WO2019059323A1 - Flow path regulation device for hydraulic power generation device - Google Patents

Flow path regulation device for hydraulic power generation device Download PDF

Info

Publication number
WO2019059323A1
WO2019059323A1 PCT/JP2018/034932 JP2018034932W WO2019059323A1 WO 2019059323 A1 WO2019059323 A1 WO 2019059323A1 JP 2018034932 W JP2018034932 W JP 2018034932W WO 2019059323 A1 WO2019059323 A1 WO 2019059323A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
power generation
water collecting
hydroelectric power
water
Prior art date
Application number
PCT/JP2018/034932
Other languages
French (fr)
Japanese (ja)
Inventor
浩氣 向井
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019059323A1 publication Critical patent/WO2019059323A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/04Machines or engines of reaction type; Parts or details peculiar thereto with substantially axial flow throughout rotors, e.g. propeller turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/16Stators
    • F03B3/18Stator blades; Guide conduits or vanes, e.g. adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B7/00Water wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/34Water level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to a flow path regulation device for a hydroelectric power unit installed in a water channel or the like.
  • a hydroelectric generator installed in a water channel or the like converts kinetic energy of water flow into electrical energy, and its output is proportional to the cube of the flow velocity.
  • the output is proportional to the area of the circle created by the rotation of the impeller.
  • the hydraulic power generator 110 disclosed in Patent Document 1 is one in which the impeller 113 attached to the gear box 112 supported by the support column 111 rotates in the flow path 2, A casing 120 covering the entire circumference of the impeller 113 is provided.
  • the casing 120 extends along the gearbox 112, and the inner cross-sectional area thereof is configured to increase from the upstream side to the downstream side of the flow passage 2.
  • the hydroelectric power generation device 110 can be used only in the water channel 2, and if there is not a sufficient amount of water in the water channel 2, the speed-up effect can not be obtained. Therefore, when the water level in the water channel 2 fluctuates and the water level becomes lower than the upper end of the casing 120, a stable output can not be obtained.
  • the casing 120 in the hydraulic power unit 110 of FIG. 18 has a shape (conical shape) in which the cross-sectional area gradually increases from the upstream side to the downstream side, and the outer diameter of the downstream end 120a is growing.
  • the size of the impeller 113 disposed therein near the upstream end 120b of the casing 120 necessarily becomes smaller. As a result, the output obtained for the water channel 2 is reduced.
  • the hydraulic power unit disclosed in Patent Document 2 increases only the width dimension of its casing from the upstream side to the downstream side, and the height dimension is substantially constant from the upstream side to the downstream side. Therefore, even if the water level is low to a certain degree, the entire casing can be submerged without reducing the size of the impeller.
  • An object of the present invention is to provide a flow path regulating device for a hydroelectric power generator, which can obtain the effect of increasing the flow velocity almost without being affected by the water level in the water channel.
  • the hydraulic power generation device and the flow path regulation device are installed in a flow path, and the hydraulic power generation device converts a hydraulic power into a rotational force
  • the flow path regulation device is disposed upstream of the impeller by a predetermined distance of the flow path, and the flow path regulation device is spaced apart from each other in the width direction of the flow path.
  • an interval setting mechanism that can be set to
  • the space setting mechanism is arranged such that at least two water collecting plates are disposed upstream of the impeller by the predetermined distance of the flow path, and the distance between the at least two water collecting plates is from the upstream side of the flow path.
  • the space setting mechanism is arranged such that at least two water collecting plates are disposed upstream of the impeller by the predetermined distance of the flow path, and the distance between the at least two water collecting plates is from the upstream side of the flow path. Since the flowing water accelerated by these water collection plates collides with the impeller, the power generation efficiency of the hydroelectric power generation apparatus is improved as compared with the case where the flow path restriction device is not provided.
  • the water collecting plate is disposed not on the impeller but on the upstream side of the flow path rather than the impeller, unlike the casing that covers the impeller, the flow velocity is increased as long as the impeller is submerged. An effect is obtained.
  • the predetermined distance is a distance such that at least two water collecting plates are not separated from the impeller too much and the flow velocity near the impeller can be increased.
  • the predetermined distance is determined according to the size of the flow path, the amount of water, and the like.
  • the predetermined distance indicates, for example, the distance between the location closest to the impeller among at least two water collection plates and the flow path direction between the blade of the impeller and the blade.
  • the distance between the at least two water collecting plates is preferably larger than the maximum width dimension (outer diameter) of the impeller even at the narrowest downstream side end. Thereby, the water in the flow path collected by the water collection plate can be directed to the entire impeller.
  • the at least two water collecting plates may be two water collecting plates disposed one each on the left and right sides in the width direction of the flow path.
  • the two water collection plates may be symmetrical with respect to the center of the flow path.
  • the two water collecting plates may be disposed such that the upstream side ends of the flow passages of the two water collecting plates face each other and abut on the wall surfaces constituting the flow passages. According to this configuration, the flow path passes between the water collection plates almost without passing through the outer side of the water collection plates, that is, between the wall surface and the water collection plate, so that more water can be collected toward the impeller. The power generation can be increased. This configuration is particularly effective when the amount of water flowing through the flow path is small.
  • the at least two water collecting plates respectively extend in a substantially vertical direction
  • the space setting mechanism has at least two water collecting plate adjusting mechanisms respectively corresponding to the at least two water collecting plates, and each water collecting plate
  • the adjustment mechanism may adjust the direction of the corresponding water collection plate to the flow path to any direction, and fix the water collection plate in that direction.
  • the direction of the water collecting plate with respect to the flow path can be freely changed by each water collecting plate adjusting mechanism. For example, when the amount of water in the flow path is small, the water collection plate can be brought close to the direction perpendicular to the flow path so as to provide greater resistance to the flow, while when the amount of water in the flow path is large, The water collection plate may be brought close to the flow path direction to suppress a situation such as flooding.
  • the direction of the water collection plate can be set according to the condition of the water channel where the hydroelectric power generation apparatus is installed, safe and efficient power generation can be performed.
  • the at least two water collecting plates respectively extend in a substantially vertical direction
  • the space setting mechanism has at least two water collecting plate adjusting mechanisms respectively corresponding to the at least two water collecting plates
  • the adjusting mechanism may include a water collecting plate automatic adjusting mechanism that automatically adjusts the direction of the corresponding water collecting plate to the flow passage according to the condition of the flow passage.
  • the water collecting plate automatic adjusting mechanism of each water collecting plate adjusting mechanism automatically adjusts the direction of the corresponding water collecting plate to the flow passage according to the condition of the flow passage.
  • the orientation of the catchment plate according to the amount of water in the road is set automatically. Therefore, efficient power generation can be performed even without workers around the water channel.
  • the device may have a reaction force application means which applies a force in a direction opposite to the direction of receiving the hydraulic force to direct the water collection plate.
  • the reaction force applying means applies a reaction force to direct the water collection plate.
  • the orientation of the catchment plate is automatically adjusted to the appropriate direction. In this way, the orientation of the water collection plate according to the above-described flow rate of the flow passage is automatically set. Therefore, safe and efficient power generation is possible even without workers around the water channel.
  • the reaction force application means may be a spring.
  • the water collecting plate may be provided with guide means for guiding the at least two water collecting plates in the vertical direction.
  • guide means for guiding the at least two water collecting plates in the vertical direction.
  • the height position of the water collection plate can be easily adjusted by the guide means.
  • the water collection plate can be easily installed in the flow path regulation device.
  • the water collecting plate may be provided with an auxiliary means such as a handle grasped by the operator.
  • the spacing setting mechanism may have a mechanism for moving the guiding means, and the spacing of the water collecting plates interlocked with the guiding means may be set by this mechanism.
  • the upper ends of the at least two water collection plates may be respectively disposed below the upper end of the flow path. According to this configuration, the water flowing above the upper end of the water collection plate is not affected by the water collection plate, but securing the flowing water in this way makes it possible to overflow when the water volume increases. It can be suppressed.
  • the at least two water collecting plates may each have a uniform thickness. According to this configuration, the water collecting plate can be easily manufactured by the flat plate, and the cost can be reduced.
  • each of the two water collecting plates may be a substantially streamlined shape in which the thickness on the upstream side is large and the thickness on the downstream side is small. According to this configuration, it is possible to enhance the speed increasing effect while suppressing the resistance of the water collection plate to the flow of water.
  • the hydroelectric power generation system of the present invention includes the flow path restriction device for a hydroelectric power generation device and the hydroelectric power generation device.
  • the impeller may be of a propeller type in which the rotation axis of the impeller is parallel to the direction of the flow path.
  • FIG. 1 is a perspective view of a hydroelectric power generation system according to a first embodiment of the present invention. It is a front view of the hydraulic power unit in the hydraulic power system of FIG. It is a side view of the hydraulic power unit in the hydraulic power system of FIG. It is sectional drawing along the IV-IV line of the hydraulic power generation system of FIG.
  • FIG. 5 is a cross-sectional view corresponding to FIG. 4 and another view for explaining the hydraulic power generation system.
  • diagram (a) is an example of flow velocity distribution in a hydroelectric power system according to one embodiment of the present invention
  • diagram (b) is an example of flow velocity distribution in a conventional hydroelectric power generation system. It is a longitudinal cross-sectional view of the conventional hydraulic power unit.
  • the hydroelectric power generation system 1 includes a hydroelectric power generation device 10 and a flow path regulation device 30 for the hydroelectric power generation device.
  • the hydraulic power generation device 10 and the flow path regulation device 30 are separate bodies. Therefore, although the hydraulic power generation system 1 is installed in the water channel 2 which has a fixed water flow volume like a water channel, for example, the hydraulic power generator 10 and the flow path regulation device 30 can be installed separately. However, the hydraulic power generation device 10 and the flow path regulation device 30 may be connected and integrally installed. Note that only a portion of the hydroelectric generator 10 is illustrated in FIG. 1 for the sake of simplicity.
  • the hydroelectric power generation apparatus 10 is provided with the impeller 13, the electric power generation apparatus main body 14 installed on the water, and the generator stand 15 which supports this electric power generation apparatus main body 14, as the whole is shown in FIG.2 and FIG.3. .
  • the power generator main body 14 includes a generator 19 installed on the generator base 15.
  • the generator base 15 has a beam 16 for the impeller and a support 11 for supporting the impeller 13 on the generator base 15. Both side ends of the beam 16 for a wheel are installed on the upper surface 21 a of the side wall 21 of the water channel 2.
  • the water channel 2 is, for example, an agricultural water channel.
  • the gearbox 12 is connected to the generator base 15 via a support 11.
  • a connection shaft 17 is connected to the inside of the support 11 for connecting the gearbox 12 and the power generator main body 14 to transfer the rotational force of the impeller 13 to the generator 19.
  • the impeller 13 is disposed so as to be fully submerged in the flowing water of the water channel 2 and converts the hydraulic power from the flowing water into a rotational force.
  • the impeller 13 is a propeller type in which the rotation axis L1 is parallel to the flow direction F.
  • the impeller 13 has a hub 13a provided at the rotation axis L1 and a plurality of (for example, five) blades 13b extending radially outward from the outer peripheral surface of the hub 13a.
  • each blade 13b is formed such that its tip end is slightly inclined toward the upstream side in a winglet shape.
  • the water resistance is reduced by reducing the tip vortices or moving the generation direction toward the blade tip, and as a result, the power generation torque can be improved.
  • a material substantially regarded as a rigid body such as a lightweight metal such as aluminum or a reinforced resin (FRP) reinforced with fibers is used for the impeller 13, for example, a certain amount of deformation such as urethane resin is used.
  • FRP reinforced resin
  • a material that allows for may be used.
  • the flow path regulating device 30 faces the beam member 31 for the flow path regulating device at an upstream side of the flow path 2 with respect to the impeller 13 with an interval in the width direction of the flow path 2. And two water collecting plates 33, 33, and a space setting mechanism 34 for setting a distance between the two water collecting plates 33, 33.
  • the flow path regulating device beam member 31 is installed on the upper surface 21 a of the side wall 21 of the water channel 2 in parallel to the beam beam 16 (FIG. 2) of the hydraulic power generation device 10.
  • the flow path regulation device 30 is installed on the upstream side of the flow path 2 than the hydraulic power generation device 10.
  • water channel is used synonymously with “water channel”.
  • the term "flow direction” means the flow direction of the water channel.
  • the gap setting mechanism 34 can be set so that the gap between the water collecting plates 33 and 33 is narrowed from the upstream side to the downstream side of the flow path 2.
  • the spacing setting mechanism 34 also has at least two water collecting plate adjusting mechanisms 35, 35 corresponding to the two water collecting plates 33, 33 respectively. As described later, the direction of the corresponding water collecting plate 33 with respect to the flow path 2 is adjusted to an arbitrary direction by each water collecting plate adjusting mechanism 35, and the water collecting plate 33 is fixed in that direction.
  • FIG. 4 is a view seen from line IV-IV of FIG.
  • the two water collecting plates 33, 33 are spaced from each other in the width direction W of the flow path 2 at a predetermined distance upstream of the flow path 2 with respect to the impeller 13 when the flow path regulation device 30 is installed. And arranged in opposition.
  • These water collecting plates 33, 33 may be made of the same material and the same shape.
  • Each water collecting plate 33 is formed of, for example, a rectangular steel plate having a uniform thickness and extending in the vertical direction. Such a plate can be easily manufactured and cut in cost because it is obtained by cutting a steel material.
  • each water collecting plate 33 may have a substantially streamlined cross-sectional shape such that the thickness on the upstream side is large and the thickness on the downstream side is small. Such a cross-sectional shape can suppress the resistance of the water collection plate 33 to the flow of water.
  • each water collecting plate adjusting mechanism 35 is provided with two rod-like first width direction moving rod bodies 35 a placed on the flow path regulating device beam member 31 at intervals in the width direction W of the flow path 2.
  • the first width direction moving rods 35a extend in the horizontal direction, that is, in the flow direction F, in the same manner as the flow path control device beam member 31 at right angles to the flow path control device beam member 31.
