiple arrangements not provided for in one of the groups B04C1/00, B04C3/00, or B04C5/00; Combinations of apparatus covered by two or more of the groups B04C1/00, B04C3/00, or B04C5/00
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/16Arrangement or disposition of cyclones or other devices with centrifugal action
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/16Arrangement or disposition of cyclones or other devices with centrifugal action
    • A47L9/1608Cyclonic chamber constructions
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/16Arrangement or disposition of cyclones or other devices with centrifugal action
    • A47L9/1616Multiple arrangement thereof
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/16Arrangement or disposition of cyclones or other devices with centrifugal action
    • A47L9/1616Multiple arrangement thereof
    • A47L9/1625Multiple arrangement thereof for series flow
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/16Arrangement or disposition of cyclones or other devices with centrifugal action
    • A47L9/1616Multiple arrangement thereof
    • A47L9/1641Multiple arrangement thereof for parallel flow
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/16Arrangement or disposition of cyclones or other devices with centrifugal action
    • A47L9/165Construction of inlets
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/16Arrangement or disposition of cyclones or other devices with centrifugal action
    • A47L9/1683Dust collecting chambers; Dust collecting receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • B01D50/20Combinations of devices covered by groups B01D45/00 and B01D46/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/04Multiple arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/06Construction of inlets or outlets to the vortex chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/04Tangential inlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • B04C2009/002Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks with external filters

