WO2019059384A1 - Thick copper circuit with attached protective material - Google Patents

Thick copper circuit with attached protective material Download PDF

Info

Publication number
WO2019059384A1
WO2019059384A1 PCT/JP2018/035213 JP2018035213W WO2019059384A1 WO 2019059384 A1 WO2019059384 A1 WO 2019059384A1 JP 2018035213 W JP2018035213 W JP 2018035213W WO 2019059384 A1 WO2019059384 A1 WO 2019059384A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
copper circuit
compound
protective material
thick copper
Prior art date
Application number
PCT/JP2018/035213
Other languages
French (fr)
Japanese (ja)
Inventor
格 山浦
東哲 姜
片木 秀行
高橋 裕之
戸川 光生
真司 天沼
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2019059384A1 publication Critical patent/WO2019059384A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern

Definitions

  • the present disclosure relates to thick copper circuits with protective material.
  • Patent Document 1 As a method of producing a circuit for large current, a conductive circuit is inserted into an insulating material made of glass polyimide resin punched into a shape of the conductive circuit, and mounted on a metal substrate through an insulating layer. A method of making a high current circuit board is described.
  • soldering reflow treatment
  • a high temperature for example, about 285 ° C.
  • the circuit may be deformed due to the high coefficient of thermal expansion of copper. Therefore, particularly in thick copper circuits, it is required to suppress circuit deformation in the mounting process.
  • the deformation of the circuit can not be sufficiently suppressed, and peeling of the fitting member may occur. This indication makes it a subject to provide a thick copper circuit with a protection material in which modification of a circuit was controlled in view of the above-mentioned situation.
  • a thick copper circuit with a protective material comprising: a thick copper circuit; and a protective material disposed in a space between the thick copper circuits and containing 55% by volume to 95% by volume of an inorganic filler.
  • the protective material is a resin composition or a cured product thereof.
  • the resin composition is an epoxy resin composition containing an epoxy resin, a curing agent, and the inorganic filler.
  • the epoxy resin includes an epoxy resin having a mesogen skeleton.
  • the thick copper circuit with a protective material as described in ⁇ 4> whose phase transition temperature which carries out phase transition to the liquid crystal phase in the epoxy resin which has ⁇ 5> above-mentioned mesogenic frame structure is 140 degrees C or less.
  • skeleton contains the compound represented with the following general formula (I-0).
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • the amine curing agent comprises 4,4′-diaminodiphenyl sulfone.
  • the protective material is further disposed around the thick copper circuit.
  • a thick copper circuit with a protective material in which deformation of the circuit is suppressed is provided.
  • FIG. 5 is a schematic plan view of an example of a protected thick copper circuit for describing “a volume of an entire space between thick copper circuits”.
  • the term “step” includes, in addition to steps independent of other steps, such steps as long as the purpose of the step is achieved even if it can not be clearly distinguished from other steps.
  • numerical values described before and after “to” are included in the numerical range indicated using “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
  • each component may contain a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified.
  • particles corresponding to each component may contain a plurality of types.
  • the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
  • the words “layer” or “film” mean that when the region in which the layer or film is present is observed, in addition to the case where the region is entirely formed, only a part of the region The case where it is formed is also included.
  • laminate in the present disclosure refers to stacking layers, two or more layers may be combined, and two or more layers may be removable.
  • the configuration of the embodiment is not limited to the configuration shown in the drawings.
  • the sizes of the members in the respective drawings are conceptual, and the relative relationship between the sizes of the members is not limited thereto.
  • the protected thick copper circuit of the present disclosure comprises a thick copper circuit and a protective material disposed in the space between the thick copper circuit and containing 55% by volume to 95% by volume of an inorganic filler.
  • the protected thick copper circuit of the present disclosure may have other configurations as needed.
  • the thick copper circuit with a protective material of the present disclosure deformation of the circuit in the mounting process can be suppressed. Although the reason for this is not clear, it is considered as follows.
  • the protective material contains 55% by volume to 95% by volume of the inorganic filler, and is excellent in mechanical strength.
  • the thermal expansion coefficient (CTE) of the protective material can be made close to the thermal expansion coefficient of the thick copper circuit. Therefore, even in the case of using a thick copper circuit having a high coefficient of thermal expansion, it is considered that deformation of the circuit in the mounting process can be suppressed.
  • the protected thick copper circuit 10 has a thick copper circuit 12 and a protective material 14 disposed in the space between the thick copper circuits.
  • the protective material 14 contains an inorganic filler 16.
  • the protective material 14 is disposed inside the thick copper circuit 12.
  • Such a protective material-attached thick copper circuit 10 can be manufactured, for example, by disposing a protective material in the space of the thick copper circuit processed into a shape having an outer frame.
  • the protective material is disposed on the inside and the outside of the thick copper circuit 12.
  • Such a thick copper circuit 10 can be produced, for example, by disposing a protective material on the inside and the outside of the thick copper circuit processed into a shape having no outer frame. If the protective material is disposed on the inner side and the outer side of the thick copper circuit, the thick copper circuit is pressed by the protective material, so the adhesion between the protective material and the thick copper circuit is further improved, and the peeling is performed. Tend to be more restrained.
  • the thermal expansion coefficient is the difference between the amount of thermal expansion of the measurement sample and that of the standard sample when the temperature is raised at a constant rate using a thermomechanical analyzer (for example, TMAQ400 manufactured by TA Instruments Japan Ltd.) Can be obtained by measuring the amount of thermal expansion of the measurement sample.
  • the measurement conditions can be set, for example, as follows. Load: 20g Measurement temperature: 30 ° C to 280 ° C Heating temperature: 5 ° C / min
  • the thick copper circuit with protective material of the present disclosure is disposed on a metal substrate through an insulating layer separately prepared or obtained or an insulating layer integrally formed with the thick copper circuit with protective material of the present disclosure, and a circuit board It can be done.
  • the use in particular of a circuit board is not restrict
  • a thick copper circuit refers to a copper plate previously processed into a circuit state.
  • the thick copper circuit may be purchased or manufactured.
  • the thickness of the thick copper circuit is not particularly limited, and can be appropriately selected according to the application of the circuit board manufactured using the same. From the viewpoint of increasing the current of the circuit board, the thickness of the thick copper circuit is preferably 350 ⁇ m or more, more preferably 500 ⁇ m or more, and still more preferably 1000 ⁇ m or more. From the viewpoint of volume and weight, the thickness of the thick copper circuit may be, for example, 5000 ⁇ m or less.
  • the thickness of the circuit means the thickness of the circuit itself, and in the case where a part of the circuit is embedded in the adjacent member, the thickness of the embedded part is included in the thickness of the circuit.
  • the width and length of the circuit in the thick copper circuit are not particularly limited, and can be selected according to the application etc. of the circuit board manufactured using this. For example, it may be selected from the range of 350 ⁇ m to 70000 ⁇ m.
  • a thick copper circuit can be obtained, for example, by processing a copper plate into a circuit of a desired shape.
  • the method of processing is not particularly limited, and can be selected from known methods such as punching and cutting.
  • the thick copper circuit may be processed into a shape having an outer frame around the circuit, or may be processed into a shape without an outer frame, depending on the convenience of the processing process.
  • the protective material is disposed in the space between the thick copper circuits described above and contains 55% by volume to 95% by volume of the inorganic filler.
  • the “space between thick copper circuits” refers to an inner space sandwiched by one or more metal members of the thick copper circuit.
  • the protective material may be disposed at the outer edge of the thick copper circuit as required.
  • the proportion of the protective material disposed in the space between the circuits varies depending on the shape of the thick copper circuit, the manufacturing conditions of the circuit board, and the like, and is not particularly limited.
  • the protective material may be disposed in all of the space between the thick copper circuits or in part of the space. From the viewpoint of further improving the insulation reliability, the ratio of the protective material to the volume of the entire space between the thick copper circuits is preferably 70% or more, more preferably 80% or more, and 90% or more. It is further preferred that
  • the volume of the entire space between thick copper circuits means the volume obtained by multiplying the area of the spaces between thick copper circuits in the plan view of the thick copper circuits by the thickness of thick copper circuits.
  • the area of the thick copper circuit obtained by subtracting the area occupied by the thick copper circuit 12 from the area obtained by multiplying the width a and the length b.
  • the value obtained by multiplying the area of the space 18 between the thickness 18 and the thickness of the thick copper circuit 12 is referred to as “the volume of the entire space between the thick copper circuits”.
  • the broken line has shown the extension line of the outermost side of the width direction of a thick copper circuit, and a length direction for convenience.
  • the thickness of the protective material may be the same as or different from the thickness of the thick copper circuit.
  • the thickness is preferably 80% to 120%, more preferably 90% to 110%, and still more preferably 95% to 105% of the thickness of the thick copper circuit.
  • the protective material may be further disposed outside the thick copper circuit in addition to the space between the thick copper circuit.
  • the protective material is preferably arranged around the thick copper circuit in addition to the space between the thick copper circuits.
  • the protective material is integrated with the thick copper circuit (the thick copper circuit with protective material can be treated as a single sheet).
  • the protective material in the thick copper circuit with protective material be continuously provided from the space between the thick copper circuits to the outer edge.
  • the protective material contains an inorganic filler.
  • the material of the inorganic filler is not particularly limited, and is preferably insulating.
  • the “insulating property” of the inorganic filler refers to the property that the inorganic filler itself does not flow current even when a voltage of about several hundred volts to several thousand volts is applied, and the most energy occupied by electrons. It is a property that the high valence band to the next band (conduction band) above it are separated by a large energy gap.
  • the material of the inorganic filler include boron nitride, alumina, silica, aluminum nitride, magnesium oxide, silicon oxide, aluminum hydroxide, barium sulfate and the like.
  • silica is preferable from the viewpoint of more suitably adjusting the thermal expansion coefficient of the protective material. From the viewpoint of fluidity, thermal conductivity and electrical insulation, at least one selected from the group consisting of magnesium oxide and alumina is preferred.
  • the total proportion of at least one inorganic filler selected from the group consisting of magnesium oxide and alumina in the inorganic filler is preferably 50% by mass or more, and more preferably 80% by mass or more. It is more preferable that it is 90 mass% or more.
  • the shape of the inorganic filler is not particularly limited, and examples thereof include powder, sphere, and fiber.
  • a spherical shape is preferable from the viewpoint of flowability at molding and mold abradability.
  • the inorganic filler may be used alone or in combination of two or more.
  • “two or more types of inorganic fillers are used in combination” means, for example, when two or more types of inorganic fillers having the same component and different average particle sizes are used, the inorganic particles having the same average particle size but different components are used. The case where it uses more than a kind, and the case where two or more kinds of inorganic fillers from which an average particle diameter and a kind differ are used are mentioned.
  • the inorganic filler may have a single peak or a plurality of peaks when a particle size distribution curve is drawn with the particle diameter on the horizontal axis and the frequency on the vertical axis.
  • the volume average particle size (D50) corresponding to 50% of the cumulative particle size distribution of the inorganic filler from the small particle size side is From the viewpoint of thermal conductivity, 0.1 ⁇ m to 100 ⁇ m is preferable, and 0.1 ⁇ m to 70 ⁇ m is more preferable.
  • the volume average particle size of the inorganic filler can be measured using a laser diffraction method, and can be measured using a laser diffraction scattering particle size distribution measuring apparatus (for example, LS230 manufactured by Beckman Coulter, Inc.).
  • the inorganic filler having a plurality of peaks in the particle size distribution curve can be configured, for example, by combining two or more types of inorganic fillers having different volume average particle diameters.
  • the content of the inorganic filler in the protective material is 55% by volume to 95% by volume based on the total volume of the protective material. From the viewpoint of thermal conductivity, moldability, mechanical strength and the like, the content of the inorganic filler is preferably 60% by volume to 95% by volume, and more preferably 70% by volume to 85% by volume. If the content of the inorganic filler is 55% by volume or more, high thermal conductivity tends to be achieved. On the other hand, when the content of the inorganic filler is 95% by volume or less, the formability tends to be good.
  • the volume based content of the inorganic filler in the protective material is measured as follows.
  • the protective material is fired in air at 800 ° C. for 5 hours, and after the resin content is decomposed and burned and removed, the mass (Wf) of the remaining inorganic filler at 25 ° C. is measured.
  • the density (df) of the inorganic filler at 25 ° C. is then determined using an electronic densitometer or a pycnometer. Next, the density (dp) of the protective material at 25 ° C. is measured in the same manner.
  • volume (Vc) of the protective material and the volume (Vf) of the remaining inorganic filler are determined, and the volume of the remaining inorganic filler is divided by the volume of the protective material as shown in (equation 1) to obtain inorganic It is determined as the volume ratio of filler (Vr).
  • Vp volume of protective material (cm 3 )
  • Wp Weight of protective material
  • dp Density of protective material (g / cm 3 )
  • Vf Volume of inorganic filler (cm 3 )
  • Wf mass of inorganic filler
  • df density of inorganic filler (g / cm 3 )
  • Vr volume ratio of inorganic filler
  • the content basis of the inorganic filler in the protective material on a mass basis is not particularly limited, and can be appropriately adjusted according to the type of the inorganic filler and the like.
  • the content of the inorganic filler in the protective material is preferably 80% by mass to 99% by mass, and more preferably 85% by mass to 98% by mass. More preferably, it is 90% by mass to 95% by mass.
  • the protective material is preferably a resin composition or a cured product thereof.
  • the resin composition is not particularly limited as long as it is a resin composition containing an inorganic filler.
  • the protective material is preferably a transfer molded product of a resin composition.
  • the resin used for the resin portion is not particularly limited.
  • examples thereof include thermosetting resins such as epoxy resin, phenol resin, urea resin, melamine resin, urethane resin, silicone resin, unsaturated polyester resin, acrylic resin, imide resin, and amidimide resin.
  • the resin used for the resin part may be one type or two or more types. From the viewpoint of electrical insulation and adhesiveness, the resin used for the resin portion preferably contains at least one selected from the group consisting of an epoxy resin, a silicone resin, an amidimide resin and a urethane resin, and from the viewpoint of moisture resistance It is preferable that at least one selected from the group consisting of an epoxy resin, an acrylic resin and an amidimide resin.
  • the resin used for the resin part may be one kind alone or two or more kinds.
  • the resin composition is preferably an epoxy resin composition containing an epoxy resin, a curing agent, and an inorganic filler (hereinafter, also simply referred to as “epoxy resin composition” in the present disclosure).
  • epoxy resin composition containing an epoxy resin, a curing agent, and an inorganic filler
  • the type of epoxy resin contained in the epoxy resin composition is not particularly limited.
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol AD type epoxy resin, naphthalene type epoxy resin, and reactive diluent The epoxy resin which has only one epoxy group to be separated is mentioned.
  • the epoxy resin may be used alone or in combination of two or more.
  • the epoxy resin preferably contains an epoxy resin having a mesogen skeleton.
  • the epoxy resin having a mesogen skeleton may be used alone or in combination of two or more.
  • the epoxy resin may be a combination of an epoxy resin having a mesogen skeleton and an epoxy resin not having a mesogen skeleton, or may be an epoxy resin composed of an epoxy resin having a mesogen skeleton.
  • the content of the epoxy resin not having a mesogen skeleton may be 10% by mass or less, or 5% by mass or less based on the total amount of the epoxy resin. It may be 2% by mass or 0% by mass.
  • the epoxy resin composition contains, as an epoxy resin, an epoxy resin having a mesogen skeleton and an epoxy resin not having a mesogen skeleton
  • the content of the epoxy resin having a mesogen skeleton relative to the total amount of epoxy resin is a UV spectrum detector And a liquid chromatograph equipped with a mass spectrum detector.
  • “mesogenic skeleton” indicates a molecular structure that may exhibit liquid crystallinity. Specifically, biphenyl skeleton, phenyl benzoate skeleton, cyclohexyl bensoate skeleton, azobenzene skeleton, stilbene skeleton, derivatives thereof and the like can be mentioned.
  • An epoxy resin having a mesogen skeleton tends to form a high-order structure upon curing, and when cured, tends to be able to achieve higher thermal conductivity.
  • the higher-order structure is a state in which the constituent elements are arranged in a micro, and corresponds to, for example, a crystal phase and a liquid crystal phase. Whether such a higher order structure exists can be easily determined by observation with a polarizing microscope. That is, in the observation in the cross nicol state, when an interference pattern due to depolarization is observed, it can be determined that a higher order structure exists.
  • the higher order structure is usually present in the form of islands in the resin to form a domain structure. And each of the islands forming the domain structure is called a higher order structure.
  • the structural units constituting the higher order structural body are generally linked by a covalent bond.
  • the highly ordered higher order structure derived from the mesogen skeleton includes a nematic structure, a smectic structure and the like.
  • the nematic structure is a liquid crystal structure in which the molecular long axis is oriented in a uniform direction and has only an orientational order.
  • the smectic structure is a liquid crystal structure which has a one-dimensional position order in addition to the alignment order and has a layer structure of a constant period.
  • the direction of the period of the layer structure is uniform. That is, the molecular order is higher in the smectic structure than in the nematic structure.
  • the thermal conductivity of the smectic structure is higher than that of the nematic structure. That is, the order of the molecule is higher in the smectic structure than in the nematic structure, and the thermal conductivity of the cured product is also higher in the case of exhibiting the smectic structure. It is considered that an epoxy resin having a mesogen skeleton reacts with a curing agent to form a smectic structure, thereby exhibiting high thermal conductivity when it is a cured product.
  • a smectic structure is formed using an epoxy resin composition.
  • X-ray diffraction measurement is performed using an X-ray analyzer (for example, manufactured by Rigaku Corporation) with a tube voltage of 40 kV, a tube current of 20 mA, and 2 ⁇ of 0.5 ° to 30 °.
  • X-ray analyzer for example, manufactured by Rigaku Corporation
  • the epoxy equivalent of the epoxy resin having a mesogen skeleton is preferably 150 g / eq to 500 g / eq, and preferably 150 g / eq to 450 g / eq, from the viewpoint of achieving both handleability and thermal conductivity when cured. Is more preferably 200 g / eq to 450 g / eq, particularly preferably 230 g / eq to 400 g / eq, and most preferably 250 g / eq to 370 g / eq. If the epoxy equivalent is 150 g / eq or more, the crystallinity of the epoxy resin does not become too high, and the handling property tends to be difficult to reduce.
  • the epoxy equivalent is 500 g / eq or less, the crosslink density of the epoxy resin is unlikely to decrease, and the thermal conductivity of the cured product tends to be high.
  • the epoxy equivalent is measured by perchloric acid titration method in accordance with JIS K 7236: 2009.
  • the number average molecular weight (Mn) in gel permeation chromatography (GPC) measurement of the epoxy resin having a mesogen skeleton is 400 to 2500, from the viewpoint of achieving both the handling property and the thermal conductivity when it is a cured product. It is preferably 450 to 2000, more preferably 500 to 1800.
  • Mn of the epoxy resin 400 or more, the crystallinity of the epoxy resin does not become too high, and the handling property tends to be difficult to reduce. If the Mn of the epoxy resin is 2500 or less, the crosslink density of the epoxy resin is unlikely to be reduced, and the thermal conductivity of the cured product tends to be high.
  • GPC measurement in the present disclosure uses “G2000HXL” and “3000HXL” manufactured by Tosoh Corp. as GPC columns for analysis, uses tetrahydrofuran as a mobile phase, a sample concentration of 0.2 mass%, and a flow rate of 1.0 ml. Measure as / min.
  • a calibration curve is prepared using polystyrene standard samples, and Mn is calculated by polystyrene conversion value.
  • the epoxy resin having a mesogen skeleton may contain an epoxy compound having a mesogen skeleton, and may contain a reactant obtained by polymerizing an epoxy compound having a mesogen skeleton.
  • a reaction product obtained by polymerizing an epoxy compound having a mesogen skeleton even if it is a reaction product of epoxy compounds having a mesogen skeleton, a part of the epoxy compound having a mesogen skeleton is partially reacted with a curing agent or the like It may be in the form of a prepolymer.
  • the curing agent used for prepolymerization may be the same as or different from the curing agent to be contained in the epoxy resin composition.
  • the epoxy compounds having a mesogen skeleton may be used alone or in combination of two or more.
  • a specific example of the epoxy compound having a mesogen skeleton is described in, for example, Japanese Patent No. 4118691.
  • the specific example of the epoxy compound which has a mesogen frame is shown below, the epoxy compound which has a mesogen frame is not limited to these.
  • Examples of the epoxy compound having a mesogenic skeleton include 1- (3-methyl-4-oxiranylmethoxyphenyl) -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene, 1- (3-methyl-4- 4- Oxiranylmethoxyphenyl) -4- (4-oxiranylmethoxyphenyl) -benzene, 4- ⁇ 4- (2,3-epoxypropoxy) phenyl ⁇ cyclohexyl 4- (2,3-epoxypropoxy) benzoate and the like Can be mentioned.
  • the epoxy compound having a mesogen skeleton forms a nematic structure having low order by itself when phase transition from a crystal phase to a liquid crystal phase is carried out, but when it is prepolymerized, It is preferable that it is an epoxy compound which forms a highly ordered smectic structure.
  • skeleton contains the compound represented by the following general formula (I-0).
  • each of R 1 to R 4 independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and a hydrogen atom or 1 or 2 carbon atoms It is preferably an alkyl group, more preferably a hydrogen atom or a methyl group, and still more preferably a hydrogen atom. Furthermore, 2 to 4 of R 1 to R 4 are preferably hydrogen atoms, more preferably 3 or 4 of them are hydrogen atoms, and all 4 of them are all hydrogen atoms preferable. When one of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms, it is preferable that at least one of R 1 and R 4 is an alkyl group having 1 to 3 carbon atoms.
  • the phase transition temperature at which a crystalline phase is transformed to a liquid crystal phase is preferably 140 ° C. or less, more preferably 135 ° C. or less.
  • the epoxy resin tends to exhibit higher thermal conductivity when it is cured.
  • the epoxy resin is easily melted when the epoxy resin composition is prepared, and therefore the epoxy resin composition is easily homogenized by mixing, and as a result, the generation of the liquid crystal phase is suppressed. it is conceivable that.
  • the phase transition temperature can be measured using a differential scanning calorimetry (DSC) measurement device (for example, Perkin Elmer Pyris 1). Specifically, the differential scanning calorific value of a 3 mg to 5 mg sample sealed in an aluminum pan under conditions of a nitrogen atmosphere with a temperature increase rate of 20 ° C./min, a measurement temperature range of 25 ° C. to 350 ° C. The measurement is performed, and it is measured as a temperature at which an energy change (endothermic reaction) accompanying the phase transition occurs. An example of a graph obtained by this measurement is shown in FIG. The temperature of the endothermic reaction peak appearing in FIG. 5 is taken as a phase transition temperature.
  • DSC differential scanning calorimetry
  • epoxy compounds having a mesogenic skeleton tend to have a high phase transition temperature.
  • an epoxy compound having a highly ordered smectic structure tends to have a high phase transition temperature.
  • the epoxy compound having a mesogenic skeleton may have a phase transition temperature of 140 ° C. or lower, or may exceed 140 ° C.
  • the epoxy resin having a mesogen skeleton may contain a reaction product of a phenol compound and an epoxy compound having a mesogen skeleton, and may contain a reaction product of an amine compound and an epoxy compound having a mesogen skeleton.
  • a dihydric phenol compound having two hydroxyl groups as a substituent on one benzene ring (hereinafter, also simply referred to as a dihydric phenol compound), 3 having three hydroxyl groups on one benzene ring as a substituent 3
  • Dihydric phenol compounds (hereinafter, also simply referred to as trivalent phenol compounds) and the like.
  • a dihydric phenol compound for prepolymerizing an epoxy compound having a mesogen skeleton from the viewpoint of controlling the molecular weight, thermal conductivity and glass transition temperature (Tg) of the epoxy resin.
  • Tg glass transition temperature
  • an epoxy compound having a mesogen skeleton and a dihydric phenol compound are partially reacted and prepolymerized, it is possible to lower the phase transition temperature. Therefore, even if the phase transition temperature of the epoxy compound having a mesogen skeleton exceeds 140 ° C., it becomes easy to use.
  • a method of prepolymerizing with a compound capable of lowering the phase transition temperature is useful.
  • dihydric phenol compounds examples include catechol, resorcinol, hydroquinone, 4,4'-biphenol, 4,3'-biphenol, 2,2'-biphenol and derivatives thereof.
  • the derivatives include compounds in which a benzene ring is substituted with an alkyl group having 1 to 8 carbon atoms and the like.
  • hydroquinone or 4,4'-biphenol is preferably used from the viewpoint of improving the thermal conductivity.
  • hydroquinone and 4,4'-biphenol have a structure in which two hydroxyl groups are substituted so as to be in the positional relationship of para position, a prepolymerized epoxy resin obtained by reacting with an epoxy compound having a mesogenic skeleton Has a linear structure. For this reason, it is considered that the stacking properties of the molecules are high and it is easy to form a higher order structure.
  • the dihydric phenol compounds may be used alone or in combination of two or more.
  • a trivalent phenol compound for prepolymerizing an epoxy compound having a mesogen skeleton is a cured product while suitably achieving low softening point and retention of the ability to form a high-order structure of the epoxy compound having a mesogen skeleton It is preferable at the point which can raise the glass transition temperature (Tg) at the time.
  • the trivalent phenol compound is at least one selected from the group consisting of 1,2,3-trihydroxybenzene, 1,2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene Preferably, it is at least one selected from the group consisting of 1,2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene from the viewpoint of improving the thermal conductivity of a cured product using an epoxy polymer Is more preferred.
  • the epoxy resin having a mesogen skeleton is a reaction product of an epoxy compound having a mesogen skeleton and a phenol compound.
  • the epoxy resin having a mesogen skeleton can be synthesized, for example, by dissolving an epoxy compound having a mesogen skeleton, a phenol compound, and a reaction catalyst in a synthesis solvent, and stirring while applying heat. It is also possible to synthesize an epoxy resin having a mesogen skeleton by melting and reacting an epoxy compound having a mesogen skeleton and a phenol compound without using a synthesis solvent. In this case, the reaction is carried out by raising the temperature to a temperature at which the epoxy resin melts. From the viewpoint of safety, a synthesis method using a synthesis solvent is preferred.
  • the equivalent number of the phenolic hydroxyl group of the dihydric phenol compound and the equivalent number of the epoxy group of the epoxy compound having a mesogen skeleton may be from 100/1 to 100/100, preferably from 100/10 to 100/50, and preferably from 100/10 to 100/40. And more preferably 100/10 to 100/30.
  • the equivalent number of phenolic hydroxyl groups of the trivalent phenol compound, and the equivalent number of epoxy groups of an epoxy compound having a mesogen skeleton may be 100/1 to 100/100, and the viewpoint of the fluidity of the epoxy resin composition and the heat resistance and thermal conductivity of the cured product are preferably 100/10 to 100/50, more preferably 100/10 to 100/40, and still more preferably 100/10 to 100/30.
  • the synthesis solvent is not particularly limited as long as the solvent can be heated to a temperature necessary for the reaction of the epoxy compound having a mesogen skeleton with the phenol compound to proceed.
  • Specific examples thereof include cyclohexanone, cyclopentanone, ethyl lactate, propylene glycol monomethyl ether, N-methyl pyrrolidone and the like.
  • the amount of the synthesis solvent is preferably such that the epoxy compound having a mesogen skeleton, the phenol compound, and the reaction catalyst can all be dissolved at the reaction temperature.
  • solubility varies depending on the type of raw material before reaction, the type of solvent and the like, it is preferable to set the concentration of the charged solid content to 20 mass% to 60 mass%.
  • the viscosity of the resin solution after synthesis tends to be in the preferable range.
  • the type of reaction catalyst is not particularly limited, and an appropriate one can be selected from the viewpoint of reaction rate, reaction temperature, storage stability and the like.
  • Specific examples of the reaction catalyst include imidazole compounds, organic phosphorus compounds, tertiary amines, quaternary ammonium salts and the like. These may be used alone or in combination of two or more.
  • organic phosphine compounds organic phosphine compounds maleic anhydride, quinone compounds (1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2, 6-Dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone etc.), diazophenylmethane, phenol resin etc.
  • a compound having an intramolecular polarization formed by adding a compound having a ⁇ bond; and a complex of an organic phosphine compound and an organic boron compound tetraphenyl borate, tetra-p-tolyl borate, tetra-n-butyl borate, etc.; It is preferable that it is at least one selected from the group consisting of
  • organic phosphine compounds include triphenyl phosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, tris (dialkylphenyl) phosphine, and tris (trimethylphenyl) phosphine.
  • Alkylphenyl) phosphine tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkyl phosphine, dialkyl aryl phosphine, alkyl diaryl phosphine etc It can be mentioned.
  • the amount of reaction catalyst is not particularly limited. From the viewpoint of reaction rate and storage stability, the content is preferably 0.1% by mass to 3.0% by mass with respect to the total mass of the epoxy compound having a mesogen skeleton and the phenol compound, and is preferably 0.5% by mass to 2.%. More preferably, it is 0% by mass.
  • the reaction product of an epoxy compound having a mesogen skeleton and a phenol compound can be synthesized using a glass flask for small scale and using a stainless steel synthesis pot for large scale.
  • the specific synthesis method is, for example, as follows. First, an epoxy compound having a mesogen skeleton is charged into a flask or a synthesis pot, a synthetic solvent is charged, and the reaction temperature is raised with an oil bath or a heat medium to dissolve the epoxy compound having a mesogen skeleton. A phenol compound is charged therein, and after confirming that the compound is sufficiently dissolved in the synthesis solvent, the reaction catalyst is charged to start the reaction.
  • reaction product solution of an epoxy compound having a mesogen skeleton and a phenol compound is obtained.
  • synthesis solvent is distilled off under reduced pressure under heating conditions in a flask or in a synthesis pot, a reaction product of an epoxy compound having a mesogen skeleton and a phenol compound is obtained at room temperature (for example, 25 ° C.) Obtained as a solid.
  • the reaction temperature is not limited as long as the reaction between the epoxy group and the phenolic hydroxyl group proceeds in the presence of the reaction catalyst.
  • the range of 100 ° C. to 180 ° C. is preferable, and the range of 120 ° C. to 170 ° C. More preferable.
  • the reaction temperature By setting the reaction temperature to 100 ° C. or more, it tends to be possible to shorten the time until the reaction is completed. On the other hand, gelation tends to be suppressed by setting the reaction temperature to 180 ° C. or less.
  • skeleton contains the dimer of the epoxy compound which has mesogen frame
  • the epoxy resin having a mesogen skeleton is selected from the group consisting of an epoxy compound (monomer) having a mesogen skeleton, and a multimer of an epoxy compound having a mesogen skeleton, in addition to the dimer of the epoxy compound having a mesogen skeleton At least one may be further included.
  • the dimer and the multimer of the epoxy compound having a mesogen skeleton are a reaction product of epoxy resins having a mesogen skeleton or a reaction product in which an epoxy compound having a mesogen skeleton is reacted with a curing agent or the like. Good.
  • the curing agent used for dimerization and multimerization may be the same as or different from the curing agent to be contained in the epoxy resin composition.
  • An epoxy compound having a mesogenic skeleton in its molecular structure is generally easy to crystallize and tends to have a high melting temperature as compared with a general purpose epoxy compound. However, crystallization is suppressed by partially polymerizing such an epoxy compound to form a dimer. As a result, the handling property tends to be improved.
  • skeleton are mentioned, for example It is similar to that described above.
  • the ratio of the dimer of the epoxy compound having a mesogen skeleton is 15% by mass to the total amount of the epoxy resin having a mesogen skeleton.
  • the content is preferably in the range of 20% by mass to 27% by mass, and more preferably in the range of 22% by mass to 25% by mass.
  • the proportion of the dimer of the epoxy compound having a mesogen skeleton is 15% by mass or more, the handling property such as flexibility tends to be excellent. Moreover, when it is set as hardened
  • the ratio of the dimer of the epoxy compound having a mesogen skeleton to the total amount of the epoxy resin having a mesogen skeleton can be determined by reversed phase chromatography (RPLC) measurement.
  • RPLC reversed phase chromatography
  • the absorbance at a wavelength of 280 nm is detected, the total area of all detected peaks is set to 100, the ratio of the area at each corresponding peak is determined, and the value is the content of each compound in the epoxy resin [mass %]
  • an epoxy resin having a mesogen skeleton is a dimer of a compound represented by the above general formula (I-0) as a dimer of an epoxy compound having a mesogen skeleton (hereinafter, “specific dimer compound”) (Also referred to as The specific dimer compound is a dimer of the compound represented by the general formula (I-0), and thus has two structural units represented by the following general formula (I) in one molecule.
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, preferably a hydrogen atom Or a methyl group is more preferable, and a hydrogen atom is more preferable. Furthermore, 2 to 4 of R 1 to R 4 are preferably hydrogen atoms, more preferably 3 or 4 of them are hydrogen atoms, and all 4 of them are all hydrogen atoms preferable. When one of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms, it is preferable that at least one of R 1 and R 4 is an alkyl group having 1 to 3 carbon atoms.
  • the specific dimer compound preferably has at least one structural unit selected from the group consisting of a structural unit represented by the following general formula (IA) and a structural unit represented by the following general formula (IB).
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 5 each independently has 1 to 8 carbon atoms It shows an alkyl group.
  • n is an integer of 0 to 4;
  • R 1 ⁇ R 4 in the general formula (IA) and Formula (IB) is the same as R 1 ⁇ R 4 in formula (I), is the same preferred ranges thereof.
  • each R 5 independently represents an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, and is preferably a methyl group More preferable.
  • n is an integer of 0 to 4, preferably an integer of 0 to 2, more preferably an integer of 0 to 1, and 0 Is more preferred. That is, the benzene ring to which R 5 is attached in the general formula (IA) and the general formula (IB) preferably has 2 to 4 hydrogen atoms, and 3 or 4 hydrogen atoms. More preferably, it has four hydrogen atoms.
  • the structural unit represented by the general formula (IA) is at least selected from the group consisting of a structural unit represented by the following general formula (IA-1) and a structural unit represented by the following general formula (IA-2) It is preferable to contain one structural unit, and it is more preferable to contain a structural unit represented by the following general formula (IA-1).
  • the structural unit represented by the general formula (IB) is at least selected from the group consisting of a structural unit represented by the following general formula (IB-1) and a structural unit represented by the following general formula (IB-2) It preferably contains one structural unit, and more preferably contains a structural unit represented by the following general formula (IB-1).
  • R 1 to R 5 and n in the general formula (IA-1), the general formula (IA-2), the general formula (IB-1) and the general formula (IB-2) are the general formula (IA) and The same applies to R 1 to R 5 and n in the general formula (IB), and the preferred range is also the same.
  • the specific dimer compound examples include a compound represented by the following general formula (II-A), a compound represented by the following general formula (II-B), and a compound represented by the following general formula (II-C) Compounds and the like.
  • the specific dimer compound comprises a compound represented by the following general formula (II-A), a compound represented by the following general formula (II-B), and a compound represented by the following general formula (II-C) It is preferred to include at least one compound selected from the group.