  • the first width direction moving rod 35 a is supported by the flow path regulating device beam member 31 and is movable in the width direction W of the flow path 2.
  • Each water collecting plate adjusting mechanism 35 also includes four rod-like second width direction moving rods 35 b extending in the vertical direction orthogonal to the flow path regulating device beam member 31. Two of the four second widthwise moving rods 35b are respectively spaced in the direction of the channel 2 with the channel restricting device beam member 31 interposed in the same first widthwise moving rod 35a. It is attached with no space. An upper end portion of each second widthwise movement rod 35b is fixed to the first widthwise movement rod 35a by a clamp 37, for example. Therefore, the second widthwise movement rod 35b can be clamped and fixed at any position of the first widthwise movement rod 35a.
  • two second widthwise moving rods 35b located on the same side of the flow path regulating device beam member 31, that is, on the upstream or downstream side of the flow path 2. Supports the corresponding water collecting plate 33.
  • these two second width direction moving rod bodies 35 b are respectively connected to the side ends of one main surface of one water collecting plate 33 by connectors not shown. The mounting angle is variable.
  • the two water collecting plate support rods 35 b support one water collecting plate 33.
  • each water collecting plate adjustment mechanism 35 further includes two third ones parallel to the first width direction moving rod 35 a, vertically below the two first width direction moving rods 35 a.
  • the width direction moving rod 35c Two lower end portions of the second widthwise movement rod 35b are fixed to each of the two third widthwise movement rods 35c by two clamps, for example. Therefore, the second widthwise movement rod 35b can be clamped and fixed at any position of the third widthwise movement rod 35c.
  • the fixed position with respect to the direction moving rod 35c is preferably set on a vertical line.
  • the first to third widthwise moving rods 35a are made of, for example, steel pipes.
  • FIG. 5 corresponds to FIG. 4, and FIG. 6 is a front view of the hydroelectric power generation system 1, but for simplification, only the components necessary for explanation are shown in these drawings.
  • the side ends 33a, 33a on the upstream side of the flow path 2 of the two water collection plates 33, 33 face each other to constitute the flow path 2 (inner wall surface) It may be arranged to abut on each of 21b and 21b. This can be realized only by moving and adjusting the water collecting plate adjusting mechanisms 35 and 35 with respect to the flow path regulating device beam member 31 after the flow path regulating device beam member 31 of FIG. 1 is installed.
  • the second widthwise moving rod 35b on the side of the side wall surface 21b is in contact with the side wall surface 21b with respect to the beam member 31 for the flow path regulation device (that is, the flow passage 2 of the water collecting plate 33).
  • the side end 33a on the upstream side of the side wall 21a only needs to be moved so as to abut on the side wall surface 21b.
  • the water collecting plates 33, 33 come into contact with the side wall surfaces 21b, 21b by receiving power from the outside in the width direction W by hydraulic power, so the position of the water collecting plate adjusting mechanism 35 does not shift.
  • the hydroelectric power generation device 10 and the flow path regulation device 30 are installed individually or integrally. However, regardless of whether they are installed individually or integrally, the water collection plates 33 and 33 of the flow path regulating device 30 are only the predetermined distance of the flow path 2 with respect to the impeller 13 of the hydraulic power generation device 10 It is disposed at the upstream side, at a position where the flow velocity in the vicinity of the impeller 13 can be increased without being separated from the impeller 13 too much.
  • the flow path regulating device beam member 31 is installed on the upper surfaces 21a and 21a of the side walls 21 and 21 of the water channel 2, and then the two water collecting plate adjustment mechanisms 35 and 35 The beam member 31 is provided.
  • the two water collecting plate adjusting mechanisms 35, 35 may be previously adjusted so that the water collecting plates 33, 33 have a predetermined direction with respect to the flow path 2.
  • the water collecting plate adjusting mechanism 35, 35 including the water collecting plates 33, 33 is disposed to the hydraulic power generation device 10 including the impeller 13, and the flow path regulating device 30 is installed. Be done.
  • the water collecting plate 33 is set in a direction close to perpendicular to the flow direction F. That is, the angle ⁇ between the water collecting plate 33 and the flow channel direction F is set to be large.
  • the water collection plate 33 works to block the flow passage 2 like a dam to increase the flow velocity of water toward the impeller 13 (FIG. 13). Power generation can be increased.
  • the outer end of the water collecting plate 33 may be extended to be in contact with the side wall surface 21 b.
  • the water collection board 33 can be set to the direction close
  • the angle ⁇ between the water collecting plate 33 and the flow path direction F can be set to be small.
  • the setting of the orientations of the water collecting plate 33 releases the clamps 37 of FIG. 1 and the first widthwise moving rod 35a and the third widthwise direction of the second widthwise moving rod 35b.
  • This can be realized by adjusting the position with respect to the moving rod 35c and adjusting the positions of the first widthwise moving rod 35a and the third widthwise moving rod 35c with respect to the flow path regulating device beam member 31.
  • the second widthwise moving rod 35b is tightened and fixed again to the first widthwise moving rod 35a and the third widthwise moving rod 35c by the clamp 37, the set water collecting plate The orientation of 33 is fixed.
  • the impeller 13 is rotated by hydraulic power in the flow path 2 regardless of the settings of the water collection plates 33, 33.
  • the rotation of the impeller 13 causes the generator 19 (FIGS. 2 and 3) to generate power.
  • the water collecting plates 33, 33 are set to increase the angle ⁇ with the flow channel direction F as shown in FIG. 8A, the flow velocity in the vicinity of the impeller 13 becomes large.
  • the power generated by the generator 19 is larger than when 33 and 33 are absent.
  • the water collecting plates 33, 33 are set to have a small angle ⁇ with respect to the flow channel direction F as shown in FIG. Is almost the same. For this reason, if the direction of the water collection plates 33, 33 is appropriately set according to the amount of water, the generated power that is almost equal when the amount of water is large is always output from the generator 19 (FIG. 2) regardless of the amount of water. Be done.
  • a power generation system 1 will be described.
  • the two water collecting plate adjusting mechanisms 35, 35 respectively have one first width direction moving rod 35a (FIG. 1) and a second width direction moving rod. It is assumed that only two bodies 35b and one third width direction moving rod body 35c are provided. Therefore, each water collection plate 33 is supported at a variable mounting angle by a connector (not shown) on the second widthwise movement rod 35b similarly to the first embodiment, but the inner side Unlike the first embodiment, the side end portion is attached with one end 38 a of a pressing spring (reaction force application means) 38. The other end 38 b of the pressing spring 38 is attached to the spring fixing member 39.
  • the spring fixing member 39 is connected to the flow path regulating device beam member 31.
  • the downstream side end 33b of the water collecting plate 33 is only connected to the pressing spring 38, when the hydraulic force of the flow path 2 is received, this portion of the water collecting plate 33 is pressed to the downstream side
  • the water collecting plate is set at a position where it balances with the pressing reaction force of the pressing spring 38. Therefore, if a spring with an appropriate spring constant is used, this pressing spring 38 automatically adjusts the orientation of the water collecting plate 33 in an appropriate direction.
  • a power generation system 1 will be described.
  • two second width direction moving rods 35b and 35b (FIG. 1) of the second width direction moving rods of the water collecting plate adjustment mechanism 35
  • the water collecting plate 33 is not directly supported, but instead functions as guiding means 35 b A, 35 b A for guiding the water collecting plate 33 in the vertical direction.
  • the guiding means 35bA, 35bA each have a groove 40 extending in the longitudinal direction. Both side ends of the water collecting plate 33 are respectively inserted into the grooves 40.
  • the water collection plate 33 hardly moves in the vertical direction because it receives almost no vertical force.
  • the operator manually moves the water collecting plate 33 to move the water collecting plate 33 in the vertical direction.
  • the water collection board 33 is positioned below
  • the water collection board 33 is positioned upwards Do.
  • the water collecting plate 33 may be provided with an auxiliary means (not shown) such as a handle gripped by the operator in order to facilitate the guidance by the guiding means 35bA, 35bA.
  • the flow path regulating device 30 of the power generation system 1 changes the direction of the water collecting plate 33 according to the amount of water as described in the first embodiment, and also the vertical position of the water collecting plate 33 Since changes can be made simultaneously, more efficient power generation is possible.
  • the water collecting plate adjusting mechanism 35 ⁇ / b> A adjusts the horizontal angle of the water collecting plate.
  • the water collecting plate adjusting mechanism 35A includes a belt 44 wound around the operation means 41, the first pulley 42, the second pulley 43, and the first and second pulleys 43.
  • a pulley fixing member 45 rotatably supporting the first and second pulleys, and a water collecting plate support member 46 (FIG. 13).
  • the operation means 41 is, for example, a handle operated by an operator, and sets the rotation angle of the first pulley 42.
  • the lower surface of a portion of the pulley fixing member 45 to which the first pulley 42 is attached on the upper surface is fixed to the upper surface 21 a or the like of the side wall 21 of the flow path 2.
  • the other part of the pulley fixing member 45 projects above the flow path 2 (FIG. 13).
  • a second pulley 43 is attached to the upper surface of the overhanging portion of the pulley fixing member 45.
  • each water collecting plate support member 46 is attached at its upper end to the lower portion of the corresponding second pulley 43. Each water collecting plate support member 46 interlocks with the rotation of the second pulley 43.
  • the flow path regulating device 30 of the hydraulic power generation system 1 further includes a flow path installation member 50 as shown in FIG.
  • the flow path installation member 50 has a plate-like first connection piece 51 installed in a direction crossing the flow path 2 on the bottom surface of the flow path 2.
  • the first connection piece 51 rotatably supports the two water collecting plate support members 46 on both end portions thereof and on the rotation axes of the two second pulleys 43.
  • the flow path installation member 50 also has two second connection pieces 53 and two third connection pieces 55.
  • the second connection pieces 53 extend from both ends of the first connection piece 51 in the direction opposite to the flow direction F, that is, the opposite side to the impeller 13.
  • Each third connection piece 55 is the pulley fixing member 45 of the corresponding water collecting plate adjustment mechanism 35A from the end opposite to the end connected to the first connection piece 51 of the corresponding second connection piece 53. It is attached to the bottom surface. Even if the first connection piece 51, the two second connection pieces 53, 53, the two third connection pieces 55, 55, and the two water collecting plate adjustment mechanisms 35A, 35A are integrally configured and installed, Good. Alternatively, they may be connected to each other when the flow path regulation device 30 is installed.
  • the third connection pieces 55, 55 can be omitted. However, if there are the third connection pieces 55, the flow path installation member 50 is reinforced in order to connect the corresponding second connection pieces 53 and the corresponding pulley fixing members 45, respectively.
  • the second connection pieces 53 may be fixed to the bottom of the flow path 2 or may be pulled and fixed from the upstream side of the flow path 2 by a chain or the like. When the second connection pieces 53, 53 are fixed, the first connection piece 51 is stabilized, so that the water collecting plate supporting members 46, 46 supported by the first connection piece 51 are prevented from being displaced. it can.
  • the water collecting plate support members 46 respectively hold the water collecting plate 33 so as to extend in the radial direction of the second pulley 43 and in the vertical direction.
  • the water collecting plate 33 is fixed to the water collecting plate support member 46 only at one side end thereof and supported in a cantilever manner.
  • the water collecting plate support member 46 may be a guiding means for guiding the water collecting plate 33 in the vertical direction as described in the third embodiment. That is, the water collecting plate support member 46 has a groove (not shown) extending in the longitudinal direction, and one end of the water collecting plate 33 may be inserted into this groove.
  • the first pulley 42 rotates in accordance with the angle set by the operation through the operation means 41, and the rotation thereof Is transmitted to the second pulley 43 via the belt 44.
  • the second pulley 43 rotates, the direction of the water collecting plate 33 with respect to the flow path 2 changes.
  • the direction of the water collecting plate 33 is set in accordance with the angle set by the operation means 41.
  • the operation means 41 is not operated, the direction of the water collecting plate 33 is fixed.
  • the water collecting plate adjusting mechanism 35A may be provided with a power transmission means including, for example, a worm and a gear, instead of the transmission means including the first pulley 42, the second pulley 43, and the belt 44.
  • the flow path regulating device 30 of the hydraulic power generation system 1 includes an automatic adjustment device 60 in addition to the components described in the fourth embodiment.
  • the automatic adjustment device 60 executes control processing described below by using two motors 61 and 61 provided in the second pulley 43, a water level sensor 63 for detecting the water level in the flow path 2, and a processor or the like.
  • a controller 65 can communicate with the two motors 61 and 61 and the water level sensor 63 in a wired or wireless manner.
  • each motor 61 rotationally drives the corresponding second pulley 43 in accordance with the received command signal.
  • each motor 61 has the water collecting plate 33 in a direction close to the vertical direction of the flow direction F when the water level in the flow passage 2 is low.
  • the water collecting plate 33 is automatically adjusted, and when the water level of the flow path 2 is high, the water collecting plate 33 is automatically adjusted so as to be close to the flow direction F.
  • the controller 65 may transmit the command signal to the motors 61, 61 only when the water level changes more than a predetermined range.
  • the relationship between the water level of the flow path 2 and the direction (horizontal direction angle) of the water collection plate appropriate for the water level is determined in advance and stored in the control device 65.
  • the controller 65 stores, as a table, the orientation of the water collecting plate with respect to each of the discrete values of the water level.
  • the controller 65 receives information on the water level from the water level sensor 63, the controller 65 refers to the table to extract an appropriate direction of the water collecting plate, and transmits a command signal to the motors 61, 61.
  • the water level sensor 63 may be a non-contact type water level sensor such as a laser sensor as illustrated, but any sensor that can detect the water level may be used.
  • the water level sensor 63 is not required to have high accuracy.
  • the operation means 41, the first pulley 42 and the belt 44 are illustrated, but the water collecting plate adjustment mechanism 35A may not have these. In this case, adjustment of the water collecting plates 33, 33 is always performed automatically. On the other hand, in the illustrated example, the water collecting plates 33, 33 can be adjusted both automatically and manually.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Provided is a flow path regulation device for a hydraulic power generation device, with which the effect of increasing flow velocity can be obtained while being hardly affected by the water level in a water path. The hydraulic power generation device (10) and the flow path regulation device (30) are installed in a flow path (2). The hydraulic power generation device (10) is provided with a turbine rotor (13) for converting water power into a rotating force, and a generator (19) which generates electric power using rotation of the turbine rotor (13). The flow path regulation device (30) is provided with: at least two water collecting plates (33, 33) which are arranged on the upstream side at a predetermined distance with respect to the turbine rotor (13) along the flow path (2), and which are opposed to each other at an interval in a width direction W of the flow path (2); and an interval setting mechanism (34) for setting the interval between the at least two water collecting plates (33, 33), the interval setting mechanism (34) being capable of setting the interval to become narrower from the upstream side to the downstream side of the flow path (2).