Definitions

  • the present invention relates to a vacuum cleaner for sucking air and dust using a suction force, separating dust from the sucked air to collect dust, and discharging only clean air, and a dust collecting apparatus provided in the vacuum cleaner.
  • a vacuum cleaner refers to a device that sucks dust and air by using a suction force generated from a suction motor mounted inside the cleaner body, and separates and collects dust from the air.
  • Such a vacuum cleaner is divided into a canister cleaner, an upright cleaner, a stick cleaner, a handy cleaner, and a robot cleaner.
  • a suction nozzle for suctioning dust is provided separately from the cleaner main body, and the cleaner main body and the suction nozzle are connected to each other by the connecting device.
  • the suction nozzle is rotatably connected to the cleaner main body.
  • the suction motor is disposed close to the suction nozzle (lower center), and in the case of the handy vacuum cleaner, the suction motor is disposed close to the grip (upper center).
  • the robot cleaner runs itself by self-running system and performs cleaning by itself.
  • Cyclone refers to a device that forms a swirling flow in a fluid and separates air and dust from each other by using the centrifugal force difference resulting from the weight difference between air and dust.
  • multi-cyclone refers to a structure in which air and dust are separated from each other by using a primary cyclone, and air and fine dust are separated from each other by using a plurality of secondary cyclones. Here, dust and fine dust are classified by size.
  • Korean Patent Laid-Open Publication No. 10-2015-0031304 (Mar. 23, 2015) discloses a cleaning device employing a multi-cyclone.
  • the dust and fine dust that have flowed into the body together with the air are sequentially separated from the air by the primary cyclone and the secondary cyclone.
  • a vacuum cleaner employing a cyclone has the advantage of not requiring a separate replaceable dust bag.
  • a cone is formed in the body (cylinder) of the secondary cyclone, particularly in the multi-cyclone.
  • the cone means a shape in which the sectional area of the secondary cyclone becomes smaller toward one side.
  • the air and fine dust introduced into the secondary cyclone are separated from each other in the secondary cyclone.
  • the fine dust is discharged to the fine dust outlet along the cone, and the air is discharged to the air outlet formed in the direction opposite to the outlet of the fine dust.
  • Such a structure has a problem of causing flow loss.
  • a flow loss occurs because the inlet of the secondary cyclone and the air outlet are formed on the same side with each other. Air flows into the inlet of the secondary cyclone, changes direction in the secondary cyclone, and is discharged to the air outlet again, resulting in a flow loss.
  • An object of the present invention is to provide a vacuum cleaner having a structure capable of suppressing the flow loss of air by using a high-efficiency axial inlet type swirl tube.
  • Another object of the present invention is to propose a structure capable of maximizing the efficiency of the axial swirl tube through the optimal arrangement of the axial flow swirl tube.
  • the present invention aims to improve the flow direction of the air flowed into or out of the axial flow swirl tube and to optimize the arrangement and the like that can increase the number of the axial flow swirl tubes.
  • a dust collecting apparatus includes axial flow swirl tubes installed on the downstream side of a cyclone.
  • the axial flow swirl tubes are stacked in multiple stages and the axial flow swirl tubes in each stage are arranged in two rows so that the first row and the second row are disposed opposite to each other.
  • the axial length of each axial flow swirl tube becomes gradually longer as it approaches the axial flow swirl tube disposed at the center of each end.
  • the dust collecting apparatus includes a cylindrical housing forming an outer appearance of the dust collecting apparatus; A cyclone formed inside the housing and causing a swirling flow to separate dust from the air introduced into the housing; And a mesh enclosing the outside of the axial flow swirl tubes to form a boundary between the cyclone and the swirl swirl tubes.
  • the axial flow swirl tubes receive the air and fine dust that have passed through the cyclone, and generate a swirling flow to separate the fine dust from the air.
  • Each of said axial flow swirl tubes being arranged to face said mesh and having an inlet to receive air and fine dust; And an air outlet and a fine dust outlet opening toward the same direction, and the inlet is opened toward the opposite direction of the air outlet and the fine dust outlet.
  • the fine dust outlet is formed in a ring shape around the air outlet.
  • Each of said axial swirl tubes comprising: a cylindrical body; A vortex finder disposed on an inlet side of the body and having a first portion of a cylindrical shape and a second portion of a cone shape projecting from the first portion toward the outlet side of the body; A vane extending between the outer peripheral surface of the first portion and the inner peripheral surface of the body and extending in a spiral direction; And an outlet partition disposed at the outlet side of the body and formed in a cylindrical shape to define an air outlet and a fine dust outlet formed around the air outlet.
  • the axial swirl tubes are formed by engagement of a first member and a second member, the first member forming the body, the vortex finder and the vane of each of the axial swirl tubes, wherein the outlet compartment of the axial flow swirl tube is formed, and at least a part of the outlet compartment is inserted into the outlet side of the body.
  • first member further comprises a curved or planar body base
  • the body is further projected to both sides of the body base, and the second member further includes an outlet base having a curved surface or a plane, and the outlet base has a number of air discharge holes corresponding to the axial flow swirl tubes , And the outlet partition protrudes from the periphery of the air vent hole toward the inside of the body.
  • the outlet base includes a first outlet base and a second outlet base disposed to face each other at spaced apart locations and the second member is disposed to face each other at spaced apart locations, Further comprising two sidewalls defining a side of the polygonal column with a first outlet base, a second outlet base, and two sidewalls, wherein the first outlet base, the second outlet base, And the ascending passage communicates with the outlet of the dust collecting apparatus formed on the upper side of the housing.
  • the mesh is disposed in an inner region of the housing, the axial flow swirl tubes are disposed in an inner region of the mesh, and the upward flow path is formed between the first and second rows.
  • the first member is coupled to the second member and the rim of the body base is in close contact with the two sidewalls to seal the open region between the two sidewalls.
  • the dust collecting device includes a first dust collecting part formed in an annular shape inside the housing and configured to collect dust falling from the cyclone; And a second dust collecting part formed in an area surrounded by the first dust collecting part and configured to collect fine dust falling from the axial flow swirl tubes, Further comprising a lower blocking portion for partitioning the second dust collecting portion and the upward flow path so as to prevent fine dust from being scattered by the upward flow passage, wherein the first outlet base and the second outlet base have two opposed surfaces And the lower blocking portion corresponds to the bottom surface of the polygonal column.
  • the second member includes two second dust collecting section top covers, and the two second dust collecting section top covers are formed at the lower end of the second member and are formed in the shape of a circular segment.
  • the dust collecting device may further include a mesh support portion formed to surround an upper rim of the mesh, and the second member may include two upper blocking portions formed at the upper end of the first outlet base and the upper end of the second outlet base, respectively Wherein the two upper shields are formed in a circular segment shape and are in close contact with the mesh support.
  • the second member includes a first outlet base and a second outlet base arranged to face each other at spaced apart locations; Two side walls disposed opposite each other at spaced apart locations and defining side surfaces of the polygonal column with the first outlet base and the second outlet base; A plurality of outlet compartments provided for the number of the axial flow swirl tubes and protruding from the first outlet base and the second outlet base in directions opposite to each other; An upper blocking portion formed in an upper end of the first outlet base and an upper end of the second outlet base, respectively; And two second dust collector top covers having a shape of an oblique shape and formed at the lower end of the second member.
  • the first member is provided with two pieces, and the two pieces of the first member are inserted in the direction opposite to each other toward the second member and are coupled to the second member.
  • the dust collecting device includes a first dust collecting part formed in an annular shape inside the housing and configured to collect dust falling from the cyclone; And a second dust collecting portion formed in an area surrounded by the first dust collecting portion and configured to collect fine dust falling from the axial flow swirl tubes, wherein the outlet side end portion of the body and the outlet base And a fine dust drop passage communicating with the second dust collection section is formed therebetween.
  • the body is provided by the number of the axial flow swirl tubes and arranged such that each of the outlet ends of the two bodies disposed adjacent to each other are in contact with each other and each outlet side end of the two bodies contacting with each other and the outlet base Thereby forming the fine dust drop passage therebetween.
  • the air outlet and the fine dust dropping passage are alternately formed along the outlet base.
  • each axial flow swirl tube is proportional to the distance from the outlet of each axial flow swirl tube to the housing.
  • the axial flow swirl tube has a forward direct inlet structure and a forward direct outlet structure.
  • the inlet of the axial flow cyclone is arranged to face the mesh, the air passing through the mesh immediately flows into the inlet of the axial flow swirl tube without any change in the flow direction. Further, since the inlet and the outlet of the axial flow swirl tube are formed on the opposite sides, the air introduced through the inlet is discharged through the outlet without changing the flow direction.
  • the flow direction of air does not change during the flow of air into and out of the axial flow swirl tube. Therefore, by using the structure and arrangement of the axial flow swirl tube proposed in the present invention, the flow loss (pressure loss) And the performance of the dust collecting apparatus can be improved.
  • the number of swirl tubes can be increased within a limited space.
  • the axial flow type swirl tube is advantageous for miniaturization compared to the cyclone. Therefore, the increase in the number of the multi-stage arrangement of the axial flow swirl tubes improves the separation performance of separating the fine dust from the air.
  • the expansion of the space occupied by the axial flow swirl tubes is suppressed through the optimal arrangement of the axial flow swirl tubes, and the capacity of the dust collector for dust collection can be enlarged.
  • FIG. 1 is a perspective view illustrating an example of a vacuum cleaner related to the present invention.
  • Fig. 2 is a perspective view of the dust collecting apparatus shown in Fig. 1.
  • Fig. 1 is a perspective view of the dust collecting apparatus shown in Fig. 1.
  • FIG. 3 is a perspective view showing a state in which the upper part of the dust collecting apparatus shown in FIG. 2 is cut.
  • Fig. 4 is a perspective view of an axial flow swirl tube.
  • FIG. 5 is an exploded perspective view showing the internal structure of the dust collecting apparatus shown in Fig.
  • FIG. 6 is a cross-sectional view of the dust collecting apparatus shown in FIG. 2 cut along the line A-A and viewed from one side.
  • Fig. 7 is a cross-sectional view of the dust collecting apparatus shown in Fig. 2 cut along the line B-B and viewed from above. Fig.
  • the drawing shows the dust collecting apparatus 100 applied to the vacuum cleaner 1 of the canister type, but the dust collecting apparatus 100 of the present invention is not necessarily limited to the vacuum cleaner 1 of the canister type.
  • the dust collecting apparatus 100 of the present invention can be applied to an upright type vacuum cleaner, and the dust collecting apparatus can be applied to all types of vacuum cleaners.
  • FIG. 1 is a perspective view showing an example of a vacuum cleaner 1 according to the present invention.
  • the vacuum cleaner 1 includes a cleaner main body 10, a suction nozzle 20, a connecting unit 30, a wheel unit 40, and a dust collecting apparatus 100.
  • the cleaner main body 10 is provided with a suction unit (not shown) for generating a suction force.
  • the suction unit includes a suction motor and a suction fan rotated by the suction motor to generate a suction force.
  • the suction nozzle (20) is configured to suck air and foreign substances adjacent to the suction nozzle (20).
  • a foreign substance refers to a substance other than air, and includes dust, fine dust, and ultrafine dust. Dust, fine dust, and ultrafine dust are classified by size, and fine dust is smaller than dust and larger than ultrafine dust.
  • connection unit 30 is connected to the suction nozzle 20 and the dust collecting apparatus 100 so that air containing foreign matter, dust, fine dust, ultrafine dust, and the like, sucked through the suction nozzle 20, 100).
  • the connection unit 30 may be configured in the form of a hose or pipe.
  • the wheel unit 40 is rotatably coupled to the cleaner main body 10 so that the cleaner main body 10 can be moved forward or backward or left or right by rotation.
  • the wheel unit 40 may include a main wheel and a sub-wheel.
  • the main wheels are respectively provided on both sides of the cleaner main body 10.
  • the auxiliary wheels support the main body 10 together with the main wheels and can assist the movement of the main body 10 by the main wheels.
  • the suction nozzle 20, the connection unit 30, and the wheel unit 40 can be applied to the conventional vacuum cleaner, detailed description thereof will be omitted.
  • the dust collecting apparatus 100 is detachably coupled to the cleaner main body 10.
  • the dust collecting apparatus 100 separates and collects foreign matter from the air sucked through the suction nozzle 20, and discharges the filtered air.
  • the conventional vacuum cleaner has a structure in which the connection unit is connected to the suction unit formed in the cleaner main body, and the air sucked through the flow guide leading from the suction unit to the dust collecting apparatus flows back into the dust collecting apparatus.
  • the sucked air is introduced into the dust collecting apparatus by the suction force of the suction unit.
  • the suction force is lowered by passing through the flow guide of the vacuum cleaner main body.
  • the vacuum cleaner 1 of the present invention is directly connected to the dust collecting apparatus 100, as shown in FIG. According to this connection structure, since the air sucked through the suction nozzle 20 flows directly into the dust collecting apparatus 100, the suction force can be improved. Further, there is an advantage that formation of a flow guide inside the cleaner main body 10 is unnecessary.
  • the secondary cyclone in which the cone structure is formed in the body (cylinder) causes flow loss.
  • the dust collecting apparatus 100 having an axial inlet type swirl tube will be described in order to suppress the flow loss of the secondary cyclone.
  • FIG. 2 is a perspective view of the dust collecting apparatus 100 shown in Fig.
  • FIG. 3 is a perspective view showing a state in which the upper part of the dust collecting apparatus 100 shown in FIG. 2 is cut.
  • the dust collecting apparatus 100 refers to a device for separating and collecting foreign matter (dust, fine dust, ultrafine dust, etc.) from the air sucked through the suction nozzle 20.
  • the suction force generated by the suction unit causes the air to flow along the flow path inside the dust collecting apparatus 100 and the foreign matter is separated from the air by the structure of the dust collecting apparatus 100 during the flow.
  • the outer appearance of the dust collecting apparatus 100 is formed by the housing 110, the upper cover 120, and the lower cover 130.
  • the housing 110 forms a side surface appearance of the dust collecting apparatus 100.
  • the housing 110 is configured to receive the internal components of the dust collector 100, such as the cyclone 150, the axial swirl tubes 160 (see FIG. 4) and the mesh 170, which will be described later.
  • the housing 110 may be formed in a cylindrical shape having upper and lower openings, but is not limited thereto.
  • the upper cover 120 is coupled to the upper portion of the housing 110.
  • the upper cover 120 may be rotatably coupled to the housing 110 by a hinge 125.
  • the upper cover 120 may be rotated about the hinge 125 to open the upper opening of the housing 110.
  • An inlet 121 and an outlet 123 of the dust collecting apparatus 100 may be formed in the upper cover 120, respectively. 2, an inlet 121 of the dust collecting apparatus 100 may be formed at one side of the upper cover 120, and an outlet 123 of the dust collecting apparatus 100 may be formed at the other side of the upper cover 120 .
  • the inlet 121 of the dust collecting apparatus 100 is connected to the suction nozzle 20 by the connecting unit 30. Therefore, air and foreign matter introduced through the suction nozzle 20 are introduced into the dust collecting apparatus 100 through the connecting unit 30.
  • the outlet of the dust collecting apparatus (100) is connected to the internal flow path of the cleaner body (10). Therefore, the air separated from the foreign substance by the dust collecting apparatus 100 passes through the suction nozzle 20 along the internal flow path of the cleaner main body 10, and is discharged to the outside of the cleaner main body 10.
  • the upper cover 120 may be formed with an intake guide 122 and an exhaust guide 124, respectively.
  • the intake guide 122 is formed on the downstream side of the inlet 121 and connected to the inside of the dust collecting apparatus 100.
  • the intake guide 122 extends downward from the center of the upper cover 120 to the inner peripheral surface of the housing 110 along the spiral direction. Therefore, the air guided by the intake guide 122 flows in the tangential direction toward the inner peripheral surface of the housing 110. Therefore, a swirling flow is naturally formed in the air flowing into the inside of the housing 110.
  • An exhaust guide 124 is formed around the intake guide 122.
  • the intake guide 122 and the exhaust guide 124 are separated from each other by the structure of the upper cover 120.
  • the exhaust guide 124 may have a structure in which the exhaust guide 124 is integrated into two pieces 124a and 124b formed on both sides of the intake guide 122.
  • the exhaust guide 124 is provided at the outlet 123 of the dust collector 100 Is formed.
  • a first dust collecting part 141 for collecting dust and a second dust collecting part 142 for collecting fine dust are formed inside the housing 110.
  • the first dust collecting part 141 and the second dust collecting part 142 are formed in a region defined by the housing 110, the lower cover 130, and the like.
  • the first dust collection unit 141 is annularly formed inside the housing 110.
  • the first dust collecting unit 141 is formed to collect dust that falls in the cyclone 150, which will be described later.
  • a partition plate 111 may be formed in the first dust collector 141.
  • the partition plate 111 may protrude from the inner circumferential surface of the housing 110 toward the dust-collecting section boundary 183.
  • the second dust collecting part 142 is formed in a region surrounded by the first dust collecting part 141.
  • a cylindrical dust collecting unit boundary 183 partitioning the first dust collecting unit 141 and the second dust collecting unit 142 may be provided on the inner side of the housing 110.
  • the outer side of the dust collecting boundary 183 corresponds to the first dust collecting part 141 and the inner side of the dust collecting part boundary 183 corresponds to the second dust collecting part 142.
  • the second dust collection unit 142 is formed to collect fine dust falling from the axial flow swirl tubes 160 to be described later.
  • the lower cover 130 is coupled to the lower portion of the housing 110.
  • the lower cover 130 forms the bottoms of the first dust collecting part 141 and the second dust collecting part 142.
  • the lower cover 130 may be rotatably coupled to the housing 110 by a hinge 125.
  • the lower cover 130 may be rotated about the hinge 125 and the lower opening of the housing 110 may be opened by releasing the fastening of the lower cover 130 and the lower cover 130.
  • the dust collected in the first dust collecting section 141 and the dust collected in the second dust collecting section 142 are discharged downward at one time by their respective weights.
  • the mesh (170) is disposed inside the housing (110).
  • the mesh 170 may be formed in a cylindrical shape having a smaller circumference than the housing 110.
  • a plurality of holes 171 are formed in the mesh 170 and are filtered by the mesh 170 if any light material is larger than the holes 171 of the mesh 170.
  • a skirt 181 may be formed under the mesh 170.
  • the skirt 181 may form a slope closer to the inner surface of the housing 110 as it approaches the lower cover 130.
  • the skirt 181 serves to prevent scattering of dust collected in the first dust collecting unit 141.
  • a rib 182 may protrude along the spiral direction on the outer peripheral surface of the skirt 181.
  • the ribs 182 induce a natural fall of the foreign matter filtered by the mesh 170 and are collected by the first dust collecting part 141.
  • the skirt 181, the rib 182, and the dust-collecting boundary 183 may be integrally formed. This member can be termed an inner housing 180.
  • the cyclone 150 is formed inside the housing 110. Specifically, the cyclone 150 is formed by the housing 110 and the mesh 170.
  • the cyclone 150 causes a swirling flow to separate dust from air introduced into the inside of the housing 110.
  • the suction force provided from the suction motor provided inside the cleaner main body exerts an influence on the inside of the dust collecting apparatus 100, the air and the foreign matter move in the cyclone 150.
  • the axial flow swirl tubes 160 are disposed inside the region defined by the mesh 170.
  • the structure of one axial swirl tube 160a will be described first, and the arrangement and operation of the axial swirl tubes 160 will be described.
  • FIG 4 is a perspective view of the axial flow swirl tube 160a.
  • the axial flow swirl tube 160a is a concept included in the cyclone in a wide sense.
  • the cyclone is divided into an axial inlet type and a tangential inlet type according to the inflow structure of the air.
  • air is introduced along the axial direction of the cyclone, and in the case of the tangential inlet type cyclone, air flows along the tangential direction of the cyclone.
  • the axial flow type cyclone is classified into a cone type and a tube type depending on the structure.
  • the cone type has a structure in which the inner diameter gradually decreases in size
  • the tube type has a structure in which the inner diameter is constant in size.
  • the cone type may have only the reverse flow structure, while the tube type may have either the reverse direction and the forward flow structure selectively.
  • the reverse flow structure refers to a structure in which the inlet of air and the outlet of air are opened in the same direction so that the air introduced into the inlet of the air reverses the flow direction and is discharged to the outlet of the air.
  • the forward flow structure refers to a structure in which the inlet of air and the outlet of air are opened opposite to each other so that the air introduced into the inlet of the air is discharged to the outlet of the air while maintaining the flow direction.