  • the compound represented by the general formula (II-A) preferably includes a compound represented by the following general formula (II-A-1) and a compound represented by the following general formula (II-A-2) It is more preferable to include a compound represented by the following general formula (II-A-1).
  • the compound represented by the general formula (II-B) preferably includes a compound represented by the following general formula (II-B-1) and a compound represented by the following general formula (II-B-2) It is more preferable to include a compound represented by the following general formula (II-B-1).
  • the compound represented by the general formula (II-C) preferably includes a compound represented by the following general formula (II-C-1) and a compound represented by the following general formula (II-C-2) It is more preferable to include a compound represented by the following general formula (II-C-1).
  • Formula (II-A-1), Formula (II-A-2), Formula (II-B-1), Formula (II-B-2), Formula (II-C-1) and specific examples of R 1 ⁇ R 5 and n in the general formula (II-C-2) is the same as R 1 ⁇ R 5 and n in the general formula (IA) and formula (IB), also the preferred ranges It is similar.
  • the specific dimer compound is a compound represented by the general formula (II-A-1), a compound represented by the general formula (II-B-1), and a compound represented by the general formula (II-C-1) It is preferred to include at least one compound selected from the group consisting of compounds.
  • the structure of the specific dimer compound is presumed to be obtained by the reaction of the compound represented by the above general formula (I-0) used when synthesizing the epoxy resin and a curing agent such as a phenol compound. It can be determined by comparing the molecular weight of the structure with the molecular weight of the target compound determined by liquid chromatography performed using a liquid chromatograph equipped with a UV spectrum detector and a mass spectrum detector.
  • liquid chromatography for example, "LaChrom II C18" manufactured by Hitachi, Ltd. is used as a column for analysis, and tetrahydrofuran is used as an eluent at a flow rate of 1.0 ml / min.
  • the UV spectrum detector detects the absorbance at a wavelength of 280 nm.
  • the mass spectrum detector detects at an ionization voltage of 2700 V.
  • the epoxy resin having a mesogen skeleton may further include a multimer of an epoxy compound having a mesogen skeleton, in addition to the dimer of the epoxy compound having a mesogen skeleton.
  • the number of structural units of the epoxy compound having a mesogen skeleton in the multimer of the epoxy compound having a mesogen skeleton is 3 or more, preferably 5 or less as an average value, more preferably 4 or less, and 3 It is further preferred that
  • Examples of the multimer of the epoxy compound having a mesogen skeleton include multimers of the compound represented by General Formula (I-0) (hereinafter, also referred to as “specific multimer compound”).
  • the specific multimer compound is a multimer of the compound represented by the general formula (I-0) and has three or more structural units represented by the general formula (I) in one molecule.
  • the number of structural units represented by General Formula (I) in the specific multimeric compound is preferably 5 or less as an average value, more preferably 4 or less, and still more preferably 3.
  • the specific multimeric compound is a specific multimeric compound having at least one structural unit selected from the group consisting of the structural unit represented by the above general formula (IA) and the structural unit represented by the general formula (IB) Is preferred.
  • the structural unit represented by the general formula (IA) in the specific multimeric compound is selected from the group consisting of the structural unit represented by the general formula (IA-1) and the structural unit represented by the general formula (IA-2) It is preferable to include at least one structural unit to be treated, and it is more preferable to include the structural unit represented by general formula (IA-1).
  • the structural unit represented by the general formula (IB) in the specific multimeric compound is selected from the group consisting of the structural unit represented by the general formula (IB-1) and the structural unit represented by the general formula (IB-2) It is preferable to include at least one structural unit to be treated, and it is more preferable to include a structural unit represented by General Formula (IB-1).
  • the epoxy resin having a mesogen skeleton may further include an epoxy compound (monomer) having a mesogen skeleton, in addition to the dimer of the epoxy compound having a mesogen skeleton.
  • an epoxy compound (monomer) having a mesogen skeleton in addition to the dimer of the epoxy compound having a mesogen skeleton.
  • the proportion of the epoxy compound having a mesogen skeleton in the total epoxy resin having a mesogen skeleton Is preferably 57% by mass to 80% by mass, more preferably 59% by mass to 74% by mass, and still more preferably 62% by mass to 70% by mass.
  • the proportion of the epoxy compound having a mesogen skeleton is 57% by mass or more, when the cured product is formed, the crosslink density is unlikely to be reduced, and the heat conductivity and the Tg tend to be excellent.
  • the proportion of the epoxy compound having a mesogen skeleton is 80% by mass or less, the handling property such as flexibility tends to be excellent.
  • Examples of the epoxy compound having a mesogen skeleton include the compounds represented by the general formula (I-0) and the compounds described above as the epoxy compound having a mesogen skeleton.
  • the epoxy resin having a mesogen skeleton may be, for example, an epoxy compound having a mesogen skeleton, a phenol compound, and a reaction catalyst in a synthesis solvent It can be dissolved and stirred while heating to synthesize.
  • An example of a specific synthesis method is as described above as “a method of synthesizing an epoxy resin having a mesogen skeleton when the epoxy resin having a mesogen skeleton is a reaction product of an epoxy compound having a mesogen skeleton and a phenol compound”. .
  • the epoxy resin composition contains a curing agent.
  • the curing agent may, for example, be a polyaddition curing agent such as an acid anhydride curing agent, an amine curing agent, a phenol curing agent or a mercaptan curing agent, or a latent curing agent such as imidazole.
  • an amine-based curing agent or a phenol-based curing agent is preferred.
  • phenolic curing agents are preferred.
  • an amine-based curing agent is preferable.
  • the curing agent may be used alone or in combination of two or more.
  • a phenol type hardening agent what is normally used can be used without a restriction
  • a phenolic compound and a phenolic resin having novolakized phenolic compound can be used.
  • the phenol-based curing agent may be used alone or in combination of two or more.
  • the phenol compound examples include monofunctional phenol compounds such as phenol, o-cresol, m-cresol, p-cresol, etc .; difunctional phenol compounds such as catechol, resorcinol, hydroquinone; 1,2,3-trihydroxybenzene, 1 And trifunctional phenol compounds such as 2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene.
  • monofunctional phenol compounds such as phenol, o-cresol, m-cresol, p-cresol, etc .
  • difunctional phenol compounds such as catechol, resorcinol, hydroquinone
  • 1,2,3-trihydroxybenzene 1,2,3-trihydroxybenzene
  • trifunctional phenol compounds such as 2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene.
  • phenol resin the phenol novolak resin which linked these phenol compounds by the methylene chain etc. and was novolak-ized is mentioned.
  • the phenol-based curing agent is preferably a phenol novolac resin in which a bifunctional phenol compound such as catechol, resorcinol, or hydroquinone or a bifunctional phenol compound is linked by a methylene chain, and heat resistance It is more preferable that it is a phenol novolak resin which connected the bifunctional phenol compound by the methylene chain from a viewpoint of these.
  • Resins obtained by novolakizing one kind of phenol compound such as cresol novolac resin, catechol novolac resin, resorcinol novolac resin, hydroquinone novolac resin as phenol novolac resin; two or more kinds of phenol such as catechol resorcinol novolac resin, resorcinol hydroquinone novolac resin
  • phenol compound such as cresol novolac resin, catechol novolac resin, resorcinol novolac resin, hydroquinone novolac resin as phenol novolac resin
  • two or more kinds of phenol such as catechol resorcinol novolac resin, resorcinol hydroquinone novolac resin
  • the resin which made the compound novolak-ized; etc. can be mentioned.
  • each R 1 independently represents an alkyl group, an aryl group or an aralkyl group.
  • the alkyl group, aryl group and aralkyl group represented by R 1 may further have a substituent.
  • the substituent include an alkyl group (except when R 1 is an alkyl group), an aryl group, a halogen atom, a hydroxyl group and the like.
  • Each m independently represents an integer of 0 to 2, and when m is 2, two R 1 s may be the same or different.
  • Each m is preferably independently 0 or 1, and more preferably 0.
  • n each independently represents an integer of 1 to 7.
  • R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an aryl group or an aralkyl group.
  • the alkyl group, aryl group and aralkyl group represented by R 2 and R 3 may further have a substituent. Examples of the substituent include an alkyl group (except when R 2 or R 3 is an alkyl group), an aryl group, a halogen atom, a hydroxyl group and the like.
  • R 2 and R 3 in general formulas (II-1) and (II-2) are preferably a hydrogen atom, an alkyl group or an aryl group, and hydrogen An atom, an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms is more preferable, and a hydrogen atom is more preferable.
  • the compound having a structural unit represented by the general formula (II-1) contains a partial structure derived from a phenolic compound other than resorcinol
  • the partial structure derived from a phenolic compound other than resorcinol includes thermal conductivity and adhesiveness.
  • the partial structure derived from a phenolic compound other than resorcinol includes thermal conductivity and adhesiveness.
  • it is a partial structure derived from, and more preferably a partial structure derived from at least one selected from catechol and hydroquinone.
  • the partial structure derived from a phenol compound other than catechol includes thermal conductivity and adhesiveness.
  • the partial structure derived from a phenol compound other than catechol includes thermal conductivity and adhesiveness.
  • at least one selected from the group consisting of phenol, cresol, resorcinol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene It is preferable that it is a partial structure derived from, and it is more preferable that it is a partial structure derived from at least one selected from resorcinol and hydroquinone.
  • the partial structure derived from a phenol compound means a monovalent or divalent group formed by removing one or two hydrogen atoms from the benzene ring portion of the phenol compound.
  • the position at which the hydrogen atom is removed is not particularly limited.
  • the content ratio of the partial structure derived from resorcinol is not particularly limited. From the viewpoint of elastic modulus, the content ratio of the partial structure derived from resorcinol to the total mass of the compound having a structural unit represented by General Formula (II-1) is preferably 55% by mass or more, and the glass of the cured product From the viewpoint of transition temperature (Tg) and linear expansion coefficient, the content is more preferably 60% by mass or more, still more preferably 80% by mass or more, and from the viewpoint of thermal conductivity, 90% by mass or more Particularly preferred.
  • Tg transition temperature
  • thermal conductivity 90% by mass or more Particularly preferred.
  • the content ratio of the partial structure derived from catechol is not particularly limited. From the viewpoint of elastic modulus, the content ratio of the partial structure derived from catechol to the total mass of the compound having a structural unit represented by General Formula (II-2) is preferably 55% by mass or more, and the glass of the cured product From the viewpoint of transition temperature (Tg) and linear expansion coefficient, the content is more preferably 60% by mass or more, still more preferably 80% by mass or more, and from the viewpoint of thermal conductivity, 90% by mass or more Particularly preferred.
  • Tg transition temperature
  • thermal conductivity 90% by mass or more Particularly preferred.
  • the molecular weight of the compound having a structural unit represented by at least one selected from the group consisting of general formula (II-1) and general formula (II-2) is not particularly limited.
  • the number average molecular weight (Mn) is preferably 2000 or less, more preferably 1500 or less, and still more preferably 350 to 1500.
  • the weight average molecular weight (Mw) is preferably 2000 or less, more preferably 1500 or less, and still more preferably 400 to 1500. These Mn and Mw are measured by the usual method using gel permeation chromatography (GPC).
  • the hydroxyl equivalent of the compound having a structural unit represented by at least one selected from the group consisting of general formula (II-1) and general formula (II-2) is not particularly limited. From the viewpoint of the crosslink density involved in heat resistance, the hydroxyl group equivalent is preferably 50 g / eq to 150 g / eq on average, more preferably 50 g / eq to 120 g / eq, and more preferably 55 g / eq to 120 g / eq. More preferably, it is eq.
  • a hydroxyl equivalent means the value measured based on JISK0070: 1992.
  • a compound having a structural unit represented by at least one selected from the group consisting of General Formula (II-1) and General Formula (II-2) occupies in the phenol-based curing agent
  • the proportion of the compound having a structural unit represented by at least one selected from the group consisting of general formula (II-1) and general formula (II-2) is preferably 50% by mass or more and 80% by mass or more More preferably, 90 mass% or more is more preferable.
  • the phenol novolac resin is a structure represented by at least one selected from the group consisting of the following general formula (III-1) to the following general formula (III-4) It is also preferred to include a compound having
  • n and n each independently represent a positive integer, and represent the number of each structural unit to which m or n is attached.
  • Ar each independently represents a group represented by the following formula (III-a) or the following formula (III-b).
  • R 11 and R 14 each independently represent a hydrogen atom or a hydroxyl group.
  • R 12 and R 13 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • the compound having a structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) is a by-product produced by a method of novolakizing a divalent phenol compound Can be generated as
  • the structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) may be contained as a main chain skeleton of a phenol novolac resin, or a phenol novolac It may be included as part of the side chain of the resin. Furthermore, each structural unit constituting the partial structure represented by any one of the general formulas (III-1) to (III-4) may be randomly included or regularly It may be included or may be included in the form of a block. In the general formulas (III-1) to (III-4), the substitution position of the hydroxyl group is not particularly limited as long as it is on an aromatic ring.
  • a plurality of Ar may be the same atomic group or may contain two or more kinds of atomic groups.
  • Ar each independently represents a group represented by formula (III-a) or (III-b).
  • R 11 and R 14 in the general formula (III-a) and the general formula (III-b) each independently represent a hydrogen atom or a hydroxyl group, and are preferably a hydroxyl group from the viewpoint of thermal conductivity. Also, the substitution position of R 11 and R 14 is not particularly limited.
  • R 12 and R 13 in the general formula (III-a) each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • alkyl group having 1 to 8 carbon atoms for R 12 and R 13 include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, pentyl and hexyl Groups, heptyl groups, and octyl groups.
  • the substitution position of R 12 and R 13 in the general formula (III-a) is not particularly limited.
  • R 11 in group (general formula (III-a) derived from a dihydroxy benzene hydroxyl And at least one selected from the group consisting of groups wherein R 12 and R 13 are hydrogen atoms, and groups derived from dihydroxynaphthalene (groups where R 14 is a hydroxyl group in general formula (III-b)) Is preferred.
  • a group derived from dihydroxybenzene means a divalent group formed by removing two hydrogen atoms from the aromatic ring part of dihydroxybenzene, and the position at which the hydrogen atom is removed is not particularly limited.
  • group derived from dihydroxy naphthalene also has the same meaning.
  • Ar is more preferably a group derived from dihydroxybenzene, and a group derived from 1,2-dihydroxybenzene (catechol) and 1,3- More preferably, it is at least one selected from the group consisting of groups derived from dihydroxybenzene (resorcinol).
  • resorcinol groups derived from dihydroxybenzene
  • the compound having a structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) contains a structural unit derived from resorcinol, a structural unit derived from resorcinol
  • the content of at least one of the compounds having a structure represented by at least one selected from the group consisting of general formulas (III-1) to (III-4) in the total weight of the compound is preferably not less than 60% by mass, more preferably not less than 80% by mass, in view of the Tg and the linear expansion coefficient of the cured product. It is especially preferable that it is 90 mass% or more.
  • Compounds having a structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) are, in particular, groups derived from Ar substituted or unsubstituted dihydroxybenzene and When it is at least one kind of group derived from substituted or unsubstituted dihydroxy naphthalene, its curing is easy as compared with a phenol resin etc. which simply made these novolakized, and a curing agent having a low softening point is It tends to be obtained. Therefore, the inclusion of such a phenol resin as a curing agent has the advantage of facilitating production and handling of the epoxy resin composition.
  • the phenol novolac resin has a partial structure represented by at least one selected from the group consisting of the above general formula (III-1) to the above general formula (III-4) depends on field desorption / ionization. It is judged by mass spectrometry (FD-MS) whether or not the component corresponding to the partial structure represented by any of the above general formula (III-1) to the above general formula (III-4) is contained as a fragment component thereof. can do.
  • FD-MS mass spectrometry
  • the molecular weight of the compound having a structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) is not particularly limited.
  • the number average molecular weight (Mn) is preferably 2000 or less, more preferably 1500 or less, and still more preferably 350 to 1500.
  • the weight average molecular weight (Mw) is preferably 2000 or less, more preferably 1500 or less, and still more preferably 400 to 1500. These Mn and Mw are measured by the usual method using GPC.
  • the hydroxyl equivalent of the compound having a structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) is not particularly limited.
  • the hydroxyl group equivalent is preferably 50 g / eq to 150 g / eq on average, more preferably 50 g / eq to 120 g / eq, and more preferably 55 g / eq to 120 g / eq. More preferably, it is eq.
  • a general proportion of the phenol-based curing agent is preferably 50% by mass or more, and 80% by mass or more Is more preferably 90% by mass or more.
  • the content ratio of the monomer which is a phenol compound is not particularly limited. From the viewpoint of thermal conductivity and moldability, the content is preferably 5% by mass to 80% by mass, more preferably 15% by mass to 60% by mass, and still more preferably 20% by mass to 50% by mass in the phenolic curing agent. It is further preferred that
  • the monomer content ratio is 80% by mass or less, the amount of monomers not contributing to crosslinking decreases in the curing reaction, and the amount of crosslinked high molecular weight increases, so that a denser crosslinked structure is formed, and thermal conductivity Tend to improve. Moreover, since it is easy to flow at the time of shaping
  • amine curing agent for example, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, 4 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,4,4'-triaminodiphenyl ether, 4,4'-diamino-2,2'-dimethylbiphenyl, 4,4'-diamino-3, 3'-dimethoxybiphenyl, 4,4'-diaminophenylbenzoate, 1,5-diaminonaphthalene, 1,3-diaminonaphthalene, 1,2-phenylenediamine, 1,3-phenylenediamine, 1,4-phenylenedoate
  • the content of the curing agent is not particularly limited.
  • the equivalent number of active hydrogens of the phenolic hydroxyl group contained in the phenol-based curing agent (the equivalent number of phenolic hydroxyl groups) and the equivalent weight of the epoxy group contained in the epoxy resin
  • the ratio to the number is preferably 0.5 to 2.0, and more preferably 0.8 to 1.2.
  • the ratio of the number of equivalents of active hydrogen of the amine-based curing agent to the number of equivalents of epoxy groups of the epoxy resin is preferably 0.3 to 3.0, and more preferably 0.5 to 2.0.
  • the epoxy resin composition contains an inorganic filler.
  • This inorganic filler is the same as that described above as the inorganic filler contained in the protective material.
  • the content of the inorganic filler in the epoxy resin composition is 55% by volume to 95% by volume with respect to the total volume of the solid content of the epoxy resin composition from the viewpoints of thermal conductivity, moldability, mechanical strength, etc.
  • the content is preferably 60% by volume to 95% by volume, and more preferably 70% by volume to 85% by volume. If the content of the inorganic filler is 55% by volume or more, high thermal conductivity tends to be achieved. On the other hand, when the content of the inorganic filler is 95% by volume or less, an epoxy resin composition having excellent moldability tends to be obtained.
  • the solid content of an epoxy resin composition means the remaining component except the volatile component from an epoxy resin composition.
  • the content (volume%) of the inorganic filler in the epoxy resin composition is a value determined by the following equation.
  • Inorganic filler content (% by volume) [(Cw / Cd) / ⁇ (Aw / Ad) + (Bw / Bd) + (Cw / Cd) + (Dw / Dd) + (Ew / Ed) + (Fw) / Fd) ⁇ ] ⁇ 100
  • each variable is as follows.
  • Aw mass composition ratio of epoxy resin (mass%)
  • Bw mass composition ratio of the curing agent (mass%)
  • Cw mass composition ratio of inorganic filler (mass%)
  • Dw mass composition ratio (% by mass) of a curing accelerator used as needed
  • Ew mass composition ratio (mass%) of silane coupling agent used as needed
  • Fw mass composition ratio (mass%) of other components used as needed
  • Ad Specific gravity of epoxy resin Bd: Specific gravity of curing agent Cd: Specific gravity of inorganic filler
  • Ed Specific gravity of silane coupling agent used as needed
  • Fd Necessary Specific gravity of other ingredients used accordingly
  • the content ratio by weight of the inorganic filler in the epoxy resin composition can be appropriately adjusted depending on the type of the inorganic filler and the like.
  • the content of the inorganic filler in the epoxy resin composition is preferably 80% by mass to 99% by mass with respect to the solid content of the epoxy resin composition, and 85
  • the content is more preferably in the range of 90% by mass to 90% by mass, and further preferably in the range of 90% by mass to 95% by mass.
  • the epoxy resin composition may optionally contain a curing accelerator. By using a curing accelerator together with the curing agent, the epoxy resin composition can be cured more sufficiently.
  • the type and amount of the curing accelerator are not particularly limited, and may be selected appropriately from the viewpoint of reaction rate, reaction temperature, storage stability and the like.
  • the curing accelerator may be used alone or in combination of two or more.
  • the curing accelerator include imidazole compounds, organic phosphorus compounds, tertiary amines, quaternary ammonium salts and the like.
  • organic phosphine compounds organic phosphine compounds maleic anhydride, quinone compounds (1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2, 6-Dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone etc.), diazophenylmethane, phenol resin etc.
  • a compound having an intramolecular polarization formed by adding a compound having a ⁇ bond; and a complex of an organic phosphine compound and an organic boron compound tetraphenyl borate, tetra-p-tolyl borate, tetra-n-butyl borate, etc.; It is preferable that it is at least one selected from the group consisting of
  • organic phosphine compound examples include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine and tris (dialkylphenyl).
  • Phosphine tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkyl aryl phosphine Alkyl diaryl phosphine etc. are mentioned.
  • imidazole compound examples include 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2 -Methylimidazole, 1-benzyl-2-phenylimidazole, 1- (1-cyanoethyl) -2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1 -Cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2' -Ethyl-4'-methylimidazolyl- (1 ')]-
  • the content of the curing accelerator in the epoxy resin composition is not particularly limited. From the viewpoint of flowability and moldability, the content of the curing accelerator is preferably 0.1 mass% to 5.0 mass% with respect to the total mass of the epoxy resin and the curing agent, 0.5 mass More preferably, it is% to 3% by mass.
  • the epoxy resin composition may optionally contain a silane coupling agent.
  • a silane coupling agent When the epoxy resin composition contains a silane coupling agent, an interaction is caused between the surface of the inorganic filler and the epoxy resin surrounding the surface, flowability is improved, high thermal conductivity is achieved, and further, The insulation reliability tends to be improved by preventing the entry of moisture.
  • silane coupling agent is not particularly limited, and one type may be used alone, or two or more types may be used in combination. Among them, silane coupling agents having a phenyl group are preferred.
  • the silane coupling agent containing a phenyl group is likely to interact with the epoxy resin having a mesogen skeleton. For this reason, when an epoxy resin composition contains the silane coupling agent containing a phenyl group, when it is set as hardened
  • silane coupling agent containing a phenyl group is not particularly limited.
  • Specific examples of the silane coupling agent having a phenyl group include 3-phenylaminopropyltrimethoxysilane, 3-phenylaminopropyltriethoxysilane, N-methylanilinopropyltrimethoxysilane, N-methylanilinopropyltriethoxy Silanes, 3-phenyliminopropyltrimethoxysilane, 3-phenyliminopropyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, triphenylmethoxysilane, triphenylethoxysilane, etc. It can be mentioned.
  • the phenyl coupling agents may be used alone or in combination of two or more.
  • the ratio of the silane coupling agent which has a phenyl group to the whole silane coupling agent is 50 mass% or more, It is more preferable that it is 80 mass% or more, It is more preferable that it is 90 mass% or more .
  • the silane coupling agent contains a silane coupling agent in which a phenyl group is directly bonded to a silicon atom (Si), the phenyl group is directly bonded to a silicon atom (Si) in the silane coupling agent having a phenyl group
  • the proportion of the silane coupling agent is preferably 30% by mass or more, more preferably 50% by mass or more, and still more preferably 80% by mass or more.
  • the silane coupling agent may be present in the state of being attached to the surface of the inorganic filler or in the state of not being attached to the surface of the inorganic filler. , And both may be mixed.
  • the adhesion amount of silicon atoms derived from the silane coupling agent per specific surface area of the inorganic filler is 5.0 ⁇ 10 ⁇ 6 mol / M 2 to 10.0 ⁇ 10 ⁇ 6 mol / m 2 is preferable, 5.5 ⁇ 10 ⁇ 6 mol / m 2 to 9.5 ⁇ 10 ⁇ 6 mol / m 2 is more preferable, and 6.0 ⁇ 10 6 More preferably, it is ⁇ 6 mol / m 2 to 9.0 ⁇ 10 ⁇ 6 mol / m 2 .
  • the measuring method of the coating amount of the silicon atom derived from the silane coupling agent per specific surface area of an inorganic filler is as follows.
  • the BET method is mainly applied as a method of measuring the specific surface area of the inorganic filler.
  • the BET method is a gas adsorption method in which inert gas molecules such as nitrogen (N 2 ), argon (Ar), krypton (Kr) and the like are adsorbed on solid particles and the specific surface area of solid particles is measured from the amount of adsorbed gas molecules. It is a law.
  • the measurement of the specific surface area can be performed using a specific surface area pore distribution measuring apparatus (for example, manufactured by Beckman Coulter, SA3100).
  • silicon atoms derived from the silane coupling agent present on the surface of the inorganic filler are quantified.
  • the quantitative method includes 29 Si CP / MAS (Cross-Polarization / Magic angle spinning) solid-state NMR (nuclear magnetic resonance).
  • a nuclear magnetic resonance apparatus for example, JNM-ECA700 manufactured by Nippon Denshi Co., Ltd.
  • JNM-ECA700 manufactured by Nippon Denshi Co., Ltd.
  • the silicon atom derived from the silane coupling agent is also quantified by a fluorescent X-ray analyzer (for example, Supermini 200 manufactured by Rigaku Corporation) can do.
  • a fluorescent X-ray analyzer for example, Supermini 200 manufactured by Rigaku Corporation
  • Silane coupling agent per specific surface area of the inorganic filler based on the specific surface area of the inorganic filler obtained as described above and the amount of silicon atoms derived from the silane coupling agent present on the surface of the inorganic filler The coating amount of the silicon atom derived from is calculated.
  • the inorganic filler contained in the epoxy resin composition can be taken out from an epoxy resin composition by the method mentioned below, for example.
  • the epoxy resin composition is placed in a porcelain crucible and heated (eg, 600 ° C.) in a muffle furnace or the like to burn the resin component.
  • the resin component of the epoxy resin composition is dissolved in a suitable solvent, and the inorganic filler is recovered by filtration and dried.
  • the method of adding the silane coupling agent to the epoxy resin composition is not particularly limited. Specifically, an integral method in which a silane coupling agent is also added when mixing other materials such as an epoxy resin and an inorganic filler, a silane coupling agent is mixed with a small amount of resin, and then this is used as an inorganic filler Before mixing with other materials such as masterbatch method and epoxy resin mixed with other materials, etc., the inorganic filler and the silane coupling agent are mixed and the silane coupling agent is previously added to the surface of the inorganic filler. There is a pretreatment method to be processed.
  • a dry method in which a stock solution or a solution of a silane coupling agent is dispersed by high speed stirring with an inorganic filler and treated, a slurry of the inorganic filler with a dilute solution of a silane coupling agent, an inorganic filler
  • the wet method etc. which perform a silane coupling agent process on the inorganic filler surface by immersing a silane coupling agent etc. are mentioned.
  • the epoxy resin composition may contain other components in addition to the components described above.
  • Other components include release agents such as oxidized and non-oxidized polyolefins, carnauba wax, montanic acid ester, montanic acid, stearic acid and the like; silicone oil, silicone rubber powder, polymer elastomer such as acrylic and imide, etc. Stress relaxation agents; Reinforcing materials such as glass fibers; Coloring materials such as carbon; Phosphorous-based and hydroxide-based flame retardants; Defoaming materials for void suppression and the like.
  • the other components may be used alone or in combination of two or more.
  • the preparation method of the epoxy resin composition is not particularly limited. As a general method, after the components are sufficiently mixed by a mixer or the like, a method of melt-kneading, cooling and pulverizing may be mentioned. Melt-kneading can be carried out with a kneader, roll, extruder or the like which has been heated to 70 ° C. to 140 ° C.
  • the epoxy resin composition is easy to use when it is tableted in such a size and mass as to meet molding conditions.
  • the thick copper circuit with protective material may further have an insulating layer in the thickness direction of the thick copper circuit.
  • the width and length of the insulating layer may be the same as or different from that of the protected thick copper circuit.
  • the method for arranging the insulating layer in the thickness direction of the thick copper circuit is not particularly limited. For example, a method of affixing a sheet-like insulating layer in the thickness direction of a thick-layer copper circuit with a protective material and performing curing treatment as needed, and a method of integrally molding a thick copper circuit with a protective material and an insulating layer .
  • ⁇ Method of producing thick copper circuit with protective material> There is no particular limitation on the method of producing the protective copper circuit. For example, it can be produced as follows. First, a copper plate is punched and cut by cutting or the like to form a circuit having a desired shape. Next, the prepared circuit is disposed on a temporary base such as an adhesive film. If necessary, burrs, residues and the like generated during circuit formation may be removed. After that, a protective material is formed on the space between the circuits and the outer edge of the circuits as needed, and a curing process is performed as needed. Thereafter, the temporary base material is peeled off from the circuit. Next, removal of burrs generated during formation of the resin portion, post curing treatment of the resin, and the like are performed as necessary to obtain a thick copper circuit.
  • the method of arranging the protective material in the space between the thick copper circuits is not particularly limited.
  • extrusion molding method, compression molding method, transfer molding method, insert molding method etc. may be mentioned as a method of using solid resin material such as powder, etc.
  • a method of using liquid resin material such as powder, etc.
  • the thick copper circuits may be disposed on a temporary base material such as a resin sheet.
  • the protective material when the protective material is disposed on the thick copper circuit by the transfer molding method, the protective material can be disposed without an air gap between the circuits, so the adhesion with the thick copper circuit is improved, and the thick copper circuit and the protective material are It tends to be able to suppress voids and the like at the interface. Therefore, insulation reliability tends to be improved.
  • the temperature of the mold at the time of molding is not particularly limited, and may be 150 ° C. to 200 ° C.
  • the phase transition temperature of the epoxy resin is 150 ° C. or higher It is preferable to set it as the following, and it is more preferable to set it as 140 degrees C or less.
  • the temperature is above the phase transition temperature of the epoxy resin, the epoxy resin is sufficiently melted and easily molded at the time of molding, and when it is 150 ° C. or less, the thermal conductivity of the molded product tends to be excellent.
  • the molded product preferably has a diffraction peak in the range of a diffraction angle 2 ⁇ of 3.0 ° to 3.5 ° in an X-ray diffraction spectrum obtained by an X-ray diffraction method using a CuK ⁇ ray.
  • a molded product having such a diffraction peak has a smectic structure which is particularly high among the higher-order structures, and is excellent in thermal conductivity.
  • X-ray diffraction measurement using the CuK ⁇ ray in the present disclosure are as follows.
  • X-ray diffractometer ATX-G manufactured by Rigaku Corporation
  • the protective material may be used as it is after being molded and removed from the mold, or may be used after being post-cured by heating in an oven or the like, if necessary.
  • the heating conditions of the molded product can be appropriately selected according to the type and amount of the components contained in the protective material.
  • the heating temperature of the molding is preferably 130 ° C. to 200 ° C., and more preferably 150 ° C. to 180 ° C.
  • the heating time of the molding is preferably 1 hour to 10 hours, more preferably 2 hours to 6 hours.
  • molding hardening thing is the X-ray diffraction obtained by the X ray diffraction method using a CuK alpha ray similarly to the molding before post-hardening
  • the diffraction angle 2 ⁇ has a diffraction peak in the range of 3.0 ° to 3.5 °. This indicates that the highly ordered smectic structure formed in the molded product can be maintained even after post curing by heating, and a molded cured product having excellent thermal conductivity can be obtained.
  • Phenol compound 1 Compound name: hydroquinone (hydroxy group equivalent: 55 g / eq) ⁇ Synthetic solvent 1 Cyclohexanone (boiling point: 156 ° C) ⁇ Reaction catalyst 1 Triphenylphosphine (made by Hokuko Chemical Industry Co., Ltd., molecular weight: 262)
  • the epoxy resin monomer 1 was dissolved, and it became a clear solution, and then 1.3 g (0.0118 mol) of the phenol compound 1 (hydroquinone) was added to the flask, and then the reaction catalyst 1 (triphenyl) was added. 0.5 g of phosphine) was added and heating was continued at an oil bath temperature of 160.degree. After continuing heating for 5 hours, the epoxy resin 1 was obtained by cooling the residue which vacuum-distillated cyclohexanone from the reaction solution to room temperature.
  • the epoxy resin 1 also contains a part of the synthesis solvent and an unreacted epoxy resin monomer.
  • the solid content of the epoxy resin 1 was measured by a heat loss method and found to be 96.3% by mass.
  • Epoxy Resin Composition The components shown below are weighed out in proportions (parts by mass) shown in Table 1 and kneaded with a kneader preheated to 70 ° C. to 140 ° C., cooled and pulverized to give epoxy resins of Examples and Comparative Examples. The composition was prepared.
  • Epoxy resin 1 Epoxy resin 2 ⁇ Epoxy resin 3: Biphenyl type epoxy resin, Mitsubishi Chemical Corporation, product name "YX-4000”) ⁇ Epoxy resin 4 ... bisphenol F type epoxy resin, Nippon Steel & Sumikin Chemical Co., Ltd., product name "YSLV-70XY”)
  • Curing agent 1 Aromatic diamine, Wakayama Seika Kogyo Co., Ltd. 4,4'-diaminodiphenyl sulfone Curing agent 2. Aromatic diamine, Wakayama Seika Kogyo Co., Ltd. 3,4'-diaminodiphenyl ether ⁇ Hardener 3 ... Multifunctional phenolic resin, Air Water Co., Ltd., product name "HE 910"
  • Inorganic filler 1 ⁇ ⁇ ⁇ D50 volume average particle diameter 29.0 ⁇ m alumina particles ⁇ inorganic filler 2 ... D50 volume average particle diameter 21.0 ⁇ m alumina particles ⁇ inorganic filler 3 ⁇ D 50 volume average particle diameter 5.5 ⁇ m alumina Particles ⁇ Inorganic filler 4 ... D50 Alumina particles ⁇ Inorganic filler 5 with a volume average particle diameter of 14.9 ⁇ m ⁇ ⁇ ⁇ A50 particles with a volume average particle diameter of 2.0 ⁇ m ⁇ Inorganic fillers 6 ... with a volume average particle diameter of 0.4 ⁇ m Alumina particles
  • the content of the inorganic filler is 55% by volume to 95% by volume with respect to the total volume of the protective material, and in Comparative Example 1, the content of the inorganic filler is the entire content of the protective material. Less than 55% by volume with respect to the product.
  • the evaluation of the flowability of the epoxy resin composition was performed by a spiral flow test. Specifically, the epoxy resin composition was molded using a spiral flow measurement mold according to EMMI-1-66, and the flow distance (cm) of the molded product of the epoxy resin composition was measured. Molding of the epoxy resin composition was performed using a transfer molding machine under conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 120 seconds. Moreover, fluidity
  • the high temperature adhesiveness evaluation of the epoxy resin composition was performed by the following. Transfer molding was performed on a Cu substrate under conditions of a mold temperature of 180 ° C., a molding pressure of 7 MPa, and a curing time of 300 seconds to obtain a cured product having a thickness of 0.4 mm. This was allowed to stand on a hot plate heated to 280 ° for 15 minutes. The appearance after cooling and observation using an ultrasonic imaging apparatus (SAT) and having no peeling was designated as A, and the one where peeling was observed was designated as B.
  • SAT ultrasonic imaging apparatus
  • the evaluation of the thermal conductivity of the epoxy resin composition was performed as follows. Specifically, transfer molding was performed using the prepared epoxy resin composition under conditions of a mold temperature of 180 ° C., a molding pressure of 7 MPa, and a curing time of 300 seconds, to obtain a cured product of a mold shape. The specific gravity of the obtained cured product measured by the Archimedes method was 3.00. Further, the thermal diffusivity of the cured product was measured by a laser flash method using a thermal diffusivity measuring device (manufactured by NETZSCH, LFA 467). Further, the thermal conductivity is A at 7 W / (m ⁇ K) or more, and B at less than 7 W / (m ⁇ K).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)