Description

水力発電装置用の流路規制装置Flow path regulator for hydroelectric power plant 関連出願Related application
 本出願は、2017年9月25日出願の特願2017-183368の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2017-183368 filed on Sep. 25, 2017, which is incorporated by reference in its entirety.
 この発明は、水路などに設置される水力発電装置用の流路規制装置に関する。 BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a flow path regulation device for a hydroelectric power unit installed in a water channel or the like.
 一般に、水路などに設置される水力発電装置は、水流の運動エネルギを電気エネルギに変換するものであり、その出力は流速の3乗に比例する。また、そのような水力発電装置の中でも軸流式、つまり装置の回転軸と水の流れる方向が平行である水力発電装置の場合、出力は翼車の回転によって作られる円の面積に比例する。 In general, a hydroelectric generator installed in a water channel or the like converts kinetic energy of water flow into electrical energy, and its output is proportional to the cube of the flow velocity. In addition, among such hydraulic power units, in the case of an axial flow type, that is, a hydraulic power unit in which the rotational axis of the unit and the flow direction of the water are parallel, the output is proportional to the area of the circle created by the rotation of the impeller.
 エネルギ変換効率を高めるために、翼車付近の流速を高める水力発電装置が提案されている。例えば、図18に示すように、特許文献1に開示の水力発電装置110は、支柱111によって支持されるギヤボックス112に取り付けられた翼車113が流路2内で回転するものであるが、翼車113の全周を覆うケーシング120が設けられている。このケーシング120は、ギヤボックス112に沿って延び、その内側の横断面積は流路2の上流側から下流側に向けて大きくなるように構成されている。ここで、ケーシング120内の圧力は外部よりも低いため、上流側が狭く下流側が広いケーシング120により、流路2の上流側の水がケーシング120内に引き込まれて翼車113が位置するケーシング120の入口における流速が増大する。これは、風力発電装置における公知の風増速装置と同様の原理を基本とする。なお、このような風増速装置は、ケーシング下流側に渦を発生させ、ケーシング内の圧力を外部よりも低くすることで、流入する流速を増大させる構造である。 In order to increase the energy conversion efficiency, a hydroelectric power generation system has been proposed which increases the flow velocity near the impeller. For example, as shown in FIG. 18, the hydraulic power generator 110 disclosed in Patent Document 1 is one in which the impeller 113 attached to the gear box 112 supported by the support column 111 rotates in the flow path 2, A casing 120 covering the entire circumference of the impeller 113 is provided. The casing 120 extends along the gearbox 112, and the inner cross-sectional area thereof is configured to increase from the upstream side to the downstream side of the flow passage 2. Here, since the pressure in the casing 120 is lower than the outside, the water on the upstream side of the flow path 2 is drawn into the casing 120 by the casing 120 where the upstream side is narrow and the downstream side is wide, and the impeller 113 is located. The flow velocity at the inlet increases. This is based on the same principle as a known wind speed-up device in a wind turbine. In addition, such a wind speed-up apparatus is a structure which makes the inflow flow velocity increase by generating a vortex on the casing downstream side and making the pressure in the casing lower than the outside.
 しかしながら、周囲に空気が存在する風増速装置とは異なり、水力発電装置110は水路2内でしか使用できず、水路2内に十分な水量がなければ増速効果が得られない。そのため、水路2内の水位が変動してケーシング120の上端よりも水位が低くなると、安定した出力が得られない。また、図18の水力発電装置110におけるケーシング120は、上流側から下流側に向かって横断面積が徐々に拡大する形状(円錐台形状)を有しており、下流側端部120aの外径が大きくなる。その一方、ケーシング120は水没している必要があるため、ケーシング120の上流側端部120b付近においてその内部に配置される翼車113の大きさは必然的に小さくなる。その結果、水路2に対して得られる出力が小さくなってしまう。 However, unlike the wind speed-up device in which air is present in the surrounding area, the hydroelectric power generation device 110 can be used only in the water channel 2, and if there is not a sufficient amount of water in the water channel 2, the speed-up effect can not be obtained. Therefore, when the water level in the water channel 2 fluctuates and the water level becomes lower than the upper end of the casing 120, a stable output can not be obtained. Moreover, the casing 120 in the hydraulic power unit 110 of FIG. 18 has a shape (conical shape) in which the cross-sectional area gradually increases from the upstream side to the downstream side, and the outer diameter of the downstream end 120a is growing. On the other hand, since the casing 120 needs to be submerged, the size of the impeller 113 disposed therein near the upstream end 120b of the casing 120 necessarily becomes smaller. As a result, the output obtained for the water channel 2 is reduced.
 特許文献2に開示の水力発電装置は、そのケーシングの幅寸法のみを上流側から下流側に向けて大きくし、高さ寸法は上流側から下流側まで略一定である。したがって、ある程度水位が低い水路内に設置されても、翼車を小さくせずにケーシング全体を水没させることができる。 The hydraulic power unit disclosed in Patent Document 2 increases only the width dimension of its casing from the upstream side to the downstream side, and the height dimension is substantially constant from the upstream side to the downstream side. Therefore, even if the water level is low to a certain degree, the entire casing can be submerged without reducing the size of the impeller.
特開2014-145347号公報JP 2014-145347 A 特開2013-130110号公報JP, 2013-130110, A
 しかしながら、ケーシング全体が水没していなければ流速を増速させる効果が得られず、そのため水位が変動する場合に安定した出力を得られない。 However, if the entire casing is not submerged, the effect of accelerating the flow velocity can not be obtained, and therefore, a stable output can not be obtained when the water level fluctuates.
 この発明の目的は、水路内の水位の影響をほとんど受けずに流速を高める効果が得られる水力発電装置用流路規制装置を提供することである。 An object of the present invention is to provide a flow path regulating device for a hydroelectric power generator, which can obtain the effect of increasing the flow velocity almost without being affected by the water level in the water channel.
 本発明の水力発電装置用流路規制装置は、前記水力発電装置および前記流路規制装置が流路に設置され、前記水力発電装置が、水力を回転力に変換する翼車、およびこの翼車の回転により発電する発電機を備え、当該流路規制装置が、前記翼車に対して前記流路の所定距離だけ上流側に配置され、かつ、前記流路の幅方向に互いに間隔を空けて対向して配置される少なくとも2つの集水板と、前記少なくとも2つの集水板の前記間隔を設定する間隔設定機構であって、前記間隔を前記流路の上流側から下流側にかけて狭くなるように設定自在である間隔設定機構とを備える。 In the flow path regulation device for a hydroelectric power generation device of the present invention, the hydraulic power generation device and the flow path regulation device are installed in a flow path, and the hydraulic power generation device converts a hydraulic power into a rotational force, The flow path regulation device is disposed upstream of the impeller by a predetermined distance of the flow path, and the flow path regulation device is spaced apart from each other in the width direction of the flow path. An interval setting mechanism for setting the distance between the at least two water collection plates and the at least two water collection plates disposed opposite to each other, wherein the distance is narrowed from the upstream side to the downstream side of the flow path And an interval setting mechanism that can be set to
 この構成によれば、間隔設定機構が、少なくとも2つの集水板が翼車に対して流路の所定距離だけ上流側に配置され、少なくとも2つの集水板の間隔を流路の上流側から下流側にかけて狭くなるように設定自在であるため、翼車に向けて流路の水を集めて加速させることができる。これら集水板により加速された流水が翼車に衝突するため、流路規制装置を設けない場合に比べて水力発電装置の発電効率が向上する。このように、集水板は翼車を覆うものではなく翼車よりも流路の上流側に配置されるため、翼車を覆うケーシングとは異なり、翼車が水没している限り流速を高める効果が得られる。 According to this configuration, the space setting mechanism is arranged such that at least two water collecting plates are disposed upstream of the impeller by the predetermined distance of the flow path, and the distance between the at least two water collecting plates is from the upstream side of the flow path As it can be set to be narrower toward the downstream side, water in the flow path can be collected and accelerated toward the impeller. Since the flowing water accelerated by these water collection plates collides with the impeller, the power generation efficiency of the hydroelectric power generation apparatus is improved as compared with the case where the flow path restriction device is not provided. As described above, since the water collecting plate is disposed not on the impeller but on the upstream side of the flow path rather than the impeller, unlike the casing that covers the impeller, the flow velocity is increased as long as the impeller is submerged. An effect is obtained.
 前記所定距離は、少なくとも2つの集水板が翼車から離れすぎず翼車付近の流速を高めることができる程度の距離である。この所定距離は、流路の大きさやその水量などに応じて決定される。所定距離は、例えば、少なくとも2つの集水板の中で翼車に一番近い箇所と翼車のブレードとの流路方向の距離を指す。 The predetermined distance is a distance such that at least two water collecting plates are not separated from the impeller too much and the flow velocity near the impeller can be increased. The predetermined distance is determined according to the size of the flow path, the amount of water, and the like. The predetermined distance indicates, for example, the distance between the location closest to the impeller among at least two water collection plates and the flow path direction between the blade of the impeller and the blade.
 前記少なくとも2つの集水板の前記間隔は、好ましくは、最も狭い下流側の側端においても、翼車の幅方向最大寸法(外径)よりも大きい。これにより、集水板で集めた流路の水を翼車全体に向けることができる。 The distance between the at least two water collecting plates is preferably larger than the maximum width dimension (outer diameter) of the impeller even at the narrowest downstream side end. Thereby, the water in the flow path collected by the water collection plate can be directed to the entire impeller.
 前記少なくとも2つの集水板が、前記流路の幅方向の左右両側に1つずつ配置された2つの集水板であってもよい。2つの集水板は流路の中心に対して左右対称であってもよい。 The at least two water collecting plates may be two water collecting plates disposed one each on the left and right sides in the width direction of the flow path. The two water collection plates may be symmetrical with respect to the center of the flow path.
 前記2つの集水板の前記流路の上流側の側端が、互いに対向して前記流路を構成する壁面にそれぞれ当接するように前記2つの集水板が配置されてもよい。この構成によれば、流路は集水板の外側つまり壁面と集水板との間をほとんど通らずに集水板の間を通るため、より多くの水を翼車に向けて集めることができ、発電電力を大きくできる。この構成は、流路を流れる水量が少ない場合に特に効果的である。 The two water collecting plates may be disposed such that the upstream side ends of the flow passages of the two water collecting plates face each other and abut on the wall surfaces constituting the flow passages. According to this configuration, the flow path passes between the water collection plates almost without passing through the outer side of the water collection plates, that is, between the wall surface and the water collection plate, so that more water can be collected toward the impeller. The power generation can be increased. This configuration is particularly effective when the amount of water flowing through the flow path is small.
 前記少なくとも2つの集水板が、それぞれ、略鉛直方向に延び、前記間隔設定機構が、前記少なくとも2つの集水板にそれぞれ対応した少なくとも2つの集水板調整機構を有し、各集水板調整機構によって、対応する集水板の前記流路に対する向きが任意の向きに調整されてその向きに前記集水板が固定されてもよい。この構成によれば、各集水板調整機構によって、集水板の流路に対する向きを自在に変更できる。例えば、流路の水量が少ない場合には、流れに対してより大きい抵抗となるように集水板は流路に対して垂直な向きに近づけられる一方、流路の水量が多い場合には、溢水などの事態を抑制するために集水板は流路方向に近づけられてもよい。このように、水力発電装置が設置される水路の状況に応じて集水板の向きが設定自在であるため、安全で効率良い発電が可能となる。 The at least two water collecting plates respectively extend in a substantially vertical direction, and the space setting mechanism has at least two water collecting plate adjusting mechanisms respectively corresponding to the at least two water collecting plates, and each water collecting plate The adjustment mechanism may adjust the direction of the corresponding water collection plate to the flow path to any direction, and fix the water collection plate in that direction. According to this configuration, the direction of the water collecting plate with respect to the flow path can be freely changed by each water collecting plate adjusting mechanism. For example, when the amount of water in the flow path is small, the water collection plate can be brought close to the direction perpendicular to the flow path so as to provide greater resistance to the flow, while when the amount of water in the flow path is large, The water collection plate may be brought close to the flow path direction to suppress a situation such as flooding. As described above, since the direction of the water collection plate can be set according to the condition of the water channel where the hydroelectric power generation apparatus is installed, safe and efficient power generation can be performed.
 前記少なくとも2つの集水板が、それぞれ、略鉛直方向に延び、前記間隔設定機構が、前記少なくとも2つの集水板にそれぞれ対応した少なくとも2つの集水板調整機構を有し、各集水板調整機構が、前記流路の状況に応じて、対応する集水板の前記流路に対する向きを自動的に調整する集水板自動調整機構を含んでもよい。この構成によれば、各集水板調整機構の集水板自動調整機構が、流路の状況に応じて、対応する集水板の流路に対する向きを自動的に調整するため、上述の流路の水量に応じた集水板の向きが、自動的に設定される。そのため、水路周辺に作業者がいなくても効率良い発電が可能となる。 The at least two water collecting plates respectively extend in a substantially vertical direction, and the space setting mechanism has at least two water collecting plate adjusting mechanisms respectively corresponding to the at least two water collecting plates, and each water collecting plate The adjusting mechanism may include a water collecting plate automatic adjusting mechanism that automatically adjusts the direction of the corresponding water collecting plate to the flow passage according to the condition of the flow passage. According to this configuration, the water collecting plate automatic adjusting mechanism of each water collecting plate adjusting mechanism automatically adjusts the direction of the corresponding water collecting plate to the flow passage according to the condition of the flow passage. The orientation of the catchment plate according to the amount of water in the road is set automatically. Therefore, efficient power generation can be performed even without workers around the water channel.
 前記少なくとも2つの集水板が、それぞれ、前記流路の水力を受けて動くことで、その集水板の前記流路に対する向きが変化するものであり、前記集水板自動調整機構が、それぞれ、前記水力を受ける方向とは反対の方向に力を加えて前記集水板を方向付ける反力付加手段を有してもよい。この構成によれば、集水板が、水力を受けて動くことで、その集水板の流路に対する向きが変化するが、反力付加手段が反力を加えて集水板を方向付けるため、集水板の向きは適切な方向に自動的に調整される。このようにして、上述の流路の水量に応じた集水板の向きが、自動的に設定される。そのため、水路周辺に作業者がいなくても安全で効率良い発電が可能となる。反力付加手段は、ばねであってもよい。 Each of the at least two water collecting plates moves in response to the hydraulic force of the flow passage, whereby the direction of the water collecting plate with respect to the flow passage is changed, and the water collecting plate automatic adjustment mechanism respectively The device may have a reaction force application means which applies a force in a direction opposite to the direction of receiving the hydraulic force to direct the water collection plate. According to this configuration, the movement of the water collection plate in response to the hydraulic pressure changes the direction of the water collection plate with respect to the flow path, but the reaction force adding means applies a reaction force to direct the water collection plate. The orientation of the catchment plate is automatically adjusted to the appropriate direction. In this way, the orientation of the water collection plate according to the above-described flow rate of the flow passage is automatically set. Therefore, safe and efficient power generation is possible even without workers around the water channel. The reaction force application means may be a spring.
 さらに、前記少なくとも2つの集水板をそれぞれ鉛直方向に案内する案内手段を備えてもよい。この構成によれば、案内手段によって、集水板の高さ位置を容易に調整できる。また、集水板を容易に流路規制装置に装備できる。なお、集水板には、案内手段による案内を促進するために、作業者が握る把手のような補助手段が設けられてもよい。さらに、前記間隔設定機構が、案内手段を動かす機構を有し、この機構によって案内手段に連動する集水板の間隔が設定されてもよい。 Furthermore, it may be provided with guide means for guiding the at least two water collecting plates in the vertical direction. According to this configuration, the height position of the water collection plate can be easily adjusted by the guide means. In addition, the water collection plate can be easily installed in the flow path regulation device. In addition, in order to promote the guidance by the guiding means, the water collecting plate may be provided with an auxiliary means such as a handle grasped by the operator. Further, the spacing setting mechanism may have a mechanism for moving the guiding means, and the spacing of the water collecting plates interlocked with the guiding means may be set by this mechanism.
