WO2019059273A1 - 回転機械の制御装置、回転機械設備、回転機械の制御方法、及び回転機械の制御プログラム - Google Patents

回転機械の制御装置、回転機械設備、回転機械の制御方法、及び回転機械の制御プログラム Download PDF

Info

Publication number
WO2019059273A1
WO2019059273A1 PCT/JP2018/034804 JP2018034804W WO2019059273A1 WO 2019059273 A1 WO2019059273 A1 WO 2019059273A1 JP 2018034804 W JP2018034804 W JP 2018034804W WO 2019059273 A1 WO2019059273 A1 WO 2019059273A1
Authority
WO
WIPO (PCT)
Prior art keywords
change
clearance
parameter
amount
change rate
Prior art date
Application number
PCT/JP2018/034804
Other languages
English (en)
French (fr)
Inventor
デイビッド ファーンズ
藤井 慶太
上田 修
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to DE112018005376.8T priority Critical patent/DE112018005376T5/de
Priority to CN201880048594.XA priority patent/CN110945227B/zh
Priority to US16/634,415 priority patent/US11333081B2/en
Publication of WO2019059273A1 publication Critical patent/WO2019059273A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/042Air intakes for gas-turbine plants or jet-propulsion plants having variable geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/16Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled all the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/05Purpose of the control system to affect the output of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/11Purpose of the control system to prolong engine life
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/309Rate of change of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05D2270/821Displacement measuring means, e.g. inductive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/20Gas turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to a control device for a rotary machine including a rotating rotor and a casing covering the outer circumferential side of the rotor, a rotary machine, a control method of the rotary machine, and a control program of the rotary machine.
  • Gas turbines are a type of rotary machine.
  • the gas turbine includes a compressor that compresses the atmosphere to generate compressed air, a combustor that burns fuel in the compressed air to generate combustion gas, and a turbine driven by the combustion gas.
  • the compressor has a compressor rotor that rotates about an axis, and a compressor casing that rotatably covers the same.
  • the turbine has a turbine rotor that rotates about an axis, and a turbine casing that rotatably covers the turbine rotor.
  • the turbine rotor and the compressor rotor are connected to one another to form a gas turbine rotor.
  • a generator is connected to the gas turbine rotor.
  • a fuel line is connected to the combustor.
  • the fuel line is provided with a fuel control valve that controls the flow rate of fuel supplied to the combustor.
  • the operating amount of the fuel control valve which is one of the operating ends, is changed. That is, the flow rate of the fuel supplied to the combustor is changed.
  • the operation amount of the fuel control valve is determined, for example, by an external load command or the like as described in Patent Document 1 below.
  • the output and the rotational speed of the gas turbine become target values in a short time.
  • the output of the gas turbine is coped with to cope with the sudden change in the power generation volume of these facilities. It is desirable that the rotational speed be a target value in a short time.
  • an object of this invention is to provide the technique which can make the rotation speed or output of a rotary machine into a target value in a short time, suppressing damage to a rotary machine.
  • a control device of a rotary machine for achieving the object,
  • a control device of a rotary machine comprising a rotating rotor and a casing covering an outer peripheral side of the rotor, an operation end for changing a parameter which is a rotational speed or an output of the rotary machine, a clearance between the rotor and the casing
  • a parameter change rate setting unit that determines a change rate of the parameter so that the change rate of the parameter changes according to the clearance amount, and a change rate of the parameter according to the change rate of the parameter.
  • an operation amount output unit that determines an operation amount of the operation end and outputs the operation amount to the operation end.
  • the rotary machine may temporarily reduce the amount of clearance between the rotor and the casing as the rotational speed or the parameter (output) increases or decreases. As this amount of clearance decreases, the rotor and the casing come into contact, and the possibility of damaging the rotor or a part of the casing increases.
  • this rate of change is determined so that the rate of change of the parameter changes in accordance with the amount of clearance. Then, in the present embodiment, the operation amount of the operation end is determined according to the change rate, and this operation amount is output to the operation end. Therefore, in this aspect, the rate of change of the parameter changes in accordance with the amount of clearance.
  • the parameter change rate setting unit is configured to set a second clearance amount larger than the first clearance amount as compared with the change rate of the parameter at the first clearance amount.
  • the rate of change of the parameter may be determined such that the rate of change of the parameter with the time of.
  • the parameter change rate setting unit is a basis for obtaining a basic change rate of the parameter according to a deviation between a target value of the parameter and a detected value of the parameter.
  • a change rate calculation unit; a change value calculation unit for obtaining a change value for changing the basic change rate according to the clearance amount; and a change rate change unit for changing the basic change rate using the change value You may have.
  • the change value calculation unit corresponds to the clearance amount using a relationship between the clearance amount and a first change value for changing the basic change rate.
  • the change rate changing unit may change the basic change rate using the first change value.
  • the change value calculation unit changes the basic change rate in accordance with a deviation between the clearance amount and a predetermined allowable minimum clearance amount. It may have the 2nd operation part which calculates two change values. In this case, the change rate changing unit may change the basic change rate using the first change value and the second change value.
  • the relationship may be a relationship in which the first change value increases as the clearance amount increases.
  • a rotary machine and equipment for achieving the above object.
  • the control device according to any one of the above and the rotating machine.
  • the rotary machine is a compressor that compresses air to generate compressed air, a combustor that burns fuel in the compressed air to generate combustion gas, and the combustion gas
  • the compressor has a rotating compressor rotor and a compressor casing that covers the compressor rotor.
  • the turbine has a rotating turbine rotor and a turbine casing that covers the turbine rotor.
  • the compressor rotor and the turbine rotor are mechanically connected to form a gas turbine rotor.
  • the operating end is a fuel control valve that controls the flow rate of fuel supplied to the combustor.
  • the clearance measuring device measures a gas turbine clearance amount between the turbine rotor and the turbine casing.
  • the parameter change rate setting unit is configured to change the change rate of the parameter so that at least the change rate of the parameter at the time of the increase is changed between the increase and decrease of the parameter according to the gas turbine clearance amount.
  • the amount of gas turbine clearance temporarily decreases as the parameter increases and temporarily increases as the parameter decreases.
  • the rate of change of the parameter is determined such that the rate of change of the parameter changes according to the amount of gas turbine clearance when the parameter increases.
  • the operation amount of the fuel control valve is obtained according to the change rate, and this operation amount is output to the fuel control valve. Therefore, in the present embodiment, even when the parameter of the gas turbine is increased, the parameter can be set to the target value in a short time while suppressing the gas turbine clearance amount from becoming extremely small.
  • the compressor has an intake air flow rate regulator provided in the compressor casing to adjust the flow rate of air flowing into the compressor casing.
  • the control device sets an intake operation amount setting unit that determines an operation amount of the intake flow rate regulator according to the gas turbine clearance amount, and sets the operation amount of the intake flow rate regulator to the intake flow rate regulator.
  • an intake operation amount output unit for outputting.
  • the intake air flow rate which is the flow rate of air flowing into the compressor casing
  • the temperature of the combustion gas flowing through the combustion gas flow path decreases, and the gas turbine clearance changes.
  • the intake air flow rate changes according to the gas turbine clearance amount, it is possible to prevent the gas turbine clearance amount from becoming extremely small.
  • the gas turbine extracts the air compressed by the compressor and extracts the extracted air to the blades of the turbine rotor. It has a lead-out bleed line, a cooler that cools the air flowing through the bleed line, and a cooling controller that regulates the amount of cooling of the air by the cooler.
  • the control device outputs a cooling operation amount setting unit that determines an operation amount of the cooling controller according to the gas turbine clearance amount, and cooling that outputs the operation amount of the cooling controller to the cooling controller. And an operation amount output unit.
  • the rotating machine is a steam driven steam turbine.
  • the steam turbine has a rotating steam turbine rotor and a steam turbine casing that covers the steam turbine rotor.
  • the operating end is a steam control valve that regulates the flow rate of steam supplied to the steam turbine.
  • the clearance measuring device measures the amount of steam turbine clearance between the steam turbine rotor and the steam turbine casing.
  • the parameter change rate setting unit changes the change rate of the parameter so that at least the change rate of the parameter at the time of decrease changes between the increase and decrease of the parameter according to the steam turbine clearance amount. It is good to decide
  • the amount of steam turbine clearance temporarily decreases as the parameter decreases and temporarily increases as the parameter increases.
  • the rate of change of the parameter is determined such that the rate of change of the parameter changes according to the amount of steam turbine clearance when the parameter decreases.
  • the amount of operation of a steam control valve is calculated according to this rate of change, and this amount of operation is outputted to a steam control valve. For this reason, in this aspect, even when the parameter of the steam turbine decreases, the parameter can be set to the target value in a short time while suppressing the steam turbine clearance amount from becoming extremely small.
  • the 1st rotary machine and the 2nd rotary machine as said rotary machine are provided.
  • the first rotating machine is a gas turbine.
  • the second rotating machine is a steam turbine.
  • the rotary mechanical equipment includes an exhaust heat recovery boiler that generates steam from exhaust gas exhausted from the gas turbine and sends the steam to the steam turbine.
  • the gas turbine includes a compressor that compresses air to generate compressed air, a combustor that burns fuel in the compressed air to generate combustion gas, and a turbine driven by the combustion gas.
  • the compressor has a rotating compressor rotor and a compressor casing that covers the compressor rotor.
  • the turbine has a rotating turbine rotor and a turbine casing that covers the turbine rotor.
  • the compressor rotor and the turbine rotor are mechanically connected to form a gas turbine rotor.
  • the operating end of the gas turbine is a fuel control valve that controls the flow rate of fuel supplied to the combustor.
  • the clearance measuring device of the gas turbine is a gas turbine clearance measuring device that measures the amount of gas turbine clearance between the turbine rotor and the turbine casing.
  • the steam turbine has a rotating steam turbine rotor and a steam turbine casing that covers the steam turbine rotor.
  • the operating end of the steam turbine is a steam control valve that regulates the flow rate of steam supplied from the exhaust heat recovery boiler to the steam turbine.
  • the clearance measuring device of the steam turbine is a steam turbine clearance measuring device that measures a steam turbine clearance amount between the steam turbine rotor and the steam turbine casing.
  • the parameter change rate setting unit of the gas turbine is configured to change the change rate of the gas turbine parameter according to the gas turbine clearance when the gas turbine parameter which is the parameter for the gas turbine is increased.
  • the rate of change of the gas turbine parameter may be determined, and the rate of change of the gas turbine parameter may be determined such that the rate of change of the gas turbine parameter changes according to the steam turbine clearance when the gas turbine parameter decreases.
  • the operation amount output unit of the gas turbine determines the operation amount of the fuel control valve according to the change rate of the gas turbine parameter determined by the parameter change rate setting unit of the gas turbine, and the fuel adjustment Preferably, the operation amount of the valve is output to the fuel control valve.
  • the parameter change rate setting unit of the steam turbine is configured to change the rate of change of the steam turbine parameter according to the gas turbine clearance when the steam turbine parameter which is the parameter for the steam turbine is increased.
  • the rate of change of the turbine parameters may be determined, and the rate of change of the steam turbine parameters may be determined such that the rate of change of the steam turbine parameters changes according to the steam turbine clearance when the steam turbine parameters decrease.
  • the operation amount output unit of the steam turbine determines the operation amount of the steam control valve according to the change rate of the steam turbine parameter determined by the parameter change rate setting unit of the steam turbine, and the steam adjustment The operating amount of the valve may be output to the steam control valve.
  • the rotary mechanical equipment of this aspect is a so-called combined cycle plant.
  • the steam turbine parameters increase in conjunction therewith.
  • the amount of gas turbine clearance temporarily decreases when the parameter increases, and the amount of gas turbine clearance temporarily increases when the parameter decreases.
  • the steam turbine when the parameter increases, the amount of steam turbine clearance temporarily increases, and when the parameter decreases, the amount of steam turbine clearance temporarily decreases.
  • the manipulated variable of the operation end of a gas turbine and a steam turbine is defined based on the gas turbine clearance which becomes small temporarily.
  • the operation amount of the operation end of the gas turbine and the steam turbine is determined based on the steam turbine clearance amount that temporarily decreases. Therefore, in the present embodiment, even if the gas turbine parameters and the steam turbine parameters increase or decrease, it is possible to set the parameters to target values in a short time while suppressing that the clearances of the gas turbine and the steam turns become extremely small. Can.
  • a control method of a rotating machine for achieving the above object is In a control method of a rotary machine including a rotating rotor and a casing covering an outer peripheral side of the rotor, a step of receiving an amount of clearance between the rotor and the casing, and according to the amount of clearance, In the step of determining the rate of change of the parameter so as to change the rate of change of the parameter which is the number of revolutions or output, and according to the rate of change of the parameter, determine the operation amount of the operating terminal to change the parameter And the step of outputting to the operation terminal.
  • a rate of change of the parameter at the time of the first clearance amount is larger than the rate of the first clearance.
  • the rate of change of the parameter may be determined such that the rate of change of the parameter between two clearances is large.
  • the step of determining the rate of change of the parameter may include basic change of the parameter according to a deviation between a target value of the parameter and a detected value of the parameter.
  • the method may include the steps of: determining a rate; determining a change value for changing the basic change rate according to the clearance amount; and changing the basic change rate using the change value.
  • the step of obtaining the change value uses the relationship between the clearance amount and a first change value for changing the basic change rate.
  • the method may include determining the first change value corresponding to the clearance amount.
  • the basic change rate may be changed using the first change value.
  • the step of obtaining the change value may be performed according to a deviation between the clearance amount and a predetermined allowable minimum clearance amount.
  • a step of determining a second change value for changing the basic change rate may be included.
  • the first change value may be used to change the basic change rate.
  • the relationship is such that the first change value increases as the clearance amount increases. Good.
  • a control program of a rotating machine for achieving the object, In a control program of a rotary machine comprising a rotating rotor and a casing covering an outer peripheral side of the rotor, a step of receiving a clearance amount between the rotor and the casing by an input device of a computer, and according to the clearance amount And determining the rate of change of the parameter so that the rate of change of the parameter, which is the rotational speed or the output of the rotating machine, changes, and the amount of operation of the operating terminal to change the parameter according to the rate of change of the parameter. And outputting the manipulated variable to the operation terminal.
  • a second rate of change is larger than the rate of change of the parameter at the time of the first amount of clearance.
  • the rate of change of the parameter may be determined such that the rate of change of the parameter between two clearances is large.
  • the step of determining the rate of change of the parameter may include basic change of the parameter according to a deviation between a target value of the parameter and a detected value of the parameter. Determining a rate, determining a change value for changing the basic change rate according to the clearance amount, and determining a changed change amount changing the basic change rate using the change value, May be included.
  • the step of obtaining the change value uses the relationship between the clearance amount and a first change value for changing the basic change rate.
  • the method may include determining the first change value corresponding to the clearance amount.
  • the first change value may be used to change the basic change rate.
  • the step of obtaining the change value may be performed according to a deviation between the clearance amount and a predetermined allowable minimum clearance amount.
  • a step of determining a second change value for changing the basic change rate may be included. In this case, in the step of changing the basic change rate, the basic change rate may be changed using the first change value and the second change value.
  • the relation is that the first change value increases as the clearance amount increases.
  • the rotation speed or output of the rotary machine can be set to the target value in a short time while suppressing damage to the rotary machine.
  • the rotary mechanical equipment of the present embodiment is a gas turbine power plant, as shown in FIG.
  • the gas turbine power plant includes a gas turbine 1, a generator 9 that generates electric power by driving the gas turbine 1, a cooling device 60 that cools part of components of the gas turbine 1, and a control device 100.
  • the gas turbine 1 includes a compressor 10 for compressing air, a combustor 30 for burning fuel in the air compressed by the compressor 10 to generate combustion gas, and a turbine 40 driven by the combustion gas. .
  • the compressor 10 includes a compressor rotor 11 rotating around an axis Ar, a compressor casing 18 covering the compressor rotor 11, a plurality of stator blade arrays 14, and a compressor And IGV (inlet guide vane) 21 for adjusting the flow rate of air flowing into the casing 18.
  • IGV inlet guide vane
  • the direction in which the axis Ar extends is referred to as an axial direction Da, one side of the axial direction Da as an axial upstream Dau, and the other side as an axial downstream Dad.
  • the axial upstream side Dau is upstream of the flow of air in the compressor 10 and is also upstream of the flow of combustion gas in the turbine 40.
  • the axial downstream side Dad is downstream of the flow of air in the compressor 10 and is also downstream of the flow of combustion gas in the turbine 40.
  • a circumferential direction about the axis Ar is simply referred to as a circumferential direction Dc, and a direction perpendicular to the axis Ar is referred to as a radial direction Dr.
  • the side closer to the axis Ar is referred to as a radially inner side Dri
  • the side away from the axis Ar is referred to as a radially outer side Dro.
  • the compressor rotor 11 has a rotor shaft 12 extending in the axial direction Da around its axis Ar, and a plurality of moving blade arrays 13 attached to the rotor shaft 12.
  • the plurality of moving blade rows 13 are arranged in the axial direction Da.
  • Each moving blade row 13 is composed of a plurality of moving blades arranged in the circumferential direction Dc.
  • a stator blade array 14 is disposed at each axial downstream side Dad of the plurality of rotor blade arrays 13, a stator blade array 14 is disposed.
  • Each vane row 14 is provided inside the compressor casing 18.
  • Each of the vane arrays 14 is composed of a plurality of vanes arranged in the circumferential direction Dc.
  • the air compression flow path 19 in which air is compressed is formed. That is, the compressor 10 is an axial flow multistage compressor.
  • the compressor casing 18 has a compressor body casing 18a and an intermediate casing 18b.
  • the compressor body casing 18a covers the outer peripheral side of this region in the region where the stationary blade row 14 and the moving blade row 13 are disposed in the axial direction Da.
  • the intermediate casing 18b is connected to the axial downstream side Dad of the compressor body casing 18a. The compressed air discharged from the compressor body casing 18a flows into the intermediate casing 18b.
  • the IGV (intake air flow controller) 21 is provided on the compressor body casing 18 a.
  • the IGV 21 has a plurality of movable wings 22 and a driver 23 that changes the angle of the plurality of movable wings 22.
  • the plurality of movable vanes 22 are disposed on the upstream side Dau of the moving blade row 13 on the most upstream side Dau of the plurality of moving blade rows 13.
  • the turbine 40 has a turbine rotor 41 that rotates around an axis Ar, a turbine casing 48 that covers the turbine rotor 41, and a plurality of stator blade rows 53.
  • the turbine rotor 41 has a rotor shaft 42 extending in the axial direction Da around its axis Ar, and a plurality of moving blade arrays 43 attached to the rotor shaft 42.
  • the plurality of moving blade rows 43 are arranged in the axial direction Da.
  • Each moving blade row 43 is composed of a plurality of moving blades 44 aligned in the circumferential direction Dc.
  • a stationary blade row 53 is disposed on the upstream side Dau of each of the plurality of moving blade rows 43.
  • Each vane row 53 is provided inside the turbine casing 48.
  • Each of the vane arrays 53 includes a plurality of vanes 54 aligned in the circumferential direction Dc.
  • the annular space of the region between the outer peripheral side of the rotor shaft 42 and the inner peripheral side of the turbine casing 48 and in which the stationary blade row 53 and the moving blade row 43 are arranged in the axial direction Da The combustion gas flow path 49 in which the combustion gas of In the following, among the plurality of moving blade arrays 43, the moving blade array on the most axial upstream side is taken as the first moving blade array, and thereafter, the second moving blade array, the third moving blade array toward the axial downstream side ... and.
  • the combustor 30 is provided to the intermediate casing 18b as shown in FIG.
  • the combustor 30 includes a combustion cylinder (or tail cylinder) 31 for sending high temperature and high pressure combustion gas G into the combustion gas flow path 49 of the turbine 40, and fuel F together with compressed air from the compressor 10 in the combustion cylinder 31.
  • a fuel injector 32 for injecting A fuel line 35 through which the fuel F flows is connected to the fuel injector 32.
  • the fuel line 35 is provided with a fuel control valve (operation end) 36.
  • the compressor rotor 11 and the turbine rotor 41 are located on the same axis Ar and connected to each other to form a gas turbine rotor 2.
  • the rotor of the generator 9 is connected to the gas turbine rotor 2.
  • the compressor casing 18 and the turbine casing 48 are connected to each other to form a gas turbine casing 5.
  • the intermediate casing 18b in the compressor casing 18 of the present embodiment is referred to as a combustor casing, and a portion not including the combustor casing (intermediate casing 18b) in the compressor casing 18 of the present embodiment is simply a compressor. Sometimes called a casing. However, in the present application, the combustor casing (intermediate casing 18 b) is included in the compressor casing 18.
  • the gas turbine 1 including the gas turbine rotor 2 rotating around the axis Ar and the gas turbine casing 5 covering the gas turbine rotor 2 constitutes an axial flow rotary machine.
  • the cooling device 60 has a bleed line 61, a cooler 62, and a cooling controller 64, as shown in FIGS.
  • the bleed line 61 has a first end and a second end.
  • the first end of the bleed line 61 is connected to the intermediate casing 18b, and the second end is a plurality of moving blades constituting a first moving blade row via the rotor shaft 42 of the turbine rotor 41. It is connected to the moving blade 44a.
  • the bleed line 61 guides the compressed air discharged from the compressor body casing 18a and flowing into the intermediate casing 18b to the plurality of first row moving blades 44a.
  • the cooler 62 is a heat exchanger that cools the compressed air by heat exchange between the compressed air flowing in the bleed line 61 and the cooling medium.
  • a medium line 63 Connected to the cooler 62 is a medium line 63 through which a cooling medium flows.
  • the cooling controller 64 is provided in the medium line 63.
  • the cooling controller 64 is a flow control valve that adjusts the amount of cooling of the compressed air by adjusting the flow rate of the cooling medium flowing through the medium line 63.
  • the bleed line 61 is connected to a first stage shaft portion 42 a in which the first moving blade row is fixed in the rotor shaft 42 of the turbine rotor 41.
  • a cooling passage 42 c communicating with the bleed line 61 is formed in the first stage shaft portion 42 a.
  • cooling passages 44c communicating with the cooling passages 42c of the first stage shaft portion 42a are formed in the plurality of first row moving blades 44a constituting the first moving blade row.
  • the cooling passage 44c of the first row moving blade 44a is opened at a portion in contact with the combustion gas G in the surface of the first row moving blade 44a.
  • the compressed air from the compressor 10 is cooled by the cooler in the process of flowing through the bleed line 61, the compressed air is formed in the cooling passage 42c and the first row moving blade 44a formed in the first stage shaft portion 42a.
  • the combustion gas flow path 49 is discharged through the cooling passage 44c.
  • the rotor blade 44, the stator blade 54, and the component forming the inner circumferential surface with the turbine casing 48, and the combustion cylinder 31 are all high temperature components in contact with the high temperature combustion gas G.
  • the first row moving blades 44 a of the high temperature components are cooled by the cooling air Am which is the compressed air cooled by the cooler 62.
  • the cooler 62 of this embodiment is a heat exchanger, it may be a type which cools compressed air, for example, sending a wind with a fan etc. to the line through which compressed air passes.
  • the cooling controller is, for example, a motor with an inverter that changes the RPM of the fan.
  • the control device 100 has the above-described fuel control valve 36, a clearance measurement device 101, a revolution number meter 102, an output meter 103, and a control device main body 110.
  • the clearance measuring instrument 101 measures the amount of clearance CL between the turbine casing 48 and the turbine rotor 41.
  • the revolution number sensor 102 senses the number of revolutions RPM of the gas turbine rotor 2.
  • the output meter 103 detects the output PW of the gas turbine 1, in other words, the amount of power generation of the generator.
  • the revolution number meter 102 and the output meter 103 are both examples of parameter meters.
  • the clearance measuring instrument 101 of the present embodiment measures the amount of clearance CL between the first row moving blade 44 a and the turbine casing 48.
  • the clearance measuring instrument 101 is fixed to the turbine casing 48.
  • the clearance measuring instrument 101 is, for example, a capacitance type measuring instrument which detects the capacitance between the first row moving blade 44 a and the turbine casing 48 and converts the detected capacitance value into a clearance amount. is there.
  • the clearance measuring device 101 may be, for example, a measuring device that detects the temperature of the turbine casing 48 and converts the detected temperature into a clearance amount.
  • the amount of clearance between the second row moving blades 44 and the turbine casing 48 may be measured by the clearance measuring instrument 101. Furthermore, the amount of clearance between the first row moving blade 44 a and the turbine casing 48 and the amount of clearance between the second row moving blade 44 and the turbine casing 48 may be measured.
  • the control device 100 of the present embodiment includes a plurality of clearance measuring devices 101.
  • One of the plurality of clearance measuring instruments 101 is provided at the top of the turbine casing 48.
  • another clearance measurement instrument 101 is provided at the lower part of the turbine casing 48.
  • Yet another clearance measuring instrument 101 is provided substantially at the center of the turbine casing 48 in the vertical direction and on the right side with respect to the axis Ar.
  • Yet another clearance measuring instrument 101 is provided substantially at the center of the turbine casing 48 in the vertical direction and at the left side with respect to the axis Ar.
  • the control device body 110 has a clearance signal processing unit 111, an output change rate setting unit 120, a rotational speed change rate setting unit 140, and a fuel operation amount output unit 160.
  • the clearance signal processing unit 111 receives signals from the plurality of clearance measuring devices 101, and outputs the smallest clearance amount CL among the clearance amounts CL measured by the plurality of clearance measuring devices 101.
  • the output change rate setting unit 120 includes a basic output change rate calculation unit 121, a change value calculation unit 124, and a change unit 130.
  • the basic output change rate calculation unit 121 obtains a basic output change rate ⁇ PWb based on the deviation between the target output PWt determined according to the load command and the start command and the output PW detected by the output meter 103.
  • the change value calculation unit 124 obtains a change value for changing the basic output change rate ⁇ PWb in accordance with the clearance amount CL or the like output from the clearance signal processing unit 111.
  • the change unit 130 changes the basic output change rate ⁇ PWb using the change value.
  • the change rate of the output PW is the change amount of the output PW per unit time.
  • the rotation speed change rate setting unit 140 has a basic rotation speed change rate calculation unit 141, a change value calculation unit 144, and a change unit 150.
  • Basic rotational speed change rate calculation unit 141 finds basic rotational speed change rate ⁇ RPMb based on the deviation between target rotational speed RPMt determined according to load command and start command and rotational speed RPM detected by rotational speed meter 102. .
  • the change value calculation unit 144 obtains a change value for changing the basic rotation speed change rate ⁇ RPMb in accordance with the clearance amount CL or the like output from the clearance signal processing unit 111.
  • the change unit 150 changes the basic rotation speed change rate ⁇ RPMb using the change value.
  • the rate of change of the rotational speed RPM is the amount of change of the rotational speed RPM per unit time.
  • the fuel operation amount output unit 160 includes an output change rate conversion unit 162, a rotation speed change rate conversion unit 164, and a selection unit 169.
  • the output change rate conversion unit 162 converts the output change rate ⁇ PW set by the output change rate setting unit 120 into an operation amount of the fuel control valve 36 which is an operation end.
  • the rotational speed change rate conversion unit 164 converts the rotational speed change rate ⁇ RPM set by the rotational speed change rate setting unit 140 into an operation amount of the fuel control valve 36 which is an operation end.
  • the selection unit 169 outputs only one operation amount out of the operation amount obtained by the output change rate conversion unit 162 and the operation amount obtained by the rotation speed change rate conversion unit 164 to the fuel control valve 36.
  • Cooling operation amount setting unit 170 has a cooling operation amount generation unit 171 and a change unit 172.
  • the cooling operation amount generating unit 171 generates, for example, a cooling operation amount which is an operation amount of the cooling controller 64.
  • the cooling operation amount generation unit 171 generates the operation amount of the fuel control valve 36 output by the fuel operation amount output unit 160, in other words, the cooling operation amount that increases as the fuel flow rate increases.
  • the changing unit 172 changes the amount of cooling operation according to the amount of clearance CL output from the clearance signal processing unit 111.
  • the cooling operation amount output unit 179 outputs the changed cooling operation amount to the cooling controller 64.
  • the intake operation amount setting unit 180 includes an IGV opening degree generating unit 181 and a changing unit 182.
  • the IGV opening degree generation unit 181 generates, for example, an IGV opening degree which is an opening degree of the IGV 21.
  • the IGV opening degree generation unit 181 generates an operation amount of the fuel control valve 36 output by the fuel operation amount output unit 160, in other words, an IGV opening degree that increases with an increase in fuel flow rate.
  • the changing unit 182 changes the IGV opening degree according to the clearance amount CL output from the clearance signal processing unit 111.
  • the intake operation amount output unit 189 outputs the changed IGV opening degree to the driver 23 of the IGV 21.
  • the basic output change rate calculation unit 121 has a target output calculation unit 122 and a ⁇ PI calculation unit 123.
  • the target output calculation unit 122 obtains the target output PWt in accordance with the load command and the start command.
  • the ⁇ PI calculation unit 123 obtains a deviation between the output PW detected by the output meter 103 and the target output PWt, and obtains a basic output change rate ⁇ PWb that is a proportional and integral control amount (PI control amount) according to the deviation.
  • the change value calculation unit 124 of the output change rate setting unit 120 includes an upper limit output change rate calculation unit 125, a first change value calculation unit (first calculation unit) 126, and a second change value calculation unit (second calculation unit) And 127.
  • the upper limit output change rate calculation unit 125 has a map 125m indicating the relationship between the actual output PW and the upper limit output change rate ⁇ PWL, which is the upper limit value of the output change rate ⁇ PW.