Abstract

This thick copper circuit with attached protective material comprises: thick copper circuits; and a protective material disposed in spaces between the thick copper circuits and containing 55 vol% to 95 vol% of an inorganic filler.

Description

保護材付き厚銅回路Thick copper circuit with protective material
 本開示は、保護材付き厚銅回路に関する。 The present disclosure relates to thick copper circuits with protective material.
 電子機器の小型化及び高機能化の進展に伴い、電子部品を基板上に高密度実装することが可能な回路基板としてプリント基板が広く用いられている。 2. Description of the Related Art With the progress of miniaturization and high functionalization of electronic devices, printed circuit boards are widely used as circuit boards capable of mounting electronic components on a substrate at high density.
 一方、電子機器の使用環境の多様化に伴い、回路基板の電流容量の増大(大電流化)が求められている。回路基板を大電流化する方法として、予め回路の状態に加工された金属部材を用いて大電流用回路(厚銅回路等)を作製する方法が提案されている(例えば、特許文献1参照)。特許文献1では、大電流用回路を作製する方法として、導電回路の形状に打ち抜いたガラスポリイミド樹脂からなる絶縁材に、導電回路を嵌め込み、絶縁層を介して金属基板に載置し、積層一体化する大電流用の回路基板の作製方法が記載されている。 On the other hand, with the diversification of use environments of electronic devices, an increase (increase in current) of current capacity of a circuit board is required. As a method of increasing the current of the circuit board, a method of producing a circuit for large current (such as a thick copper circuit) using a metal member previously processed into a circuit state has been proposed (see, for example, Patent Document 1) . In Patent Document 1, as a method of producing a circuit for large current, a conductive circuit is inserted into an insulating material made of glass polyimide resin punched into a shape of the conductive circuit, and mounted on a metal substrate through an insulating layer. A method of making a high current circuit board is described.
特開平6-169148号公報Japanese Patent Application Laid-Open No. 6-169148
 大電流回路では、実装過程において高温(例えば、約285℃)ではんだ付け(リフロー処理)を行う。このとき、特に回路として銅を用いる厚銅回路において、銅の高い熱膨張率により、回路が変形するおそれがある。そのため、特に厚銅回路においては実装過程における回路の変形を抑制することが求められる。しかしながら、例えば特許文献1のようにガラスポリイミド樹脂からなる絶縁材に回路を嵌め込む方法では、回路の変形を充分に抑制できず、嵌め込み部材の剥離が発生する可能性がある。
 本開示は上記事情に鑑み、回路の変形が抑制された保護材付き厚銅回路を提供することを課題とする。
In a large current circuit, soldering (reflow treatment) is performed at a high temperature (for example, about 285 ° C.) in the mounting process. At this time, particularly in a thick copper circuit using copper as a circuit, the circuit may be deformed due to the high coefficient of thermal expansion of copper. Therefore, particularly in thick copper circuits, it is required to suppress circuit deformation in the mounting process. However, for example, in the method of fitting the circuit into the insulating material made of glass polyimide resin as in Patent Document 1, the deformation of the circuit can not be sufficiently suppressed, and peeling of the fitting member may occur.
This indication makes it a subject to provide a thick copper circuit with a protection material in which modification of a circuit was controlled in view of the above-mentioned situation.
 前記課題を達成するための具体的手段は以下の通りである。 The specific means for achieving the said subject are as follows.
<1> 厚銅回路と、前記厚銅回路の間の空間に配置され、無機充填材を55体積%~95体積%含有する保護材と、を有する保護材付き厚銅回路。
<2> 前記保護材が樹脂組成物又はその硬化物である、<1>に記載の保護材付き厚銅回路。
<3> 前記樹脂組成物が、エポキシ樹脂と、硬化剤と、前記無機充填材と、を含有するエポキシ樹脂組成物である、<2>に記載の保護材付き厚銅回路。
<4> 前記エポキシ樹脂が、メソゲン骨格を有するエポキシ樹脂を含む、<3>に記載の保護材付き厚銅回路。
<5> 前記メソゲン骨格を有するエポキシ樹脂における結晶相から液晶相に相転移する相転移温度が140℃以下である、<4>に記載の保護材付き厚銅回路。
<6> 前記メソゲン骨格を有するエポキシ樹脂は、フェノール化合物と、メソゲン骨格を有するエポキシ化合物との反応物を含む、<4>又は<5>に記載の保護材付き厚銅回路。
<7> 前記メソゲン骨格を有するエポキシ化合物が、下記一般式(I-0)で表される化合物を含む<6>に記載の保護材付き厚銅回路。
<1> A thick copper circuit with a protective material, comprising: a thick copper circuit; and a protective material disposed in a space between the thick copper circuits and containing 55% by volume to 95% by volume of an inorganic filler.
<2> The thick copper circuit with a protective material according to <1>, wherein the protective material is a resin composition or a cured product thereof.
<3> The protective copper circuit with a protective material according to <2>, wherein the resin composition is an epoxy resin composition containing an epoxy resin, a curing agent, and the inorganic filler.
<4> The thick copper circuit with a protective material according to <3>, wherein the epoxy resin includes an epoxy resin having a mesogen skeleton.
The thick copper circuit with a protective material as described in <4> whose phase transition temperature which carries out phase transition to the liquid crystal phase in the epoxy resin which has <5> above-mentioned mesogenic frame structure is 140 degrees C or less.
<6> The thick copper circuit with a protective material according to <4> or <5>, wherein the epoxy resin having a mesogen skeleton includes a reaction product of a phenol compound and an epoxy compound having a mesogen skeleton.
The thick copper circuit with a protective material as described in <6> in which the epoxy compound which has <7> said mesogen frame | skeleton contains the compound represented with the following general formula (I-0).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(一般式(I-0)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。) (In the general formula (I-0), R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)
<8> 前記硬化剤がアミン系硬化剤を含む、<3>~<7>のいずれか1項に記載の保護材付き厚銅回路。
<9> 前記アミン系硬化剤が4,4’-ジアミノジフェニルスルホンを含む、<8>に記載の保護材付き厚銅回路。
<10> 前記保護材が、前記樹脂組成物のトランスファー成形体である、<2>~<9>のいずれか1項に記載の保護材付き厚銅回路。
<11> 前記保護材が、さらに前記厚銅回路の周囲に配置されている、<1>~<10>のいずれか1項に記載の保護材付き厚銅回路。
<12> 前記厚銅回路の厚み方向に絶縁層をさらに有する、<1>~<11>のいずれか1項に記載の保護材付き厚銅回路。
<8> The protective copper circuit with a protective material according to any one of <3> to <7>, wherein the curing agent contains an amine curing agent.
<9> The thick copper circuit with a protective material according to <8>, wherein the amine curing agent comprises 4,4′-diaminodiphenyl sulfone.
<10> The thick copper circuit with a protective material according to any one of <2> to <9>, wherein the protective material is a transfer molded product of the resin composition.
<11> The thick copper circuit with protective material according to any one of <1> to <10>, wherein the protective material is further disposed around the thick copper circuit.
<12> The protective copper circuit with a protective material according to any one of <1> to <11>, further including an insulating layer in the thickness direction of the thick copper circuit.
 本開示によれば、回路の変形が抑制された保護材付き厚銅回路が提供される。 According to the present disclosure, a thick copper circuit with a protective material in which deformation of the circuit is suppressed is provided.
保護材付き厚銅回路の一例の概略断面図である。It is a schematic sectional drawing of an example of the thick copper circuit with a protective material. 保護材付き厚銅回路の一例の概略断面図である。It is a schematic sectional drawing of an example of the thick copper circuit with a protective material. 保護材付き厚銅回路の一例の概略断面図である。It is a schematic sectional drawing of an example of the thick copper circuit with a protective material. 保護材付き厚銅回路の一例の概略断面図である。It is a schematic sectional drawing of an example of the thick copper circuit with a protective material. メソゲン骨格を有するエポキシ樹脂の示差走査熱量(DSC)測定で得られるグラフの一例を示す図である。It is a figure which shows an example of the graph obtained by the differential scanning calorimetry (DSC) measurement of the epoxy resin which has mesogen frame | skeleton. 「厚銅回路の間の空間全体の容積」を説明するための、保護材付き厚銅回路の一例の概略平面図である。FIG. 5 is a schematic plan view of an example of a protected thick copper circuit for describing “a volume of an entire space between thick copper circuits”.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, modes for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and does not limit the present invention.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において実施形態を図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
In the present disclosure, the term “step” includes, in addition to steps independent of other steps, such steps as long as the purpose of the step is achieved even if it can not be clearly distinguished from other steps. .
In the present disclosure, numerical values described before and after “to” are included in the numerical range indicated using “to” as the minimum value and the maximum value, respectively.
The upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure. . In addition, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
In the present disclosure, each component may contain a plurality of corresponding substances. When a plurality of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, particles corresponding to each component may contain a plurality of types. When there are a plurality of particles corresponding to each component in the composition, the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
In the present disclosure, the words “layer” or “film” mean that when the region in which the layer or film is present is observed, in addition to the case where the region is entirely formed, only a part of the region The case where it is formed is also included.
The term "laminate" in the present disclosure refers to stacking layers, two or more layers may be combined, and two or more layers may be removable.
When an embodiment of the present disclosure is described with reference to the drawings, the configuration of the embodiment is not limited to the configuration shown in the drawings. Further, the sizes of the members in the respective drawings are conceptual, and the relative relationship between the sizes of the members is not limited thereto.
<保護材付き厚銅回路>
 本開示の保護材付き厚銅回路は、厚銅回路と、前記厚銅回路の間の空間に配置され、無機充填材を55体積%~95体積%含有する保護材と、を有する。本開示の保護材付き厚銅回路は、必要に応じてその他の構成を有していてもよい。
 本開示の保護材付き厚銅回路によれば、実装過程における回路の変形を抑制することができる。この理由は明らかではないが、以下のように考えられる。本開示の保護材付き厚銅回路において、保護材は無機充填材を55体積%~95体積%含有しているため機械強度に優れる。また、保護材の熱膨張係数(CTE)を厚銅回路の熱膨張係数に近づけることができる。このため、熱膨張率の高い厚銅回路を用いた場合であっても、実装過程における回路の変形を抑えることができると考えられる。
<Thick copper circuit with protective material>
The protected thick copper circuit of the present disclosure comprises a thick copper circuit and a protective material disposed in the space between the thick copper circuit and containing 55% by volume to 95% by volume of an inorganic filler. The protected thick copper circuit of the present disclosure may have other configurations as needed.
According to the thick copper circuit with a protective material of the present disclosure, deformation of the circuit in the mounting process can be suppressed. Although the reason for this is not clear, it is considered as follows. In the thick protective copper circuit with a protective material of the present disclosure, the protective material contains 55% by volume to 95% by volume of the inorganic filler, and is excellent in mechanical strength. Further, the thermal expansion coefficient (CTE) of the protective material can be made close to the thermal expansion coefficient of the thick copper circuit. Therefore, even in the case of using a thick copper circuit having a high coefficient of thermal expansion, it is considered that deformation of the circuit in the mounting process can be suppressed.
 図1~図4に、それぞれ保護材付き厚銅回路の一例の概略断面図を示す。保護材付き厚銅回路10は、厚銅回路12と、厚銅回路の間の空間に配置される保護材14とを有する。保護材14は、無機充填材16を含有する。
 図1及び図2に示される保護材付き厚銅回路10では、厚銅回路12の内側に保護材14が配置されている。このような保護材付き厚銅回路10は、例えば、外枠を有する形状に加工された厚銅回路の空間に保護材を配置することで作製することができる。
 図3及び図4に示される保護材付き厚銅回路10では、厚銅回路12の内側と外側に保護材が配置されている。このような厚銅回路10は、例えば、外枠を有さない形状に加工された厚銅回路の内側と外側に保護材を配置することで作製することができる。厚銅回路の内側と外側に保護材が配置されている構成を有すると、厚銅回路が保護材で押さえつけられる構造となるため、保護材と厚銅回路との接着性がより向上し、剥離がより抑制される傾向にある。
1 to 4 each show a schematic cross-sectional view of an example of a thick copper circuit with a protective material. The protected thick copper circuit 10 has a thick copper circuit 12 and a protective material 14 disposed in the space between the thick copper circuits. The protective material 14 contains an inorganic filler 16.
In the thick copper circuit 10 with protective material shown in FIGS. 1 and 2, the protective material 14 is disposed inside the thick copper circuit 12. Such a protective material-attached thick copper circuit 10 can be manufactured, for example, by disposing a protective material in the space of the thick copper circuit processed into a shape having an outer frame.
In the thick copper circuit 10 with protective material shown in FIGS. 3 and 4, the protective material is disposed on the inside and the outside of the thick copper circuit 12. Such a thick copper circuit 10 can be produced, for example, by disposing a protective material on the inside and the outside of the thick copper circuit processed into a shape having no outer frame. If the protective material is disposed on the inner side and the outer side of the thick copper circuit, the thick copper circuit is pressed by the protective material, so the adhesion between the protective material and the thick copper circuit is further improved, and the peeling is performed. Tend to be more restrained.
 熱膨張係数は、熱機械分析装置(例えば、ティー・エイ・インスツルメント・ジャパン株式会社製:TMAQ400)を用いて、一定速度で昇温したときの測定試料と標準試料の熱膨張量の差から測定試料の熱膨張量を測定することによって得ることができる。測定条件は、例えば以下のように設定することができる。
荷重:20g    
測定温度:30℃~280℃
昇温温度:5℃/分    
The thermal expansion coefficient is the difference between the amount of thermal expansion of the measurement sample and that of the standard sample when the temperature is raised at a constant rate using a thermomechanical analyzer (for example, TMAQ400 manufactured by TA Instruments Japan Ltd.) Can be obtained by measuring the amount of thermal expansion of the measurement sample. The measurement conditions can be set, for example, as follows.
Load: 20g
Measurement temperature: 30 ° C to 280 ° C
Heating temperature: 5 ° C / min
 本開示の保護材付き厚銅回路は、別途に作製若しくは入手した絶縁層、又は本開示の保護材付き厚銅回路と一体成形された絶縁層を介して、金属基板に配置して、回路基板とすることができる。回路基板の用途は特に制限されず、産業用機器等の分野で好適に使用できる。 The thick copper circuit with protective material of the present disclosure is disposed on a metal substrate through an insulating layer separately prepared or obtained or an insulating layer integrally formed with the thick copper circuit with protective material of the present disclosure, and a circuit board It can be done. The use in particular of a circuit board is not restrict | limited, It can use suitably in the field | areas, such as industrial equipment.
 以下、本開示の保護材付き厚銅回路の各構成要素について説明する。 Hereinafter, each component of the thick copper circuit with a protective material of this indication is demonstrated.
(厚銅回路)
 本開示において厚銅回路とは、銅板を予め回路の状態に加工したものをいう。厚銅回路は購入したものであっても作製したものであってもよい。厚銅回路の厚さは特に制限されず、これを用いて製造される回路基板の用途等によって適宜選択することができる。回路基板の大電流化の観点からは、厚銅回路の厚さは350μm以上であることが好ましく、500μm以上であることがより好ましく、1000μm以上であることがさらに好ましい。容積及び重量の観点からは、厚銅回路の厚さは、例えば、5000μm以下であってよい。
 厚銅回路の場所によって上記の値が異なる場合は、任意に選択した5箇所で得られた測定値の算術平均値を上記の値とする。
 上記回路の厚さは回路自体の厚さを意味し、隣接する部材に回路の一部が埋め込まれている場合は埋め込まれている部分の厚さも回路の厚さに含まれる。
(Thick copper circuit)
In the present disclosure, a thick copper circuit refers to a copper plate previously processed into a circuit state. The thick copper circuit may be purchased or manufactured. The thickness of the thick copper circuit is not particularly limited, and can be appropriately selected according to the application of the circuit board manufactured using the same. From the viewpoint of increasing the current of the circuit board, the thickness of the thick copper circuit is preferably 350 μm or more, more preferably 500 μm or more, and still more preferably 1000 μm or more. From the viewpoint of volume and weight, the thickness of the thick copper circuit may be, for example, 5000 μm or less.
When the above values differ depending on the location of the thick copper circuit, the arithmetic mean value of the measurement values obtained at five arbitrarily selected locations is taken as the above value.
The thickness of the circuit means the thickness of the circuit itself, and in the case where a part of the circuit is embedded in the adjacent member, the thickness of the embedded part is included in the thickness of the circuit.
 厚銅回路における回路の幅及び長さは特に制限されず、これを用いて製造される回路基板の用途等に応じて選択できる。例えば、350μm~70000μmの範囲から選択してもよい。 The width and length of the circuit in the thick copper circuit are not particularly limited, and can be selected according to the application etc. of the circuit board manufactured using this. For example, it may be selected from the range of 350 μm to 70000 μm.
 厚銅回路は、例えば、銅板を所望の形状の回路の状態に加工することで得られる。加工の方法は特に制限されず、打抜き、切削等の公知の方法から選択できる。厚銅回路は、加工工程の便宜に応じて、例えば、回路の周囲に外枠を有する形状に加工されたものとしてもよく、外枠のない形状に加工されたものとしてもよい。 A thick copper circuit can be obtained, for example, by processing a copper plate into a circuit of a desired shape. The method of processing is not particularly limited, and can be selected from known methods such as punching and cutting. The thick copper circuit may be processed into a shape having an outer frame around the circuit, or may be processed into a shape without an outer frame, depending on the convenience of the processing process.
(保護材)
 保護材は、前述の厚銅回路の間の空間に配置され、無機充填材を55体積%~95体積%含有する。
 本開示において「厚銅回路の間の空間」とは、厚銅回路の1又は複数の金属部材に挟まれた内側の空間を表す。保護材は必要に応じて厚銅回路の外縁部に配置されていてもよい。
(Protective layer)
The protective material is disposed in the space between the thick copper circuits described above and contains 55% by volume to 95% by volume of the inorganic filler.
In the present disclosure, the “space between thick copper circuits” refers to an inner space sandwiched by one or more metal members of the thick copper circuit. The protective material may be disposed at the outer edge of the thick copper circuit as required.
 厚銅回路において、回路の間の空間に配置される保護材の割合は、厚銅回路の形状、回路基板の作製条件等によって異なり、特に制限されない。保護材は、厚銅回路の間の空間の全てに配置されていても、空間の一部に配置されていてもよい。絶縁信頼性をより向上させる観点からは、厚銅回路の間の空間全体の容積に占める保護材の割合が70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましい。 In a thick copper circuit, the proportion of the protective material disposed in the space between the circuits varies depending on the shape of the thick copper circuit, the manufacturing conditions of the circuit board, and the like, and is not particularly limited. The protective material may be disposed in all of the space between the thick copper circuits or in part of the space. From the viewpoint of further improving the insulation reliability, the ratio of the protective material to the volume of the entire space between the thick copper circuits is preferably 70% or more, more preferably 80% or more, and 90% or more. It is further preferred that
 本開示において、「厚銅回路の間の空間全体の容積」とは、厚銅回路の平面図における厚銅回路の間の空間の面積に、厚銅回路の厚さを乗じて得られる容積とする。例えば、図6に例示的に示される厚銅回路12の平面図において、幅aと長さbを乗じて得られる面積から、厚銅回路12の占める面積を差し引いて得られる、厚銅回路の間の空間18の面積に、厚銅回路12の厚さを乗じて得られる値を「厚銅回路の間の空間全体の容積」という。なお、図6において、破線は厚銅回路の幅方向及び長さ方向の最外辺の延長線を便宜的に示している。 In the present disclosure, "the volume of the entire space between thick copper circuits" means the volume obtained by multiplying the area of the spaces between thick copper circuits in the plan view of the thick copper circuits by the thickness of thick copper circuits. Do. For example, in the plan view of the thick copper circuit 12 exemplarily shown in FIG. 6, the area of the thick copper circuit obtained by subtracting the area occupied by the thick copper circuit 12 from the area obtained by multiplying the width a and the length b. The value obtained by multiplying the area of the space 18 between the thickness 18 and the thickness of the thick copper circuit 12 is referred to as “the volume of the entire space between the thick copper circuits”. In addition, in FIG. 6, the broken line has shown the extension line of the outermost side of the width direction of a thick copper circuit, and a length direction for convenience.
 保護材の厚さは、厚銅回路の厚さと同じであっても異なってもよい。厚銅回路の厚さの80%以上~120%以下であることが好ましく、90%以上~110%以下であることがより好ましく、95%以上~105%以下であることがさらに好ましい。保護材の場所によって上記の値が異なる場合は、任意に選択した5箇所で得られた測定値の算術平均値を上記の値とする。 The thickness of the protective material may be the same as or different from the thickness of the thick copper circuit. The thickness is preferably 80% to 120%, more preferably 90% to 110%, and still more preferably 95% to 105% of the thickness of the thick copper circuit. When the above-mentioned value is different depending on the place of the protective material, the arithmetic mean value of the measurement values obtained at 5 arbitrarily selected places is taken as the above-mentioned value.
 保護材は、厚銅回路の間の空間に加えてさらに厚銅回路の外側に配置されていてもよい。この場合、保護材は厚銅回路の間の空間に加えてさらに厚銅回路の周囲に配置されていることが好ましい。保護材が厚銅回路の周囲にも配置されていると、保護材と厚銅回路との接着性がより向上し、剥離がより抑制される傾向にある。 The protective material may be further disposed outside the thick copper circuit in addition to the space between the thick copper circuit. In this case, the protective material is preferably arranged around the thick copper circuit in addition to the space between the thick copper circuits. When the protective material is also disposed around the thick copper circuit, the adhesion between the protective material and the thick copper circuit is further improved, and the peeling tends to be further suppressed.
 厚銅回路の取り扱い性の観点からは、保護材は厚銅回路と一体化した状態である(保護材付き厚銅回路を一枚のシートとして扱うことができる)ことが好ましい。例えば、保護材付き厚銅回路における保護材が、厚銅回路の間の空間から外縁部まで連続して設けられた状態であることが好ましい。保護材付き厚銅回路における厚銅回路と保護材が一体化した状態であると、得られる厚銅回路の絶縁信頼性及び耐湿信頼性に優れ、沿面放電、部分放電、トラッキング、マイグレーション等の発生が抑制される傾向にある。 From the viewpoint of the handleability of the thick copper circuit, it is preferable that the protective material is integrated with the thick copper circuit (the thick copper circuit with protective material can be treated as a single sheet). For example, it is preferable that the protective material in the thick copper circuit with protective material be continuously provided from the space between the thick copper circuits to the outer edge. When the thick copper circuit and protective material in the thick copper circuit with protective material are integrated, the insulation reliability and moisture resistance reliability of the thick copper circuit obtained are excellent, and creeping discharge, partial discharge, tracking, migration, etc. occur. Tend to be suppressed.
 保護材は無機充填材を含有する。無機充填材の材質は特に制限されず、絶縁性であることが好ましい。本開示において無機充填材の「絶縁性」とは、数百ボルト~数千ボルト程度の電圧をかけても無機充填材自体が電流を流さない性質のことをいい、電子に占有された最もエネルギー準位の高い価電子帯からその上にある次のバンド(伝導帯)までが大きなエネルギーギャップで隔てられているために有する性質である。 The protective material contains an inorganic filler. The material of the inorganic filler is not particularly limited, and is preferably insulating. In the present disclosure, the “insulating property” of the inorganic filler refers to the property that the inorganic filler itself does not flow current even when a voltage of about several hundred volts to several thousand volts is applied, and the most energy occupied by electrons. It is a property that the high valence band to the next band (conduction band) above it are separated by a large energy gap.
 無機充填材の材質としては、具体的には、窒化ホウ素、アルミナ、シリカ、窒化アルミニウム、酸化マグネシウム、酸化ケイ素、水酸化アルミニウム、硫酸バリウム等が挙げられる。中でも、保護材の熱膨張率をより好適に調整する観点からは、シリカが好ましい。流動性、熱伝導性及び電気絶縁性の観点からは、酸化マグネシウム及びアルミナからなる群より選択される少なくとも1種が好ましい。また、流動性を妨げない範囲で、窒化ホウ素、シリカ、窒化アルミニウム等をさらに含有してもよい。 Specific examples of the material of the inorganic filler include boron nitride, alumina, silica, aluminum nitride, magnesium oxide, silicon oxide, aluminum hydroxide, barium sulfate and the like. Among them, silica is preferable from the viewpoint of more suitably adjusting the thermal expansion coefficient of the protective material. From the viewpoint of fluidity, thermal conductivity and electrical insulation, at least one selected from the group consisting of magnesium oxide and alumina is preferred. Moreover, you may further contain a boron nitride, a silica, aluminum nitride etc. in the range which does not prevent a fluidity.
 無機充填材に占める、酸化マグネシウム及びアルミナからなる群より選択される少なくとも1種の無機充填材の合計割合は、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。 The total proportion of at least one inorganic filler selected from the group consisting of magnesium oxide and alumina in the inorganic filler is preferably 50% by mass or more, and more preferably 80% by mass or more. It is more preferable that it is 90 mass% or more.
 無機充填材の形状は特に限定されず、例えば、粉状、球状、繊維状等が挙げられる。成形時の流動性及び金型摩耗性の点からは、球形が好ましい。 The shape of the inorganic filler is not particularly limited, and examples thereof include powder, sphere, and fiber. A spherical shape is preferable from the viewpoint of flowability at molding and mold abradability.
 無機充填材は1種を単独で用いても2種類以上を併用してもよい。なお、「無機充填材を2種類以上併用する」とは、例えば、同じ成分で平均粒子径が異なる無機充填材を2種類以上用いる場合、平均粒子径が同じで成分の異なる無機充填材を2種類以上用いる場合並びに平均粒子径及び種類の異なる無機充填材を2種類以上用いる場合が挙げられる。 The inorganic filler may be used alone or in combination of two or more. In addition, “two or more types of inorganic fillers are used in combination” means, for example, when two or more types of inorganic fillers having the same component and different average particle sizes are used, the inorganic particles having the same average particle size but different components are used. The case where it uses more than a kind, and the case where two or more kinds of inorganic fillers from which an average particle diameter and a kind differ are used are mentioned.
 無機充填材は、横軸に粒子径を、縦軸に頻度をとった粒度分布曲線を描いた場合に単一のピークを有していてもよく、複数のピークを有していてもよい。粒度分布曲線が複数のピークを有する無機充填材を用いることで、無機充填材の充填性が向上し、硬化物の熱伝導性が向上する。 The inorganic filler may have a single peak or a plurality of peaks when a particle size distribution curve is drawn with the particle diameter on the horizontal axis and the frequency on the vertical axis. By using an inorganic filler having a plurality of peaks in the particle size distribution curve, the filling property of the inorganic filler is improved, and the thermal conductivity of the cured product is improved.
 無機充填材が粒度分布曲線を描いたときに単一のピークを有する場合、無機充填材の重量累積粒度分布の小粒径側からの累積50%に対応する体積平均粒子径(D50)は、熱伝導性の観点から、0.1μm~100μmであることが好ましく、0.1μm~70μmであることがより好ましい。無機充填材の体積平均粒子径は、レーザー回折法を用いて測定され、レーザー回折散乱粒度分布測定装置(例えば、ベックマン・コールター製、LS230)を用いて測定することができる。 When the inorganic filler has a single peak when the particle size distribution curve is drawn, the volume average particle size (D50) corresponding to 50% of the cumulative particle size distribution of the inorganic filler from the small particle size side is From the viewpoint of thermal conductivity, 0.1 μm to 100 μm is preferable, and 0.1 μm to 70 μm is more preferable. The volume average particle size of the inorganic filler can be measured using a laser diffraction method, and can be measured using a laser diffraction scattering particle size distribution measuring apparatus (for example, LS230 manufactured by Beckman Coulter, Inc.).
 また、粒度分布曲線が複数のピークを有する無機充填材は、例えば、異なる体積平均粒子径を有する2種類以上の無機充填材を組み合わせることで構成できる。 In addition, the inorganic filler having a plurality of peaks in the particle size distribution curve can be configured, for example, by combining two or more types of inorganic fillers having different volume average particle diameters.
 保護材中の無機充填材の含有率は、保護材の全体積に対して、55体積%~95体積%である。熱伝導性、成形性、機械強度等の観点から、無機充填材の含有率は、60体積%~95体積%であることが好ましく、70体積%~85体積%であることがより好ましい。無機充填材の含有率が55体積%以上であると、高い熱伝導性を達成することができる傾向にある。一方、無機充填材の含有率が95体積%以下であると、成形性が良好である傾向にある。 The content of the inorganic filler in the protective material is 55% by volume to 95% by volume based on the total volume of the protective material. From the viewpoint of thermal conductivity, moldability, mechanical strength and the like, the content of the inorganic filler is preferably 60% by volume to 95% by volume, and more preferably 70% by volume to 85% by volume. If the content of the inorganic filler is 55% by volume or more, high thermal conductivity tends to be achieved. On the other hand, when the content of the inorganic filler is 95% by volume or less, the formability tends to be good.
 保護材中の無機充填材の体積基準の含有率は、以下のように測定される。
 保護材を空気中において800℃、5時間焼成し、樹脂分を分解・燃焼して除去した後、25℃における残存した無機充填材の質量(Wf)を測定する。次いで、電子比重計または比重瓶を用いて、25℃における無機充填材の密度(df)を求める。次いで、同様の方法で25℃における保護材の密度(dp)を測定する。次いで、保護材の体積(Vc)及び残存した無機充填材の体積(Vf)を求め、(式1)に示すように残存した無機充填材の体積を保護材の体積で除すことで、無機充填材の体積比率(Vr)として求める。
The volume based content of the inorganic filler in the protective material is measured as follows.
The protective material is fired in air at 800 ° C. for 5 hours, and after the resin content is decomposed and burned and removed, the mass (Wf) of the remaining inorganic filler at 25 ° C. is measured. The density (df) of the inorganic filler at 25 ° C. is then determined using an electronic densitometer or a pycnometer. Next, the density (dp) of the protective material at 25 ° C. is measured in the same manner. Next, the volume (Vc) of the protective material and the volume (Vf) of the remaining inorganic filler are determined, and the volume of the remaining inorganic filler is divided by the volume of the protective material as shown in (equation 1) to obtain inorganic It is determined as the volume ratio of filler (Vr).
(式1)
  Vp=Wp/dp
  Vf=Wf/df
  Vr=Vf/Vp
(Formula 1)
Vp = Wp / dp
Vf = Wf / df
Vr = Vf / Vp
Vp:保護材の体積(cm
Wp:保護材の質量(g)
dp:保護材の密度(g/cm
Vf:無機充填材の体積(cm
Wf:無機充填材の質量(g)
df:無機充填材の密度(g/cm
Vr:無機充填材の体積比率
Vp: volume of protective material (cm 3 )
Wp: Weight of protective material (g)
dp: Density of protective material (g / cm 3 )
Vf: Volume of inorganic filler (cm 3 )
Wf: mass of inorganic filler (g)
df: density of inorganic filler (g / cm 3 )
Vr: volume ratio of inorganic filler
 保護材中の無機充填材の質量基準の含有率は特に制限されず、無機充填材の種類等により適宜調整することができる。例えば、無機充填材がアルミナである場合、保護材中の無機充填材の含有率は、80質量%~99質量%であることが好ましく、85質量%~98質量%であることがより好ましく、90質量%~95質量%であることがさらに好ましい。 The content basis of the inorganic filler in the protective material on a mass basis is not particularly limited, and can be appropriately adjusted according to the type of the inorganic filler and the like. For example, when the inorganic filler is alumina, the content of the inorganic filler in the protective material is preferably 80% by mass to 99% by mass, and more preferably 85% by mass to 98% by mass. More preferably, it is 90% by mass to 95% by mass.
 保護材は、樹脂組成物又はその硬化物であることが好ましい。保護材が樹脂組成物又はその硬化物である場合、樹脂組成物は、無機充填材を含有する樹脂組成物であれば特に制限されない。特に、保護材は樹脂組成物のトランスファー成形体であることが好ましい。 The protective material is preferably a resin composition or a cured product thereof. When the protective material is a resin composition or a cured product thereof, the resin composition is not particularly limited as long as it is a resin composition containing an inorganic filler. In particular, the protective material is preferably a transfer molded product of a resin composition.
 保護材が樹脂組成物又はその硬化物である場合、樹脂部に用いる樹脂は、特に制限されない。例えば、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ウレタン樹脂、シリコーン樹脂、不飽和ポリエステル樹脂、アクリル樹脂、イミド樹脂、アミドイミド樹脂等の熱硬化性樹脂が挙げられる。樹脂部に用いる樹脂は、1種であっても2種以上であってもよい。電気絶縁性と接着性の観点からは、樹脂部に用いる樹脂は、エポキシ樹脂、シリコーン樹脂、アミドイミド樹脂及びウレタン樹脂からなる群から選択される少なくとも1種を含むことが好ましく、耐湿性の観点からはエポキシ樹脂、アクリル樹脂及びアミドイミド樹脂からなる群から選択される少なくとも1種を含むことが好ましい。樹脂部に用いる樹脂は、1種のみでも2種以上であってもよい。 When the protective material is a resin composition or a cured product thereof, the resin used for the resin portion is not particularly limited. Examples thereof include thermosetting resins such as epoxy resin, phenol resin, urea resin, melamine resin, urethane resin, silicone resin, unsaturated polyester resin, acrylic resin, imide resin, and amidimide resin. The resin used for the resin part may be one type or two or more types. From the viewpoint of electrical insulation and adhesiveness, the resin used for the resin portion preferably contains at least one selected from the group consisting of an epoxy resin, a silicone resin, an amidimide resin and a urethane resin, and from the viewpoint of moisture resistance It is preferable that at least one selected from the group consisting of an epoxy resin, an acrylic resin and an amidimide resin. The resin used for the resin part may be one kind alone or two or more kinds.
 なかでも、樹脂組成物は、エポキシ樹脂と、硬化剤と、無機充填材とを含有するエポキシ樹脂組成物(以下、本開示において単に「エポキシ樹脂組成物」ともいう)であることが好ましい。以下、エポキシ樹脂組成物に含有することができる各成分について説明する。 Among them, the resin composition is preferably an epoxy resin composition containing an epoxy resin, a curing agent, and an inorganic filler (hereinafter, also simply referred to as “epoxy resin composition” in the present disclosure). Hereinafter, each component which can be contained in an epoxy resin composition is demonstrated.
-エポキシ樹脂-
 エポキシ樹脂組成物に含まれるエポキシ樹脂の種類は特に制限されない。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、水素添加したビスフェノールA型エポキシ樹脂、水素添加したビスフェノールAD型エポキシ樹脂、ナフタレン型エポキシ樹脂、及び反応性希釈剤とよばれるエポキシ基を1つだけ有しているエポキシ樹脂が挙げられる。エポキシ樹脂は、1種を単独で用いても2種以上を併用してもよい。
-Epoxy resin-
The type of epoxy resin contained in the epoxy resin composition is not particularly limited. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol AD type epoxy resin, naphthalene type epoxy resin, and reactive diluent The epoxy resin which has only one epoxy group to be separated is mentioned. The epoxy resin may be used alone or in combination of two or more.
 なかでも、熱伝導性向上の観点からは、エポキシ樹脂はメソゲン骨格を有するエポキシ樹脂を含むことが好ましい。メソゲン骨格を有するエポキシ樹脂は、1種類を単独で用いても、2種類以上を併用してもよい。エポキシ樹脂は、メソゲン骨格を有するエポキシ樹脂とメソゲン骨格を有しないエポキシ樹脂との組合せであってもよく、メソゲン骨格を有するエポキシ樹脂からなるエポキシ樹脂であってもよい。エポキシ樹脂がメソゲン骨格を有するエポキシ樹脂を含む場合、メソゲン骨格を有しないエポキシ樹脂の含有量は、エポキシ樹脂の全量に対して10質量%以下であってもよく、5質量%以下であってもよく、2質量%であってもよく、0質量%であってもよい。 Among them, from the viewpoint of improving the thermal conductivity, the epoxy resin preferably contains an epoxy resin having a mesogen skeleton. The epoxy resin having a mesogen skeleton may be used alone or in combination of two or more. The epoxy resin may be a combination of an epoxy resin having a mesogen skeleton and an epoxy resin not having a mesogen skeleton, or may be an epoxy resin composed of an epoxy resin having a mesogen skeleton. When the epoxy resin contains an epoxy resin having a mesogen skeleton, the content of the epoxy resin not having a mesogen skeleton may be 10% by mass or less, or 5% by mass or less based on the total amount of the epoxy resin. It may be 2% by mass or 0% by mass.
 エポキシ樹脂組成物が、エポキシ樹脂として、メソゲン骨格を有するエポキシ樹脂とメソゲン骨格を有しないエポキシ樹脂とを含有する場合、エポキシ樹脂の全量に対するメソゲン骨格を有するエポキシ樹脂の含有量は、UVスペクトル検出器及びマススペクトル検出器を備える液体クロマトグラフを用いて実施される液体クロマトグラフィーにより測定することができる。 When the epoxy resin composition contains, as an epoxy resin, an epoxy resin having a mesogen skeleton and an epoxy resin not having a mesogen skeleton, the content of the epoxy resin having a mesogen skeleton relative to the total amount of epoxy resin is a UV spectrum detector And a liquid chromatograph equipped with a mass spectrum detector.
 本開示において「メソゲン骨格」とは、液晶性を発現する可能性のある分子構造を示す。具体的には、ビフェニル骨格、フェニルベンゾエート骨格、シクロヘキシルベンソエート骨格、アゾベンゼン骨格、スチルベン骨格、これらの誘導体等が挙げられる。メソゲン骨格を有するエポキシ樹脂は、硬化時に高次構造を形成し易く、硬化させた場合に、より高い熱伝導率を達成できる傾向にある。 In the present disclosure, “mesogenic skeleton” indicates a molecular structure that may exhibit liquid crystallinity. Specifically, biphenyl skeleton, phenyl benzoate skeleton, cyclohexyl bensoate skeleton, azobenzene skeleton, stilbene skeleton, derivatives thereof and the like can be mentioned. An epoxy resin having a mesogen skeleton tends to form a high-order structure upon curing, and when cured, tends to be able to achieve higher thermal conductivity.
 ここで、高次構造とは、その構成要素がミクロに配列している状態のことであり、例えば、結晶相及び液晶相が相当する。このような高次構造が存在しているか否かは、偏光顕微鏡での観察によって容易に判断することが可能である。すなわち、クロスニコル状態での観察において、偏光解消による干渉模様が見られる場合は高次構造が存在していると判断できる。
 高次構造は、通常では樹脂中に島状に存在しており、ドメイン構造を形成している。そして、ドメイン構造を形成している島のそれぞれを高次構造体という。高次構造体を構成する構造単位同士は、一般的には共有結合で結合されている。
Here, the higher-order structure is a state in which the constituent elements are arranged in a micro, and corresponds to, for example, a crystal phase and a liquid crystal phase. Whether such a higher order structure exists can be easily determined by observation with a polarizing microscope. That is, in the observation in the cross nicol state, when an interference pattern due to depolarization is observed, it can be determined that a higher order structure exists.
The higher order structure is usually present in the form of islands in the resin to form a domain structure. And each of the islands forming the domain structure is called a higher order structure. The structural units constituting the higher order structural body are generally linked by a covalent bond.
 メソゲン骨格に由来する規則性の高い高次構造には、ネマチック構造、スメクチック構造等がある。ネマチック構造は分子長軸が一様な方向に向いており、配向秩序のみを持つ液晶構造である。これに対して、スメクチック構造は配向秩序に加えて一次元の位置の秩序を持ち、一定周期の層構造を有する液晶構造である。また、スメクチック構造の同一の周期の構造内部では、層構造の周期の方向が一様である。すなわち、分子の秩序性は、ネマチック構造よりもスメクチック構造の方が高い。秩序性の高い高次構造が硬化物中に形成されると、熱伝導の媒体であるフォノンが散乱するのを抑制することができる。このため、ネマチック構造よりもスメクチック構造の方が、熱伝導性が高くなる。
 すなわち、分子の秩序性はネマチック構造よりもスメクチック構造の方が高く、硬化物の熱伝導性もスメクチック構造を示す場合の方が高くなる。メソゲン骨格を有するエポキシ樹脂は硬化剤と反応してスメクチック構造を形成することで、硬化物としたときに高い熱伝導性を発揮できると考えられる。
The highly ordered higher order structure derived from the mesogen skeleton includes a nematic structure, a smectic structure and the like. The nematic structure is a liquid crystal structure in which the molecular long axis is oriented in a uniform direction and has only an orientational order. On the other hand, the smectic structure is a liquid crystal structure which has a one-dimensional position order in addition to the alignment order and has a layer structure of a constant period. In addition, within the same periodic structure of the smectic structure, the direction of the period of the layer structure is uniform. That is, the molecular order is higher in the smectic structure than in the nematic structure. When a highly ordered higher-order structure is formed in the cured product, scattering of phonon, which is a medium for heat conduction, can be suppressed. For this reason, the thermal conductivity of the smectic structure is higher than that of the nematic structure.
That is, the order of the molecule is higher in the smectic structure than in the nematic structure, and the thermal conductivity of the cured product is also higher in the case of exhibiting the smectic structure. It is considered that an epoxy resin having a mesogen skeleton reacts with a curing agent to form a smectic structure, thereby exhibiting high thermal conductivity when it is a cured product.
 エポキシ樹脂組成物を用いてスメクチック構造が形成されているか否かは、下記の方法により判断することができる。
 CuKα1線を用い、管電圧40kV、管電流20mA、2θが0.5°~30°の範囲で、X線解析装置(例えば、株式会社リガク製)を用いてX線回折測定を行う。2θが1°~10°の範囲に回折ピークが存在する場合には、周期構造がスメクチック構造を含んでいると判断される。なお、メソゲン構造に由来する規則性の高い高次構造を有する場合には、2θが1°~30°の範囲に回折ピークが現れる。
It can be judged by the following method whether a smectic structure is formed using an epoxy resin composition.
Using a CuK α 1 ray, X-ray diffraction measurement is performed using an X-ray analyzer (for example, manufactured by Rigaku Corporation) with a tube voltage of 40 kV, a tube current of 20 mA, and 2θ of 0.5 ° to 30 °. When a diffraction peak exists in the range of 1 ° to 10 ° of 2θ, it is determined that the periodic structure includes a smectic structure. In the case of having a highly ordered high-order structure derived from a mesogen structure, a diffraction peak appears in the range of 1 ° to 30 ° of 2θ.
 メソゲン骨格を有するエポキシ樹脂のエポキシ当量は、ハンドリング性及び硬化物としたときの熱伝導性を両立する観点からは、150g/eq~500g/eqであることが好ましく、150g/eq~450g/eqであることがより好ましく、200g/eq~450g/eqであることが更に好ましく、230g/eq~400g/eqであることが特に好ましく、250g/eq~370g/eqであることが極めて好ましい。エポキシ当量が150g/eq以上であると、エポキシ樹脂の結晶性が高くなりすぎないため、ハンドリング性が低下しにくい傾向にある。一方、エポキシ当量が500g/eq以下であると、エポキシ樹脂の架橋密度が低下しにくいため、硬化物としたときの熱伝導性が高くなる傾向にある。
 エポキシ当量は、JIS K7236:2009に準拠して過塩素酸滴定法により測定する。
The epoxy equivalent of the epoxy resin having a mesogen skeleton is preferably 150 g / eq to 500 g / eq, and preferably 150 g / eq to 450 g / eq, from the viewpoint of achieving both handleability and thermal conductivity when cured. Is more preferably 200 g / eq to 450 g / eq, particularly preferably 230 g / eq to 400 g / eq, and most preferably 250 g / eq to 370 g / eq. If the epoxy equivalent is 150 g / eq or more, the crystallinity of the epoxy resin does not become too high, and the handling property tends to be difficult to reduce. On the other hand, if the epoxy equivalent is 500 g / eq or less, the crosslink density of the epoxy resin is unlikely to decrease, and the thermal conductivity of the cured product tends to be high.
The epoxy equivalent is measured by perchloric acid titration method in accordance with JIS K 7236: 2009.
 また、メソゲン骨格を有するエポキシ樹脂のゲルパーミエーションクロマトグラフィー(GPC)測定における数平均分子量(Mn)は、ハンドリング性及び硬化物としたときの熱伝導性を両立する観点からは、400~2500であることが好ましく、450~2000であることがより好ましく、500~1800であることがさらに好ましい。エポキシ樹脂のMnが400以上であると、エポキシ樹脂の結晶性が高くなりすぎないため、ハンドリング性が低下しにくい傾向にある。エポキシ樹脂のMnが2500以下であると、エポキシ樹脂の架橋密度が低下しにくいため、硬化物としたときの熱伝導性が高くなる傾向にある。 In addition, the number average molecular weight (Mn) in gel permeation chromatography (GPC) measurement of the epoxy resin having a mesogen skeleton is 400 to 2500, from the viewpoint of achieving both the handling property and the thermal conductivity when it is a cured product. It is preferably 450 to 2000, more preferably 500 to 1800. When the Mn of the epoxy resin is 400 or more, the crystallinity of the epoxy resin does not become too high, and the handling property tends to be difficult to reduce. If the Mn of the epoxy resin is 2500 or less, the crosslink density of the epoxy resin is unlikely to be reduced, and the thermal conductivity of the cured product tends to be high.
 本開示におけるGPC測定は、分析用GPCカラムとして東ソー株式会社製「G2000HXL」及び「3000HXL」を使用し、移動相にはテトラヒドロフランを用い、試料濃度を0.2質量%とし、流速を1.0ml/minとして測定を行う。ポリスチレン標準サンプルを用いて検量線を作成し、ポリスチレン換算値でMnを計算する。 GPC measurement in the present disclosure uses “G2000HXL” and “3000HXL” manufactured by Tosoh Corp. as GPC columns for analysis, uses tetrahydrofuran as a mobile phase, a sample concentration of 0.2 mass%, and a flow rate of 1.0 ml. Measure as / min. A calibration curve is prepared using polystyrene standard samples, and Mn is calculated by polystyrene conversion value.
 メソゲン骨格を有するエポキシ樹脂は、メソゲン骨格を有するエポキシ化合物を含んでもよく、メソゲン骨格を有するエポキシ化合物を重合させた反応物を含んでもよい。メソゲン骨格を有するエポキシ化合物を重合させた反応物としては、メソゲン骨格を有するエポキシ化合物同士の反応物であっても、メソゲン骨格を有するエポキシ化合物の一部を硬化剤等により部分的に反応させたプレポリマーの状態であってもよい。プレポリマー化に用いる硬化剤は、エポキシ樹脂組成物に含有させる硬化剤と同じものであっても、異なるものであってもよい。メソゲン骨格を有するエポキシ化合物を一部重合させると成形性が向上する場合がある。 The epoxy resin having a mesogen skeleton may contain an epoxy compound having a mesogen skeleton, and may contain a reactant obtained by polymerizing an epoxy compound having a mesogen skeleton. As a reaction product obtained by polymerizing an epoxy compound having a mesogen skeleton, even if it is a reaction product of epoxy compounds having a mesogen skeleton, a part of the epoxy compound having a mesogen skeleton is partially reacted with a curing agent or the like It may be in the form of a prepolymer. The curing agent used for prepolymerization may be the same as or different from the curing agent to be contained in the epoxy resin composition. When the epoxy compound having a mesogenic skeleton is partially polymerized, the formability may be improved.
 メソゲン骨格を有するエポキシ化合物は、1種類単独で用いても、2種類以上を併用してもよい。メソゲン骨格を有するエポキシ化合物の具体例は、例えば、日本国特許第4118691号公報に記載されている。以下に、メソゲン骨格を有するエポキシ化合物の具体例を示すが、メソゲン骨格を有するエポキシ化合物はこれらに限定されない。 The epoxy compounds having a mesogen skeleton may be used alone or in combination of two or more. A specific example of the epoxy compound having a mesogen skeleton is described in, for example, Japanese Patent No. 4118691. Although the specific example of the epoxy compound which has a mesogen frame is shown below, the epoxy compound which has a mesogen frame is not limited to these.
 メソゲン骨格を有するエポキシ化合物としては、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセン、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)-ベンゼン、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート等が挙げられる。これらのエポキシ化合物の中でも、熱伝導率を向上させる観点から、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)-ベンゼン及び4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエートからなる群より選択される少なくとも一種を用いることが好ましい。 Examples of the epoxy compound having a mesogenic skeleton include 1- (3-methyl-4-oxiranylmethoxyphenyl) -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene, 1- (3-methyl-4- 4- Oxiranylmethoxyphenyl) -4- (4-oxiranylmethoxyphenyl) -benzene, 4- {4- (2,3-epoxypropoxy) phenyl} cyclohexyl 4- (2,3-epoxypropoxy) benzoate and the like Can be mentioned. Among these epoxy compounds, 1- (3-methyl-4-oxiranylmethoxyphenyl) -4- (4-oxiranylmethoxyphenyl) -benzene and 4- {4 from the viewpoint of improving the thermal conductivity It is preferable to use at least one selected from the group consisting of-(2,3-epoxypropoxy) phenyl} cyclohexyl = 4- (2,3-epoxypropoxy) benzoate.
 さらに樹脂組成物の流動性向上の観点から、メソゲン骨格を有するエポキシ化合物は、結晶相から液晶相に相転移する際、単独では秩序性が低いネマチック構造を形成するが、プレポリマー化すると、より秩序性の高いスメクチック構造を形成するエポキシ化合物であることが好ましい。このようなエポキシ化合物として、メソゲン骨格を有するエポキシ化合物は、下記一般式(I-0)で表される化合物を含むことが好ましい。 Furthermore, from the viewpoint of improving the flowability of the resin composition, the epoxy compound having a mesogen skeleton forms a nematic structure having low order by itself when phase transition from a crystal phase to a liquid crystal phase is carried out, but when it is prepolymerized, It is preferable that it is an epoxy compound which forms a highly ordered smectic structure. As such an epoxy compound, it is preferable that the epoxy compound which has mesogen frame | skeleton contains the compound represented by the following general formula (I-0).
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000003

 
 一般式(I-0)で示される化合物の中でも、下記一般式(I-1)で表される化合物が好ましい。 Among the compounds represented by the general formula (I-0), a compound represented by the following general formula (I-1) is preferable.
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000004