 前記少なくとも2つの集水板の上側端がそれぞれ、前記流路の上端よりも下側に位置するように設置されてもよい。この構成によれば、集水板の上側端よりも上方を流れる水は集水板の影響を受けないが、このように流れる水を確保することで、水量が増加したときの溢水の事態を抑制できる。 The upper ends of the at least two water collection plates may be respectively disposed below the upper end of the flow path. According to this configuration, the water flowing above the upper end of the water collection plate is not affected by the water collection plate, but securing the flowing water in this way makes it possible to overflow when the water volume increases. It can be suppressed.
 前記少なくとも2つの集水板が、それぞれ、均一な厚みを有してもよい。この構成によれば、平板によって容易に集水板を作製でき、コストを低減できる。 The at least two water collecting plates may each have a uniform thickness. According to this configuration, the water collecting plate can be easily manufactured by the flat plate, and the cost can be reduced.
 前記2つの集水板それぞれの断面形状が、上流側の厚みが大きく下流側の厚みが小さい、略流線形状であってもよい。この構成によれば、水の流れに対する集水板の抵抗を抑制しながら増速効果を高めることができる。 The cross-sectional shape of each of the two water collecting plates may be a substantially streamlined shape in which the thickness on the upstream side is large and the thickness on the downstream side is small. According to this configuration, it is possible to enhance the speed increasing effect while suppressing the resistance of the water collection plate to the flow of water.
 本発明の水力発電システムは、前記水力発電装置用流路規制装置と、前記水力発電装置とを備える。前記翼車が、前記翼車の回転軸が前記流路の方向と平行なプロペラ型であってもよい。 The hydroelectric power generation system of the present invention includes the flow path restriction device for a hydroelectric power generation device and the hydroelectric power generation device. The impeller may be of a propeller type in which the rotation axis of the impeller is parallel to the direction of the flow path.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of the at least two configurations disclosed in the claims and / or the description and / or the drawings is included in the present invention. In particular, any combination of two or more of the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
本発明の第1の実施形態にかかる水力発電システムの斜視図である。 図1の水力発電システムにおける水力発電装置の正面図である。 図1の水力発電システムにおける水力発電装置の側面図である。 図1の水力発電システムのIV-IV線に沿った断面図である。 図4に対応する断面図であって、この水力発電システムを説明するための図である。 図5の水力発電システムの正面図である。 図4に対応する断面図であって、この水力発電システムを説明するための別の図である。 図7の水力発電システムの流路規制装置の部分拡大図であって、流路の水量が少ない場合の図である。 図7の水力発電システムの流路規制装置の部分拡大図であって、流路の水量が多い場合の図である。 図4に対応する断面図であって、本発明の第2の実施形態にかかる水力発電システムの断面図である。 図9の水力発電システムの流路規制装置の部分拡大図であって、流路の水量が少ない場合の図である。 図9の水力発電システムの流路規制装置の部分拡大図であって、流路の水量が多い場合の図である。 図4に対応する断面図であって、本発明の第3の実施形態にかかる水力発電システムの断面図である。 図11の水力発電システムの部分正面図であって、流路の水量が少ない場合の図である。 図11の水力発電システムの部分正面図であって、流路の水量が多い場合の図である。 本発明の第4の実施形態にかかる水力発電システムの正面図である。 図13の水力発電システムの斜視図である。 図13および図14の水力発電システムの流路規制装置の一部平面図である。 本発明の第5の実施形態にかかる水力発電システムの部分斜視図である。 流速分布の例であって、ダイアグラム(a)は本発明の一実施形態にかかる水力発電システムにおける流速分布の例、ダイアグラム(b)は従来の水力発電システムにおける流速分布の例である。 従来の水力発電装置の縦断面図である。
The invention will be more clearly understood from the following description of the preferred embodiments with reference to the accompanying drawings. However, the embodiments and the drawings are for the purpose of illustration and description only and are not to be taken as limiting the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in multiple drawings indicate the same or corresponding parts.
FIG. 1 is a perspective view of a hydroelectric power generation system according to a first embodiment of the present invention. It is a front view of the hydraulic power unit in the hydraulic power system of FIG. It is a side view of the hydraulic power unit in the hydraulic power system of FIG. It is sectional drawing along the IV-IV line of the hydraulic power generation system of FIG. It is a sectional view corresponding to Drawing 4, and is a figure for explaining this hydroelectric power system. It is a front view of the hydraulic power system of FIG. FIG. 5 is a cross-sectional view corresponding to FIG. 4 and another view for explaining the hydraulic power generation system. It is the elements on larger scale of the flow-path control apparatus of the hydraulic power generation system of FIG. 7, Comprising: It is a figure in case the amount of water of a flow path is small. It is the elements on larger scale of the flow-path control apparatus of the hydraulic power generation system of FIG. 7, Comprising: It is a figure in case the amount of water of a flow path is large. It is a sectional view corresponding to Drawing 4, and is a sectional view of a hydraulic power system concerning a 2nd embodiment of the present invention. It is the elements on larger scale of the flow-path control apparatus of the hydraulic power generation system of FIG. 9, Comprising: It is a figure in case the amount of water of a flow path is small. It is the elements on larger scale of the flow-path control apparatus of the hydraulic power generation system of FIG. 9, Comprising: It is a figure in case the amount of water of a flow path is large. It is a sectional view corresponding to Drawing 4, and is a sectional view of a hydroelectric system concerning a 3rd embodiment of the present invention. It is a partial front view of the hydraulic power generation system of FIG. 11, Comprising: It is a figure in case the amount of water of a flow path is small. It is a partial front view of the hydraulic power generation system of FIG. 11, Comprising: It is a figure in case the amount of water of a flow path is large. It is a front view of the hydraulic power system concerning a 4th embodiment of the present invention. It is a perspective view of the hydraulic power system of FIG. It is a partial top view of the flow-path control apparatus of the hydraulic power generation system of FIG. 13 and FIG. It is a fragmentary perspective view of the hydraulic power system concerning a 5th embodiment of the present invention. It is an example of flow velocity distribution, and diagram (a) is an example of flow velocity distribution in a hydroelectric power system according to one embodiment of the present invention, and diagram (b) is an example of flow velocity distribution in a conventional hydroelectric power generation system. It is a longitudinal cross-sectional view of the conventional hydraulic power unit.
 この発明の各実施形態に係る水力発電システムについて図面を参照しながら説明する。なお、各図において、簡単化のために、説明に必要ではない要素の図示を適宜省略している。 A hydroelectric system according to each embodiment of the present invention will be described with reference to the drawings. In each of the drawings, for the sake of simplicity, illustration of elements not necessary for the description is appropriately omitted.
<水力発電システム全体の概略構成>
 図1~図8Aおよび8Bに第1実施形態に係る水力発電システムを示す。水力発電システム1は、図1に示すように、水力発電装置10および水力発電装置用の流路規制装置30を備える。本実施形態において、水力発電装置10と流路規制装置30とは別体である。したがって、水力発電システム1は、例えば、用水路のような一定の流水量がある水路2に設置されるが、水力発電装置10と流路規制装置30は個別に設置可能である。ただし、水力発電装置10と流路規制装置30は連結されて一体に設置されてもよい。なお、簡単化のために、図1には水力発電装置10の一部のみが図示されている。
<Schematic configuration of the entire hydroelectric power generation system>
1 to 8A and 8B show a hydroelectric power generation system according to a first embodiment. As shown in FIG. 1, the hydroelectric power generation system 1 includes a hydroelectric power generation device 10 and a flow path regulation device 30 for the hydroelectric power generation device. In the present embodiment, the hydraulic power generation device 10 and the flow path regulation device 30 are separate bodies. Therefore, although the hydraulic power generation system 1 is installed in the water channel 2 which has a fixed water flow volume like a water channel, for example, the hydraulic power generator 10 and the flow path regulation device 30 can be installed separately. However, the hydraulic power generation device 10 and the flow path regulation device 30 may be connected and integrally installed. Note that only a portion of the hydroelectric generator 10 is illustrated in FIG. 1 for the sake of simplicity.
<水力発電装置>
 水力発電装置10は、その全体を図2および図3に示すように、翼車13と、水上に設置される発電装置本体14と、この発電装置本体14を支持する発電機台15とを備える。発電装置本体14は、発電機台15の上に設置された発電機19を備える。発電機台15は、翼車用梁材16と、翼車13を発電機台15に支持する支柱11とを有する。翼車用梁材16の両側端部は、水路2の側壁21の上面21aに設置される。なお、水路2は、例えば農業用水路である。
<Hydro power generation equipment>
The hydroelectric power generation apparatus 10 is provided with the impeller 13, the electric power generation apparatus main body 14 installed on the water, and the generator stand 15 which supports this electric power generation apparatus main body 14, as the whole is shown in FIG.2 and FIG.3. . The power generator main body 14 includes a generator 19 installed on the generator base 15. The generator base 15 has a beam 16 for the impeller and a support 11 for supporting the impeller 13 on the generator base 15. Both side ends of the beam 16 for a wheel are installed on the upper surface 21 a of the side wall 21 of the water channel 2. The water channel 2 is, for example, an agricultural water channel.
 図3に示すように、支柱11を介してギヤボックス12が発電機台15に連結されている。支柱11の内部には、ギヤボックス12と発電装置本体14とを連結して翼車13の回転力を発電機19に伝達する連結軸17が挿入されている。図2に示すように、翼車13は、水路2の流水中に全没する状態で配置され、流水からの水力を回転力に変換する。この翼車13は、回転軸心L1が流路方向Fと平行なプロペラ型である。翼車13は、回転軸心L1に設けられるハブ13aと、このハブ13aの外周面から半径方向外方に放射状に延びる複数(例えば5枚)のブレード13bとを有する。各ブレード13bは、図3に示すように、その先端部がウイングレット状に上流側に向けて若干傾斜するように形成されている。これにより、翼端渦を減少あるいは発生方向を翼先端側に移動させることで水抵抗を減らし、結果として発電トルクを向上させる効果がある。なお、翼車13には、例えば、アルミニウム等の軽量金属や、繊維等によって強化された強化樹脂(FRP)等の実質的に剛体とみなされる材料が用いられるが、ウレタン樹脂等のある程度の変形を許容する材料が用いられていてもよい。 As shown in FIG. 3, the gearbox 12 is connected to the generator base 15 via a support 11. A connection shaft 17 is connected to the inside of the support 11 for connecting the gearbox 12 and the power generator main body 14 to transfer the rotational force of the impeller 13 to the generator 19. As shown in FIG. 2, the impeller 13 is disposed so as to be fully submerged in the flowing water of the water channel 2 and converts the hydraulic power from the flowing water into a rotational force. The impeller 13 is a propeller type in which the rotation axis L1 is parallel to the flow direction F. The impeller 13 has a hub 13a provided at the rotation axis L1 and a plurality of (for example, five) blades 13b extending radially outward from the outer peripheral surface of the hub 13a. As shown in FIG. 3, each blade 13b is formed such that its tip end is slightly inclined toward the upstream side in a winglet shape. As a result, the water resistance is reduced by reducing the tip vortices or moving the generation direction toward the blade tip, and as a result, the power generation torque can be improved. Although a material substantially regarded as a rigid body such as a lightweight metal such as aluminum or a reinforced resin (FRP) reinforced with fibers is used for the impeller 13, for example, a certain amount of deformation such as urethane resin is used. A material that allows for may be used.
<流路規制装置>
 図1を参照して、流路規制装置30は、流路規制装置用梁部材31と、翼車13よりも流路2の上流側において、流路2の幅方向に互いに間隔を空けて対向して配置される2つの集水板33,33と、2つの集水板33,33の間隔を設定する間隔設定機構34を有する。流路規制装置用梁部材31は、水力発電装置10の翼車用梁材16(図2)と平行に、その両側端部31aが水路2の側壁21の上面21aに設置される。このようにして、流路規制装置30が水力発電装置10よりも流路2の上流側に設置される。なお、本明細書中において「流路」の語は「水路」と同義に用いられる。ただし、「流路方向」の語は、水路の流れの方向を意味する。
<Flow control device>
Referring to FIG. 1, the flow path regulating device 30 faces the beam member 31 for the flow path regulating device at an upstream side of the flow path 2 with respect to the impeller 13 with an interval in the width direction of the flow path 2. And two water collecting plates 33, 33, and a space setting mechanism 34 for setting a distance between the two water collecting plates 33, 33. The flow path regulating device beam member 31 is installed on the upper surface 21 a of the side wall 21 of the water channel 2 in parallel to the beam beam 16 (FIG. 2) of the hydraulic power generation device 10. Thus, the flow path regulation device 30 is installed on the upstream side of the flow path 2 than the hydraulic power generation device 10. In the present specification, the term "water channel" is used synonymously with "water channel". However, the term "flow direction" means the flow direction of the water channel.
 間隔設定機構34は、集水板33,33の間隔を流路2の上流側から下流側にかけて狭くなるように設定自在である。間隔設定機構34は、また、2つの集水板33,33にそれぞれ対応した少なくとも2つの集水板調整機構35,35を有する。後述するように、各集水板調整機構35によって、対応する集水板33の流路2に対する向きが任意の向きに調整されてその向きに集水板33が固定される。 The gap setting mechanism 34 can be set so that the gap between the water collecting plates 33 and 33 is narrowed from the upstream side to the downstream side of the flow path 2. The spacing setting mechanism 34 also has at least two water collecting plate adjusting mechanisms 35, 35 corresponding to the two water collecting plates 33, 33 respectively. As described later, the direction of the corresponding water collecting plate 33 with respect to the flow path 2 is adjusted to an arbitrary direction by each water collecting plate adjusting mechanism 35, and the water collecting plate 33 is fixed in that direction.
 図4は、図1のIV-IV線から見た図である。2つの集水板33,33は、流路規制装置30が設置されると、翼車13に対して流路2の所定距離だけ上流側において、流路2の幅方向Wに互いに間隔を空けて対向して配置される。これら集水板33,33は、同一の材料および同一の形状から構成されてもよい。各集水板33は、例えば、厚みが均一で鉛直方向に延びた長方形状の鋼製の板から構成される。このような板は、鋼材を切断して得られるため、容易に作製でき、コストを低減できる。代わりに、各集水板33は、その断面形状が、上流側の厚みが大きく下流側の厚みが小さい、略流線形状であってもよい。このような断面形状により、水の流れに対する集水板33の抵抗を抑制することができる。 FIG. 4 is a view seen from line IV-IV of FIG. The two water collecting plates 33, 33 are spaced from each other in the width direction W of the flow path 2 at a predetermined distance upstream of the flow path 2 with respect to the impeller 13 when the flow path regulation device 30 is installed. And arranged in opposition. These water collecting plates 33, 33 may be made of the same material and the same shape. Each water collecting plate 33 is formed of, for example, a rectangular steel plate having a uniform thickness and extending in the vertical direction. Such a plate can be easily manufactured and cut in cost because it is obtained by cutting a steel material. Alternatively, each water collecting plate 33 may have a substantially streamlined cross-sectional shape such that the thickness on the upstream side is large and the thickness on the downstream side is small. Such a cross-sectional shape can suppress the resistance of the water collection plate 33 to the flow of water.
 図1に戻って、2つの集水板調整機構35,35は、細長い流路規制装置用梁部材31の延在方向の両端側に対称に設けられている。各集水板調整機構35は流路規制装置用梁部材31上に載置される棒状の第1の幅方向移動棒体35aを流路2の幅方向Wに間隔を空けて2つ備える。これら第1の幅方向移動棒体35aは、それぞれ、流路規制装置用梁部材31に直交して流路規制装置用梁部材31と同様に水平方向、つまり流路方向Fに延びる。これら第1の幅方向移動棒体35aは、流路規制装置用梁部材31に支持されて、流路2の幅方向Wに移動可能である。 Returning to FIG. 1, the two water collecting plate adjusting mechanisms 35, 35 are symmetrically provided on both ends in the extending direction of the elongated flow path control device beam member 31. Each water collecting plate adjusting mechanism 35 is provided with two rod-like first width direction moving rod bodies 35 a placed on the flow path regulating device beam member 31 at intervals in the width direction W of the flow path 2. The first width direction moving rods 35a extend in the horizontal direction, that is, in the flow direction F, in the same manner as the flow path control device beam member 31 at right angles to the flow path control device beam member 31. The first width direction moving rod 35 a is supported by the flow path regulating device beam member 31 and is movable in the width direction W of the flow path 2.