  • the upper limit output change rate calculation unit 125 obtains the upper limit output change rate ⁇ PWL corresponding to the output PW detected by the output meter 103 using the map 125 m.
  • the first change value calculation unit 126 of the output change rate setting unit 120 has a map 126m indicating the relationship between the clearance amount CL and the first change value ⁇ PWc1 for changing the basic output change rate ⁇ PWb.
  • the first change value calculation unit 126 obtains a first change value ⁇ PWc1 corresponding to the clearance amount CL output from the clearance signal processing unit 111 using the map 126m.
  • the relationship indicated by the map 126m is basically a relationship in which the first change value ⁇ PWc1 increases as the clearance amount CL increases. Therefore, the first change value ⁇ PWc1 obtained by the first change value calculator 126 increases with the increase of the clearance amount CL.
  • the first change value ⁇ PWc1 shows a positive value
  • the first change value ⁇ PWc1 shows a negative value
  • the allowable minimum clearance amount CLmin is an allowable minimum value regarding the clearance amount.
  • the second change value calculation unit 127 of the output change rate setting unit 120 includes an allowable minimum value storage unit 128 and a ⁇ PI calculation unit 129.
  • the allowable minimum value storage unit 128 stores an allowable minimum clearance amount CLmin.
  • the ⁇ PI operation unit 129 obtains a deviation between the allowable minimum clearance amount CLmin and the clearance amount CL output from the clearance signal processing unit 111, and the second change which is a proportional and integral control amount (PI control amount) according to the deviation Determine the value ⁇ PWc2. Therefore, the second change value ⁇ PWc2 obtained by the second change value calculator 127 increases as the deviation between the allowable minimum clearance amount CLmin and the clearance amount CL increases.
  • the change unit 130 of the output change rate setting unit 120 includes a first adder 131, a second adder 132, and a minimum value selector 133.
  • the first adder 131 adds the first change value ⁇ PWc1 obtained by the first change value calculation unit 126 and the second change value ⁇ PWc2 obtained by the second change value calculation unit 127.
  • the second adder 132 adds the upper limit output change rate ⁇ PWL obtained by the upper limit output change rate calculation unit 125 and the output from the first adder 131. That is, the second adder 132 outputs a value obtained by adding the first change value ⁇ PWc1, the second change value ⁇ PWc2, and the upper limit output change rate ⁇ PWL.
  • the minimum value selector 133 selects the smaller one of the basic output change rate ⁇ PWb determined by the basic output change rate calculation unit 121 and the value of the output from the second adder 132, and outputs the selected one as the output change rate. Output as ⁇ PW.
  • the output change rate ⁇ PW output from the minimum value selector 133 is input to the output change rate converter 162 of the fuel operation amount output unit 160 described above.
  • the basic rotation speed change rate calculation unit 141 has a target rotation speed calculation unit 142 and a ⁇ PI calculation unit 143.
  • the target rotation speed calculation unit 142 obtains a target rotation speed RPMt in accordance with the load command and the start command.
  • the ⁇ PI calculation unit 143 obtains a deviation between the rotation speed RPM detected by the rotation speed meter 102 and the target rotation speed RPMt, and a basic rotation speed change rate which is a proportional and integral control amount (PI control amount) according to the deviation. Determine ⁇ RPMb.
  • the change value calculation unit 144 of the rotation speed change rate setting unit 140 has an upper limit rotation speed change rate calculation unit 145, a first change value calculation unit 146, and a second change value calculation unit 147.
  • the upper limit rotational speed change rate calculation unit 145 has 145 m indicating the relationship between the actual rotational speed RPM and the upper limit rotational speed change rate ⁇ RPML, which is the upper limit value of the rotational speed change rate ⁇ RPM.
  • the upper limit rotational speed change rate calculation unit 145 obtains the upper limit rotational speed change rate ⁇ RPML corresponding to the rotational speed RPM detected by the revolution number meter 102 using the map 145 m.
  • the first change value calculation unit 146 of the rotation speed change rate setting unit 140 has a map 146m indicating the relationship between the clearance amount CL and the first change value ⁇ RPMc1 for changing the basic rotation speed change rate ⁇ RPMb.
  • the first change value calculation unit 146 obtains a first change value ⁇ RPMc1 corresponding to the clearance amount CL output from the clearance signal processing unit 111 using the map 146m.
  • the relationship indicated by the map 146m is basically a relationship in which the first change value ⁇ RPMc1 increases as the clearance amount CL increases. Therefore, the first change value ⁇ RPMc1 obtained by the first change value calculator 146 increases with the increase of the clearance amount CL.
  • the first change value ⁇ RPMc1 when the clearance amount CL is larger than the allowable minimum clearance amount CLmin, the first change value ⁇ RPMc1 indicates a positive value, and when the clearance amount CL is less than the allowable minimum clearance amount CLmin, the first change value ⁇ RPMc1 shows a negative value.
  • the second change value calculation unit 147 of the rotational speed change rate setting unit 140 has an allowable minimum value storage unit 148 and a ⁇ PI calculation unit 149.
  • the allowable minimum value storage unit 148 stores an allowable minimum clearance amount CLmin.
  • the ⁇ PI calculation unit 149 obtains a deviation between the allowable minimum clearance amount CLmin and the clearance amount CL output from the clearance signal processing unit 111, and the second change which is a proportional and integral control amount (PI control amount) according to the deviation Determine a value ⁇ RPMc2. Therefore, the second change value ⁇ RPMc2 obtained by the second change value calculator 147 increases as the deviation between the allowable minimum clearance amount CLmin and the clearance amount CL increases.
  • the change unit 150 of the rotational speed change rate setting unit 140 includes a first adder 151, a second adder 152, and a minimum value selector 153.
  • the first adder 151 adds the first change value ⁇ RPMc1 obtained by the first change value calculation unit 146 and the second change value ⁇ RPMc2 obtained by the second change value calculation unit 147.
  • the second adder 152 adds the upper limit rotational speed change rate ⁇ RPML obtained by the upper limit rotational speed change rate calculation unit 145 and the output from the first adder 151. That is, the second adder 152 outputs a value obtained by adding the first change value ⁇ RPMc1, the second change value ⁇ RPMc2, and the upper limit rotational speed change rate ⁇ RPML.
  • the minimum value selector 153 selects the smaller value of the basic rotational speed change rate ⁇ RPMb determined by the basic rotational speed change rate calculation unit 141 and the value of the output from the second adder 152, and rotates this value. Output as number change rate ⁇ RPM.
  • the rotational speed change rate ⁇ RPM output from the minimum value selector 153 is input to the rotational speed change rate conversion unit 164 of the fuel operation amount output unit 160 described above.
  • the controller main body 110 is a computer as shown in FIG. Therefore, the control device main body 110 includes a CPU 191 which performs various operations, a memory 192 which is a work area of the CPU 191, an auxiliary storage device 193 such as a hard disk drive, and a manual input device 195a such as a keyboard and a mouse.
  • a CPU 191 which performs various operations
  • a memory 192 which is a work area of the CPU 191
  • an auxiliary storage device 193 such as a hard disk drive
  • a manual input device 195a such as a keyboard and a mouse.
  • Display I 195 b input / output interface 195 of manual input device 195 a and display 195 b, equipment I interface 196 to which signals from various sensors provided in gas turbine 1 are input, various operation ends of gas turbine 1
  • a facility O interface 197 for outputting an operation amount a communication interface 198 for communicating with the outside via the network N, and a storage / reproduction device 194 for storing and reproducing data with respect to the disk type storage medium D And.
  • gas turbine unique value data 193a includes the various maps 125m, 126m, 145m, and 146m described above, the minimum allowable clearance amount CLmin, and the like.
  • the control program 193 b is a program for controlling the gas turbine 1 which is a rotating machine.
  • Various data and programs stored in the auxiliary storage device 193 are taken from the disk type storage medium D to the auxiliary storage device 193 via, for example, the storage and reproduction device 194. Note that various data and programs may be taken into the auxiliary storage device 193 from an external device via the communication interface 198. Also, various data and programs may be fetched from the manual input device 195 a to the auxiliary storage device 193 via the input / output interface 195.
  • the CPU 191 loads the control program 193 b stored in the auxiliary storage device 193 on the memory 192 and executes the control program 193 b to realize each functional configuration of the control device main body 110.
  • the compressor 10 of the gas turbine 1 compresses the air A to generate compressed air.
  • This compressed air is supplied to the combustor 30.
  • fuel F is also supplied to the combustor 30.
  • the fuel injector 32 of the combustor 30 ejects the fuel F and the compressed air into the combustion cylinder 31.
  • the fuel F burns in the compressed air, and a high-temperature and high-pressure combustion gas G is generated.
  • the combustion gas G is sent from the combustion cylinder 31 to the combustion gas passage 49 in the turbine 40 to rotate the turbine rotor 41.
  • the rotation of the turbine rotor 41 causes the generator 9 connected to the turbine rotor 41 to generate power.
  • This start-up step is a step from the state where fuel F is not supplied to the gas turbine 1 until the rotational speed RPM of the gas turbine 1 becomes the rated rotational speed (for example, 3600 rpm) and the generator 9 is connected to the power system It is.
  • the generator 9 is made to function as a prime mover to rotate the gas turbine rotor 2.
  • the starter is separately provided, the gas turbine rotor 2 is rotated by the starter.
  • the revolution number sensor 102 detects the revolution number RPM of the gas turbine 1 (S11: parameter detection step). Further, the plurality of clearance measuring instruments 101 measure the clearance amount CL (S12: clearance measuring step).
  • the rotation speed change rate setting unit 140 of the control device main body 110 receives the rotation speed RPM from the rotation speed meter 102 (S21: parameter receiving step). Further, the clearance signal processing unit 111 of the control device main body 110 receives signals from the plurality of clearance measuring instruments 101, and outputs the smallest clearance amount CL among the clearance amounts CL measured by the plurality of clearance measuring instruments 101 (see FIG. S22: Clearance acceptance process).
  • the rotational speed change rate setting unit 140 determines the rotational speed change rate ⁇ RPM of the gas turbine 1 (S30: parameter change rate setting step).
  • a basic change rate calculation step (S31), an upper limit change rate calculation step (S32), a first change value calculation step (S33), a second change value calculation step (S34), change The step (S35) is performed.
  • the target rotation number calculation unit 142 obtains a target rotation number RPMt according to the start command.
  • the ⁇ PI calculation unit 143 of the basic rotation speed change rate calculation unit 141 obtains the deviation between the rotation speed RPM detected by the rotation speed meter 102 and the target rotation speed RPMt, and the proportional and integral control amount according to this deviation (PI control
  • the basic rotational speed change rate ⁇ RPMb which is an amount
  • the upper limit rotation speed change rate calculation unit 145 uses the map 145m described with reference to FIG. The number change rate ⁇ RPML is determined.
  • the first change value calculation unit 146 of the rotational speed change rate setting unit 140 uses the 146 m described with reference to FIG.
  • a first change value ⁇ RPMc1 corresponding to the quantity CL is determined.
  • the first change value ⁇ RPMc1 increases as the clearance amount CL increases, as described above.
  • the second change value calculation step (S34) is executed by the second change value calculation unit 147 of the rotational speed change rate setting unit 140.
  • the ⁇ PI operation unit 149 of the second change value operation unit 147 obtains a deviation between the allowable minimum clearance amount CLmin stored in the allowable minimum value storage unit 148 and the clearance amount CL output from the clearance signal processing unit 111,
  • a second change value ⁇ RPMc2 that is a proportional and integral control amount (PI control amount) according to the deviation is determined.
  • the second change value ⁇ RPMc2 increases as the deviation between the allowable minimum clearance amount CLmin and the clearance amount CL increases.
  • the changing unit 150 of the rotational speed change rate setting unit 140 changes the basic rotational speed change rate ⁇ RPMb.
  • the first adder 151 of the change unit 150 adds the first change value ⁇ RPMc1 and the second change value ⁇ RPMc2.
  • the second adder 152 of the change unit 150 adds the upper limit rotation speed change rate ⁇ RPML obtained by the upper limit rotation speed change rate calculation unit 145 and the output from the first adder 151.
  • the minimum value selector 153 of the change unit 150 selects the smaller one of the basic rotational speed change rate ⁇ RPMb and the value of the output from the second adder 152, and uses this as the rotational speed change rate ⁇ RPM to select fuel. It is output to the rotational speed change rate conversion unit 164 of the operation amount output unit 160.
  • the fuel operation amount output unit 160 outputs the operation amount to the fuel control valve 36 (S36: operation amount output step).
  • the rotation speed change rate conversion unit 164 of the fuel operation amount output unit 160 converts the rotation speed change rate ⁇ RPM set by the rotation speed change rate setting unit 140 into an operation amount of the fuel control valve 36.
  • This operation amount is output to the fuel control valve 36 via the selection unit 169.
  • the fuel F of the fuel flow rate at which the rotational speed change rate ⁇ RPM set in the parameter change rate setting step (S30) is obtained is supplied to the combustor 30.
  • the rotational speed RPM of the gas turbine rotor 2 gradually increases. Then, when the rotational speed RPM of the gas turbine 1 becomes the rated rotational speed (for example, 3600 rpm) and the generator 9 is connected to the electric power system, the start-up process ends.
  • the load operation process is performed. Also in this load operation process, the same process as the startup process is repeatedly performed.
  • the process shown in the flowchart of FIG. 9 is repeatedly executed.
  • the output meter 103 detects the output PW of the gas turbine 1 (S11a: parameter detection step). Further, the plurality of clearance measuring instruments 101 measure the clearance amount CL (S12a: clearance measuring step).
  • the output change rate setting unit 120 of the control device main body 110 receives the output PW from the output meter 103 (S21a: parameter receiving step). Further, the clearance signal processing unit 111 of the control device main body 110 receives signals from the plurality of clearance measuring instruments 101, and outputs the smallest clearance amount CL among the clearance amounts CL measured by the plurality of clearance measuring instruments 101 (see FIG. S22a: Clearance acceptance process).
  • the output change rate setting unit 120 determines the output change rate ⁇ PW of the gas turbine 1 (S30a: parameter change rate setting step).
  • a basic change rate calculation step (S31a), an upper limit change rate calculation step (S32a), a first change value calculation step (S33a), a second change value calculation step (S34a), change The step (S35a) is performed.
  • the target output calculation unit 122 obtains the target output PWt according to the load command.
  • the ⁇ PI operation unit 123 of the basic output change rate operation unit 121 obtains a deviation between the output PW detected by the output meter 103 and the target output PWt, and is a proportional and integral control amount (PI control amount) according to the deviation.
  • the basic output change rate ⁇ PWb is determined.
  • the upper limit output change rate calculation unit 125 calculates the upper limit output change rate ⁇ PWL corresponding to the output PW detected by the output meter 103 using the map 125m described with reference to FIG. Ask for
  • the first change value calculation unit 126 of the output change rate setting unit 120 uses the map 126m described with reference to FIG. A first change value ⁇ PWc1 corresponding to the amount CL is determined. As described above, the first change value ⁇ PWc1 increases as the clearance amount CL increases.
  • the second change value calculation unit 127 of the output change rate setting unit 120 executes the second change value calculation process (S34a).
  • the ⁇ PI operation unit 129 of the second change value operation unit 127 obtains a deviation between the allowable minimum clearance amount CLmin stored in the allowable minimum value storage unit 128 and the clearance amount CL output from the clearance signal processing unit 111, A second change value ⁇ PWc2 that is a proportional and integral control amount (PI control amount) according to the deviation is determined.
  • PI control amount proportional and integral control amount
  • the changing unit 130 of the output change rate setting unit 120 changes the basic output change rate ⁇ PWb.
  • the first adder 131 of the change unit 130 adds the first change value ⁇ PWc1 and the second change value ⁇ PWc2.
  • the second adder 132 of the change unit 130 adds the upper limit output change rate ⁇ PWL obtained by the upper limit output change rate calculation unit 125 and the output from the first adder 131.
  • the minimum value selector 133 of the change unit 130 selects the smaller one of the basic output change rate ⁇ PWb and the value of the output from the second adder 132, and uses this as the output change rate ⁇ PW to determine the amount of fuel operation.
  • the output change rate conversion unit 162 of the output unit 160 is output.
  • the fuel operation amount output unit 160 outputs the operation amount to the fuel control valve 36 (S36a: operation amount output step).
  • the output change rate conversion unit 162 of the fuel operation amount output unit 160 converts the output change rate ⁇ PW set by the output change rate setting unit 120 into an operation amount of the fuel control valve 36.
  • This operation amount is output to the fuel control valve 36 via the selection unit 169.
  • the fuel F of the fuel flow rate at which the output change rate ⁇ PW set in the parameter change rate setting step (S30a) is obtained is supplied to the combustor 30.
  • the control device main body 110 When the control device main body 110 receives a new load command, the above processing is repeatedly executed until the output PW detected by the output meter 103 becomes a request output indicated by the new load command.
  • the control device main body 110 receives a load command indicating the required output "0"
  • the output PW gradually decreases, and when the predetermined output PW is obtained, the generator 9 is electrically disconnected from the power system. Thereafter, the fuel flow rate supplied to the combustor 30 becomes "0".
  • the output PW gradually increases until the required output is obtained.
  • the output PW gradually decreases until the required output is obtained.
  • control device 100 When control device 100 receives a start command at time t0, the number of revolutions RPM gradually increases from time t0.
  • the basic rotational speed change rate ⁇ RPMb calculated by the basic rotational speed change rate calculator 141 is The value is smaller than the initial value of. Therefore, at the end of the starting step, the difference between the basic rotational speed change rate ⁇ RPMb and the value of the output from the second adder 152 becomes smaller than at the beginning of the starting step. For this reason, the minimum value selector 153 of the change unit 150 selects the value of the output from the second adder 152, and may output this value of the output as the rotational speed change rate ⁇ RPM. In some cases, the rate ⁇ RPMb is selected, and this basic rotational speed change rate ⁇ RPMb is output as the rotational speed change rate ⁇ RPM.
  • the minimum value selector 153 of the change unit 150 selects the value of the output from the second adder 152, and uses the value of this output as the rotation speed change rate ⁇ RPM to change the rotation speed of the fuel operation amount output unit 160.
  • Output to rate conversion unit 164 it is assumed that the value of the output from the second adder 152 is smaller than the basic rotational speed change rate ⁇ RPMb in the start-up step.
  • the minimum value selector 153 of the change unit 150 selects the value of the output from the second adder 152, and uses the value of this output as the rotation speed change rate ⁇ RPM to change the rotation speed of the fuel operation amount output unit 160.
  • the change unit 150 of the rotational speed change rate setting unit 140 does not add the first change value ⁇ RPMc1 and the second change value ⁇ RPMc2 regarding the rotational speed change rate ⁇ RPM to the upper limit rotational speed change rate ⁇ RPML. Therefore, the minimum value selector 153 of the change unit 150 selects the upper limit rotational speed change rate ⁇ RPML as the output from the second adder 152, and sets the upper limit rotational speed change rate ⁇ RPML as the rotational speed change rate ⁇ RPM. It is output to the rotational speed change rate conversion unit 164 of the operation amount output unit 160.
  • the upper limit rotational speed change rate ⁇ RPML is substantially constant. For this reason, the number of revolutions RPM increases linearly from the time of receiving the start command (t0) to the rated number of revolutions.
  • the rotational speed RPM When the rotational speed RPM reaches the rated rotational speed at time t2, the rotational speed RPM is held at this rated rotational speed after this time t2.
  • the generator 9 At time t3 after time t2, the generator 9 is electrically connected to the power system. As a result, the generator output PW is generated from time t3. The output PW then increases or decreases according to the required output indicated by the load command.
  • the basic output change rate ⁇ PWb determined by the basic output change rate calculator 121 is large. It becomes a value. Therefore, when the load command is received, of the basic output change rate ⁇ PWb and the value of the output from the second adder 132, the value of the output from the second adder 132 is smaller. For this reason, the minimum value selector 133 of the change unit 130 selects the value of the output from the second adder 132, and uses the value of this output as the output change rate ⁇ PW to convert the output change rate of the fuel operation amount output unit 160. Output to the part 162.
  • the basic output change rate ⁇ PWb determined by the basic output change rate calculator 121 Is smaller than the initial value given the load command. Therefore, when a predetermined time has elapsed after receiving the load command, the difference between the basic output change rate ⁇ PW and the value of the output from the second adder 132 becomes smaller than at the beginning of receiving the load command. For this reason, the minimum value selector 133 of the changing unit 130 selects the value of the output from the second adder 132 and outputs the value of the output as the output change rate ⁇ PW, the basic output change rate ⁇ PWb. In some cases, the basic output change rate ⁇ PWb is output as the output change rate ⁇ PW.
  • the minimum value selector 133 of the change unit 130 selects the value of the output from the second adder 132, and uses the value of this output as the output change rate ⁇ PW to convert the output change rate of the fuel operation amount output unit 160. Output to the part 162.
  • the change unit 130 of the output change rate setting unit 120 does not add the first change value ⁇ PWc1 and the second change value ⁇ PWc2 regarding the output change rate ⁇ PW to the upper limit output change rate ⁇ PWL. Therefore, the minimum value selector 133 of the change unit 130 selects the upper limit output change rate ⁇ PWL as the output from the second adder 132, and uses this upper limit output change rate ⁇ PWL as the output change rate ⁇ PW to output the fuel operation amount
  • the output change rate conversion unit 162 of the unit 160 is output.
  • Upper limit output change rate ⁇ PWL is substantially constant. For this reason, the output PW linearly increases or decreases from the time of receiving the load command to the required output indicated by the load command.
  • the turbine casing 48 has a heat capacity larger than that of the moving blades 44. For this reason, the thermal expansion amount per unit time of the turbine casing 48 is smaller than the thermal expansion amount per unit time of the moving blade 44. Therefore, even if the fuel supply to the gas turbine 1 is started and the high temperature combustion gas flows in the combustion gas flow path 49 of the turbine 40 and the turbine casing 48 and the moving blades 44 are similarly heated by the combustion gas, the clearance amount CL becomes smaller. Conversely, when the clearance amount CL decreases to some extent, the clearance amount CL gradually increases. In this process, the clearance CL becomes minimum. The point of this minimum clearance amount CL is called a pinch point.
  • the moving blade 44 shrinks in a shorter time than the turbine casing 48, so the clearance amount CL temporarily increases. That is, when the required output indicated by the load command is smaller than the current output PW, the clearance amount CL temporarily increases.
  • the rotational speed RPM of the turbine rotor 41 gradually increases from time t0, and when the rated rotational speed is reached, the rated rotational speed is maintained.
  • the clearance amount CL at time t0 is far larger than the clearance amount CL at the pinch point and the allowable minimum clearance amount CLmin.
  • the first change value ⁇ RPMc1 and the second change value ⁇ RPMc2 relating to the rotational speed change rate ⁇ RPM become larger as the clearance amount CL becomes larger. Moreover, when the clearance amount CL is larger than the allowable minimum clearance amount CLmin, the first change value ⁇ RPMc1 and the second change value ⁇ RPMc2 are positive values. Therefore, the value of the output from the second adder 152 at time t0 is a value obtained by adding the first change value ⁇ RPMc1 and the second change value ⁇ RPMc2 of positive values to the upper limit rotational speed change rate ⁇ RPML. As described above, the output from the second adder 152 is the rotational speed change rate ⁇ RPM determined by the rotational speed change rate setting unit 140. Therefore, at time t0, the rotational speed change rate ⁇ RPM determined by the rotational speed change rate setting unit 140 is a value larger than the upper limit rotational speed change rate ⁇ RPML.
  • the clearance amount CL gradually decreases with time. Therefore, the first change value ⁇ RPMc1 and the second change value ⁇ RPMc2 related to the rotational speed change rate ⁇ RPM also gradually decrease with the passage of time in the startup step.
  • the clearance amount CL is larger than the allowable minimum clearance amount CLmin, since the first change value ⁇ RPMc1 and the second change value ⁇ RPMc2 are positive values, the clearance amount CL is the allowable minimum even after time t0. If it is larger than the clearance amount CLmin, the rotational speed change rate ⁇ RPM determined by the rotational speed change rate setting unit 140 during the startup step is a value larger than the upper limit rotational speed change rate ⁇ RPML.
  • the rotational speed change rate ⁇ RPM determined by the rotational speed change rate setting unit 140 is the upper limit rotational speed change rate ⁇ RPML, as described above. For this reason, at the time of change rate control, the rotational speed change rate ⁇ RPM is larger than at the time of change rate non-control until the clearance amount CL becomes a small value close to the allowable minimum clearance amount CLmin from time t0.
  • the rotation speed RPM becomes the rated rotation speed at time t1 before time t2 when the rotation speed RPM becomes the rated rotation speed when the change rate is not controlled. That is, in the present embodiment, it is possible to shorten the time from when the gas turbine 1 starts to be started (t0) until the rotational speed RPM of the gas turbine 1 reaches the rated rotational speed.
  • the clearance amount CL is pinched in the start process.
  • the time to reach the point is also shorter than the same time when the change rate is not controlled.
  • the first change value ⁇ RPMc1 related to the rotational speed change rate ⁇ RPM is a negative value when the clearance amount CL is close to the allowable minimum clearance amount CLmin and when the clearance amount CL is smaller than the allowable minimum clearance amount CLmin.
  • the second change value ⁇ RPMc2 related to the rotational speed change rate ⁇ RPM becomes a negative value when the clearance amount CL is smaller than the allowable minimum clearance amount CLmin. Therefore, when the clearance amount CL is close to the allowable minimum clearance amount CLmin, and when the clearance amount CL is smaller than the allowable minimum clearance amount CLmin, the rotational speed change rate ⁇ RPM determined by the rotational speed change rate setting unit 140 is the upper limit rotation. It is a value smaller than the number change rate ⁇ RPML.
  • the rotational speed change rate ⁇ RPM becomes smaller than the rotational speed change rate ⁇ RPM when the change rate is not controlled. For this reason, in the present embodiment, it is possible to suppress that the clearance amount CL at the pinch point becomes smaller than when the change rate is not controlled.
  • the output PW of the gas turbine 1 gradually increases from time t3, and when the required output is reached, the output PW is maintained.
  • the clearance amount CL at time t3 is larger than the clearance amount CL at the pinch point.
  • the first change value ⁇ PWc1 and the second change value ⁇ PWc2 regarding the output change rate ⁇ PW become larger as the clearance amount CL becomes larger. Furthermore, when the clearance amount CL is larger than the allowable minimum clearance amount CLmin, the first change value ⁇ PWc1 and the second change value ⁇ PWc2 are positive values. Therefore, the value of the output from the second adder 132 at time t3 is a value obtained by adding the first change value ⁇ PWc1 and the second change value ⁇ PWc2 of positive values to the upper limit output change rate ⁇ PWL. As described above, the output from the second adder 132 becomes the output change rate ⁇ PW determined by the output change rate setting unit 120. Thus, at time t3, the output change rate ⁇ PW determined by the output change rate setting unit 120 is a value larger than the upper limit output change rate ⁇ PWL.
  • the first change value ⁇ PWc1 and the second change value ⁇ PWc2 related to the output change rate ⁇ PW also gradually decrease with the passage of time in the process of increasing the output PW.
  • the clearance amount CL is larger than the allowable minimum clearance amount CLmin
  • the first change value ⁇ PWc1 and the second change value ⁇ PWc2 are positive values, even in the process of increasing the output PW, the clearance amount CL Is larger than the allowable minimum clearance amount CLmin, the output change rate ⁇ PW determined by the output change rate setting unit 120 is a value larger than the upper limit output change rate ⁇ PWL.
  • the output change rate ⁇ PW determined by the output change rate setting unit 120 is the upper limit output change rate ⁇ PWL, as described above. Therefore, at the time of change rate control, the output PW becomes the request output at time t4 before time t5 when the output PW becomes the request output from time t3. That is, in the present embodiment, it is possible to shorten the time from the time t3 until the output PW of the gas turbine 1 becomes the required output.
  • the time from the time t3 to the required output of the gas turbine 1 becoming short from the time t3 reduces the time for the clearance CL to reach the pinch point in the process of increasing the output PW. Also, it will be shorter than the same time when the change rate is not controlled.
  • the first change value ⁇ PWc1 related to the output change rate ⁇ PW becomes a negative value when the clearance amount CL is close to the allowable minimum clearance amount CLmin and when the clearance amount CL is smaller than the allowable minimum clearance amount CLmin.
  • the second change value ⁇ PWc2 related to the output change rate ⁇ PW becomes a negative value when the clearance amount CL is smaller than the allowable minimum clearance amount CLmin. Therefore, when the clearance amount CL is close to the allowable minimum clearance amount CLmin, and when the clearance amount CL is smaller than the allowable minimum clearance amount CLmin, the output change rate ⁇ PW determined by the output change rate setting unit 120 is the upper limit rotational speed change It is a value smaller than the rate ⁇ RPML.
  • the output change rate ⁇ PW becomes smaller than the output change rate ⁇ PW when the change rate is not controlled. Therefore, in the present embodiment, in the process of increasing the output PW, it is possible to suppress that the clearance amount CL at the pinch point becomes smaller than when the change rate is not controlled.
  • the clearance CL temporarily decreases.
  • the clearance CL is temporarily increased.
  • the output PW becomes the required output in a short time.
  • the change unit 182 of the intake operation amount setting unit 180 changes the IGV opening degree (the operation amount of the intake amount regulator) according to the clearance amount CL measured by the clearance measurement device 101.
  • the intake operation amount output unit 189 outputs the changed IGV opening degree to the driver 23 of the IGV 21. As a result, the IGV opening becomes the changed IGV opening. If the intake air flow rate is increased without changing the fuel flow rate, the temperature of the combustion gas flowing through the combustion gas flow path 49 is reduced, and the clearance amount CL is changed. As described above, in the present embodiment, since the IGV opening changes in accordance with the clearance amount CL, it is possible to prevent the clearance amount CL from becoming extremely small.
  • the compressed air extracted from the intermediate casing 18b is cooled by the cooler 62 to become the cooling air Am.
  • the cooling air Am is guided to the first row moving blade 44 a via the bleed line 61 and the like. Then, the cooling air Am is discharged into the combustion gas passage 49 through the cooling passage 44 c formed in the first row moving blade 44 a.
  • the cooling air Am exchanges heat with the first row moving blade 44a in the process of passing through the cooling passage 44c formed in the first row moving blade 44a, thereby cooling the first row moving blade 44a.
  • a part of the cooling air Am functions as air for film cooling to the first row moving blade 44a. Therefore, in the present embodiment, the first row moving blades 44a can be prevented from being thermally damaged by the heat of the combustion gas.
  • the changing unit 172 of the cooling operation amount setting unit 170 changes the flow rate of the cooling medium flowing through the cooler 62 by the cooling controller 64 according to the clearance amount CL measured by the clearance measuring device 101.
  • the temperature of the cooling air Am changes, and the amount of cooling of the first row moving blades 44a by the cooling air Am changes.
  • the amount of cooling of the first row moving blades 44a changes in accordance with the clearance amount CL, so it is possible to prevent the clearance amount CL from becoming extremely small.
  • the rotational speed change rate ⁇ RPM changes according to the clearance amount CL
  • the startup time until the rotational speed RPM reaches the rated rotational speed can be shortened.
  • the output change rate ⁇ PW changes in accordance with the clearance amount CL
  • the time until the output PW becomes the required output can be shortened.
  • the time until the rotational speed RPM reaches the rated rotational speed and the time until the output PW reaches the required output can be shortened, and the rotational speed according to the clearance amount CL Since the change rate ⁇ RPM and the output change rate ⁇ PW change, it is possible to suppress the clearance amount CL from becoming extremely small.