 
 一般式(I-0)及び一般式(I-1)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。 In formulas (I-0) and (I-1), each of R 1 to R 4 independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
 一般式(I-0)及び一般式(I-1)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表し、水素原子又は炭素数1~2のアルキル基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることがさらに好ましい。
 さらに、R~Rのうちの2個~4個が水素原子であることが好ましく、3個又は4個が水素原子であることがより好ましく、4個全てが水素原子であることがさらに好ましい。R~Rのいずれかが炭素数1~3のアルキル基の場合、R及びRの少なくとも一方が炭素数1~3のアルキル基であることが好ましい。
In formulas (I-0) and (I-1), R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and a hydrogen atom or 1 or 2 carbon atoms It is preferably an alkyl group, more preferably a hydrogen atom or a methyl group, and still more preferably a hydrogen atom.
Furthermore, 2 to 4 of R 1 to R 4 are preferably hydrogen atoms, more preferably 3 or 4 of them are hydrogen atoms, and all 4 of them are all hydrogen atoms preferable. When one of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms, it is preferable that at least one of R 1 and R 4 is an alkyl group having 1 to 3 carbon atoms.
 メソゲン骨格を有するエポキシ樹脂における、結晶相から液晶相に相転移する相転移温度は、140℃以下であることが好ましく、135℃以下であることがより好ましい。エポキシ樹脂としてメソゲン骨格を有し相転移温度が140℃以下のエポキシ樹脂を用いると、硬化したときにより高い熱伝導性を発揮する傾向にある。この理由は明らかではないが、エポキシ樹脂組成物を作製する際にエポキシ樹脂が溶融しやすくなり、そのため混合によりエポキシ樹脂組成物が均質化しやすくなり、結果、液晶相の生成に関して偏りが抑えられるためと考えられる。 In the epoxy resin having a mesogen skeleton, the phase transition temperature at which a crystalline phase is transformed to a liquid crystal phase is preferably 140 ° C. or less, more preferably 135 ° C. or less. When an epoxy resin having a mesogen skeleton and a phase transition temperature of 140 ° C. or less is used as the epoxy resin, it tends to exhibit higher thermal conductivity when it is cured. Although the reason is not clear, the epoxy resin is easily melted when the epoxy resin composition is prepared, and therefore the epoxy resin composition is easily homogenized by mixing, and as a result, the generation of the liquid crystal phase is suppressed. it is conceivable that.
 相転移温度は、示差走査熱量(DSC)測定装置(例えば、パーキンエルマー製、Pyris1)を用いて測定することができる。具体的には、昇温速度20℃/分、測定温度範囲25℃~350℃、流量20±5ml/minの窒素雰囲気下の条件で、アルミパンに密閉した3mg~5mgの試料の示差走査熱量測定を行い、相転移に伴うエネルギー変化(吸熱反応)が起こる温度として測定される。この測定で得られるグラフの一例を図5に示す。図5に現れる吸熱反応ピークの温度を相転移温度とする。 The phase transition temperature can be measured using a differential scanning calorimetry (DSC) measurement device (for example, Perkin Elmer Pyris 1). Specifically, the differential scanning calorific value of a 3 mg to 5 mg sample sealed in an aluminum pan under conditions of a nitrogen atmosphere with a temperature increase rate of 20 ° C./min, a measurement temperature range of 25 ° C. to 350 ° C. The measurement is performed, and it is measured as a temperature at which an energy change (endothermic reaction) accompanying the phase transition occurs. An example of a graph obtained by this measurement is shown in FIG. The temperature of the endothermic reaction peak appearing in FIG. 5 is taken as a phase transition temperature.
 一般的に、メソゲン骨格を有するエポキシ化合物は相転移温度が高い傾向にある。特に、秩序性の高いスメクチック構造を有するエポキシ化合物は相転移温度が高い傾向にある。ここで、メソゲン骨格を有するエポキシ化合物を、硬化剤等により部分的に反応させてプレポリマー化することにより、メソゲン骨格を有するエポキシ樹脂の相転移温度を140℃以下とすることが可能となる。メソゲン骨格を有するエポキシ化合物は、相転移温度が140℃以下であっても、140℃を超えていてもよい。 In general, epoxy compounds having a mesogenic skeleton tend to have a high phase transition temperature. In particular, an epoxy compound having a highly ordered smectic structure tends to have a high phase transition temperature. Here, by partially reacting the epoxy compound having a mesogen skeleton with a curing agent or the like to perform prepolymerization, it becomes possible to make the phase transition temperature of the epoxy resin having a mesogen skeleton 140 ° C. or less. The epoxy compound having a mesogenic skeleton may have a phase transition temperature of 140 ° C. or lower, or may exceed 140 ° C.
 メソゲン骨格を有するエポキシ化合物のプレポリマー化に用いる硬化剤として、フェノール化合物及びアミン化合物が挙げられる。すなわち、メソゲン骨格を有するエポキシ樹脂は、フェノール化合物と、メソゲン骨格を有するエポキシ化合物との反応物を含んでもよく、アミン化合物と、メソゲン骨格を有するエポキシ化合物との反応物を含んでもよい。フェノール化合物としては、1つのベンゼン環に2個の水酸基を置換基として有する2価フェノール化合物(以下、単に2価フェノール化合物ともいう)、1つのベンゼン環に3個の水酸基を置換基として有する3価フェノール化合物(以下、単に3価フェノール化合物ともいう)等が挙げられる。 As a curing agent used for prepolymerization of the epoxy compound which has mesogen frame | skeleton, a phenol compound and an amine compound are mentioned. That is, the epoxy resin having a mesogen skeleton may contain a reaction product of a phenol compound and an epoxy compound having a mesogen skeleton, and may contain a reaction product of an amine compound and an epoxy compound having a mesogen skeleton. As a phenol compound, a dihydric phenol compound having two hydroxyl groups as a substituent on one benzene ring (hereinafter, also simply referred to as a dihydric phenol compound), 3 having three hydroxyl groups on one benzene ring as a substituent 3 Dihydric phenol compounds (hereinafter, also simply referred to as trivalent phenol compounds) and the like.
 メソゲン骨格を有するエポキシ化合物のプレポリマー化に2価フェノール化合物を用いることは、エポキシ樹脂の分子量、熱伝導率、及びガラス転移温度(Tg)の制御の観点から好ましい。
 また、メソゲン骨格を有するエポキシ化合物と2価フェノール化合物とを部分的に反応させてプレポリマー化すると、相転移温度を下げることが可能となる。そのため、メソゲン骨格を有するエポキシ化合物の相転移温度が140℃を超えていても使いこなすことが容易となる。一般に、メソゲン骨格を有するエポキシ樹脂は相転移温度が高いため、相転移温度を下げることができる化合物を用いてプレポリマー化する手法は有益である。
It is preferable to use a dihydric phenol compound for prepolymerizing an epoxy compound having a mesogen skeleton from the viewpoint of controlling the molecular weight, thermal conductivity and glass transition temperature (Tg) of the epoxy resin.
In addition, when an epoxy compound having a mesogen skeleton and a dihydric phenol compound are partially reacted and prepolymerized, it is possible to lower the phase transition temperature. Therefore, even if the phase transition temperature of the epoxy compound having a mesogen skeleton exceeds 140 ° C., it becomes easy to use. In general, since epoxy resins having a mesogen skeleton have a high phase transition temperature, a method of prepolymerizing with a compound capable of lowering the phase transition temperature is useful.
 2価フェノール化合物としては、例えば、カテコール、レゾルシノール、ヒドロキノン、4,4’-ビフェノール、4,3’-ビフェノール、2,2’-ビフェノール及びこれらの誘導体が挙げられる。誘導体としては、ベンゼン環に炭素数1~8のアルキル基等が置換した化合物が挙げられる。これらの2価フェノール化合物の中でも、熱伝導率を向上させる観点から、ヒドロキノン又は4,4’-ビフェノールを用いることが好ましい。ヒドロキノン及び4,4’-ビフェノールは2つの水酸基がパラ位の位置関係となるように置換されている構造であるため、メソゲン骨格を有するエポキシ化合物と反応させて得られるプレポリマー化されたエポキシ樹脂は直線的な構造となる。このため、分子のスタッキング性が高く、高次構造を形成し易いと考えられる。2価フェノール化合物は、1種類単独で用いてもよく、2種類以上を併用してもよい。 Examples of dihydric phenol compounds include catechol, resorcinol, hydroquinone, 4,4'-biphenol, 4,3'-biphenol, 2,2'-biphenol and derivatives thereof. The derivatives include compounds in which a benzene ring is substituted with an alkyl group having 1 to 8 carbon atoms and the like. Among these dihydric phenol compounds, hydroquinone or 4,4'-biphenol is preferably used from the viewpoint of improving the thermal conductivity. Since hydroquinone and 4,4'-biphenol have a structure in which two hydroxyl groups are substituted so as to be in the positional relationship of para position, a prepolymerized epoxy resin obtained by reacting with an epoxy compound having a mesogenic skeleton Has a linear structure. For this reason, it is considered that the stacking properties of the molecules are high and it is easy to form a higher order structure. The dihydric phenol compounds may be used alone or in combination of two or more.
 メソゲン骨格を有するエポキシ化合物のプレポリマー化に3価フェノール化合物を用いることは、メソゲン骨格を有するエポキシ化合物の低軟化点化と高次構造形成能の保持とを好適に図りつつ、硬化物としたときのガラス転移温度(Tg)を高めることができる点で好ましい。
 3価フェノール化合物としては、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン及び1,3,5-トリヒドロキシベンゼンからなる群より選択される少なくとも1つであることが好ましく、エポキシポリマーを用いた硬化物の熱伝導性を向上させる点から、1,2,4-トリヒドロキシベンゼン及び1,3,5-トリヒドロキシベンゼンからなる群より選択される少なくとも1つであることがより好ましい。
Using a trivalent phenol compound for prepolymerizing an epoxy compound having a mesogen skeleton is a cured product while suitably achieving low softening point and retention of the ability to form a high-order structure of the epoxy compound having a mesogen skeleton It is preferable at the point which can raise the glass transition temperature (Tg) at the time.
The trivalent phenol compound is at least one selected from the group consisting of 1,2,3-trihydroxybenzene, 1,2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene Preferably, it is at least one selected from the group consisting of 1,2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene from the viewpoint of improving the thermal conductivity of a cured product using an epoxy polymer Is more preferred.
 以下に、メソゲン骨格を有するエポキシ樹脂が、メソゲン骨格を有するエポキシ化合物とフェノール化合物との反応物である場合の、メソゲン骨格を有するエポキシ樹脂の合成方法を説明する。
 メソゲン骨格を有するエポキシ樹脂は、例えば、合成溶媒中にメソゲン骨格を有するエポキシ化合物、フェノール化合物、及び反応触媒を溶解し、熱をかけながら撹拌することによって合成することができる。合成溶媒を使用せず、メソゲン骨格を有するエポキシ化合物とフェノール化合物とを溶融して反応させることでもメソゲン骨格を有するエポキシ樹脂を合成することも可能である。この場合、エポキシ樹脂が溶融する温度まで高温にして反応を行う。安全性の観点からは、合成溶媒を使用する合成法が好ましい。
In the following, a method of synthesizing an epoxy resin having a mesogen skeleton is described, in which the epoxy resin having a mesogen skeleton is a reaction product of an epoxy compound having a mesogen skeleton and a phenol compound.
The epoxy resin having a mesogen skeleton can be synthesized, for example, by dissolving an epoxy compound having a mesogen skeleton, a phenol compound, and a reaction catalyst in a synthesis solvent, and stirring while applying heat. It is also possible to synthesize an epoxy resin having a mesogen skeleton by melting and reacting an epoxy compound having a mesogen skeleton and a phenol compound without using a synthesis solvent. In this case, the reaction is carried out by raising the temperature to a temperature at which the epoxy resin melts. From the viewpoint of safety, a synthesis method using a synthesis solvent is preferred.
 例えば、メソゲン骨格を有するエポキシ化合物と2価フェノール化合物との反応物を合成する場合、2価フェノール化合物のフェノール性水酸基の当量数と、メソゲン骨格を有するエポキシ化合物のエポキシ基の当量数と、の比(エポキシ基の当量数/フェノール性水酸基の当量数)は、100/1~100/100であってよく、100/10~100/50であることが好ましく、100/10~100/40であることがより好ましく、100/10~100/30であることがさらに好ましい。 For example, when a reaction product of an epoxy compound having a mesogen skeleton and a dihydric phenol compound is synthesized, the equivalent number of the phenolic hydroxyl group of the dihydric phenol compound and the equivalent number of the epoxy group of the epoxy compound having a mesogen skeleton The ratio (equivalent number of epoxy groups / equivalent number of phenolic hydroxyl groups) may be from 100/1 to 100/100, preferably from 100/10 to 100/50, and preferably from 100/10 to 100/40. And more preferably 100/10 to 100/30.
 また、例えば、メソゲン骨格を有するエポキシ化合物と3価フェノール化合物との反応物を合成する場合、3価フェノール化合物のフェノール性水酸基の当量数と、メソゲン骨格を有するエポキシ化合物のエポキシ基の当量数と、の比(エポキシ基の当量数/フェノール性水酸基の当量数)は、100/1~100/100であってよく、エポキシ樹脂組成物の流動性並びに硬化物の耐熱性及び熱伝導率の観点からは、100/10~100/50であることが好ましく、100/10~100/40であることがより好ましく、100/10~100/30であることがさらに好ましい。3価フェノール化合物のフェノール性水酸基の当量数と、メソゲン骨格を有するエポキシ化合物のエポキシ基の当量数と、の比(エポキシ基の当量数/フェノール性水酸基の当量数)を100/10以下とすると、得られるエポキシポリマーの軟化点の上昇を抑制できる傾向にあり、Ep/Phを100/40以上とすると、架橋点密度の低下による硬化物の耐熱性の悪化を抑制し、かつ硬化物の熱伝導性の低下を抑制できる傾向にある。 Also, for example, when synthesizing a reaction product of an epoxy compound having a mesogen skeleton and a trivalent phenol compound, the equivalent number of phenolic hydroxyl groups of the trivalent phenol compound, and the equivalent number of epoxy groups of an epoxy compound having a mesogen skeleton (The number of equivalents of epoxy group / the number of equivalents of phenolic hydroxyl group) may be 100/1 to 100/100, and the viewpoint of the fluidity of the epoxy resin composition and the heat resistance and thermal conductivity of the cured product Are preferably 100/10 to 100/50, more preferably 100/10 to 100/40, and still more preferably 100/10 to 100/30. Assuming that the ratio of the number of equivalents of phenolic hydroxyl group of trihydric phenol compound to the number of equivalents of epoxy group of epoxy compound having a mesogen skeleton (number of equivalents of epoxy group / number of equivalents of phenolic hydroxyl group) is 100/10 or less The tendency to be able to suppress the rise of the softening point of the obtained epoxy polymer, and when Ep / Ph is 100/40 or more, suppresses the deterioration of the heat resistance of the cured product due to the decrease of the crosslink point density, and the heat of the cured product. It tends to be able to suppress the decrease in conductivity.
 合成溶媒としては、メソゲン骨格を有するエポキシ化合物とフェノール化合物との反応が進行するために必要な温度に加温できる溶媒であれば特に制限されない。具体例としては、シクロヘキサノン、シクロペンタノン、乳酸エチル、プロピレングリコールモノメチルエーテル、N-メチルピロリドン等が挙げられる。 The synthesis solvent is not particularly limited as long as the solvent can be heated to a temperature necessary for the reaction of the epoxy compound having a mesogen skeleton with the phenol compound to proceed. Specific examples thereof include cyclohexanone, cyclopentanone, ethyl lactate, propylene glycol monomethyl ether, N-methyl pyrrolidone and the like.
 合成溶媒の量は、反応温度において、メソゲン骨格を有するエポキシ化合物、フェノール化合物、及び反応触媒を全て溶解できる量であることが好ましい。反応前の原料種類、溶媒種類等によって溶解性が異なるが、仕込み固形分濃度を20質量%~60質量%とすることが好ましい。このような合成溶媒の量とすると、合成後の樹脂溶液粘度が好ましい範囲となる傾向にある。 The amount of the synthesis solvent is preferably such that the epoxy compound having a mesogen skeleton, the phenol compound, and the reaction catalyst can all be dissolved at the reaction temperature. Although the solubility varies depending on the type of raw material before reaction, the type of solvent and the like, it is preferable to set the concentration of the charged solid content to 20 mass% to 60 mass%. When the amount of such synthesis solvent is used, the viscosity of the resin solution after synthesis tends to be in the preferable range.
 反応触媒の種類は特に限定されず、反応速度、反応温度、貯蔵安定性等の観点から適切なものを選択することができる。反応触媒の具体例としては、イミダゾール系化合物、有機リン系化合物、第3級アミン、第4級アンモニウム塩等が挙げられる。これらは1種類単独でも、2種類以上を併用してもよい。中でも、耐熱性の観点から、有機ホスフィン化合物;有機ホスフィン化合物に無水マレイン酸、キノン化合物(1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等)、ジアゾフェニルメタン、フェノール樹脂などのπ結合をもつ化合物を付加してなる分子内分極を有する化合物;及び有機ホスフィン化合物と有機ボロン化合物(テトラフェニルボレート、テトラ-p-トリルボレート、テトラ-n-ブチルボレート等)との錯体;からなる群より選択される少なくとも1つであることが好ましい。 The type of reaction catalyst is not particularly limited, and an appropriate one can be selected from the viewpoint of reaction rate, reaction temperature, storage stability and the like. Specific examples of the reaction catalyst include imidazole compounds, organic phosphorus compounds, tertiary amines, quaternary ammonium salts and the like. These may be used alone or in combination of two or more. Among them, from the viewpoint of heat resistance, organic phosphine compounds; organic phosphine compounds maleic anhydride, quinone compounds (1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2, 6-Dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone etc.), diazophenylmethane, phenol resin etc. A compound having an intramolecular polarization formed by adding a compound having a π bond; and a complex of an organic phosphine compound and an organic boron compound (tetraphenyl borate, tetra-p-tolyl borate, tetra-n-butyl borate, etc.); It is preferable that it is at least one selected from the group consisting of
 有機ホスフィン化合物としては、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキルアルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等が挙げられる。 Examples of organic phosphine compounds include triphenyl phosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, tris (dialkylphenyl) phosphine, and tris (trimethylphenyl) phosphine. Alkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkyl phosphine, dialkyl aryl phosphine, alkyl diaryl phosphine etc It can be mentioned.
 反応触媒の量は特に制限されない。反応速度及び貯蔵安定性の観点から、メソゲン骨格を有するエポキシ化合物とフェノール化合物の合計質量に対して0.1質量%~3.0質量%であることが好ましく、0.5質量%~2.0質量%であることがより好ましい。 The amount of reaction catalyst is not particularly limited. From the viewpoint of reaction rate and storage stability, the content is preferably 0.1% by mass to 3.0% by mass with respect to the total mass of the epoxy compound having a mesogen skeleton and the phenol compound, and is preferably 0.5% by mass to 2.%. More preferably, it is 0% by mass.
 メソゲン骨格を有するエポキシ化合物とフェノール化合物との反応物は、少量スケールであればガラス製のフラスコを使用し、大量スケールであればステンレス製の合成釜を使用して合成することができる。具体的な合成方法は、例えば以下の通りである。まず、メソゲン骨格を有するエポキシ化合物をフラスコ又は合成釜に投入し、合成溶媒を入れ、オイルバス又は熱媒により反応温度まで加温し、メソゲン骨格を有するエポキシ化合物を溶解する。そこにフェノール化合物を投入し、合成溶媒中で充分溶解したことを確認した後に反応触媒を投入し、反応を開始する。反応時間の後に反応溶液を取り出せば、メソゲン骨格を有するエポキシ化合物とフェノール化合物との反応物溶液が得られる。また、フラスコ内又は合成釜内において、加温条件のもと減圧下で合成溶媒を留去すれば、メソゲン骨格を有するエポキシ化合物とフェノール化合物との反応物が室温(例えば、25℃)下で固体として得られる。 The reaction product of an epoxy compound having a mesogen skeleton and a phenol compound can be synthesized using a glass flask for small scale and using a stainless steel synthesis pot for large scale. The specific synthesis method is, for example, as follows. First, an epoxy compound having a mesogen skeleton is charged into a flask or a synthesis pot, a synthetic solvent is charged, and the reaction temperature is raised with an oil bath or a heat medium to dissolve the epoxy compound having a mesogen skeleton. A phenol compound is charged therein, and after confirming that the compound is sufficiently dissolved in the synthesis solvent, the reaction catalyst is charged to start the reaction. When the reaction solution is taken out after the reaction time, a reaction product solution of an epoxy compound having a mesogen skeleton and a phenol compound is obtained. In addition, if the synthesis solvent is distilled off under reduced pressure under heating conditions in a flask or in a synthesis pot, a reaction product of an epoxy compound having a mesogen skeleton and a phenol compound is obtained at room temperature (for example, 25 ° C.) Obtained as a solid.
 反応温度は、反応触媒の存在下でエポキシ基とフェノール性水酸基との反応が進行する温度であれば制限されず、例えば、100℃~180℃の範囲が好ましく、120℃~170℃の範囲がより好ましい。反応温度を100℃以上とすることで、反応が完結するまでの時間をより短くできる傾向にある。一方、反応温度を180℃以下とすることで、ゲル化が抑えられる傾向にある。 The reaction temperature is not limited as long as the reaction between the epoxy group and the phenolic hydroxyl group proceeds in the presence of the reaction catalyst. For example, the range of 100 ° C. to 180 ° C. is preferable, and the range of 120 ° C. to 170 ° C. More preferable. By setting the reaction temperature to 100 ° C. or more, it tends to be possible to shorten the time until the reaction is completed. On the other hand, gelation tends to be suppressed by setting the reaction temperature to 180 ° C. or less.
 メソゲン骨格を有するエポキシ樹脂は、プレポリマー化されたエポキシ樹脂として、メソゲン骨格を有するエポキシ化合物の二量体を含むことが好ましい。メソゲン骨格を有するエポキシ樹脂は、メソゲン骨格を有するエポキシ化合物の二量体に加えて、メソゲン骨格を有するエポキシ化合物(単量体)、及びメソゲン骨格を有するエポキシ化合物の多量体からなる群から選択される少なくとも1つをさらに含んでいてもよい。メソゲン骨格を有するエポキシ化合物の二量体及び多量体は、メソゲン骨格を有するエポキシ樹脂同士の反応物であっても、メソゲン骨格を有するエポキシ化合物を硬化剤等により反応させた反応物であってもよい。二量体化及び多量体化に用いる硬化剤は、エポキシ樹脂組成物に含有させる硬化剤と同じものであっても、異なるものであってもよい。 It is preferable that the epoxy resin which has mesogen frame | skeleton contains the dimer of the epoxy compound which has mesogen frame | skeleton as prepolymerized epoxy resin. The epoxy resin having a mesogen skeleton is selected from the group consisting of an epoxy compound (monomer) having a mesogen skeleton, and a multimer of an epoxy compound having a mesogen skeleton, in addition to the dimer of the epoxy compound having a mesogen skeleton At least one may be further included. The dimer and the multimer of the epoxy compound having a mesogen skeleton are a reaction product of epoxy resins having a mesogen skeleton or a reaction product in which an epoxy compound having a mesogen skeleton is reacted with a curing agent or the like. Good. The curing agent used for dimerization and multimerization may be the same as or different from the curing agent to be contained in the epoxy resin composition.
 分子構造中にメソゲン骨格を有するエポキシ化合物は一般的に結晶化し易く、汎用のエポキシ化合物と比較して溶融温度が高い傾向にある。しかし、そのようなエポキシ化合物を一部重合させて二量体とすることで結晶化が抑制される。その結果、ハンドリング性が向上する傾向にある。 An epoxy compound having a mesogenic skeleton in its molecular structure is generally easy to crystallize and tends to have a high melting temperature as compared with a general purpose epoxy compound. However, crystallization is suppressed by partially polymerizing such an epoxy compound to form a dimer. As a result, the handling property tends to be improved.
 エポキシ化合物の二量体化又は多量体化に用いる硬化剤としては、例えば、メソゲン骨格を有するエポキシ化合物のプレポリマー化に用いる硬化剤として上述したフェノール化合物及びアミン化合物が挙げられ、その具体例も上述したものと同様である。 As a curing agent used for dimerization or multimerization of an epoxy compound, the phenol compound and amine compound which were mentioned above as a curing agent used for prepolymerization of the epoxy compound which has a mesogen frame | skeleton are mentioned, for example It is similar to that described above.
 メソゲン骨格を有するエポキシ樹脂がメソゲン骨格を有するエポキシ化合物の二量体を含む場合、メソゲン骨格を有するエポキシ樹脂全量に占める、メソゲン骨格を有するエポキシ化合物の二量体の割合は、15質量%~28質量%であることが好ましく、20質量%~27質量%であることがより好ましく、22質量%~25質量%であることがさらに好ましい。 When the epoxy resin having a mesogen skeleton contains a dimer of an epoxy compound having a mesogen skeleton, the ratio of the dimer of the epoxy compound having a mesogen skeleton is 15% by mass to the total amount of the epoxy resin having a mesogen skeleton. The content is preferably in the range of 20% by mass to 27% by mass, and more preferably in the range of 22% by mass to 25% by mass.
 メソゲン骨格を有するエポキシ化合物の二量体の割合が15質量%以上であると、柔軟性等のハンドリング性に優れる傾向にある。また、メソゲン骨格を有するエポキシ化合物の二量体の割合が28質量%以下であると、硬化物としたときに架橋密度の低下が抑えられ、得られる硬化物の熱伝導性及びガラス転移温度(Tg)が高く維持される傾向にある。 If the proportion of the dimer of the epoxy compound having a mesogen skeleton is 15% by mass or more, the handling property such as flexibility tends to be excellent. Moreover, when it is set as hardened | cured material as the ratio of the dimer of the epoxy compound which has a mesogen frame is 28 mass% or less, the fall of crosslinking density is suppressed and the thermal conductivity and glass transition temperature of the hardened | cured material obtained ( Tg) tends to be maintained high.
 メソゲン骨格を有するエポキシ樹脂全量に占めるメソゲン骨格を有するエポキシ化合物の二量体の割合は、逆相クロマトグラフィー(Reversed Phase Liquid Chromatography、RPLC)測定によって求めることができる。 The ratio of the dimer of the epoxy compound having a mesogen skeleton to the total amount of the epoxy resin having a mesogen skeleton can be determined by reversed phase chromatography (RPLC) measurement.
 本開示におけるRPLC測定は、分析用RPLCカラムとして関東化学株式会社製「Mightysil RP-18」を使用し、グラジエント法を用いて、溶離液の混合比(体積基準)をアセトニトリル/テトラヒドロフラン/水=20/5/75からアセトニトリル/テトラヒドロフラン=80/20(開始から20分)を経てアセトニトリル/テトラヒドロフラン=50/50(開始から35分)に連続的に変化させて行う。また、流速を1.0ml/minとする。本開示では、280nmの波長における吸光度を検出し、検出された全てのピークの総面積を100とし、それぞれ該当するピークにおける面積の比率を求め、その値をエポキシ樹脂における各化合物の含有率[質量%]とする。 RPLC measurement in the present disclosure uses “Mightysil RP-18” manufactured by Kanto Chemical Co., Ltd. as an RPLC column for analysis, and using a gradient method, the mixing ratio (by volume) of the eluent is acetonitrile / tetrahydrofuran / water = 20. It is carried out by continuously changing from 5/75 to acetonitrile / tetrahydrofuran = 80/20 (20 minutes from the start) to acetonitrile / tetrahydrofuran = 50/50 (35 minutes from the start). Also, the flow rate is 1.0 ml / min. In the present disclosure, the absorbance at a wavelength of 280 nm is detected, the total area of all detected peaks is set to 100, the ratio of the area at each corresponding peak is determined, and the value is the content of each compound in the epoxy resin [mass %]
 なかでも、メソゲン骨格を有するエポキシ樹脂は、メソゲン骨格を有するエポキシ化合物の二量体として、上記一般式(I-0)で表される化合物の二量体(以下、「特定二量体化合物」ともいう)を含むことが好ましい。特定二量体化合物は、一般式(I-0)で表される化合物の二量体であることから、1分子中に下記一般式(I)で表される構造単位を2つ有する。 Among them, an epoxy resin having a mesogen skeleton is a dimer of a compound represented by the above general formula (I-0) as a dimer of an epoxy compound having a mesogen skeleton (hereinafter, “specific dimer compound”) (Also referred to as The specific dimer compound is a dimer of the compound represented by the general formula (I-0), and thus has two structural units represented by the following general formula (I) in one molecule.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。 In the general formula (I), R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
 一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表し、水素原子又は炭素数1~2のアルキル基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることがさらに好ましい。
 さらに、R~Rのうちの2個~4個が水素原子であることが好ましく、3個又は4個が水素原子であることがより好ましく、4個全てが水素原子であることがさらに好ましい。R~Rのいずれかが炭素数1~3のアルキル基の場合、R及びRの少なくとも一方が炭素数1~3のアルキル基であることが好ましい。
In formula (I), R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, preferably a hydrogen atom Or a methyl group is more preferable, and a hydrogen atom is more preferable.
Furthermore, 2 to 4 of R 1 to R 4 are preferably hydrogen atoms, more preferably 3 or 4 of them are hydrogen atoms, and all 4 of them are all hydrogen atoms preferable. When one of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms, it is preferable that at least one of R 1 and R 4 is an alkyl group having 1 to 3 carbon atoms.
 特定二量体化合物は、下記一般式(IA)で表される構造単位及び下記一般式(IB)で表される構造単位からなる群より選択される少なくとも一つの構造単位を有することが好ましい。 The specific dimer compound preferably has at least one structural unit selected from the group consisting of a structural unit represented by the following general formula (IA) and a structural unit represented by the following general formula (IB).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(IA)及び一般式(IB)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示し、Rはそれぞれ独立に、炭素数1~8のアルキル基を示す。nは0~4の整数を示す。 In formulas (IA) and (IB), R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 5 each independently has 1 to 8 carbon atoms It shows an alkyl group. n is an integer of 0 to 4;
 一般式(IA)及び一般式(IB)におけるR~Rの具体例は、一般式(I)におけるR~Rと同様であり、その好ましい範囲も同様である。 Specific examples of R 1 ~ R 4 in the general formula (IA) and Formula (IB) is the same as R 1 ~ R 4 in formula (I), is the same preferred ranges thereof.
 一般式(IA)及び一般式(IB)中、Rはそれぞれ独立に炭素数1~8のアルキル基を示し、炭素数1~3のアルキル基であることが好ましく、メチル基であることがより好ましい。
 一般式(IA)及び一般式(IB)中、nは0~4の整数を示し、0~2の整数であることが好ましく、0~1の整数であることがより好ましく、0であることがさらに好ましい。つまり、一般式(IA)及び一般式(IB)においてRを付されたベンゼン環は、2個~4個の水素原子を有することが好ましく、3個又は4個の水素原子を有することがより好ましく、4個の水素原子を有することがさらに好ましい。
In the general formula (IA) and the general formula (IB), each R 5 independently represents an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, and is preferably a methyl group More preferable.
In general formula (IA) and general formula (IB), n is an integer of 0 to 4, preferably an integer of 0 to 2, more preferably an integer of 0 to 1, and 0 Is more preferred. That is, the benzene ring to which R 5 is attached in the general formula (IA) and the general formula (IB) preferably has 2 to 4 hydrogen atoms, and 3 or 4 hydrogen atoms. More preferably, it has four hydrogen atoms.
 一般式(IA)で表される構造単位は、下記一般式(IA-1)で表される構造単位及び下記一般式(IA-2)で表される構造単位からなる群より選択される少なくとも一つの構造単位を含むことが好ましく、下記一般式(IA-1)で表される構造単位を含むことがより好ましい。 The structural unit represented by the general formula (IA) is at least selected from the group consisting of a structural unit represented by the following general formula (IA-1) and a structural unit represented by the following general formula (IA-2) It is preferable to contain one structural unit, and it is more preferable to contain a structural unit represented by the following general formula (IA-1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(IB)で表される構造単位は、下記一般式(IB-1)で表される構造単位及び下記一般式(IB-2)で表される構造単位からなる群より選択される少なくとも一つの構造単位を含むことが好ましく、下記一般式(IB-1)で表される構造単位を含むことがより好ましい。 The structural unit represented by the general formula (IB) is at least selected from the group consisting of a structural unit represented by the following general formula (IB-1) and a structural unit represented by the following general formula (IB-2) It preferably contains one structural unit, and more preferably contains a structural unit represented by the following general formula (IB-1).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(IA-1)、一般式(IA-2)、一般式(IB-1)及び一般式(IB-2)におけるR~R及びnの具体例は、一般式(IA)及び一般式(IB)におけるR~R及びnと同様であり、その好ましい範囲も同様である。 Specific examples of R 1 to R 5 and n in the general formula (IA-1), the general formula (IA-2), the general formula (IB-1) and the general formula (IB-2) are the general formula (IA) and The same applies to R 1 to R 5 and n in the general formula (IB), and the preferred range is also the same.
 特定二量体化合物の具体例としては、下記一般式(II-A)で表される化合物、下記一般式(II-B)で表される化合物、下記一般式(II-C)で表される化合物等が挙げられる。特定二量体化合物は、下記一般式(II-A)で表される化合物、下記一般式(II-B)で表される化合物及び下記一般式(II-C)で表される化合物からなる群より選択される少なくとも一つの化合物を含むことが好ましい。 Specific examples of the specific dimer compound include a compound represented by the following general formula (II-A), a compound represented by the following general formula (II-B), and a compound represented by the following general formula (II-C) Compounds and the like. The specific dimer compound comprises a compound represented by the following general formula (II-A), a compound represented by the following general formula (II-B), and a compound represented by the following general formula (II-C) It is preferred to include at least one compound selected from the group.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(II-A)、一般式(II-B)及び一般式(II-C)におけるR~R及びnの具体例は、一般式(IA)及び一般式(IB)におけるR~R及びnと同様であり、その好ましい範囲も同様である。 Specific examples of the general formula (II-A), general formula (II-B) and formula (II-C) in R 1 ~ R 5 and n have the general formula (IA) and R 1 in the general formula (IB) The same applies to R 5 and n, and the preferred range is also the same.
 一般式(II-A)で表される化合物は、下記一般式(II-A-1)で表される化合物及び下記一般式(II-A-2)で表される化合物を含むことが好ましく、下記一般式(II-A-1)で表される化合物を含むことがより好ましい。 The compound represented by the general formula (II-A) preferably includes a compound represented by the following general formula (II-A-1) and a compound represented by the following general formula (II-A-2) It is more preferable to include a compound represented by the following general formula (II-A-1).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(II-B)で表される化合物は、下記一般式(II-B-1)で表される化合物及び下記一般式(II-B-2)で表される化合物を含むことが好ましく、下記一般式(II-B-1)で表される化合物を含むことがより好ましい。 The compound represented by the general formula (II-B) preferably includes a compound represented by the following general formula (II-B-1) and a compound represented by the following general formula (II-B-2) It is more preferable to include a compound represented by the following general formula (II-B-1).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(II-C)で表される化合物は、下記一般式(II-C-1)で表される化合物及び下記一般式(II-C-2)で表される化合物を含むことが好ましく、下記一般式(II-C-1)で表される化合物を含むことがより好ましい。 The compound represented by the general formula (II-C) preferably includes a compound represented by the following general formula (II-C-1) and a compound represented by the following general formula (II-C-2) It is more preferable to include a compound represented by the following general formula (II-C-1).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(II-A-1)、一般式(II-A-2)、一般式(II-B-1)、一般式(II-B-2)、一般式(II-C-1)及び一般式(II-C-2)におけるR~R及びnの具体例は、一般式(IA)及び一般式(IB)におけるR~R及びnと同様であり、その好ましい範囲も同様である。 Formula (II-A-1), Formula (II-A-2), Formula (II-B-1), Formula (II-B-2), Formula (II-C-1) and specific examples of R 1 ~ R 5 and n in the general formula (II-C-2) is the same as R 1 ~ R 5 and n in the general formula (IA) and formula (IB), also the preferred ranges It is similar.
 特定二量体化合物は、一般式(II-A-1)で表される化合物、一般式(II-B-1)で表される化合物及び一般式(II-C-1)で表される化合物からなる群より選択される少なくとも一つの化合物を含むことが好ましい。 The specific dimer compound is a compound represented by the general formula (II-A-1), a compound represented by the general formula (II-B-1), and a compound represented by the general formula (II-C-1) It is preferred to include at least one compound selected from the group consisting of compounds.
 特定二量体化合物の構造は、エポキシ樹脂を合成する際に使用する上記一般式(I-0)で表される化合物と、フェノール化合物等の硬化剤と、の反応より得られると推定される構造の分子量と、UVスペクトル検出器及びマススペクトル検出器を備える液体クロマトグラフを用いて実施される液体クロマトグラフィーにより求めた目的化合物の分子量とを照合させることで決定することができる。 The structure of the specific dimer compound is presumed to be obtained by the reaction of the compound represented by the above general formula (I-0) used when synthesizing the epoxy resin and a curing agent such as a phenol compound. It can be determined by comparing the molecular weight of the structure with the molecular weight of the target compound determined by liquid chromatography performed using a liquid chromatograph equipped with a UV spectrum detector and a mass spectrum detector.
 液体クロマトグラフィーでは、例えば、分析用カラムとして株式会社日立製作所製「LaChrom II C18」を使用し、溶離液としてテトラヒドロフランを使用し、1.0ml/minの流速で測定する。UVスペクトル検出器では、280nmの波長における吸光度を検出する。マススペクトル検出器では、2700Vのイオン化電圧で検出する。 In liquid chromatography, for example, "LaChrom II C18" manufactured by Hitachi, Ltd. is used as a column for analysis, and tetrahydrofuran is used as an eluent at a flow rate of 1.0 ml / min. The UV spectrum detector detects the absorbance at a wavelength of 280 nm. The mass spectrum detector detects at an ionization voltage of 2700 V.
 メソゲン骨格を有するエポキシ樹脂は、メソゲン骨格を有するエポキシ化合物の二量体に加えて、メソゲン骨格を有するエポキシ化合物の多量体をさらに含んでもよい。メソゲン骨格を有するエポキシ化合物の多量体における、メソゲン骨格を有するエポキシ化合物の構造単位の数は3以上であり、平均値として5以下であることが好ましく、4以下であることがより好ましく、3であることがさらに好ましい。 The epoxy resin having a mesogen skeleton may further include a multimer of an epoxy compound having a mesogen skeleton, in addition to the dimer of the epoxy compound having a mesogen skeleton. The number of structural units of the epoxy compound having a mesogen skeleton in the multimer of the epoxy compound having a mesogen skeleton is 3 or more, preferably 5 or less as an average value, more preferably 4 or less, and 3 It is further preferred that
 メソゲン骨格を有するエポキシ化合物の多量体としては、一般式(I-0)で表される化合物の多量体(以下、「特定多量体化合物」ともいう)が挙げられる。特定多量体化合物は、一般式(I-0)で表される化合物の多量体であり、1分子中に一般式(I)で表される構造単位を3つ以上有する。特定多量体化合物における一般式(I)で表される構造単位の数は、平均値として5以下であることが好ましく、4以下であることがより好ましく、3であることがさらに好ましい。 Examples of the multimer of the epoxy compound having a mesogen skeleton include multimers of the compound represented by General Formula (I-0) (hereinafter, also referred to as “specific multimer compound”). The specific multimer compound is a multimer of the compound represented by the general formula (I-0) and has three or more structural units represented by the general formula (I) in one molecule. The number of structural units represented by General Formula (I) in the specific multimeric compound is preferably 5 or less as an average value, more preferably 4 or less, and still more preferably 3.
 特定多量体化合物は、前述の一般式(IA)で表される構造単位及び一般式(IB)で表される構造単位からなる群より選択される少なくとも一つの構造単位を有する特定多量体化合物であることが好ましい。
 特定多量体化合物における一般式(IA)で表される構造単位は、一般式(IA-1)で表される構造単位及び一般式(IA-2)で表される構造単位からなる群より選択される少なくとも一つの構造単位を含むことが好ましく、一般式(IA-1)で表される構造単位を含むことがより好ましい。
 特定多量体化合物における一般式(IB)で表される構造単位は、一般式(IB-1)で表される構造単位及び一般式(IB-2)で表される構造単位からなる群より選択される少なくとも一つの構造単位を含むことが好ましく、一般式(IB-1)で表される構造単位を含むことがより好ましい。
The specific multimeric compound is a specific multimeric compound having at least one structural unit selected from the group consisting of the structural unit represented by the above general formula (IA) and the structural unit represented by the general formula (IB) Is preferred.