 各集水板調整機構35は、また、流路規制装置用梁部材31に直交して鉛直方向に延びる棒状の第2の幅方向移動棒体35bを4つ備える。これら4つの第2の幅方向移動棒体35bのうち2つはそれぞれ、同一の第1の幅方向移動棒体35aに、流路規制装置用梁部材31を挟んで流路2の方向に間隔を空けて取り付けられている。各第2の幅方向移動棒体35bの上端部が、第1の幅方向移動棒体35aに、例えばクランプ37によって固定されている。このため、第1の幅方向移動棒体35aの任意の位置において第2の幅方向移動棒体35bを締付固定できる。これら4つの第2の幅方向移動棒体35bのうち、流路規制装置用梁部材31の同一側つまり流路2の上流側または下流側に位置する2つの第2の幅方向移動棒体35bが、対応する集水板33を支持する。具体的には、図4に示すように、これら2つの第2の幅方向移動棒体35bが、それぞれ、1つの集水板33の一方の主面の各側端部に図示しない連結具により取付角度可変に取り付けられている。このようにして、2つの集水板支持棒体35bが1つの集水板33を支持している。 Each water collecting plate adjusting mechanism 35 also includes four rod-like second width direction moving rods 35 b extending in the vertical direction orthogonal to the flow path regulating device beam member 31. Two of the four second widthwise moving rods 35b are respectively spaced in the direction of the channel 2 with the channel restricting device beam member 31 interposed in the same first widthwise moving rod 35a. It is attached with no space. An upper end portion of each second widthwise movement rod 35b is fixed to the first widthwise movement rod 35a by a clamp 37, for example. Therefore, the second widthwise movement rod 35b can be clamped and fixed at any position of the first widthwise movement rod 35a. Of these four second widthwise moving rods 35b, two second widthwise moving rods 35b located on the same side of the flow path regulating device beam member 31, that is, on the upstream or downstream side of the flow path 2. Supports the corresponding water collecting plate 33. Specifically, as shown in FIG. 4, these two second width direction moving rod bodies 35 b are respectively connected to the side ends of one main surface of one water collecting plate 33 by connectors not shown. The mounting angle is variable. Thus, the two water collecting plate support rods 35 b support one water collecting plate 33.
 図1に戻って、各集水板調整機構35は、さらに、2つの第1の幅方向移動棒体35aの鉛直下方に、これら第1の幅方向移動棒体35aと平行な2つの第3の幅方向移動棒体35cを備える。これら2つの第3の幅方向移動棒体35cそれぞれに、第2の幅方向移動棒体35bの下端部が2つずつ、例えばクランプ37によって固定されている。このため、第3の幅方向移動棒体35cの任意の位置において第2の幅方向移動棒体35bを締付固定できる。なお、第2の幅方向移動棒体35bが鉛直方向に延びるように、第2の幅方向移動棒体35bの上端における第1の幅方向移動棒体35aに対する固定位置と下端における第3の幅方向移動棒体35cに対する固定位置とは鉛直線上に設定されるのが望ましい。これら第1~第3の幅方向移動棒体35aは、例えば鋼管から構成される。 Returning to FIG. 1, each water collecting plate adjustment mechanism 35 further includes two third ones parallel to the first width direction moving rod 35 a, vertically below the two first width direction moving rods 35 a. In the width direction moving rod 35c. Two lower end portions of the second widthwise movement rod 35b are fixed to each of the two third widthwise movement rods 35c by two clamps, for example. Therefore, the second widthwise movement rod 35b can be clamped and fixed at any position of the third widthwise movement rod 35c. In addition, the third width at the fixed position and the lower end with respect to the first widthwise moving bar 35a at the upper end of the second widthwise moving bar 35b so that the second widthwise moving bar 35b extends in the vertical direction The fixed position with respect to the direction moving rod 35c is preferably set on a vertical line. The first to third widthwise moving rods 35a are made of, for example, steel pipes.
 図5は図4に対応し、図6は水力発電システム1の正面図であるが、簡単化のために説明に必要な構成要素のみをこれらの図に示している。これら図5および図6に示すように、2つの集水板33,33の流路2の上流側の側端33a,33aは、互いに対向して流路2を構成する側壁面(内壁面)21b,21bにそれぞれ当接するように配置されてもよい。これは、図1の流路規制装置用梁部材31を設置した後に、集水板調整機構35,35を流路規制装置用梁部材31に対して移動調整するだけで実現できる。すなわち、作業者が流路規制装置用梁部材31に対して側壁面21b側の第2の幅方向移動棒体35bが側壁面21bに当接するように、(つまり集水板33の流路2の上流側の側端33aが側壁面21bに当接するように)移動させるだけでよい。なお、稼動中は水力によって幅方向Wの外側に力を受けて、集水板33,33が側壁面21b,21bに接触するので、集水板調整機構35の位置がずれることはない。 FIG. 5 corresponds to FIG. 4, and FIG. 6 is a front view of the hydroelectric power generation system 1, but for simplification, only the components necessary for explanation are shown in these drawings. As shown in FIG. 5 and FIG. 6, the side ends 33a, 33a on the upstream side of the flow path 2 of the two water collection plates 33, 33 face each other to constitute the flow path 2 (inner wall surface) It may be arranged to abut on each of 21b and 21b. This can be realized only by moving and adjusting the water collecting plate adjusting mechanisms 35 and 35 with respect to the flow path regulating device beam member 31 after the flow path regulating device beam member 31 of FIG. 1 is installed. That is, the second widthwise moving rod 35b on the side of the side wall surface 21b is in contact with the side wall surface 21b with respect to the beam member 31 for the flow path regulation device (that is, the flow passage 2 of the water collecting plate 33). The side end 33a on the upstream side of the side wall 21a only needs to be moved so as to abut on the side wall surface 21b. During operation, the water collecting plates 33, 33 come into contact with the side wall surfaces 21b, 21b by receiving power from the outside in the width direction W by hydraulic power, so the position of the water collecting plate adjusting mechanism 35 does not shift.
 2つの集水板33,33の流路2の上流側の側端33aが側壁面21b,21bにそれぞれ当接すると、流路2は集水板33,33の外側をほとんど通らずに集水板33,33の間を通る。このため、より多くの水を翼車13に向けて集めることができ、発電電力を大きくできる。この構成は、流路2を流れる水量が少ない場合に特に効果的である。 When the upstream side end 33a of the flow passage 2 of the two water collection plates 33, 33 abuts on the side wall surfaces 21b, 21b, respectively, the flow passage 2 hardly passes through the outside of the water collection plates 33, 33 Pass between the plates 33, 33. For this reason, more water can be collected toward the impeller 13, and the generated power can be increased. This configuration is particularly effective when the amount of water flowing through the flow path 2 is small.
<水力発電システムの動作>
 次に、図1の本水力発電システム1の動作について説明する。
 上述したように、水力発電システム1は、水力発電装置10と流路規制装置30とが個別または一体に設置される。ただし、個別に設置されるか一体に設置されるかに係わらず、流路規制装置30の集水板33,33は、水力発電装置10の翼車13に対して流路2の所定距離だけ上流側であって、翼車13から離れすぎず翼車13付近の流速を高めることができる程度の位置に配置される。
<Operation of the hydroelectric system>
Next, the operation of the hydroelectric power generation system 1 of FIG. 1 will be described.
As described above, in the hydroelectric power generation system 1, the hydroelectric power generation device 10 and the flow path regulation device 30 are installed individually or integrally. However, regardless of whether they are installed individually or integrally, the water collection plates 33 and 33 of the flow path regulating device 30 are only the predetermined distance of the flow path 2 with respect to the impeller 13 of the hydraulic power generation device 10 It is disposed at the upstream side, at a position where the flow velocity in the vicinity of the impeller 13 can be increased without being separated from the impeller 13 too much.
 流路規制装置30は、まず流路規制装置用梁部材31が水路2の側壁21,21の上面21a,21aに設置されてから、2つの集水板調整機構35,35が流路規制装置用梁部材31に設けられる。2つの集水板調整機構35,35は、それぞれ、予め、集水板33,33が流路2に対して所定の向きとなるように調整されていてもよい。例えば、図7に示すように、翼車13を含む水力発電装置10に対して、集水板33,33を含む集水板調整機構35,35が配置されて、流路規制装置30が設置される。 In the flow path regulating device 30, first, the flow path regulating device beam member 31 is installed on the upper surfaces 21a and 21a of the side walls 21 and 21 of the water channel 2, and then the two water collecting plate adjustment mechanisms 35 and 35 The beam member 31 is provided. The two water collecting plate adjusting mechanisms 35, 35 may be previously adjusted so that the water collecting plates 33, 33 have a predetermined direction with respect to the flow path 2. For example, as shown in FIG. 7, the water collecting plate adjusting mechanism 35, 35 including the water collecting plates 33, 33 is disposed to the hydraulic power generation device 10 including the impeller 13, and the flow path regulating device 30 is installed. Be done.
 ここで、図8Aに拡大して示すように、集水板33は、流路方向Fに垂直に近い向きに設定されている。すなわち、集水板33と流路方向Fとのなす角度θが大きくなるように設定されている。この設定によって、流路2の水量が少ない場合に、集水板33がダムのように流路2を堰き止めようと働くことで、翼車13(図13)に向かう水の流速を高めることができ、発電電力を大きくできる。なお、集水板33の外側端を延長して側壁面21bに接触させてもよい。その一方、図8Bに示すように、集水板33は、流路方向Fに近い向きに設定可能である。すなわち、集水板33と流路方向Fとのなす角度θが小さくなるように設定可能である。この設定によって、流路2の水量が多い場合に、集水板33の集水の機能を低くして流路2に大きな影響を及ぼさないことで、溢水の事態を抑制できる。集水板33のこれら向きの設定は、上述したように、図1のクランプ37を開放して第2の幅方向移動棒体35bの第1の幅方向移動棒体35aおよび第3の幅方向移動棒体35cに対する位置を調整すると共に、第1の幅方向移動棒体35aおよび第3の幅方向移動棒体35cの流路規制装置用梁部材31に対する位置を調整することで実現できる。位置を調整した後にクランプ37で第2の幅方向移動棒体35bを第1の幅方向移動棒体35aおよび第3の幅方向移動棒体35cに再度締付固定すれば、設定した集水板33の向きが固定される。 Here, as shown in an enlarged manner in FIG. 8A, the water collecting plate 33 is set in a direction close to perpendicular to the flow direction F. That is, the angle θ between the water collecting plate 33 and the flow channel direction F is set to be large. By this setting, when the amount of water in the flow passage 2 is small, the water collection plate 33 works to block the flow passage 2 like a dam to increase the flow velocity of water toward the impeller 13 (FIG. 13). Power generation can be increased. The outer end of the water collecting plate 33 may be extended to be in contact with the side wall surface 21 b. On the other hand, as shown to FIG. 8B, the water collection board 33 can be set to the direction close | similar to the flow-path direction F. As shown to FIG. That is, the angle θ between the water collecting plate 33 and the flow path direction F can be set to be small. With this setting, when the amount of water in the flow path 2 is large, the function of water collection of the water collection plate 33 is reduced to not affect the flow path 2 significantly, and the situation of flooding can be suppressed. The setting of the orientations of the water collecting plate 33, as described above, releases the clamps 37 of FIG. 1 and the first widthwise moving rod 35a and the third widthwise direction of the second widthwise moving rod 35b. This can be realized by adjusting the position with respect to the moving rod 35c and adjusting the positions of the first widthwise moving rod 35a and the third widthwise moving rod 35c with respect to the flow path regulating device beam member 31. After adjusting the position, if the second widthwise moving rod 35b is tightened and fixed again to the first widthwise moving rod 35a and the third widthwise moving rod 35c by the clamp 37, the set water collecting plate The orientation of 33 is fixed.
 図1の水力発電装置1は、集水板33,33の設定に係わらず、流路2において水力により翼車13が回転する。翼車13の回転により、発電機19(図2,3)が発電する。ここで、集水板33,33が図8Aに示すように流路方向Fとのなす角度θが大きくなるように設定されている場合、翼車13付近の流速が大きくなるため、集水板33,33がない場合と比較して発電機19の発電電力が大きくなる。その一方、集水板33,33が図8Bに示すように流路方向Fとのなす角度θが小さくなるように設定されている場合、集水板33,33がない場合に対して発電電力はほとんど変わらない。このため、集水板33,33の向きが水量に応じて適切に設定されれば、水量に左右されずに、水量が多い場合にほぼ等しい発電電力が常に発電機19(図2)から出力される。 In the hydraulic power generation device 1 of FIG. 1, the impeller 13 is rotated by hydraulic power in the flow path 2 regardless of the settings of the water collection plates 33, 33. The rotation of the impeller 13 causes the generator 19 (FIGS. 2 and 3) to generate power. Here, when the water collecting plates 33, 33 are set to increase the angle θ with the flow channel direction F as shown in FIG. 8A, the flow velocity in the vicinity of the impeller 13 becomes large. The power generated by the generator 19 is larger than when 33 and 33 are absent. On the other hand, when the water collecting plates 33, 33 are set to have a small angle θ with respect to the flow channel direction F as shown in FIG. Is almost the same. For this reason, if the direction of the water collection plates 33, 33 is appropriately set according to the amount of water, the generated power that is almost equal when the amount of water is large is always output from the generator 19 (FIG. 2) regardless of the amount of water. Be done.
<その他の実施形態>
 以下の説明においては、各実施の形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成は同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
<Other Embodiments>
In the following description, the portions corresponding to the items described in advance in each embodiment are denoted by the same reference numerals, and the redundant description will be omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in the preceding embodiment unless otherwise stated. The same configuration produces the same effect. Not only the combination of the portions specifically described in the embodiments but also the embodiments may be partially combined if any problem does not occur in the combination.
 第2の実施形態に係る発電システム1について説明する。図9に示すように、本実施形態においては、2つの集水板調整機構35,35はそれぞれ、第1の幅方向移動棒体35a(図1)を1つ、第2の幅方向移動棒体35bを2つ、第3の幅方向移動棒体35cを1つしか有さないものとする。各集水板33は、そのため、外側の側端部が第1の実施形態と同様に第2の幅方向移動棒体35bに図示しない連結具により取付角度可変に支持されているが、内側の側端部は第1の実施形態とは異なり押圧用ばね(反力付加手段)38の一端38aを取付けている。この押圧用ばね38の他端38bは、ばね固定部材39に取り付けられている。ばね固定部材39は、図示しないが、流路規制装置用梁部材31に連結されている。このように集水板33の下流側の側端部33bは押圧用ばね38に接続されているだけであるため、流路2の水力を受けると集水板33のこの部分が下流側に押圧され、押圧用ばね38の押圧反力とつり合う位置に集水板が設定される。したがって、適切なばね定数のばねを用いれば、この押圧用ばね38によって、集水板33の向きは適切な方向に自動的に調整される。 A power generation system 1 according to a second embodiment will be described. As shown in FIG. 9, in the present embodiment, the two water collecting plate adjusting mechanisms 35, 35 respectively have one first width direction moving rod 35a (FIG. 1) and a second width direction moving rod. It is assumed that only two bodies 35b and one third width direction moving rod body 35c are provided. Therefore, each water collection plate 33 is supported at a variable mounting angle by a connector (not shown) on the second widthwise movement rod 35b similarly to the first embodiment, but the inner side Unlike the first embodiment, the side end portion is attached with one end 38 a of a pressing spring (reaction force application means) 38. The other end 38 b of the pressing spring 38 is attached to the spring fixing member 39. Although not shown, the spring fixing member 39 is connected to the flow path regulating device beam member 31. As described above, since the downstream side end 33b of the water collecting plate 33 is only connected to the pressing spring 38, when the hydraulic force of the flow path 2 is received, this portion of the water collecting plate 33 is pressed to the downstream side The water collecting plate is set at a position where it balances with the pressing reaction force of the pressing spring 38. Therefore, if a spring with an appropriate spring constant is used, this pressing spring 38 automatically adjusts the orientation of the water collecting plate 33 in an appropriate direction.
 図10Aに示すように、ばね38は、流路2の水量が少ない場合、集水板33が受ける水力が小さいため自由状態に近く、集水板33と流路方向Fとのなす角度θが大きくなる。その一方、図10Bに示すように、流路2の水量が多い場合に、集水板33が大きい力を受けてばね38を圧縮し、集水板33と流路方向Fとのなす角度θが小さくなる。 As shown in FIG. 10A, when the amount of water in the flow path 2 is small, the spring 38 is close to a free state because the hydraulic force received by the water collecting plate 33 is small, and the angle θ between the water collecting plate 33 and the flow direction F is growing. On the other hand, as shown in FIG. 10B, when the amount of water in the flow path 2 is large, the water collecting plate 33 receives a large force to compress the spring 38, and the angle θ between the water collecting plate 33 and the flow direction F Becomes smaller.