  • the degree of opening of the IGV 21 and the amount of cooling of the compressed air are changed according to the clearance amount CL, so from this viewpoint as well, it is possible to suppress the clearance amount CL from becoming extremely small.
  • the output PW of the gas turbine 1 and the rotational speed RPM can be set to target values in a short time while suppressing damage to the gas turbine 1.
  • the clearance amount CL temporarily decreases when the rotation speed RPM or the output PW increases, and the clearance amount CL decreases when the rotation speed RPM or the output PW decreases. It will grow temporarily. Therefore, control of the change rate of the RPM and output PW based on the clearance amount CL is performed only when the RPM and output PW increase, and when the RPM and output PW decrease, the RPM and output are reduced.
  • the change rate of PW may be a fixed value.
  • the rotary mechanical equipment of the present embodiment is a steam turbine power plant, as shown in FIG.
  • the steam turbine power plant includes a steam turbine 70, a generator 9a that generates electric power by driving the steam turbine 70, and a control device 100a.
  • the steam turbine 70 includes a steam turbine rotor 71 that rotates about an axis Ar, a steam turbine casing 78 that covers the steam turbine rotor 71, and a plurality of stator blade rows 75.
  • the steam turbine rotor 71 has a rotor shaft 72 extending in the axial direction Da around its axis Ar, and a plurality of moving blade arrays 73 attached to the rotor shaft 72.
  • the plurality of moving blade arrays 73 are arranged in the axial direction Da.
  • Each moving blade row 73 is composed of a plurality of moving blades 74 aligned in the circumferential direction Dc.
  • a stator blade row 75 is disposed on the upstream side Dau of each of the plurality of moving blade rows 73.
  • Each vane row 75 is provided inside the steam turbine casing 78.
  • Each of the vane arrays 75 is composed of a plurality of vanes 76 arranged in the circumferential direction Dc. Steam flows in an annular space between the outer peripheral side of the rotor shaft 72 and the inner peripheral side of the steam turbine casing 78 and in the region where the stationary blade row 75 and the moving blade row 73 are arranged in the axial direction Da.
  • the main steam passage 79 is formed.
  • the moving blade array 73 on the most axial upstream side Dau is taken as the first moving blade array, and thereafter, toward the axial downstream side Dad, the second moving blade array, the third Row of moving blades, ...
  • a steam turbine 70 having a steam turbine rotor 71 and a steam turbine casing 78 constitutes an axial flow rotating machine.
  • the steam turbine rotor 71 is connected to the rotor of the generator 9 a.
  • a steam inlet 78i is formed in a portion of the axis upstream side Dau of the steam turbine casing 78, and a steam outlet 78o is formed in a portion of the axis downstream side Dad of the steam turbine casing 78.
  • a main steam line 91 is connected to the steam inlet 78i.
  • the main steam line 91 is provided with a steam control valve 92 for controlling the flow rate of steam flowing into the steam turbine casing 78.
  • the control device 100a includes the above-described steam control valve 92, the clearance measurement instrument 101, the rotation speed meter 102, the output meter 103, and the control device main body 110a.
  • the clearance measuring instrument 101 measures the amount of clearance CL between the steam turbine casing 78 and the steam turbine rotor 71.
  • the revolution number sensor 102 senses the number of revolutions RPM of the steam turbine rotor 71.
  • the output meter 103 detects the output PW of the steam turbine 70, in other words, the amount of power generation of the generator 9a.
  • the revolution number meter 102 and the output meter 103 are both examples of parameter meters.
  • the clearance measuring instrument 101 of the present embodiment measures the clearance amount CL between the first row moving blade 74 a and the steam turbine casing 78.
  • the control device 100a of the present embodiment is provided with a plurality of clearance measuring instruments 101 as in the control device 100a of the first embodiment.
  • the amount of clearance between the second row moving blades 74 and the steam turbine casing 78 may be measured by the clearance measuring instrument 101.
  • the amount of clearance between the first row of rotating blades 74a and the steam turbine casing 78 and the amount of clearance between the second row of blades 74 and the steam turbine casing 78 may be measured.
  • the control device main body 110a has a clearance signal processing unit 111, an output change rate setting unit 120a, a rotational speed change rate setting unit 140a, and a steam operation amount output unit 160a.
  • the control device main body 110a is also a computer, similarly to the control device main body 110 of the first embodiment. Each functional configuration of the control device main body 110a is realized by the CPU of the computer executing a control program stored in the computer.
  • the clearance signal processing unit 111 processes the signals from the plurality of clearance measuring instruments 101, and outputs the smallest clearance amount CL among the clearance amounts CL measured by the plurality of clearance measuring instruments 101.
  • the output change rate setting unit 120a includes a basic output change rate calculation unit 121a, a change value calculation unit 124a, and a change unit 130a.
  • the basic output change rate calculation unit 121a is basically the same as the configuration of the basic output change rate calculation unit 121 of the first embodiment, and is detected by the target output PWt determined according to the load command and the start command. Based on the deviation from the output PW, a basic output change rate ⁇ PWb is determined.
  • the change value calculation unit 124a is basically the same as the configuration of the change value calculation unit 124 of the first embodiment. For this reason, the change value calculation unit 124a is also not shown, but like the change value calculation unit 124 of the first embodiment, the upper limit output change rate calculation unit, the first change value calculation unit, and the second change And a value operation unit.
  • the upper limit output change rate calculation unit uses the map indicating the relationship between the actual output PW and the upper limit output change rate ⁇ PWL, which is the upper limit value of the output change rate ⁇ PW, to determine the upper limit corresponding to the output PW detected by the output meter 103 The output change rate ⁇ PWL is determined.
  • the first change value calculation unit of the change value calculation unit 124a is output from the clearance signal processing unit 111 using a map indicating the relationship between the clearance amount CL and the first change value ⁇ PWc1 for changing the basic output change rate ⁇ PWb.
  • a first change value ⁇ PWc1 corresponding to the clearance amount CL is obtained.
  • the relationship indicated by this map is also a relation in which the first change value ⁇ PWc1 increases basically as the clearance amount CL increases. .
  • the second change value calculation unit of the change value calculation unit 124a when the clearance amount CL is larger than the allowable minimum clearance amount CLmin, the first change value ⁇ PWc1 shows a positive value, and when the clearance amount CL is less than the allowable minimum clearance amount CLmin, the first change value ⁇ PWc1 Indicates a negative value.
  • the second change value calculation unit of the change value calculation unit 124a has an allowable minimum value storage unit and a ⁇ PI calculation unit, similarly to the second change value calculation unit 127 of the first embodiment. .
  • the allowable minimum value storage unit stores an allowable minimum clearance amount CLmin.
  • the ⁇ PI calculation unit obtains a deviation between the allowable minimum clearance amount CLmin and the clearance amount CL output from the clearance signal processing unit 111, and a second change value which is a proportional and integral control amount (PI control amount) according to the deviation Determine ⁇ PWc2. Therefore, the second change value ⁇ PWc2 obtained by the second change value calculation unit becomes larger as the deviation between the allowable minimum clearance amount CLmin and the clearance amount CL becomes larger.
  • the changing unit 130a is basically the same as the configuration of the changing units 130, 150, 172, and 182 in the first embodiment. Therefore, although not shown, the change unit 130a also has a first adder, a second adder, and a minimum value selector, similarly to the change unit 130 of the first embodiment.
  • the first adder operates in the same manner as the first adder 131 of the first embodiment.
  • the second adder operates in the same manner as the second adder 132 of the first embodiment.
  • the minimum value selector operates in the same manner as the minimum value selector 133 of the first embodiment.
  • the steam operation amount output unit 160a includes an output change rate conversion unit 162a, a rotation speed change rate conversion unit 164a, and a selection unit 169a.
  • the output change rate conversion unit 162a converts the output change rate ⁇ PW set by the output change rate setting unit 120a into an operation amount of the steam control valve 92 which is an operation end.
  • the rotational speed change rate conversion unit 164a converts the rotational speed change rate ⁇ RPM set by the rotational speed change rate setting unit 140a into an operation amount of the steam control valve 92 which is an operation end.
  • the selection unit 169a outputs only one operation amount out of the operation amount obtained by the output change rate conversion unit 162a and the operation amount obtained by the rotation speed change rate conversion unit 164a to the steam control valve 92.
  • the rotational speed change rate setting unit 140a includes a basic rotational speed change rate calculation unit 141a, a change value calculation unit 144a, and a change unit 150a.
  • the basic rotation speed change rate calculation unit 141a is basically the same as the basic rotation speed change rate calculation unit 141 of the first embodiment, and is detected by the target rotation speed RPMt determined according to the start command and the rotation speed meter 102 Based on the deviation from the rotational speed RPM, the basic rotational speed change rate ⁇ RPMb is determined.
  • the change value calculation unit 144a is basically the same as the configuration of the change value calculation unit 144 of the first embodiment. For this reason, the change value calculation unit 144a is also not shown, but like the change value calculation unit 144 of the first embodiment, the upper limit rotational speed change rate calculation unit, the first change value calculation unit, and the second And a change value calculation unit.
  • the upper limit rotational speed change rate calculation unit uses the map showing the relationship between the actual rotational speed RPM and the upper limit rotational speed change rate ⁇ RPML that is the upper limit value of the rotational speed change rate ⁇ RPM. An upper limit rotational speed change rate ⁇ RPML corresponding to several RPMs is obtained.
  • the first change value calculation unit of the change value calculation unit 144a is output from the clearance signal processing unit 111 using a map indicating the relationship between the clearance amount CL and the first change value ⁇ RPMc1 for changing the basic rotation speed change rate ⁇ RPMb.
  • a first change value ⁇ RPMc1 corresponding to the clearance amount CL is obtained.
  • the relationship indicated by this map is also a relation in which the first change value ⁇ RPMc1 increases basically with an increase in the clearance amount CL. .
  • the second change value calculation unit of the change value calculation unit 144a when the clearance amount CL is larger than the allowable minimum clearance amount CLmin, the first change value ⁇ RPMc1 shows a positive value, and when the clearance amount CL is less than the allowable minimum clearance amount CLmin, the first change value ⁇ RPMc1 Indicates a negative value.
  • the second change value calculation unit of the change value calculation unit 144a has an allowable minimum value storage unit and a ⁇ PI calculation unit, similarly to the second change value calculation unit 147 of the first embodiment. .
  • the allowable minimum value storage unit stores an allowable minimum clearance amount CLmin.
  • the ⁇ PI calculation unit obtains a deviation between the allowable minimum clearance amount CLmin and the clearance amount CL output from the clearance signal processing unit 111, and a second change value which is a proportional and integral control amount (PI control amount) according to the deviation Determine ⁇ RPMc2. Therefore, the second change value ⁇ RPMc2 obtained by the second change value calculation unit becomes larger as the deviation between the allowable minimum clearance amount CLmin and the clearance amount CL becomes larger.
  • the changing unit 150a is basically the same as the configuration of the changing unit 150 of the first embodiment. Therefore, although not shown, the changing unit 150a also has a first adder, a second adder, and a minimum value selector, similarly to the changing unit 150 of the first embodiment.
  • the first adder operates in the same manner as the first adder 151 of the first embodiment.
  • the second adder operates in the same manner as the second adder 152 of the first embodiment.
  • the minimum value selector operates in the same manner as the minimum value selector 153 of the first embodiment.
  • the clearance amount CL temporarily decreases when the rotation speed RPM or the output PW increases, and the clearance amount CL temporarily decreases when the rotation speed RPM or the output PW decreases.
  • the clearance amount CL temporarily increases when the rotational speed RPM or the output PW increases due to the relationship between the thermal capacity of the steam turbine casing 78 and the thermal capacity of the moving blade 74, etc.
  • the clearance amount CL temporarily decreases. That is, the change tendency of the clearance amount CL with respect to the increase and decrease of the rotational speed RPM and the output PW is reversed in the gas turbine 1 and the steam turbine 70.
  • the rotational speed change rate ⁇ RPM and the output change rate ⁇ PW become small, and when the clearance amount CL is large, the rotational speed change rate ⁇ RPM and the output The change rate ⁇ PW becomes large.
  • the start-up time until the rotational speed RPM reaches the rated rotational speed can be shortened.
  • the time until the output PW becomes the required output can be shortened. In addition, it is possible to suppress the clearance amount CL from becoming extremely small.
  • the clearance amount CL temporarily decreases when the rotation speed RPM or the output PW decreases, and the clearance amount CL decreases when the rotation speed RPM or the output PW increases. It will grow temporarily. For this reason, control of the change rate of the rotation speed RPM or the output PW based on the clearance amount CL is performed only when the rotation speed RPM or the output PW decreases, and when the rotation speed RPM or the output PW increases, the rotation speed RPM or the output PW
  • the change rate of PW may be a fixed value.
  • the rotary mechanical equipment of the present embodiment is a gas compression plant as shown in FIG.
  • This gas compression includes a compressor 80, a motor 9b for driving the compressor 80, and a control device 100b.
  • the compressor 80 includes a compressor rotor 81 that rotates around an axis Ar, a compressor casing 88 that covers the compressor rotor 81, and a plurality of stator blade rows 85.
  • the compressor rotor 81 has a rotor shaft 82 extending in the axial direction Da around its axis Ar and a plurality of moving blade arrays 83 attached to the rotor shaft 82.
  • the plurality of moving blade rows 83 are arranged in the axial direction Da.
  • Each moving blade row 83 is composed of a plurality of moving blades 84 aligned in the circumferential direction Dc.
  • a stator blade array 85 is disposed at each axial downstream side Dad of the plurality of rotor blade arrays 83.
  • Each vane row 85 is provided inside the compressor casing 88.
  • Each stator blade row 85 is composed of a plurality of stator blades 86 aligned in the circumferential direction Dc. Gas flows in an annular space between the outer peripheral side of the rotor shaft 82 and the inner peripheral side of the compressor casing 88 and in the region where the stationary blade row 85 and the moving blade row 83 are disposed in the axial direction Da.
  • the gas compression flow path 89 is formed while being compressed. That is, the compressor 80 is an axial flow multistage compressor.
  • the moving blade row 83 on the most axial upstream side Dau is taken as the first moving blade row, and thereafter, toward the axial downstream side Dad, the second moving blade row, third
  • the blade row 83 of the axial line downstream side Dad is the final blade row.
  • the compressor 80 having the compressor rotor 81 and the compressor casing 88 constitutes a rotary machine.
  • the compressor rotor 81 is connected to the rotor of a prime mover 9 b that rotates the compressor rotor 81.
  • the prime mover 9b is connected to a power supply circuit 94 which changes the rotational speed RPM of the rotor of the prime mover 9b by changing the supply state of the power supplied to the prime mover 9b.
  • a gas inlet 88i is formed in the portion of the axis upstream Dau of the compressor casing 88, and a gas outlet 88o is formed in the portion of the axis downstream Dad of the compressor casing 88.
  • the compressed gas line 93 is connected to the gas outlet 88o.
  • the compressed gas line 93 is provided with a flow meter 104 for detecting the flow rate Q of the gas discharged from the compressor 80.
  • the control device 100b includes the power supply circuit 94 described above, the clearance measuring instrument 101, the rotation speed meter 102, the flow meter 104, and the control device main body 110b.
  • the clearance measuring instrument 101 measures the amount of clearance CL between the compressor casing 88 and the compressor rotor 81.
  • the revolution number sensor 102 senses the number of revolutions RPM of the compressor rotor 81.
  • the flow meter 104 detects the discharge flow rate as the output of the compressor 80.
  • the revolution number meter 102 and the flow meter 104 are both examples of parameter meters.
  • the clearance measuring instrument 101 of the present embodiment measures the clearance amount CL between the final row moving blade 84 a and the compressor casing 88.
  • the control device 100b according to the present embodiment includes a plurality of clearance measuring instruments 101 as in the control devices 100 and 100a according to the first and second embodiments.
  • the clearance measurement device 101 may measure the amount of clearance CL between the moving blade 84 and the compressor casing 88 in the row Aru on the upstream side of the final row.
  • the clearance amount CL between the final row moving blade 84a and the compressor casing 88, and the clearance amount CL between the blade 84 and compressor casing 88 in the row of Aru on the upstream side of the final row It may be measured.
  • the control device body 110b has a clearance signal processing unit 111, a flow rate change rate setting unit 120b, and a flow rate operation amount output unit 160b.
  • the control device main body 110b is also a computer, similarly to the control device main body 110 of the first embodiment. Each functional configuration of the control device main body 110b is realized by the CPU of the computer executing a control program stored in the computer.
  • the clearance signal processing unit 111 processes the signals from the plurality of clearance measuring instruments 101, and outputs the smallest clearance amount CL among the clearance amounts CL measured by the plurality of clearance measuring instruments 101.
  • the flow rate change rate setting unit 120b includes a basic flow rate change rate calculation unit 121b, a change value calculation unit 124b, and a change unit 130.
  • the basic flow rate change rate calculation unit 121 b has a ⁇ PI calculation unit 123 b.
  • This ⁇ PI calculation unit 123b is a basic flow rate change rate that is a proportional and integral control amount (PI control amount) according to the deviation between the required gas flow rate indicated by the external gas flow rate command and the discharge flow rate Q detected by the flow meter. Determine ⁇ Qb.
  • the change value calculation unit 124 b is basically the same as the configuration of the change value calculation unit 124 of the first embodiment. Therefore, as in the case of the change value calculation unit 124 of the first embodiment, the change value calculation unit 124b is also the upper limit flow rate change rate calculation unit 125b, the first change value calculation unit 126b, and the second change value calculation unit 127b. And.
  • the upper limit flow rate change rate calculation unit 125 b has a map 125 mb showing the relationship between the actual discharge flow rate Q and the upper limit flow rate change rate ⁇ QL, which is the upper limit value of the flow rate change rate.
  • the upper limit flow rate change rate calculation unit 125 b obtains the upper limit flow rate change rate ⁇ QL corresponding to the discharge flow rate Q detected by the flow meter 104 using the map 125 mb.
  • the first change value calculation unit 126b has a map 126mb indicating the relationship between the clearance amount CL and the first change value ⁇ Qc1 for changing the basic flow rate change rate ⁇ Qb.
  • the first change value calculation unit 126b uses the map 126mb to obtain a first change value ⁇ Qc1 corresponding to the clearance amount CL output from the clearance signal processing unit 111.
  • the relationship indicated by the map 126mb is basically based on the relation that the first change value ⁇ Qc1 increases with the increase of the clearance amount CL. is there. Furthermore, even in the map 126mb, when the clearance amount CL is larger than the allowable minimum clearance amount CLmin, the first change value ⁇ Qc1 shows a positive value, and when the clearance amount CL is less than the allowable minimum clearance amount CLmin, the first change value ⁇ Qc1 shows a negative value.
  • the second change value calculation unit 127 b includes an allowable minimum value storage unit 128 b and a ⁇ PI calculation unit 129 b.
  • the allowable minimum value storage unit 128 b stores an allowable minimum clearance amount CLmin.
  • the ⁇ PI calculation unit 129b obtains a deviation between the allowable minimum clearance amount CLmin and the clearance amount CL output from the clearance signal processing unit 111, and the second change which is a proportional and integral control amount (PI control amount) according to the deviation Determine the value ⁇ Qc2. Therefore, the second change value ⁇ Qc2 obtained by the second change value calculators 127 and 147 increases as the deviation between the allowable minimum clearance amount CLmin and the clearance amount CL increases.
  • the change unit 130 is basically the same as the configuration of the change unit 130 of the first embodiment. Therefore, the changing unit 130 includes the first adder 131, the second adder 132, and the minimum value selector 133, as in the changing unit 130 of the first embodiment.
  • the first adder 131 operates in the same manner as the first adder 131 of the first embodiment.
  • the second adder 132 operates in the same manner as the second adder 132 of the first embodiment.
  • the minimum value selector 133 operates in the same manner as the minimum value selector 133 of the first embodiment.
  • the flow rate operation amount output unit 160 b converts the flow rate change rate ⁇ Q set by the flow rate change rate setting unit 120 b into an operation amount of the power supply circuit 94 which is an operation end. Then, the flow rate operation amount output unit 160 b outputs the operation amount to the power supply circuit 94. As a result, the number of revolutions RPM of the prime mover rotor changes. Then, the rotational speed RPM of the compressor rotor 81 changes with the change of the rotational speed RPM of the prime mover rotor, and the discharge flow rate Q becomes the required gas flow rate indicated by the gas flow rate command.
  • the clearance amount CL temporarily decreases when the rotation speed RPM or the output PW increases, and the clearance amount CL temporarily decreases when the rotation speed RPM or the output PW decreases.
  • the clearance amount CL is generally increased when the discharge flow rate Q and the RPM increase as in the steam turbine 70 due to the relationship between the heat capacity of the compressor casing 88 and the heat capacity of the moving blade 84, etc.
  • the flow rate change rate ⁇ Q becomes small, and when the clearance amount CL is large, the flow rate change rate ⁇ Q becomes large. For this reason, in the present embodiment, it is possible to shorten the time until the actual discharge flow rate Q reaches the required flow rate, and to suppress the clearance amount CL from becoming extremely small.
  • the discharge flow rate Q as the output of the compressor 80 is treated as a parameter of the compressor 80.
  • the discharge pressure as the output of the compressor 80 is handled. It is also good.
  • a basic pressure change rate which is a proportional and integral control amount (PI control amount) according to a deviation between a required gas pressure indicated by a gas pressure command from the outside and a discharge pressure detected by a pressure gauge is determined. Then, the basic pressure change rate is changed using the upper limit pressure change rate and the first change value and the second change value based on the clearance amount CL.
  • the RPM of the compressor 80 may be treated as a parameter of the compressor 80.
  • the basic rotational speed change which is a proportional and integral control amount (PI control amount) according to the deviation between the required rotational speed indicated by the external rotational speed command and the rotational speed RPM detected by the rotational speed meter 102 Determine the rate. Then, the basic rotation speed change rate is changed using the upper limit rotation speed change rate and the first change value and the second change value based on the clearance amount.
  • PI control amount proportional and integral control amount
  • the clearance amount CL temporarily decreases when the discharge flow rate Q or the rotation speed RPM decreases, and the clearance amount CL decreases when the discharge flow rate Q or the rotation speed RPM increases. It will grow temporarily. Therefore, control of the rate of change of the discharge flow rate Q or rotation speed RPM based on the clearance amount CL is performed only when the discharge flow rate Q or rotation speed RPM decreases, and the discharge flow rate is increased when the discharge flow rate Q or rotation speed RPM increases.
  • the rate of change of Q or rotational speed RPM may be a fixed value.
  • control may be performed to change the rate of change of the number of rotations or the discharge flow rate as an output.
  • the rotary machine equipment of this embodiment is a combined cycle plant as shown in FIG.
  • the combined cycle plant includes a gas turbine 1, a steam turbine 70, a generator 9c, an exhaust heat recovery boiler 95, a main steam line 91c, a condenser 96, a water supply line 97, and a water supply pump 98. And a control device 100c.
  • the gas turbine 1 is a gas turbine 1 configured similarly to the gas turbine 1 of the first embodiment. Therefore, the gas turbine 1 includes a compressor 10 for compressing the air A, a combustor 30 for burning the fuel F in the air compressed by the compressor 10 to generate combustion gas, and a turbine driven by the combustion gas. And 40. A fuel line 35 through which the fuel F flows is connected to the combustor 30. A fuel control valve 36 is provided in the fuel line 35.
  • the turbine casing 48 is provided with a gas turbine clearance measuring instrument 101a that measures the amount of clearance CLg between the turbine casing 48 and the first row moving blades 44a.
  • the steam turbine 70 is a steam turbine configured similarly to the steam turbine 70 of the second embodiment.
  • the steam turbine casing 78 is provided with a steam turbine clearance measuring device 101b that measures the amount of clearance CLs between the steam turbine casing 78 and the first row moving blades 74a.
  • the generator 9 c generates power by driving the gas turbine 1 and the steam turbine 70.
  • the gas turbine rotor 2, the steam turbine rotor 71, and the rotors of the generator 9c are connected to each other and integrally rotate around the same axis Ar.
  • the combined cycle plant of the present embodiment is a single-shaft combined cycle plant.
  • the exhaust heat recovery boiler 95 uses the heat of the exhaust gas exhausted from the gas turbine 1 to turn water into steam.
  • the main steam line 91 c guides the steam generated in the exhaust heat recovery boiler 95 to the steam turbine 70.
  • the main steam line 91 c is provided with a steam control valve 92 for controlling the flow rate of steam flowing into the steam turbine 70.
  • the condenser 96 cools the steam exhausted from the steam turbine 70 and returns the steam to water.
  • the water supply line 97 leads the water in the condenser 96 to the exhaust heat recovery boiler 95.
  • the water supply pump 98 sends the water in the water supply line 97 to the condenser 96.
  • the control device 100 c includes the fuel control valve 36 described above, the steam control valve 92 described above, the gas turbine clearance measuring instrument 101 a described above, the steam turbine clearance measuring instrument 101 b described above, the rotation speed meter 102, and the output meter 103. And a controller main body 110c.
  • the rotation speed meter 102 detects any one of the rotation speed RPM of the gas turbine rotor 2, the steam turbine rotor 71, and the rotor of the generator 9c.
  • the output meter 103 detects the amount of power generation of the generator 9c.
  • the number of revolutions RPM detected by the revolution number meter 102 is also a parameter regarding the gas turbine 1 and is also a parameter regarding the steam turbine 70.
  • the output PW detected by the power meter 103 is also a parameter related to the gas turbine 1 and a parameter related to the steam turbine 70.
  • the controller body 110c includes a first clearance signal processor 111a, a second clearance signal processor 111b, a clearance selection output unit 112, a gas turbine output change rate setting unit 120, and a gas turbine.
  • the control device main body 110 c is also a computer, similarly to the control device main body 110 of the first embodiment. Each functional configuration of the control device main body 110c is realized by the CPU of the computer executing a control program stored in the computer.
  • the first clearance signal processing unit 111a processes the signals from the plurality of gas turbine clearance measuring instruments 101a, and outputs the minimum clearance amount CLg among the clearance amounts CLg measured by the plurality of gas turbine clearance measuring instruments 101a. .
  • the clearance amount CLg output by the first clearance signal processing unit 111a is referred to as a gas turbine clearance amount CLg.
  • the second clearance signal processing unit 111b processes the signals from the plurality of steam turbine clearance measuring devices 101b, and outputs the smallest clearance amount CLs among the clearance amounts CLs measured by the plurality of steam turbine clearance measuring devices 101b.
  • the clearance amount CLs output by the first clearance signal processing unit 111a is referred to as a steam turbine clearance amount CLs.
  • the clearance selection output unit 112 outputs the gas turbine clearance amount CLg output from the first clearance signal processing unit 111a when the output PW is increasing, and performs the second clearance signal processing when the output PW is decreasing.
  • the steam turbine clearance amount CLs output from the unit 111 b is output.
  • the gas turbine output change rate setting unit 120 is the same as the output change rate setting unit 120 of the first embodiment. Therefore, in the gas turbine output change rate setting unit 120 according to the present embodiment as well as the output change rate setting unit 120 according to the first embodiment, the basic output change rate operation unit 121, the change value operation unit 124, and the change unit 130. And.
  • the gas turbine rotational speed change rate setting unit 140 is the same as the rotational speed change rate setting unit 140 of the first embodiment. Therefore, the gas turbine rotational speed change rate setting unit 140 according to the present embodiment is also similar to the basic rotational speed change rate calculation unit 141 and the change value operation unit 144, similarly to the rotational speed change rate setting unit 140 according to the first embodiment. And a change unit 150.
  • the fuel operation amount output unit 160 is the same as the fuel operation amount output unit 160 of the first embodiment. Therefore, similarly to the fuel operation amount output unit 160 of the first embodiment, the fuel operation amount output unit 160 of the present embodiment also includes the output change ratio conversion unit 162, the rotational speed change ratio conversion unit 164, and the selection unit 169. And.
  • the steam turbine output change rate setting unit 120a is the same as the output change rate setting unit 120a of the second embodiment. Therefore, the steam turbine output change rate setting unit 120a according to the present embodiment is also the basic output change rate operation unit 121a, the change value operation unit 124a, and the change unit 130a, similarly to the output change rate setting unit 120a according to the second embodiment. And.
  • the steam turbine rotational speed change rate setting unit 140a is the same as the rotational speed change rate setting unit 140a of the second embodiment. Therefore, the steam turbine rotational speed change rate setting unit 140a according to the present embodiment is also similar to the rotational speed change rate setting unit 140a according to the second embodiment, including the basic rotational speed change rate computing unit 141a and the change value computing unit 144a. And a change unit 150a.
  • the steam operation amount output unit 160a is the same as the steam operation amount output unit 160a of the second embodiment. Therefore, the steam operation amount output unit 160a of this embodiment also has the output change rate conversion unit 162, the rotation speed change rate conversion unit 164, the selection unit 169, and the steam operation amount output unit 160a of the second embodiment. And.
  • the rotation speed RPM and the power PW of the gas turbine 1 increase, the rotation speed RPM and the power PW of the steam turbine 70 increase in conjunction therewith.
  • the gas turbine clearance amount CLg temporarily decreases when the rotational speed RPM and the output PW increase, and the gas turbine clearance amount when the rotational speed RPM and the output PW decrease. CLg temporarily increases.
  • the steam clearance amount CLs temporarily increases when the rotation speed RPM and the output PW increase, and the steam clearance amount CLs increases when the rotation speed RPM and the output PW decrease. Temporarily decreases.
  • the gas turbine 1 of the gas turbine 1 is temporarily reduced based on the gas turbine clearance amount CLg.
  • the power change rate ⁇ PW and the rotational speed change rate ⁇ RPM are determined, and the power change rate ⁇ PW and the rotational speed change rate ⁇ RPM of the steam turbine 70 are determined.
  • the power change rate ⁇ PW and the rotation speed change rate ⁇ RPM of the gas turbine 1 are temporarily reduced based on the steam turbine clearance amount CLs which decreases temporarily. And the power change rate .DELTA.PW of the steam turbine 70 and the rotational speed change rate .DELTA.RPM.
  • the start-up time until the rotational speed RPM reaches the rated rotational speed can be shortened. Furthermore, also in the present embodiment, the time until the output PW becomes the required output can be shortened. Moreover, in the present embodiment, it is possible to suppress that both the gas turbine clearance amount CLg and the steam turbine clearance amount CLs become extremely small.
  • the combined cycle plant includes a multi-axial combined cycle plant in addition to the single-shaft combined cycle plant as in the present embodiment.
  • the gas turbine rotor 2 and the steam turbine rotor 71 are not mechanically connected, and the gas turbine rotor 2 and the steam turbine rotor 71 are separately connected The rotor is connected.
  • the steam turbine 70 is The rotational speed RPM and the output PW increase. Therefore, the control similar to that of the present embodiment may be performed also in such a multi-axial combined cycle plant.
  • the rotation speed or output of the rotary machine can be set to the target value in a short time while suppressing damage to the rotary machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