  • the axial swirl tube 160a of the present invention corresponds to an axial flow type and a tube type, and has a forward flow structure.
  • the axial flow swirl tube 160a receives the air and fine dust that have passed through the cyclone 150 and the mesh 170. And causes a swirling flow to separate the fine dust from the air.
  • the axial flow swirl tube 160a is supplied with air (A) and fine dust (F) along the axial direction.
  • the axial direction refers to a direction extending toward the inlet (I) and the outlet (O1, O2) of the axial flow swirl tube 160a.
  • the axial flow swirl tube 160a includes a body 161a, a vortex finder 161b, a vane 161c, and an outlet partition 162a.
  • the body 161a forms the appearance of the axial flow swirl tube 160a and forms the boundary between the inside and the outside of the axial flow swirl tube 160a.
  • the body 161a is formed into a hollow cylindrical shape, and the inner diameter of the body 161a is constant.
  • One side (upper side 161a1) and the other side (lower side 161a2) of the body 161a are opened.
  • the open upper portion 161a1 of FIG. 4 corresponds to the inlet I of the body 161a and the opened lower portion 161a2 corresponds to the outlets O1 and O2 of the body 161a. Therefore, the inlet (I) and the outlet (O1, O2) of the body (161a) are opened in directions opposite to each other.
  • the vortex finder 161b is disposed on the entrance side 161a1 of the body 161a.
  • the vortex finder 161b includes a first portion 161b1 and a second portion 161b2.
  • the first portion 161b1 is formed in a cylindrical shape.
  • the second portion 161b2 protrudes from the first portion 161b1 toward the outlet O1 and O2 of the body 161a and has a cone shape.
  • the second portion 161b2 of the axial flow swirl tube 160a is clogged. Therefore, the air is not discharged to the inside of the vortex finder 161b. Since the air is not discharged to the inside of the vortex finder 161b, the air does not change the flow direction inside the body 161a.
  • the vane 161c is formed between the outer peripheral surface of the first portion 161b1 and the inner peripheral surface of the body 161a.
  • the vanes 161c may be provided in plural and extend in the spiral direction.
  • the vortex finder 161b and the vane 161c form a swirling flow of air and fine dust between the outer circumferential surface of the vortex finder 161b and the inner circumferential surface of the body 161a.
  • the outlets O1 and O2 of the axial flow swirl tube 160a include an air outlet O1 and a fine dust outlet O2.
  • the air outlet O1 and the fine dust outlet O2 are opened toward the same direction (the outlet side 161a2 of the body 161a).
  • the outlet partition 162a is disposed on the outlet side 161a2 of the body 161a and is configured to partition the air outlet O1 and the fine dust outlet O2.
  • the fine dust outlet O2 is formed in a ring shape around the air outlet O1.
  • the inner region defined by the outlet partition 162a corresponds to the air outlet O1.
  • the region between the outer circumferential surface of the outlet partitioning portion 162a and the inner circumferential surface of the body 161a corresponds to the fine dust outlet O2.
  • the outlet partition 162a is formed in a cylindrical shape and defines an air outlet O1 and a fine dust outlet O2.
  • the body 161a and the vortex finder 161b may be connected to each other by a vane 161c. Therefore, the body 161a, the vortex finder 161b, and the vane 161c can be formed by one member, and this one member can be named as the first member 161.
  • the outlet partitioning portion 162a is spaced apart from the body 161a. Therefore, the outlet partition 162a may be formed by a separate member, and the separate member may be referred to as a second member 162.
  • the axial flow swirl tubes 160 are formed by the engagement of the first member 161 and the second member 162.
  • FIG. 5 is an exploded perspective view showing the internal structure of the dust collecting apparatus 100 shown in Fig.
  • the dust collector (100) includes a plurality of axial flow swirl tubes (160).
  • the axial flow swirl tubes 160 may be formed by engagement of the first member 161 and the second member 162.
  • the first member 161 may be provided in a plurality, and the second member 162 may be provided in a single number.
  • the first member 161 includes a curved or planar body base 161d.
  • the body 161a of the axial flow swirl tube projects to both sides of the body base 161d.
  • the inlet side 161a1 of the body 161a protrudes from one side of the body base 161d and the outlet side 161a2 of the body 161a protrudes from the other side of the body base 161d.
  • the inlet side 161a1 and the outlet side 161a2 of the body 161a are divided based on the body base 161d.
  • Two first members 161 may be provided. 5, one of the first members 161 is disposed on one side of the second member 162, and the other one of the first members 161 is disposed on the other side of the second member 162. As shown in Fig.
  • the two first members 161 may have the same shape.
  • the axial flow swirl tubes 160 are arranged in two rows.
  • the first column 160 'and the second column 160 " are arranged to face each other in opposite directions.
  • One body base 161d and a plurality of bodies 161a may be formed for each first member 161.
  • a plurality of bodies 161a may be stacked in multiple stages for each first member 161, and a plurality of bodies 161a may be formed for each stage.
  • the bodies 161a are stacked in four stages for each first member 161, and seven bodies 161a are formed for each stage.
  • a vortex finder 161b and a vane 161c are formed inside each body 161a.
  • the axial length of the body 161a arranged at each end is not constant but varies depending on the position. Referring to FIG. 5, the axial length of the body 161a becomes gradually longer toward the body 161a disposed at the center of each end.
  • the axial length of the body 161a means the distance between the inlet and the outlet.
  • the axial length of the body 161a corresponds to the axial length of the axial swirl tube 160.
  • the length of the body 161a affects the separation performance of the axial flow swirl tube 160. As the length of the body 161a is longer, the separation performance of the axial flow swirl tube 160 increases. Therefore, the longer the length of the body 161a, the better.
  • the length of the body 161a can not be increased infinitely.
  • the shape of the housing 110 is cylindrical, the axial length of the body 161a can be gradually increased toward the axial flow swirl tube 160 disposed at the center of each end.
  • Occurrence of a dead zone in the housing 110 can be suppressed if the length of the body 161a becomes greater toward the axial flow swirl tube 160 disposed at the center of each end.
  • the separation performance of the axial flow swirl tube 160 can be maximized within a limited size and shape of the housing 110.
  • the dead space means a space that does not contribute to the improvement of the separation performance of the axial flow swirl tube 160 by increasing the axial length of the body 161a.
  • the second member 162 includes an outlet base 162b, an air vent hole 162c, an outlet compartment 162a, an upper shutoff 162d, a side wall 162f and a second dust collector top cover 162g .
  • the outlet base 162b has a curved surface or a flat surface.
  • the outlet base 162b corresponds to the side of a columnar or polygonal column. In Fig. 5, the outlet base 162b corresponds to the side surface of the square pillar.
  • the exit base 162b of the second member 162 is provided in the same number as the row of the axial flow swirl tubes 160.
  • FIG. 5 shows a configuration in which two outlet bases 162b are provided so as to correspond to two columns of the axial flow swirl tubes 160.
  • the outlet base forming the axial flow swirl tubes of the first column 160 ' is named first outlet base 162b' (see FIG. 6), and the axial swirl tubes of the second column 160 " Is referred to as the second outlet base 162b ", see Fig. 6).
  • the first outlet base 162b 'and the second outlet base 162b " are arranged to face each other at a spaced apart position.
  • the side wall 162f forms the remaining side of the polygonal column with the outlet base 162b.
  • Two sidewalls 162f are provided like the outlet base 162b.
  • the two side walls 162f are arranged to face each other at a spaced apart position.
  • the side walls of the rectangular pillar are formed by the two side walls 162f and the two outlet bases 162b.
  • a rising flow path R of air discharged from the axial flow swirl tubes 160 is formed.
  • the air discharged from the axial flow swirl tubes 160 is collected into the upward flow path R at the center of the second member 162.
  • the ascending flow path R leads to the outlet 123 of the dust collecting apparatus 100 formed on the upper side of the housing 110. Accordingly, the air is raised by the suction force of the suction motor, and is discharged to the outlet 123 of the dust collecting apparatus 100 along the exhaust guide 124.
  • Air outlet holes 162c are formed in each outlet base 162b.
  • the air discharge holes 162c are formed in the same number as the axial flow swirl tubes 160. Further, the air vent holes 162c have the same arrangement as the arrangement of the bodies 161a.
  • the air discharge holes 162c may be stacked in multiple stages, and a plurality of air discharge holes 162c may be formed in each stage.
  • the outlet partitioning portion 162a protrudes from the periphery of each air discharge hole 162c toward the inside of the body 161a. Since the air discharge hole 162c is formed in the outlet base 162b, the outlet partition 162a may be understood to protrude from the outlet base 162b.
  • the outlet compartments 162a have the same arrangement as that of the bodies 161a as the air vent holes 162c.
  • the upper blocking portion 162d may be formed on one side and the other side of the upflow channel, respectively.
  • One of the two upper blocking portions 162d is formed at the upper end of the first outlet base 162b 'and the other is formed at the upper end of the second outlet base 162b' And may have a symmetrical shape.
  • the upper blocking portion 162d is disposed to face the second dust collector top cover 162g at a spaced apart position.
  • the upper blocking portion 162d and the second dust collecting portion top cover 162g may have a substantially symmetrical shape.
  • the second dust collector top cover 162g is formed at the lower end of the side wall 162f. Two second dust collector top covers 162g are provided, and each second dust collector top cover 162g has an oblong shape.
  • the second dust collecting section top cover 162g comes into contact with the support member 190 along the inner circumferential surface of the support member 190 when the second member 162 is inserted into the support member 190 described later.
  • the second dust collecting section top cover 162g separates the inlet side of the axial flow swirl tubes 160 from the second dust collecting section 142 and prevents scattering of the fine dust collected in the second dust collecting section 142.
  • a hole H for dropping the fine dust discharged from the fine dust outlet O2 (see FIG. 7) of the axial flow swirl tubes 160 is formed between the two second dust collector top covers 162g.
  • the air and fine dust introduced into the axial flow swirl tubes 160 are swirled inside the axial flow swirl tubes 160 and separated from each other.
  • the air is discharged through the air outlet O1 (see FIG. 7), and the fine dust is discharged through the fine dust outlet O2.
  • the fine dust discharged through the fine dust outlet O2 falls through the hole H and is collected in the second dust collecting portion 142.
  • the axial swirl tubes 160 are formed.
  • the two first members 161 are coupled to the second member 162 in opposite directions to each other.
  • the rim of the body base 161d is brought into close contact with the side wall 162f.
  • the body base 161d is formed to be flat or curved so that when the rim of the body base 161d is brought into close contact with the side wall 162f, the open region between the two side walls 162f (the region where the outlet partition is formed) .
  • the open area between the two side walls 162f is sealed, it is possible to prevent the occurrence of the phenomenon that fine dust discharged from the fine dust outlet O2 of the axial flow swirl tubes 160 leaks.
  • the axial flow swirl tubes 160 may be supported by a support member 190.
  • the support member 190 may be configured to receive the lower end of the axial flow swirl tubes 160.
  • the support member 190 includes a receiving portion 191, an inclined portion 192, and a dust collecting guide 193.
  • a sealing member 194 may be coupled to the outer circumferential surface of the support member 190.
  • FIG. 6 is a cross-sectional view of the dust collecting apparatus 100 shown in FIG. 2 cut along the line A-A and viewed from one side.
  • each of the outlet compartments 162a protruding from the outlet base 162b is connected to the outlet side (161a2).
  • the axial flow swirl tubes 160 are stacked in multiple stages.
  • the second member 162 further includes a lower blocking portion 162e. If the outlet base 162b of the second member 162 corresponds to the side of a column or polygonal column, the lower blocking portion 162e corresponds to the underside of the column or polygonal column. The upper surface of the cylinder or the polygonal column is opened for discharging air through the rising flow path R.
  • the lower blocking portion 162e separates the ascending flow path R and the second dust collecting portion 142 so as to block the suction force generated in the suction motor from reaching the fine dust collected by the second dust collecting portion 142. [ Therefore, the lower blocking portion 162e prevents the fine dust collected in the second dust collecting portion 142 from being scattered by the upward flow path R of the air.
  • fine dust discharged from the fine dust outlet O2 of the axial flow swirl tubes 160 can not be collected by the second dust collecting portion 142, Mixed. This is because the hole H for dropping the fine dust is formed immediately below the lower blocking portion 162e.
  • the upper blocking portion 162d extends in the circumferential direction from the upper end to the outlet base 162b. Since the fine dust outlet O2 of each axial flow swirl tube is formed around the air outlet O1, the fine dust is discharged through the circumference of the air outlet O1. However, except for the fine dust drain paths D1 and D2 to be described later, the remaining area is blocked by the outlet base 162b and the upper blocking portion 162d. Therefore, the upper blocking portion 162d prevents mixing of air and fine dust discharged from the axial flow swirl tubes 160. [
  • a mesh 170 is disposed in an inner region of the housing 110.
  • the mesh 170 surrounds the axial flow swirl tubes 160 to form a boundary between the cyclone 150 and the axial flow swirl tubes 160.
  • the axial swirl tubes 160 are disposed in the inner region of the mesh 170.
  • a rising flow path R of air is formed in an area between the swirl flow swirl tubes 160 of the first row 160 'and the swirl flow tubes 160 of the second row 160 ".
  • the dust collecting apparatus 100 may further include a mesh support 112 to support the mesh 170.
  • the mesh support 112 has a circumference corresponding to the circumference of the mesh 170 and is formed to surround the upper rim of the mesh 170.
  • the mesh support 112 may be formed integrally with the housing 110, but is not limited thereto.
  • the upper blocking portion 162d of the second member 162 described above is disposed around the rising flow path R and has a shape of a circular segment.
  • the upper blocking portion 162d may be in close contact with the inner circumferential surface of the mesh support portion 112.
  • the upper blocking portion 162d separates the exhaust guide 124 which is the downstream side of the rising flow path R and the inlet I of the axial flow swirl tube 160 (see Fig. 7).
  • the upper blocking portion 162d can prevent mutual mixing of the air that is discharged to the exhaust guide 124 through the rising flow path R and the air that flows into the axial swirl tubes 160.
  • a pre-filter (not shown) may be disposed at the upper end of the upper blocking portion 162d.
  • the pre-filter may be formed to filter ultrafine dust from air discharged through the upflow channel (R).
  • the pre-filter is called a pre-filter because it is disposed on the upstream side of the suction motor based on the flow of air.
  • the air and foreign matter are sequentially passed through the suction nozzle 20 and the connection unit 30 by the suction force generated by the suction motor of the vacuum cleaner 1, Respectively.
  • the air introduced into the dust collecting apparatus 100 is pivoted inside the housing 110.
  • the centrifugal force of dust that is heavier than air is larger than the centrifugal force of air. Accordingly, the dust is swirled along the inner circumferential surface of the housing 110, and the dust falls and is collected by the first dust collecting part 141.
  • the centrifugal force of fine dust heavier than air is larger than the centrifugal force of air. Therefore, the fine dust is swirled along the inner circumferential surface of the body 161a, is discharged to the fine dust outlet O2, falls along the fine dust falling paths D1 and D2 (see FIG. 7), and is collected in the second dust collecting portion 142 do.
  • the air is discharged to the air outlet O1 and then discharged to the outside of the dust collecting apparatus 100 through the rising flow path R, the exhaust guide 124 and the outlet 123 of the dust collecting apparatus 100 in order.
  • the support member 190 includes a receiving portion 191, an inclined portion 192, and a dust collecting guide 193.
  • the receiving portion 191 corresponds to the uppermost portion of the supporting member 190 and the dust collecting guide 193 corresponds to the lowermost portion of the supporting member 190.
  • the inclined portion 192 is formed between the receiving portion 191 and the dust collecting guide 193.
  • the receiving portion 191 and the dust collecting guide 193 are formed in a cylindrical shape and the receiving portion 191 has a larger sectional area than the dust collecting guide 193.
  • the accommodating portion 191 is formed to enclose the lower end of the axial flow swirl tubes 160. However, the inner circumferential surface of the receiving portion 191 must be spaced from the inlet I of the axial flow swirl tubes 160 so as not to block the flow of the air and fine dust introduced into the axial flow swirl tubes 160.
  • the inclined portion 192 is formed so as to be inclined so that the cross-sectional area gradually decreases toward the bottom of the support member 190. Therefore, fine dust discharged from the axial flow swirl tubes 160 flows smoothly along the inclined portion 192.
  • the dust collecting guide 193 protrudes from the inclined portion 192 toward the lower cover 130 and is inserted into the dust collecting section boundary 183. Accordingly, the fine dust discharged from the axial flow swirl tubes 160 is guided to the second dust collecting part 142 by the dust collecting guide 193.
  • a mesh 170 may be mounted on the upper end of the inner housing 180.
  • the inner housing 180 is formed to surround the support member 190.
  • the skirt 181 described above is formed on the upper portion of the inner housing 180.
  • a dust collecting boundary 183 is formed at a lower portion of the inner housing 180.
  • the dust collecting section boundary 183 is in close contact with the lower cover 130 to partition the dust collecting section 140 into a first dust collecting section 141 and a second dust collecting section 142.
  • a seating portion 184 for seating the support member 190 is formed between the skirt 181 and the dust-collecting portion boundary 183.
  • the seating portion 184 may be formed to be inclined in the same manner as the inclined portion 192 of the supporting member 190.
  • An annular sealing member 194 may be disposed between the inner circumferential surface of the inner housing 180 and the outer circumferential surface of the support member 190.
  • a plurality of sealing members 194 may be provided. When the support member 190 is inserted into the inner housing 180, the sealing member 194 seals between the inner housing 180 and the support member 190. Accordingly, leakage of fine dust collected in the second dust collecting unit 142 can be prevented.
  • FIG. 7 is a cross-sectional view of the dust collecting apparatus 100 shown in FIG. 2 cut along the line B-B and viewed from above.
  • the axial flow swirl tubes 160 are stacked in multiple stages.
  • the axial flow swirl tubes 160 in each stage are arranged in two rows.
  • the axial swirl tubes of the first column 160 'and the axial swirl tubes of the second column 160' are arranged in opposite directions.
  • the axial swirl tubes of the first column 160 ' The tubes are arranged to face to the left, and the axial swirl tubes of the second row 160 " are arranged to face to the right. Since the upward flow path R of air is formed between the swirl tubes of the first row 160 'and the swirl tubes of the second column 160 ", the outlet of each swirl type swirl tube 160 And is arranged to face the upflow channel R immediately.
  • the outlet of the axial flow swirl tube belonging to the first column 160 ' may be arranged so as to face the outlet of the axial flow swirl tube belonging to the second column 160 ", and vice versa, Hole 162c because the axial flow swirl tubes 160 are arranged in two rows in opposite directions to each other.
  • each of the axial flow swirl tubes 160 becomes gradually longer toward the axial flow swirl tube arranged at the center of each end.
  • the length of the axial flow swirl tube disposed at the center of each stage is L1
  • the length of the axial flow swirl tube becomes gradually shorter toward the outer side (L1> L2> L3> L4). It has been described above that the occurrence of dead space can be suppressed through such a structure.
  • the ends of the outlet side 161a2 of the body 161a and the outlet base 162b are spaced from each other to form fine dust falling paths D1 and D2 communicating with the second dust collecting part 142 therebetween. Since the respective stages of the axial flow swirl tubes 160 have the same structure, the fine dust fall paths D1 and D2 extend downward toward the second dust collecting portion 142.
  • the ends of the outlet sides 161a2 of the two bodies 161a disposed adjacent to each other are arranged so as to be in contact with each other and the ends of the outlet sides 161a2 of the two bodies 161a contacting each other and the outlet base 162b are spaced apart from each other Thereby forming fine dust dropping passages D1 and D2 therebetween. Accordingly, the air outlet O1 and the fine dust drainage passages D1 and D2 are formed alternately along the outlet base 162b.
  • the number of the swirl flow type swirl tubes 160 increases and the length thereof becomes longer, the separation performance for separating the fine dust from the air is improved. Therefore, it is preferable that the number of the swirl flow tubes 160 is as large as possible, . However, since the number and length of the axial flow swirl tubes 160 can not be infinitely increased within a limited space, the number and length of the axial flow swirl tubes 160 must be maximized through efficient arrangement.
  • each swirl type swirl tube 160 is not constant and becomes longer in proportion to the distance from the outlet of each swirl type swirl tube to the housing 110, The average length can also be longer.
  • the axial flow swirl tubes 160 are arranged at the same height as the mesh 170 and arranged in two rows so that the inlet of each axial flow swirl tube faces the mesh 170, 150 and the mesh 170 flows into the axial flow swirl tube without change in the flow direction.
  • the axial flow type swirl tube has the inlet and the outlet formed opposite to each other, unlike the cyclone 150, the air introduced through the inlet of the axial flow swirl tube is discharged to the outlet without change in the flow direction. Therefore, pressure drop of the air can be suppressed through the structure and arrangement of the axial flow swirl tube.
  • the above-described vacuum cleaner is not limited to the configuration and the method of the above-described embodiments, but all or a part of the embodiments may be selectively combined so that various modifications may be made to the embodiments.
  • the present invention can be applied to industrial fields related to a dust collecting apparatus and a vacuum cleaner having the dust collecting apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Filters For Electric Vacuum Cleaners (AREA)
  • Cyclones (AREA)