 第3の実施形態に係る発電システム1について説明する。図11に示すように、本実施形態においては、集水板調整機構35の第2の幅方向移動棒体のうち、2つの第2の幅方向移動棒体35b,35b(図1)が、集水板33を直接支持せず、代わりに集水板33を鉛直方向に案内する案内手段35bA,35bAとして機能する。案内手段35bA,35bAは、それぞれ、長手方向に延びる溝40を有する。これら溝40に、集水板33の両側端部がそれぞれ嵌挿されている。水力発電システム1(図1)の稼動中に集水板33は上下方向の力をほとんど受けないため動くことはない。作業者が集水板33を手作業で動かすことで、集水板33は上下方向に移動される。図12Aに示すように、流路2の水量が少ない場合は集水板33を下方に位置決めし、図12Bに示すように、流路2の水量が多い場合は集水板33を上方に位置決めする。なお、集水板33には、案内手段35bA,35bAによる案内を促進するために、作業者が握る把手のような補助手段(図示せず)が設けられてもよい。 A power generation system 1 according to a third embodiment will be described. As shown in FIG. 11, in the present embodiment, two second width direction moving rods 35b and 35b (FIG. 1) of the second width direction moving rods of the water collecting plate adjustment mechanism 35 The water collecting plate 33 is not directly supported, but instead functions as guiding means 35 b A, 35 b A for guiding the water collecting plate 33 in the vertical direction. The guiding means 35bA, 35bA each have a groove 40 extending in the longitudinal direction. Both side ends of the water collecting plate 33 are respectively inserted into the grooves 40. During operation of the hydroelectric power generation system 1 (FIG. 1), the water collection plate 33 hardly moves in the vertical direction because it receives almost no vertical force. The operator manually moves the water collecting plate 33 to move the water collecting plate 33 in the vertical direction. As shown to FIG. 12A, when the water quantity of the flow path 2 is small, the water collection board 33 is positioned below, As shown to FIG. 12B, when the water quantity of the flow path 2 is large, the water collection board 33 is positioned upwards Do. The water collecting plate 33 may be provided with an auxiliary means (not shown) such as a handle gripped by the operator in order to facilitate the guidance by the guiding means 35bA, 35bA.
 この実施形態に係る発電システム1の流路規制装置30は、第1の実施形態に関して説明したように集水板33の向きを水量に応じて変更するとともに集水板33の上下方向の位置も同時に変更できるため、より効率良い発電が可能となる。 The flow path regulating device 30 of the power generation system 1 according to this embodiment changes the direction of the water collecting plate 33 according to the amount of water as described in the first embodiment, and also the vertical position of the water collecting plate 33 Since changes can be made simultaneously, more efficient power generation is possible.
 第4の実施形態に係る水力発電システムについて説明する。図13および図14に示すように、集水板調整機構35Aは、集水板の水平方向の角度を調整するものである。集水板調整機構35Aは、図15に示すように、操作手段41と、第1のプーリ42と、第2のプーリ43と、これら第1および第2のプーリ43に巻回されたベルト44と、第1および第2のプーリを回転可能に支持するプーリ固定部材45と、集水板支持部材46(図13)とを有する。操作手段41は、例えば作業者が操作するハンドルからなり、第1のプーリ42の回転角度を設定する。プーリ固定部材45は、上面に第1のプーリ42が取り付けられた部分の下面が、流路2の側壁21の上面21aなどに固定されている。プーリ固定部材45のその他の部分は流路2(図13)の上方に張り出している。プーリ固定部材45のこの張り出した部分の上面に第2のプーリ43が取り付けられている。 The hydraulic power generation system according to the fourth embodiment will be described. As shown in FIG. 13 and FIG. 14, the water collecting plate adjusting mechanism 35 </ b> A adjusts the horizontal angle of the water collecting plate. As shown in FIG. 15, the water collecting plate adjusting mechanism 35A includes a belt 44 wound around the operation means 41, the first pulley 42, the second pulley 43, and the first and second pulleys 43. , A pulley fixing member 45 rotatably supporting the first and second pulleys, and a water collecting plate support member 46 (FIG. 13). The operation means 41 is, for example, a handle operated by an operator, and sets the rotation angle of the first pulley 42. The lower surface of a portion of the pulley fixing member 45 to which the first pulley 42 is attached on the upper surface is fixed to the upper surface 21 a or the like of the side wall 21 of the flow path 2. The other part of the pulley fixing member 45 projects above the flow path 2 (FIG. 13). A second pulley 43 is attached to the upper surface of the overhanging portion of the pulley fixing member 45.
 図13に戻って、各集水板支持部材46は、その上端が対応する第2のプーリ43の下側部分に取り付けられている。各集水板支持部材46は、第2のプーリ43の回転に連動する。 Returning to FIG. 13, each water collecting plate support member 46 is attached at its upper end to the lower portion of the corresponding second pulley 43. Each water collecting plate support member 46 interlocks with the rotation of the second pulley 43.
 本実施形態にかかる水力発電システム1の流路規制装置30は、さらに、図14に示すように流路設置用部材50を備える。流路設置用部材50は、流路2の底面において流路2を横切る方向に設置される板状の第1の連結片51を有する。第1の連結片51は、その両端部分であって2つの第2のプーリ43の回転軸上において、2つの集水板支持部材46をそれぞれ回転可能に支持する。 The flow path regulating device 30 of the hydraulic power generation system 1 according to the present embodiment further includes a flow path installation member 50 as shown in FIG. The flow path installation member 50 has a plate-like first connection piece 51 installed in a direction crossing the flow path 2 on the bottom surface of the flow path 2. The first connection piece 51 rotatably supports the two water collecting plate support members 46 on both end portions thereof and on the rotation axes of the two second pulleys 43.
 流路設置用部材50は、また、2つの第2の連結片53および2つの第3の連結片55を有する。第2の連結片53,53は、流路方向Fの逆方向つまり翼車13とは反対側に向かって第1の連結片51の両端から延びる。各第3の連結片55は、対応する第2の連結片53の第1の連結片51に連結された端とは反対側の端から対応する集水板調整機構35Aのプーリ固定部材45の下面に延びて取り付けられている。第1の連結片51、2つの第の連結片53,53、2つの第3の連結片55,55、および2つの集水板調整機構35A,35Aは、一体に構成されて設置されてもよい。代わりに、流路規制装置30の設置時に互いに連結されてもよい。また、第3の連結片55,55は省略可能である。ただし、第3の連結片55,55があれば、これらがそれぞれ対応する第2の連結片53と対応するプーリ固定部材45とを接続するため、流路設置用部材50が補強される。なお、第2の連結片53,53は、流路2の底面に固定されるか、流路2の上流側から鎖などによって引っ張り固定されてもよい。第2の連結片53,53が固定されると、第1の連結片51が安定するため、この第1の連結片51が支持する集水板支持部材46,46の位置がずれることを防止できる。 The flow path installation member 50 also has two second connection pieces 53 and two third connection pieces 55. The second connection pieces 53 extend from both ends of the first connection piece 51 in the direction opposite to the flow direction F, that is, the opposite side to the impeller 13. Each third connection piece 55 is the pulley fixing member 45 of the corresponding water collecting plate adjustment mechanism 35A from the end opposite to the end connected to the first connection piece 51 of the corresponding second connection piece 53. It is attached to the bottom surface. Even if the first connection piece 51, the two second connection pieces 53, 53, the two third connection pieces 55, 55, and the two water collecting plate adjustment mechanisms 35A, 35A are integrally configured and installed, Good. Alternatively, they may be connected to each other when the flow path regulation device 30 is installed. Also, the third connection pieces 55, 55 can be omitted. However, if there are the third connection pieces 55, the flow path installation member 50 is reinforced in order to connect the corresponding second connection pieces 53 and the corresponding pulley fixing members 45, respectively. The second connection pieces 53 may be fixed to the bottom of the flow path 2 or may be pulled and fixed from the upstream side of the flow path 2 by a chain or the like. When the second connection pieces 53, 53 are fixed, the first connection piece 51 is stabilized, so that the water collecting plate supporting members 46, 46 supported by the first connection piece 51 are prevented from being displaced. it can.
 集水板支持部材46,46は、それぞれ、集水板33を、第2のプーリ43の径方向に沿い、かつ鉛直方向に延在するように保持する。本実施形態においては、集水板33はその一側端においてのみ集水板支持部材46に固定されて片持ち支持される。集水板支持部材46は、第3の実施形態で説明したように、集水板33を鉛直方向に案内する案内手段であってもよい。すなわち、集水板支持部材46は、長手方向に延びる溝(図示せず)を有し、この溝に、集水板33の一側端部が嵌挿されてもよい。 The water collecting plate support members 46 respectively hold the water collecting plate 33 so as to extend in the radial direction of the second pulley 43 and in the vertical direction. In the present embodiment, the water collecting plate 33 is fixed to the water collecting plate support member 46 only at one side end thereof and supported in a cantilever manner. The water collecting plate support member 46 may be a guiding means for guiding the water collecting plate 33 in the vertical direction as described in the third embodiment. That is, the water collecting plate support member 46 has a groove (not shown) extending in the longitudinal direction, and one end of the water collecting plate 33 may be inserted into this groove.
 本実施形態に係る水力発電システム1の流路規制装置30の集水板調整機構35Aでは、操作手段41を介した操作で設定された角度に応じて第1のプーリ42が回転し、その回転はベルト44を介して第2のプーリ43に伝達される。第2のプーリ43が回転すると、集水板33の流路2に対する向きが変化する。これにより、操作手段41で設定した角度に応じて、集水板33の向きが設定される。操作手段41が操作されない間、集水板33の向きは固定されている。集水板調整機構35Aは、第1のプーリ42、第2のプーリ43、およびベルト44からなる伝達手段に代えて、例えば、ウォームおよびギヤなどからなる動力伝達手段を備えてもよい。 In the water collecting plate adjusting mechanism 35A of the flow path regulating device 30 of the hydraulic power generation system 1 according to the present embodiment, the first pulley 42 rotates in accordance with the angle set by the operation through the operation means 41, and the rotation thereof Is transmitted to the second pulley 43 via the belt 44. When the second pulley 43 rotates, the direction of the water collecting plate 33 with respect to the flow path 2 changes. Thus, the direction of the water collecting plate 33 is set in accordance with the angle set by the operation means 41. While the operation means 41 is not operated, the direction of the water collecting plate 33 is fixed. The water collecting plate adjusting mechanism 35A may be provided with a power transmission means including, for example, a worm and a gear, instead of the transmission means including the first pulley 42, the second pulley 43, and the belt 44.
 第5の実施形態に係る水力発電システムについて説明する。図16に示すように、本実施形態に係る水力発電システム1の流路規制装置30は、第4の実施形態に関して説明した各構成要素に加えて、自動調整用装置60を備える。自動調整用装置60は、それぞれ第2のプーリ43に設けられた2つのモータ61,61と、流路2の水位を検出する水位センサ63と、プロセッサなどによって以下に説明する制御処理を実行する制御装置65とを有する。制御装置65は、2つのモータ61,61および水位センサ63との間で、有線または無線により通信可能である。 The hydraulic power generation system according to the fifth embodiment will be described. As shown in FIG. 16, the flow path regulating device 30 of the hydraulic power generation system 1 according to this embodiment includes an automatic adjustment device 60 in addition to the components described in the fourth embodiment. The automatic adjustment device 60 executes control processing described below by using two motors 61 and 61 provided in the second pulley 43, a water level sensor 63 for detecting the water level in the flow path 2, and a processor or the like. And a controller 65. The controller 65 can communicate with the two motors 61 and 61 and the water level sensor 63 in a wired or wireless manner.
 水位センサ63は、流路2の水位を検出すると、その水位に関する情報を制御装置65に送信する。制御装置65は、この水位に関する情報を受信すると、集水板33,33がこの水位に応じた向きとなるように、モータ61,61へ指令信号を送信する。各モータ61は、受信した指令信号に応じて対応する第2のプーリ43を回転駆動する。このようにして集水板33,33の向きが調整される。具体的には、制御装置65からの指令信号に応答して、各モータ61は、流路2の水位が低い場合には、集水板33が流路方向Fの垂直方向に近い向きになるように集水板33を自動調整し、流路2の水位が高い場合には、集水板33は流路方向Fに近い向きになるように集水板33を自動調整する。なお、制御装置65は、水位に所定範囲以上の変化が生じた場合にのみモータ61,61へ指令信号を送信してもよい。 When the water level sensor 63 detects the water level of the flow path 2, it transmits information on the water level to the control device 65. When the control device 65 receives the information on the water level, the control device 65 transmits a command signal to the motors 61, 61 such that the water collection plates 33, 33 are oriented in accordance with the water level. Each motor 61 rotationally drives the corresponding second pulley 43 in accordance with the received command signal. Thus, the orientations of the water collecting plates 33, 33 are adjusted. Specifically, in response to the command signal from the control device 65, each motor 61 has the water collecting plate 33 in a direction close to the vertical direction of the flow direction F when the water level in the flow passage 2 is low. As described above, the water collecting plate 33 is automatically adjusted, and when the water level of the flow path 2 is high, the water collecting plate 33 is automatically adjusted so as to be close to the flow direction F. The controller 65 may transmit the command signal to the motors 61, 61 only when the water level changes more than a predetermined range.
 流路2の水位と、水位に適切な集水板の向き(水平方向角度)との関係は、予め定められて、制御装置65が記憶している。この関係は、例えば水位の離散値それぞれに対する集水板の向きを、テーブルとして制御装置65が記憶する。制御装置65は、水位センサ63から水位に関する情報を受信すると、このテーブルを参照して適切な集水板の向きを抽出し、モータ61,61へ指令信号を送信する。 The relationship between the water level of the flow path 2 and the direction (horizontal direction angle) of the water collection plate appropriate for the water level is determined in advance and stored in the control device 65. In this relationship, for example, the controller 65 stores, as a table, the orientation of the water collecting plate with respect to each of the discrete values of the water level. When the controller 65 receives information on the water level from the water level sensor 63, the controller 65 refers to the table to extract an appropriate direction of the water collecting plate, and transmits a command signal to the motors 61, 61.
 水位センサ63は、図示のようにレーザセンサのような非接触式の水位センサであってもよいが、水位を検出できるものであればいかなるセンサであってもよい。なお、水位センサ63に高い精度は要求されない。 The water level sensor 63 may be a non-contact type water level sensor such as a laser sensor as illustrated, but any sensor that can detect the water level may be used. The water level sensor 63 is not required to have high accuracy.
 本実施形態において、操作手段41、第1のプーリ42およびベルト44を図示しているが、集水板調整機構35Aはこれらを備えなくてもよい。この場合、集水板33,33の調整は必ず自動で行われる。その一方、図示の例では、集水板33,33は自動と手動の両方で調整可能である。 In the present embodiment, the operation means 41, the first pulley 42 and the belt 44 are illustrated, but the water collecting plate adjustment mechanism 35A may not have these. In this case, adjustment of the water collecting plates 33, 33 is always performed automatically. On the other hand, in the illustrated example, the water collecting plates 33, 33 can be adjusted both automatically and manually.
<流速分布例>
 各実施形態で説明したように水力発電システム1が流路規制装置30を設けた場合と、水力発電システム1が流路規制装置30を設けない場合とにおける流速分布の例を、図17のダイアグラム(a)および(b)にそれぞれ示す。
<Example of flow velocity distribution>
An example of the flow velocity distribution in the case where the hydraulic power generation system 1 is provided with the flow path regulation device 30 as described in each embodiment and the case where the hydraulic power generation system 1 is not provided with the flow path regulation device 30 is illustrated in FIG. It shows in (a) and (b) respectively.
 図17のダイアグラム(a)から明らかなように、翼車13の先端付近の流速が速くなっている。これは、集水板33,33により、水が流路2の中央に集められているからである。これに対して、図17のダイアグラム(b)に示すように、集水板33,33がない場合、翼車13の先端付近の流速は、図17のダイアグラム(a)に比較して遅いことが分かる。 As apparent from the diagram (a) of FIG. 17, the flow velocity in the vicinity of the tip of the impeller 13 is high. This is because water is collected at the center of the flow path 2 by the water collection plates 33, 33. On the other hand, as shown in the diagram (b) of FIG. 17, when there is no water collecting plate 33, 33, the flow velocity near the tip of the impeller 13 is slower compared to the diagram (a) of FIG. I understand.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。 As described above, although the preferred embodiments have been described with reference to the drawings, various additions, modifications or deletions can be made without departing from the spirit of the present invention. Therefore, such is also included in the scope of the present invention.
 1…水力発電システム
 2…流路
 10…水力発電装置
 13…翼車
 19…発電機
 30…流路規制装置
 33…集水板
 34…間隔設定機構
 35…集水板調整機構
DESCRIPTION OF SYMBOLS 1 ... Hydroelectric power system 2 ... Flow path 10 ... Hydroelectric power apparatus 13 ... Spur 19 ... Generator 30 ... Flow control apparatus 33 ... Water collecting board 34 ... Spacing mechanism 35 ... Water collecting board adjustment mechanism