回転機械(1)の制御装置(100)は、回転機械(1)のパラメータを変える操作端(36)と、ロータ(41)とケーシング(48)との間のクリアランス量を計測するクリアランス計測器(101)と、制御装置本体(110)と、を備える。制御装置本体(110)は、クリアランス計測器(101)で計測されたクリアランス量に応じて、パラメータの変化率が変わるよう、操作端(36)の操作量を定め、この操作量を操作端(36)に出力する。

Description

回転機械の制御装置、回転機械設備、回転機械の制御方法、及び回転機械の制御プログラム
 本発明は、回転するロータと、このロータの外周側を覆うケーシングを備える回転機械の制御装置、回転機械設備、回転機械の制御方法、及び回転機械の制御プログラムに関する。
 本願は、2017年9月22日に日本国に出願された特願2017-182800号に基づき優先権を主張し、この内容をここに援用する。
 ガスタービンは、回転機械の一種である。このガスタービンは、大気を圧縮して圧縮空気を生成する圧縮機と、この圧縮空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器と、燃焼ガスにより駆動するタービンと、を備える。圧縮機は、軸線を中心として回転する圧縮機ロータと、これを回転可能に覆う圧縮機ケーシングと、を有している。タービンは、軸線を中心として回転するタービンロータと、これを回転可能に覆うタービンケーシングと、を有している。タービンロータと圧縮機ロータとは、互いに接続されてガスタービンロータを成す。このガスタービンロータには、例えば、発電機が接続されている。燃焼器には、燃料ラインが接続されている。この燃料ラインには、燃焼器に供給される燃料の流量を調節する燃料調節弁が設けられている。
 ガスタービンの出力や回転数を増減させる場合、操作端の一つである燃料調節弁の操作量を変える。すなわち、燃焼器に供給される燃料の流量を変える。燃料調節弁の操作量は、例えば、以下の特許文献1に記載されているように、外部からの負荷指令等により定められる。
 燃料調節弁の操作量が急激に変化すると、ガスタービンの出力や回転数も急激に変化する。このように、操作量の急変に伴って、ガスタービンの出力や回転数が急変すると、ガスタービンが損傷する可能性が高まる。そこで、特許文献1に記載の技術では、外部からの発電機出力指令又は負荷指令等により燃料調節弁の操作量を定めた後、この操作量の変化率が所定以上高くならないよう、操作量の変化率に関する制限器を設け、この制限器を経た操作量を燃料調節弁に出力している。
特開2016-037882号公報
 前述したように、操作端の操作量の変化率を制限することは、ガスタービンの損傷を抑えるために必要な技術である。一方、発電業界では、ガスタービンの出力や回転数が短時間で目標値になることが望まれている。特に、電力系統に、天候等により発電量が左右される太陽光発電設備や風力発電設備が接続されている場合には、これらの設備での発電量の急変に対応するため、ガスタービンの出力や回転数が短時間で目標値になることが望まれている。
 そこで、本発明は、回転機械の損傷を抑えつつも、回転機械の回転数又は出力を短時間で目標値にすることができる技術を提供することを目的とする。
 前記目的を達成するための発明に係る一態様の回転機械の制御装置は、
 回転するロータと、前記ロータの外周側を覆うケーシングとを備える回転機械の制御装置において、前記回転機械の回転数又は出力であるパラメータを変える操作端と、前記ロータと前記ケーシングとの間のクリアランス量を計測するクリアランス計測器と、前記クリアランス量に応じて、前記パラメータの変化率が変わるよう、前記パラメータの変化率を定めるパラメータ変化率設定部と、前記パラメータの前記変化率に応じて、前記操作端の操作量を定め、前記操作量を前記操作端に出力する操作量出力部と、を備える。
 回転機械は、その回転数又は出力(output)であるパラメータが増減すると、ロータとケーシングとの間のクリアランス量が一時的に小さくなる場合がある。このクリアランス量が小さくなると、ロータとケーシングとが接触して、ロータ又はケーシングの一部が損傷する可能性が高まる。
 本態様では、クリアランス量に応じて、パラメータの変化率が変わるよう、この変化率を定める。そして、本態様では、この変化率に応じて操作端の操作量を定め、この操作量を操作端に出力する。よって、本態様では、クリアランス量に応じて、パラメータの変化率が変わる。
 ここで、前記回転機械の制御装置において、前記パラメータ変化率設定部は、第一のクリアランス量のときの前記パラメータの変化率に比べて、前記第一のクリアランス量よりも大きな第二のクリアランス量のときとの前記パラメータの変化率が大きくなるよう、前記パラメータの変化率を定めてもよい。
 また、以上のいずれかの前記回転機械の制御装置において、前記パラメータ変化率設定部は、前記パラメータの目標値と前記パラメータの検出値との偏差に応じて、前記パラメータの基本変化率を求める基本変化率演算部と、前記クリアランス量に応じて、前記基本変化率を変更する変更値を求める変更値演算部と、前記変更値を用いて前記基本変化率を変更する変化率変更部と、を有してもよい。
 前記変更値演算部を有する前記回転機械の制御装置において、前記変更値演算部は、前記クリアランス量と前記基本変化率を変更する第一変更値との関係を用いて、前記クリアランス量に対応する前記第一変更値を求める第一演算部を有してもよい。この場合、前記変化率変更部は、前記第一変更値を用いて前記基本変化率を変更するとよい。
 前記第一演算部を有する前記回転機械の制御装置において、前記変更値演算部は、前記クリアランス量と予め定められている許容最小クリアランス量との偏差に応じて、前記基本変化率を変更する第二変更値を求める第二演算部を有してもよい。この場合、前記変化率変更部は、前記第一変更値と前記第二変更値とを用いて前記基本変化率を変更するとよい。
 前記第一変更演算部を有する、いずれかの前記回転機械の制御装置において、前記関係は、前記クリアランス量が大きくなるに連れて前記第一変更値が大きくなる関係であってもよい。
 前記目的を達成するための発明に係る一態様の回転機械設備は、
 以上のいずれかの制御装置と、前記回転機械と、を備える。
 ここで、前記回転機械設備において、前記回転機械は、空気を圧縮して圧縮空気を生成する圧縮機と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼ガスで駆動するタービンとを、備えるガスタービンである。前記圧縮機は、回転する圧縮機ロータと、前記圧縮機ロータを覆う圧縮機ケーシングと、を有する。前記タービンは、回転するタービンロータと、前記タービンロータを覆うタービンケーシングと、を有する。前記圧縮機ロータと前記タービンロータとは、機械的に接続されて、ガスタービンロータを成す。前記操作端は、前記燃焼器に供給される燃料の流量を調節する燃料調節弁である。前記クリアランス計測器は、前記タービンロータと前記タービンケーシングとの間のガスタービンクリアランス量を計測する。この場合、前記パラメータ変化率設定部は、前記ガスタービンクリアランス量に応じて、前記パラメータの増加時と減少時とのうち、少なくとも増加時における前記パラメータの変化率が変わるよう、前記パラメータの変化率を定める。
 ガスタービンクリアランス量は、パラメータの増加時に一時的に小さくなり、パラメータの減少時には一時的に大きくなる。本態様では、パラメータの増加時にガスタービンクリアランス量に応じてパラメータの変化率が変わるよう、この変化率を定める。そして、本態様では、この変化率に応じて燃料調節弁の操作量を求め、この操作量を燃料調節弁に出力する。このため、本態様では、ガスタービンのパラメータ増加時であっても、ガスタービンクリアランス量が極端に小さくなることを抑えつつも、パラメータを短時間で目標値にすることができる。
 前記回転機械がガスタービンである回転機械設備において、前記圧縮機は、前記圧縮機ケーシングに設けられ、前記圧縮機ケーシング内に流入する空気の流量を調節する吸気流量調節器を有する。この場合、前記制御装置は、前記ガスタービンクリアランス量に応じて、前記吸気流量調節器の操作量を定める吸気操作量設定部と、前記吸気流量調節器の前記操作量を前記吸気流量調節器に出力する吸気操作量出力部と、を有するとよい。
 燃料流量を変えずに、圧縮機ケーシング内に流入する空気の流量である吸気流量を増加させると、燃焼ガス流路を流れる燃焼ガスの温度が低下し、ガスタービンクリアランス量が変化する。本態様では、ガスタービンクリアランス量に応じて、吸気流量が変わるので、ガスタービンクリアランス量が極端に小さくなることを防ぐことができる。
 前記回転機械がガスタービンである、以上のいずれかの前記回転機械設備において、前記ガスタービンは、前記圧縮機で圧縮された空気を抽気して、前記タービンロータの動翼に、抽気した空気を導く抽気ラインと、前記抽気ラインを流れる空気を冷却する冷却器と、前記冷却器による前記空気の冷却量を調節する冷却調節器と、を備える。この場合、前記制御装置は、前記ガスタービンクリアランス量に応じて、前記冷却調節器の操作量を定める冷却操作量設定部と、前記冷却調節器の前記操作量を前記冷却調節器に出力する冷却操作量出力部と、を有するとよい。
 冷却器による前記空気の冷却量を変えると、この空気による動翼の冷却量が変わり、ガスタービンクリアランス量が変化する。本態様では、ガスタービンクリアランス量に応じて、空気の冷却量が変わるので、ガスタービンクリアランス量が極端に小さくなることを防ぐことができる。
 ここで、前記一態様の前記回転機械設備において、前記回転機械は、蒸気で駆動する蒸気タービンである。前記蒸気タービンは、回転する蒸気タービンロータと、前記蒸気タービンロータを覆う蒸気タービンケーシングと、を有する。前記操作端は、前記蒸気タービンに供給される蒸気の流量を調節する蒸気調節弁である。前記クリアランス計測器は、前記蒸気タービンロータと前記蒸気タービンケーシングとの間の蒸気タービンクリアランス量を計測する。この場合、前記パラメータ変化率設定部は、前記蒸気タービンクリアランス量に応じて、前記パラメータの増加時と減少時とのうち、少なくとも減少時における前記パラメータの変化率が変わるよう、前記パラメータの変化率を定めるとよい。
 蒸気タービンクリアランス量は、パラメータの減少時に一時的に小さくなり、パラメータの増加時には一時的に大きくなる。本態様では、パラメータの減少時に蒸気タービンクリアランス量に応じてパラメータの変化率が変わるよう、この変化率を定める。そして、本態様では、この変化率に応じて蒸気調節弁の操作量を求め、この操作量を蒸気調節弁に出力する。このため、本態様では、蒸気タービンのパラメータ減少時であっても、蒸気タービンクリアランス量が極端に小さくなることを抑えつつも、パラメータを短時間で目標値にすることができる。
 また、前記一態様の前記回転機械設備において、前記回転機械としての第一回転機械と第二回転機械とを備える。前記第一回転機械は、ガスタービンである。前記第二回転機械は、蒸気タービンである。当該回転機械設備は、前記ガスタービンから排気された排気ガスで蒸気を発生させて、前記蒸気を蒸気タービンに送る排熱回収ボイラーを備える。前記ガスタービンは、空気を圧縮して圧縮空気を生成する圧縮機と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼ガスで駆動するタービンと、を有する。前記圧縮機は、回転する圧縮機ロータと、前記圧縮機ロータを覆う圧縮機ケーシングと、を有する。前記タービンは、回転するタービンロータと、前記タービンロータを覆うタービンケーシングと、を有する。前記圧縮機ロータと前記タービンロータとは、機械的に接続されて、ガスタービンロータを成す。前記ガスタービンの前記操作端は、前記燃焼器に供給される燃料の流量を調節する燃料調節弁である。前記ガスタービンの前記クリアランス計測器は、前記タービンロータと前記タービンケーシングとの間のガスタービンクリアランス量を計測するガスタービンクリアランス計測器である。前記蒸気タービンは、回転する蒸気タービンロータと、前記蒸気タービンロータを覆う蒸気タービンケーシングと、を有する。前記蒸気タービンの前記操作端は、前記排熱回収ボイラーから前記蒸気タービンに供給される蒸気の流量を調節する蒸気調節弁である。前記蒸気タービンの前記クリアランス計測器は、前記蒸気タービンロータと前記蒸気タービンケーシングとの間の蒸気タービンクリアランス量を計測する蒸気タービンクリアランス計測器である。この場合、前記ガスタービンの前記パラメータ変化率設定部は、前記ガスタービンに関する前記パラメータであるガスタービンパラメータの増加時に、前記ガスタービンクリアランス量に応じて前記ガスタービンパラメータの変化率が変わるよう、前記ガスタービンパラメータの変化率を定め、前記ガスタービンパラメータの減少時に、前記蒸気タービンクリアランス量に応じて前記ガスタービンパラメータの変化率が変わるよう、前記ガスタービンパラメータの変化率を定めるとよい。また、前記ガスタービンの前記操作量出力部は、前記ガスタービンの前記パラメータ変化率設定部が定めた前記ガスタービンパラメータの変化率に応じて、前記燃料調節弁の操作量を定め、前記燃料調節弁の前記操作量を前記燃料調節弁に出力するとよい。さらに、前記蒸気タービンの前記パラメータ変化率設定部は、前記蒸気タービンに関する前記パラメータである蒸気タービンパラメータの増加時に、前記ガスタービンクリアランス量に応じて前記蒸気タービンパラメータの変化率が変わるよう、前記蒸気タービンパラメータの変化率を定め、前記蒸気タービンパラメータの減少時に、前記蒸気タービンクリアランス量に応じて前記蒸気タービンパラメータの変化率が変わるよう、前記蒸気タービンパラメータの変化率を定めるとよい。また、前記蒸気タービンの前記操作量出力部は、前記蒸気タービンの前記パラメータ変化率設定部が定めた前記蒸気タービンパラメータの変化率に応じて、前記蒸気調節弁の操作量を定め、前記蒸気調節弁の前記操作量を前記蒸気調節弁に出力するとよい。
 本態様の回転機械設備は、いわゆるコンバインドサイクルプラントである。このコンバインドサイクルプラントでは、ガスタービンのパラメータが増加すると、これに連動して、蒸気タービンのパラメータが増加する。また、ガスタービンでは、パラメータが増加する場合にガスタービンクリアランス量が一時的に小さくなり、パラメータが減少する場合にガスタービンクリアランス量が一時的に大きくなる。また、蒸気タービンでは、パラメータが増加する場合に蒸気タービンクリアランス量が一時的に大きくなり、パラメータが減少する場合に蒸気タービンクリアランス量が一時的に小さくなる。
 そこで、本態様では、ガスタービンのパラメータ及び蒸気タービンのパラメータが増加する場合、一時的に小さくなるガスタービンクリアランス量に基づいて、ガスタービン及び蒸気タービンの操作端の操作量を定める。また、本態様では、ガスタービンのパラメータ及び蒸気タービンのパラメータが減少する場合、一時的に小さくなる蒸気タービンクリアランス量に基づいて、ガスタービン及び蒸気タービンの操作端の操作量を定める。よって、本態様では、ガスタービンのパラメータ及び蒸気タービンのパラメータが増減しても、ガスタービン及び蒸気ターンのクリアランス量が極端に小さくなることを抑えつつも、パラメータを短時間で目標値にすることができる。
 前記目的を達成するための発明に係る一態様の回転機械の制御方法は、
 回転するロータと、前記ロータの外周側を覆うケーシングとを備える回転機械の制御方法において、前記ロータと前記ケーシングとの間のクリアランス量を受け付ける工程と、前記クリアランス量に応じて、前記回転機械の回転数又は出力であるパラメータの変化率が変わるよう、前記パラメータの変化率を定める工程と、前記パラメータの前記変化率に応じて、前記パラメータを変える操作端の操作量を定め、前記操作量を前記操作端に出力する工程と、を実行する。
 ここで、前記回転機械の制御方法において、前記パラメータの前記変化率を定める前記工程では、第一のクリアランス量のときの前記パラメータの変化率に比べて、前記第一のクリアランス量よりも大きな第二のクリアランス量のときとの前記パラメータの変化率が大きくなるよう、前記パラメータの変化率を定めてもよい。
 また、以上のいずれかの前記回転機械の制御方法において、前記パラメータの前記変化率を定める前記工程は、前記パラメータの目標値と前記パラメータの検出値との偏差に応じて、前記パラメータの基本変化率を求める工程と、前記クリアランス量に応じて、前記基本変化率を変更する変更値を求める工程と、前記変更値を用いて、前記基本変化率を変更する工程と、を含んでもよい。
 前記変更値を求める前記工程を実行する前記回転機械の制御方法において、前記変更値を求める前記工程は、前記クリアランス量と前記基本変化率を変更する第一変更値との関係を用いて、前記クリアランス量に対応する前記第一変更値を求める工程を含んでもよい。この場合、前記変更工程では、前記第一変更値を用いて前記基本変化率を変更するとよい。
 前記第一変更値を求める前記工程を実行する前記回転機械の制御方法において、前記変更値を求める前記工程は、前記クリアランス量と予め定められている許容最小クリアランス量との偏差に応じて、前記基本変化率を変更する第二変更値を求める工程を含んでもよい。この場合、前記基本変化率を変更する前記工程では、前記第一変更値を用いて前記基本変化率を変更するとよい。
 前記第一変更値を求める前記工程を実行する、いずれかの前記回転機械の制御方法において、前記関係は、前記クリアランス量が大きくなるに連れて前記第一変更値が大きくなる関係であってもよい。
 前記目的を達成するための発明に係る一態様の回転機械の制御プログラムは、
 回転するロータと、前記ロータの外周側を覆うケーシングとを備える回転機械の制御プログラムにおいて、コンピュータの入力装置により、前記ロータと前記ケーシングとの間のクリアランス量を受け付ける工程と、前記クリアランス量に応じて、前記回転機械の回転数又は出力であるパラメータの変化率が変わるよう、前記パラメータの変化率を定める工程と、前記パラメータの前記変化率に応じて、前記パラメータを変える操作端の操作量を定め、前記操作量を前記操作端に出力する工程と、を前記コンピュータに実行させる。
 ここで、前記回転機械の制御プログラムにおいて、前記パラメータの前記変化率を定める前記工程では、第一のクリアランス量のときの前記パラメータの変化率に比べて、前記第一のクリアランス量よりも大きな第二のクリアランス量のときとの前記パラメータの変化率が大きくなるよう、前記パラメータの変化率を定めてもよい。
 また、以上のいずれかの前記回転機械の制御プログラムにおいて、前記パラメータの前記変化率を定める前記工程は、前記パラメータの目標値と前記パラメータの検出値との偏差に応じて、前記パラメータの基本変化率を求める工程と、前記クリアランス量に応じて、前記基本変化率を変更する変更値を求める工程と、前記変更値を用いて、前記基本変化率を変更する変更した変化量を求める工程と、を含んでもよい。
 前記変更値を求める前記工程を実行させる前記転機械の制御プログラムにおいて、前記変更値を求める前記工程は、前記クリアランス量と前記基本変化率を変更する第一変更値との関係を用いて、前記クリアランス量に対応する前記第一変更値を求める工程を含んでもよい。この場合、前記基本変化率を変更する前記工程では、前記第一変更値を用いて前記基本変化率を変更するとよい。
 前記第一変更値を求める前記工程を実行させる前記回転機械の制御プログラムにおいて、前記変更値を求める前記工程は、前記クリアランス量と予め定められている許容最小クリアランス量との偏差に応じて、前記基本変化率を変更する第二変更値を求める工程を含んでもよい。この場合、前記基本変化率を変更する前記工程では、前記第一変更値と前記第二変更値と用いて前記基本変化率を変更するとよい。
 前記第一変更値を求める前記工程を実行させる、以上のいずれかの前記回転機械の制御プログラムにおいて、前記関係は、前記クリアランス量が大きくなるに連れて前記第一変更値が大きくなる関係であってもよい。
 本発明の一態様によれば、回転機械の損傷を抑えつつも、回転機械の回転数又は出力を短時間で目標値にすることができる。
本発明に係る第一実施形態におけるガスタービン発電プラントの構成を示す概念図である。 本発明に係る第一実施形態におけるガスタービンの要部断面図である。 図2におけるIII部の拡大図である。 本発明に係る第一実施形態における複数のクリアランス計測器の配置を示す説明図である。 本発明に係る第一実施形態における制御装置の構成を示す機能ブロック図である。 本発明に係る第一実施形態における出力変化率設定部の構成を示す機能ブロック図である。 本発明に係る第一実施形態における回転数変化率設定部の構成を示す機能ブロック図である。 本発明に係る第一実施形態における制御装置のハードウェア構成を示す回路ブロック図である。 本発明に係る第一実施形態における制御装置の動作を示すフローチャートである。 本発明に係る第一実施形態におけるガスタービンで、クリアランス量に基づく変化率制御を行っていない場合の時間変化に伴う、出力の変化、回転数の変化、及びクリアランスの変化を示すグラフである。 本発明に係る第一実施形態におけるガスタービンで、クリアランス量に基づく変化率制御を行った場合の時間変化に伴う、回転数の変化、及びクリアランスの変化を示すグラフである。 本発明に係る第二実施形態におけるガスタービンで、クリアランス量に基づく変化率制御を行った場合の時間変化に伴う、出力の変化、クリアランスの変化を示すグラフである。 本発明に係る第二実施形態における蒸気タービン発電プラントの構成を示す概念図である。 本発明に係る第二一実施形態における制御装置の構成を示す機能ブロック図である。 本発明に係る第三実施形態におけるガス圧縮プラントの構成を示す概念図である。 本発明に係る第三実施形態における制御装置の構成を示す機能ブロック図である。 本発明に係る第四実施形態におけるコンバインドサイクルプラントの構成を示す概念図である。 本発明に係る第四実施形態における制御装置の構成を示す機能ブロック図である。
 以下、本発明に係る各種実施形態について、図面を参照して詳細に説明する。
 「第一実施形態」
 以下、本発明に係る回転機械設備の第一実施形態について、図1~図11を参照して説明する。
 本実施形態の回転機械設備は、図1に示すように、ガスタービン発電プラントである。このガスタービン発電プラントは、ガスタービン1と、ガスタービン1の駆動で発電する発電機9と、ガスタービン1の構成部品の一部を冷却する冷却装置60と、制御装置100と、を備える。
 ガスタービン1は、空気を圧縮する圧縮機10と、圧縮機10で圧縮された空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器30と、燃焼ガスにより駆動するタービン40と、を備える。
 圧縮機10は、図1及び図2に示すように、軸線Arを中心として回転する圧縮機ロータ11と、圧縮機ロータ11を覆う圧縮機ケーシング18と、複数の静翼列14と、圧縮機ケーシング18内に流入する空気の流量を調節するIGV(inlet guide vane)21と、を有する。
 なお、以下では、軸線Arが延びる方向を軸線方向Da、この軸線方向Daの一方側を軸線上流側Dau、他方側を軸線下流側Dadとする。軸線上流側Dauは、圧縮機10内の空気の流れの上流側であると共に、タービン40内の燃焼ガスの流れの上流側でもある。軸線下流側Dadは、圧縮機10内の空気の流れの下流側であると共に、タービン40内の燃焼ガスの流れの下流側でもある。また、この軸線Arを中心とした周方向を単に周方向Dcとし、軸線Arに対して垂直な方向を径方向Drとする。この径方向Drで、軸線Arに近づく側を径方向内側Driとし、軸線Arから遠ざかる側を径方向外側Droとする。
 圧縮機ロータ11は、その軸線Arを中心として軸線方向Daに延びるロータ軸12と、このロータ軸12に取り付けられている複数の動翼列13と、を有する。複数の動翼列13は、軸線方向Daに並んでいる。各動翼列13は、いずれも、周方向Dcに並んでいる複数の動翼で構成されている。複数の動翼列13の各軸線下流側Dadには、静翼列14が配置されている。各静翼列14は、圧縮機ケーシング18の内側に設けられている。各静翼列14は、いずれも、周方向Dcに並んでいる複数の静翼で構成されている。ロータ軸12の径方向外側Droと圧縮機ケーシング18の径方向内側Driとの間であって、軸線方向Daで静翼列14及び動翼列13が配置されている領域の環状の空間は、空気が流れつつ圧縮される空気圧縮流路19を成す。すなわち、この圧縮機10は、軸流多段圧縮機である。
 圧縮機ケーシング18は、圧縮機本体ケーシング18aと、中間ケーシング18bとを有する。圧縮機本体ケーシング18aは、軸線方向Daで静翼列14及び動翼列13が配置されている領域で、この領域の外周側を覆う。中間ケーシング18bは、圧縮機本体ケーシング18aの軸線下流側Dadに接続されている。この中間ケーシング18b内には、圧縮機本体ケーシング18aから吐出された圧縮空気が流入する。
 IGV(吸気流量調節器)21は、圧縮機本体ケーシング18aに設けられている。IGV21は、複数の可動翼22と、複数の可動翼22の角度を変える駆動器23と、を有する。複数の可動翼22は、複数の動翼列13のうちで最も軸線上流側Dauの動翼列13よりも軸線上流側Dauに配置されている。
 タービン40は、軸線Arを中心として回転するタービンロータ41と、タービンロータ41を覆うタービンケーシング48と、複数の静翼列53と、を有する。タービンロータ41は、その軸線Arを中心として軸線方向Daに延びるロータ軸42と、このロータ軸42に取り付けられている複数の動翼列43と、を有する。複数の動翼列43は、軸線方向Daに並んでいる。各動翼列43は、いずれも、周方向Dcに並んでいる複数の動翼44で構成されている。複数の動翼列43の各軸線上流側Dauには、静翼列53が配置されている。各静翼列53は、タービンケーシング48の内側に設けられている。各静翼列53は、いずれも、周方向Dcに並んでいる複数の静翼54で構成されている。ロータ軸42の外周側とタービンケーシング48の内周側との間であって、軸線方向Daで静翼列53及び動翼列43が配置されている領域の環状の空間は、燃焼器30からの燃焼ガスが流れる燃焼ガス流路49を成す。なお、以下では、複数の動翼列43のうち、最も軸線上流側の動翼列を第一動翼列とし、以下、軸線下流側に向って、第二動翼列、第三動翼列、…とする。
 燃焼器30は、図2に示すように、中間ケーシング18bに設けられている。この燃焼器30は、高温高圧の燃焼ガスGをタービン40の燃焼ガス流路49内に送る燃焼筒(又は尾筒)31と、この燃焼筒31内に圧縮機10からの圧縮空気と共に燃料Fを噴射する燃料噴射器32と、を有する。燃料噴射器32には、燃料Fが流れる燃料ライン35が接続されている。この燃料ライン35には、燃料調節弁(操作端)36が設けられている。
 圧縮機ロータ11とタービンロータ41とは、図1に示すように、同一軸線Ar上に位置して互いに接続されてガスタービンロータ2を成す。このガスタービンロータ2には、発電機9のロータが接続されている。また、圧縮機ケーシング18とタービンケーシング48とは、互いに接続されてガスタービンケーシング5を成す。なお、本実施形態の圧縮機ケーシング18中の中間ケーシング18bを燃焼器車室と言い、本実施形態の圧縮機ケーシング18中の燃焼器車室(中間ケーシング18b)を含まない部分を単に圧縮機ケーシングという場合もある。しかしながら、本願では、この燃焼器車室(中間ケーシング18b)を含めて圧縮機ケーシング18とする。
 本実施形態では、軸線Arを中心として回転するガスタービンロータ2と、このガスタービンロータ2を覆うガスタービンケーシング5とを備えるガスタービン1が軸流式回転機械を成す。