Abstract

본 발명의 집진장치는, 집진장치의 외관을 형성하는 원통 형상의 하우징; 상기 하우징의 내측에 형성되고, 상기 하우징의 내측으로 유입된 공기로부터 먼지를 분리하도록 선회류를 일으키는 사이클론; 상기 사이클론을 통과한 공기와 미세먼지를 공급받으며, 공기로부터 미세먼지를 분리하도록 선회류를 일으키는 축류식 스월 튜브들; 및 상기 사이클론과 상기 축류식 스월 튜브들의 경계를 형성하도록 상기 축류식 스월 튜브들의 외측을 감싸는 메쉬를 포함하고, 상기 축류식 스월 튜브들은 다단으로 적층되고, 각 단의 축류식 스월 튜브들은 2열로 배열되어 제1 열과 제2 열이 서로 반대 방향을 향하도록 배치되며, 각 축류식 스월 튜브의 축 방향 길이는 각 단의 중심에 배치된 축류식 스월 튜브에 가까워질수록 점차 길어진다.

Description

집진장치 및 이를 구비하는 청소기
본 발명은 흡입력을 이용하여 공기와 먼지를 흡입하고, 흡입된 공기로부터 먼지를 분리하여 먼지를 집진하며, 깨끗한 공기만 배출하는 진공 청소기와 상기 진공 청소기에 구비되는 집진장치에 관한 것이다.
진공 청소기는 청소기 본체의 내부에 장착되는 흡입 모터에서 발생되는 흡입력을 이용하여 먼지와 공기를 흡입하고, 공기로부터 먼지를 분리하여 집진하는 장치를 가리킨다.
이러한 진공 청소기는 캐니스터 청소기, 업라이트 청소기, 스틱 청소기, 핸디 청소기, 및 로봇 청소기로 구분된다. 캐니스터 청소기의 경우 먼지를 흡입하기 위한 흡입 노즐이 청소기 본체와 별도로 구비되며, 연결장치에 의해 청소기 본체와 흡입 노즐이 서로 연결된다. 업라이트 청소기의 경우 흡입 노즐이 청소기 본체와 회전 가능하게 연결된다. 스틱 청소기와 핸디 청소기의 경우 사용자가 청소기 본체를 손으로 파지한 상태로 사용된다. 다만, 스틱 청소기의 경우 흡입 모터가 흡입 노즐에 가깝게 배치되고(하중심), 핸디 청소기의 경우 흡입 모터가 파지부에 가깝게 배치된다(상중심). 로봇 청소기는 자율 주행 시스템을 통해 스스로 주행하면서 스스로 청소를 수행한다.
현재 멀티 사이클론을 채택한 청소기들이 다수 개시되어 있다. 사이클론이란 유체에 선회류를 형성하고, 공기와 먼지의 무게 차이로부터 비롯되는 원심력 차이를 이용하여 공기와 먼지를 서로 분리하는 장치를 가리킨다. 멀티 사이클론이란 1차 사이클론을 이용하여 공기와 먼지를 서로 분리하고, 다수의 2차 사이클론을 이용하여 공기와 미세먼지를 서로 분리하는 구조를 가리킨다. 여기서 먼지와 미세먼지는 크기를 기준으로 구분된다.
예를 들어, 대한민국 공개특허공보 제10-2015-0031304호(2015.03.23)에는 멀티 사이클론을 채택한 청소 기구가 개시되어 있다. 공기와 함께 몸체의 내부로 유입된 먼지와 미세먼지는 1차 사이클론과 2차 사이클론에 의해 순차적으로 공기로부터 분리된다. 사이클론을 채택한 청소기는 별도의 교체형 먼지 봉투를 필요로 하지 않는다는 장점을 갖는다.
멀티 사이클론 중 특히 2차 사이클론의 바디(실린더)에는 콘(cone)이라는 구조가 형성된다. 콘은 일측으로 갈수록 2차 사이클론의 단면적이 작아지는 형상을 의미한다. 2차 사이클론으로 유입된 공기와 미세먼지는 2차 사이클론에서 서로 분리된다. 미세먼지는 콘을 따라 미세먼지 출구로 배출되며, 공기는 미세먼지의 출구와 반대 방향에 형성되는 공기 출구로 배출된다.
이와 같은 구조는 유동 손실을 일으키는 문제가 있다. 공기의 유동 방향이 자주 변경될수록 유동 손실이 발생하는데, 2차 사이클론의 입구와 공기 출구는 서로 같은 쪽에 형성되기 때문이다. 공기는 2차 사이클론의 입구로 유입되고, 2차 사이클론 내에서 방향을 유동 바꾸어 다시 공기 출구로 배출되며, 이 과정에서 유동 손실이 발생하게 된다.
본 발명의 일 목적은 고효율 축류식 스월 튜브(axial inlet type swirl tube)를 이용하여, 공기의 유동 손실을 억제할 수 있는 구조의 청소기를 제공하기 위한 것이다.
본 발명의 다른 일 목적은 축류식 스월 튜브의 최적 배치를 통해 상기 축류식 스월 튜브의 효율을 극대화할 수 있는 구조를 제안하기 위한 것이다. 특히 본 발명은 축류식 스월 튜브로 유입되거나 배출되는 공기의 유동 방향을 개선하고, 축류식 스월 튜브의 개수를 증대시킬 수 있는 배치 등을 최적화한 구조를 제시하기 위한 것이다.
이와 같은 본 발명의 일 목적을 달성하기 위하여 본 발명의 일 실시예에 따르는 집진장치는, 사이클론의 하류측에 설치되는 축류식 스월 튜브들을 포함한다. 상기 축류식 스월 튜브들은 다단으로 적층되고, 각 단의 축류식 스월 튜브들은 2열로 배열되어 제1 열과 제2 열이 서로 반대 방향을 향하도록 배치된다. 그리고 각 축류식 스월 튜브의 축 방향 길이는 각 단의 중심에 배치된 축류식 스월 튜브에 가까워질수록 점차 길어진다.
상기 집진장치는, 집진장치의 외관을 형성하는 원통 형상의 하우징; 상기 하우징의 내측에 형성되고, 상기 하우징의 내측으로 유입된 공기로부터 먼지를 분리하도록 선회류를 일으키는 사이클론; 및 상기 사이클론과 상기 축류식 스월 튜브들의 경계를 형성하도록 상기 축류식 스월 튜브들의 외측을 감싸는 메쉬를 포함한다.
상기 축류식 스월 튜브들은 사이클론을 통과한 공기와 미세먼지를 공급받으며, 공기로부터 미세먼지를 분리하도록 선회류를 일으킨다.
각각의 상기 축류식 스월 튜브는, 상기 메쉬를 향하도록 배치되며, 공기와 미세먼지를 공급받는 입구; 및 서로 같은 방향을 향해 개구된 공기 출구와 미세먼지 출구를 포함하고, 상기 입구는 상기 공기 출구와 상기 미세먼지 출구의 반대 방향을 향해 개구된다.
상기 미세먼지 출구는 상기 공기 출구의 둘레에 환형(ring shape)으로 형성된다.
각각의 상기 축류식 스월 튜브는, 원통형의 바디; 상기 바디의 입구측에 배치되고, 원통형의 제1 부분과 상기 제1 부분에서 상기 바디의 출구측을 향해 돌출되는 콘(cone) 형상의 제2 부분을 구비하는 볼텍스 파인더(vortex finder); 상기 제1 부분의 외주면과 상기 바디의 내주면 사이에 형성되며, 나선 방향으로 연장되는 베인; 및 상기 바디의 출구측에 배치되고, 공기 출구와 상기 공기 출구의 둘레에 형성되는 미세먼지 출구를 구획하도록 원통형으로 형성되는 출구 구획부를 포함한다.
상기 축류식 스월 튜브들은 제1 부재와 제2 부재의 결합에 의해 형성되고, 상기 제1 부재는 각 축류식 스월 튜브의 상기 바디, 상기 볼텍스 파인더 및 상기 베인을 형성하며, 상기 제2 부재는 각 축류식 스월 튜브의 상기 출구 구획부를 형성하고, 상기 출구 구획부의 적어도 일부는 상기 바디의 출구측에 삽입된다.
상기 제1 부재는 곡면 또는 평면의 바디 베이스를 더 포함하고,
상기 바디는 상기 바디 베이스의 양측으로 돌출되며, 상기 제2 부재는 곡면 또는 평면을 갖는 출구 베이스를 더 포함하고, 상기 출구 베이스에는 상기 축류식 스월 튜브들에 대응되는 수의 공기 배출 구멍이 형성되고, 상기 출구 구획부는 상기 공기 배출 구멍의 둘레로부터 상기 바디의 내측을 향해 돌출된다.
상기 출구 베이스는 이격된 위치에서 서로 마주보도록 배치되는 제1 출구 베이스와 제2 출구 베이스를 포함하고, 상기 제2 부재는, 이격된 위치에서 서로 마주보도록 배치되며, 상기 제1 출구 베이스 및 상기 제2 출구 베이스와 함께 다각 기둥의 측면을 형성하는 두 개의 측벽을 더 포함하며, 상기 제1 출구 베이스, 상기 제2 출구 베이스 및 상기 두 개의 측벽에 의해 감싸이는 영역에는 상기 축류식 스월 튜브들로부터 배출되는 공기의 상승 유로가 형성되고, 상기 상승 유로는 상기 하우징의 상측에 형성되는 상기 집진장치의 출구로 통한다.
상기 하우징의 내측 영역에 상기 메쉬가 배치되고, 상기 메쉬의 내측 영역에 상기 축류식 스월 튜브들이 배치되며, 상기 제1 열과 상기 제2 열 사이에 상기 상승 유로가 형성된다.
상기 제1 부재는 상기 제2 부재에 결합되고, 상기 바디 베이스의 테두리는 상기 두 개의 측벽 사이의 개구된 영역을 실링하도록 상기 두 개의 측벽에 밀착된다.
상기 집진장치는, 상기 하우징의 내측에 환형으로 형성되고, 상기 사이클론에서 낙하하는 먼지를 집진하도록 형성되는 제1 집진부; 및 상기 제1 집진부에 의해 둘러싸이는 영역에 형성되고, 상기 축류식 스월 튜브들에서 낙하하는 미세먼지를 집진하도록 형성되는 제2 집진부를 더 포함하고, 상기 제2 부재는 상기 제2 집진부에 집진된 미세먼지가 상기 상승 유로로 비산되는 것을 방지하도록 상기 제2 집진부와 상기 상승 유로를 구획하는 하부 차단부를 더 포함하며, 상기 제1 출구 베이스와 상기 제2 출구 베이스는 다각 기둥의 서로 마주보는 두 측면에 해당하고, 상기 하부 차단부는 상기 다각 기둥의 밑면에 해당한다.
상기 제2 부재는 두 개의 제2 집진부 탑 커버를 구비하며, 상기 두 개의 제2 집진부 탑 커버는, 상기 제2 부재의 하단에 형성되며, 활꼴(circular segment)의 형상으로 형성된다.
상기 두 개의 제2 집진부 탑 커버의 사이에 상기 미세먼지 출구에서 배출되는 미세먼지의 낙하를 위한 구멍이 형성된다.
상기 미세먼지의 낙하를 위한 구멍은 상기 하부 차단부의 아래에 형성된다.
상기 집진장치는 상기 메쉬의 상부 테두리를 감싸도록 형성되는 메쉬 지지부를 더 포함하고, 상기 제2 부재는 상기 제1 출구 베이스의 상단과 상기 제2 출구 베이스의 상단에 각각 형성되는 두 개의 상부 차단부를 더 포함하고, 상기 두 개의 상부 차단부는 활꼴(circular segment)의 형상으로 형성되며, 상기 메쉬 지지부에 밀착된다.
상기 제2 부재는, 이격된 위치에서 서로 마주보도록 배치되는 제1 출구 베이스와 제2 출구 베이스; 이격된 위치에서 서로 마주보도록 배치되며, 상기 제1 출구 베이스 및 상기 제2 출구 베이스와 함께 다각 기둥의 측면을 형성하는 두 개의 측벽; 상기 축류식 스월 튜브들의 수만큼 구비되며, 상기 제1 출구 베이스와 상기 제2 출구 베이스로부터 서로 반대 방향을 향해 돌출되는 다수의 상기 출구 구획부; 상기 제1 출구 베이스의 상단과 상기 제2 출구 베이스의 상단에 각각 형성되는 활꼴 형상의 상부 차단부; 및 활꼴의 형상을 가지며, 상기 제2 부재의 하단에 형성되는 두 개의 제2 집진부 탑 커버를 포함한다.
상기 제1 부재는 두 개가 구비되고, 두 개의 상기 제1 부재는 서로 반대 방향에서 상기 제2 부재를 향해 삽입되어 상기 제2 부재에 결합된다.
상기 집진장치는, 상기 하우징의 내측에 환형으로 형성되고, 상기 사이클론에서 낙하하는 먼지를 집진하도록 형성되는 제1 집진부; 및 상기 제1 집진부에 의해 둘러싸이는 영역에 형성되고, 상기 축류식 스월 튜브들에서 낙하하는 미세먼지를 집진하도록 형성되는 제2 집진부를 더 포함하고, 상기 바디의 출구측 단부와 상기 출구 베이스는 서로 이격되어 그 사이에 상기 제2 집진부로 통하는 미세먼지 낙하 유로를 형성한다.
상기 바디는 상기 축류식 스월 튜브들의 수만큼 구비되고, 서로 인접하게 배치된 두 바디의 각 출구측 단부끼리 서로 접촉하도록 배열되며, 서로 접촉하는 두 바디의 각 출구측 단부와 상기 출구 베이스는 서로 이격되어 그 사이에 상기 미세먼지 낙하 유로를 형성한다.
상기 공기 출구와 상기 미세먼지 낙하 유로는 상기 출구 베이스를 따라 교번적으로 형성된다.
각 축류식 스월 튜브의 축방향 길이는 각 축류식 스월 튜브의 출구로부터 상기 하우징까지의 거리에 비례한다.
상기와 같은 구성의 본 발명에 의하면, 축류식 스월 튜브는 순방향 다이렉트 인렛(direct inlet) 구조와 순방향 다이렉트 아웃렛(direct outlet) 구조를 갖는다.
이를테면 축류식 사이클론의 입구는 메쉬를 마주보도록 배치되므로, 메쉬를 통과한 공기가 유동 방향의 변화 없이 곧바로 축류식 스월 튜브의 입구로 유입된다. 또한 축류식 스월 튜브의 입구와 출구는 서로 반대측에 형성되므로, 입구를 통해 유입된 공기가 유동 방향의 변화 없이 출구를 통해 배출된다.
공기가 축류식 스월 튜브로 유입되고 배출되는 과정에서 공기의 유동 방향 변화가 발생하지 않으므로, 본 발명에서 제안하는 축류식 스월 튜브의 구조와 배열을 이용하면 공기의 유동 손실(압손)을 억제할 수 있으며, 집진장치의 성능을 향상시킬 수 있다.
또한 본 발명에 의하면, 축류식 스월 튜브들이 다단으로 적층되므로 제한된 공간 내에서 그 수를 증대시킬 수 있다. 특히 축류식 스월 튜브는 사이클론에 비해 소형화에 유리하다. 따라서 축류식 스월 튜브들의 다단 배치에 따른 수의 증가는 공기로부터 미세먼지를 분리하는 분리 성능을 향상시킨다.
또한 본 발명은, 축류식 스월 튜브들의 최적 배치를 통해 축류식 스월 튜브들이 차지하는 공간의 확대를 억제하며, 이를 통해 먼지를 집진하는 집진부의 용량을 확대시킬 수 있다.
도 1은 본 발명과 관련된 청소기의 일 예를 보인 사시도다.
도 2는 도 1에 도시된 집진장치의 사시도다.
도 3은 도 2에 도시된 집진장치의 상부를 절단한 모습을 나타낸 사시도다.
도 4는 축류식 스월 튜브의 사시도다.
도 5는 도 2에 도시된 집진장치의 내부 구성을 보인 분해 사시도다.
도 6은 도 2에 도시된 집진장치를 라인 A-A를 따라 자르고 일측에서 바라본 단면도다.
도 7은 도 2에 도시된 집진장치를 라인 B-B를 따라 자르고 상측에서 바라본 단면도다.
이하, 본 발명에 관련된 집진장치에 대하여 도면을 참조하여 보다 상세하게 설명한다. 본 명세서에서는 서로 다른 실시예라도 동일, 유사한 구성에 대해서는 동일, 유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다. 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
참고로, 본 도면에서는 캐니스터 타입의 진공 청소기(1)에 적용된 집진장치(100)를 보이고 있으나, 본 발명의 집진장치(100)가 반드시 캐니스터 타입의 진공 청소기(1)에만 한정하는 것은 아니다. 예를 들어 본 발명의 집진장치(100)는 업라이트 타입의 진공 청소기에도 적용될 수 있으며, 집진장치는 구비하는 모든 종류의 청소기에 적용될 수 있다.
도 1은 본 발명과 관련된 청소기(1)의 일 예를 보인 사시도다.
도 1을 참조하면, 진공 청소기(1)는 청소기 본체(10), 흡입 노즐(20), 연결 유닛(30), 휠 유닛(40), 그리고 집진장치(100)를 포함한다.
청소기 본체(10)는 흡입력을 발생시키는 흡입 유닛(미도시)을 구비한다. 상기 흡입 유닛은 흡입 모터 및 상기 흡입 모터에 의해 회전되어 흡입력을 발생시키는 흡입팬을 포함한다.
흡입 노즐(20)은 흡입 노즐(20)에 인접한 공기와 이물질 등을 흡입하도록 구성된다. 여기서 이물질이란 공기를 제외한 나머지 물질을 가리키며, 먼지, 미세먼지, 초미세먼지를 포함하는 개념이다. 그리고 먼지, 미세먼지, 초미세먼지는 크기를 기준으로 구분되며, 미세먼지는 먼지보다 작고 초미세먼지보다 크다.
연결 유닛(30)은 흡입 노즐(20)과 집진장치(100)에 각각 연결되어, 흡입 노즐(20)을 통하여 흡입된 이물, 먼지, 미세먼지, 초미세먼지 등이 포함된 공기를 집진장치(100)에 전달하도록 이루어진다. 연결 유닛(30)은 호스, 파이프 형태로 구성될 수 있다.
휠 유닛(40)은 청소기 본체(10)에 회전 가능하게 결합되어, 회전에 의해 청소기 본체(10)를 전후좌우로 이동시키거나 회전 가능하게 한다.
일 예로, 휠 유닛(40)은 주 바퀴 및 보조 바퀴를 포함할 수 있다. 주 바퀴는 청소기 본체(10)의 양측에 각각 구비되고, 보조 바퀴는 주 바퀴와 함께 청소기 본체(10)를 지지하며, 주 바퀴에 의한 청소기 본체(10)의 이동을 보조하도록 이루어질 수 있다.
본 발명에서 흡입 노즐(20), 연결 유닛(30), 휠 유닛(40)은 기존의 진공 청소기에 구비되는 해당 구성들이 그대로 적용될 수 있으므로, 이에 대한 상세한 설명은 생략하기로 한다.
집진장치(100)는 청소기 본체(10)에 착탈 가능하게 결합된다. 집진장치(100)는 흡입 노즐(20)을 통해 흡입된 공기로부터 이물질을 분리하여 집진하고, 여과된 공기를 배출하도록 이루어진다.
기존의 진공 청소기는 연결 유닛이 청소기 본체에 형성된 흡입부에 연결되고, 흡입부에서 집진장치로 이어지는 유동 가이드를 통하여 흡입된 공기가 집진장치로 다시 유입되는 구조를 가진다. 흡입된 공기는 흡입 유닛의 흡입력에 의해 집진장치로 유입되는데, 청소기 본체의 유동 가이드를 거침에 따라 흡입력이 저하되는 문제가 발생하였다.
이에 반하여, 본 발명의 진공 청소기(1)는 도시된 바와 같이, 연결 유닛(30)이 집진장치(100)에 직접 연결된다. 이러한 연결 구조에 따르면, 흡입 노즐(20)을 통해 흡입된 공기가 집진장치(100)로 바로 유입되므로 기존보다 흡입력이 향상될 수 있다. 또한, 청소기 본체(10) 내부에 유동 가이드의 형성이 불필요하다는 장점이 있다.
또한 바디(실린더)에 콘 구조가 형성되는 2차 사이클론은 유동 손실을 유발한다. 이하에서는 2차 사이클론의 유동 손실을 억제하기 위해 축류식 스월 튜브(axial inlet type swirl tube)를 갖는 집진장치(100)에 대하여 설명한다.
도 2는 도 1에 도시된 집진장치(100)의 사시도다. 도 3은 도 2에 도시된 집진장치(100)의 상부를 절단한 모습을 나타낸 사시도다.