Claims (12)

  1.  水力発電装置用の流路規制装置であって、前記水力発電装置および前記流路規制装置が流路に設置され、前記水力発電装置が、水力を回転力に変換する翼車、およびこの翼車の回転により発電する発電機を備え、当該流路規制装置が、
     前記翼車に対して前記流路の所定距離だけ上流側に配置され、かつ、前記流路の幅方向に互いに間隔を空けて対向して配置される少なくとも2つの集水板と、
     前記少なくとも2つの集水板の前記間隔を設定する間隔設定機構であって、前記間隔を前記流路の上流側から下流側にかけて狭くなるように設定自在である間隔設定機構とを備えた水力発電装置用流路規制装置。
    A flow path regulation device for a hydroelectric power generation device, wherein the hydroelectric power generation device and the flow path regulation device are installed in a flow path, and the hydroelectric power generation device converts hydraulic power to rotational power, and the impeller The flow path regulation device is provided with a generator that generates electric power by rotation of
    At least two water collecting plates disposed upstream of the flow channel by a predetermined distance with respect to the impeller, and disposed to face each other at an interval in the width direction of the flow channel;
    A hydroelectric power generation system comprising: a space setting mechanism for setting the space between the at least two water collection plates, wherein the space can be set so as to narrow the space from the upstream side to the downstream side of the flow path Device flow control device.
  2.  請求項1に記載の水力発電装置用流路規制装置において、
     前記少なくとも2つの集水板が、前記流路の幅方向の左右両側に1つずつ配置された2つの集水板である水力発電装置用流路規制装置。
    In the flow control device for a hydroelectric power generation device according to claim 1,
    A flow passage regulation device for a hydroelectric power generation device, wherein the at least two water collection plates are two water collection plates disposed one each on the left and right sides in the width direction of the flow passage.
  3.  請求項2に記載の水力発電装置用流路規制装置において、
     前記2つの集水板の前記流路の上流側の側端が、互いに対向して前記流路を構成する壁面にそれぞれ当接するように前記2つの集水板が配置される水力発電装置用流路規制装置。
    In the flow control device for a hydroelectric power generation device according to claim 2,
    The flow for a hydroelectric power generation apparatus in which the two water collecting plates are disposed such that the upstream side ends of the flow passages of the two water collecting plates face each other and abut on the wall surfaces constituting the flow passages. Road regulation device.
  4.  請求項1から3のいずれか一項に記載の水力発電装置用流路規制装置において、
     前記少なくとも2つの集水板が、それぞれ、略鉛直方向に延び、
     前記間隔設定機構が、前記少なくとも2つの集水板にそれぞれ対応した少なくとも2つの集水板調整機構を有し、各集水板調整機構によって、対応する集水板の前記流路に対する向きが任意の向きに調整されてその向きに前記集水板が固定される水力発電装置用流路規制装置。
    The flow path regulation device for a hydroelectric power generation device according to any one of claims 1 to 3.
    Each of the at least two water collecting plates extends in a substantially vertical direction;
    The space setting mechanism has at least two water collecting plate adjusting mechanisms respectively corresponding to the at least two water collecting plates, and each water collecting plate adjusting mechanism makes the direction of the corresponding water collecting plate to the flow path arbitrary. The flow path regulation device for a hydroelectric power generation device, wherein the water collection plate is fixed in the direction of and fixed to the direction.
  5.  請求項1から4のいずれか一項に記載の水力発電装置用流路規制装置において、
     前記少なくとも2つの集水板が、それぞれ、略鉛直方向に延び、
     前記間隔設定機構が、前記少なくとも2つの集水板にそれぞれ対応した少なくとも2つの集水板調整機構を有し、各集水板調整機構が、前記流路の状況に応じて、対応する集水板の前記流路に対する向きを自動的に調整する集水板自動調整機構を含む水力発電装置用流路規制装置。
    The flow path regulation device for a hydroelectric power generation device according to any one of claims 1 to 4.
    Each of the at least two water collecting plates extends in a substantially vertical direction;
    The interval setting mechanism has at least two water collecting plate adjusting mechanisms respectively corresponding to the at least two water collecting plates, and each water collecting plate adjusting mechanism corresponds to the corresponding water collection according to the condition of the flow path. A flow path regulation device for a hydroelectric power generator, including a water collection plate automatic adjustment mechanism that automatically adjusts the direction of the plate with respect to the flow path.
  6.  請求項5に記載の水力発電装置用流路規制装置において、
     前記少なくとも2つの集水板が、それぞれ、前記流路の水力を受けて動くことで、その集水板の前記流路に対する向きが変化するものであり、前記集水板自動調整機構が、それぞれ、前記水力を受ける方向とは反対の方向に力を加えて前記集水板を方向付ける反力付加手段を有する水力発電装置用流路規制装置。
    In the flow control device for a hydroelectric power generation device according to claim 5,
    Each of the at least two water collecting plates moves in response to the hydraulic force of the flow passage, whereby the direction of the water collecting plate with respect to the flow passage is changed, and the water collecting plate automatic adjustment mechanism respectively A flow path regulation device for a hydroelectric power generation device, comprising: a reaction force application unit that applies a force in a direction opposite to the direction in which the hydraulic power is received to direct the water collection plate.
  7.  請求項1から6のいずれか一項に記載の水力発電装置用流路規制装置において、さらに、
     前記少なくとも2つの集水板をそれぞれ鉛直方向に案内する案内手段を備えた水力発電装置用流路規制装置。
    In the flow path regulation device for a hydroelectric power generation device according to any one of claims 1 to 6, further,
    A flow path regulating device for a hydroelectric power generator, comprising guiding means for guiding the at least two water collecting plates in the vertical direction.
  8.  請求項1から7のいずれか一項に記載の水力発電装置用流路規制装置において、
     前記少なくとも2つの集水板の上側端がそれぞれ、前記流路の上端よりも下側に位置するように設置される水力発電装置用流路規制装置。
    The flow path regulation device for a hydroelectric power generation device according to any one of claims 1 to 7.
    A flow path regulation device for a hydroelectric power generation device installed so that upper ends of the at least two water collection plates are respectively positioned lower than an upper end of the flow path.
  9.  請求項1から8のいずれか一項に記載の水力発電装置用流路規制装置において、
     前記少なくとも2つの集水板が、それぞれ、均一な厚みを有する水力発電装置用流路規制装置。
    The flow path regulation device for a hydroelectric power generation device according to any one of claims 1 to 8.
    A flow path regulation device for a hydroelectric power generator, wherein each of the at least two water collection plates has a uniform thickness.
  10.  請求項1から8のいずれか一項に記載の水力発電装置用流路規制装置において、
     前記2つの集水板それぞれの断面形状が、上流側の厚みが大きく下流側の厚みが小さい、略流線形状である水力発電装置用流路規制装置。
    The flow path regulation device for a hydroelectric power generation device according to any one of claims 1 to 8.
    The flow path regulation device for a hydroelectric power generation device, in which each of the two water collecting plates has a substantially streamlined cross-sectional shape having a large thickness on the upstream side and a small thickness on the downstream side.
  11.  請求項1から10のいずれか一項に記載の水力発電装置用流路規制装置と、
     前記水力発電装置とを備えた水力発電システム。
    The flow path regulation device for a hydroelectric power generation device according to any one of claims 1 to 10,
    A hydroelectric power generation system comprising the hydroelectric power generation device.
  12.  請求項11において、前記翼車が、前記翼車の回転軸が前記流路の方向と平行なプロペラ型である水力発電システム。 The hydraulic power generation system according to claim 11, wherein the impeller is a propeller type in which a rotation axis of the impeller is parallel to a direction of the flow path.
PCT/JP2018/034932 2017-09-25 2018-09-20 Flow path regulation device for hydraulic power generation device WO2019059323A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017183368A JP7213011B2 (en) 2017-09-25 2017-09-25 Flow regulating device for hydroelectric generator
JP2017-183368 2017-09-25