The structural unit represented by the general formula (IA) in the specific multimeric compound is selected from the group consisting of the structural unit represented by the general formula (IA-1) and the structural unit represented by the general formula (IA-2) It is preferable to include at least one structural unit to be treated, and it is more preferable to include the structural unit represented by general formula (IA-1).
The structural unit represented by the general formula (IB) in the specific multimeric compound is selected from the group consisting of the structural unit represented by the general formula (IB-1) and the structural unit represented by the general formula (IB-2) It is preferable to include at least one structural unit to be treated, and it is more preferable to include a structural unit represented by General Formula (IB-1).
 メソゲン骨格を有するエポキシ樹脂は、メソゲン骨格を有するエポキシ化合物の二量体に加えて、メソゲン骨格を有するエポキシ化合物(単量体)をさらに含んでもよい。メソゲン骨格を有するエポキシ樹脂が、メソゲン骨格を有するエポキシ化合物の二量体に加えて、メソゲン骨格を有するエポキシ化合物を含む場合、メソゲン骨格を有するエポキシ樹脂全量に占める、メソゲン骨格を有するエポキシ化合物の割合は、57質量%~80質量%であることが好ましく、59質量%~74質量%であることがより好ましく、62質量%~70質量%であることがさらに好ましい。メソゲン骨格を有するエポキシ化合物の割合が57質量%以上であると、硬化物としたときに、架橋密度が低下しにくく、熱伝導性及びTgに優れる傾向にある。一方、メソゲン骨格を有するエポキシ化合物の割合が80質量%以下であると、柔軟性等のハンドリング性に優れる傾向にある。 The epoxy resin having a mesogen skeleton may further include an epoxy compound (monomer) having a mesogen skeleton, in addition to the dimer of the epoxy compound having a mesogen skeleton. When the epoxy resin having a mesogen skeleton contains an epoxy compound having a mesogen skeleton in addition to the dimer of the epoxy compound having a mesogen skeleton, the proportion of the epoxy compound having a mesogen skeleton in the total epoxy resin having a mesogen skeleton Is preferably 57% by mass to 80% by mass, more preferably 59% by mass to 74% by mass, and still more preferably 62% by mass to 70% by mass. When the proportion of the epoxy compound having a mesogen skeleton is 57% by mass or more, when the cured product is formed, the crosslink density is unlikely to be reduced, and the heat conductivity and the Tg tend to be excellent. On the other hand, when the proportion of the epoxy compound having a mesogen skeleton is 80% by mass or less, the handling property such as flexibility tends to be excellent.
 メソゲン骨格を有するエポキシ化合物としては、一般式(I-0)で表される化合物等、メソゲン骨格を有するエポキシ化合物として前述した化合物が挙げられる。 Examples of the epoxy compound having a mesogen skeleton include the compounds represented by the general formula (I-0) and the compounds described above as the epoxy compound having a mesogen skeleton.
 メソゲン骨格を有するエポキシ樹脂が、メソゲン骨格を有するエポキシ化合物の二量体を含む場合、メソゲン骨格を有するエポキシ樹脂は、例えば、メソゲン骨格を有するエポキシ化合物、フェノール化合物、及び反応触媒を合成溶媒中に溶解し、加熱しながら撹拌して合成することができる。具体的な合成方法の例は、「メソゲン骨格を有するエポキシ樹脂がメソゲン骨格を有するエポキシ化合物とフェノール化合物との反応物である場合のメソゲン骨格を有するエポキシ樹脂の合成方法」として前述した通りである。 When the epoxy resin having a mesogen skeleton contains a dimer of an epoxy compound having a mesogen skeleton, the epoxy resin having a mesogen skeleton may be, for example, an epoxy compound having a mesogen skeleton, a phenol compound, and a reaction catalyst in a synthesis solvent It can be dissolved and stirred while heating to synthesize. An example of a specific synthesis method is as described above as “a method of synthesizing an epoxy resin having a mesogen skeleton when the epoxy resin having a mesogen skeleton is a reaction product of an epoxy compound having a mesogen skeleton and a phenol compound”. .
-硬化剤-
 エポキシ樹脂組成物は、硬化剤を含有する。硬化剤としては、当分野で通常用いられるものを特に制限なく用いることができる。硬化剤としては、酸無水物系硬化剤、アミン系硬化剤、フェノール系硬化剤、メルカプタン系硬化剤等の重付加型硬化剤、その他イミダゾール等の潜在性硬化剤などが挙げられる。耐熱性及び密着性の観点からは、アミン系硬化剤又はフェノール系硬化剤が好ましい。保存安定性の観点からは、フェノール系硬化剤が好ましい。また、高靭性の硬化物を得る観点からは、アミン系硬化剤が好ましい。硬化剤は1種を単独で用いても、2種類以上を併用して用いてもよい。
-Hardener-
The epoxy resin composition contains a curing agent. As the curing agent, those generally used in the art can be used without particular limitation. The curing agent may, for example, be a polyaddition curing agent such as an acid anhydride curing agent, an amine curing agent, a phenol curing agent or a mercaptan curing agent, or a latent curing agent such as imidazole. From the viewpoint of heat resistance and adhesion, an amine-based curing agent or a phenol-based curing agent is preferred. From the viewpoint of storage stability, phenolic curing agents are preferred. Also, from the viewpoint of obtaining a cured product with high toughness, an amine-based curing agent is preferable. The curing agent may be used alone or in combination of two or more.
 フェノール系硬化剤としては、通常用いられるものを特に制限なく用いることができる。例えば、フェノール化合物、及びフェノール化合物をノボラック化したフェノール樹脂を用いることができる。フェノール系硬化剤は1種を単独で用いても、2種類以上を併用してもよい。 As a phenol type hardening agent, what is normally used can be used without a restriction | limiting in particular. For example, a phenolic compound and a phenolic resin having novolakized phenolic compound can be used. The phenol-based curing agent may be used alone or in combination of two or more.
 フェノール化合物としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール等の単官能のフェノール化合物;カテコール、レゾルシノール、ヒドロキノン等の2官能のフェノール化合物;1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、1,3,5-トリヒドロキシベンゼン等の3官能のフェノール化合物;などが挙げられる。また、フェノール樹脂としては、これらフェノール化合物をメチレン鎖等で連結してノボラック化したフェノールノボラック樹脂が挙げられる。 Examples of the phenol compound include monofunctional phenol compounds such as phenol, o-cresol, m-cresol, p-cresol, etc .; difunctional phenol compounds such as catechol, resorcinol, hydroquinone; 1,2,3-trihydroxybenzene, 1 And trifunctional phenol compounds such as 2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene. Moreover, as a phenol resin, the phenol novolak resin which linked these phenol compounds by the methylene chain etc. and was novolak-ized is mentioned.
 フェノール系硬化剤としては、熱伝導性の観点から、カテコール、レゾルシノール、ヒドロキノン等の2官能のフェノール化合物、又は2官能のフェノール化合物をメチレン鎖で連結したフェノールノボラック樹脂であることが好ましく、耐熱性の観点から、2官能のフェノール化合物をメチレン鎖で連結したフェノールノボラック樹脂であることがより好ましい。 From the viewpoint of thermal conductivity, the phenol-based curing agent is preferably a phenol novolac resin in which a bifunctional phenol compound such as catechol, resorcinol, or hydroquinone or a bifunctional phenol compound is linked by a methylene chain, and heat resistance It is more preferable that it is a phenol novolak resin which connected the bifunctional phenol compound by the methylene chain from a viewpoint of these.
 フェノールノボラック樹脂としては、クレゾールノボラック樹脂、カテコールノボラック樹脂、レゾルシノールノボラック樹脂、ヒドロキノンノボラック樹脂等の1種類のフェノール化合物をノボラック化した樹脂;カテコールレゾルシノールノボラック樹脂、レゾルシノールヒドロキノンノボラック樹脂等の2種類以上のフェノール化合物をノボラック化した樹脂;などを挙げることができる。 Resins obtained by novolakizing one kind of phenol compound such as cresol novolac resin, catechol novolac resin, resorcinol novolac resin, hydroquinone novolac resin as phenol novolac resin; two or more kinds of phenol such as catechol resorcinol novolac resin, resorcinol hydroquinone novolac resin The resin which made the compound novolak-ized; etc. can be mentioned.
 フェノール系硬化剤としてフェノールノボラック樹脂が用いられる場合、下記一般式(II-1)及び下記一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物を含むことが好ましい。 When a phenol novolac resin is used as a phenol-based curing agent, a compound having a structural unit represented by at least one selected from the group consisting of the following general formula (II-1) and the following general formula (II-2) It is preferable to include.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 一般式(II-1)及び一般式(II-2)において、Rはそれぞれ独立に、アルキル基、アリール基、又はアラルキル基を表す。Rで表されるアルキル基、アリール基及びアラルキル基は、さらに置換基を有していてもよい。該置換基としては、アルキル基(但し、Rがアルキル基の場合を除く)、アリール基、ハロゲン原子、水酸基等を挙げることができる。mはそれぞれ独立に、0~2の整数を表し、mが2の場合、2つのRは同一であっても異なっていてもよい。mはそれぞれ独立に、0又は1であることが好ましく、0であることがより好ましい。また、nはそれぞれ独立に、1~7の整数を表す。 In formulas (II-1) and (II-2), each R 1 independently represents an alkyl group, an aryl group or an aralkyl group. The alkyl group, aryl group and aralkyl group represented by R 1 may further have a substituent. Examples of the substituent include an alkyl group (except when R 1 is an alkyl group), an aryl group, a halogen atom, a hydroxyl group and the like. Each m independently represents an integer of 0 to 2, and when m is 2, two R 1 s may be the same or different. Each m is preferably independently 0 or 1, and more preferably 0. Further, n each independently represents an integer of 1 to 7.
 一般式(II-1)及び一般式(II-2)において、R及びRはそれぞれ独立に、水素原子、アルキル基、アリール基、又はアラルキル基を表す。R及びRで表されるアルキル基、アリール基、及びアラルキル基は、さらに置換基を有していてもよい。該置換基としては、アルキル基(但し、R又はRがアルキル基の場合を除く)、アリール基、ハロゲン原子、水酸基等を挙げることができる。 In formulas (II-1) and (II-2), R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an aryl group or an aralkyl group. The alkyl group, aryl group and aralkyl group represented by R 2 and R 3 may further have a substituent. Examples of the substituent include an alkyl group (except when R 2 or R 3 is an alkyl group), an aryl group, a halogen atom, a hydroxyl group and the like.
 一般式(II-1)及び(II-2)中のR及びRとしては、保存安定性と熱伝導性の観点から、水素原子、アルキル基、又はアリール基であることが好ましく、水素原子、炭素数1~4のアルキル基又は炭素数6~12のアリール基であることがより好ましく、水素原子であることがさらに好ましい。 From the viewpoint of storage stability and thermal conductivity, R 2 and R 3 in general formulas (II-1) and (II-2) are preferably a hydrogen atom, an alkyl group or an aryl group, and hydrogen An atom, an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms is more preferable, and a hydrogen atom is more preferable.
 一般式(II-1)で表される構造単位を有する化合物がレゾルシノール以外のフェノール化合物に由来する部分構造を含む場合、レゾルシノール以外のフェノール化合物に由来する部分構造としては、熱伝導性及び接着性の観点から、フェノール、クレゾール、カテコール、ヒドロキノン、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン及び1,3,5-トリヒドロキシベンゼンからなる群より選ばれる少なくとも1種類に由来する部分構造であることが好ましく、カテコール及びヒドロキノンから選ばれる少なくとも1種類に由来する部分構造であることがより好ましい。 When the compound having a structural unit represented by the general formula (II-1) contains a partial structure derived from a phenolic compound other than resorcinol, the partial structure derived from a phenolic compound other than resorcinol includes thermal conductivity and adhesiveness. From the viewpoint of at least one selected from the group consisting of phenol, cresol, catechol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene It is preferable that it is a partial structure derived from, and more preferably a partial structure derived from at least one selected from catechol and hydroquinone.
 一般式(II-2)で表される構造単位を有する化合物がカテコール以外のフェノール化合物に由来する部分構造を含む場合、カテコール以外のフェノール化合物に由来する部分構造としては、熱伝導性及び接着性の観点から、フェノール、クレゾール、レゾルシノール、ヒドロキノン、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン及び1,3,5-トリヒドロキシベンゼンからなる群より選ばれる少なくとも1種類に由来する部分構造であることが好ましく、レゾルシノール及びヒドロキノンから選ばれる少なくとも1種類に由来する部分構造であることがより好ましい。 When the compound having a structural unit represented by the general formula (II-2) contains a partial structure derived from a phenol compound other than catechol, the partial structure derived from a phenol compound other than catechol includes thermal conductivity and adhesiveness. From the viewpoint of at least one selected from the group consisting of phenol, cresol, resorcinol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene It is preferable that it is a partial structure derived from, and it is more preferable that it is a partial structure derived from at least one selected from resorcinol and hydroquinone.
 ここで、フェノール化合物に由来する部分構造とは、フェノール化合物のベンゼン環部分から1個又は2個の水素原子を取り除いて構成される1価又は2価の基を意味する。なお、水素原子が取り除かれる位置は特に限定されない。 Here, the partial structure derived from a phenol compound means a monovalent or divalent group formed by removing one or two hydrogen atoms from the benzene ring portion of the phenol compound. The position at which the hydrogen atom is removed is not particularly limited.
 また、一般式(II-1)で表される構造単位を有する化合物において、レゾルシノールに由来する部分構造の含有比率については特に制限はない。弾性率の観点から、一般式(II-1)で表される構造単位を有する化合物の全質量に対するレゾルシノールに由来する部分構造の含有比率が55質量%以上であることが好ましく、硬化物のガラス転移温度(Tg)及び線膨張率の観点から、60質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、熱伝導性の観点から、90質量%以上であることが特に好ましい。 In the compound having a structural unit represented by General Formula (II-1), the content ratio of the partial structure derived from resorcinol is not particularly limited. From the viewpoint of elastic modulus, the content ratio of the partial structure derived from resorcinol to the total mass of the compound having a structural unit represented by General Formula (II-1) is preferably 55% by mass or more, and the glass of the cured product From the viewpoint of transition temperature (Tg) and linear expansion coefficient, the content is more preferably 60% by mass or more, still more preferably 80% by mass or more, and from the viewpoint of thermal conductivity, 90% by mass or more Particularly preferred.
 また、一般式(II-2)で表される構造単位を有する化合物において、カテコールに由来する部分構造の含有比率については特に制限はない。弾性率の観点から、一般式(II-2)で表される構造単位を有する化合物の全質量に対するカテコールに由来する部分構造の含有比率が55質量%以上であることが好ましく、硬化物のガラス転移温度(Tg)及び線膨張率の観点から、60質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、熱伝導性の観点から、90質量%以上であることが特に好ましい。 In the compound having a structural unit represented by the general formula (II-2), the content ratio of the partial structure derived from catechol is not particularly limited. From the viewpoint of elastic modulus, the content ratio of the partial structure derived from catechol to the total mass of the compound having a structural unit represented by General Formula (II-2) is preferably 55% by mass or more, and the glass of the cured product From the viewpoint of transition temperature (Tg) and linear expansion coefficient, the content is more preferably 60% by mass or more, still more preferably 80% by mass or more, and from the viewpoint of thermal conductivity, 90% by mass or more Particularly preferred.
 一般式(II-1)及び一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物の分子量は特に制限されない。流動性の観点から、数平均分子量(Mn)としては、2000以下であることが好ましく、1500以下であることがより好ましく、350~1500であることがさらに好ましい。また、重量平均分子量(Mw)としては、2000以下であることが好ましく、1500以下であることがより好ましく、400~1500であることがさらに好ましい。これらMn及びMwは、ゲルパーミエーションクロマトグラフィー(GPC)を用いた通常の方法により測定される。 The molecular weight of the compound having a structural unit represented by at least one selected from the group consisting of general formula (II-1) and general formula (II-2) is not particularly limited. From the viewpoint of fluidity, the number average molecular weight (Mn) is preferably 2000 or less, more preferably 1500 or less, and still more preferably 350 to 1500. The weight average molecular weight (Mw) is preferably 2000 or less, more preferably 1500 or less, and still more preferably 400 to 1500. These Mn and Mw are measured by the usual method using gel permeation chromatography (GPC).
 一般式(II-1)及び一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物の水酸基当量は特に制限されない。耐熱性に関与する架橋密度の観点から、水酸基当量は平均値で50g/eq~150g/eqであることが好ましく、50g/eq~120g/eqであることがより好ましく、55g/eq~120g/eqであることがさらに好ましい。なお、水酸基当量は、JIS K0070:1992に準拠して測定された値をいう。 The hydroxyl equivalent of the compound having a structural unit represented by at least one selected from the group consisting of general formula (II-1) and general formula (II-2) is not particularly limited. From the viewpoint of the crosslink density involved in heat resistance, the hydroxyl group equivalent is preferably 50 g / eq to 150 g / eq on average, more preferably 50 g / eq to 120 g / eq, and more preferably 55 g / eq to 120 g / eq. More preferably, it is eq. In addition, a hydroxyl equivalent means the value measured based on JISK0070: 1992.
 フェノール系硬化剤として一般式(II-1)及び一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物が用いられる場合、フェノール系硬化剤に占める一般式(II-1)及び一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物の割合は、50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。 When a compound having a structural unit represented by at least one selected from the group consisting of General Formula (II-1) and General Formula (II-2) is used as a phenol-based curing agent, it occupies in the phenol-based curing agent The proportion of the compound having a structural unit represented by at least one selected from the group consisting of general formula (II-1) and general formula (II-2) is preferably 50% by mass or more and 80% by mass or more More preferably, 90 mass% or more is more preferable.
 フェノール系硬化剤としてフェノールノボラック樹脂が用いられる場合、フェノールノボラック樹脂が、下記一般式(III-1)~下記一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物を含むことも好ましい。 When a phenol novolac resin is used as a phenol-based curing agent, the phenol novolac resin is a structure represented by at least one selected from the group consisting of the following general formula (III-1) to the following general formula (III-4) It is also preferred to include a compound having
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 一般式(III-1)~一般式(III-4)中、m及びnはそれぞれ独立に、正の整数を表し、m又はnが付されたそれぞれの構造単位の数を表す。また、Arはそれぞれ独立に、下記一般式(III-a)又は下記一般式(III-b)で表される基を表す。 In formulas (III-1) to (III-4), m and n each independently represent a positive integer, and represent the number of each structural unit to which m or n is attached. Ar each independently represents a group represented by the following formula (III-a) or the following formula (III-b).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 一般式(III-a)及び一般式(III-b)中、R11及びR14はそれぞれ独立に、水素原子又は水酸基を表す。R12及びR13はそれぞれ独立に、水素原子又は炭素数1~8のアルキル基を表す。 In formulas (III-a) and (III-b), R 11 and R 14 each independently represent a hydrogen atom or a hydroxyl group. R 12 and R 13 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
 一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物は、2価のフェノール化合物をノボラック化する製造方法によって副生成物として生成可能なものである。 The compound having a structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) is a by-product produced by a method of novolakizing a divalent phenol compound Can be generated as
 一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造は、フェノールノボラック樹脂の主鎖骨格として含まれていてもよく、又はフェノールノボラック樹脂の側鎖の一部として含まれていてもよい。さらに、一般式(III-1)~一般式(III-4)のいずれか1つで表される部分構造を構成するそれぞれの構造単位は、ランダムに含まれていてもよいし、規則的に含まれていてもよいし、ブロック状に含まれていてもよい。
 また、一般式(III-1)~一般式(III-4)において、水酸基の置換位置は芳香族環上であれば特に制限されない
The structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) may be contained as a main chain skeleton of a phenol novolac resin, or a phenol novolac It may be included as part of the side chain of the resin. Furthermore, each structural unit constituting the partial structure represented by any one of the general formulas (III-1) to (III-4) may be randomly included or regularly It may be included or may be included in the form of a block.
In the general formulas (III-1) to (III-4), the substitution position of the hydroxyl group is not particularly limited as long as it is on an aromatic ring.
 一般式(III-1)~一般式(III-4)のそれぞれについて、複数存在するArは全て同一の原子団であってもよいし、2種類以上の原子団を含んでいてもよい。なお、Arはそれぞれ独立に、一般式(III-a)又は一般式(III-b)で表される基を表す。 In each of the general formulas (III-1) to (III-4), a plurality of Ar may be the same atomic group or may contain two or more kinds of atomic groups. Ar each independently represents a group represented by formula (III-a) or (III-b).
 一般式(III-a)及び一般式(III-b)におけるR11及びR14はそれぞれ独立に、水素原子又は水酸基を表し、熱伝導性の観点から水酸基であることが好ましい。また、R11及びR14の置換位置は特に制限されない。 R 11 and R 14 in the general formula (III-a) and the general formula (III-b) each independently represent a hydrogen atom or a hydroxyl group, and are preferably a hydroxyl group from the viewpoint of thermal conductivity. Also, the substitution position of R 11 and R 14 is not particularly limited.
 また、一般式(III-a)におけるR12及びR13はそれぞれ独立に、水素原子又は炭素数1~8のアルキル基を表す。R12及びR13における炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、及びオクチル基が挙げられる。また、一般式(III-a)におけるR12及びR13の置換位置は特に制限されない。 Further, R 12 and R 13 in the general formula (III-a) each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. Examples of the alkyl group having 1 to 8 carbon atoms for R 12 and R 13 include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, pentyl and hexyl Groups, heptyl groups, and octyl groups. Further, the substitution position of R 12 and R 13 in the general formula (III-a) is not particularly limited.
 一般式(III-1)~一般式(III-4)におけるArは、より優れた熱伝導性を達成する観点から、ジヒドロキシベンゼンに由来する基(一般式(III-a)においてR11が水酸基であって、R12及びR13が水素原子である基)、及びジヒドロキシナフタレンに由来する基(一般式(III-b)においてR14が水酸基である基)からなる群より選ばれる少なくとも1種類であることが好ましい。 Ar in the general formula (III-1) ~ formula (III-4), from the viewpoint of achieving a more excellent thermal conductivity, R 11 in group (general formula (III-a) derived from a dihydroxy benzene hydroxyl And at least one selected from the group consisting of groups wherein R 12 and R 13 are hydrogen atoms, and groups derived from dihydroxynaphthalene (groups where R 14 is a hydroxyl group in general formula (III-b)) Is preferred.
 ここで、「ジヒドロキシベンゼンに由来する基」とは、ジヒドロキシベンゼンの芳香環部分から水素原子を2つ取り除いて構成される2価の基を意味し、水素原子が取り除かれる位置は特に制限されない。また、「ジヒドロキシナフタレンに由来する基」についても同様の意味である。 Here, “a group derived from dihydroxybenzene” means a divalent group formed by removing two hydrogen atoms from the aromatic ring part of dihydroxybenzene, and the position at which the hydrogen atom is removed is not particularly limited. In addition, "group derived from dihydroxy naphthalene" also has the same meaning.
 また、エポキシ樹脂組成物の生産性及び流動性の観点からは、Arはジヒドロキシベンゼンに由来する基であることがより好ましく、1,2-ジヒドロキシベンゼン(カテコール)に由来する基及び1,3-ジヒドロキシベンゼン(レゾルシノール)に由来する基からなる群より選ばれる少なくとも1種類であることがさらに好ましい。特に、熱伝導性を特に高める観点から、Arとしてレゾルシノールに由来する基を含むことが好ましい。 Further, from the viewpoint of productivity and fluidity of the epoxy resin composition, Ar is more preferably a group derived from dihydroxybenzene, and a group derived from 1,2-dihydroxybenzene (catechol) and 1,3- More preferably, it is at least one selected from the group consisting of groups derived from dihydroxybenzene (resorcinol). In particular, from the viewpoint of particularly enhancing the thermal conductivity, it is preferable to include a group derived from resorcinol as Ar.
 一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物がレゾルシノールに由来する構造単位を含む場合、レゾルシノールに由来する構造単位の含有率は、弾性率の観点から、一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物の総重量中において55質量%以上であることが好ましく、硬化物のTgと線膨張率の観点から、60質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、熱伝導性の観点から、90質量%以上であることが特に好ましい。 When the compound having a structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) contains a structural unit derived from resorcinol, a structural unit derived from resorcinol In view of elastic modulus, the content of at least one of the compounds having a structure represented by at least one selected from the group consisting of general formulas (III-1) to (III-4) in the total weight of the compound The content is preferably not less than 60% by mass, more preferably not less than 80% by mass, in view of the Tg and the linear expansion coefficient of the cured product. It is especially preferable that it is 90 mass% or more.
 一般式(III-1)~一般式(III-4)におけるm及びnについては、流動性の観点からm/n=20/1~1/5であることが好ましく、20/1~5/1であることがより好ましく、20/1~10/1であることがさらに好ましい。また、(m+n)は、流動性の観点から20以下であることが好ましく、15以下であることがより好ましく、10以下であることがさらに好ましい。なお、(m+n)の下限値は特に制限されない。 The m and n in the general formulas (III-1) to (III-4) are preferably m / n = 20/1 to 1/5 from the viewpoint of fluidity, and 20/1 to 5 / It is more preferably 1 and still more preferably 20/1 to 10/1. Further, (m + n) is preferably 20 or less, more preferably 15 or less, and still more preferably 10 or less from the viewpoint of fluidity. The lower limit value of (m + n) is not particularly limited.
 一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物は、特にArが置換又は非置換のジヒドロキシベンゼンに由来する基及び置換又は非置換のジヒドロキシナフタレンに由来する基の少なくともいずれか1種類である場合、これらを単純にノボラック化したフェノール樹脂等と比較して、その合成が容易であり、軟化点の低い硬化剤が得られる傾向にある。したがって、このようなフェノール樹脂を硬化剤として含むことで、エポキシ樹脂組成物の製造及び取り扱いが容易になる等の利点がある。 Compounds having a structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) are, in particular, groups derived from Ar substituted or unsubstituted dihydroxybenzene and When it is at least one kind of group derived from substituted or unsubstituted dihydroxy naphthalene, its curing is easy as compared with a phenol resin etc. which simply made these novolakized, and a curing agent having a low softening point is It tends to be obtained. Therefore, the inclusion of such a phenol resin as a curing agent has the advantage of facilitating production and handling of the epoxy resin composition.
 なお、フェノールノボラック樹脂が上記一般式(III-1)~上記一般式(III-4)からなる群より選択される少なくとも1つで表される部分構造を有するか否かは、電界脱離イオン化質量分析法(FD-MS)によってそのフラグメント成分として上記一般式(III-1)~上記一般式(III-4)のいずれかで表わされる部分構造に相当する成分が含まれるか否かによって判断することができる。 In addition, whether or not the phenol novolac resin has a partial structure represented by at least one selected from the group consisting of the above general formula (III-1) to the above general formula (III-4) depends on field desorption / ionization. It is judged by mass spectrometry (FD-MS) whether or not the component corresponding to the partial structure represented by any of the above general formula (III-1) to the above general formula (III-4) is contained as a fragment component thereof. can do.
 一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物の分子量は特に制限されない。流動性の観点から、数平均分子量(Mn)として2000以下であることが好ましく、1500以下であることがより好ましく、350~1500であることがさらに好ましい。また、重量平均分子量(Mw)としては2000以下であることが好ましく、1500以下であることがより好ましく、400~1500であることがさらに好ましい。これらMn及びMwは、GPCを用いた通常の方法により測定される。 The molecular weight of the compound having a structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) is not particularly limited. From the viewpoint of fluidity, the number average molecular weight (Mn) is preferably 2000 or less, more preferably 1500 or less, and still more preferably 350 to 1500. The weight average molecular weight (Mw) is preferably 2000 or less, more preferably 1500 or less, and still more preferably 400 to 1500. These Mn and Mw are measured by the usual method using GPC.
 一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物の水酸基当量は特に制限されない。耐熱性に関与する架橋密度の観点から、水酸基当量は平均値で50g/eq~150g/eqであることが好ましく、50g/eq~120g/eqであることがより好ましく、55g/eq~120g/eqであることがさらに好ましい。 The hydroxyl equivalent of the compound having a structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) is not particularly limited. From the viewpoint of the crosslink density involved in heat resistance, the hydroxyl group equivalent is preferably 50 g / eq to 150 g / eq on average, more preferably 50 g / eq to 120 g / eq, and more preferably 55 g / eq to 120 g / eq. More preferably, it is eq.
 フェノール系硬化剤として一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物が用いられる場合、フェノール系硬化剤に占める一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物の割合は、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。 When a compound having a structure represented by at least one selected from the group consisting of General Formula (III-1) to General Formula (III-4) is used as a phenol-based curing agent, a general proportion of the phenol-based curing agent The proportion of the compound having a structure represented by at least one selected from the group consisting of Formula (III-1) to General Formula (III-4) is preferably 50% by mass or more, and 80% by mass or more Is more preferably 90% by mass or more.
 フェノール系硬化剤として一般式(II-1)及び一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物又は一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物が用いられる場合、フェノール系硬化剤は、一般式(II-1)及び一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物又は一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物を構成するフェノール化合物であるモノマーを含んでいてもよい。フェノール化合物であるモノマーの含有比率(以下、「モノマー含有比率」ともいう)は特に制限されない。熱伝導性及び成形性の観点から、フェノール系硬化剤中、5質量%~80質量%であることが好ましく、15質量%~60質量%であることがより好ましく、20質量%~50質量%であることがさらに好ましい。 Compounds having a structural unit represented by at least one selected from the group consisting of general formula (II-1) and general formula (II-2) as a phenolic curing agent, or general formula (III-1) to general formula When a compound having a structure represented by at least one selected from the group consisting of (III-4) is used, the phenolic curing agent is selected from the group represented by the general formula (II-1) and the general formula (II-2) A compound having a structural unit represented by at least one selected from the group consisting of: or a structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) You may contain the monomer which is a phenol compound which comprises the compound which it has. The content ratio of the monomer which is a phenol compound (hereinafter, also referred to as “monomer content ratio”) is not particularly limited. From the viewpoint of thermal conductivity and moldability, the content is preferably 5% by mass to 80% by mass, more preferably 15% by mass to 60% by mass, and still more preferably 20% by mass to 50% by mass in the phenolic curing agent. It is further preferred that
 モノマー含有比率が80質量%以下であることで、硬化反応の際に架橋に寄与しないモノマーが少なくなり、架橋した高分子量体が多くなるため、より高密度な架橋構造が形成され、熱伝導性が向上する傾向にある。また、5質量%以上であることで、成形の際に流動し易いため、無機充填材との密着性がより向上し、より優れた熱伝導性と耐熱性が達成できる傾向にある。 When the monomer content ratio is 80% by mass or less, the amount of monomers not contributing to crosslinking decreases in the curing reaction, and the amount of crosslinked high molecular weight increases, so that a denser crosslinked structure is formed, and thermal conductivity Tend to improve. Moreover, since it is easy to flow at the time of shaping | molding by being 5 mass% or more, it exists in the tendency which adhesiveness with an inorganic filler improves more, and more excellent thermal conductivity and heat resistance can be achieved.
 アミン系硬化剤としては、通常用いられるものを特に制限なく用いることができ、市販されているものであってもよい。アミン系硬化剤は1種を単独で用いても、2種類以上を併用してもよい。中でも、耐熱性の観点からは、ベンゼン環又はナフタレン環を有するアミン系硬化剤を用いることが好ましく、ベンゼン環上又はナフタレン環上にアミノ基を有するアミン系硬化剤を用いることがより好ましい。また、硬化性の観点からは、2個以上のアミノ基を有する多官能のアミン系硬化剤を用いることが好ましい。
 アミン系硬化剤を用いてメソゲン骨格を有するエポキシ樹脂を硬化させると、高靭性を有する硬化物が得られる傾向にある。
As an amine curing agent, those which are usually used can be used without particular limitation, and those which are commercially available may be used. The amine curing agent may be used alone or in combination of two or more. Among them, from the viewpoint of heat resistance, it is preferable to use an amine-based curing agent having a benzene ring or a naphthalene ring, and it is more preferable to use an amine-based curing agent having an amino group on the benzene ring or naphthalene ring. From the viewpoint of curability, it is preferable to use a polyfunctional amine-based curing agent having two or more amino groups.
When an epoxy resin having a mesogen skeleton is cured using an amine curing agent, a cured product having high toughness tends to be obtained.
 アミン系硬化剤として、例えば、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,4,4’-トリアミノジフェニルエーテル、4,4’-ジアミノ-2,2’-ジメチルビフェニル、4,4’-ジアミノ-3,3’-ジメトキシビフェニル、4,4’-ジアミノフェニルベンゾエート、1,5-ジアミノナフタレン、1,3-ジアミノナフタレン、1,2-フェニレンジアミン、1,3-フェニレンジアミン、1,4-フェニレンジアミン、4,4’-ジアミノベンズアニリド、3,3’-ジアミノベンズアニリド、トリメチレン-ビス-4-アミノベンゾアート、1,4-ジアミノナフタレン、及び1,8-ジアミノナフタレンが挙げられる。耐熱性、保存安定性等の観点からは、4,4’-ジアミノジフェニルスルホンが好ましい。 As an amine curing agent, for example, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, 4 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,4,4'-triaminodiphenyl ether, 4,4'-diamino-2,2'-dimethylbiphenyl, 4,4'-diamino-3, 3'-dimethoxybiphenyl, 4,4'-diaminophenylbenzoate, 1,5-diaminonaphthalene, 1,3-diaminonaphthalene, 1,2-phenylenediamine, 1,3-phenylenediamine, 1,4-phenylenediamine, 4,4'-Diaminobenzanilide, 3,3'-diaminobenzanili , Trimethylene - bis-4-aminobenzoate, 1,4-diaminonaphthalene, and 1,8-diaminonaphthalene and the like. From the viewpoint of heat resistance, storage stability and the like, 4,4'-diaminodiphenyl sulfone is preferred.
 硬化剤の含有量は特に制限されない。
 例えば、硬化剤としてフェノール系硬化剤を用いる場合、フェノール系硬化剤に含有されるフェノール性水酸基の活性水素の当量数(フェノール性水酸基の当量数)と、エポキシ樹脂に含有されるエポキシ基の当量数との比(フェノール性水酸基の当量数/エポキシ基の当量数)が0.5~2.0となることが好ましく、0.8~1.2となることがより好ましい。
 また、例えば、硬化剤としてアミン系硬化剤を用いる場合、効率的に硬化反応を行う観点からは、アミン系硬化剤の活性水素の当量数と、エポキシ樹脂のエポキシ基の当量数との比(活性水素の当量数/エポキシ基の当量数)が、0.3~3.0であることが好ましく、0.5~2.0であることがより好ましい。
The content of the curing agent is not particularly limited.
For example, when using a phenol-based curing agent as the curing agent, the equivalent number of active hydrogens of the phenolic hydroxyl group contained in the phenol-based curing agent (the equivalent number of phenolic hydroxyl groups) and the equivalent weight of the epoxy group contained in the epoxy resin The ratio to the number (number of equivalents of phenolic hydroxyl group / number of equivalents of epoxy group) is preferably 0.5 to 2.0, and more preferably 0.8 to 1.2.
Also, for example, when using an amine-based curing agent as the curing agent, the ratio of the number of equivalents of active hydrogen of the amine-based curing agent to the number of equivalents of epoxy groups of the epoxy resin The number of equivalents of active hydrogen / the number of equivalents of epoxy groups is preferably 0.3 to 3.0, and more preferably 0.5 to 2.0.
-無機充填材-
 エポキシ樹脂組成物は、無機充填材を含む。この無機充填材は、保護材に含有される無機充填材として前述したものと同様である。
-Inorganic filler-
The epoxy resin composition contains an inorganic filler. This inorganic filler is the same as that described above as the inorganic filler contained in the protective material.
 エポキシ樹脂組成物中の無機充填材の含有率は、熱伝導性、成形性、機械強度等の観点から、エポキシ樹脂組成物の固形分の全体積に対して、55体積%~95体積%であることが好ましく、60体積%~95体積%であることがより好ましく、70体積%~85体積%であることがさらに好ましい。無機充填材の含有率が55体積%以上であると、高い熱伝導性を達成することができる傾向にある。一方、無機充填材の含有率が95体積%以下であると、成形性に優れたエポキシ樹脂組成物を得ることができる傾向にある。 The content of the inorganic filler in the epoxy resin composition is 55% by volume to 95% by volume with respect to the total volume of the solid content of the epoxy resin composition from the viewpoints of thermal conductivity, moldability, mechanical strength, etc. The content is preferably 60% by volume to 95% by volume, and more preferably 70% by volume to 85% by volume. If the content of the inorganic filler is 55% by volume or more, high thermal conductivity tends to be achieved. On the other hand, when the content of the inorganic filler is 95% by volume or less, an epoxy resin composition having excellent moldability tends to be obtained.
 なお、本開示においてエポキシ樹脂組成物の固形分とは、エポキシ樹脂組成物から揮発性成分を除いた残りの成分を意味する。 In addition, in this indication, the solid content of an epoxy resin composition means the remaining component except the volatile component from an epoxy resin composition.
 エポキシ樹脂組成物中の無機充填材の含有率(体積%)は、次式により求めた値とする。
 無機充填材含有率(体積%)=[(Cw/Cd)/{(Aw/Ad)+(Bw/Bd)+(Cw/Cd)+(Dw/Dd)+(Ew/Ed)+(Fw/Fd)}]×100
The content (volume%) of the inorganic filler in the epoxy resin composition is a value determined by the following equation.
Inorganic filler content (% by volume) = [(Cw / Cd) / {(Aw / Ad) + (Bw / Bd) + (Cw / Cd) + (Dw / Dd) + (Ew / Ed) + (Fw) / Fd)}] × 100
 ここで、各変数は以下の通りである。
 Aw:エポキシ樹脂の質量組成比(質量%)
 Bw:硬化剤の質量組成比(質量%)
 Cw:無機充填材の質量組成比(質量%)
 Dw:必要に応じて用いられる硬化促進剤の質量組成比(質量%)
 Ew:必要に応じて用いられるシランカップリング剤の質量組成比(質量%)
 Fw:必要に応じて用いられるその他の成分の質量組成比(質量%)
 Ad:エポキシ樹脂の比重
 Bd:硬化剤の比重
 Cd:無機充填材の比重
 Dd:必要に応じて用いられる硬化促進剤の比重
 Ed:必要に応じて用いられるシランカップリング剤の比重
 Fd:必要に応じて用いられるその他の成分の比重
Here, each variable is as follows.
Aw: mass composition ratio of epoxy resin (mass%)
Bw: mass composition ratio of the curing agent (mass%)
Cw: mass composition ratio of inorganic filler (mass%)
Dw: mass composition ratio (% by mass) of a curing accelerator used as needed
Ew: mass composition ratio (mass%) of silane coupling agent used as needed
Fw: mass composition ratio (mass%) of other components used as needed
Ad: Specific gravity of epoxy resin Bd: Specific gravity of curing agent Cd: Specific gravity of inorganic filler Dd: Specific gravity of curing accelerator used as required Ed: Specific gravity of silane coupling agent used as needed Fd: Necessary Specific gravity of other ingredients used accordingly