집진장치(100)란 흡입 노즐(20)을 통해 흡입된 공기로부터 이물질(먼지, 미세먼지, 초미세먼지 등)을 분리하여 집진하는 장치를 가리킨다. 흡입 유닛에 의해 형성되는 흡입력에 의해 공기는 집진장치(100) 내부의 유로를 따라 유동하게 되며, 이물질은 유동 과정에서 집진장치(100)의 구조에 의해 공기로부터 분리되게 된다.
집진장치(100)의 외관은 하우징(110), 상부 커버(120), 하부 커버(130)에 의해 형성된다.
하우징(110)은 집진장치(100)의 측면 외관을 형성한다. 하우징(110)은 후술하게 될 사이클론(150), 축류식 스월 튜브들(160, 도 4 참조) 및 메쉬(mesh)(170) 등 집진장치(100)의 내부 구성품들을 수용하도록 구성된다. 하우징(110)은 상하가 개구된 원통형으로 형성될 수 있으나, 반드시 이에 한정되는 것은 아니다.
상부 커버(120)는 하우징(110)의 상부에 결합된다. 상부 커버(120)는 힌지(125)에 의해 하우징(110)에 회전 가능하게 결합될 수 있다. 상부 커버(120)를 개방하고 집진장치(100)의 내측을 청소할 필요가 있을 경우에는, 힌지(125)를 중심으로 상부 커버(120)를 회전시켜 하우징(110)의 상측 개구부를 개방시키면 된다.
*상부 커버(120)에는 집진장치(100)의 입구(121)와 출구(123)가 각각 형성될 수 있다. 도 2를 참조하면, 집진장치(100)의 입구(121)는 상부 커버(120)의 일측에 형성될 수 있고, 집진장치(100)의 출구(123)는 상부 커버(120)의 타측에 형성될 수 있다.
집진장치(100)의 입구(121)는 연결 유닛(30)에 의해 흡입 노즐(20)과 연결된다. 따라서 흡입 노즐(20)을 통해 유입된 공기와 이물질은 상기 연결 유닛(30)을 통해 집진장치(100)로 유입된다. 그리고 집진장치(100)의 출구는 청소기 본체(10)의 내부 유로와 연결된다. 따라서 집진장치(100)에 의해 이물질로부터 분리된 공기는 청소기 본체(10)의 내부 유로를 따라 흡입 노즐(20)을 통과하게 되고, 청소기 본체(10)의 외부로 배출된다.
상부 커버(120)에는 흡기 가이드(122)와 배기 가이드(124)가 각각 형성될 수 있다.
흡기 가이드(122)는 입구(121)의 하류측에 형성되며, 집진장치(100)의 내측으로 연결된다. 흡기 가이드(122)는 상부 커버(120)의 중심에서 나선 방향을 따라 하우징(110)의 내주면까지 하향 연장된다. 따라서 흡기 가이드(122)에 의해 가이드 되는 공기는 하우징(110)의 내주면을 향해 접선 방향으로 유동하게 된다. 따라서 하우징(110)의 내측으로 유입되는 공기에는 자연스럽게 선회류가 형성된다.
배기 가이드(124)는 흡기 가이드(122)의 주변에 형성된다. 상부 커버(120)의 구조물에 의해 흡기 가이드(122)와 배기 가이드(124)는 서로 구획되어 있다. 배기 가이드(124)는 흡기 가이드(122)의 양측에 형성되는 두 갈래(124a, 124b)에서 하나로 합쳐지는 구성을 가질 수 있으며, 배기 가이드(124)의 하류측에는 집진장치(100)의 출구(123)가 형성된다.
하우징(110)의 내측에는 먼지를 집진하는 제1 집진부(141)와 미세먼지를 집진하는 제2 집진부(142)가 형성된다. 상기 제1 집진부(141)와 상기 제2 집진부(142)는 하우징(110)과 하부 커버(130) 등에 의해 정의되는 영역에 형성된다.
제1 집진부(141)는 하우징(110)의 내측에 환형으로 형성된다. 제1 집진부(141)는 후술하게 될 사이클론(150)에서 낙하는 먼지를 집진하도록 형성된다. 제1 집진부(141)에는 구획판(111)이 형성될 수 있다. 구획판(111)은 하우징(110)의 내주면으로부터 집진부 바운더리(183)를 향해 돌출될 수 있다.
제2 집진부(142)는 제1 집진부(141)에 의해 둘러싸이는 영역에 형성된다. 하우징(110)의 내측에는 제1 집진부(141)와 제2 집진부(142)를 구획하는 원기둥 형상의 집진부 바운더리(183)가 구비될 수 있다. 상기 집진부 바운더리(183)의 외측은 제1 집진부(141)에 해당하고, 상기 집진부 바운더리(183)의 내측은 제2 집진부(142)에 해당한다. 제2 집진부(142)는 후술하게 될 축류식 스월 튜브들(160)에서 낙하하는 미세먼지를 집진하도록 형성된다.
하부 커버(130)는 하우징(110)의 하부에 결합된다. 하부 커버(130)는 제1 집진부(141)와 제2 집진부(142)의 바닥을 형성한다.
하부 커버(130)는 힌지(125)에 의해 하우징(110)에 회전 가능하게 결합될 수 있다. 하부 커버(130)를 개방하고 제1 집진부(141)에 집진된 먼지와 제2 집진부(142)에 집진된 미세먼지를 배출시키고자 하는 경우에는, 체결 부재(132)에 의해 서로 체결되어 있는 하우징(110)과 하부 커버(130)의 체결을 해제하고, 힌지(125)를 중심으로 하부 커버(130)를 회전시켜 하우징(110)의 하측 개구부를 개방시키면 된다. 제1 집진부(141)에 집진된 먼지와 제2 집진부(142)에 집진된 미세먼지는 각각 자중에 의해 한번에 아래로 배출된다.
메쉬(170)는 하우징(110)의 내측에 배치된다. 메쉬(170)는 하우징(110)보다 작은 원주를 갖는 원통형으로 형성될 수 있다. 메쉬(170)에는 다수의 구멍(171)이 형성되며, 아무리 가벼운 물질이라도 메쉬(170)의 구멍(171)보다 크다면 메쉬(170)에 의해 여과된다.
메쉬(170)의 아래에는 스커트(181)가 형성될 수 있다. 스커트(181)는 하부 커버(130)에 가까워질수록 하우징(110)의 내측면에 가까워지는 경사를 형성할 수 있다. 스커트(181)는 제1 집진부(141)에 집진된 먼지의 비산을 방지하는 역할을 한다.
스커트(181)의 외주면에는 나선 방향을 따라 리브(182)가 돌출될 수 있다. 리브(182)는 메쉬(170)에 의해 여과된 이물질의 자연스러운 낙하를 유도하여 제1 집진부(141)에 집진되도록 한다. 스커트(181)의 아래에는 앞서 설명된 집진부 바운더리(183)가 형성된다.
상기 스커트(181), 리브(182), 집진부 바운더리(183)는 일체의 부재로 형성될 수 있다. 이 부재는 이너 하우징(inner housing)(180)으로 명명될 수 있다.
사이클론(150)은 하우징(110)의 내측에 형성된다. 구체적으로 사이클론(150)은 하우징(110)과 메쉬(170)에 의해 형성된다.
사이클론(150)은 하우징(110)의 내측으로 유입된 공기로부터 먼지를 분리하도록 선회류를 일으킨다. 청소기 본체의 내측에 설치된 흡입 모터로부터 제공되는 흡입력이 집진장치(100)의 내측에까지 영향력을 미치게 되면, 공기와 이물질이 사이클론(150) 내에서 선회 운동을 하게 된다.
흡기 가이드(122)에 의해 사이클론(150)의 접선 방향으로 흡입된 공기와 이물질에 선회류가 형성되면, 상대적으로 가벼운 공기와 미세먼지는 메쉬(170)의 구멍을 통과해 메쉬(170)의 내측으로 흐르게 된다. 반대로 상대적으로 무거운 먼지는 하우징(110)의 내측면을 따라 유동하게 되고, 제1 집진부(141)로 낙하하게 된다.
축류식 스월 튜브들(160)은 메쉬(170)에 의해 정의되는 영역의 내측에 배치된다. 이하에서는 축류식 스월 튜브(160a) 하나의 구조에 대하여 먼저 설명하고, 이어서 축류식 스월 튜브들(160)의 배치와 작동에 대하여 설명한다.
도 4는 축류식 스월 튜브(160a)의 사시도다.
축류식 스월 튜브(160a)는 넓은 의미의 사이클론에 포함되는 개념이다. 사이클론은 공기의 유입 구조에 따라 축류식(axial inlet type)과 접선 유입식(tangential inlet type)으로 구분된다. 축류식 사이클론의 경우 공기가 사이클론의 축 방향을 따라 유입되며, 접선 유입식 사이클론의 경우 공기가 사이클론의 접선 방향을 따라 유입된다.
축류식 사이클론은 다시 구조에 따라 콘(cone) 타입과 튜브(tube) 타입으로 구분된다. 콘 타입은 내경의 크기가 점차 작아지는 구조를 갖는 반면, 튜브 타입은 내경의 크기가 일정한 구조를 갖는다.
콘 타입은 역방향 유동 구조만 가질 수 있는 반면, 튜브 타입은 역방향과 순방향 유동 구조 중 어느 하나를 선택적으로 가질 수 있다. 역방향 유동 구조란 공기의 입구와 공기의 출구가 같은 방향을 향해 개구되어 있어 공기의 입구로 유입된 공기가 유동 방향을 반전시켜 공기의 출구로 배출되는 구조를 가리킨다. 이와 달리 순방향 유동 구조란 공기의 입구와 공기의 출구가 서로 반대 방향을 향해 개구되어 있어 공기의 입구로 유입된 공기가 유동 방향을 유지한 채 공기의 출구로 배출되는 구조를 가리킨다.
본 발명의 축류식 스월 튜브(160a)는 축류식, 튜브 타입에 해당하며, 순방향 유동 구조를 갖는다.
축류식 스월 튜브(160a)는 사이클론(150)과 메쉬(170)를 통과한 공기와 미세먼지를 공급받는다. 그리고 공기로부터 미세먼지를 분리하도록 선회류를 일으킨다.
축류식 스월 튜브(160a)는 축 방향을 따라 공기(A)와 미세먼지(F)를 공급받는다. 축 방향이란 축류식 스월 튜브(160a)의 입구(I)와 출구(O1, O2)를 향해 연장되는 방향을 가리킨다. 축 방향을 따라 공기와 미세먼지를 공급받으면 360°(도)에서 균일하게 대칭적으로 유동이 형성되므로, 어느 한 영역으로 유동이 집중되는 현상의 발생을 방지할 수 있다.
축류식 스월 튜브(160a)는 바디(161a), 볼텍스 파인더(vortex finder)(161b), 베인(vane)(161c) 및 출구 구획부(162a)를 포함한다.
바디(161a)는 축류식 스월 튜브(160a)의 외관을 형성하고, 축류식 스월 튜브(160a)의 내측과 외측의 경계를 형성한다. 바디(161a)는 속이 빈 원통형으로 형성되며, 바디(161a)의 내경은 일정하다. 바디(161a)의 일측(위쪽, 161a1)과 타측(아래쪽, 161a2)은 개구된다. 도 4에서 개구된 위쪽(161a1)이 바디(161a)의 입구(I)에 해당하고, 개구된 아래쪽(161a2)이 바디(161a)의 출구(O1, O2)에 해당한다. 따라서 바디(161a)의 입구(I)와 출구(O1, O2)는 서로 반대 방향을 향해 개구된다.
볼텍스 파인더(161b)는 바디(161a)의 입구측(161a1)에 배치된다. 볼텍스 파인더(161b)는 제1 부분(161b1)과 제2 부분(161b2)을 포함한다. 제1 부분(161b1)은 원통형으로 형성된다. 그리고 제2 부분(161b2)은 제1 부분(161b1)에서 바디(161a)의 출구(O1, O2)측을 향해 돌출되며, 콘(cone) 형상을 갖는다.
축류식 스월 튜브(160a)의 제2 부분(161b2)은 막혀 있다. 따라서 공기가 볼텍스 파인더(161b)의 내측으로 배출되지 않는다. 공기가 볼텍스 파인더(161b)의 내측으로 배출되지 않으므로, 공기는 바디(161a)의 내측에서 유동 방향을 바꾸지 않는다.
베인(161c)은 제1 부분(161b1)의 외주면과 바디(161a)의 내주면 사이에 형성된다. 베인(161c)은 복수로 구비될 수 있으며, 나선 방향으로 연장된다.
볼텍스 파인더(161b)와 베인(161c)에 의해 상기 볼텍스 파인더(161b)의 외주면과 바디(161a)의 내주면 사이에서 공기와 미세먼지의 선회류가 형성된다.
축류식 스월 튜브(160a)의 출구(O1, O2)는 공기 출구(O1)와 미세먼지 출구(O2)를 포함한다. 공기 출구(O1)와 미세먼지 출구(O2)는 서로 같은 방향{바디(161a)의 출구측(161a2))을 향해 개구된다. 출구 구획부(162a)는 바디(161a)의 출구측(161a2)에 배치되고, 공기 출구(O1)와 미세먼지 출구(O2)를 구획하도록 형성된다.
도 4를 참조하면 미세먼지 출구(O2)는 공기 출구(O1)의 둘레에 환형(ring shape)으로 형성된다. 출구 구획부(162a)에 의해 정의되는 내측 영역이 공기 출구(O1)에 해당한다. 그리고 출구 구획부(162a)의 외주면과 바디(161a)의 내주면 사이의 영역이 미세먼지 출구(O2)에 해당한다. 출구 구획부(162a)는 원통형으로 형성되고, 공기 출구(O1)와 미세먼지 출구(O2)를 구획한다.
도 4를 참조하면, 바디(161a)와 볼텍스 파인더(161b)는 베인(161c)에 의해 서로 연결될 수 있다. 따라서 바디(161a), 볼텍스 파인더(161b) 및 베인(161c)은 하나의 부재에 의해 형성될 수 있으며, 이 하나의 부재는 제1 부재(161)로 명명될 수 있다. 반면, 출구 구획부(162a)는 바디(161a)로부터 이격되어 있다. 따라서 출구 구획부(162a)는 별도의 부재에 의해 형성되며, 상기 별도의 부재는 제2 부재(162)로 명명될 수 있다. 축류식 스월 튜브들(160)은 제1 부재(161)와 제2 부재(162)의 결합에 의해 형성된다.
이하에서는 제1 부재(161)와 제2 부재(162)의 결합 구조에 대하여 설명한다.
도 5는 도 2에 도시된 집진장치(100)의 내부 구성을 보인 분해 사시도다.
집진장치(100)는 다수의 축류식 스월 튜브들(160)을 포함한다. 축류식 스월 튜브들(160)은 제1 부재(161)와 제2 부재(162)의 결합에 의해 형성될 수 있다. 제1 부재(161)는 복수로 구비될 수 있으며, 제2 부재(162)는 단수로 구비될 수 있다.
제1 부재(161)는 곡면 또는 평면의 바디 베이스(161d)를 포함한다. 축류식 스월 튜브의 바디(161a)는 바디 베이스(161d)의 양측으로 돌출된다. 바디(161a)의 입구측(161a1)은 바디 베이스(161d)의 일측으로부터 돌출되고, 바디(161a)의 출구측(161a2)은 바디 베이스(161d)의 타측으로부터 돌출된다. 바디(161a)의 입구측(161a1)과 출구측(161a2)은 바디 베이스(161d)를 기준으로 구분된다.
제1 부재(161)는 두 개가 구비될 수 있다. 도 5를 참조하면, 어느 하나의 제1 부재(161)는 제2 부재(162)의 일측에 배치되고, 다른 하나의 제1 부재(161)는 제2 부재(162)의 타측에 배치된다. 두 개의 제1 부재(161)는 서로 동일한 모양을 가질 수 있다.
제1 부재(161)가 두 개 구비됨에 따라 축류식 스월 튜브들(160)은 2열로 배열된다. 제1 열(160')과 제2 열(160")은 서로 반대 방향을 향하도록 배치된다.
각각의 제1 부재(161)마다 하나의 바디 베이스(161d)와 다수의 바디(161a)들이 형성될 수 있다. 또한 각각의 제1 부재(161)마다 다수의 바디(161a)들은 다단으로 적층될 수 있으며, 각 단마다 다수의 바디(161a)들이 형성될 수 있다. 도 5에서는 각각의 제1 부재(161)마다 바디(161a)들이 4단으로 적층되고, 각 단마다 7개의 바디(161a)들이 형성되는 구성을 보이고 있다. 그리고 각 바디(161a)의 내측에는 볼텍스 파인더(161b)와 베인(161c)이 형성된다.
각 단에 배열되는 바디(161a)의 축 방향 길이는 일정하지 않고, 위치에 따라 달라진다. 도 5를 참조하면, 바디(161a)의 축 방향 길이는 각 단의 중심에 배치된 바디(161a)에 가까워질수록 점차 길어진다. 여기서 바디(161a)의 축 방향 길이란 입구와 출구 사이의 거리를 의미한다. 바디(161a)의 축 방향 길이는 곧 축류식 스월 튜브(160)의 축 방향 길이에 해당한다.
바디(161a)의 길이는 축류식 스월 튜브(160)의 분리 성능에 영향을 미친다. 바디(161a)의 길이가 길수록 축류식 스월 튜브(160)의 분리 성능이 증가한다. 따라서 바디(161a)의 길이는 길수록 바람직하다.
그러나 하우징(110)의 크기와 모양이 제한되어 있기 때문에 바디(161a)의 길이가 무한정 커질 수는 없다. 특히 하우징(110)의 모양이 원통형이기 때문에, 바디(161a)의 축 방향 길이는 각 단의 중심에 배치된 축류식 스월 튜브(160)에 가까워질수록 점차 커질 수 있다.
바디(161a)의 길이가 각 단의 중심에 배치된 축류식 스월 튜브(160)에 가까워질수록 점차 커지면, 하우징(110) 내에 사공간(dead zone)의 발생이 억제될 수 있다. 또한 하우징(110)의 제한된 크기와 모양 안에서 축류식 스월 튜브(160)의 분리 성능이 극대화 될 수 있다. 여기서 사공간이란 바디(161a)의 축 방향 길이 증가를 통한 축류식 스월 튜브(160)의 분리 성능 향상에 기여하지 못하고 버려지는 공간을 의미한다.
제2 부재(162)는 출구 베이스(162b), 공기 배출 구멍(162c), 출구 구획부(162a), 상부 차단부(162d), 측벽(162f) 및 제2 집진부 탑 커버(162g)를 포함한다.
출구 베이스(162b)는 곡면 또는 평면을 갖는다. 출구 베이스(162b)는 원기둥 또는 다각 기둥의 측면에 해당한다. 도 5에서는 출구 베이스(162b)가 사각 기둥의 측면에 해당하는 구성을 보이고 있다.
제2 부재(162)의 출구 베이스(162b)는 축류식 스월 튜브들(160)의 열과 동일한 수로 구비된다. 예를 들어, 도 5에서는 축류식 스월 튜브들(160)의 2열에 대응되도록 2개의 출구 베이스(162b)가 구비되는 구성을 보이고 있다.