Publications (1)

Publication Number Publication Date
WO2019059323A1 true WO2019059323A1 (en) 2019-03-28

Family

ID=65811278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034932 WO2019059323A1 (en) 2017-09-25 2018-09-20 Flow path regulation device for hydraulic power generation device

Country Status (2)

Country Link
JP (1) JP7213011B2 (en)
WO (1) WO2019059323A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200277928A1 (en) * 2016-02-18 2020-09-03 Ntn Corporation Hydroelectric power generation apparatus
CN112392639A (en) * 2020-11-16 2021-02-23 太仓治誓机械设备科技有限公司 Power generation equipment utilizing water flow
WO2022024039A1 (en) * 2020-07-29 2022-02-03 Cos.B.I. Costruzione Bobine Italia S.R.L. System for the regulation of a water flow passing through a hydroelectric turbine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114937A (en) * 2007-11-06 2009-05-28 Michihiro Oe Hydraulic power generation device
WO2011095240A2 (en) * 2010-02-04 2011-08-11 Stein Ht Gmbh Spezialtiefbau Hydroelectric power plant
DE202013100870U1 (en) * 2013-02-28 2013-03-13 Stein Ht Gmbh Spezialtiefbau Hydropower plant for generating electrical energy
JP2014156796A (en) * 2013-02-14 2014-08-28 Hayami Kohei Power generating system
JP2014234759A (en) * 2013-05-31 2014-12-15 浩平 速水 Power generation system
WO2017063830A1 (en) * 2015-10-14 2017-04-20 Flowgen Development & Management Gmbh Continuous-flow energy installation, in particular a wind power installation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104343619B (en) 2013-08-06 2017-05-10 杭州林黄丁新能源研究院有限公司 Water flow adjusting device and ocean energy power generation device using water flow adjusting device
JP6168902B2 (en) * 2013-08-06 2017-07-26 水機工業株式会社 Small hydroelectric generator
JP2017120050A (en) * 2015-12-28 2017-07-06 株式会社Noai Vertical wind power generation system, vertical water power generation system and control method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114937A (en) * 2007-11-06 2009-05-28 Michihiro Oe Hydraulic power generation device
WO2011095240A2 (en) * 2010-02-04 2011-08-11 Stein Ht Gmbh Spezialtiefbau Hydroelectric power plant
JP2014156796A (en) * 2013-02-14 2014-08-28 Hayami Kohei Power generating system
DE202013100870U1 (en) * 2013-02-28 2013-03-13 Stein Ht Gmbh Spezialtiefbau Hydropower plant for generating electrical energy
JP2014234759A (en) * 2013-05-31 2014-12-15 浩平 速水 Power generation system
WO2017063830A1 (en) * 2015-10-14 2017-04-20 Flowgen Development & Management Gmbh Continuous-flow energy installation, in particular a wind power installation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200277928A1 (en) * 2016-02-18 2020-09-03 Ntn Corporation Hydroelectric power generation apparatus
US10947950B2 (en) * 2016-02-18 2021-03-16 Ntn Corporation Hydroelectric power generation apparatus
WO2022024039A1 (en) * 2020-07-29 2022-02-03 Cos.B.I. Costruzione Bobine Italia S.R.L. System for the regulation of a water flow passing through a hydroelectric turbine
CN112392639A (en) * 2020-11-16 2021-02-23 太仓治誓机械设备科技有限公司 Power generation equipment utilizing water flow
CN112392639B (en) * 2020-11-16 2022-06-21 江苏奥纳麦格科技有限公司 Power generation equipment utilizing water flow

Also Published As

Publication number Publication date
JP7213011B2 (en) 2023-01-26
JP2019060242A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
WO2019059323A1 (en) Flow path regulation device for hydraulic power generation device
JP6038809B2 (en) Rotor device
EP1832744B1 (en) Propeller and horizontal-shaft windmill
JP4558055B2 (en) Hydroelectric generator
WO2017115565A1 (en) Vertical wind power generation system, vertical hydropower generation system, and control method therefor
CA2919986A1 (en) Wind power generation tower provided with gyromill type wind turbine
JP4157590B1 (en) Simple installation type hydroelectric generator
AU2018201121A1 (en) Wind power generation tower
US20140105721A1 (en) Optimized mass flow through a multi staged duct system guide vane of a wind turbine
US20140339826A1 (en) Diffuser controller for tidal stream power generation
CN114270029A (en) Wind wall
CA2787022C (en) Method and apparatus for fluid turbine having a linear actuator
KR101173463B1 (en) Apparatus Of Wind Power System For Wind Turbine
WO2020184273A1 (en) Water collection device for hydraulic power generation device, and hydraulic power generation device
US10895242B2 (en) Output reinforcement device of power generator and natural energy type power generator
RU2693554C1 (en) Wind-driven power generating unit
WO2020196018A1 (en) Hydraulic power generation apparatus
JP2020153311A (en) Catchment device for hydraulic generating equipment and hydraulic generating equipment
JP2010270721A (en) Hybrid vertical shaft type high efficiency turbine and power generator
JPH04121459A (en) Hydraulic turbine for low flow rate
KR101895425B1 (en) Assistive propulsion apparatus using wind power for ship
Obretenov et al. A Study of a Darrieus Vertical Axis Wind Turbine with a guiding nozzle
KR101374050B1 (en) Wind power generation tower with giromill
KR101372253B1 (en) Wind power generation tower with giromill
KR101372251B1 (en) Wind power generation tower with giromill

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858890

Country of ref document: EP

Kind code of ref document: A1