 エポキシ樹脂組成物中の無機充填材の重量基準の含有率は、無機充填材の種類等により適宜調整することができる。例えば、無機充填材がアルミナである場合、エポキシ樹脂組成物中の無機充填材の含有率は、エポキシ樹脂組成物の固形分に対して、80質量%~99質量%であることが好ましく、85質量%~98質量%であることがより好ましく、90質量%~95質量%であることがさらに好ましい。 The content ratio by weight of the inorganic filler in the epoxy resin composition can be appropriately adjusted depending on the type of the inorganic filler and the like. For example, when the inorganic filler is alumina, the content of the inorganic filler in the epoxy resin composition is preferably 80% by mass to 99% by mass with respect to the solid content of the epoxy resin composition, and 85 The content is more preferably in the range of 90% by mass to 90% by mass, and further preferably in the range of 90% by mass to 95% by mass.
-硬化促進剤-
 エポキシ樹脂組成物は、必要に応じて硬化促進剤を含有してもよい。
 硬化剤と共に硬化促進剤を併用することで、エポキシ樹脂組成物をさらに充分に硬化させることができる。硬化促進剤の種類及び配合量は特に限定されず、反応速度、反応温度、保管性等の観点から、適切なものを選択することができる。硬化促進剤は1種を単独で用いても2種類以上を併用してもよい。
-Hardening accelerator-
The epoxy resin composition may optionally contain a curing accelerator.
By using a curing accelerator together with the curing agent, the epoxy resin composition can be cured more sufficiently. The type and amount of the curing accelerator are not particularly limited, and may be selected appropriately from the viewpoint of reaction rate, reaction temperature, storage stability and the like. The curing accelerator may be used alone or in combination of two or more.
 硬化促進剤の具体例としては、イミダゾール系化合物、有機リン系化合物、第3級アミン、第4級アンモニウム塩等が挙げられる。中でも、耐熱性の観点から、有機ホスフィン化合物;有機ホスフィン化合物に無水マレイン酸、キノン化合物(1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等)、ジアゾフェニルメタン、フェノール樹脂などのπ結合をもつ化合物を付加してなる分子内分極を有する化合物;及び有機ホスフィン化合物と有機ボロン化合物(テトラフェニルボレート、テトラ-p-トリルボレート、テトラ-n-ブチルボレート等)との錯体;からなる群より選択される少なくとも1つであることが好ましい。 Specific examples of the curing accelerator include imidazole compounds, organic phosphorus compounds, tertiary amines, quaternary ammonium salts and the like. Among them, from the viewpoint of heat resistance, organic phosphine compounds; organic phosphine compounds maleic anhydride, quinone compounds (1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2, 6-Dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone etc.), diazophenylmethane, phenol resin etc. A compound having an intramolecular polarization formed by adding a compound having a π bond; and a complex of an organic phosphine compound and an organic boron compound (tetraphenyl borate, tetra-p-tolyl borate, tetra-n-butyl borate, etc.); It is preferable that it is at least one selected from the group consisting of
 有機ホスフィン化合物としては、具体的には、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキルアルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等が挙げられる。 Specific examples of the organic phosphine compound include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine and tris (dialkylphenyl). Phosphine, tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkyl aryl phosphine Alkyl diaryl phosphine etc. are mentioned.
 イミダゾール化合物としては、具体的には、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-(1-シアノエチル)-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテート、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、エポキシ樹脂とイミダゾール類の付加体等が挙げられる。イミダゾール化合物をマイクロカプセル化して潜在性を高めたものを用いてもよい。上記に例示されるイミダゾール化合物は、常温(25℃)で固形であり、作業性に優れる。 Specific examples of the imidazole compound include 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2 -Methylimidazole, 1-benzyl-2-phenylimidazole, 1- (1-cyanoethyl) -2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1 -Cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2' -Ethyl-4'-methylimidazolyl- (1 ')]-ethyl-s-to Azine, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5- Examples thereof include dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, adducts of epoxy resins and imidazoles, and the like. The imidazole compound may be microencapsulated to increase its potential. The imidazole compound exemplified above is solid at normal temperature (25 ° C.) and is excellent in workability.
 エポキシ樹脂組成物が硬化促進剤を含む場合、エポキシ樹脂組成物中の硬化促進剤の含有率は特に制限されない。流動性及び成形性の観点からは、硬化促進剤の含有率は、エポキシ樹脂と硬化剤の合計質量に対して0.1質量%~5.0質量%であることが好ましく、0.5質量%~3質量%であることがより好ましい。 When the epoxy resin composition contains a curing accelerator, the content of the curing accelerator in the epoxy resin composition is not particularly limited. From the viewpoint of flowability and moldability, the content of the curing accelerator is preferably 0.1 mass% to 5.0 mass% with respect to the total mass of the epoxy resin and the curing agent, 0.5 mass More preferably, it is% to 3% by mass.
-シランカップリング剤-
 エポキシ樹脂組成物は、必要に応じてシランカップリング剤を含有してもよい。エポキシ樹脂組成物がシランカップリング剤を含むと、無機充填材の表面とその周りを取り囲むエポキシ樹脂との間で相互作用を生じさせ、流動性が向上し、高熱伝導化が達成され、さらには水分の浸入を妨げることにより絶縁信頼性が向上する傾向にある。
-Silane coupling agent-
The epoxy resin composition may optionally contain a silane coupling agent. When the epoxy resin composition contains a silane coupling agent, an interaction is caused between the surface of the inorganic filler and the epoxy resin surrounding the surface, flowability is improved, high thermal conductivity is achieved, and further, The insulation reliability tends to be improved by preventing the entry of moisture.
 シランカップリング剤の種類は特に制限されず、1種類を単独で用いても、2種類以上を併用してもよい。中でも、フェニル基を有するシランカップリング剤が好ましい。フェニル基を含有するシランカップリング剤は、メソゲン骨格を有するエポキシ樹脂と相互作用しやすい。このため、エポキシ樹脂組成物がフェニル基を含有するシランカップリング剤を含有することで、硬化物としたときに、より優れた熱伝導性が達成される傾向にある。 The type of silane coupling agent is not particularly limited, and one type may be used alone, or two or more types may be used in combination. Among them, silane coupling agents having a phenyl group are preferred. The silane coupling agent containing a phenyl group is likely to interact with the epoxy resin having a mesogen skeleton. For this reason, when an epoxy resin composition contains the silane coupling agent containing a phenyl group, when it is set as hardened | cured material, it exists in the tendency for more superior thermal conductivity to be achieved.
 フェニル基を含有するシランカップリング剤の種類は特に限定されない。フェニル基を有するシランカップリング剤の具体例としては、3-フェニルアミノプロピルトリメトキシシラン、3-フェニルアミノプロピルトリエトキシシラン、N-メチルアニリノプロピルトリメトキシシラン、N-メチルアニリノプロピルトリエトキシシラン、3-フェニルイミノプロピルトリメトキシシラン、3-フェニルイミノプロピルトリエトキシシラン、フェニルトリメトシキシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、トリフェニルメトキシシラン、トリフェニルエトキシシラン等が挙げられる。フェニル基を含有するシランカップリング剤は1種類単独で用いても、2種類以上を併用してもよい。フェニル基を含有するシランカップリング剤は市販品を用いてもよい。 The type of silane coupling agent containing a phenyl group is not particularly limited. Specific examples of the silane coupling agent having a phenyl group include 3-phenylaminopropyltrimethoxysilane, 3-phenylaminopropyltriethoxysilane, N-methylanilinopropyltrimethoxysilane, N-methylanilinopropyltriethoxy Silanes, 3-phenyliminopropyltrimethoxysilane, 3-phenyliminopropyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, triphenylmethoxysilane, triphenylethoxysilane, etc. It can be mentioned. The phenyl coupling agents may be used alone or in combination of two or more. A commercially available silane coupling agent containing a phenyl group may be used.
 シランカップリング剤全体に占めるフェニル基を有するシランカップリング剤の割合は、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。 It is preferable that the ratio of the silane coupling agent which has a phenyl group to the whole silane coupling agent is 50 mass% or more, It is more preferable that it is 80 mass% or more, It is more preferable that it is 90 mass% or more .
 無機充填材の表面とその周りを取り囲むエポキシ樹脂を接近させ、優れた熱伝導率を達成する観点からは、ケイ素原子(Si)にフェニル基が直接結合しているシランカップリング剤を含んでいてもよい。 From the viewpoint of achieving excellent thermal conductivity by bringing the surface of the inorganic filler and the epoxy resin surrounding it close to each other and achieving excellent thermal conductivity, it contains a silane coupling agent in which a phenyl group is directly bonded to a silicon atom (Si) It is also good.
 シランカップリング剤がケイ素原子(Si)にフェニル基が直接結合しているシランカップリング剤を含む場合、フェニル基を有するシランカップリング剤に占める、ケイ素原子(Si)にフェニル基が直接結合しているシランカップリング剤の割合は、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。 When the silane coupling agent contains a silane coupling agent in which a phenyl group is directly bonded to a silicon atom (Si), the phenyl group is directly bonded to a silicon atom (Si) in the silane coupling agent having a phenyl group The proportion of the silane coupling agent is preferably 30% by mass or more, more preferably 50% by mass or more, and still more preferably 80% by mass or more.
 エポキシ樹脂組成物がシランカップリング剤を含む場合、シランカップリング剤は、無機充填材の表面に付着した状態で存在していても、無機充填材の表面に付着しない状態で存在していても、双方が混在していてもよい。 When the epoxy resin composition contains a silane coupling agent, the silane coupling agent may be present in the state of being attached to the surface of the inorganic filler or in the state of not being attached to the surface of the inorganic filler. , And both may be mixed.
 シランカップリング剤の少なくとも一部が無機充填材の表面に付着している場合、無機充填材の比表面積あたりのシランカップリング剤由来のケイ素原子の付着量は、5.0×10-6モル/m~10.0×10-6モル/mが好ましく、5.5×10-6モル/m~9.5×10-6モル/mがより好ましく、6.0×10-6モル/m~9.0×10-6モル/mがさらに好ましい。 When at least a part of the silane coupling agent adheres to the surface of the inorganic filler, the adhesion amount of silicon atoms derived from the silane coupling agent per specific surface area of the inorganic filler is 5.0 × 10 −6 mol / M 2 to 10.0 × 10 −6 mol / m 2 is preferable, 5.5 × 10 −6 mol / m 2 to 9.5 × 10 −6 mol / m 2 is more preferable, and 6.0 × 10 6 More preferably, it is −6 mol / m 2 to 9.0 × 10 −6 mol / m 2 .
 無機充填材の比表面積あたりのシランカップリング剤由来のケイ素原子の被覆量の測定方法は、以下の通りである。
 まず、無機充填材の比表面積の測定法としては、主にBET法が適用される。BET法とは、窒素(N)、アルゴン(Ar)、クリプトン(Kr)等の不活性気体分子を固体粒子に吸着させ、吸着した気体分子の量から固体粒子の比表面積を測定する気体吸着法である。比表面積の測定は、比表面積細孔分布測定装置(例えば、ベックマン・コールター製、SA3100)を用いて行うことができる。
The measuring method of the coating amount of the silicon atom derived from the silane coupling agent per specific surface area of an inorganic filler is as follows.
First, the BET method is mainly applied as a method of measuring the specific surface area of the inorganic filler. The BET method is a gas adsorption method in which inert gas molecules such as nitrogen (N 2 ), argon (Ar), krypton (Kr) and the like are adsorbed on solid particles and the specific surface area of solid particles is measured from the amount of adsorbed gas molecules. It is a law. The measurement of the specific surface area can be performed using a specific surface area pore distribution measuring apparatus (for example, manufactured by Beckman Coulter, SA3100).
 さらに、無機充填材の表面に存在するシランカップリング剤由来のケイ素原子を定量する。定量方法としては、29Si CP/MAS(Cross-Polarization/Magic angle spinning)固体NMR(核磁気共鳴)が挙げられる。核磁気共鳴装置(例えば、日本電子株式会社製、JNM-ECA700)は高い分解能を有するため、エポキシ樹脂組成物が無機充填材としてシリカを含む場合でも、無機充填材としてのシリカ由来のケイ素原子と、シランカップリング剤由来のケイ素原子とを区別することが可能である。
 エポキシ樹脂組成物がシランカップリング剤由来のケイ素原子以外のケイ素原子を含まない場合は、蛍光X線分析装置(例えば、株式会社リガク製、Supermini200)によってもシランカップリング剤由来のケイ素原子を定量することができる。
Furthermore, silicon atoms derived from the silane coupling agent present on the surface of the inorganic filler are quantified. The quantitative method includes 29 Si CP / MAS (Cross-Polarization / Magic angle spinning) solid-state NMR (nuclear magnetic resonance). A nuclear magnetic resonance apparatus (for example, JNM-ECA700 manufactured by Nippon Denshi Co., Ltd.) has high resolution, and therefore, even when the epoxy resin composition contains silica as an inorganic filler, the silicon atom derived from silica as an inorganic filler It is possible to distinguish it from the silicon atom derived from the silane coupling agent.
When the epoxy resin composition does not contain a silicon atom other than the silicon atom derived from the silane coupling agent, the silicon atom derived from the silane coupling agent is also quantified by a fluorescent X-ray analyzer (for example, Supermini 200 manufactured by Rigaku Corporation) can do.
 上述のようにして得られた無機充填材の比表面積と、無機充填材の表面に存在するシランカップリング剤由来のケイ素原子の量とに基づき、無機充填材の比表面積あたりのシランカップリング剤由来のケイ素原子の被覆量が算出される。 Silane coupling agent per specific surface area of the inorganic filler, based on the specific surface area of the inorganic filler obtained as described above and the amount of silicon atoms derived from the silane coupling agent present on the surface of the inorganic filler The coating amount of the silicon atom derived from is calculated.
 上記測定を行うにあたり、エポキシ樹脂組成物に含まれている無機充填材は、例えば、以下に挙げる方法によってエポキシ樹脂組成物から取り出すことができる。
(1)エポキシ樹脂組成物を磁器製のるつぼに入れ、マッフル炉等で加熱(例えば600℃)して樹脂成分を燃焼させる。
(2)エポキシ樹脂組成物の樹脂成分を適当な溶媒に溶解させて無機充填材をろ過により回収し、乾燥させる。
In performing the said measurement, the inorganic filler contained in the epoxy resin composition can be taken out from an epoxy resin composition by the method mentioned below, for example.
(1) The epoxy resin composition is placed in a porcelain crucible and heated (eg, 600 ° C.) in a muffle furnace or the like to burn the resin component.
(2) The resin component of the epoxy resin composition is dissolved in a suitable solvent, and the inorganic filler is recovered by filtration and dried.
 エポキシ樹脂組成物がシランカップリング剤を含む場合、シランカップリング剤のエポキシ樹脂組成物への添加方法は、特に制限はない。具体的には、エポキシ樹脂、無機充填材等の他の材料を混合する際にシランカップリング剤も添加するインテグラル法、少量の樹脂にシランカップリング剤を混合した後、これを無機充填材等の他の材料と混合するマスターバッチ法、エポキシ樹脂等の他の材料と混合する前に、無機充填材とシランカップリング剤とを混合して予め無機充填材の表面にシランカップリング剤を処理する前処理法などがある。前処理法としては、シランカップリング剤の原液又は溶液を無機充填材とともに高速撹拌により分散させて処理する乾式法、シランカップリング剤の希薄溶液で無機充填材をスラリー化したり、無機充填材にシランカップリング剤を浸漬したりすることで無機充填材表面にシランカップリング剤処理を施す湿式法等が挙げられる。 When the epoxy resin composition contains a silane coupling agent, the method of adding the silane coupling agent to the epoxy resin composition is not particularly limited. Specifically, an integral method in which a silane coupling agent is also added when mixing other materials such as an epoxy resin and an inorganic filler, a silane coupling agent is mixed with a small amount of resin, and then this is used as an inorganic filler Before mixing with other materials such as masterbatch method and epoxy resin mixed with other materials, etc., the inorganic filler and the silane coupling agent are mixed and the silane coupling agent is previously added to the surface of the inorganic filler. There is a pretreatment method to be processed. As a pretreatment method, a dry method in which a stock solution or a solution of a silane coupling agent is dispersed by high speed stirring with an inorganic filler and treated, a slurry of the inorganic filler with a dilute solution of a silane coupling agent, an inorganic filler The wet method etc. which perform a silane coupling agent process on the inorganic filler surface by immersing a silane coupling agent etc. are mentioned.
-その他の成分-
 エポキシ樹脂組成物には、上述した成分に加え、その他の成分を含んでもよい。その他の成分としては、酸化型及び非酸化型のポリオレフィン、カルナバワックス、モンタン酸エステル、モンタン酸、ステアリン酸等の離型剤;シリコーンオイル、シリコーンゴム粉末、アクリル、イミド等の高分子エラストマなどの応力緩和剤;グラスファイバー等の補強材;カーボン等の着色材;リン系及び水酸化物系の難燃剤;ボイド抑制のための消泡材などが挙げられる。その他の成分は、それぞれ、1種類単独で用いても2種類以上を併用してもよい。
-Other ingredients-
The epoxy resin composition may contain other components in addition to the components described above. Other components include release agents such as oxidized and non-oxidized polyolefins, carnauba wax, montanic acid ester, montanic acid, stearic acid and the like; silicone oil, silicone rubber powder, polymer elastomer such as acrylic and imide, etc. Stress relaxation agents; Reinforcing materials such as glass fibers; Coloring materials such as carbon; Phosphorous-based and hydroxide-based flame retardants; Defoaming materials for void suppression and the like. The other components may be used alone or in combination of two or more.
-エポキシ樹脂組成物の調製方法-
 エポキシ樹脂組成物の調製方法は、特に制限されない。一般的な手法としては、成分をミキサー等によって充分混合した後、溶融混練し、冷却し、粉砕する方法が挙げられる。溶融混練は、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で行うことができる。エポキシ樹脂組成物は、成形条件に合うような寸法及び質量でタブレット化すると使いやすい。
-Method of preparing epoxy resin composition-
The preparation method of the epoxy resin composition is not particularly limited. As a general method, after the components are sufficiently mixed by a mixer or the like, a method of melt-kneading, cooling and pulverizing may be mentioned. Melt-kneading can be carried out with a kneader, roll, extruder or the like which has been heated to 70 ° C. to 140 ° C. The epoxy resin composition is easy to use when it is tableted in such a size and mass as to meet molding conditions.
 保護材付き厚銅回路は、厚銅回路の厚み方向に絶縁層をさらに有していてもよい。絶縁層の幅及び長さは保護材付き厚銅回路と同じであってもよく、異なっていてもよい。
 厚銅回路の厚み方向に絶縁層を配置する方法は特に制限されない。例えば、シート状の絶縁層を保護材付き厚銅回路の厚み方向に貼り付け、必要に応じて硬化処理を行う方法、及び保護材付き厚銅回路と絶縁層とを一体成形する方法が挙げられる。
The thick copper circuit with protective material may further have an insulating layer in the thickness direction of the thick copper circuit. The width and length of the insulating layer may be the same as or different from that of the protected thick copper circuit.
The method for arranging the insulating layer in the thickness direction of the thick copper circuit is not particularly limited. For example, a method of affixing a sheet-like insulating layer in the thickness direction of a thick-layer copper circuit with a protective material and performing curing treatment as needed, and a method of integrally molding a thick copper circuit with a protective material and an insulating layer .
<保護材付き厚銅回路の作製方法>
 保護材付き厚銅回路の作製方法は特に制限されない。例えば、以下のようにして作製することができる。
 まず、銅板を打抜き、切削等により切断して所望の形状の回路の状態に加工する。次いで、粘着フィルム等の仮基材の上に作製した回路を配置する。必要に応じて回路形成の際に生じたバリ、残渣等を除去してもよい。その後、回路の間の空間及び必要に応じて回路の外縁部に保護材を形成し、必要に応じて硬化処理等を行う。その後、回路から仮基材を剥離する。次いで、必要に応じて樹脂部の形成時に生じたバリの除去、樹脂の後硬化処理等を行って、厚銅回路を得る。
<Method of producing thick copper circuit with protective material>
There is no particular limitation on the method of producing the protective copper circuit. For example, it can be produced as follows.
First, a copper plate is punched and cut by cutting or the like to form a circuit having a desired shape. Next, the prepared circuit is disposed on a temporary base such as an adhesive film. If necessary, burrs, residues and the like generated during circuit formation may be removed. After that, a protective material is formed on the space between the circuits and the outer edge of the circuits as needed, and a curing process is performed as needed. Thereafter, the temporary base material is peeled off from the circuit. Next, removal of burrs generated during formation of the resin portion, post curing treatment of the resin, and the like are performed as necessary to obtain a thick copper circuit.
 厚銅回路の間の空間に保護材を配置する方法は、特に制限されない。例えば、粉末等の固体状の樹脂材料を用いる方法として押出成形法、圧縮成形法、トランスファー成形法、インサート成形方法等が挙げられ、液状の樹脂材料を用いる方法として注型法、塗布法、印刷法、埋め込み法等が挙げられる。厚銅回路の間の空間に保護材を配置する際は、厚銅回路を樹脂シート等の仮基材上に配置してもよい。特に、トランスファー成形法により保護材を厚銅回路に配置すると、回路間に空隙なく保護材を配置することができるため、厚銅回路との密着性が向上し、厚銅回路と保護材との界面におけるボイド等を抑制することができる傾向にある。そのため、絶縁信頼性が向上する傾向にある。 The method of arranging the protective material in the space between the thick copper circuits is not particularly limited. For example, extrusion molding method, compression molding method, transfer molding method, insert molding method etc. may be mentioned as a method of using solid resin material such as powder, etc. As a method of using liquid resin material, casting method, coating method, printing Law, embedding method, etc. When disposing the protective material in the space between the thick copper circuits, the thick copper circuits may be disposed on a temporary base material such as a resin sheet. In particular, when the protective material is disposed on the thick copper circuit by the transfer molding method, the protective material can be disposed without an air gap between the circuits, so the adhesion with the thick copper circuit is improved, and the thick copper circuit and the protective material are It tends to be able to suppress voids and the like at the interface. Therefore, insulation reliability tends to be improved.
 成形時の金型の温度は特に制限されず、150℃~200℃としてもよい。保護材として、メソゲン骨格を有し且つ結晶相から液晶相に相転移する相転移温度が140℃以下のエポキシ樹脂を含有するエポキシ樹脂組成物を用いる場合、当該エポキシ樹脂の相転移温度以上150℃以下とすることが好ましく、140℃以下とすることがさらに好ましい。エポキシ樹脂の相転移温度以上であると成形時にエポキシ樹脂が充分に溶融して成形しやすくなり、150℃以下であると成形物の熱伝導率に優れる傾向がある。 The temperature of the mold at the time of molding is not particularly limited, and may be 150 ° C. to 200 ° C. When using an epoxy resin composition containing an epoxy resin having a mesogen skeleton and having a phase transition temperature of 140 ° C. or less which causes a phase transition from a crystalline phase to a liquid crystal phase as the protective material, the phase transition temperature of the epoxy resin is 150 ° C. or higher It is preferable to set it as the following, and it is more preferable to set it as 140 degrees C or less. When the temperature is above the phase transition temperature of the epoxy resin, the epoxy resin is sufficiently melted and easily molded at the time of molding, and when it is 150 ° C. or less, the thermal conductivity of the molded product tends to be excellent.
 成形物は、CuKα線を用いたX線回折法で得られるX線回折スペクトルにおいて、回折角2θが3.0°~3.5°の範囲に回折ピークを有することが好ましい。このような回折ピークを有する成形物は、高次構造の中でも特に秩序性の高いスメクチック構造が形成されており、熱伝導性に優れる。 The molded product preferably has a diffraction peak in the range of a diffraction angle 2θ of 3.0 ° to 3.5 ° in an X-ray diffraction spectrum obtained by an X-ray diffraction method using a CuKα ray. A molded product having such a diffraction peak has a smectic structure which is particularly high among the higher-order structures, and is excellent in thermal conductivity.
 なお、本開示におけるCuKα線を用いたX線回折測定の詳細は以下の通りである。
〔測定条件〕
使用装置:薄膜構造評価用X線回折装置ATX-G(株式会社リガク製)
X線種類:CuKα
走査モード:2θ/ω
出力:50kV、300mA
S1スリット:幅0.2mm、高さ:10mm
S2スリット:幅0.2mm、高さ:10mm
RSスリット:幅0.2mm、高さ:10mm
測定範囲:2θ=2.0°~4.5°
サンプリング幅:0.01°
The details of the X-ray diffraction measurement using the CuKα ray in the present disclosure are as follows.
〔Measurement condition〕
Device used: X-ray diffractometer ATX-G (manufactured by Rigaku Corporation) for thin film structure evaluation
X-ray type: CuKα
Scanning mode: 2θ / ω
Output: 50kV, 300mA
S1 slit: Width 0.2 mm, height: 10 mm
S2 slit: Width 0.2 mm, height: 10 mm
RS slit: Width 0.2 mm, height: 10 mm
Measurement range: 2θ = 2.0 ° to 4.5 °
Sampling width: 0.01 °
 保護材は成形後、金型から外した状態の成形物をそのまま使用してもよく、必要に応じてオーブン等で加熱することにより後硬化してから使用してもよい。 The protective material may be used as it is after being molded and removed from the mold, or may be used after being post-cured by heating in an oven or the like, if necessary.
 成形物を加熱により後硬化すると、成形硬化物が得られる。成形物の加熱条件は、保護材に含有される成分の種類及び量に応じて適宜選択することができる。例えば、成形物の加熱温度は130℃~200℃が好ましく、150℃~180℃がより好ましい。成形物の加熱時間は、1時間~10時間が好ましく、2時間~6時間がより好ましい。 When the molded product is post-cured by heating, a molded cured product is obtained. The heating conditions of the molded product can be appropriately selected according to the type and amount of the components contained in the protective material. For example, the heating temperature of the molding is preferably 130 ° C. to 200 ° C., and more preferably 150 ° C. to 180 ° C. The heating time of the molding is preferably 1 hour to 10 hours, more preferably 2 hours to 6 hours.
 保護材としてメソゲン骨格を有するエポキシ樹脂を含有するエポキシ樹脂組成物を用いる場合、成形硬化物は、後硬化前の成形物と同様に、CuKα線を用いたX線回折法で得られるX線回折スペクトルにおいて、回折角2θが3.0°~3.5°の範囲に回折ピークを有することが好ましい。このことは、成形物中で形成された秩序性の高いスメクチック構造が、加熱による後硬化後も維持され、熱伝導性に優れた成形硬化物を得られることを表している。 When using the epoxy resin composition containing the epoxy resin which has a mesogen frame as a protective material, a shaping | molding hardening thing is the X-ray diffraction obtained by the X ray diffraction method using a CuK alpha ray similarly to the molding before post-hardening In the spectrum, it is preferable that the diffraction angle 2θ has a diffraction peak in the range of 3.0 ° to 3.5 °. This indicates that the highly ordered smectic structure formed in the molded product can be maintained even after post curing by heating, and a molded cured product having excellent thermal conductivity can be obtained.
 次に、実施例により本発明をより具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。なお、特に断りのない限り、「部」及び「%」は質量基準である。 EXAMPLES The present invention will next be described in more detail by way of examples, which should not be construed as limiting the scope of the present invention. In addition, unless there is particular notice, "part" and "%" are mass references.
<エポキシ樹脂組成物の調製>
 以下に、エポキシ樹脂の合成に用いた材料及びその略称を示す。
<Preparation of Epoxy Resin Composition>
Below, the material used for the synthesis | combination of an epoxy resin and its abbreviation are shown.
・エポキシ樹脂モノマー1(trans-4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート、日本国特許第5471975号公報参照、エポキシ当量:212g/eq) Epoxy resin monomer 1 (trans-4- {4- (2,3-epoxypropoxy) phenyl} cyclohexyl = 4- (2,3-epoxypropoxy) benzoate, see Japanese Patent No. 5471975, epoxy equivalent: 212 g / Eq)
・フェノール化合物1
 化合物名:ヒドロキノン(水酸基当量:55g/eq)
・合成溶媒1
 シクロヘキサノン(沸点:156℃)
・反応触媒1
 トリフェニルホスフィン(北興化学工業株式会社製、分子量:262)
・ Phenol compound 1
Compound name: hydroquinone (hydroxy group equivalent: 55 g / eq)
・ Synthetic solvent 1
Cyclohexanone (boiling point: 156 ° C)
・ Reaction catalyst 1
Triphenylphosphine (made by Hokuko Chemical Industry Co., Ltd., molecular weight: 262)
[エポキシ樹脂1の合成]
 500mLの三口フラスコに、エポキシ樹脂モノマー1を50g(0.118mol)量り取り、そこに合成溶媒1(シクロヘキサノン)を80g添加した。三口フラスコに冷却管及び窒素導入管を設置し、溶媒に漬かるように撹拌羽を取り付けた。この三口フラスコを160℃のオイルバスに浸漬し、撹拌を開始した。数分後にエポキシ樹脂モノマー1が溶解し、透明な溶液になったことを確認した後に、フェノール化合物1(ヒドロキノン)を1.3g(0.0118mol)フラスコに添加し、さらに反応触媒1(トリフェニルホスフィン)を0.5g添加し、160℃のオイルバス温度で加熱を継続した。5時間加熱を継続した後に、反応溶液からシクロヘキサノンを減圧留去した残渣を室温まで冷却することにより、エポキシ樹脂1を得た。なお、このエポキシ樹脂1には、合成溶媒の一部と未反応のエポキシ樹脂モノマーも含まれている。
[Synthesis of Epoxy Resin 1]
50 g (0.118 mol) of epoxy resin monomer 1 was weighed into a 500 mL three-necked flask, and 80 g of synthesis solvent 1 (cyclohexanone) was added thereto. A cooling pipe and a nitrogen introducing pipe were placed in a three-necked flask, and a stirring blade was attached so as to be immersed in a solvent. The three-necked flask was immersed in an oil bath at 160 ° C. to start stirring. After several minutes, it was confirmed that the epoxy resin monomer 1 was dissolved, and it became a clear solution, and then 1.3 g (0.0118 mol) of the phenol compound 1 (hydroquinone) was added to the flask, and then the reaction catalyst 1 (triphenyl) was added. 0.5 g of phosphine) was added and heating was continued at an oil bath temperature of 160.degree. After continuing heating for 5 hours, the epoxy resin 1 was obtained by cooling the residue which vacuum-distillated cyclohexanone from the reaction solution to room temperature. The epoxy resin 1 also contains a part of the synthesis solvent and an unreacted epoxy resin monomer.
 エポキシ樹脂1の固形分量を加熱減量法により測定したところ、96.3質量%であった。なお、固形分量は、エポキシ樹脂1をアルミ製のカップに1.0g~1.1g量り取り、180℃の温度に設定した乾燥機内に30分間放置した後の計測量と、加熱前の計測量とに基づき、次式により算出した。
 固形分量(質量%)=(30分間放置した後の計測量/加熱前の計測量)×100
The solid content of the epoxy resin 1 was measured by a heat loss method and found to be 96.3% by mass. In addition, 1.0 g-1.1 g of epoxy resin 1 was weighed in an aluminum cup, and the solid content was measured for 30 minutes in a dryer set at a temperature of 180 ° C., and the measured amount before heating. Based on the following equation.
Solid content (mass%) = (measured after leaving for 30 minutes / measured before heating) × 100
 エポキシ樹脂1のエポキシ当量を過塩素酸滴定法により測定したところ、256g/eqであった。また、エポキシ樹脂1の軟化点を環球法により測定したところ、75℃~80℃であった。 It was 256 g / eq when the epoxy equivalent of the epoxy resin 1 was measured by the perchloric-acid titration method. In addition, the softening point of the epoxy resin 1 was measured by the ring and ball method, and was 75 ° C. to 80 ° C.
[エポキシ樹脂2の合成]
 フェノール化合物1(ヒドロキノン)の添加量を2.5g(0.0227mol)に変更した以外は、実施例1と同様にしてエポキシ樹脂2を得た。なお、このエポキシ樹脂2には、合成溶媒の一部と未反応のエポキシ樹脂モノマーも含まれている。
 エポキシ樹脂2の固形分量を加熱減量法により測定したところ、96.1質量%であった。また、エポキシ樹脂2のエポキシ当量を過塩素酸滴定法により測定したところ、320g/eqであった。
 また、エポキシ樹脂2の軟化点を環球法により測定したところ、70℃~80℃であった。
[Synthesis of Epoxy Resin 2]
An epoxy resin 2 was obtained in the same manner as in Example 1 except that the amount of the phenolic compound 1 (hydroquinone) added was changed to 2.5 g (0.0227 mol). The epoxy resin 2 also contains a part of the synthesis solvent and an unreacted epoxy resin monomer.
The solid content of the epoxy resin 2 was measured by a heat loss method and found to be 96.1% by mass. Moreover, it was 320 g / eq when the epoxy equivalent of the epoxy resin 2 was measured by a perchloric-acid titration method.
The softening point of the epoxy resin 2 was measured by the ring and ball method and was 70 ° C. to 80 ° C.
[エポキシ樹脂組成物の調製]
 下記に示す成分を表1に示す配合割合(質量部)で量り取り、予め70℃~140℃に加熱してあるニーダーで混練し、冷却し、粉砕して、実施例と比較例のエポキシ樹脂組成物を調製した。
[Preparation of Epoxy Resin Composition]
The components shown below are weighed out in proportions (parts by mass) shown in Table 1 and kneaded with a kneader preheated to 70 ° C. to 140 ° C., cooled and pulverized to give epoxy resins of Examples and Comparative Examples. The composition was prepared.
・エポキシ樹脂1
・エポキシ樹脂2
・エポキシ樹脂3…ビフェニル型エポキシ樹脂、三菱ケミカル株式会社、品名「YX-4000」)
・エポキシ樹脂4…ビスフェノールF型エポキシ樹脂、新日鉄住金化学株式会社、品名「YSLV-70XY」)
・ Epoxy resin 1
・ Epoxy resin 2
・ Epoxy resin 3: Biphenyl type epoxy resin, Mitsubishi Chemical Corporation, product name "YX-4000")
・ Epoxy resin 4 ... bisphenol F type epoxy resin, Nippon Steel & Sumikin Chemical Co., Ltd., product name "YSLV-70XY")
・硬化剤1…芳香族ジアミン、和歌山精化工業株式会社、4,4’-ジアミノジフェニルスルホン
・硬化剤2…芳香族ジアミン、和歌山精化工業株式会社、3,4’-ジアミノジフェニルエ-テル
・硬化剤3…多官能フェノール樹脂、エア・ウォーター株式会社、品名「HE910」
Curing agent 1: Aromatic diamine, Wakayama Seika Kogyo Co., Ltd. 4,4'-diaminodiphenyl sulfone Curing agent 2. Aromatic diamine, Wakayama Seika Kogyo Co., Ltd. 3,4'-diaminodiphenyl ether · Hardener 3 ... Multifunctional phenolic resin, Air Water Co., Ltd., product name "HE 910"
・硬化促進剤1…リン系硬化促進剤
・カップリング剤…シランカップリング剤、信越化学工業株式会社、品名「KBM-573」
-Hardening accelerator 1-Phosphorus-based hardening accelerator-Coupling agent-Silane coupling agent, Shin-Etsu Chemical Co., Ltd., product name "KBM-573"
・無機充填材1…D50体積平均粒子径29.0μmのアルミナ粒子
・無機充填材2…D50体積平均粒子径21.0μmのアルミナ粒子
・無機充填材3…D50体積平均粒子径5.5μmのアルミナ粒子
・無機充填材4…D50体積平均粒子径14.9μmのアルミナ粒子
・無機充填材5…D50体積平均粒子径2.0μmのアルミナ粒子
・無機充填材6…D50体積平均粒子径0.4μmのアルミナ粒子
· Inorganic filler 1 · · · D50 volume average particle diameter 29.0μm alumina particles · inorganic filler 2 ... D50 volume average particle diameter 21.0μm alumina particles · inorganic filler 3 · D 50 volume average particle diameter 5.5μm alumina Particles · Inorganic filler 4 ... D50 Alumina particles · Inorganic filler 5 with a volume average particle diameter of 14.9 μm · · · A50 particles with a volume average particle diameter of 2.0 μm · Inorganic fillers 6 ... with a volume average particle diameter of 0.4 μm Alumina particles
・離型剤…モンタン酸エステル(リコワックスE、クラリアントジャパン株式会社製) Releasing agent: Montanic acid ester (Licowax E, manufactured by Clariant Japan Co., Ltd.)
 実施例1~5において、無機充填材の含有率は、保護材の全体積に対し、55体積%~95体積%であり、比較例1において、無機充填材の含有率は、保護材の全体積に対し、55体積%未満である。 In Examples 1 to 5, the content of the inorganic filler is 55% by volume to 95% by volume with respect to the total volume of the protective material, and in Comparative Example 1, the content of the inorganic filler is the entire content of the protective material. Less than 55% by volume with respect to the product.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
(流動性の評価)
 エポキシ樹脂組成物の流動性の評価は、スパイラルフロー試験により行った。
 具体的には、EMMI-1-66に準じたスパイラルフロー測定用金型を用いてエポキシ樹脂組成物を成形し、エポキシ樹脂組成物の成形物の流動距離(cm)を測定した。エポキシ樹脂組成物の成形は、トランスファー成形機を用い、金型温度180℃、成形圧力6.9MPa、硬化時間120秒の条件下で行った。また、流動性は50cm以上をAとし、50cm未満をBとした。
(Evaluation of liquidity)
The evaluation of the flowability of the epoxy resin composition was performed by a spiral flow test.
Specifically, the epoxy resin composition was molded using a spiral flow measurement mold according to EMMI-1-66, and the flow distance (cm) of the molded product of the epoxy resin composition was measured. Molding of the epoxy resin composition was performed using a transfer molding machine under conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 120 seconds. Moreover, fluidity | liquidity made A 50 cm or more into B, and set less than 50 cm.
(高温接着性の評価)
 エポキシ樹脂組成物の高温接着性の評価は、下記により行った。Cu基板上に金型温度180℃、成形圧力7MPa、硬化時間300秒間の条件でトランスファー成形を行い、厚さ0.4mmの硬化物を得た。これを280度に加熱したホットプレート上で15分間静置した。冷却後外観及び超音波映像装置(SAT)を用いて観察し剥離がなかったものをAとし、剥離が観察されたものをBとした。
(Evaluation of high temperature adhesion)
The high temperature adhesiveness evaluation of the epoxy resin composition was performed by the following. Transfer molding was performed on a Cu substrate under conditions of a mold temperature of 180 ° C., a molding pressure of 7 MPa, and a curing time of 300 seconds to obtain a cured product having a thickness of 0.4 mm. This was allowed to stand on a hot plate heated to 280 ° for 15 minutes. The appearance after cooling and observation using an ultrasonic imaging apparatus (SAT) and having no peeling was designated as A, and the one where peeling was observed was designated as B.
(熱伝導率の評価)
 エポキシ樹脂組成物の熱伝導率の評価は、下記により行った。具体的には調製したエポキシ樹脂組成物を用いて、金型温度180℃、成形圧力7MPa、硬化時間300秒間の条件でトランスファー成形を行い、金型形状の硬化物を得た。得られた硬化物をアルキメデス法により測定した比重は3.00であった。また硬化物の熱拡散率を熱拡散率測定装置(NETZSCH社製、LFA467)を用いてレーザーフラッシュ法により測定した。また、熱伝導率は7W/(m・K)以上をAとし、7W/(m・K)未満をBとした。
(Evaluation of thermal conductivity)
The evaluation of the thermal conductivity of the epoxy resin composition was performed as follows. Specifically, transfer molding was performed using the prepared epoxy resin composition under conditions of a mold temperature of 180 ° C., a molding pressure of 7 MPa, and a curing time of 300 seconds, to obtain a cured product of a mold shape. The specific gravity of the obtained cured product measured by the Archimedes method was 3.00. Further, the thermal diffusivity of the cured product was measured by a laser flash method using a thermal diffusivity measuring device (manufactured by NETZSCH, LFA 467). Further, the thermal conductivity is A at 7 W / (m · K) or more, and B at less than 7 W / (m · K).
(回路の変形の観察)
 外観観察及びレーザー変移計によって、回路の変形の有無を観察した。
(Observation of circuit deformation)
The appearance of the circuit was observed by appearance observation and laser displacement meter.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表2に示す通り、保護材が無機充填材を55体積%~95体積%含有する場合、厚銅回路の変形が抑制されていた。また、メソゲン骨格を有するエポキシ樹脂、及びアミン系硬化剤を用いた実施例1~3では、流動性、高温接着性、熱伝導率のいずれも良好な評価が得られた。 As shown in Table 2, when the protective material contained 55% by volume to 95% by volume of the inorganic filler, deformation of the thick copper circuit was suppressed. Further, in Examples 1 to 3 in which the epoxy resin having a mesogen skeleton and the amine curing agent were used, good evaluations were obtained for all of the fluidity, the high temperature adhesion, and the thermal conductivity.
 日本国特許出願第2017-182264号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。
The disclosure of Japanese Patent Application No. 2017-182264 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are as specific and individually as individual documents, patent applications, and technical standards are incorporated by reference. Hereby incorporated by reference.
10 保護材付き厚銅回路
12 厚銅回路
14 保護材
16 無機充填材
18 厚銅回路の間の空間
10 thick copper circuit with protective material 12 thick copper circuit 14 protective material 16 inorganic filler 18 space between thick copper circuits