이 중 제1 열(160')의 축류식 스월 튜브들을 형성하는 출구 베이스는 제1 출구 베이스(162b', 도 6 참조)로 명명되고, 제2 열(160")의 축류식 스월 튜브들을 형성하는 출구 베이스는 제2 출구 베이스(162b", 도 6 참조)로 명명된다. 제1 출구 베이스(162b')와 제2 출구 베이스(162b")는 이격된 위치에서 서로 마주보도록 배치된다.
측벽(162f)은 출구 베이스(162b)와 함께 다각 기둥의 나머지 측면을 형성한다. 측벽(162f)은 출구 베이스(162b)와 마찬가지로 두 개가 구비된다. 두 측벽(162f)은 이격된 위치에서 서로 마주보도록 배치된다. 도 5에서는 두 측벽(162f)과 두 출구 베이스(162b)에 의해 사각 기둥의 측면이 형성되는 구성을 보이고 있다.
두 출구 베이스(162b)와 두 측벽(162f)에 의해 감싸이는 영역에는 축류식 스월 튜브들(160)로부터 배출되는 공기의 상승 유로(R)가 형성된다. 축류식 스월 튜브들(160)로부터 배출되는 공기는 제2 부재(162) 중앙의 상승 유로(R)로 모이게 된다. 상승 유로(R)는 하우징(110)의 상측에 형성되는 집진장치(100)의 출구(123)로 통한다. 따라서 공기는 흡입 모터의 흡입력에 의해 상승하게 되고, 배기 가이드(124)를 따라 집진장치(100)의 출구(123)로 배출된다.
각 출구 베이스(162b)에는 공기 배출 구멍(162c)들이 형성된다. 공기 배출 구멍(162c)들은 축류식 스월 튜브들(160)과 동일한 수만큼 형성된다. 또한, 공기 배출 구멍(162c)들은 바디(161a)들의 배열과 동일한 배열을 갖는다. 이를테면 공기 배출 구멍(162c)들은 다단으로 적층될 수 있으며, 각 단마다 다수의 공기 배출 구멍(162c)들이 형성될 수 있다.
출구 구획부(162a)는 각 공기 배출 구멍(162c)의 둘레로부터 바디(161a)의 내측을 향해 돌출된다. 공기 배출 구멍(162c)은 출구 베이스(162b)에 형성되기 때문에, 출구 구획부(162a)는 출구 베이스(162b)로부터 돌출되는 것으로 이해될 수도 있다. 출구 구획부(162a)들도 공기 배출 구멍(162c)들과 마찬가지로 바디(161a)들의 배열과 동일한 배열을 갖는다.
상부 차단부(162d)는 상승 유로의 일측과 타측에 각각 하나씩 형성될 수 있다. 두 상부 차단부(162d) 중 하나는 제1 출구 베이스(162b')의 상단에 형성되고, 다른 하나는 제2 출구 베이스(162b")의 상단에 형성된다. 두 상부 차단부(162d)는 서로 대칭인 형상을 가질 수 있다.
상부 차단부(162d)는 이격된 위치에서 제2 집진부 탑 커버(162g)를 마주보도록 배치된다. 상부 차단부(162d)와 제2 집진부 탑 커버(162g)는 실질적으로 대칭인 형상을 가질 수 있다.
제2 집진부 탑 커버(162g)는 측벽(162f)의 하단에 형성된다. 제2 집진부 탑 커버(162g)는 두 개가 구비되며, 각각의 제2 집진부 탑 커버(162g)는 활꼴의 형상을 갖는다. 제2 부재(162)가 후술하는 지지 부재(190)에 삽입되면, 제2 집진부 탑 커버(162g)는 지지 부재(190)의 내주면을 따라 상기 지지 부재(190)와 접촉하게 된다. 제2 집진부 탑 커버(162g)는 축류식 스월 튜브들(160)의 입구측과 제2 집진부(142)를 서로 구획하며, 제2 집진부(142)에 집진된 미세먼지의 비산을 방지한다.
두 개의 제2 집진부 탑 커버의(162g) 사이에는 축류식 스월 튜브들(160)의 미세먼지 출구(O2, 도 7 참조)에서 배출되는 미세먼지의 낙하를 위한 구멍(H)이 형성된다. 축류식 스월 튜브들(160)로 유입된 공기와 미세먼지는 축류식 스월 튜브들(160)의 내측에서 선회 운동하게 되고, 서로 분리된다. 공기는 공기 출구(O1, 도 7 참조)를 통해 배출되고, 미세먼지는 미세먼지 출구(O2)를 통해 배출된다. 상기 미세먼지 출구(O2)를 통해 배출된 미세먼지는 상기 구멍(H)을 통해 낙하하여 제2 집진부(142)에 집진된다.
두 개의 제1 부재(161)가 제2 부재(162)에 결합되면 축류식 스월 튜브들(160)이 형성된다. 두 개의 제1 부재(161)는 서로 반대 방향에서 제2 부재(162)에 결합된다.
제1 부재(161)가 제2 부재(162)에 결합되면, 바디 베이스(161d)의 테두리는 측벽(162f)에 밀착된다. 바디 베이스(161d)는 평면 또는 곡면으로 형성되므로, 바디 베이스(161d)의 테두리가 측벽(162f)에 밀착되면 두 측벽(162f) 사이의 개구된 영역(출구 구획부들이 형성되는 영역)이 실링될 수 있다. 두 측벽(162f) 사이의 개구된 영역이 실링됨에 따라 축류식 스월 튜브들(160)의 미세먼지 출구(O2)로부터 배출된 미세먼지가 누출되는 현상의 발생이 방지될 수 있다.
축류식 스월 튜브들(160)은 지지 부재(190)에 의해 지지될 수 있다. 지지 부재(190)는 축류식 스월 튜브들(160) 중 아래쪽 단을 수용하도록 형성될 수 있다.
지지 부재(190)는 수용부(191), 경사부(192) 및 집진 가이드(193)를 포함한다. 지지 부재(190)의 외주면에는 실링 부재(194)가 결합될 수 있다. 지지 부재(190)의 각 구성에 대하여는 도 6을 참조하여 후술한다.
도 6은 도 2에 도시된 집진장치(100)를 라인 A-A를 따라 자르고 일측에서 바라본 단면도다.
두 개의 제1 부재(161)가 서로 다른 방향에서 제2 부재(162)에 결합되면, 출구 베이스(162b)로부터 돌출된 각 출구 구획부(162a)의 적어도 일부는 각 바디(161a)의 출구측(161a2)에 삽입된다. 이에 따라 축류식 스월 튜브들(160)이 형성된다. 축류식 스월 튜브들(160)은 다단으로 적층된다.
제2 부재(162)는 하부 차단부(162e)를 더 포함한다. 제2 부재(162)의 출구 베이스(162b)가 원기둥 또는 다각 기둥의 측면에 해당한다면, 하부 차단부(162e)는 상기 원기둥 또는 다각 기둥의 밑면에 해당한다. 상기 원기둥 또는 다각 기둥의 윗면은 상승 유로(R)를 통한 공기의 배출을 위해 개구되어 있다.
하부 차단부(162e)는 흡입 모터에서 발생되는 흡입력이 제2 집진부(142)에 집진된 미세먼지에까지 미치는 것을 차단하도록 상승 유로(R)와 제2 집진부(142)를 구획한다. 따라서 하부 차단부(162e)는 제2 집진부(142)에 집진된 미세먼지가 공기의 상승 유로(R)로 비산되는 것을 방지한다.
만일 하부 차단부(162e)가 없다면, 축류식 스월 튜브들(160)의 미세먼지 출구(O2)로부터 배출되는 미세먼지는 제2 집진부(142)로 집진되지 못하고 상승 유로를 따라 상승하여 공기와 다시 혼합되어 버린다. 미세먼지의 낙하를 위한 구멍(H)이 하부 차단부(162e)의 바로 아래에 형성되기 때문이다.
상부 차단부(162d)는 출구 베이스(162b)로의 상단으로부터 원주 방향을 향해 확장된다. 각 축류식 스월 튜브의 미세먼지 출구(O2)는 공기 출구(O1)의 둘레에 형성되므로, 미세먼지는 공기 출구(O1)의 둘레를 통해 배출된다. 그러나 후술하게 될 미세먼지 낙하 유로(D1, D2)를 제외하고 나머지 영역은 출구 베이스(162b)와 상부 차단부(162d)에 의해 막혀있다. 따라서 상부 차단부(162d)는 축류식 스월 튜브들(160)에서 배출되는 공기와 미세먼지의 혼합을 방지한다.
도 6을 참조하면, 하우징(110)의 내측 영역에 메쉬(170)가 배치된다. 메쉬(170)는 사이클론(150)과 축류식 스월 튜브들(160)의 경계를 형성하도록 축류식 스월 튜브들(160)의 외측을 감싼다. 메쉬(170)의 내측 영역에 축류식 스월 튜브들(160)이 배치된다. 그리고 제1 열(160')의 축류식 스월 튜브들(160)과 제2 열(160")의 축류식 스월 튜브들(160) 사이의 영역에 공기의 상승 유로(R)가 형성된다.
상기 메쉬(170)를 지지하기 위해 집진장치(100)는 메쉬 지지부(112)를 더 포함할 수 있다. 메쉬 지지부(112)는 메쉬(170)의 원주에 대응되는 원주를 가지며, 메쉬(170)의 상부 테두리를 감싸도록 형성된다. 메쉬 지지부(112)는 하우징(110)과 일체로 형성될 수 있으나, 반드시 이에 한정되는 것은 아니다.
앞서 설명된 제2 부재(162)의 상부 차단부(162d)는 상승 유로(R)의 둘레에 배치되어 활꼴(circular segment)의 형상을 갖는다. 상부 차단부(162d)는 메쉬 지지부(112)의 내주면에 밀착될 수 있다. 따라서 상부 차단부(162d)는 상승 유로(R)의 하류측인 배기 가이드(124)와 축류식 스월 튜브(160)의 입구(I, 도 7 참조)를 구획한다. 상부 차단부(162d)는 상승 유로(R)를 통과하여 배기 가이드(124)로 배출되는 공기와, 상기 축방향 스월 튜브들(160)로 유입되는 공기의 상호 혼합을 방지할 수 있다.
상부 차단부(162d)의 상단에는 프리 필터(미도시)가 배치될 수 있다. 프리 필터는 상승 유로(R)를 통해 배출되는 공기로부터 초미세먼지를 여과하도록 형성될 수 있다. 프리 필터는 공기의 흐름을 기준으로 흡입 모터의 상류측에 배치되기 때문에 프리 필터라고 명명된다.
이하에서는 공기와 이물질의 분리 과정에 대하여 설명한다.
진공 청소기(1)의 흡입 모터에서 발생하는 흡입력에 의해 공기와 이물질은 흡입 노즐(20), 연결 유닛(30)을 순차적으로 통과하고, 집진장치(100)의 입구를 통해 집진장치(100)의 내부로 유입된다.
집진장치(100)의 내부로 유입된 공기는 하우징(110)의 내측에서 선회 운동하게 된다. 공기보다 무거운 먼지의 원심력은 공기의 원심력보다 크다. 따라서 먼지는 하우징(110)의 내주면을 따라 선회 운동하다가 먼지는 낙하하여 제1 집진부(141)에 집진된다.
공기는 메쉬(170)를 통과해 축류식 스월 튜브들(160)로 유입되고, 가이드 베인(161c)에 의해 바디(161a)의 내측에서 선회 운동하게 된다. 공기보다 무거운 미세먼지의 원심력은 공기의 원심력보다 크다. 따라서 미세먼지는 바디(161a)의 내주면을 따라 선회 운동하다가 미세먼지 출구(O2)로 배출되고, 미세먼지 낙하 유로(D1, D2, 도 7 참조)를 따라 낙하하여 제2 집진부(142)에 집진된다. 공기는 공기 출구(O1)로 배출되고, 상승 유로(R), 배기 가이드(124) 및 집진장치(100)의 출구(123)를 순차적으로 통과해 집진장치(100)의 외부로 배출된다.
지지 부재(190)는 수용부(191), 경사부(192), 집진 가이드(193)를 포함한다. 수용부(191)는 지지 부재(190)의 가장 윗 부분에 해당하고, 집진 가이드(193)는 지지 부재(190)의 가장 아래 부분에 해당한다. 경사부(192)는 수용부(191)와 집진 가이드(193) 사이에 형성된다. 수용부(191)와 집진 가이드(193)는 원통형으로 형성되고, 수용부(191)는 집진 가이드(193)에 비해 큰 단면적을 갖는다.
수용부(191)는 축류식 스월 튜브들(160) 중 아래쪽 단을 감싸도록 형성된다. 다만, 축류식 스월 튜브들(160)로 유입되는 공기와 미세먼지의 유로를 차단하지 않도록, 수용부(191)의 내주면은 축류식 스월 튜브들(160)의 입구(I)로부터 이격되어야 한다.
경사부(192)는 지지 부재(190)의 아래로 갈수록 점차 단면적이 작아지도록 경사지게 형성된다. 따라서 축류식 스월 튜브들(160)로부터 배출되는 미세먼지는 경사부(192)를 따라 자연스럽게 흘러내리게 된다.
집진 가이드(193)는 경사부(192)로부터 하부 커버(130)를 향해 돌출되며, 집진부 바운더리(183)의 내측에 삽입된다. 따라서 축류식 스월 튜브들(160)로부터 배출되는 미세먼지는 집진 가이드(193)에 의해 제2 집진부(142)로 가이드 된다.
이너 하우징(inner housing)(180)의 상단에는 메쉬(170)가 거치될 수 있다. 이너 하우징(180)은 지지 부재(190)를 감싸도록 형성된다. 이너 하우징(180)의 상부에는 앞서 설명된 스커트(181)가 형성된다. 그리고 이너 하우징(180)의 하부에는 집진부 바운더리(183)가 형성된다. 집진부 바운더리(183)는 하부 커버(130)에 밀착되어 집진부(140)를 제1 집진부(141)와 제2 집진부(142)로 구획한다. 스커트(181)와 집진부 바운더리(183) 사이에는 지지 부재(190)의 안착을 위한 안착부(184)가 형성된다. 안착부(184)는 지지 부재(190)의 경사부(192)와 마찬가지로 경사지게 형성될 수 있다.
이너 하우징(180)의 내주면과 지지 부재(190)의 외주면 사이에는 환형의 실링 부재(194)가 배치될 수 있다. 실링 부재(194)는 복수로 구비될 수 있다. 지지 부재(190)가 이너 하우징(180)에 삽입되면, 실링 부재(194)는 이너 하우징(180)과 지지 부재(190) 사이를 실링한다. 이에 따라 제2 집진부(142)에 집진된 미세먼지의 누설을 방지할 수 있다.
도 7은 도 2에 도시된 집진장치(100)를 라인 B-B를 따라 자르고 상측에서 바라본 단면도다.
축류식 스월 튜브들(160)은 다단으로 적층된다. 그리고 각 단의 축류식 스월 튜브들(160)은 2열로 배열된다. 제1 열(160')의 축류식 스월 튜브들과 제2 열(160")의 축류식 스월 튜브들은 서로 반대 방향을 향하도록 배열된다. 도 7에서는 제1 열(160')의 축류식 스월 튜브들이 좌측을 향하도록 배열되고, 제2 열(160")의 축류식 스월 튜브들이 우측을 향하도록 배열된 것으로 도시되어 있다. 제1 열(160')의 축류식 스월 튜브들과 제2 열(160")의 스월 튜브들 사이에 공기의 상승 유로(R)가 형성되기 때문에 각 축류식 스월 튜브들(160)의 출구는 곧 상승 유로(R)를 향하도록 배열된다.
제1 열(160')에 속하는 축류식 스월 튜브의 출구는 제2 열(160")에 속하는 축류식 스월 튜브의 출구를 마주보도록 배치될 수 있다. 반대의 경우도 마찬가지다. 여기서 출구는 공기 배출 구멍(162c)을 의미한다. 이것은 축류식 스월 튜브들(160)이 서로 반대 방향을 향해 2열로 배열되어 있기 때문이다.
각 축류식 스월 튜브들(160)의 축 방향 길이는 각 단의 중심에 배치된 축류식 스월 튜브에 가까워질수록 점차 길어진다. 도 7을 참조하면 각 단의 중심에 배치된 축류식 스월 튜브의 길이는 L1이며, 외측으로 갈수록 축류식 스월 튜브의 길이가 점차 짧아지는 것을 알 수 있다(L1>L2>L3>L4). 이와 같은 구조를 통해 사공간의 발생을 억제할 수 있음을 앞서 설명하였다.
바디(161a)의 출구측(161a2) 단부와 출구 베이스(162b)는 서로 이격되어 그 사이에 제2 집진부(142)로 통하는 미세먼지 낙하 유로(D1, D2)를 형성한다. 축류식 스월 튜브들(160)의 각 단은 모두 동일한 구조를 가지므로, 미세먼지 낙하 유로(D1, D2)는 제2 집진부(142)를 향해 아래로 연장된다.
서로 인접하게 배치되는 두 바디(161a)의 출구측(161a2) 단부끼리는 서로 접촉하도록 배열된다.그리고 서로 접촉하는 두 바디(161a)의 각 출구측(161a2) 단부와 출구 베이스(162b)는 서로 이격되어 그 사이에 미세먼지 낙하 유로(D1, D2)를 형성한다. 이에 따라 공기 출구(O1)와 미세먼지 낙하 유로(D1, D2)는 출구 베이스(162b)를 따라 교번적으로 형성된다.
축류식 스월 튜브들(160)의 수가 증대될수록 그리고 길이가 길어질수록 공기로부터 미세먼지를 분리하는 분리 성능이 향상되기 때문에, 가급적 축류식 스월 튜브들(160)의 수가 많은 것이 바람직하고, 길이는 긴 것이 바람직하다. 그러나 제한된 공간 내에 축류식 스월 튜브들(160)의 수와 길이를 무한정 늘릴 수는 없기 때문에 축류식 스월 튜브들(160)의 효율적인 배열을 통해 그 수와 길이를 최대화해야 한다.
도 7에 도시된 바와 같이 축류식 스월 튜브들(160)이 다단으로 적층되면 축류식 스월 튜브들(160)의 수가 증대될 수 있다. 또한 각 축류식 스월 튜브들(160)의 축 방향 길이가 일정하지 않고 각 축류식 스월 튜브들의 출구로부터 상기 하우징(110)까지의 거리에 비례하여 길어지면, 축류식 스월 튜브들(160) 전체의 평균 길이도 더욱 길어질 수 있다.
또한 공기의 유동 손실(압손)을 억제하기 위해서는 공기의 유동 방향 변화를 최소화해야 한다. 공기의 압손은 집진장치(100)의 성능에 영향을 미친다. 도 7에 도시된 바와 같이 축류식 스월 튜브들(160)이 메쉬(170)와 같은 높이에 배치되고 2열로 배열되어, 각 축류식 스월 튜브의 입구가 메쉬(170)를 마주보게 되면, 사이클론(150)과 메쉬(170)를 통과한 공기가 유동 방향의 변화 없이 그대로 축류식 스월 튜브로 유입되게 된다.
또한 축류식 스월 튜브는 사이클론(150)과 다르게 입구와 출구가 서로 반대측에 형성되기 때문에, 축류식 스월 튜브의 입구를 통해 유입된 공기는 유동 방향의 변화 없이 그대로 출구로 배출되게 된다. 따라서 축류식 스월 튜브의 구조와 배치를 통해 공기의 압손을 억제할 수 있다.
이상에서 설명된 청소기는 상기 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
본 발명은 집진장치 및 이를 구비하는 진공 청소기와 관련된 산업 분야에 이용될 수 있다.

Claims (20)

  1. 집진장치의 외관을 형성하는 원통 형상의 하우징;
    상기 하우징의 내측에 형성되고, 상기 하우징의 내측으로 유입된 공기로부터 먼지를 분리하도록 선회류를 일으키는 사이클론;
    상기 사이클론을 통과한 공기와 미세먼지를 공급받으며, 공기로부터 미세먼지를 분리하도록 선회류를 일으키는 축류식 스월 튜브들; 및
    상기 사이클론과 상기 축류식 스월 튜브들의 경계를 형성하도록 상기 축류식 스월 튜브들의 외측을 감싸는 메쉬를 포함하고,
    상기 축류식 스월 튜브들은 다단으로 적층되고, 각 단의 축류식 스월 튜브들은 2열로 배열되어 제1 열과 제2 열이 서로 반대 방향을 향하도록 배치되며, 각 축류식 스월 튜브의 축 방향 길이는 각 단의 중심에 배치된 축류식 스월 튜브에 가까워질수록 점차 길어지는 것을 특징으로 하는 집진장치.
  2. 제1항에 있어서,
    각각의 상기 축류식 스월 튜브는,
    상기 메쉬를 향하도록 배치되며, 공기와 미세먼지를 공급받는 입구; 및
    서로 같은 방향을 향해 개구된 공기 출구와 미세먼지 출구를 포함하고,
    상기 입구는 상기 공기 출구와 상기 미세먼지 출구의 반대 방향을 향해 개구된 것을 특징으로 하는 집진장치.
  3. 제2항에 있어서,
    상기 미세먼지 출구는 상기 공기 출구의 둘레에 환형(ring shape)으로 형성되는 것을 특징으로 하는 집진장치.
  4. 제2항에 있어서,
    각각의 상기 축류식 스월 튜브는,
    원통형의 바디;
    상기 바디의 입구측에 배치되고, 원통형의 제1 부분과 상기 제1 부분에서 상기 바디의 출구측을 향해 돌출되는 콘(cone) 형상의 제2 부분을 구비하는 볼텍스 파인더(vortex finder);
    상기 제1 부분의 외주면과 상기 바디의 내주면 사이에 형성되며, 나선 방향으로 연장되는 베인; 및
    상기 바디의 출구측에 배치되고, 상기 공기 출구와 상기 공기 출구의 둘레에 형성되는 상기 미세먼지 출구를 구획하도록 원통형으로 형성되는 출구 구획부를 포함하는 것을 특징으로 하는 집진장치.
  5. 제4항에 있어서,
    상기 축류식 스월 튜브들은 제1 부재와 제2 부재의 결합에 의해 형성되고,
    상기 제1 부재는 각 축류식 스월 튜브의 상기 바디, 상기 볼텍스 파인더 및 상기 베인을 형성하며,
    상기 제2 부재는 각 축류식 스월 튜브의 상기 출구 구획부를 형성하고,
    상기 출구 구획부의 적어도 일부는 상기 바디의 출구측에 삽입되는 것을 특징으로 하는 집진장치.
  6. 제5항에 있어서,
    상기 제1 부재는 곡면 또는 평면의 바디 베이스를 더 포함하고,
    상기 바디는 상기 바디 베이스의 양측으로 돌출되며,
    상기 제2 부재는 곡면 또는 평면을 갖는 출구 베이스를 더 포함하고,
    상기 출구 베이스에는 상기 축류식 스월 튜브들에 대응되는 수의 공기 배출 구멍이 형성되고,
    상기 출구 구획부는 상기 공기 배출 구멍의 둘레로부터 상기 바디의 내측을 향해 돌출되는 것을 특징으로 하는 집진장치.
  7. 제6항에 있어서,
    상기 출구 베이스는 이격된 위치에서 서로 마주보도록 배치되는 제1 출구 베이스와 제2 출구 베이스를 포함하고,
    상기 제2 부재는, 이격된 위치에서 서로 마주보도록 배치되며, 상기 제1 출구 베이스 및 상기 제2 출구 베이스와 함께 다각 기둥의 측면을 형성하는 두 개의 측벽을 더 포함하며,
    상기 제1 출구 베이스, 상기 제2 출구 베이스 및 상기 두 개의 측벽에 의해 감싸이는 영역에는 상기 축류식 스월 튜브들로부터 배출되는 공기의 상승 유로가 형성되고,
    상기 상승 유로는 상기 하우징의 상측에 형성되는 상기 집진장치의 출구로 통하는 것을 특징으로 하는 집진장치.
  8. 제7항에 있어서,
    상기 하우징의 내측 영역에 상기 메쉬가 배치되고,
    상기 메쉬의 내측 영역에 상기 축류식 스월 튜브들이 배치되며,
    상기 제1 열과 상기 제2 열 사이에 상기 상승 유로가 형성되는 것을 특징으로 하는 집진장치.
  9. 제7항에 있어서,
    상기 제1 부재는 상기 제2 부재에 결합되고,
    상기 바디 베이스의 테두리는 상기 두 개의 측벽 사이의 개구된 영역을 실링하도록 상기 두 개의 측벽에 밀착되는 것을 특징으로 하는 집진장치.
  10. 제7항에 있어서,
    상기 집진장치는,
    상기 하우징의 내측에 환형으로 형성되고, 상기 사이클론에서 낙하하는 먼지를 집진하도록 형성되는 제1 집진부; 및
    상기 제1 집진부에 의해 둘러싸이는 영역에 형성되고, 상기 축류식 스월 튜브들에서 낙하하는 미세먼지를 집진하도록 형성되는 제2 집진부를 더 포함하고,
    상기 제2 부재는 상기 제2 집진부에 집진된 미세먼지가 상기 상승 유로로 비산되는 것을 방지하도록 상기 제2 집진부와 상기 상승 유로를 구획하는 하부 차단부를 더 포함하며,
    상기 제1 출구 베이스와 상기 제2 출구 베이스는 다각 기둥의 서로 마주보는 두 측면에 해당하고, 상기 하부 차단부는 상기 다각 기둥의 밑면에 해당하는 것을 특징으로 하는 집진장치.
  11. 제10항에 있어서,
    상기 제2 부재는 두 개의 제2 집진부 탑 커버를 구비하며,
    상기 두 개의 제2 집진부 탑 커버는, 상기 제2 부재의 하단에 형성되며, 활꼴(circular segment)의 형상으로 형성되는 것을 특징으로 하는 집진장치.
  12. 제11항에 있어서,
    상기 두 개의 제2 집진부 탑 커버의 사이에 상기 미세먼지 출구에서 배출되는 미세먼지의 낙하를 위한 구멍이 형성되는 것을 특징으로 하는 집진장치.
  13. 제12항에 있어서,
    상기 미세먼지의 낙하를 위한 구멍은 상기 하부 차단부의 아래에 형성되는 것을 특징으로 하는 집진장치.
  14. 제7항에 있어서,
    상기 집진장치는 상기 메쉬의 상부 테두리를 감싸도록 형성되는 메쉬 지지부를 더 포함하고,
    상기 제2 부재는 상기 제1 출구 베이스의 상단과 상기 제2 출구 베이스의 상단에 각각 형성되는 두 개의 상부 차단부를 더 포함하고,
    상기 두 개의 상부 차단부는 활꼴(circular segment)의 형상으로 형성되며, 상기 메쉬 지지부에 밀착되는 것을 특징으로 하는 집진장치.
  15. 제5항에 있어서,
    상기 제2 부재는,
    이격된 위치에서 서로 마주보도록 배치되는 제1 출구 베이스와 제2 출구 베이스;
    이격된 위치에서 서로 마주보도록 배치되며, 상기 제1 출구 베이스 및 상기 제2 출구 베이스와 함께 다각 기둥의 측면을 형성하는 두 개의 측벽;
    상기 축류식 스월 튜브들의 수만큼 구비되며, 상기 제1 출구 베이스와 상기 제2 출구 베이스로부터 서로 반대 방향을 향해 돌출되는 다수의 상기 출구 구획부;
    상기 제1 출구 베이스의 상단과 상기 제2 출구 베이스의 상단에 각각 형성되는 활꼴 형상의 상부 차단부; 및
    활꼴의 형상을 가지며, 상기 제2 부재의 하단에 형성되는 두 개의 제2 집진부 탑 커버를 포함하는 것을 특징으로 하는 집진장치.
  16. 제5항에 있어서,
    상기 제1 부재는 두 개가 구비되고, 두 개의 상기 제1 부재는 서로 반대 방향에서 상기 제2 부재를 향해 삽입되어 상기 제2 부재에 결합되는 것을 특징으로 하는 집진장치.
  17. 제6항에 있어서,
    상기 집진장치는,
    상기 하우징의 내측에 환형으로 형성되고, 상기 사이클론에서 낙하하는 먼지를 집진하도록 형성되는 제1 집진부; 및
    상기 제1 집진부에 의해 둘러싸이는 영역에 형성되고, 상기 축류식 스월 튜브들에서 낙하하는 미세먼지를 집진하도록 형성되는 제2 집진부를 더 포함하고,
    상기 바디의 출구측 단부와 상기 출구 베이스는 서로 이격되어 그 사이에 상기 제2 집진부로 통하는 미세먼지 낙하 유로를 형성하는 것을 특징으로 하는 집진장치.
  18. 제17항에 있어서,
    상기 바디는 상기 축류식 스월 튜브들의 수만큼 구비되고,
    서로 인접하게 배치된 두 바디의 각 출구측 단부끼리 서로 접촉하도록 배열되며,
    서로 접촉하는 두 바디의 각 출구측 단부와 상기 출구 베이스는 서로 이격되어 그 사이에 상기 미세먼지 낙하 유로를 형성하는 것을 특징으로 하는 집진장치.
  19. 제17항 또는 제18항에 있어서,
    상기 공기 출구와 상기 미세먼지 낙하 유로는 상기 출구 베이스를 따라 교번적으로 형성되는 것을 특징으로 하는 집진장치.
  20. 제1항에 있어서,
    각 축류식 스월 튜브의 축방향 길이는 각 축류식 스월 튜브의 출구로부터 상기 하우징까지의 거리에 비례하는 것을 특징으로 하는 집진장치.
PCT/KR2017/011382 2017-09-22 2017-10-16 집진장치 및 이를 구비하는 청소기 WO2019059447A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17925756.3A EP3685725B1 (en) 2017-09-22 2017-10-16 Dust collecting apparatus and cleaner having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170122606A KR102047332B1 (ko) 2017-09-22 2017-09-22 집진장치 및 이를 구비하는 청소기
KR10-2017-0122606 2017-09-22

Publications (1)

Publication Number Publication Date
WO2019059447A1 true WO2019059447A1 (ko) 2019-03-28

Family

ID=65806974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011382 WO2019059447A1 (ko) 2017-09-22 2017-10-16 집진장치 및 이를 구비하는 청소기

Country Status (4)

Country Link
US (1) US10639652B2 (ko)
EP (1) EP3685725B1 (ko)
KR (1) KR102047332B1 (ko)
WO (1) WO2019059447A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI735170B (zh) * 2019-05-17 2021-08-01 日商日立環球生活方案股份有限公司 電動吸塵器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190277227A1 (en) * 2018-03-07 2019-09-12 Kros-Wise, Inc. Air filtration device
US11478736B2 (en) * 2018-05-18 2022-10-25 Donaldson Company Inc. Precleaner arrangement for use in air filtration and methods
US11154169B2 (en) 2018-08-13 2021-10-26 Omachron Intellectual Property Inc. Cyclonic air treatment member and surface cleaning apparatus including the same
KR102015092B1 (ko) * 2018-08-30 2019-10-21 삼성전자주식회사 집진 장치 및 이를 구비한 청소기
US10828650B2 (en) 2018-09-21 2020-11-10 Omachron Intellectual Property Inc. Multi cyclone array for surface cleaning apparatus and a surface cleaning apparatus having same
US11351492B2 (en) * 2019-02-20 2022-06-07 B/E Aerospace, Inc. Inline vortex demister
US11118545B2 (en) * 2019-03-26 2021-09-14 Caterpillar Inc. Precleaner system
CN110075641B (zh) * 2019-05-13 2021-05-14 安徽诺乐知识产权服务有限公司 一种建筑工地喷淋降尘系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100844621B1 (ko) * 2005-09-16 2008-07-07 엘지전자 주식회사 진공청소기용 집진장치
US20100005617A1 (en) * 2006-10-31 2010-01-14 Hyun Kie-Tak Vacuum cleaner
KR20100093446A (ko) * 2009-02-16 2010-08-25 삼성광주전자 주식회사 진공청소기의 집진장치
KR20150031304A (ko) 2012-06-20 2015-03-23 다이슨 테크놀러지 리미티드 자동 직립 청소 기구
KR20150109045A (ko) * 2014-03-19 2015-10-01 삼성전자주식회사 사이클론 집진장치 및 이를 구비한 진공 청소기
KR20160089201A (ko) * 2015-01-19 2016-07-27 엘지전자 주식회사 진공 청소기용 집진장치

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2553175A (en) 1949-02-01 1951-05-15 Beaumont Birch Company Apparatus for collecting ash and dust
US3074218A (en) 1961-02-16 1963-01-22 American Air Filter Co Gas cleaner
BE634290A (ko) 1962-06-28
NL6704815A (ko) 1966-04-08 1967-10-09
US3386588A (en) 1966-10-14 1968-06-04 Sundstrand Corp Coolant filter
US3425192A (en) 1966-12-12 1969-02-04 Mitchell Co John E Vacuum cleaning system
BE756804A (fr) 1969-09-29 1971-03-01 Wikdahl Nils Anders Lennart Groupement de separateur a cyclone
US3915679A (en) 1973-04-16 1975-10-28 Pall Corp Vortex air cleaner array
FI65920C (fi) 1983-01-21 1984-08-10 Nobar Ky Foerfarande och anordning foer separering av ett medium i olika komponenter
US4537608A (en) 1983-11-16 1985-08-27 Pall Corporation System for removing contaminant particles from a gas
JPH0744913B2 (ja) 1989-10-30 1995-05-17 小松ゼノア株式会社 遠心分離装置
ZA931264B (en) 1992-02-27 1993-09-17 Atomic Energy South Africa Filtration.
US5681450A (en) 1995-06-07 1997-10-28 Chitnis; Girish K. Reduced chaos cyclone separation
DE10142701A1 (de) 2001-08-31 2003-04-03 Mann & Hummel Filter Vielzellenzyklon und Verfahren zu dessen Herstellung
US7770256B1 (en) * 2004-04-30 2010-08-10 Bissell Homecare, Inc. Vacuum cleaner with multiple cyclonic dirt separators and bottom discharge dirt cup
KR100622550B1 (ko) 2005-03-29 2006-09-13 삼성광주전자 주식회사 진공청소기용 사이클론 집진장치 및 그 사이클론집진장치를 구비하는 진공청소기
GB2426726B (en) 2005-05-27 2008-11-05 Dyson Technology Ltd Cyclonic separating apparatus
DE102005031059A1 (de) 2005-07-02 2007-01-04 Mahle International Gmbh Als Vorfilter dienender Gaseintrittsbereich eines Gasfiltergehäuses
WO2007008772A2 (en) 2005-07-12 2007-01-18 Bissell Homecare, Inc. Vacuum cleaner with cyclonic dirt separation and vortex stabilizer
CN100376191C (zh) 2005-10-09 2008-03-26 泰怡凯电器(苏州)有限公司 吸尘器的旋风分离装置
GB2436281B (en) 2006-03-24 2011-07-20 Hoover Ltd Cyclonic vacuum cleaner
KR20070101056A (ko) 2006-04-10 2007-10-16 삼성전자주식회사 사이클론 및 사이클론 공기청정기
KR100776402B1 (ko) 2007-02-05 2007-11-16 삼성광주전자 주식회사 필터조립체를 구비한 멀티 사이클론 분리장치
KR100776403B1 (ko) 2007-02-14 2007-11-16 삼성광주전자 주식회사 진공청소기용 사이클론 집진장치
US7879123B2 (en) 2007-09-27 2011-02-01 Pall Corporation Inertial separator
GB2453949B (en) 2007-10-23 2012-03-28 Hoover Ltd Cyclonic separation apparatus
EP2247362B1 (de) 2008-02-26 2014-04-23 Mann + Hummel GmbH Luftfilter mit vorabscheider
KR101524791B1 (ko) 2008-11-07 2015-06-03 삼성전자주식회사 사이클론 집진장치 및 이를 구비하는 청소기
US8262761B2 (en) 2009-04-21 2012-09-11 Mann + Hummel Gmbh Modular cyclone precleaner system and method
DE102010014278A1 (de) 2010-04-08 2011-10-13 Mann + Hummel Gmbh Zyklonabscheider
KR20120052692A (ko) 2010-11-16 2012-05-24 삼성전자주식회사 사이클론 집진장치 및 이를 구비한 진공청소기
EP2581013B1 (en) 2011-10-12 2016-11-23 Black & Decker Inc. Hand-holdable vacuum cleaner with cyclonic separation apparatus
DE102012020134A1 (de) 2012-10-15 2014-04-17 Mann + Hummel Gmbh Zyklonabscheider
KR101622724B1 (ko) * 2014-09-29 2016-05-19 엘지전자 주식회사 진공청소기용 집진장치
KR101622726B1 (ko) 2014-09-30 2016-05-19 엘지전자 주식회사 집진장치 및 이를 구비하는 진공 청소기
US9885196B2 (en) 2015-01-26 2018-02-06 Hayward Industries, Inc. Pool cleaner power coupling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100844621B1 (ko) * 2005-09-16 2008-07-07 엘지전자 주식회사 진공청소기용 집진장치
US20100005617A1 (en) * 2006-10-31 2010-01-14 Hyun Kie-Tak Vacuum cleaner
KR20100093446A (ko) * 2009-02-16 2010-08-25 삼성광주전자 주식회사 진공청소기의 집진장치
KR20150031304A (ko) 2012-06-20 2015-03-23 다이슨 테크놀러지 리미티드 자동 직립 청소 기구
KR20150109045A (ko) * 2014-03-19 2015-10-01 삼성전자주식회사 사이클론 집진장치 및 이를 구비한 진공 청소기
KR20160089201A (ko) * 2015-01-19 2016-07-27 엘지전자 주식회사 진공 청소기용 집진장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3685725A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI735170B (zh) * 2019-05-17 2021-08-01 日商日立環球生活方案股份有限公司 電動吸塵器

Also Published As

Publication number Publication date
EP3685725B1 (en) 2022-11-30
EP3685725A4 (en) 2021-08-25
KR20190033896A (ko) 2019-04-01
EP3685725A1 (en) 2020-07-29
US10639652B2 (en) 2020-05-05
US20190091703A1 (en) 2019-03-28
KR102047332B1 (ko) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2019059447A1 (ko) 집진장치 및 이를 구비하는 청소기
WO2019059446A1 (ko) 집진장치 및 이를 구비하는 청소기
KR100362754B1 (ko) 먼지분리장치
WO2019066120A1 (ko) 집진장치 및 이를 구비하는 청소기
CN101522088B (zh) 真空吸尘器
WO2016114580A1 (en) Dust collector for vacuum cleaner
WO2016117892A1 (en) Dust collector for vacuum cleaner
WO2016099040A1 (en) Dust collector for vacuum cleaner
JP2006320713A (ja) マルチサイクロン集塵装置
WO2007041947A1 (fr) Dispositif de separation a cyclone d'un nettoyeur
JP2013132562A (ja) 真空掃除機
GB2410913A (en) Cyclonic dust-collecting apparatus
JP2006272322A (ja) サイクロン集塵装置
JP2007175695A (ja) サイクロン空気清浄機
CN110545704B (zh) 吸尘器
WO2018110911A1 (en) Cyclone dust collector and vacuum cleaner having the same
WO2019013378A1 (ko) 진공 청소기
WO2019231131A1 (en) Cleaner
WO2019059445A1 (ko) 집진장치 및 이를 구비하는 청소기
WO2010085050A2 (en) Dust separator and vacuum cleaner having the same
WO2019231171A1 (en) Cleaner
WO2016017893A1 (ko) 청소기
WO2022225215A1 (ko) 멀티 사이클론 집진장치 및 이를 구비한 진공 청소기
CN107854048B (zh) 气旋分离装置及具有其的吸尘器
WO2011050637A1 (zh) 干湿两用真空吸尘器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017925756

Country of ref document: EP

Effective date: 20200422