 冷却装置60は、図1及び図2に示すように、抽気ライン61と、冷却器62と、冷却調節器64と、を有する。抽気ライン61は、第一端と第二端とを有する。この抽気ライン61の第一端は、中間ケーシング18bに接続され、第二端は、タービンロータ41のロータ軸42を介して、第一動翼列を構成する複数の動翼である第一列動翼44aに接続されている。抽気ライン61は、圧縮機本体ケーシング18aから吐出されて中間ケーシング18b内に流入した圧縮空気を複数の第一列動翼44aに導く。冷却器62は、抽気ライン61内を流れる圧縮空気と冷却媒体とを熱交換させて、圧縮空気を冷却する熱交換器である。冷却器62には、冷却媒体が流れる媒体ライン63が接続されている。冷却調節器64は、この媒体ライン63に設けられている。冷却調節器64は、媒体ライン63を流れる冷却媒体の流量を調節することで、圧縮空気の冷却量を調節する流量調節弁である。
 図2及び図3に示すように、抽気ライン61は、タービンロータ41のロータ軸42中で第一動翼列が固定されている第一段軸部42aに接続されている。この第一段軸部42aには、抽気ライン61と連通する冷却通路42cが形成されている。また、第一動翼列を構成する複数の第一列動翼44aには、第一段軸部42aの冷却通路42cと連通する冷却通路44cが形成されている。第一列動翼44aの冷却通路44cは、第一列動翼44aの表面中で燃焼ガスGと接する部分で開口している。このため、圧縮機10からの圧縮空気は、抽気ライン61を流れる過程で冷却器により冷却された後、第一段軸部42aに形成されている冷却通路42c、第一列動翼44aに形成されている冷却通路44cを介して、燃焼ガス流路49中に放出される。
 ガスタービン1の構成部品にうちで、動翼44、静翼54、タービンケーシング48で内周面を形成する部品、燃焼筒31は、いずれも、高温の燃焼ガスGに接する高温部品である。本実施形態では、冷却器62で冷却された圧縮空気である冷却空気Amで、これらの高温部品のうち、第一列動翼44aを冷却する。
 なお、本実施形態の冷却器62は、熱交換器であるが、例えば、圧縮空気が通るラインにファン等で風を送って、圧縮空気を冷却するタイプでもよい。この場合、冷却調節器は、例えば、ファンの回転数RPMを変えるインバータ付きモータになる。
 制御装置100は、図1に示すように、前述の燃料調節弁36と、クリアランス計測器101と、回転数計102と、出力計103と、制御装置本体110と、を有する。クリアランス計測器101は、タービンケーシング48とタービンロータ41との間のクリアランス量CLを計測する。回転数計102は、ガスタービンロータ2の回転数RPMを検知する。出力計103は、ガスタービン1の出力PW、言い換えると、発電機の発電量を検知する。回転数計102及び出力計103は、いずれもパラメータ計の一例である。
 図3に示すように、軸線Arを中心として回転するタービンロータ41の動翼44と、このタービンロータ41を覆うタービンケーシング48との間には、クリアランスがある。本実施形態のクリアランス計測器101は、第一列動翼44aとタービンケーシング48との間のクリアランス量CLを計測する。このクリアランス計測器101は、タービンケーシング48に固定されている。このクリアランス計測器101は、例えば、第一列動翼44aとタービンケーシング48との間の静電容量を検知し、検知した静電容量値をクリアランス量に変換する静電容量式の計測器である。また、このクリアランス計測器101は、例えば、タービンケーシング48の温度を検知し、検知した温度をクリアランス量に変換する計測器であってもよい。なお、クリアランス計測器101で、第二列動翼44とタービンケーシング48との間のクリアランスの量を計測してもよい。さらに、第一列動翼44aとタービンケーシング48との間のクリアランスの量、及び、第二列動翼44とタービンケーシング48との間のクリアランスの量を計測してもよい。
 本実施形態の制御装置100は、図4に示すように、複数のクリアランス計測器101を備える。複数のクリアランス計測器101のうち、一のクリアランス計測器101は、タービンケーシング48の上部に設けられている。また、他の一のクリアランス計測器101は、タービンケーシング48の下部に設けられている。さらに他の一のクリアランス計測器101は、タービンケーシング48の上下方向のほぼ中央部で且つ軸線Arに対する右側部に設けられている。さらに他の一のクリアランス計測器101は、タービンケーシング48の上下方向のほぼ中央部で且つ軸線Arに対する左側部に設けられている。
 制御装置本体110は、機能的には、図5に示すように、クリアランス信号処理部111と、出力変化率設定部120と、回転数変化率設定部140と、燃料操作量出力部160と、冷却操作量設定部170と、冷却操作量出力部179と、吸気操作量設定部180と、吸気操作量出力部189と、を有する。
 クリアランス信号処理部111は、複数のクリアランス計測器101からの信号を受け付け、複数のクリアランス計測器101が計測したクリアランス量CLのうち、最小のクリアランス量CLを出力する。
 出力変化率設定部120は、基本出力変化率演算部121と、変更値演算部124と、変更部130と、を有する。基本出力変化率演算部121は、負荷指令や起動指令に応じて定まる目標出力PWtと出力計103で検知された出力PWとの偏差に基づいて、基本出力変化率ΔPWbを求める。変更値演算部124は、クリアランス信号処理部111から出力されたクリアランス量CL等に応じて、基本出力変化率ΔPWbを変更するための変更値を求める。変更部130は、変更値を用いて基本出力変化率ΔPWbを変更する。なお、出力PWの変化率とは、単位時間当たりの出力PWの変化量である。
 回転数変化率設定部140は、基本回転数変化率演算部141と、変更値演算部144と、変更部150と、を有する。基本回転数変化率演算部141は、負荷指令や起動指令に応じて定まる目標回転数RPMtと回転数計102で検知された回転数RPMとの偏差に基づいて、基本回転数変化率ΔRPMbを求める。変更値演算部144は、クリアランス信号処理部111から出力されたクリアランス量CL等に応じて、基本回転数変化率ΔRPMbを変更するための変更値を求める。変更部150は、変更値を用いて基本回転数変化率ΔRPMbを変更する。なお、回転数RPMの変化率とは、単位時間当たりの回転数RPMの変化量である。
 燃料操作量出力部160は、出力変化率換算部162と、回転数変化率換算部164と、選択部169と、を有する。出力変化率換算部162は、出力変化率設定部120が設定した出力変化率ΔPWを操作端である燃料調節弁36の操作量に換算する。回転数変化率換算部164は、回転数変化率設定部140が設定した回転数変化率ΔRPMを操作端である燃料調節弁36の操作量に換算する。選択部169は、出力変化率換算部162が求めた操作量と、回転数変化率換算部164が求めた操作量とのうち、一方の操作量のみを燃料調節弁36に出力する。
 冷却操作量設定部170は、冷却操作量発生部171と、変更部172と、を有する。冷却操作量発生部171は、例えば、冷却調節器64の操作量である冷却操作量を発生する。ここでは、冷却操作量発生部171は、燃料操作量出力部160が出力する燃料調節弁36の操作量、言い換えると燃料流量の増加に伴って大きくなる冷却操作量を発生する。変更部172は、クリアランス信号処理部111から出力されたクリアランス量CLに応じて冷却操作量を変更する。冷却操作量出力部179は、変更された冷却操作量を冷却調節器64に出力する。
 吸気操作量設定部180は、IGV開度発生部181と、変更部182と、を有する。IGV開度発生部181は、例えば、IGV21の開度であるIGV開度を発生する。ここでは、IGV開度発生部181は、燃料操作量出力部160が出力する燃料調節弁36の操作量、言い換えると燃料流量の増加に伴って大きくなるIGV開度を発生する。変更部182は、クリアランス信号処理部111から出力されたクリアランス量CLに応じてIGV開度を変更する。吸気操作量出力部189は、変更されたIGV開度をIGV21の駆動器23に出力する。
 基本出力変化率演算部121は、図6に示すように、目標出力演算部122と、ΔPI演算部123と、を有する。目標出力演算部122は、負荷指令や起動指令に応じて目標出力PWtを求める。ΔPI演算部123は、出力計103で検知された出力PWと目標出力PWtとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である基本出力変化率ΔPWbを求める。
 出力変化率設定部120の変更値演算部124は、上限出力変化率演算部125と、第一変更値演算部(第一演算部)126と、第二変更値演算部(第二演算部)127と、を有する。上限出力変化率演算部125は、実際の出力PWと出力変化率ΔPWの上限値である上限出力変化率ΔPWLとの関係を示すマップ125mを有している。上限出力変化率演算部125は、このマップ125mを用いて、出力計103で検知された出力PWに対応する上限出力変化率ΔPWLを求める。出力変化率設定部120の第一変更値演算部126は、クリアランス量CLと基本出力変化率ΔPWbを変更する第一変更値ΔPWc1との関係を示すマップ126mを有している。第一変更値演算部126は、このマップ126mを用いて、クリアランス信号処理部111から出力されたクリアランス量CLに対応する第一変更値ΔPWc1を求める。このマップ126mが示す関係は、基本的に、クリアランス量CLの増加に伴って、第一変更値ΔPWc1が大きくなる関係である。よって、この第一変更値演算部126が求める第一変更値ΔPWc1は、クリアランス量CLの増加に伴って大きくなる。さらに、このマップ126mでは、許容最小クリアランス量CLminよりもクリアランス量CLが大きい場合、第一変更値ΔPWc1が正の値を示し、クリアランス量CLが許容最小クリアランス量CLmin以下の場合、第一変更値ΔPWc1が負の値を示す。なお、許容最小クリアランス量CLminとは、クリアランス量に関する許容最小値である。出力変化率設定部120の第二変更値演算部127は、許容最小値記憶部128と、ΔPI演算部129と、を有する。許容最小値記憶部128には、許容最小クリアランス量CLminが記憶されている。ΔPI演算部129は、許容最小クリアランス量CLminとクリアランス信号処理部111から出力されたクリアランス量CLとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である第二変更値ΔPWc2を求める。よって、この第二変更値演算部127が求める第二変更値ΔPWc2は、許容最小クリアランス量CLminとクリアランス量CLとの偏差が大きくなるに連れて大きくなる。
 出力変化率設定部120の変更部130は、第一加算器131と、第二加算器132と、最小値選択器133と、を有する。第一加算器131は、第一変更値演算部126が求めた第一変更値ΔPWc1と第二変更値演算部127が求めた第二変更値ΔPWc2とを加算する。第二加算器132は、上限出力変化率演算部125が求めた上限出力変化率ΔPWLと第一加算器131からの出力を加算する。すなわち、第二加算器132は、第一変更値ΔPWc1と第二変更値ΔPWc2と上限出力変化率ΔPWLとを加算した値を出力する。最小値選択器133は、基本出力変化率演算部121が求めた基本出力変化率ΔPWbと第二加算器132からの出力の値とのうち、小さい方の値を選択し、これを出力変化率ΔPWとして出力する。最小値選択器133から出力された出力変化率ΔPWは、前述した燃料操作量出力部160の出力変化率換算部162に入力する。
 基本回転数変化率演算部141は、図7に示すように、目標回転数演算部142と、ΔPI演算部143と、を有する。目標回転数演算部142は、負荷指令や起動指令に応じて目標回転数RPMtを求める。ΔPI演算部143は、回転数計102で検知された回転数RPMと目標回転数RPMtとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である基本回転数変化率ΔRPMbを求める。
 回転数変化率設定部140の変更値演算部144は、上限回転数変化率演算部145と、第一変更値演算部146と、第二変更値演算部147と、を有する。上限回転数変化率演算部145は、実際の回転数RPMと回転数変化率ΔRPMの上限値である上限回転数変化率ΔRPMLとの関係を示す145mを有している。上限回転数変化率演算部145は、このマップ145mを用いて、回転数計102で検知された回転数RPMに対応する上限回転数変化率ΔRPMLを求める。回転数変化率設定部140の第一変更値演算部146は、クリアランス量CLと基本回転数変化率ΔRPMbを変更する第一変更値ΔRPMc1との関係を示すマップ146mを有している。第一変更値演算部146は、このマップ146mを用いて、クリアランス信号処理部111から出力されたクリアランス量CLに対応する第一変更値ΔRPMc1を求める。このマップ146mが示す関係は、基本的に、クリアランス量CLの増加に伴って、第一変更値ΔRPMc1が大きくなる関係である。よって、この第一変更値演算部146が求める第一変更値ΔRPMc1は、クリアランス量CLの増加に伴って大きくなる。さらに、このマップ146mでは、許容最小クリアランス量CLminよりもクリアランス量CLが大きい場合、第一変更値ΔRPMc1が正の値を示し、クリアランス量CLが許容最小クリアランス量CLmin以下の場合、第一変更値ΔRPMc1が負の値を示す。回転数変化率設定部140の第二変更値演算部147は、許容最小値記憶部148と、ΔPI演算部149と、を有する。許容最小値記憶部148には、許容最小クリアランス量CLminが記憶されている。ΔPI演算部149は、許容最小クリアランス量CLminとクリアランス信号処理部111から出力されたクリアランス量CLとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である第二変更値ΔRPMc2を求める。よって、この第二変更値演算部147が求める第二変更値ΔRPMc2は、許容最小クリアランス量CLminとクリアランス量CLとの偏差が大きくなるに連れて大きくなる。
 回転数変化率設定部140の変更部150は、第一加算器151と、第二加算器152と、最小値選択器153と、を有する。第一加算器151は、第一変更値演算部146が求めた第一変更値ΔRPMc1と第二変更値演算部147が求めた第二変更値ΔRPMc2とを加算する。第二加算器152は、上限回転数変化率演算部145が求めた上限回転数変化率ΔRPMLと第一加算器151からの出力を加算する。すなわち、第二加算器152は、第一変更値ΔRPMc1と第二変更値ΔRPMc2と上限回転数変化率ΔRPMLとを加算した値を出力する。最小値選択器153は、基本回転数変化率演算部141が求めた基本回転数変化率ΔRPMbと第二加算器152からの出力の値とのうち、小さい方の値を選択し、これを回転数変化率ΔRPMとして出力する。最小値選択器153から出力された回転数変化率ΔRPMは、前述した燃料操作量出力部160の回転数変化率換算部164に入力する。
 制御装置本体110は、図8に示すように、コンピュータである。このため、この制御装置本体110は、各種演算を行うCPU191と、CPU191のワークエリア等になるメモリ192と、ハードディスクドライブ装置等の補助記憶装置193と、キーボードやマウス等の手入力装置195aと、表示装置195bと、手入力装置195a及び表示装置195bの入出力インタフェース195と、ガスタービン1に設けられている各種センサからの信号が入力する設備Iインタフェース196と、ガスタービン1の各種操作端に操作量を出力する設備Oインタフェース197と、ネットワークNを介して外部と通信するための通信インタフェース198と、ディスク型記憶媒体Dに対してデータの記憶処理や再生処理を行う記憶・再生装置194と、を備えている。
 補助記憶装置193には、ガスタービン固有値データ193a、制御プログラム193b、OS(Operating System)プログラム193cが予め格納されている。ガスタービン固有値データ193aとしては、先に説明した各種マップ125m,126m,145m,146mや許容最小クリアランス量CLmin等がある。制御プログラム193bは、回転機械であるガスタービン1を制御するためのプログラムである。補助記憶装置193に格納される各種データやプログラムは、例えば、記憶・再生装置194を介して、ディスク型記憶媒体Dから補助記憶装置193に取り込まれる。なお、各種データやプログラムは、通信インタフェース198を介して外部の装置から補助記憶装置193に取り込まれてもよい。また、各種データやプログラムは、手入力装置195aから入出力インタフェース195を介して補助記憶装置193に取り込まれてもよい。
 CPU191は、補助記憶装置193に格納されている制御プログラム193bをメモリ192上に展開し、この制御プログラム193bを実行することで、制御装置本体110の各機能構成を実現する。
 次に、本実施形態のガスタービン発電プラントの動作について説明する。
 まず、ガスタービン1の基本的な動作について説明する。ガスタービン1の圧縮機10は、空気Aを圧縮して圧縮空気を生成する。この圧縮空気は、燃焼器30に供給される。また、燃焼器30には、燃料Fも供給される。燃焼器30の燃料噴射器32は、燃料F及び圧縮空気を燃焼筒31内に噴出する。燃焼筒31内では、この圧縮空気中で燃料Fが燃焼し、高温高圧の燃焼ガスGが生成される。この燃焼ガスGは、燃焼筒31からタービン40内の燃焼ガス流路49に送られ、タービンロータ41を回転させる。このタービンロータ41の回転で、このタービンロータ41に接続されている発電機9は発電する。
 次に、制御装置100の動作について説明する。
 まず、起動工程での制御装置100の動作について説明する。この起動工程は、ガスタービン1に燃料Fが供給されていない状態からガスタービン1の回転数RPMが定格回転数(例えば、3600rpm)になり、発電機9が電力系統に接続されるまでの工程である。
 起動工程では、発電機9を原動機として機能させて、ガスタービンロータ2を回転させる。なお、起動装置を別途備えている場合には、この起動装置でガスタービンロータ2を回転させる。
 起動工程では、図9のフローチャートに示す工程が繰り返し実行される。まず、回転数計102がガスタービン1の回転数RPMを検知する(S11:パラメータ検知工程)。さらに、複数のクリアランス計測器101がクリアランス量CLを計測する(S12:クリアランス計測工程)。制御装置本体110の回転数変化率設定部140は、回転数計102から回転数RPMを受け付ける(S21:パラメータ受付工程)。また、制御装置本体110のクリアランス信号処理部111は、複数のクリアランス計測器101からの信号を受け付け、複数のクリアランス計測器101が計測したクリアランス量CLのうち、最小のクリアランス量CLを出力する(S22:クリアランス受付工程)。
 次に、回転数変化率設定部140がガスタービン1の回転数変化率ΔRPMを定める(S30:パラメータ変化率設定工程)。このパラメータ変化率設定工程(S30)では、基本変化率演算工程(S31)、上限変化率演算工程(S32)、第一変更値演算工程(S33)、第二変更値演算工程(S34)、変更工程(S35)が実行される。
 基本変化率演算工程(S31)では、まず、目標回転数演算部142が起動指令に応じて目標回転数RPMtを求める。基本回転数変化率演算部141のΔPI演算部143は、回転数計102で検知された回転数RPMと目標回転数RPMtとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である基本回転数変化率ΔRPMbを求める。
 上限変化率演算工程(S32)では、上限回転数変化率演算部145が、図7を参照して説明したマップ145mを用いて、回転数計102で検知された回転数RPMに対応する上限回転数変化率ΔRPMLを求める。
 第一変更値演算工程(S33)では、回転数変化率設定部140の第一変更値演算部146が図7を参照して説明した146mを用いて、クリアランス信号処理部111から出力されたクリアランス量CLに対応する第一変更値ΔRPMc1を求める。この第一変更値ΔRPMc1は、前述したように、クリアランス量CLの増加に伴って大きくなる。
 第二変更値演算工程(S34)は、回転数変化率設定部140の第二変更値演算部147が実行する。第二変更値演算部147のΔPI演算部149は、許容最小値記憶部148に記憶されている許容最小クリアランス量CLminとクリアランス信号処理部111から出力されたクリアランス量CLとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である第二変更値ΔRPMc2を求める。この第二変更値ΔRPMc2は、前述したように、許容最小クリアランス量CLminとクリアランス量CLとの偏差が大きくなるに連れて大きくなる。
 変更工程(S35)では、回転数変化率設定部140の変更部150が基本回転数変化率ΔRPMbを変更する。変更部150の第一加算器151は、第一変更値ΔRPMc1と第二変更値ΔRPMc2とを加算する。変更部150の第二加算器152は、上限回転数変化率演算部145が求めた上限回転数変化率ΔRPMLと第一加算器151からの出力とを加算する。変更部150の最小値選択器153は、基本回転数変化率ΔRPMbと第二加算器152からの出力の値とのうち、小さい方の値を選択し、これを回転数変化率ΔRPMとして、燃料操作量出力部160の回転数変化率換算部164へ出力する。
 以上で、パラメータ変化率設定工程(S30)が終了する。
 次に、燃料操作量出力部160が燃料調節弁36に操作量を出力する(S36:操作量出力工程)。燃料操作量出力部160の回転数変化率換算部164は、回転数変化率設定部140が設定した回転数変化率ΔRPMを燃料調節弁36の操作量に換算する。この操作量は、選択部169を介して、燃料調節弁36に出力される。この結果、燃焼器30には、パラメータ変化率設定工程(S30)で設定された回転数変化率ΔRPMが得られる燃料流量の燃料Fが供給される。
 前述したように、以上の工程が繰り返し実行される結果、ガスタービンロータ2の回転数RPMが次第に高まる。そして、ガスタービン1の回転数RPMが定格回転数(例えば、3600rpm)になり、発電機9が電力系統に接続されると、起動工程が終了する。
 起動工程が終了すると、負荷運転工程が実行される。この負荷運転工程でも、起動工程と同様の工程が繰り返し実行される。
 この負荷運転工程では、図9のフローチャートに示す工程が繰り返し実行される。まず、出力計103がガスタービン1の出力PWを検知する(S11a:パラメータ検知工程)。さらに、複数のクリアランス計測器101がクリアランス量CLを計測する(S12a:クリアランス計測工程)。制御装置本体110の出力変化率設定部120は、出力計103からの出力PWを受け付ける(S21a:パラメータ受付工程)。また、制御装置本体110のクリアランス信号処理部111は、複数のクリアランス計測器101からの信号を受け付け、複数のクリアランス計測器101が計測したクリアランス量CLのうち、最小のクリアランス量CLを出力する(S22a:クリアランス受付工程)。
 次に、出力変化率設定部120がガスタービン1の出力変化率ΔPWを定める(S30a:パラメータ変化率設定工程)。このパラメータ変化率設定工程(S30a)では、基本変化率演算工程(S31a)、上限変化率演算工程(S32a)、第一変更値演算工程(S33a)、第二変更値演算工程(S34a)、変更工程(S35a)が実行される。
 基本変化率演算工程(S31a)では、まず、目標出力演算部122が負荷指令に応じて目標出力PWtを求める。基本出力変化率演算部121のΔPI演算部123は、出力計103で検知された出力PWと目標出力PWtとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である基本出力変化率ΔPWbを求める。
 上限変化率演算工程(S32a)では、上限出力変化率演算部125が、図6を参照して説明したマップ125mを用いて、出力計103で検知された出力PWに対応する上限出力変化率ΔPWLを求める。
 第一変更値演算工程(S33a)では、出力変化率設定部120の第一変更値演算部126が図6を参照して説明したマップ126mを用いて、クリアランス信号処理部111から出力されたクリアランス量CLに対応する第一変更値ΔPWc1を求める。この第一変更値ΔPWc1は、前述したように、クリアランス量CLの増加に伴って大きくなる。
 第二変更値演算工程(S34a)は、出力変化率設定部120の第二変更値演算部127が実行する。第二変更値演算部127のΔPI演算部129は、許容最小値記憶部128に記憶されている許容最小クリアランス量CLminとクリアランス信号処理部111から出力されたクリアランス量CLとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である第二変更値ΔPWc2を求める。この第二変更値ΔPWc2は、前述したように、許容最小クリアランス量CLminとクリアランス量CLとの偏差が大きくなるに連れて大きくなる。
 変更工程(S35a)では、出力変化率設定部120の変更部130が基本出力変化率ΔPWbを変更する。変更部130の第一加算器131は、第一変更値ΔPWc1と第二変更値ΔPWc2とを加算する。変更部130の第二加算器132は、上限出力変化率演算部125が求めた上限出力変化率ΔPWLと第一加算器131からの出力とを加算する。変更部130の最小値選択器133は、基本出力変化率ΔPWbと第二加算器132からの出力の値とのうち、小さい方の値を選択し、これを出力変化率ΔPWとして、燃料操作量出力部160の出力変化率換算部162へ出力する。
 以上で、パラメータ変化率設定工程(S30a)が終了する。
 次に、燃料操作量出力部160が燃料調節弁36に操作量を出力する(S36a:操作量出力工程)。燃料操作量出力部160の出力変化率換算部162は、出力変化率設定部120が設定した出力変化率ΔPWを燃料調節弁36の操作量に換算する。この操作量は、選択部169を介して、燃料調節弁36に出力される。この結果、燃焼器30には、パラメータ変化率設定工程(S30a)で設定された出力変化率ΔPWが得られる燃料流量の燃料Fが供給される。
 制御装置本体110が新たな負荷指令を受け付けると、出力計103で検知された出力PWが新たな負荷指令が示す要求出力になるまで、以上の処理が繰り返し実行される。要求出力「0」を示す負荷指令を制御装置本体110が受けると、出力PWが次第に低下し、所定の出力PWになった時点で、発電機9が電力系統から電気的に切断される。その後、燃焼器30に供給される燃料流量が「0」になる。
 前述したように、負荷運転工程では、以上の工程が繰り返し実行される結果、現状の出力PWより大きな要求出力を示す負荷指令を受けた場合には、出力PWが要求出力になるまで次第に高まる。また、現状の出力PWより小さな要求出力を示す負荷指令を受けた場合には、出力PWが要求出力になるまで次第に低下する。
 次に、図10を参照して、以上で説明したクリアランス量CLに基づくパラメータ変化率制御を行っていない変化率未制御時の回転数RPM、出力PW、及びクリアランス量CLの変化について説明する。
 制御装置100が時刻t0に起動指令を受けると、この時刻t0から回転数RPMが次第に増加する。
 この起動工程の当初、ガスタービン1の実際の回転数RPMと目標回転数RPMtとの偏差が極めて大きいため、基本回転数変化率演算部141が求める基本回転数変化率ΔRPMbは極めて大きな値になる。よって、起動工程の当初、基本回転数変化率ΔRPMbと第二加算器152からの出力の値とのうち、第二加算器152からの出力の値の方が小さくなる。このため、変更部150の最小値選択器153は、第二加算器152からの出力の値を選択し、この出力の値を回転数変化率ΔRPMとして、燃料操作量出力部160の回転数変化率換算部164へ出力する。
 また、この起動工程の終盤、ガスタービン1の実際の回転数RPMと目標回転数RPMtとの偏差が小さくなるため、基本回転数変化率演算部141が求める基本回転数変化率ΔRPMbは、起動工程の当初の値よりも小さな値になる。よって、起動工程の終盤、基本回転数変化率ΔRPMbと第二加算器152からの出力の値との差は、起動工程の当初よりも小さくなる。このため、変更部150の最小値選択器153は、第二加算器152からの出力の値を選択し、この出力の値を回転数変化率ΔRPMとして出力する場合もあれば、基本回転数変化率ΔRPMbを選択し、この基本回転数変化率ΔRPMbを回転数変化率ΔRPMとして出力する場合もある。
 ここで、以下の説明を簡単にするため、起動工程では、基本回転数変化率ΔRPMbよりも第二加算器152からの出力の値の方が小さいとする。この場合、変更部150の最小値選択器153は、第二加算器152からの出力の値を選択し、この出力の値を回転数変化率ΔRPMとして、燃料操作量出力部160の回転数変化率換算部164へ出力する。
 変化率未制御時、回転数変化率設定部140の変更部150は、回転数変化率ΔRPMに関する第一変更値ΔRPMc1及び第二変更値ΔRPMc2を上限回転数変化率ΔRPMLに加算しない。このため、変更部150の最小値選択器153は、第二加算器152からの出力として、上限回転数変化率ΔRPMLを選択し、この上限回転数変化率ΔRPMLを回転数変化率ΔRPMとして、燃料操作量出力部160の回転数変化率換算部164へ出力する。上限回転数変化率ΔRPMLは、ほぼ一定である。このため、回転数RPMは、起動指令を受けた時点(t0)から、定格回転数になるまで、リニアに増加する。
 時刻t2に、回転数RPMが定格回転数になると、この時刻t2以降、回転数RPMはこの定格回転数に保持される。時刻t2後の時刻t3では、発電機9が電気的に電力系統に接続される。この結果、時刻t3から発電機出力PWが発生する。出力PWは、その後、負荷指令が示す要求出力に応じて、増減する。
 負荷運転工程では、負荷指令を受けた当初、ガスタービン1の実際の出力PWと負荷指令が示す要求出力との偏差が大きいため、基本出力変化率演算部121が求める基本出力変化率ΔPWbは大きな値になる。よって、負荷指令を受けた当初、基本出力変化率ΔPWbと第二加算器132からの出力の値とのうち、第二加算器132からの出力の値の方が小さくなる。このため、変更部130の最小値選択器133は、第二加算器132からの出力の値を選択し、この出力の値を出力変化率ΔPWとして、燃料操作量出力部160の出力変化率換算部162へ出力する。
 また、負荷指令を受けてから所定時間経過すると、ガスタービン1の実際の出力PWと負荷指令が示す要求出力との偏差が小さくなるため、基本出力変化率演算部121が求める基本出力変化率ΔPWbは、負荷指令を受けた当初の値よりも小さな値になる。よって、負荷指令を受けてから所定時間経過すると、基本出力変化率ΔPWと第二加算器132からの出力の値との差は、負荷指令を受けた当初よりも小さくなる。このため、変更部130の最小値選択器133は、第二加算器132からの出力の値を選択し、この出力の値を出力変化率ΔPWとして出力する場合もあれば、基本出力変化率ΔPWbを選択し、この基本出力変化率ΔPWbを出力変化率ΔPWとして出力する場合もある。
 ここで、以下の説明を簡単にするため、負荷運転工程では、基本出力変化率ΔPWbよりも第二加算器132からの出力の値の方が小さいとする。この場合、変更部130の最小値選択器133は、第二加算器132からの出力の値を選択し、この出力の値を出力変化率ΔPWとして、燃料操作量出力部160の出力変化率換算部162へ出力する。
 変化率未制御時、出力変化率設定部120の変更部130は、出力変化率ΔPWに関する第一変更値ΔPWc1及び第二変更値ΔPWc2を上限出力変化率ΔPWLに加算しない。このため、変更部130の最小値選択器133は、第二加算器132からの出力として、上限出力変化率ΔPWLを選択し、この上限出力変化率ΔPWLを出力変化率ΔPWとして、燃料操作量出力部160の出力変化率換算部162へ出力する。上限出力変化率ΔPWLは、ほぼ一定である。このため、出力PWは、負荷指令令を受けた時点から、この負荷指令が示す要求出力になるまで、リニアに増加又は減少する。
 ガスタービンロータ2が回転し始めると(t0)、動翼44に遠心力が作用して、動翼44は径方向外側Droに延びる。このため、ガスタービン1が回転し始めると(t0)、クリアランス量CLが小さくなる。
 タービンケーシング48は、動翼44よりも熱容量が大きい。このため、タービンケーシング48の単位時間当たりの熱伸び量は、動翼44の単位時間当たりの熱伸び量より小さい。よって、ガスタービン1への燃料供給が開始され、タービン40の燃焼ガス流路49に高温の燃焼ガスが流れて、タービンケーシング48及び動翼44が燃焼ガスにより同様に加熱されても、クリアランス量CLが小さくなる。クリアランス量CLがある程度小さくなると、逆にクリアランス量CLが次第に大きくなる。この過程で、クリアランス量CLが最低になる。この最低のクリアランス量CLのポイントは、ピンチポイントと呼ばれる。
 出力PWが増加し始める時点(t3)から、ガスタービン1への燃料供給量が増加し、燃焼ガス流路49を流れる燃焼ガスの温度が上昇する上に、この燃焼ガスの流量も増加する。このため、出力PWが増加し始めると(t3)、再び、クリアランス量CLが小さくなる。出力PWが要求出力になった(t5)以降、出力PWがこのまま維持されると、タービンケーシング48と動翼44との熱伸び差が小さくなるため、クリアランス量CLが次第に増加する。この過程で、クリアランス量CLが最低になる。この最低のクリアランス量CLのポイントも、ピンチポイントと呼ばれる。仮に、所定時間以上、出力一定が継続すると、クリアランス量CLが一定の値に維持される。
 ガスタービン1へ燃料供給量が減少すると、タービンケーシング48よりも動翼44の方が短時間で縮むため、クリアランス量CLは一時的に大きくなる。すなわち、負荷指令が示す要求出力が現時点の出力PWより小さい場合、クリアランス量CLは一時的に大きくなる。
 次に、図11を参照して、以上で説明したクリアランス量CLに基づく変化率制御時の回転数RPM、及びクリアランス量CLの変化について説明する。なお、以下の説明でも、説明を簡単にするため、基本回転数変化率ΔRPMbよりも回転数変化率設定部140の第二加算器152からの出力の値の方が小さいとする。この場合、変更部150の最小値選択器153は、第二加算器152からの出力の値を選択し、この出力の値を回転数変化率ΔRPMとして、燃料操作量出力部160の回転数変化率換算部164へ出力する。
 タービンロータ41の回転数RPMは、時刻t0から徐々に増加して、定格回転数になると、この定格回転数が維持される。時刻t0のときのクリアランス量CLは、ピンチポイントでのクリアランス量CL及び許容最小クリアランス量CLminより遥に大きい。
 回転数変化率ΔRPMに関する第一変更値ΔRPMc1及び第二変更値ΔRPMc2は、クリアランス量CLが大きくなるに連れて大きくなる。しかも、クリアランス量CLが許容最小クリアランス量CLminより大きい場合、これら第一変更値ΔRPMc1及び第二変更値ΔRPMc2は、正の値である。よって、時刻t0のときの第二加算器152からの出力の値は、上限回転数変化率ΔRPMLに正の値の第一変更値ΔRPMc1及び第二変更値ΔRPMc2を加えた値になる。第二加算器152からの出力は、前述したように、回転数変化率設定部140が定めた回転数変化率ΔRPMになる。このため、時刻t0のとき、回転数変化率設定部140が定める回転数変化率ΔRPMは、上限回転数変化率ΔRPMLより大きな値である。
 起動工程では、クリアランス量CLが時間経過に伴い次第に小さくなる。このため、回転数変化率ΔRPMに関する第一変更値ΔRPMc1及び第二変更値ΔRPMc2も、起動工程では、時間経過に伴い次第に小さくなる。しかしながら、クリアランス量CLが許容最小クリアランス量CLminより大きい場合には、第一変更値ΔRPMc1及び第二変更値ΔRPMc2は正の値であるため、時刻t0以降であっても、クリアランス量CLが許容最小クリアランス量CLminより大きい場合には、起動工程中、回転数変化率設定部140が定める回転数変化率ΔRPMは、上限回転数変化率ΔRPMLより大きな値である。
 変化率未制御時、回転数変化率設定部140が定める回転数変化率ΔRPMは、前述したように、上限回転数変化率ΔRPMLである。このため、変化率制御時、時刻t0からクリアランス量CLが許容最小クリアランス量CLminに近い小さな値になるまで、回転数変化率ΔRPMは変化率未制御時より大きい。
 よって、本実施形態では、変化率未制御時に回転数RPMが定格回転数になる時刻t2よりも前の時刻t1に回転数RPMが定格回転数になる。すなわち、本実施形態では、ガスタービン1の起動開始(t0)からこのガスタービン1の回転数RPMが定格回転数になるまでの時間を短くすることができる。
 このように、本実施形態では、ガスタービン1の起動開始(t0)からこのガスタービン1の回転数RPMが定格回転数になるまでの時間を短くなるので、起動工程で、クリアランス量CLがピンチポイントになるまでの時間も、変化率未制御時の同時間よりも短くなる。
 回転数変化率ΔRPMに関する第一変更値ΔRPMc1は、クリアランス量CLが許容最小クリアランス量CLminに近い場合、及びクリアランス量CLが許容最小クリアランス量CLminより小さい場合には、負の値になる。また、回転数変化率ΔRPMに関する第二変更値ΔRPMc2は、クリアランス量CLが許容最小クリアランス量CLminより小さい場合には、負の値になる。このため、クリアランス量CLが許容最小クリアランス量CLminに近い場合、及びクリアランス量CLが許容最小クリアランス量CLminより小さい場合には、回転数変化率設定部140が定める回転数変化率ΔRPMは、上限回転数変化率ΔRPMLより小さな値である。
 よって、本実施形態では、クリアランス量CLがピンチポイントに近くなると、回転数変化率ΔRPMが、変化率未制御時の回転数変化率ΔRPMよりも小さくなる。このため、本実施形態では、ピンチポイントにおけるクリアランス量CLが、変化率未制御時に比べて、小さくなることを抑制できる。
 次に、図12を参照して、以上で説明したクリアランス量CLに基づく変化率制御時の出力PW、及びクリアランス量CLの変化について説明する。なお、以下の説明でも、説明を簡単にするため、基本出力変化率ΔPWbよりも出力変化率設定部120の第二加算器132からの出力の値の方が小さいとする。この場合、変更部130の最小値選択器133は、第二加算器132からの出力の値を選択し、この出力の値を出力変化率ΔPWとして、燃料操作量出力部160の出力変化率換算部162へ出力する。
 ガスタービン1の出力PWは、前述したように、時刻t3から徐々に増加して、要求出力になると、この出力PWが維持される。時刻t3のときのクリアランス量CLは、ピンチポイントでのクリアランス量CLより大きい。
 出力変化率ΔPWに関する第一変更値ΔPWc1及び第二変更値ΔPWc2は、クリアランス量CLが大きくなるに連れて大きくなる。しかも、クリアランス量CLが許容最小クリアランス量CLminより大きい場合、これら第一変更値ΔPWc1及び第二変更値ΔPWc2は、正の値である。よって、時刻t3のときの第二加算器132からの出力の値は、上限出力変化率ΔPWLに正の値の第一変更値ΔPWc1及び第二変更値ΔPWc2を加えた値になる。第二加算器132からの出力は、前述したように、出力変化率設定部120が定めた出力変化率ΔPWになる。このため、時刻t3のとき、出力変化率設定部120が定める出力変化率ΔPWは、上限出力変化率ΔPWLより大きな値である。
 出力PWを増加させる場合、クリアランス量CLは時間経過に伴い次第に小さくなる。このため、出力変化率ΔPWに関する第一変更値ΔPWc1及び第二変更値ΔPWc2も、出力PWを増加させる過程で、時間経過に伴い次第に小さくなる。しかしながら、クリアランス量CLが許容最小クリアランス量CLminより大きい場合には、第一変更値ΔPWc1及び第二変更値ΔPWc2は正の値であるため、出力PWを増加させる過程であっても、クリアランス量CLが許容最小クリアランス量CLminより大きい場合には、出力変化率設定部120が定める出力変化率ΔPWは、上限出力変化率ΔPWLより大きな値である。
 変化率未制御時、出力変化率設定部120が定める出力変化率ΔPWは、前述したように、上限出力変化率ΔPWLである。このため、変化率制御時、時刻t3から出力PWが要求出力になる時刻t5よりも前の時刻t4に、出力PWが要求出力になる。すなわち、本実施形態では、時刻t3からガスタービン1の出力PWが要求出力になるまでの時間を短くすることができる。
 このように、本実施形態では、時刻t3からガスタービン1の出力PWが要求出力になるまでの時間を短くなるので、出力PWを増加させる過程で、クリアランス量CLがピンチポイントになるまでの時間も、変化率未制御時の同時間よりも短くなる。
 出力変化率ΔPWに関する第一変更値ΔPWc1は、クリアランス量CLが許容最小クリアランス量CLminに近い場合、及びクリアランス量CLが許容最小クリアランス量CLminより小さい場合には、負の値になる。また、出力変化率ΔPWに関する第二変更値ΔPWc2は、クリアランス量CLが許容最小クリアランス量CLminより小さい場合には、負の値になる。このため、クリアランス量CLが許容最小クリアランス量CLminに近い場合、及びクリアランス量CLが許容最小クリアランス量CLminより小さい場合には、出力変化率設定部120が定める出力変化率ΔPWは、上限回転数変化率ΔRPMLより小さな値である。
 よって、本実施形態では、出力PWの増加過程で、クリアランス量CLがピンチポイントに近くなると、出力変化率ΔPWが、変化率未制御時の出力変化率ΔPWよりも小さくなる。このため、本実施形態では、出力PWの増加過程で、ピンチポイントにおけるクリアランス量CLが、変化率未制御時に比べて、小さくなることを抑制できる。
 前述したように、出力増加時、一時的にクリアランス量CLが小さくなる。一方、出力減少時には、逆に、一時的にクリアランス量CLが大きくなる。このため、本実施形態では、要求出力が現状の出力PWよりも小さい負荷指令を受けた場合でも、つまり出力減少を示す負荷指令を受けた場合でも、変化率制御時では、変化率未制御時に比べて、短時間で出力PWが要求出力になる。
 吸気操作量設定部180の変更部182は、クリアランス計測器101で計測されたクリアランス量CLに応じて、このIGV開度(吸気量調節器の操作量)を変更する。吸気操作量出力部189は、変更されたIGV開度をIGV21の駆動器23に出力する。この結果、IGV開度は、変更されたIGV開度になる。燃料流量を変えずに、吸気流量を増加させると、燃焼ガス流路49を流れる燃焼ガスの温度が低下し、クリアランス量CLが変化する。以上のように、本実施形態では、クリアランス量CLに応じてIGV開度が変わるので、クリアランス量CLが極端に小さくなることを防ぐことができる。
 中間ケーシング18bから抽気された圧縮空気は、冷却器62で冷却されて冷却空気Amになる。この冷却空気Amは、抽気ライン61等を介して、第一列動翼44aに導かれる。そして、この冷却空気Amは、第一列動翼44a内に形成されている冷却通路44cを経て、燃焼ガス流路49中に放出される。この冷却空気Amは、第一列動翼44a内に形成されている冷却通路44cを通る過程で、第一列動翼44aと熱交換して、この第一列動翼44aを冷却する。また、冷却空気Amが第一列動翼44aから放出されると、この冷却空気Amの一部が第一列動翼44aに対するフィルム冷却のための空気として機能する。よって、本実施形態では、第一列動翼44aが燃焼ガスの熱により熱損傷することを防ぐことができる。
 ところで、動翼44が冷却されると、動翼44の熱伸び量が小さくなり、クリアランス量CLが増加する。本実施形態では、冷却操作量設定部170の変更部172が、クリアランス計測器101で計測されたクリアランス量CLに応じて、冷却調節器64で冷却器62を流れる冷却媒体の流量を変更する。この結果、冷却空気Amの温度が変化して、冷却空気Amによる第一列動翼44aの冷却量が変化する。よって、本実施形態では、クリアランス量CLに応じて第一列動翼44aの冷却量が変わるので、クリアランス量CLが極端に小さくなることを防ぐことができる。
 以上のように、本実施形態では、クリアランス量CLに応じて回転数変化率ΔRPMが変わるので、回転数RPMが定格回転数になるまでの、起動時間を短くすることができる。さらに、本実施形態では、クリアランス量CLに応じて出力変化率ΔPWが変わるので、出力PWが要求出力になるまでの時間を短くすることができる。このように、本実施形態では、回転数RPMが定格回転数になるまでの時間や、出力PWが要求出力になるまでの時間を短くすることができる上に、クリアランス量CLに応じて回転数変化率ΔRPMや出力変化率ΔPWが変わるので、クリアランス量CLが極端に小さくなることを抑えることができる。また、本実施形態では、クリアランス量CLに応じて、IGV21の開度や圧縮空気の冷却量を変更するので、この観点からも、クリアランス量CLが極端に小さくなることを抑えることができる。
 よって、本実施形態では、ガスタービン1の損傷を抑えつつも、ガスタービン1の出力PWや回転数RPMを短時間で目標値にすることができる。
 なお、ガスタービン1では、以上で説明したように、回転数RPMや出力PWが増加する場合にクリアランス量CLが一時的に小さくなり、回転数RPMや出力PWが減少する場合にクリアランス量CLが一時的に大きくなる。このため、回転数RPMや出力PWが増加する場合のみ、クリアランス量CLに基づく回転数RPMや出力PWの変化率の制御を行い、回転数RPMや出力PWが減少する場合、回転数RPMや出力PWの変化率を固定値にしてもよい。
 「第二実施形態」
 以下、本発明に係る回転機械設備の第二実施形態について、図13及び図14を参照して説明する。
 本実施形態の回転機械設備は、図13に示すように、蒸気タービン発電プラントである。この蒸気タービン発電プラントは、蒸気タービン70と、蒸気タービン70の駆動で発電する発電機9aと、制御装置100aと、を備える。
 蒸気タービン70は、軸線Arを中心として回転する蒸気タービンロータ71と、蒸気タービンロータ71を覆う蒸気タービンケーシング78と、複数の静翼列75と、を有する。蒸気タービンロータ71は、その軸線Arを中心として軸線方向Daに延びるロータ軸72と、このロータ軸72に取り付けられている複数の動翼列73と、を有する。複数の動翼列73は、軸線方向Daに並んでいる。各動翼列73は、いずれも、周方向Dcに並んでいる複数の動翼74で構成されている。複数の動翼列73の各軸線上流側Dauには、静翼列75が配置されている。各静翼列75は、蒸気タービンケーシング78の内側に設けられている。各静翼列75は、いずれも、周方向Dcに並んでいる複数の静翼76で構成されている。ロータ軸72の外周側と蒸気タービンケーシング78の内周側との間であって、軸線方向Daで静翼列75及び動翼列73が配置されている領域の環状の空間は、蒸気が流れる蒸気主流路79を成す。なお、以下では、複数の動翼列73のうち、最も軸線上流側Dauの動翼列73を第一動翼列とし、以下、軸線下流側Dadに向って、第二動翼列、第三動翼列、…とする。
 本実施形態では、蒸気タービンロータ71と蒸気タービンケーシング78とを有する蒸気タービン70が軸流式回転機械を成す。蒸気タービンロータ71には、発電機9aのロータが接続されている。
 蒸気タービンケーシング78には、自身の軸線上流側Dauの部分に蒸気入口78iが形成され、自身の軸線下流側Dadの部分に蒸気出口78oが形成されている。蒸気入口78iには、主蒸気ライン91が接続されている。この主蒸気ライン91には、蒸気タービンケーシング78内に流入する蒸気の流量を調節する蒸気調節弁92が設けられている。
 制御装置100aは、前述の蒸気調節弁92と、クリアランス計測器101と、回転数計102と、出力計103と、制御装置本体110aと、を有する。クリアランス計測器101は、蒸気タービンケーシング78と蒸気タービンロータ71との間のクリアランス量CLを計測する。回転数計102は、蒸気タービンロータ71の回転数RPMを検知する。出力計103は、蒸気タービン70の出力PW、言い換えると、発電機9aの発電量を検知する。回転数計102及び出力計103は、いずれもパラメータ計の一例である。
 軸線Arを中心として回転する蒸気タービンロータ71の動翼74と、この蒸気タービンロータ71を覆う蒸気タービンケーシング78との間には、クリアランスがある。本実施形態のクリアランス計測器101は、第一列動翼74aと蒸気タービンケーシング78との間のクリアランス量CLを計測する。本実施形態の制御装置100aは、第一実施形態の制御装置100aと同様に、複数のクリアランス計測器101を備える。なお、クリアランス計測器101で、第二列動翼74と蒸気タービンケーシング78との間のクリアランスの量を計測してもよい。さらに、第一列動翼74aと蒸気タービンケーシング78との間のクリアランスの量、及び、第二列動翼74と蒸気タービンケーシング78との間のクリアランスの量を計測してもよい。
 制御装置本体110aは、図14に示すように、クリアランス信号処理部111と、出力変化率設定部120aと、回転数変化率設定部140aと、蒸気操作量出力部160aと、を有する。この制御装置本体110aも、第一実施形態の制御装置本体110と同様に、コンピュータである。制御装置本体110aの各機能構成は、コンピュータに格納された制御プログラムをこのコンピュータのCPUが実行することで実現する。
 クリアランス信号処理部111は、複数のクリアランス計測器101からの信号を処理して、複数のクリアランス計測器101が計測したクリアランス量CLのうち、最小のクリアランス量CLを出力する。
 出力変化率設定部120aは、第一実施形態の出力変化率設定部120と同様に、基本出力変化率演算部121aと、変更値演算部124aと、変更部130aと、を有する。
 基本出力変化率演算部121aは、第一実施形態の基本出力変化率演算部121の構成と基本的に同じで、負荷指令や起動指令に応じて定まる目標出力PWtと出力計103で検知された出力PWとの偏差に基づいて、基本出力変化率ΔPWbを求める。
 変更値演算部124aは、第一実施形態の変更値演算部124の構成と基本的に同じである。このため、この変更値演算部124aも、図示されていないが、第一実施形態の変更値演算部124と同様に、上限出力変化率演算部と、第一変更値演算部と、第二変更値演算部と、を有する。上限出力変化率演算部は、実際の出力PWと出力変化率ΔPWの上限値である上限出力変化率ΔPWLとの関係を示すマップを用いて、出力計103で検知された出力PWに対応する上限出力変化率ΔPWLを求める。変更値演算部124aの第一変更値演算部は、クリアランス量CLと基本出力変化率ΔPWbを変更する第一変更値ΔPWc1との関係を示すマップを用いて、クリアランス信号処理部111から出力されたクリアランス量CLに対応する第一変更値ΔPWc1を求める。このマップが示す関係も、第一実施形態の第一変更値演算部126が有するマップ126mと同様、基本的に、クリアランス量CLの増加に伴って、第一変更値ΔPWc1が大きくなる関係である。さらに、このマップでも、許容最小クリアランス量CLminよりもクリアランス量CLが大きい場合、第一変更値ΔPWc1が正の値を示し、クリアランス量CLが許容最小クリアランス量CLmin以下の場合、第一変更値ΔPWc1が負の値を示す。変更値演算部124aの第二変更値演算部は、図示されていないが、第一実施形態の第二変更値演算部127と同様に、許容最小値記憶部と、ΔPI演算部と、を有する。許容最小値記憶部には、許容最小クリアランス量CLminが記憶されている。ΔPI演算部は、許容最小クリアランス量CLminとクリアランス信号処理部111から出力されたクリアランス量CLとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である第二変更値ΔPWc2を求める。よって、この第二変更値演算部が求める第二変更値ΔPWc2は、許容最小クリアランス量CLminとクリアランス量CLとの偏差が大きくなるに連れて大きくなる。
 変更部130aは、第一実施形態の変更部130,150,172,182の構成と基本的に同じである。このため、この変更部130aも、図示されていないが、第一実施形態の変更部130と同様に、第一加算器と、第二加算器と、最小値選択器と、を有する。第一加算器は、第一実施形態の第一加算器131と同様に動作する。第二加算器は、第一実施形態の第二加算器132と同様に動作する。最小値選択器は、第一実施形態の最小値選択器133と同様に動作する。
 蒸気操作量出力部160aは、出力変化率換算部162aと、回転数変化率換算部164aと、選択部169aと、を有する。出力変化率換算部162aは、出力変化率設定部120aが設定した出力変化率ΔPWを操作端である蒸気調節弁92の操作量に換算する。回転数変化率換算部164aは、回転数変化率設定部140aが設定した回転数変化率ΔRPMを操作端である蒸気調節弁92の操作量に換算する。選択部169aは、出力変化率換算部162aが求めた操作量と、回転数変化率換算部164aが求めた操作量とのうち、一方の操作量のみを蒸気調節弁92に出力する。
 回転数変化率設定部140aは、第一実施形態の回転数変化率設定部140と同様に、基本回転数変化率演算部141aと、変更値演算部144aと、変更部150aと、を有する。
 基本回転数変化率演算部141aは、第一実施形態の基本回転数変化率演算部141の構成と基本的に同じで、起動指令に応じて定まる目標回転数RPMtと回転数計102で検知された回転数RPMとの偏差に基づいて、基本回転数変化率ΔRPMbを求める。
 変更値演算部144aは、第一実施形態の変更値演算部144の構成と基本的に同じである。このため、この変更値演算部144aも、図示されていないが、第一実施形態の変更値演算部144と同様に、上限回転数変化率演算部と、第一変更値演算部と、第二変更値演算部と、を有する。上限回転数変化率演算部は、実際の回転数RPMと回転数変化率ΔRPMの上限値である上限回転数変化率ΔRPMLとの関係を示すマップを用いて、回転数計102で検知された回転数RPMに対応する上限回転数変化率ΔRPMLを求める。変更値演算部144aの第一変更値演算部は、クリアランス量CLと基本回転数変化率ΔRPMbを変更する第一変更値ΔRPMc1との関係を示すマップを用いて、クリアランス信号処理部111から出力されたクリアランス量CLに対応する第一変更値ΔRPMc1を求める。このマップが示す関係も、第一実施形態の第一変更値演算部146が有するマップ146mと同様、基本的に、クリアランス量CLの増加に伴って、第一変更値ΔRPMc1が大きくなる関係である。さらに、このマップでも、許容最小クリアランス量CLminよりもクリアランス量CLが大きい場合、第一変更値ΔRPMc1が正の値を示し、クリアランス量CLが許容最小クリアランス量CLmin以下の場合、第一変更値ΔRPMc1が負の値を示す。変更値演算部144aの第二変更値演算部は、図示されていないが、第一実施形態の第二変更値演算部147と同様に、許容最小値記憶部と、ΔPI演算部と、を有する。許容最小値記憶部には、許容最小クリアランス量CLminが記憶されている。ΔPI演算部は、許容最小クリアランス量CLminとクリアランス信号処理部111から出力されたクリアランス量CLとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である第二変更値ΔRPMc2を求める。よって、この第二変更値演算部が求める第二変更値ΔRPMc2は、許容最小クリアランス量CLminとクリアランス量CLとの偏差が大きくなるに連れて大きくなる。
 変更部150aは、第一実施形態の変更部150の構成と基本的に同じである。このたため、この変更部150aも、図示されていないが、第一実施形態の変更部150と同様に、第一加算器と、第二加算器と、最小値選択器と、を有する。第一加算器は、第一実施形態の第一加算器151と同様に動作する。第二加算器は、第一実施形態の第二加算器152と同様に動作する。最小値選択器は、第一実施形態の最小値選択器153と同様に動作する。
 第一実施形態で説明したガスタービン1では、回転数RPMや出力PWが増加する場合にクリアランス量CLが一時的に小さくなり、回転数RPMや出力PWが減少する場合にクリアランス量CLが一時的に大きくなる。一方、蒸気タービン70では、蒸気タービンケーシング78の熱容量と動翼74の熱容量との関係等で、回転数RPMや出力PWが増加する場合にクリアランス量CLが一時的に大きくなり、回転数RPMや出力PWが減少する場合にクリアランス量CLが一時的に小さくなる。すなわち、回転数RPMや出力PWの増減に対するクリアランス量CLの変化傾向は、ガスタービン1と蒸気タービン70とでは逆になる。
 しかしながら、本実施形態でも、第一実施形態と同様に、クリアランス量CLが小さいときには、回転数変化率ΔRPM及び出力変化率ΔPWが小さくなり、クリアランス量CLが大きいときには、回転数変化率ΔRPM及び出力変化率ΔPWが大きくなる。このため、本実施形態でも、第一実施形態と同様に、回転数RPMが定格回転数になるまでの、起動時間を短くすることができる。さらに、本実施形態でも、出力PWが要求出力になるまでの時間を短くすることができる。しかも、クリアランス量CLが極端に小さくなることを抑えることができる。
 なお、蒸気タービン70では、以上で説明したように、回転数RPMや出力PWが減少する場合にクリアランス量CLが一時的に小さくなり、回転数RPMや出力PWが増加する場合にクリアランス量CLが一時的に大きくなる。このため、回転数RPMや出力PWが減少する場合のみ、クリアランス量CLに基づく回転数RPMや出力PWの変化率の制御を行い、回転数RPMや出力PWが増加する場合、回転数RPMや出力PWの変化率を固定値にしてもよい。
 「第三実施形態」
 以下、本発明に係る回転機械設備の第三実施形態について、図15及び図16を参照して説明する。
 本実施形態の回転機械設備は、図15に示すように、ガス圧縮プラントである。このガス圧縮は、圧縮機80と、圧縮機80を駆動させる原動機9bと、制御装置100bと、を備える。
 圧縮機80は、軸線Arを中心として回転する圧縮機ロータ81と、圧縮機ロータ81を覆う圧縮機ケーシング88と、複数の静翼列85と、を有する。圧縮機ロータ81は、その軸線Arを中心として軸線方向Daに延びるロータ軸82と、このロータ軸82に取り付けられている複数の動翼列83と、を有する。複数の動翼列83は、軸線方向Daに並んでいる。各動翼列83は、いずれも、周方向Dcに並んでいる複数の動翼84で構成されている。複数の動翼列83の各軸線下流側Dadには、静翼列85が配置されている。各静翼列85は、圧縮機ケーシング88の内側に設けられている。各静翼列85は、いずれも、周方向Dcに並んでいる複数の静翼86で構成されている。ロータ軸82の外周側と圧縮機ケーシング88の内周側との間であって、軸線方向Daで静翼列85及び動翼列83が配置されている領域の環状の空間は、ガスが流れつつ圧縮されるガス圧縮流路89を成す。すなわち、この圧縮機80は、軸流多段圧縮機である。なお、以下では、複数の動翼列83のうち、最も軸線上流側Dauの動翼列83を第一動翼列とし、以下、軸線下流側Dadに向って、第二動翼列、第三動翼列、…とし、最も軸線下流側Dadの動翼列83を最終動翼列とする。
 本実施形態では、圧縮機ロータ81と圧縮機ケーシング88とを有する圧縮機80が回転機械を成す。圧縮機ロータ81には、この圧縮機ロータ81を回転させる原動機9bのロータが接続されている。原動機9bには、この原動機9bに供給する電力の供給状態を変えて原動機9bのロータの回転数RPMを変える電源回路94が接続されている。
 圧縮機ケーシング88には、自身の軸線上流側Dauの部分にガス入口88iが形成され、自身の軸線下流側Dadの部分にガス出口88oが形成されている。ガス出口88oには、圧縮ガスライン93が接続されている。この圧縮ガスライン93には、圧縮機80から吐出されたガスの流量Qを検知する流量計104が設けられている。
 制御装置100bは、前述の電源回路94と、クリアランス計測器101と、回転数計102と、流量計104と、制御装置本体110bと、を有する。クリアランス計測器101は、圧縮機ケーシング88と圧縮機ロータ81との間のクリアランス量CLを計測する。回転数計102は、圧縮機ロータ81の回転数RPMを検知する。流量計104は、圧縮機80の出力としての吐出流量を検知する。回転数計102及び流量計104は、いずれもパラメータ計の一例である。
 軸線Arを中心として回転する圧縮機ロータ81の動翼84と、この圧縮機ロータ81を覆う圧縮機ケーシング88との間には、クリアランスがある。本実施形態のクリアランス計測器101は、最終列動翼84aと圧縮機ケーシング88との間のクリアランス量CLを計測する。本実施形態の制御装置100bは、第一及び第二実施形態の制御装置100,100aと同様に、複数のクリアランス計測器101を備える。なお、クリアランス計測器101で、最終列より一つ軸線上流側Aruの列の動翼84と圧縮機ケーシング88との間のクリアランス量CLを計測してもよい。さらに、最終列動翼84aと圧縮機ケーシング88との間のクリアランス量CL、及び、最終列より一つ軸線上流側Aruの列の動翼84と圧縮機ケーシング88との間のクリアランス量CLを計測してもよい。
 制御装置本体110bは、図16に示すように、クリアランス信号処理部111と、流量変化率設定部120bと、流量操作量出力部160bと、を有する。この制御装置本体110bも、第一実施形態の制御装置本体110と同様に、コンピュータである。制御装置本体110bの各機能構成は、コンピュータに格納された制御プログラムをこのコンピュータのCPUが実行することで実現する。
 クリアランス信号処理部111は、複数のクリアランス計測器101からの信号を処理して、複数のクリアランス計測器101が計測したクリアランス量CLのうち、最小のクリアランス量CLを出力する。
 流量変化率設定部120bは、基本流量変化率演算部121bと、変更値演算部124bと、変更部130と、を有する。
 基本流量変化率演算部121bは、ΔPI演算部123bを有する。このΔPI演算部123bは、外部からのガス流量指令が示す要求ガス流量と流量計で検知された吐出流量Qとの偏差に応じた比例及び積分制御量(PI制御量)である基本流量変化率ΔQbを求める。
 変更値演算部124bは、第一実施形態の変更値演算部124の構成と基本的に同じである。このため、この変更値演算部124bも、第一実施形態の変更値演算部124と同様に、上限流量変化率演算部125bと、第一変更値演算部126bと、第二変更値演算部127bと、を有する。上限流量変化率演算部125bは、実際の吐出流量Qと流量変化率の上限値である上限流量変化率ΔQLとの関係を示すマップ125mbを有する。上限流量変化率演算部125bは、このマップ125mbを用いて、流量計104で検知された吐出流量Qに対応する上限流量変化率ΔQLを求める。第一変更値演算部126bは、クリアランス量CLと基本流量変化率ΔQbを変更する第一変更値ΔQc1との関係を示すマップ126mbを有する。第一変更値演算部126bは、このマップ126mbを用いて、クリアランス信号処理部111から出力されたクリアランス量CLに対応する第一変更値ΔQc1を求める。このマップ126mbが示す関係は、第一実施形態の第一変更値演算部126が有するマップ126mと同様、基本的に、クリアランス量CLの増加に伴って、第一変更値ΔQc1が大きくなる関係である。さらに、このマップ126mbでも、許容最小クリアランス量CLminよりもクリアランス量CLが大きい場合、第一変更値ΔQc1が正の値を示し、クリアランス量CLが許容最小クリアランス量CLmin以下の場合、第一変更値ΔQc1が負の値を示す。第二変更値演算部127bは、許容最小値記憶部128bと、ΔPI演算部129bと、を有する。許容最小値記憶部128bには、許容最小クリアランス量CLminが記憶されている。ΔPI演算部129bは、許容最小クリアランス量CLminとクリアランス信号処理部111から出力されたクリアランス量CLとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である第二変更値ΔQc2を求める。よって、この第二変更値演算部127,147が求める第二変更値ΔQc2は、許容最小クリアランス量CLminとクリアランス量CLとの偏差が大きくなるに連れて大きくなる。
 変更部130は、第一実施形態の変更部130の構成と基本的に同じである。このため、この変更部130は、第一実施形態の変更部130と同様に、第一加算器131と、第二加算器132と、最小値選択器133と、を有する。第一加算器131は、第一実施形態の第一加算器131と同様に動作する。第二加算器132は、第一実施形態の第二加算器132と同様に動作する。最小値選択器133は、第一実施形態の最小値選択器133と同様に動作する。
 流量操作量出力部160bは、流量変化率設定部120bが設定した流量変化率ΔQを操作端である電源回路94の操作量に換算する。そして、この流量操作量出力部160bは、この操作量を電源回路94に出力する。この結果、原動機ロータの回転数RPMが変化する。そして、原動機ロータの回転数RPMの変化に共になって、圧縮機ロータ81の回転数RPMが変化して、吐出流量Qはガス流量指令が示す要求ガス流量になる。
 第一実施形態で説明したガスタービン1では、回転数RPMや出力PWが増加する場合にクリアランス量CLが一時的に小さくなり、回転数RPMや出力PWが減少する場合にクリアランス量CLが一時的に大きくなる。一方、圧縮機80では、一般的に、圧縮機ケーシング88の熱容量と動翼84の熱容量との関係等で、蒸気タービン70と同様、吐出流量Qや回転数RPMが増加する場合にクリアランス量CLが一時的に大きくなり、吐出流量Qや回転数RPMが減少する場合にクリアランス量CLが一時的に小さくなる。すなわち、吐出流量Qや回転数RPMの増減に対するクリアランスの変化傾向は、ガスタービン1と圧縮機80とでは逆になり、蒸気タービン70と圧縮機80とは同じになる。
 しかしながら、本実施形態では、第一実施形態と同様に、クリアランス量CLが小さいときには、流量変化率ΔQが小さくなり、クリアランス量CLが大きいときには、流量変化率ΔQが大きくなる。このため、本実施形態では、実際の吐出流量Qが要求流量になるまでの、時間を短くすることができると共に、クリアランス量CLが極端に小さくなることを抑えることができる。
 なお、以上では、圧縮機80のパラメータとして、圧縮機80の出力(output)としての吐出流量Qを扱っているが、この替りに、圧縮機80の出力(output)としての吐出圧を扱ってもよい。この場合、外部からのガス圧指令が示す要求ガス圧と、圧力計で検知された吐出圧との偏差に応じた比例及及び積分制御量(PI制御量)である基本圧力変化率を求める。そして、上限圧力変化率、クリアランス量CLに基づく第一変更値及び第二変更値を用いて、基本圧力変化率を変更する。また、圧縮機80のパラメータとして、圧縮機80の回転数RPMを扱ってもよい。この場合、外部からの回転数指令が示す要求回転数と、回転数計102で検知された回転数RPMとの偏差に応じた比例及及び積分制御量(PI制御量)である基本回転数変化率を求める。そして、上限回転数変化率、クリアランス量に基づく第一変更値及び第二変更値を用いて、基本回転数変化率を変更する。
 圧縮機80では、以上で説明したように、吐出流量Qや回転数RPMが減少する場合にクリアランス量CLが一時的に小さくなり、吐出流量Qや回転数RPMが増加する場合にクリアランス量CLが一時的に大きくなる。このため、吐出流量Qや回転数RPMが減少する場合のみ、クリアランス量CLに基づく吐出流量Qや回転数RPMの変化率の制御を行い、吐出流量Qや回転数RPMが増加する場合、吐出流量Qや回転数RPMの変化率を固定値にしてもよい。
 また、第一、第二及び第三実施形態で説明したように、回転するロータと、このロータの外周側を覆うケーシングを備える回転機械であれば、他の回転機械であっても、以上と同様に、クリアランスに基づき、回転数や出力(output)としての吐出流量等の変化率を変える制御を行ってもよい。
 「第四実施形態」
 以下、本発明に係る回転機械設備の第四実施形態について、図17及び図18を参照して説明する。
 本実施形態の回転機械設備は、図17に示すように、コンバインドサイクルプラントである。このコンバインドサイクルプラントは、ガスタービン1と、蒸気タービン70と、発電機9cと、排熱回収ボイラー95と、主蒸気ライン91cと、復水器96と、給水ライン97と、給水ポンプ98と、制御装置100cと、を備える。
 ガスタービン1は、第一実施形態のガスタービン1と同様構成のガスタービン1である。よって、このガスタービン1は、空気Aを圧縮する圧縮機10と、圧縮機10で圧縮された空気中で燃料Fを燃焼させて燃焼ガスを生成する燃焼器30と、燃焼ガスにより駆動するタービン40と、を備える。燃焼器30には、燃料Fが流れる燃料ライン35が接続されている。この燃料ライン35には、燃料調節弁36が設けられている。タービンケーシング48には、タービンケーシング48と第一列動翼44aとの間のクリアランス量CLgを計測するガスタービンクリアランス計測器101aが設けられている。
 蒸気タービン70は、第二実施形態の蒸気タービン70と同様構成の蒸気タービンである。蒸気タービンケーシング78には、蒸気タービンケーシング78と第一列動翼74aとの間のクリアランス量CLsを計測する蒸気タービンクリアランス計測器101bが設けられている。
 発電機9cは、ガスタービン1及び蒸気タービン70の駆動で発電する。ガスタービンロータ2、蒸気タービンロータ71、及び発電機9cのロータは、互いに接続されて、同一の軸線Arを中心として一体回転する。よって、本実施形態のコンバインドサイクルプラントは、一軸型のコンバインドサイクルプラントである。
 排熱回収ボイラー95は、ガスタービン1から排気された排気ガスの熱を利用して、水を蒸気にする。主蒸気ライン91cは、排熱回収ボイラー95で発生した蒸気を蒸気タービン70に導く。この主蒸気ライン91cには、蒸気タービン70に流入する蒸気の流量を調節する蒸気調節弁92が設けられている。復水器96は、蒸気タービン70から排気された蒸気を冷却して、この蒸気を水に戻す。給水ライン97は、復水器96内の水を排熱回収ボイラー95に導く。給水ポンプ98は、給水ライン97中の水を復水器96に送る。
 制御装置100cは、前述の燃料調節弁36と、前述の蒸気調節弁92と、前述のガスタービンクリアランス計測器101aと、前述の蒸気タービンクリアランス計測器101bと、回転数計102と、出力計103と、制御装置本体110cと、を有する。回転数計102は、ガスタービンロータ2、蒸気タービンロータ71、発電機9cのロータのうち、いずれかの回転数RPMを検知する。出力計103は、発電機9cの発電量を検知する。なお、本実施形態では、回転数計102で検知される回転数RPMは、ガスタービン1に関するパラメータでもあり、蒸気タービン70に関するパラメータでもある。また、出力計103で検出される出力PWも、ガスタービン1に関するパラメータでもあり、蒸気タービン70に関するパラメータでもある。
 制御装置本体110cは、図17に示すように、第一クリアランス信号処理部111aと、第二クリアランス信号処理部111bと、クリアランス選択出力部112と、ガスタービン出力変化率設定部120と、ガスタービン回転数変化率設定部140と、燃料操作量出力部160と、蒸気タービン出力変化率設定部120aと、蒸気タービン回転数変化率設定部140aと、蒸気操作量出力部160aと、を有する。この制御装置本体110cも、第一実施形態の制御装置本体110と同様に、コンピュータである。制御装置本体110cの各機能構成は、コンピュータに格納された制御プログラムをこのコンピュータのCPUが実行することで実現する。
 第一クリアランス信号処理部111aは、複数のガスタービンクリアランス計測器101aからの信号を処理して、複数のガスタービンクリアランス計測器101aが計測したクリアランス量CLgのうち、最小のクリアランス量CLgを出力する。なお、以下では、第一クリアランス信号処理部111aが出力するクリアランス量CLgをガスタービンクリアランス量CLgとする。第二クリアランス信号処理部111bは、複数の蒸気タービンクリアランス計測器101bからの信号を処理して、複数の蒸気タービンクリアランス計測器101bが計測したクリアランス量CLsのうち、最小のクリアランス量CLsを出力する。なお、以下では、第一クリアランス信号処理部111aが出力するクリアランス量CLsを蒸気タービンクリアランス量CLsとする。
 クリアランス選択出力部112は、出力PWが増加しているときに第一クリアランス信号処理部111aから出力されたガスタービンクリアランス量CLgを出力し、出力PWが減少しているときに第二クリアランス信号処理部111bから出力された蒸気タービンクリアランス量CLsを出力する。
 ガスタービン出力変化率設定部120は、第一実施形態の出力変化率設定部120と同一である。よって、本実施形態のガスタービン出力変化率設定部120も、第一実施形態の出力変化率設定部120と同様に、基本出力変化率演算部121と、変更値演算部124と、変更部130と、を有する。ガスタービン回転数変化率設定部140は、第一実施形態の回転数変化率設定部140と同一である。よって、本実施形態のガスタービン回転数変化率設定部140も、第一実施形態の回転数変化率設定部140と同様に、基本回転数変化率演算部141と、変更値演算部144と、変更部150と、を有する。燃料操作量出力部160は、第一実施形態の燃料操作量出力部160と同一である。よって、本実施形態の燃料操作量出力部160も、第一実施形態の燃料操作量出力部160と同様に、出力変化率換算部162と、回転数変化率換算部164と、選択部169と、を有する。
 蒸気タービン出力変化率設定部120aは、第二実施形態の出力変化率設定部120aと同一である。よって、本実施形態の蒸気タービン出力変化率設定部120aも、第二実施形態の出力変化率設定部120aと同様に、基本出力変化率演算部121aと、変更値演算部124aと、変更部130aと、を有する。蒸気タービン回転数変化率設定部140aは、第二実施形態の回転数変化率設定部140aと同一である。よって、本実施形態の蒸気タービン回転数変化率設定部140aも、第二実施形態の回転数変化率設定部140aと同様に、基本回転数変化率演算部141aと、変更値演算部144aと、変更部150aと、を有する。蒸気操作量出力部160aは、第二実施形態の蒸気操作量出力部160aと同一である。よって、本実施形態の蒸気操作量出力部160aも、第二実施形態の蒸気操作量出力部160aと同様に、出力変化率換算部162と、回転数変化率換算部164と、選択部169と、を有する。
 コンバインドサイクルプラントでは、ガスタービン1の回転数RPM及び出力PWが増加すると、これに連動して、蒸気タービン70の回転数RPM及び出力PWが増加する。また、前述したように、ガスタービン1では、回転数RPMや出力PWが増加する場合にガスタービンクリアランス量CLgが一時的に小さくなり、回転数RPMや出力PWが減少する場合にガスタービンクリアランス量CLgが一時的に大きくなる。また、前述したように、蒸気タービン70では、回転数RPMや出力PWが増加する場合に蒸気クリアランス量CLsが一時的に大きくなり、回転数RPMや出力PWが減少する場合に蒸気クリアランス量CLsが一時的に小さくなる。
 そこで、本実施形態では、発電機9cの回転数RPM及び出力PW(コンバインドサイクルプラント全体での出力PW)が増加する場合、一時的に小さくなるガスタービンクリアランス量CLgに基づいて、ガスタービン1の出力変化率ΔPW及び回転数変化率ΔRPMを定めると共に、蒸気タービン70の出力変化率ΔPW及び回転数変化率ΔRPMを定める。また、本実施形態では、発電機9cの回転数RPM及び出力PWが減少する場合、一時的に小さくなる蒸気タービンクリアランス量CLsに基づいて、ガスタービン1の出力変化率ΔPW及び回転数変化率ΔRPMを定めると共に、蒸気タービン70の出力変化率ΔPW及び回転数変化率ΔRPMを定める。
 よって、本実施形態では、ガスタービンクリアランス量CLgと蒸気タービンクリアランス量CLsとのうち、回転数RPMや出力PWの増加で小さくなる方の蒸気タービンクリアランス量CLsが大きいときには、ガスタービン1と蒸気タービン70双方の回転数変化率ΔRPM及び出力変化率ΔPWが大きくなる。一方、ガスタービンクリアランス量CLgと蒸気タービンクリアランス量CLsとのうち、回転数RPMや出力PWの減少で大きくなる方のガスタービンクリアランス量CLgが大きいときには、ガスタービン1と蒸気タービン70双方の回転数変化率ΔRPM及び出力変化率ΔPWが大きくなる。また、本実施形態では、ガスタービンクリアランス量CLgと蒸気タービンクリアランス量CLsとのうち、回転数RPMや出力PWの増加で小さくなる方のガスタービンクリアランス量CLgが小さいときには、ガスタービン1と蒸気タービン70双方の回転数変化率ΔRPM及び出力変化率ΔPWが小さくなる。一方、ガスタービンクリアランス量CLgと蒸気タービンクリアランス量CLsとのうち、回転数RPMや出力PWの減少で大きくなる方の蒸気タービンクリアランス量CLsが小さいときには、ガスタービン1と蒸気タービン70双方の回転数変化率ΔRPM及び出力変化率ΔPWが小さくなる。
 このため、本実施形態でも、第一実施形態と同様に、回転数RPMが定格回転数になるまでの、起動時間を短くすることができる。さらに、本実施形態でも、出力PWが要求出力になるまでの時間を短くすることができる。しかも、本実施形態では、ガスタービンクリアランス量CLgと蒸気タービンクリアランス量CLsの双方が極端に小さくなることを抑えることができる。
 コンバインドサイクルプラントには、本実施形態のような一軸型のコンバインドサイクルプラントの他に、多軸型のコンバインドサイクルプラントがある。この多軸型のコンバインドサイクルプラントは、ガスタービンロータ2と蒸気タービンロータ71とが機械的に接続されておらず、ガスタービンロータ2と蒸気タービンロータ71とには、それぞれ、個別の発電機のロータが接続されている。このような多軸型のコンバインドサイクルプラントでも、以上で説明した一軸型のコンバインドサイクルプラントと同様に、ガスタービン1の回転数RPM及び出力PWが増加すると、これに連動して、蒸気タービン70の回転数RPM及び出力PWが増加する。よって、このような多軸型のコンバインドサイクルプラントにおいても、本実施形態と同様の制御を行ってもよい。
 本発明の一態様によれば、回転機械の損傷を抑えつつも、回転機械の回転数又は出力を短時間で目標値にすることができる。
1:ガスタービン(回転機械)
2:ガスタービンロータ
5:ガスタービンケーシング
9,9a,9c:発電機
9b:原動機
10,80:圧縮機
11,81:圧縮機ロータ
12,82:ロータ軸
13,83:動翼列
14,85:静翼列
18,88:圧縮機ケーシング
18a:圧縮機本体ケーシング
18b:中間ケーシング
19:空気圧縮流路
21:IGV(吸気流量調節器)
22:可動翼
23:駆動器
30:燃焼器
31:燃焼筒(又は尾筒)
32:燃料噴射器
35:燃料ライン
36:燃料調節弁(操作端)
40:タービン
41:タービンロータ
42:ロータ軸
42a:第一段軸部
42c:冷却通路
43:動翼列
44:動翼
44a:第一列動翼
44c:冷却通路
48:タービンケーシング
49:燃焼ガス流路
53:静翼列
54:静翼
60:冷却装置
61:抽気ライン
62:冷却器
63:媒体ライン
64:冷却調節器
70:蒸気タービン(回転機械)
71:蒸気タービンロータ
72:ロータ軸
73:動翼列
74:動翼
75:静翼列
76:静翼
78:蒸気タービンケーシング
78i:蒸気入口
78o:蒸気出口
79:蒸気主流路
84:動翼
84a:最終列動翼
86:静翼
88i:ガス入口
88o:ガス出口
89:ガス圧縮流路
91,91c:主蒸気ライン
92:蒸気調節弁(操作端)
93:圧縮ガスライン
94:電源回路(操作端)
95:排熱回収ボイラー
96:復水器
97:給水ライン
98:給水ポンプ
100,100a,100b,100c:制御装置
101:クリアランス計測器
101a:ガスタービンクリアランス計測器
101b:蒸気タービンクリアランス計測器
102:回転数計(パラメータ計)
103:出力計(パラメータ計)
104:流量計(パラメータ計)
110,110a,110b,110c:制御装置本体
111:クリアランス信号処理部
111a:第一クリアランス信号処理部
111b:第二クリアランス信号処理部
112:クリアランス選択出力部
120:出力変化率設定部(ガスタービン出力変化率設定部)
120a:出力変化率設定部(蒸気タービン出力変化率設定部)
120b:流量変化率設定部
121,121a:基本出力変化率演算部
122:目標出力演算部
123,129,129b,143,149:ΔPI演算部
124,124a,124b,144,144a:変更値演算部
125:上限出力変化率演算部
125b:上限流量変化率演算部
126,126b,146:第一変更値演算部(第一演算部)
127,127b,147:第二変更値演算部(第二演算部)
128,128b,148:許容最小値記憶部
130,130a,150,150a,172,182:変更部
131,151:第一加算器
132,152:第二加算器
133,153:最小値選択器
140:回転数変化率設定部(ガスタービン回転数変化率設定部)
140a:回転数変化率設定部(蒸気タービン回転数変化率設定部)
141,141a:基本回転数変化率演算部
142:目標回転数演算部
145:上限回転数変化率演算部
160:燃料操作量出力部
160a:蒸気操作量出力部
160b:流量操作量出力部
162,162a:出力変化率換算部
164,164a:回転数変化率換算部
169,169a:選択部
170:冷却操作量設定部
171:冷却操作量発生部
179:冷却操作量出力部
180:吸気操作量設定部
181:IGV開度発生部
189:吸気操作量出力部
191:CPU
192:メモリ
193:補助記憶装置
193a:ガスタービン固有値データ
193b:制御プログラム
193c:OS(Operating System)プログラム
194:記憶・再生装置
195:入出力インタフェース
195a:手入力装置
195b:表示装置
196:設備Iインタフェース
197:設備Oインタフェース
198:通信インタフェース
Ar:軸線
Da:軸線方向
Dau:軸線上流側
Dad:軸線下流側
Dc:周方向
Dr:径方向
Dri:径方向内側
Dro:径方向外側

Claims (24)

  1.  回転するロータと、前記ロータの外周側を覆うケーシングとを備える回転機械の制御装置において、
     前記回転機械の回転数又は出力であるパラメータを変える操作端と、
     前記ロータと前記ケーシングとの間のクリアランス量を計測するクリアランス計測器と、
     前記クリアランス量に応じて、前記パラメータの変化率が変わるよう、前記パラメータの変化率を定めるパラメータ変化率設定部と、
     前記パラメータの前記変化率に応じて、前記操作端の操作量を定め、前記操作量を前記操作端に出力する操作量出力部と、
     を備える回転機械の制御装置。
  2.  請求項1に記載の回転機械の制御装置において、
     前記パラメータ変化率設定部は、第一のクリアランス量のときの前記パラメータの変化率に比べて、前記第一のクリアランス量よりも大きな第二のクリアランス量のときとの前記パラメータの変化率が大きくなるよう、前記パラメータの変化率を定める、
     回転機械の制御装置。
  3.  請求項1又は2に記載の回転機械の制御装置において、
     前記パラメータ変化率設定部は、
     前記パラメータの目標値と前記パラメータの検出値との偏差に応じて、前記パラメータの基本変化率を求める基本変化率演算部と、
     前記クリアランス量に応じて、前記基本変化率を変更する変更値を求める変更値演算部と、
     前記変更値を用いて前記基本変化率を変更する変化率変更部と、
     を有する、
     回転機械の制御装置。
  4.  請求項3に記載の回転機械の制御装置において、
     前記変更値演算部は、前記クリアランス量と前記基本変化率を変更する第一変更値との関係を用いて、前記クリアランス量に対応する前記第一変更値を求める第一演算部を有し、
     前記変化率変更部は、前記第一変更値を用いて前記基本変化率を変更する、
     回転機械の制御装置。
  5.  請求項4に記載の回転機械の制御装置において、
     前記変更値演算部は、前記クリアランス量と予め定められている許容最小クリアランス量との偏差に応じて、前記基本変化率を変更する第二変更値を求める第二演算部を有し、
     前記変化率変更部は、前記第一変更値と前記第二変更値とを用いて前記基本変化率を変更する、
     回転機械の制御装置。
  6.  請求項4又は5に記載の回転機械の制御装置において、
     前記関係は、前記クリアランス量が大きくなるに連れて前記第一変更値が大きくなる関係である、
     回転機械の制御装置。
  7.  請求項1から6のいずれか一項に記載の回転機械の制御装置と、
     前記回転機械と、
     を備える回転機械設備。
  8.  請求項7に記載の回転機械設備において、
     前記回転機械は、空気を圧縮して圧縮空気を生成する圧縮機と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼ガスで駆動するタービンとを、備えるガスタービンであり、
     前記圧縮機は、回転する圧縮機ロータと、前記圧縮機ロータを覆う圧縮機ケーシングと、を有し、
     前記タービンは、回転するタービンロータと、前記タービンロータを覆うタービンケーシングと、を有し、
     前記圧縮機ロータと前記タービンロータとは、機械的に接続されて、ガスタービンロータを成し、
     前記操作端は、前記燃焼器に供給される燃料の流量を調節する燃料調節弁であり、
     前記クリアランス計測器は、前記タービンロータと前記タービンケーシングとの間のガスタービンクリアランス量を計測し、
     前記パラメータ変化率設定部は、前記ガスタービンクリアランス量に応じて、前記パラメータの増加時と減少時とのうち、少なくとも増加時における前記パラメータの変化率が変わるよう、前記パラメータの変化率を定める、
     回転機械設備。
  9.  請求項8に記載の回転機械設備において、
     前記圧縮機は、前記圧縮機ケーシングに設けられ、前記圧縮機ケーシング内に流入する空気の流量を調節する吸気流量調節器を有し、
     前記制御装置は、
     前記ガスタービンクリアランス量に応じて、前記吸気流量調節器の操作量を定める吸気操作量設定部と、
     前記吸気流量調節器の前記操作量を前記吸気流量調節器に出力する吸気操作量出力部と、
     を有する、
     回転機械設備。
  10.  請求項8又は9に記載の回転機械設備において、
     前記ガスタービンは、前記圧縮機で圧縮された空気を抽気して、前記タービンロータの動翼に、抽気した空気を導く抽気ラインと、前記抽気ラインを流れる空気を冷却する冷却器と、前記冷却器による前記空気の冷却量を調節する冷却調節器と、を備え、
     前記制御装置は、
     前記ガスタービンクリアランス量に応じて、前記冷却調節器の操作量を定める冷却操作量設定部と、
     前記冷却調節器の前記操作量を前記冷却調節器に出力する冷却操作量出力部と、
     を有する、
     回転機械設備。
  11.  請求項7に記載の回転機械設備において、
     前記回転機械は、蒸気で駆動する蒸気タービンであり、
     前記蒸気タービンは、回転する蒸気タービンロータと、前記蒸気タービンロータを覆う蒸気タービンケーシングと、を有し、
     前記操作端は、前記蒸気タービンに供給される蒸気の流量を調節する蒸気調節弁であり、
     前記クリアランス計測器は、前記蒸気タービンロータと前記蒸気タービンケーシングとの間の蒸気タービンクリアランス量を計測し、
     前記パラメータ変化率設定部は、前記蒸気タービンクリアランス量に応じて、前記パラメータの増加時と減少時とのうち、少なくとも減少時における前記パラメータの変化率が変わるよう、前記パラメータの変化率を定める、
     回転機械設備。
  12.  請求項7に記載の回転機械設備において、
     前記回転機械としての第一回転機械と第二回転機械とを備え、
     前記第一回転機械は、ガスタービンであり、
     前記第二回転機械は、蒸気タービンであり、
     前記ガスタービンから排気された排気ガスで蒸気を発生させて、前記蒸気を蒸気タービンに送る排熱回収ボイラーを備え、
     前記ガスタービンは、空気を圧縮して圧縮空気を生成する圧縮機と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼ガスで駆動するタービンと、を有し、
     前記圧縮機は、回転する圧縮機ロータと、前記圧縮機ロータを覆う圧縮機ケーシングと、を有し、
     前記タービンは、回転するタービンロータと、前記タービンロータを覆うタービンケーシングと、を有し、
     前記圧縮機ロータと前記タービンロータとは、機械的に接続されて、ガスタービンロータを成し、
     前記ガスタービンの前記操作端は、前記燃焼器に供給される燃料の流量を調節する燃料調節弁であり、
     前記ガスタービンの前記クリアランス計測器は、前記タービンロータと前記タービンケーシングとの間のガスタービンクリアランス量を計測するガスタービンクリアランス計測器であり、
     前記蒸気タービンは、回転する蒸気タービンロータと、前記蒸気タービンロータを覆う蒸気タービンケーシングと、を有し、
     前記蒸気タービンの前記操作端は、前記排熱回収ボイラーから前記蒸気タービンに供給される蒸気の流量を調節する蒸気調節弁であり、
     前記蒸気タービンの前記クリアランス計測器は、前記蒸気タービンロータと前記蒸気タービンケーシングとの間の蒸気タービンクリアランス量を計測する蒸気タービンクリアランス計測器であり、
     前記ガスタービンの前記パラメータ変化率設定部は、前記ガスタービンに関する前記パラメータであるガスタービンパラメータの増加時に、前記ガスタービンクリアランス量に応じて前記ガスタービンパラメータの変化率が変わるよう、前記ガスタービンパラメータの変化率を定め、前記ガスタービンパラメータの減少時に、前記蒸気タービンクリアランス量に応じて前記ガスタービンパラメータの変化率が変わるよう、前記ガスタービンパラメータの変化率を定め、
     前記ガスタービンの前記操作量出力部は、前記ガスタービンの前記パラメータ変化率設定部が定めた前記ガスタービンパラメータの変化率に応じて、前記燃料調節弁の操作量を定め、前記燃料調節弁の前記操作量を前記燃料調節弁に出力し、
     前記蒸気タービンの前記パラメータ変化率設定部は、前記蒸気タービンに関する前記パラメータである蒸気タービンパラメータの増加時に、前記ガスタービンクリアランス量に応じて前記蒸気タービンパラメータの変化率が変わるよう、前記蒸気タービンパラメータの変化率を定め、前記蒸気タービンパラメータの減少時に、前記蒸気タービンクリアランス量に応じて前記蒸気タービンパラメータの変化率が変わるよう、前記蒸気タービンパラメータの変化率を定め、
     前記蒸気タービンの前記操作量出力部は、前記蒸気タービンの前記パラメータ変化率設定部が定めた前記蒸気タービンパラメータの変化率に応じて、前記蒸気調節弁の操作量を定め、前記蒸気調節弁の前記操作量を前記蒸気調節弁に出力する、
     回転機械設備。
  13.  回転するロータと、前記ロータの外周側を覆うケーシングとを備える回転機械の制御方法において、
     前記ロータと前記ケーシングとの間のクリアランス量を受け付ける工程と、
     前記クリアランス量に応じて、前記回転機械の回転数又は出力であるパラメータの変化率が変わるよう、前記パラメータの変化率を定める工程と、
     前記パラメータの前記変化率に応じて、前記パラメータを変える操作端の操作量を定め、前記操作量を前記操作端に出力する工程と、
     を実行する回転機械の制御方法。
  14.  請求項13に記載の回転機械の制御方法において、
     前記パラメータの前記変化率を定める前記工程では、第一のクリアランス量のときの前記パラメータの変化率に比べて、前記第一のクリアランス量よりも大きな第二のクリアランス量のときとの前記パラメータの変化率が大きくなるよう、前記パラメータの変化率を定める、
     回転機械の制御方法。
  15.  請求項13又は14に記載の回転機械の制御方法において、
     前記パラメータの前記変化率を定める前記工程は、
     前記パラメータの目標値と前記パラメータの検出値との偏差に応じて、前記パラメータの基本変化率を求める工程と、
     前記クリアランス量に応じて、前記基本変化率を変更する変更値を求める工程と、
     前記変更値を用いて、前記基本変化率を変更する工程と、
     を含む、
     回転機械の制御方法。
  16.  請求項15に記載の回転機械の制御方法において、
     前記変更値を求める前記工程は、前記クリアランス量と前記基本変化率を変更する第一変更値との関係を用いて、前記クリアランス量に対応する前記第一変更値を求める工程を含み、
     前記基本変化率を変更する前記工程では、前記第一変更値を用いて前記基本変化率を変更する、
     回転機械の制御方法。
  17.  請求項16に記載の回転機械の制御方法において、
     前記変更値を求める前記工程は、前記クリアランス量と予め定められている許容最小クリアランス量との偏差に応じて、前記基本変化率を変更する第二変更値を求める工程を含み、
     前記基本変化率を変更する前記工程では、前記第一変更値と前記第二変更値とを用いて前記基本変化率を変更する、
     回転機械の制御方法。
  18.  請求項16又は17に記載の回転機械の制御方法において、
     前記関係は、前記クリアランス量が大きくなるに連れて前記第一変更値が大きくなる関係である、
     回転機械の制御方法。
  19.  回転するロータと、前記ロータの外周側を覆うケーシングとを備える回転機械の制御プログラムにおいて、
     コンピュータの入力装置により、前記ロータと前記ケーシングとの間のクリアランス量を受け付ける工程と、
     前記クリアランス量に応じて、前記回転機械の回転数又は出力であるパラメータの変化率が変わるよう、前記パラメータの変化率を定める工程と、
     前記パラメータの前記変化率に応じて、前記パラメータを変える操作端の操作量を定め、前記操作量を前記操作端に出力する工程と、
     を前記コンピュータに実行させる回転機械の制御プログラム。
  20.  請求項19に記載の回転機械の制御プログラムにおいて、
     前記パラメータの前記変化率を定める前記工程では、第一のクリアランス量のときの前記パラメータの変化率に比べて、前記第一のクリアランス量よりも大きな第二のクリアランス量のときとの前記パラメータの変化率が大きくなるよう、前記パラメータの変化率を定める、
     回転機械の制御プログラム。
  21.  請求項19又は20に記載の回転機械の制御プログラムにおいて、
     前記パラメータの前記変化率を定める前記工程は、
     前記パラメータの目標値と前記パラメータの検出値との偏差に応じて、前記パラメータの基本変化率を求める工程と、
     前記クリアランス量に応じて、前記基本変化率を変更する変更値を求める工程と、
     前記変更値を用いて、前記基本変化率を変更する変更した変化量を求める工程と、
     を含む、
     回転機械の制御プログラム。
  22.  請求項21に記載の回転機械の制御プログラムにおいて、
     前記変更値を求める前記工程は、前記クリアランス量と前記基本変化率を変更する第一変更値との関係を用いて、前記クリアランス量に対応する前記第一変更値を求める工程を含み、
     前記基本変化率を変更する前記工程では、前記第一変更値を用いて前記基本変化率を変更する、
     回転機械の制御プログラム。
  23.  請求項22に記載の回転機械の制御プログラムにおいて、
     前記変更値を求める前記工程は、前記クリアランス量と予め定められている許容最小クリアランス量との偏差に応じて、前記基本変化率を変更する第二変更値を求める工程を含み、
     前記基本変化率を変更する前記工程では、前記第一変更値と前記第二変更値と用いて前記基本変化率を変更する、
     回転機械の制御プログラム。
  24.  請求項22又は23に記載の回転機械の制御プログラムにおいて、
     前記関係は、前記クリアランス量が大きくなるに連れて前記第一変更値が大きくなる関係である、
     回転機械の制御プログラム。
PCT/JP2018/034804 2017-09-22 2018-09-20 回転機械の制御装置、回転機械設備、回転機械の制御方法、及び回転機械の制御プログラム WO2019059273A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018005376.8T DE112018005376T5 (de) 2017-09-22 2018-09-20 Rotierende-maschinen-steuervorrichtung, rotierende-maschinen-ausrüstung, rotierende-maschinen-steuerverfahren und rotierende maschinen-steuerprogramm
CN201880048594.XA CN110945227B (zh) 2017-09-22 2018-09-20 旋转机械的控制装置及方法、旋转机械设备及存储介质
US16/634,415 US11333081B2 (en) 2017-09-22 2018-09-20 Rotating machine control device, rotating machine equipment, rotating machine control method, and rotating machine control program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017182800A JP6963450B2 (ja) 2017-09-22 2017-09-22 回転機械の制御装置、回転機械設備、回転機械の制御方法、及び回転機械の制御プログラム
JP2017-182800 2017-09-22

Publications (1)

Publication Number Publication Date
WO2019059273A1 true WO2019059273A1 (ja) 2019-03-28

Family

ID=65811418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034804 WO2019059273A1 (ja) 2017-09-22 2018-09-20 回転機械の制御装置、回転機械設備、回転機械の制御方法、及び回転機械の制御プログラム

Country Status (5)

Country Link
US (1) US11333081B2 (ja)
JP (1) JP6963450B2 (ja)
CN (1) CN110945227B (ja)
DE (1) DE112018005376T5 (ja)
WO (1) WO2019059273A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107171494B (zh) * 2017-06-15 2018-07-20 苏州达思灵新能源科技有限公司 一种压缩空气涡轮直流发电机系统
JP6712672B1 (ja) * 2019-12-09 2020-06-24 新太郎 石山 超臨界co2ガスを用いた発電装置及び発電システム
US11913341B2 (en) 2020-09-08 2024-02-27 Mitsubishi Heavy Industries, Ltd. Clearance control system for gas turbine
CN112377270B (zh) * 2020-11-11 2022-05-17 贵州电网有限责任公司 一种膨胀发电机组冲转过程中快速稳定转速的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150809A (ja) * 1997-08-01 1999-02-23 Mitsubishi Heavy Ind Ltd 回転体の伸び量調整装置
JP2000027606A (ja) * 1998-07-14 2000-01-25 Mitsubishi Heavy Ind Ltd ガスタービンクリアランスシミュレータシステム
JP2015190469A (ja) * 2014-03-28 2015-11-02 ゼネラル・エレクトリック・カンパニイ コンバインドサイクルパワープラントの制御の向上のためのシステムおよび方法
JP2017078362A (ja) * 2015-10-20 2017-04-27 三菱日立パワーシステムズ株式会社 ガスタービン運転制御方法、ガスタービン運転制御装置、及びガスタービン

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285803A (ja) * 2001-03-27 2002-10-03 Toshiba Corp ガスタービンクリアランス制御装置
US8126628B2 (en) * 2007-08-03 2012-02-28 General Electric Company Aircraft gas turbine engine blade tip clearance control
US20090044542A1 (en) 2007-08-17 2009-02-19 General Electric Company Apparatus and method for monitoring compressor clearance and controlling a gas turbine
US8296037B2 (en) * 2008-06-20 2012-10-23 General Electric Company Method, system, and apparatus for reducing a turbine clearance
US8022715B2 (en) * 2009-01-27 2011-09-20 General Electric Company Automated sensor specific calibration through sensor parameter download
US20100296912A1 (en) * 2009-05-22 2010-11-25 General Electric Company Active Rotor Alignment Control System And Method
US9255525B2 (en) * 2012-11-30 2016-02-09 General Electric Company System and method for gas turbine operation
US9372103B2 (en) 2013-07-12 2016-06-21 Facebook, Inc. Calibration of grab detection
US10329940B2 (en) * 2013-10-04 2019-06-25 General Electric Company Method and system for passive clearance control in a gas turbine engine
JP6223774B2 (ja) 2013-10-15 2017-11-01 三菱日立パワーシステムズ株式会社 ガスタービン
US9963994B2 (en) * 2014-04-08 2018-05-08 General Electric Company Method and apparatus for clearance control utilizing fuel heating
JP6331138B2 (ja) * 2014-08-06 2018-05-30 三菱日立パワーシステムズ株式会社 流量比算出装置、これを備えている制御装置、この制御装置を備えているガスタービンプラント、流量比算出方法、及び燃料系統の制御方法
US10323536B2 (en) * 2015-04-09 2019-06-18 United Technologies Corporation Active clearance control for axial rotor systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150809A (ja) * 1997-08-01 1999-02-23 Mitsubishi Heavy Ind Ltd 回転体の伸び量調整装置
JP2000027606A (ja) * 1998-07-14 2000-01-25 Mitsubishi Heavy Ind Ltd ガスタービンクリアランスシミュレータシステム
JP2015190469A (ja) * 2014-03-28 2015-11-02 ゼネラル・エレクトリック・カンパニイ コンバインドサイクルパワープラントの制御の向上のためのシステムおよび方法
JP2017078362A (ja) * 2015-10-20 2017-04-27 三菱日立パワーシステムズ株式会社 ガスタービン運転制御方法、ガスタービン運転制御装置、及びガスタービン

Also Published As

Publication number Publication date
JP6963450B2 (ja) 2021-11-10
US11333081B2 (en) 2022-05-17
CN110945227A (zh) 2020-03-31
DE112018005376T5 (de) 2020-06-18
JP2019056360A (ja) 2019-04-11
CN110945227B (zh) 2022-07-29
US20200173373A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
WO2019059273A1 (ja) 回転機械の制御装置、回転機械設備、回転機械の制御方法、及び回転機械の制御プログラム
JP5662697B2 (ja) ガスタービンの制御及び運転に関する方法
US6226974B1 (en) Method of operation of industrial gas turbine for optimal performance
US8322145B2 (en) Systems and methods for providing surge protection to a turbine component
US8177501B2 (en) Stator casing having improved running clearances under thermal load
US10859002B2 (en) Method for controlling surge margin of gas turbine and extraction device for gas turbine
US6506010B1 (en) Method and apparatus for compressor control and operation in industrial gas turbines using stall precursors
US20110110760A1 (en) Method and system for increasing an efficiency of a pressurized machine
CN104213987A (zh) 双轴式燃气轮机
JP5546541B2 (ja) ガスタービンおよびその運転方法
JP2012500362A5 (ja)
JP7212481B2 (ja) 圧力ベースのサブシステムを有する圧縮機用制御システム、合成プラント、および制御方法
US11210435B2 (en) Method of designing and producing a turbine
US8857184B2 (en) Method for starting a turbomachine
Bhargava et al. A feasibility study of existing gas turbines for recuperated, intercooled, and reheat cycle
Pelton et al. Near Critical Point Testing and Performance Results of a sCO2 Compressor for a 10MWe Brayton Cycle
Cruz-Manzo et al. Performance analysis of a twin-shaft gas turbine with fault in the variable stator guide vane system of the axial compressor
Romagnoli et al. Comparison Between the Steady Performance of Double-Entry and Twin-Entry Turbocharger Turbines
JP7178883B2 (ja) 二軸式ガスタービン
Gilani et al. Study the effect of variable vanes on performance of axial compressor for single shaft gas turbine cogeneration plant
JP7176932B2 (ja) ガスタービンの制御装置、ガスタービン設備、ガスタービンの制御方法、及びガスタービンの制御プログラム
US20230315950A1 (en) Clearance calculation device and clearance calculation method
CN107532478B (zh) 用于设计流体流发动机的方法和流体流发动机
Emmrich et al. Development and Experimental Verification of a “Flowcut” Technology for the New Generation of MAN-ES Industrial Axial Compressors
Latimer et al. Performance analysis of a twin-shaft gas turbine with fault in the variable stator guide vane system of the axial compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858038

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18858038

Country of ref document: EP

Kind code of ref document: A1