Claims (12)

  1.  厚銅回路と、
     前記厚銅回路の間の空間に配置され、無機充填材を55体積%~95体積%含有する保護材と、
    を有する保護材付き厚銅回路。
    Thick copper circuit,
    A protective material disposed in the space between the thick copper circuits and containing 55% by volume to 95% by volume of an inorganic filler;
    Thick copper circuit with protective material.
  2.  前記保護材が樹脂組成物又はその硬化物である、請求項1に記載の保護材付き厚銅回路。 The thick protective copper circuit according to claim 1, wherein the protective material is a resin composition or a cured product thereof.
  3.  前記樹脂組成物が、エポキシ樹脂と、硬化剤と、前記無機充填材と、を含有するエポキシ樹脂組成物である、請求項2に記載の保護材付き厚銅回路。 The thick-copper circuit with a protective material according to claim 2, wherein the resin composition is an epoxy resin composition containing an epoxy resin, a curing agent, and the inorganic filler.
  4.  前記エポキシ樹脂が、メソゲン骨格を有するエポキシ樹脂を含む、請求項3に記載の保護材付き厚銅回路。 The thick protective copper circuit according to claim 3, wherein the epoxy resin comprises an epoxy resin having a mesogen skeleton.
  5.  前記メソゲン骨格を有するエポキシ樹脂における結晶相から液晶相に相転移する相転移温度が140℃以下である、請求項4に記載の保護材付き厚銅回路。 The thick copper circuit with a protective material according to claim 4, wherein the phase transition temperature at which phase transition from a crystalline phase to a liquid crystal phase in the epoxy resin having a mesogen skeleton is 140 ° C or less.
  6.  前記メソゲン骨格を有するエポキシ樹脂は、フェノール化合物と、メソゲン骨格を有するエポキシ化合物との反応物を含む、請求項4又は請求項5に記載の保護材付き厚銅回路。 The protected material-thick copper circuit according to claim 4 or 5, wherein the epoxy resin having a mesogen skeleton contains a reaction product of a phenol compound and an epoxy compound having a mesogen skeleton.
  7.  前記メソゲン骨格を有するエポキシ化合物が、下記一般式(I-0)で表される化合物を含む請求項6に記載の保護材付き厚銅回路。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(I-0)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。)
    The thick copper circuit with a protective material according to claim 6, wherein the epoxy compound having a mesogen skeleton contains a compound represented by the following general formula (I-0).
    Figure JPOXMLDOC01-appb-C000001

    (In the general formula (I-0), R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)
  8.  前記硬化剤がアミン系硬化剤を含む、請求項3~請求項7のいずれか1項に記載の保護材付き厚銅回路。 The thick protective copper circuit according to any one of claims 3 to 7, wherein the curing agent comprises an amine curing agent.
  9.  前記アミン系硬化剤が4,4’-ジアミノジフェニルスルホンを含む、請求項8に記載の保護材付き厚銅回路。 The protected thick copper circuit of claim 8, wherein the amine based curing agent comprises 4,4'-diaminodiphenyl sulfone.
  10.  前記保護材が、前記樹脂組成物のトランスファー成形体である、請求項2~請求項9のいずれか1項に記載の保護材付き厚銅回路。 The thick protective copper circuit according to any one of claims 2 to 9, wherein the protective material is a transfer molded product of the resin composition.
  11.  前記保護材が、さらに前記厚銅回路の周囲に配置されている、請求項1~請求項10のいずれか1項に記載の保護材付き厚銅回路。 The protective thickened copper circuit according to any one of claims 1 to 10, wherein the protective material is further disposed around the thick copper circuit.
  12.  前記厚銅回路の厚み方向に絶縁層をさらに有する、請求項1~請求項11のいずれか1項に記載の保護材付き厚銅回路。 The protective copper circuit according to any one of claims 1 to 11, further comprising an insulating layer in the thickness direction of the thick copper circuit.
PCT/JP2018/035213 2017-09-22 2018-09-21 Thick copper circuit with attached protective material WO2019059384A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017182264 2017-09-22
JP2017-182264 2017-09-22

Publications (1)

Publication Number Publication Date
WO2019059384A1 true WO2019059384A1 (en) 2019-03-28

Family

ID=65811413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035213 WO2019059384A1 (en) 2017-09-22 2018-09-21 Thick copper circuit with attached protective material

Country Status (2)

Country Link
TW (1) TW201922909A (en)
WO (1) WO2019059384A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249742A (en) * 2002-02-26 2003-09-05 Shin Kobe Electric Mach Co Ltd Method of manufacturing heavy current circuit substrate
JP2012089681A (en) * 2010-10-20 2012-05-10 Mitsubishi Electric Corp Power semiconductor device
WO2016104788A1 (en) * 2014-12-26 2016-06-30 日立化成株式会社 Epoxy resin molding material, molded article, molded cured article, and method for manufacturing molded article
JP2017101257A (en) * 2011-11-02 2017-06-08 日立化成株式会社 Resin composition, resin sheet, prepreg, laminate, metal substrate, printed wiring board, and power semiconductor device using the same
WO2018189797A1 (en) * 2017-04-10 2018-10-18 日立化成株式会社 Circuit board production method, circuit sheet and circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249742A (en) * 2002-02-26 2003-09-05 Shin Kobe Electric Mach Co Ltd Method of manufacturing heavy current circuit substrate
JP2012089681A (en) * 2010-10-20 2012-05-10 Mitsubishi Electric Corp Power semiconductor device
JP2017101257A (en) * 2011-11-02 2017-06-08 日立化成株式会社 Resin composition, resin sheet, prepreg, laminate, metal substrate, printed wiring board, and power semiconductor device using the same
WO2016104788A1 (en) * 2014-12-26 2016-06-30 日立化成株式会社 Epoxy resin molding material, molded article, molded cured article, and method for manufacturing molded article
WO2018189797A1 (en) * 2017-04-10 2018-10-18 日立化成株式会社 Circuit board production method, circuit sheet and circuit board

Also Published As

Publication number Publication date
TW201922909A (en) 2019-06-16

Similar Documents

Publication Publication Date Title
JP6686907B2 (en) Epoxy resin, epoxy resin composition, epoxy resin composition containing inorganic filler, resin sheet, cured product, and epoxy compound
JP6680351B2 (en) Epoxy resin composition, semi-cured epoxy resin composition, cured epoxy resin composition, molded product and molded cured product
CN108779232B (en) Epoxy resin molding material, molded article, molded cured article, and method for producing molded cured article
WO2017145413A1 (en) Epoxy resin composition, resin sheet, b-stage sheet, c-stage sheet, cured object, metal foil with resin, and metallic substrate
KR20190003788A (en) RESIN COMPOSITION AND METHOD FOR PRODUCING LAMINATE
WO2017209210A1 (en) Epoxy resin composition, b-stage sheet, cured epoxy resin composition, resin sheet, metal foil with resin, and metallic substrate
JP7024777B2 (en) Manufacturing method of epoxy polymer, epoxy resin, epoxy resin composition, resin sheet, B stage sheet, cured product, C stage sheet, metal foil with resin, metal substrate and epoxy resin
JP6512295B2 (en) Epoxy resin molding material, molding and cured product
WO2019059384A1 (en) Thick copper circuit with attached protective material
JP2023000691A (en) Epoxy resin composition and cured article thereof
JP2018162366A (en) Epoxy resin composition, resin sheet, b-stage sheet, c-stage sheet, cured product, resin coated metal foil, and metal substrate
JP2019056077A (en) Epoxy resin composition for thick copper circuit filling
WO2016098784A1 (en) Epoxy resin molding material, molded article, and molded-cured article
JP2019056076A (en) Epoxy resin composition for thick copper circuit filling
WO2019106835A1 (en) Resin composition and method for producing laminate
JP2022165611A (en) Phenoxy resin, thermosetting resin composition, thermally conductive sheet, resin substrate, laminate, and electronic apparatus
WO2017145409A1 (en) Epoxy resin molding material, molded product, molded cured product, and method for producing molded product
JP2021091767A (en) Resin sheet and metal base substrate
KR101985255B1 (en) Epoxy resin composite and printed circuit board comprising isolation using the same
KR101985256B1 (en) Epoxy resin composite and printed circuit board comprising isolation using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP