WO2019059249A1 - Fault detection device, laser machining system and fault detection method - Google Patents

Fault detection device, laser machining system and fault detection method Download PDF

Info

Publication number
WO2019059249A1
WO2019059249A1 PCT/JP2018/034716 JP2018034716W WO2019059249A1 WO 2019059249 A1 WO2019059249 A1 WO 2019059249A1 JP 2018034716 W JP2018034716 W JP 2018034716W WO 2019059249 A1 WO2019059249 A1 WO 2019059249A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical fiber
partial
laser light
intensity
Prior art date
Application number
PCT/JP2018/034716
Other languages
French (fr)
Japanese (ja)
Inventor
諒 石川
山下 隆之
同慶 長安
賢二 星野
秀明 山口
加藤 直也
真也 堂本
清隆 江泉
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019543688A priority Critical patent/JP7194883B2/en
Priority to CN201880061161.8A priority patent/CN111164404B/en
Publication of WO2019059249A1 publication Critical patent/WO2019059249A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Definitions

  • the present disclosure relates to an optical fiber failure detection device, a laser processing system, and a failure detection method, and more particularly to an optical fiber failure detection device, a laser processing system, and a failure detection method for transmitting high-power processing laser light.
  • a high power processing laser beam from a direct diode laser (DDL) light source, etc. is transmitted to a processing head via an optical fiber, and the work material (work) is welded and fused by focusing and irradiating.
  • Laser processing systems are widely used. In such an optical fiber, if the optical fiber is broken while transmitting the processing laser light, the output energy of the processing laser light is large, and thus there is a possibility that the coating resin of the optical fiber and the peripheral devices may be damaged. Therefore, a laser processing system using a high output processing laser beam is generally provided with a device for detecting a break in an optical fiber transmitting the laser beam.
  • a disconnection detection device for example, a closed circuit is configured using a coated wire disposed along an optical fiber that transmits laser light, and the closed circuit is disconnected (open) by heat generated when the optical fiber is disconnected.
  • Yet another disconnection detection device is to place a tube for circulating gas along the optical fiber instead of the coated wire, monitor the flow rate of the circulating gas, and when the flow rate of the circulating gas changes, disconnection of the optical fiber It is also proposed to judge the
  • Another disconnection detection device is a laser processing system in which a laser beam (processing laser beam) for processing a workpiece is transmitted by an optical fiber, and each light intensity of the processing laser beam incident on and emitted from the optical fiber ( A pair of light detectors that monitor the output intensity), and based on the difference in the light intensity of the processing laser light measured by each light detector or the change in the relative value, the breakage of the optical fiber or the energy loss due to the optical fiber What is detected is also used.
  • a laser beam processing laser beam
  • a pair of light detectors that monitor the output intensity
  • the optical fiber break detection device described in Patent Document 1 includes an optical fiber transmitting high-energy processing laser light for processing a workpiece, and the vicinity of the incident end and the output end of the optical fiber. And a detector for comparing the outputs of the light receivers to detect breakage of the optical fiber.
  • an optical fiber for transmitting a power laser beam for processing a material to be processed and a visible light selected in the vicinity of the emission end of the optical fiber A reflection means is provided, and a light receiving detector disposed near the incident end of the optical fiber and receiving the visible light selected by the power laser light and the visible light selective reflection means.
  • the visible light is generated by burning of the covering material of the optical fiber due to disconnection of the optical fiber or the like.
  • the optical fiber apparatus for laser transmission detects abnormality, such as a disconnection of an optical fiber, by comparing the optical intensity of power laser beam and visible light.
  • a disconnection detection device using a coated wire or a tube for gas circulation even if the optical fiber is not broken, the closed circuit of the coated wire separate from the optical fiber is disconnected or shorted, or When the flow rate changes, it may be erroneously detected that the optical fiber is broken.
  • a disconnection detection device using a coated wire when a pair of coated wires constituting a closed circuit peels off due to friction with an optical fiber, the pair of core wires of the coated wire contacts (shorts) and the disconnection detection function operates Sometimes.
  • Patent Document 1 and Patent Document 2 all use a high-power laser for processing a workpiece for disconnection detection.
  • the processing laser beam incident on and emitted from the optical fiber (Patent Document 1), or the power laser beam incident on the optical fiber and visible light emitted from the optical fiber (Patent Document 2) are compared.
  • the output intensity of the laser beam (machining laser beam) for processing the material to be processed fluctuates due to the operating state or use time of the laser light source device, and the transmittance of the optical fiber changes substantially. It's easy to do. Therefore, it is difficult to detect the transmission loss and the like of the optical fiber using the optical fiber itself that transmits the processing laser light, which may cause an erroneous detection and the like.
  • processing laser light (patent document 1) and visible light (patent document 2) produced by burning the covering material generally have a wide wavelength range, and these wavelengths and the composition of the optical fiber (the glass molecules constituting the optical fiber Depends on the density) and easily interferes with Rayleigh scattered light (scattered light generated by light scattering phenomenon by particles smaller than the wavelength of light) generated in the optical fiber, and the processing laser light or visible light does not stabilize Similarly, false detection may be caused.
  • a first aspect according to the present disclosure relates to a failure detection device for an optical fiber, and the failure detection device includes a processing laser light source for emitting a processing laser beam, a detection laser light source for emitting a detection laser beam, and a detection laser beam.
  • a spectroscope for dividing into first and second partial lights, a first light receiver for measuring the intensity of the first partial light of detection laser light, a second partial light of detection laser light and a processing laser light
  • a determination unit that determines whether or not there is a defect in the optical fiber based on the relative ratio of the strengths.
  • a second aspect according to the present disclosure relates to a failure detection device for an optical fiber, and the failure detection device includes a processing laser light source for emitting a processing laser beam, a detection laser light source for emitting a detection laser beam, and a detection laser beam.
  • a spectroscope for dividing into first and second partial lights, a first light receiver for measuring the intensity of the first partial light of detection laser light, a second partial light of detection laser light and a processing laser light
  • a determination unit that determines whether or not there is That.
  • a third aspect according to the present disclosure relates to a failure detection device for an optical fiber, and the failure detection device comprises a processing laser light source for emitting a processing laser beam, a detection laser light source for emitting a detection laser beam, and a detection laser beam.
  • a spectroscope for dividing into first and second partial lights, a first light receiver for measuring the intensity of the first partial light of detection laser light, a second partial light of detection laser light and a processing laser light
  • a second light receiver for measuring the intensity of the transmitted light of the partial light
  • a third light receiver for measuring the intensity of the reflected light of the second partial light reflected by the reflection / transmission section and transmitted by the optical fiber; Measured by the first, second and third light receivers
  • the on the basis of the first partial light, and the relative ratio of the intensity of the transmitted light and reflected light of the second partial light comprising, a determination section for determining whether or not there is a defect in the optical fiber, the.
  • the failure detection device can detect breakage of the optical fiber with higher reliability by using the stable detection laser light transmitted by the optical fiber instead of the processing laser light.
  • FIG. 1 is a block diagram showing a schematic configuration of the failure detection device according to the first embodiment.
  • FIG. 2 is a block diagram showing a schematic configuration of a failure detection device according to a second embodiment.
  • FIG. 3 is a block diagram showing a schematic configuration of a failure detection device according to the third embodiment.
  • the failure detection device includes a processing laser light source that emits processing laser light, a detection laser light source that emits detection laser light, and a spectrum that divides the detection laser light into first and second partial lights. And a first light receiver for measuring the intensity of the first partial light of the detection laser light, and an optical fiber for transmitting the second partial light of the detection laser light and the processing laser light.
  • a failure detection apparatus comprises a second light receiver for measuring the intensity of a second partial light transmitted by an optical fiber, and the first and second light receivers measured by the first and second light receivers. And a determination unit that determines whether there is a defect in the optical fiber based on the relative ratio of the intensities of the partial light of 2.
  • the detection laser beam has a shorter peak wavelength and a smaller half width (a width of a wavelength which is half the peak value of the peak wavelength, and a value indicating a spread degree in the wavelength direction) compared to the processing laser beam. (The wavelength band is narrower), the output intensity is smaller.
  • the detection laser beam (and thus the second partial beam) has a smaller loss of light intensity that is generated while being transmitted by the optical fiber and is more stable than the processing laser beam.
  • the wavelength dependency of the transmission loss of an optical fiber mainly differs depending on the material of the optical fiber.
  • the peak wavelength of the detection laser light mainly differs depending on the light source of the detection laser light.
  • the failure detection device includes a reflection unit that reflects the second partial light transmitted by the optical fiber toward the optical fiber, and a second portion that is reflected by the reflection unit and transmitted by the optical fiber. Based on the relative ratio of the intensities of the reflected light of the first partial light and the second partial light measured by the third light receiver that measures the intensity of the reflected light of the light and the first and third light receivers And a determination unit that determines whether or not there is a defect in the optical fiber. Since the determination unit according to the second aspect uses a stable detection laser beam, it is configured to detect a defect such as a break in the optical fiber with high reliability. In addition, the distance from the third light detector to the electrical wiring for transmitting a signal indicating the difference in light intensity can be shortened from the defect determination unit, and the configuration of the failure detection device can be simplified. .
  • the failure detection device includes a reflection / transmission part that partially reflects the second partial light transmitted by the optical fiber toward the optical fiber and a reflection / transmission part that partially transmits the partial light.
  • a second light receiver for measuring the intensity of the transmitted second partial light, and a third receiver for measuring the intensity of the second partial light reflected by the reflection / transmission section and transmitted by the optical fiber Optical fiber based on the relative ratio of the transmitted and reflected light intensities of the first partial light and the second partial light measured by the first, second and third light receivers of And a determination unit that determines whether or not there is a problem.
  • the determination unit is a combination of the first and second aspects, and uses a stable detection laser beam, and thus detects a defect such as a break in the optical fiber with high reliability. Is configured as.
  • each drawing the electrical connection of each component of the failure detection device for an optical fiber is indicated by a solid line, and the traveling direction of each laser beam from each component (a light source or the like) is indicated by a linear arrow. Also, although the linear arrows in each drawing are shown with their optical axes shifted to clarify each laser light, in actuality, each laser light is transmitted on the same optical axis in the optical fiber. It is
  • FIG. 1 is a block diagram showing a schematic configuration of a failure detection device 1 according to the present disclosure.
  • the failure detection device 1 according to the first embodiment is, as shown in FIG. 1, roughly: a processing laser light source 10, a detection laser light source 20, a half mirror 22 (spectrometer), and an optical fiber 30 (process fiber or transmission) Fiber), first and second light detectors 24 and 26 (light receivers), and a defect determination unit 50 (also simply referred to as a determination unit).
  • the laser processing system includes a system control unit 60 electrically connected to the processing laser light source 10 and the failure determination unit 50 of the failure detection device 1.
  • the laser processing system has a first storage chamber 16 and a second storage chamber 18 separated from the first storage chamber 16.
  • the first accommodation chamber 16 accommodates the processing laser light source 10, the detection laser light source 20, the half mirrors 12 and 22, the first light detector 24, the condenser lens 36, and the defect determination unit 50.
  • the second accommodation chamber 18 accommodates the second light detector 26, the collimation lens 38, and the beam splitter 40.
  • the optical fiber 30 physically and optically connects the first accommodation chamber 16 and the second accommodation chamber 18.
  • the first storage room 16 is, for example, a space defined by a housing of the apparatus or a room of a building. The same applies to the second storage chamber 18.
  • Processing laser light source 10 emits any processing laser light L P of the high output for machining a workpiece (workpiece, not shown). Processing is, for example, welding, melting and drilling. Processing laser light source 10 is, for example, the peak wavelength is long, wide wavelength band (975 nm ⁇ 20 nm), direct diode laser (DDL output intensity emits a processing laser beam L P of several kW order ( ⁇ 10 4 W) ) It may be a light source. Processing laser beam L P, as shown, is reflected by the half mirror 12 arranged in the direction of 45 degrees to the optical axis of the processing laser light L P, it is oriented along the optical fiber 30 (guide). Half mirror 12 is substantially totally reflects the light of the wavelength band of the processing laser light L P, that a short light more wavelengths, such as detection laser light L D will be described later is intended to substantially totally transmits preferable.
  • DDL output intensity emits a processing laser beam L P of several kW order ( ⁇ 10 4 W)
  • Detection laser light source 20 emits the detection laser beam L D for detecting a defect such as disconnection of the optical fiber 30.
  • Detection laser light source 20 for example, the peak wavelength than the machining laser beam L P is short, the wavelength band is a narrow (600 nm ⁇ 5 nm), helium for emitting a detection laser beam output intensity several hundred millimeters W ( ⁇ 1W) It may be a neon (He-Ne) laser light source or a semiconductor laser light source.
  • a part of the detection laser beam L D is a surface S 1 downward to the left of another half mirror 22 (spectrometer) disposed at an orientation of 45 degrees with respect to the optical axis. It reflects and the rest is transmitted.
  • That detection laser light L D is divided by the surface S 1 of the half mirror 22 to the first partial light L D1 and second partial light L D2.
  • Second partial light L D2 transmitted is incident on the optical fiber 30 to the machining laser beam L P coaxially, the first partial light L D1 reflected is incident on the first photodetector 24.
  • First photodetector 24 receives the first partial light L D1 of the detection laser beam L D, is to measure the light intensity of the first partial light L D1.
  • the first photodetector 24 provides a signal P 1 indicating the light intensity of the first partial light L D1 measured in fault determination unit 50.
  • a condensing lens 36 is disposed between the half mirror 12 and the optical fiber 30.
  • Condenser lens 36 is for condensing the second partial light L D2 and the processing laser light L P of the detection laser beam L D on the entrance end 32 of the optical fiber 30.
  • Second partial light L D2 and the processing laser light L P of the detection laser light L D emitted from the emission end 34 of the optical fiber 30 is converted into parallel light by a collimation lens 38, the optical axis of the optical fiber 30
  • the light beam is incident on a beam splitter 40 disposed at 45 ° orientation.
  • Beam splitter 40 is substantially totally reflects toward the light of the second partial light L D2 equivalent wavelength band of the detection laser beam L D to the second photodetector 26, equivalent to the processing laser beam L P Substantially all the light of the wavelength band of That second partial light L D2 of detection laser light L D is incident on the second photodetector 26, the working laser beam L P is irradiated on the workpiece.
  • another condenser lens may be disposed between the beam splitter 40 and the second light detector 26 for condensing the second partial light LD2 .
  • Second photodetector 26 receives the second partial light L D2 of detection laser light L D, as well as measuring the light intensity of the second partial light L D2, the signal P 2 indicating the light intensity It is supplied to the defect determination unit 50.
  • the defect determination unit 50 can determine that the optical fiber 30 is broken.
  • fault determination unit 50 instead of the intensity ratio of signals P 1, P 2, may determine the defect based on the intensity difference between the signals P 1, P 2.
  • the malfunction determining unit 50 may determine a malfunction based on a change in intensity ratio of the signals P 1 and P 2 or a change in intensity difference.
  • the defect determination unit 50 determines whether there is a defect or a sign of a defect in the optical fiber 30 based on the relative ratio of the intensities of the first and second partial lights L D1 and L D2 , or Based on a change in relative ratio of intensities of the first and second partial lights L D1 and L D2 or a change in relative difference, a failure or a sign of failure is determined.
  • the defect determination unit 50 determines the signals P 1 and P by comparing the intensity ratio of 2 r 1 and a suitable threshold value Th 1, the processing laser light L P is irradiated to the dirt, the state where the incident end 32 or exit end 34 of optical fiber 30 is excessively heating problem It can be properly determined as the state.
  • the failure detection device 1 detects a laser beam transmitted to the optical fiber 30 itself, instead of detecting a break in a coated wire separate from the optical fiber 30. Do.
  • the processing laser has a wide wavelength band, and the output intensity is likely to be unstable due to the operating state or use time of the processing laser light source.
  • Failure detection device 1, rather than such a processing laser utilizes a detection laser beam L D. Therefore, defects such as breakage of the optical fiber 30 can be detected or determined with higher reliability.
  • the ratio of the light intensity of the signal P 1 indicating the light intensity of the detection laser light L D incident on the optical fiber 30 and the light intensity of the signal P 2 indicating the light intensity of the stable detection laser light L D emitted from the optical fiber On the basis of the difference or the change of the relative value, it is possible to detect the failure such as the disconnection of the optical fiber 30 with high reliability.
  • the system control unit 60 controls the processing laser light source 10 to stop immediately the exit of the processing laser light L P high power by, damages such as a peripheral device by the working laser beam L P leaked from the optical fiber 30 can be prevented.
  • FIG. 2 is a block diagram showing a schematic configuration of the failure detection device 2 according to the present disclosure.
  • the failure detection device 2 according to the second embodiment generally includes a third light detector 28 for detecting a second partial light LD2 reciprocating in the optical fiber 30, instead of the second light detector 26. Since the configuration is the same as that of the first embodiment except for the above points, the description of the overlapping points is omitted.
  • the third light detector 28 is accommodated in the first accommodation chamber 16.
  • the failure detection device 2 generally includes the processing laser light source 10, the detection laser light source 20, the half mirror 22 (spectrometer), the optical fiber 30, and the first A light detector 24 (light receiver) and a defect determination unit 50 (determination unit) are provided. These configurations and functions are the same as in the first embodiment.
  • the failure detection device 2 is a diffraction grating plate 42 (also referred to as a grating or a reflection portion) disposed perpendicularly to the optical axis of the optical fiber 30, illustrated on the right side of the collimation lens 38 shown in FIG. ).
  • Diffraction grating plate 42 in FIG. 2 substantially to the total transmitted light of the processing laser light L P equivalent wavelength band, the light of the second partial light L D2 equivalent wavelength band of the detection laser beam L D The light is substantially totally reflected toward the output end 34 of the optical fiber 30.
  • the diffraction grating plate 42, of the second partial light L D2 of detection laser light L D is transmitted through a portion of the constant ratio, emitting the remainder of the optical fiber 30 It may be reflected towards the end 34.
  • the relative intensity ratio between the transmitted light through which the second partial light LD2 passes through the diffraction grating plate 42 and the reflected light reflected by the diffraction grating plate 42 is constant.
  • the second partial light L D2 of detection laser light L D emitted from the incident end 32 of the optical fiber 30 is a view in the right upwardly facing surface S 2 of the half mirror 22 (spectrometer), partially reflecting And the rest is transparent.
  • the linear arrows indicating transmitted light transmitted through the half mirror 22 are omitted. That is, the second partial light L D2 of detection laser light L D is an optical fiber 30 reciprocates, a part of the light (third partial light L D3) is reflected by the surface S 2 of the half mirror 22 , And the third light detector 28.
  • Third photodetector 28 receives the third partial light L D3 of detection laser light L D, which measures the light intensity.
  • the third photodetector 28 supplies a signal P 3 indicating the light intensity of the third partial light L D3 measured in fault determination unit 50.
  • the defect determination unit 50 determines the signals P 1 and P by comparing the 3 intensity ratio r 2 with a suitable threshold value Th 2, the processing laser light L P is irradiated to the dirt, the state where the incident end 32 or exit end 34 of optical fiber 30 is excessively heating problem It can be properly determined as the state.
  • Fault detection apparatus 2 according to the present disclosure, as described above, by utilizing the detection laser light L D is a stable detection laser light is transmitted into the optical fiber 30 itself, a problem such as disconnection of the optical fiber 30 It can be detected or determined with higher reliability.
  • a signal P 1 indicating the light intensity of the detection laser light L D incident on the optical fiber 30 and the light intensity of the detection laser light L D transmitted back and forth between the incident end and the light emission end of the optical fiber can be detected in each of the ratio of light intensity, the difference or change in the relative value, high reliability problem such as disconnection of the optical fiber 30 on the basis of, of the signal P 3 indicating the.
  • both of the first and third photodetectors 24 and 28 can be disposed adjacent to the defect determination unit 50.
  • the first and third photodetectors 24 and 28 are both accommodated in the first accommodation chamber 16.
  • the malfunction determination unit 50 is also accommodated in the first accommodation chamber 16. That is, the third light detector 28 according to the second embodiment can be disposed closer to the defect determination unit 50 than the second light detector 26 of the first embodiment. Therefore, the third can be shortened electrical wiring distance for transmitting the signals P 3 to the fault determining unit 50 from the photodetector 28, it is possible to further simplify the configuration of the failure detection device 2.
  • the system control unit 60 processing laser light source to stop immediately the exit of the processing laser light L P high power by controlling the 10, the damage such as the peripheral device according to the working laser beam L P leaked from the optical fiber 30 can be prevented.
  • FIG. 3 is a block diagram showing a schematic configuration of the failure detection device 3 according to the present disclosure.
  • the failure detection apparatus 3 according to the third embodiment is implemented, except that the third light detector 28 of the second embodiment is provided in addition to the second light detector 26 of the first embodiment. Since the configuration is the same as that of the first embodiment, the description of the overlapping point is omitted.
  • the failure detection device 3 generally includes the processing laser light source 10, the detection laser light source 20, the half mirror 22 (spectrometer), the optical fiber 30, and the first A light detector 24 (light receiver) and a defect determination unit 50 (determination unit) are provided. These configurations and functions are the same as in the first embodiment.
  • the failure detection device 3 is a diffraction grating plate 42 (both a grating or a transmission / reflection portion) disposed perpendicularly to the optical axis of the optical fiber 30, illustrated on the right side of the collimation lens 38 shown in FIG. Say).
  • the diffraction grating plate 42 of FIG. 3 transmits a part (transmitted light L D2T ) of a constant ratio in the second partial light L D2 of the detection laser light L D , and the remaining (reflected light L D2R ) as an optical fiber The light is reflected toward the emission end 34 of the T.30.
  • the transmitted light LD2T transmitted by the diffraction grating plate 42 in FIG. 3 is incident on the second light detector 26 via the beam splitter 40 as in the first embodiment. Further, the reflected light L D2R reflected by the diffraction grating plate 42 in Figure 3, is transmitted back to the optical fiber 30, as in the second embodiment, in the drawing the right upwardly facing surface S 2 of the half mirror 22 (spectrometer) It is reflected and enters the third light detector 28.
  • the second light detector 26 for receiving the detection laser light on the emission end 34 side of the optical fiber 30 and the third light detector 28 for receiving the detection laser light on the incident end 32 of the optical fiber 30 are the first embodiment. and 2 and similar, receives the transmitted light L D2T and the reflected light L D2R of the second partial light L D2 of detection laser light L D, to measure the light intensity, the signal P 2 indicating the light intensity, supplying P 3 to the fault determination unit 50.
  • the defect determination unit 50 can determine that the optical fiber 30 is broken.
  • the intensity ratios r 1 and r 2 of the signals P 1 , P 2 and P 3 do not become zero, but the defect determination unit 50 , by comparing the signals P 1, P 2, the intensity ratio r 1 of P 3, r 2 with an appropriate threshold value Th 1, Th 2, the processing laser light L P is irradiated to the dirt, the optical fiber 30 A state in which the incident end 32 or the outgoing end 34 of the light source generates heat excessively can be appropriately determined as a failure state.
  • Failure detection apparatus 3 according to the present disclosure, as described above, by utilizing the detection laser light L D is a stable detection laser light is transmitted into the optical fiber 30 itself, a problem such as disconnection of the optical fiber 30 It can be detected or determined with higher reliability.
  • a signal P 1 indicating the light intensity of the detection laser light L D incident on the optical fiber 30 a signal P 2 indicating the light intensity of the stable detection laser light L D emitted from the optical fiber, and an incidence of the optical fiber the ratio of the respective light intensity of the signal P 3 indicating the light intensity of the detection laser light L D is transmitted back and forth between the end and the exit end, differences or changes in the relative values, of the optical fiber 30 based on, Defects such as disconnection can be detected with high reliability.
  • the failure detection device 3 is provided with the third light detector 28 of the second embodiment. Whether or not the fiber 30 is broken can be determined more reliably.
  • the system control unit 60 controls the processing laser light source 10, immediately stop the emission of the processing laser light L P high power processing laser damage such as a peripheral device by the light L P can be prevented.
  • the present disclosure can be used for an optical fiber failure detection apparatus and failure detection method for transmitting high-power processing laser light.

Abstract

This fault detection device (1) is provided with: a machining laser light source (10) which emits machining laser light; a detection laser light source (20) which emits detection laser light; a spectroscope (22) which divides the detection laser light into first partial light and second partial light; a first light receiver (24) which measures the intensity of the first partial light of the detection laser light; an optical fiber (30) which transmits the second partial light of the detection laser light and the machining laser light; a second light receiver (26) which measures the intensity of the second partial light transmitted through the optical fiber; and a determination unit (50) which determines whether there is a defect in the optical fiber on the basis of the relative ratio between the intensities of the first and second partial light respectively measured by the first and second light receivers.

Description

故障検出装置、レーザ加工システムおよび故障検出方法Failure detection device, laser processing system and failure detection method
 本開示は、光ファイバの故障検出装置、レーザ加工システムおよび故障検出方法に関し、とりわけ高出力の加工レーザ光を伝送する光ファイバの故障検出装置、レーザ加工システムおよび故障検出方法に関する。 The present disclosure relates to an optical fiber failure detection device, a laser processing system, and a failure detection method, and more particularly to an optical fiber failure detection device, a laser processing system, and a failure detection method for transmitting high-power processing laser light.
 ダイレクト・ダイオード・レーザ(DDL)光源等からの高出力の加工レーザ光を、光ファイバを介して加工ヘッドまで伝送し、集光および照射することにより、被加工材(ワーク)を溶接、溶断穿孔などするレーザ加工システムが広く用いられている。こうした光ファイバは、加工レーザ光を伝送している間に光ファイバが断線すると、加工レーザ光の出力エネルギが大きいため、光ファイバの被膜樹脂等をはじめ周辺装置に損傷を与える虞がある。したがって、高出力の加工レーザ光を利用するレーザ加工システムには、一般に、レーザ光を伝送する光ファイバの断線を検出するための装置が設けられている。 A high power processing laser beam from a direct diode laser (DDL) light source, etc. is transmitted to a processing head via an optical fiber, and the work material (work) is welded and fused by focusing and irradiating. Laser processing systems are widely used. In such an optical fiber, if the optical fiber is broken while transmitting the processing laser light, the output energy of the processing laser light is large, and thus there is a possibility that the coating resin of the optical fiber and the peripheral devices may be damaged. Therefore, a laser processing system using a high output processing laser beam is generally provided with a device for detecting a break in an optical fiber transmitting the laser beam.
 高出力のレーザ光を伝送する光ファイバの断線を検出するための装置は、これまでにも数多く提案されている。従来技術に係る断線検出装置として、例えば、レーザ光を伝送する光ファイバに沿って配置された被覆電線を用いて閉回路を構成し、光ファイバの断線時に生じる熱により閉回路が断線(オープン)または短絡(ショート)したことを電気的に検出することにより、光ファイバの断線を検出するものが提案されている。 Many devices for detecting a break in an optical fiber that transmits high-power laser light have been proposed. As a disconnection detection device according to the prior art, for example, a closed circuit is configured using a coated wire disposed along an optical fiber that transmits laser light, and the closed circuit is disconnected (open) by heat generated when the optical fiber is disconnected. Alternatively, it has been proposed to detect a break in an optical fiber by electrically detecting a short circuit.
 さらに別の断線検出装置は、被覆電線に代わって、ガスを循環させるチューブを光ファイバに沿って配置し、循環させるガスの流量をモニタし、循環ガスの流量が変化したとき、光ファイバの断線を判断するものも提案されている。 Yet another disconnection detection device is to place a tube for circulating gas along the optical fiber instead of the coated wire, monitor the flow rate of the circulating gas, and when the flow rate of the circulating gas changes, disconnection of the optical fiber It is also proposed to judge the
 別の断線検出装置は、被加工材を加工するためのレーザ光(加工レーザ光)を光ファイバにより伝送させるレーザ加工システムにおいて、光ファイバに入射および出射される加工レーザ光のそれぞれの光強度(出力強度)をモニタする一対の光検出器を備え、各光検出器で測定された加工レーザ光の光強度の差異または相対値の変化に基づいて、光ファイバの断線または光ファイバによるエネルギ損失を検出するものも利用されている。 Another disconnection detection device is a laser processing system in which a laser beam (processing laser beam) for processing a workpiece is transmitted by an optical fiber, and each light intensity of the processing laser beam incident on and emitted from the optical fiber ( A pair of light detectors that monitor the output intensity), and based on the difference in the light intensity of the processing laser light measured by each light detector or the change in the relative value, the breakage of the optical fiber or the energy loss due to the optical fiber What is detected is also used.
 より具体的には、特許文献1の記載の光ファイバ破断検出装置は、被加工材を加工するための高エネルギの加工レーザ光を伝送する光ファイバと、光ファイバの入射端および出射端の近傍に一対の受光器と、これら受光器の出力を比較して光ファイバの破断を検出する検出部とを備える。 More specifically, the optical fiber break detection device described in Patent Document 1 includes an optical fiber transmitting high-energy processing laser light for processing a workpiece, and the vicinity of the incident end and the output end of the optical fiber. And a detector for comparing the outputs of the light receivers to detect breakage of the optical fiber.
 また特許文献2の記載のレーザ伝送用光ファイバ装置は、同様に、被加工材を加工するためのパワーレーザ光を伝送する光ファイバと、光ファイバの出射端の近傍に配置された可視光選択反射手段と、光ファイバの入射端の近傍に配置され、パワーレーザ光および可視光選択反射手段で選択された可視光を受光する受光検出器とを備える。この可視光は、光ファイバの断線等に起因して光ファイバの被覆材が燃焼して生じるものである。そしてレーザ伝送用光ファイバ装置は、パワーレーザ光および可視光の光強度を比較することにより、光ファイバの断線等の異常を検出するものである。 In the optical fiber device for laser transmission described in Patent Document 2, similarly, an optical fiber for transmitting a power laser beam for processing a material to be processed and a visible light selected in the vicinity of the emission end of the optical fiber A reflection means is provided, and a light receiving detector disposed near the incident end of the optical fiber and receiving the visible light selected by the power laser light and the visible light selective reflection means. The visible light is generated by burning of the covering material of the optical fiber due to disconnection of the optical fiber or the like. And the optical fiber apparatus for laser transmission detects abnormality, such as a disconnection of an optical fiber, by comparing the optical intensity of power laser beam and visible light.
特開平10-038751号公報Japanese Patent Application Laid-Open No. 10-038751 特開平07-266067号公報Japanese Patent Application Laid-Open No. 07-266067
 しかしながら、被覆電線またはガス循環用チューブを用いた断線検出装置においては、光ファイバが断線していなくても、光ファイバとは別体の被覆電線の閉回路が断線もしくは短絡し、または循環ガスの流量が変化したとき、光ファイバが断線したものと誤検出する場合がある。例えば、被覆電線を用いた断線検出装置において、閉回路を構成する一対の被覆電線が光ファイバとの摩擦により剥離すると、被膜電線の一対の芯線が接触(短絡)し、断線検出機能が動作することがある。 However, in a disconnection detection device using a coated wire or a tube for gas circulation, even if the optical fiber is not broken, the closed circuit of the coated wire separate from the optical fiber is disconnected or shorted, or When the flow rate changes, it may be erroneously detected that the optical fiber is broken. For example, in a disconnection detection device using a coated wire, when a pair of coated wires constituting a closed circuit peels off due to friction with an optical fiber, the pair of core wires of the coated wire contacts (shorts) and the disconnection detection function operates Sometimes.
 また特許文献1および特許文献2に記載の技術は、いずれも被加工材を加工するための高出力レーザを断線検出に利用する。具体的には、光ファイバに入射および出射される加工レーザ光(特許文献1)、または光ファイバに入射されるパワーレーザ光および光ファイバから出射される可視光(特許文献2)を比較して、光ファイバの断線を検出する。しかし、被加工材を加工するためのレーザ光(加工レーザ光)の出力強度は、レーザ光源装置の動作状態または使用時間等に起因して変動して、光ファイバの透過率が実質的に変化しやすい。そのため、加工レーザ光を伝送する光ファイバそのものを用いて、その光ファイバの伝送損失等を検出することは困難となり、誤検出等を招く虞がある。 Further, the techniques described in Patent Document 1 and Patent Document 2 all use a high-power laser for processing a workpiece for disconnection detection. Specifically, the processing laser beam incident on and emitted from the optical fiber (Patent Document 1), or the power laser beam incident on the optical fiber and visible light emitted from the optical fiber (Patent Document 2) are compared. , Detects breakage of the optical fiber. However, the output intensity of the laser beam (machining laser beam) for processing the material to be processed fluctuates due to the operating state or use time of the laser light source device, and the transmittance of the optical fiber changes substantially. It's easy to do. Therefore, it is difficult to detect the transmission loss and the like of the optical fiber using the optical fiber itself that transmits the processing laser light, which may cause an erroneous detection and the like.
 また加工レーザ光(特許文献1)および被覆材が燃焼して生じる可視光(特許文献2)は、一般に、波長帯域が広く、これらの波長および光ファイバの組成(光ファイバを構成するガラス分子の密度)に依存して光ファイバ内で生じるレイリー散乱光(光の波長よりも小さいサイズの粒子による光の散乱現象により発生する散乱光)と干渉しやすく、加工レーザ光または可視光が安定せず、同様に誤検出等を招くことがある。 In addition, processing laser light (patent document 1) and visible light (patent document 2) produced by burning the covering material generally have a wide wavelength range, and these wavelengths and the composition of the optical fiber (the glass molecules constituting the optical fiber Depends on the density) and easily interferes with Rayleigh scattered light (scattered light generated by light scattering phenomenon by particles smaller than the wavelength of light) generated in the optical fiber, and the processing laser light or visible light does not stabilize Similarly, false detection may be caused.
 本開示に係る第1の態様は、光ファイバの故障検出装置に関し、この故障検出装置は、加工レーザ光を出射する加工レーザ光源と、検出レーザ光を出射する検出レーザ光源と、検出レーザ光を第1および第2の部分光に分割する分光器と、検出レーザ光の第1の部分光の強度を測定する第1の受光器と、検出レーザ光の第2の部分光および加工レーザ光を伝送する光ファイバと、光ファイバにより伝送された第2の部分光の強度を測定する第2の受光器と、第1および第2の受光器で測定された第1および第2の部分光の強度の相対比に基づいて、光ファイバに不具合があるか否かを判定する判定部と、を備える。 A first aspect according to the present disclosure relates to a failure detection device for an optical fiber, and the failure detection device includes a processing laser light source for emitting a processing laser beam, a detection laser light source for emitting a detection laser beam, and a detection laser beam. A spectroscope for dividing into first and second partial lights, a first light receiver for measuring the intensity of the first partial light of detection laser light, a second partial light of detection laser light and a processing laser light An optical fiber to be transmitted, a second light receiver for measuring the intensity of the second partial light transmitted by the optical fiber, and first and second partial lights measured by the first and second light receivers And a determination unit that determines whether or not there is a defect in the optical fiber based on the relative ratio of the strengths.
 本開示に係る第2の態様は、光ファイバの故障検出装置に関し、この故障検出装置は、加工レーザ光を出射する加工レーザ光源と、検出レーザ光を出射する検出レーザ光源と、検出レーザ光を第1および第2の部分光に分割する分光器と、検出レーザ光の第1の部分光の強度を測定する第1の受光器と、検出レーザ光の第2の部分光および加工レーザ光を伝送する光ファイバと、光ファイバにより伝送された第2の部分光を光ファイバに向けて反射させる反射部と、反射部で反射し、光ファイバにより伝送された第2の部分光の反射光の強度を測定する第3の受光器と、第1および第3の受光器で測定された第1の部分光および第2の部分光の反射光の強度の相対比に基づいて、光ファイバに不具合があるか否かを判定する判定部と、を備える。 A second aspect according to the present disclosure relates to a failure detection device for an optical fiber, and the failure detection device includes a processing laser light source for emitting a processing laser beam, a detection laser light source for emitting a detection laser beam, and a detection laser beam. A spectroscope for dividing into first and second partial lights, a first light receiver for measuring the intensity of the first partial light of detection laser light, a second partial light of detection laser light and a processing laser light An optical fiber to be transmitted, a reflecting portion for reflecting the second partial light transmitted by the optical fiber toward the optical fiber, and a reflected portion of the reflected light of the second partial light transmitted by the optical fiber. Failure of the optical fiber based on the relative ratio of the reflected light intensity of the first partial light and the second partial light measured by the third light receiver for measuring the intensity and the first and third light receivers A determination unit that determines whether or not there is That.
 本開示に係る第3の態様は、光ファイバの故障検出装置に関し、この故障検出装置は、加工レーザ光を出射する加工レーザ光源と、検出レーザ光を出射する検出レーザ光源と、検出レーザ光を第1および第2の部分光に分割する分光器と、検出レーザ光の第1の部分光の強度を測定する第1の受光器と、検出レーザ光の第2の部分光および加工レーザ光を伝送する光ファイバと、光ファイバにより伝送された第2の部分光を、部分的に光ファイバに向けて反射させるとともに、部分的に透過させる反射透過部と、反射透過部で透過した第2の部分光の透過光の強度を測定する第2の受光器と、反射透過部で反射し、光ファイバにより伝送された第2の部分光の反射光の強度を測定する第3の受光器と、第1、第2および第3の受光器で測定された第1の部分光、および第2の部分光の透過光ならびに反射光の強度の相対比に基づいて、光ファイバに不具合があるか否かを判定する判定部と、を備える。 A third aspect according to the present disclosure relates to a failure detection device for an optical fiber, and the failure detection device comprises a processing laser light source for emitting a processing laser beam, a detection laser light source for emitting a detection laser beam, and a detection laser beam. A spectroscope for dividing into first and second partial lights, a first light receiver for measuring the intensity of the first partial light of detection laser light, a second partial light of detection laser light and a processing laser light An optical fiber to be transmitted, a second part light partially reflected by the optical fiber toward the optical fiber and a second part transmitted by the reflection / transmission part A second light receiver for measuring the intensity of the transmitted light of the partial light; and a third light receiver for measuring the intensity of the reflected light of the second partial light reflected by the reflection / transmission section and transmitted by the optical fiber; Measured by the first, second and third light receivers The on the basis of the first partial light, and the relative ratio of the intensity of the transmitted light and reflected light of the second partial light comprising, a determination section for determining whether or not there is a defect in the optical fiber, the.
 本開示に係る故障検出装置は、加工レーザ光ではなく、光ファイバにより伝送される安定的な検出レーザ光を用いて、光ファイバの断線をより高い信頼性で検出することができる。 The failure detection device according to the present disclosure can detect breakage of the optical fiber with higher reliability by using the stable detection laser light transmitted by the optical fiber instead of the processing laser light.
図1は、実施の形態1に係る故障検出装置の概略的構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of the failure detection device according to the first embodiment. 図2は、実施の形態2に係る故障検出装置の概略的構成を示すブロック図である。FIG. 2 is a block diagram showing a schematic configuration of a failure detection device according to a second embodiment. 図3は、実施の形態3に係る故障検出装置の概略的構成を示すブロック図である。FIG. 3 is a block diagram showing a schematic configuration of a failure detection device according to the third embodiment.
 まず、本開示の概略的構成を説明する。本開示の各態様に係る故障検出装置は、加工レーザ光を出射する加工レーザ光源と、検出レーザ光を出射する検出レーザ光源と、検出レーザ光を第1および第2の部分光に分割する分光器と、検出レーザ光の第1の部分光の強度を測定する第1の受光器と、検出レーザ光の第2の部分光および加工レーザ光を伝送する光ファイバとを備える。 First, a schematic configuration of the present disclosure will be described. The failure detection device according to each aspect of the present disclosure includes a processing laser light source that emits processing laser light, a detection laser light source that emits detection laser light, and a spectrum that divides the detection laser light into first and second partial lights. And a first light receiver for measuring the intensity of the first partial light of the detection laser light, and an optical fiber for transmitting the second partial light of the detection laser light and the processing laser light.
 第1の態様に係る故障検出装置は、光ファイバにより伝送された第2の部分光の強度を測定する第2の受光器と、第1および第2の受光器で測定された第1および第2の部分光の強度の相対比に基づいて、光ファイバに不具合があるか否かを判定する判定部と、を備える。検出レーザ光は、加工レーザ光に比して、ピーク波長がより短く、半値幅(ピーク波長のピーク値の半分となる波長の幅であり、波長方向への広がり程度を示す値)がより小さく(波長帯域がより狭く)、出力強度がより小さい。また、検出レーザ光(ひいては、第2の部分光)は、加工レーザ光に比して、光ファイバにより伝送されている間に生じる光強度の損失がより小さく、より安定している。光ファイバの伝送損失の波長依存性は、主に光ファイバの材質により異なる。また、検出レーザ光のピーク波長は、主に検出レーザ光の光源により異なる。検出レーザ光の光源を適切に選択することにより、加工レーザ光に比べて光ファイバ中での光強度の損失が小さな検出レーザ光を得ることができる。第1の態様に係る判定部は、安定した検出レーザ光を利用するので、光ファイバの断線等の不具合を高い信頼性で検出するように構成されている。 A failure detection apparatus according to a first aspect comprises a second light receiver for measuring the intensity of a second partial light transmitted by an optical fiber, and the first and second light receivers measured by the first and second light receivers. And a determination unit that determines whether there is a defect in the optical fiber based on the relative ratio of the intensities of the partial light of 2. The detection laser beam has a shorter peak wavelength and a smaller half width (a width of a wavelength which is half the peak value of the peak wavelength, and a value indicating a spread degree in the wavelength direction) compared to the processing laser beam. (The wavelength band is narrower), the output intensity is smaller. Also, the detection laser beam (and thus the second partial beam) has a smaller loss of light intensity that is generated while being transmitted by the optical fiber and is more stable than the processing laser beam. The wavelength dependency of the transmission loss of an optical fiber mainly differs depending on the material of the optical fiber. In addition, the peak wavelength of the detection laser light mainly differs depending on the light source of the detection laser light. By appropriately selecting the light source of the detection laser light, it is possible to obtain the detection laser light having a smaller loss of light intensity in the optical fiber than the processing laser light. Since the determination unit according to the first aspect uses the stable detection laser light, it is configured to detect defects such as disconnection of the optical fiber with high reliability.
 第2の態様に係る故障検出装置は、光ファイバにより伝送された第2の部分光を光ファイバに向けて反射させる反射部と、反射部で反射し、光ファイバにより伝送された第2の部分光の反射光の強度を測定する第3の受光器と、第1および第3の受光器で測定された第1の部分光および第2の部分光の反射光の強度の相対比に基づいて、光ファイバに不具合があるか否かを判定する判定部と、を備える。第2の態様に係る判定部は、安定した検出レーザ光を利用するので、光ファイバの断線等の不具合を高い信頼性で検出するように構成されている。また第3の光検出器から不具合判定部まで、光強度の差異を示す信号を送信するための電気的な配線距離を短くすることができ、故障検出装置の構成をより簡便にすることができる。 The failure detection device according to the second aspect includes a reflection unit that reflects the second partial light transmitted by the optical fiber toward the optical fiber, and a second portion that is reflected by the reflection unit and transmitted by the optical fiber. Based on the relative ratio of the intensities of the reflected light of the first partial light and the second partial light measured by the third light receiver that measures the intensity of the reflected light of the light and the first and third light receivers And a determination unit that determines whether or not there is a defect in the optical fiber. Since the determination unit according to the second aspect uses a stable detection laser beam, it is configured to detect a defect such as a break in the optical fiber with high reliability. In addition, the distance from the third light detector to the electrical wiring for transmitting a signal indicating the difference in light intensity can be shortened from the defect determination unit, and the configuration of the failure detection device can be simplified. .
 第3の態様に係る故障検出装置は、光ファイバにより伝送された第2の部分光を、部分的に光ファイバに向けて反射させるとともに、部分的に透過させる反射透過部と、反射透過部で透過した第2の部分光の透過光の強度を測定する第2の受光器と、反射透過部で反射し、光ファイバにより伝送された第2の部分光の反射光の強度を測定する第3の受光器と、第1、第2および第3の受光器で測定された第1の部分光、および第2の部分光の透過光ならびに反射光の強度の相対比に基づいて、光ファイバに不具合があるか否かを判定する判定部と、を備える。第3の態様に係る判定部は、第1および第2の態様のものを組み合わせたものであり、安定した検出レーザ光を利用するので、光ファイバの断線等の不具合を高い信頼性で検出するように構成されている。 The failure detection device according to the third aspect includes a reflection / transmission part that partially reflects the second partial light transmitted by the optical fiber toward the optical fiber and a reflection / transmission part that partially transmits the partial light. A second light receiver for measuring the intensity of the transmitted second partial light, and a third receiver for measuring the intensity of the second partial light reflected by the reflection / transmission section and transmitted by the optical fiber Optical fiber based on the relative ratio of the transmitted and reflected light intensities of the first partial light and the second partial light measured by the first, second and third light receivers of And a determination unit that determines whether or not there is a problem. The determination unit according to the third aspect is a combination of the first and second aspects, and uses a stable detection laser beam, and thus detects a defect such as a break in the optical fiber with high reliability. Is configured as.
 次に、添付図面を参照して本開示に係る光ファイバの故障検出装置の実施形態を以下説明する。各実施形態の説明において、理解を容易にするために方向を表す用語(たとえば「左側」および「右側」等)を適宜用いるが、これは説明のためのものであって、これらの用語は本開示を限定するものでない。なお、各図面において、光ファイバの故障検出装置の各構成部品の電気的な接続を実線で示し、各構成部品(光源等)からの各レーザ光の進行方向を直線矢印で示す。また、各図面の直線矢印は、各レーザ光を明確にするために、これらの光軸をずらして図示するが、実際には各レーザ光は、光ファイバ内において同一の光軸上に伝送されるものである。 Next, an embodiment of an optical fiber failure detection device according to the present disclosure will be described below with reference to the attached drawings. In the description of each embodiment, terms (for example, “left side” and “right side”, etc.) indicating directions are appropriately used to facilitate understanding, but this is for the purpose of explanation, and these terms are used in the present embodiment. It does not limit the disclosure. In each drawing, the electrical connection of each component of the failure detection device for an optical fiber is indicated by a solid line, and the traveling direction of each laser beam from each component (a light source or the like) is indicated by a linear arrow. Also, although the linear arrows in each drawing are shown with their optical axes shifted to clarify each laser light, in actuality, each laser light is transmitted on the same optical axis in the optical fiber. It is
 [実施の形態1]
 図1を参照しながら、本開示に係る故障検出装置1の実施の形態1を説明する。図1は、本開示に係る故障検出装置1の概略的構成を示すブロック図である。実施の形態1に係る故障検出装置1は、図1に示すように、概略、加工レーザ光源10と、検出レーザ光源20と、ハーフミラー22(分光器)と、光ファイバ30(プロセスファイバまたは伝送ファイバともいう。)と、第1および第2の光検出器24,26(受光器)と、不具合判定部50(単に、判定部ともいう。)とを備える。なお、本開示に係るレーザ加工システムは、故障検出装置1の加工レーザ光源10および不具合判定部50に電気的に接続されたシステム制御部60を備える。レーザ加工システムは、第1の収容室16と、第1の収容室16から離れた第2の収容室18とを有する。第1の収容室16は、加工レーザ光源10、検出レーザ光源20、ハーフミラー12,22、第1の光検出器24、集光レンズ36、および、不具合判定部50を収容する。第2の収容室18は、第2の光検出器26、コリメーションレンズ38、および、ビームスプリッタ40を収容する。光ファイバ30は、第1の収容室16と第2の収容室18とを物理的および光学的に接続する。第1の収容室16は、例えば、装置の筐体または建物の部屋により規定される空間である。第2の収容室18も同様である。
First Embodiment
A first embodiment of a failure detection device 1 according to the present disclosure will be described with reference to FIG. FIG. 1 is a block diagram showing a schematic configuration of a failure detection device 1 according to the present disclosure. The failure detection device 1 according to the first embodiment is, as shown in FIG. 1, roughly: a processing laser light source 10, a detection laser light source 20, a half mirror 22 (spectrometer), and an optical fiber 30 (process fiber or transmission) Fiber), first and second light detectors 24 and 26 (light receivers), and a defect determination unit 50 (also simply referred to as a determination unit). The laser processing system according to the present disclosure includes a system control unit 60 electrically connected to the processing laser light source 10 and the failure determination unit 50 of the failure detection device 1. The laser processing system has a first storage chamber 16 and a second storage chamber 18 separated from the first storage chamber 16. The first accommodation chamber 16 accommodates the processing laser light source 10, the detection laser light source 20, the half mirrors 12 and 22, the first light detector 24, the condenser lens 36, and the defect determination unit 50. The second accommodation chamber 18 accommodates the second light detector 26, the collimation lens 38, and the beam splitter 40. The optical fiber 30 physically and optically connects the first accommodation chamber 16 and the second accommodation chamber 18. The first storage room 16 is, for example, a space defined by a housing of the apparatus or a room of a building. The same applies to the second storage chamber 18.
 加工レーザ光源10は、被加工材(ワーク、図示せず)を加工するための任意の高出力の加工レーザ光Lを出射する。加工は、例えば、溶接、溶断および穿孔である。加工レーザ光源10は、例えばピーク波長が長く、波長帯域が広く(975nm±20nm)、出力強度が数kWオーダ(~10W)の加工レーザ光Lを出射するダイレクト・ダイオード・レーザ(DDL)光源であってもよい。加工レーザ光Lは、図示のように、加工レーザ光Lの光軸に対して45度の向きに配置されたハーフミラー12で反射し、光ファイバ30に配向(案内)される。ハーフミラー12は、加工レーザ光Lの上記波長帯域の光を実質的に全反射させ、後述の検出レーザ光L等のより波長の短い光を実質的に全透過させるものであることが好ましい。 Processing laser light source 10 emits any processing laser light L P of the high output for machining a workpiece (workpiece, not shown). Processing is, for example, welding, melting and drilling. Processing laser light source 10 is, for example, the peak wavelength is long, wide wavelength band (975 nm ± 20 nm), direct diode laser (DDL output intensity emits a processing laser beam L P of several kW order (~ 10 4 W) ) It may be a light source. Processing laser beam L P, as shown, is reflected by the half mirror 12 arranged in the direction of 45 degrees to the optical axis of the processing laser light L P, it is oriented along the optical fiber 30 (guide). Half mirror 12 is substantially totally reflects the light of the wavelength band of the processing laser light L P, that a short light more wavelengths, such as detection laser light L D will be described later is intended to substantially totally transmits preferable.
 検出レーザ光源20は、光ファイバ30の断線等の不具合を検出するための検出レーザ光Lを出射する。検出レーザ光源20は、例えば加工レーザ光Lに比してピーク波長が短く、波長帯域が狭く(600nm±5nm)、出力強度が数百ミリW(~1W)の検出レーザ光を出射するヘリウムネオン(He-Ne)レーザ光源または半導体レーザ光源であってもよい。検出レーザ光Lは、図示のように、その光軸に対して45度の向きに配置された別のハーフミラー22(分光器)の図中左下向きの面Sで、その一部が反射し、その残りが透過する。すなわち検出レーザ光Lは、ハーフミラー22の面Sにより第1の部分光LD1および第2の部分光LD2に分割される。透過した第2の部分光LD2は、加工レーザ光Lと同軸上に光ファイバ30に入射し、反射した第1の部分光LD1は、第1の光検出器24に入射する。 Detection laser light source 20 emits the detection laser beam L D for detecting a defect such as disconnection of the optical fiber 30. Detection laser light source 20, for example, the peak wavelength than the machining laser beam L P is short, the wavelength band is a narrow (600 nm ± 5 nm), helium for emitting a detection laser beam output intensity several hundred millimeters W (~ 1W) It may be a neon (He-Ne) laser light source or a semiconductor laser light source. As shown in the figure, a part of the detection laser beam L D is a surface S 1 downward to the left of another half mirror 22 (spectrometer) disposed at an orientation of 45 degrees with respect to the optical axis. It reflects and the rest is transmitted. That detection laser light L D is divided by the surface S 1 of the half mirror 22 to the first partial light L D1 and second partial light L D2. Second partial light L D2 transmitted is incident on the optical fiber 30 to the machining laser beam L P coaxially, the first partial light L D1 reflected is incident on the first photodetector 24.
 第1の光検出器24は、検出レーザ光Lの第1の部分光LD1を受光し、第1の部分光LD1の光強度を測定するものである。また第1の光検出器24は、測定された第1の部分光LD1の光強度を示す信号Pを不具合判定部50に供給する。 First photodetector 24 receives the first partial light L D1 of the detection laser beam L D, is to measure the light intensity of the first partial light L D1. The first photodetector 24 provides a signal P 1 indicating the light intensity of the first partial light L D1 measured in fault determination unit 50.
 ハーフミラー12と光ファイバ30との間には、集光レンズ36が配置される。集光レンズ36は、検出レーザ光Lの第2の部分光LD2および加工レーザ光Lを光ファイバ30の入射端32に集光させるものである。光ファイバ30の出射端34から出射した検出レーザ光Lの第2の部分光LD2および加工レーザ光Lは、コリメーションレンズ38で平行光に変換された後、光ファイバ30の光軸に対して45度の向きに配置されたビームスプリッタ40に入射される。 A condensing lens 36 is disposed between the half mirror 12 and the optical fiber 30. Condenser lens 36 is for condensing the second partial light L D2 and the processing laser light L P of the detection laser beam L D on the entrance end 32 of the optical fiber 30. Second partial light L D2 and the processing laser light L P of the detection laser light L D emitted from the emission end 34 of the optical fiber 30 is converted into parallel light by a collimation lens 38, the optical axis of the optical fiber 30 The light beam is incident on a beam splitter 40 disposed at 45 ° orientation.
 ビームスプリッタ40は、検出レーザ光Lの第2の部分光LD2と同等の波長帯域の光を第2の光検出器26に向けて実質的に全反射させ、加工レーザ光Lと同等の波長帯域の光を実質的に全透過させるものである。すなわち検出レーザ光Lの第2の部分光LD2は、第2の光検出器26に入射し、加工レーザ光Lは被加工材に照射される。図示されていないが、ビームスプリッタ40と第2の光検出器26との間に、第2の部分光LD2を集光するための別の集光レンズを配置してもよい。 Beam splitter 40 is substantially totally reflects toward the light of the second partial light L D2 equivalent wavelength band of the detection laser beam L D to the second photodetector 26, equivalent to the processing laser beam L P Substantially all the light of the wavelength band of That second partial light L D2 of detection laser light L D is incident on the second photodetector 26, the working laser beam L P is irradiated on the workpiece. Although not shown, another condenser lens may be disposed between the beam splitter 40 and the second light detector 26 for condensing the second partial light LD2 .
 第2の光検出器26は、検出レーザ光Lの第2の部分光LD2を受光し、第2の部分光LD2の光強度を測定するとともに、その光強度を示す信号Pを不具合判定部50に供給するものである。不具合判定部50は、第1および第2の光検出器24,26から供給された光強度を示す信号P,Pを比較して、光ファイバ30に断線等の不具合があったか否かを判定する。不具合判定部50は、例えば信号P,Pの強度比(r=P/P)が閾値Thより小さいとき(r<Th)、光ファイバ30に不具合があったと判断してもよい。光ファイバ30が断線したとき、典型的には、加工レーザ光Lおよび検出レーザ光Lの第2の部分光LD2が光ファイバ30の出射端34から出射されることはなく、信号Pの強度は、ほぼゼロであり、強度比rもゼロである。このとき、不具合判定部50は、光ファイバ30が断線したと判定することができる。なお、不具合判定部50は、信号P,Pの強度比に代えて、信号P,Pの強度差に基づいて不具合を判定してもよい。さらに、不具合判定部50は、信号P,Pの強度比の変化または強度差の変化に基づいて不具合を判定してもよい。要するに、不具合判定部50は、第1および第2の部分光LD1,LD2の強度の相対比に基づいて、光ファイバ30に不具合または不具合の予兆があるか否かを判定し、または、第1および第2の部分光LD1,LD2の強度の相対比の変化または相対差の変化に基づいて、不具合または不具合の予兆を判定する。 Second photodetector 26 receives the second partial light L D2 of detection laser light L D, as well as measuring the light intensity of the second partial light L D2, the signal P 2 indicating the light intensity It is supplied to the defect determination unit 50. The defect determination unit 50 compares the signals P 1 and P 2 indicating the light intensities supplied from the first and second light detectors 24 and 26, and determines whether the optical fiber 30 has a defect such as disconnection. judge. For example, when the intensity ratio (r 1 = P 2 / P 1 ) of the signals P 1 and P 2 is smaller than the threshold Th 1 (r 1 <Th 1 ), the defect determining unit 50 determines that the optical fiber 30 has a defect. You may When the optical fiber 30 is broken, typically, not the second partial light L D2 of the processing laser light L P and the detection laser light L D is emitted from the exit end 34 of optical fiber 30, the signal P The intensity of 2 is approximately zero, and the intensity ratio r 1 is also zero. At this time, the defect determination unit 50 can determine that the optical fiber 30 is broken. Incidentally, fault determination unit 50, instead of the intensity ratio of signals P 1, P 2, may determine the defect based on the intensity difference between the signals P 1, P 2. Furthermore, the malfunction determining unit 50 may determine a malfunction based on a change in intensity ratio of the signals P 1 and P 2 or a change in intensity difference. In short, the defect determination unit 50 determines whether there is a defect or a sign of a defect in the optical fiber 30 based on the relative ratio of the intensities of the first and second partial lights L D1 and L D2 , or Based on a change in relative ratio of intensities of the first and second partial lights L D1 and L D2 or a change in relative difference, a failure or a sign of failure is determined.
 また、光ファイバ30の入射端32または出射端34に汚れ等が付着した場合、信号P,Pの強度比rはゼロとはならないが、不具合判定部50は、信号P,Pの強度比rと適当な閾値Thを比較することにより、加工レーザ光Lが汚れ等に照射されて、光ファイバ30の入射端32または出射端34が過剰に発熱した状態を不具合状態として適切に判定することができる。本開示に係る故障検出装置1は、上記説明した背景技術とは異なり、光ファイバ30とは別体の被覆電線の断線を検出するのではなく、光ファイバ30そのものに伝送されるレーザ光を検出する。また、加工レーザは、波長帯域が広く、出力強度が加工レーザ光源の動作状態または使用時間等に起因して不安定になりやすい。故障検出装置1は、そのような加工レーザではなく、検出レーザ光Lを利用する。したがって、光ファイバ30の断線等の不具合をより高い信頼性で検出または判定することができる。 Also, when dirt or the like adheres to the input end 32 or the output end 34 of the optical fiber 30, the intensity ratio r 1 of the signals P 1 and P 2 does not become zero, but the defect determination unit 50 determines the signals P 1 and P by comparing the intensity ratio of 2 r 1 and a suitable threshold value Th 1, the processing laser light L P is irradiated to the dirt, the state where the incident end 32 or exit end 34 of optical fiber 30 is excessively heating problem It can be properly determined as the state. Unlike the above-described background art, the failure detection device 1 according to the present disclosure detects a laser beam transmitted to the optical fiber 30 itself, instead of detecting a break in a coated wire separate from the optical fiber 30. Do. In addition, the processing laser has a wide wavelength band, and the output intensity is likely to be unstable due to the operating state or use time of the processing laser light source. Failure detection device 1, rather than such a processing laser utilizes a detection laser beam L D. Therefore, defects such as breakage of the optical fiber 30 can be detected or determined with higher reliability.
 また、光ファイバ30に入射される検出レーザ光Lの光強度を示す信号P、および光ファイバから出射される安定した検出レーザ光Lの光強度を示す信号Pの光強度の比、差異、または相対値の変化、に基づいて光ファイバ30の断線等の不具合を高い信頼性で検出することができる。 Further, the ratio of the light intensity of the signal P 1 indicating the light intensity of the detection laser light L D incident on the optical fiber 30 and the light intensity of the signal P 2 indicating the light intensity of the stable detection laser light L D emitted from the optical fiber On the basis of the difference or the change of the relative value, it is possible to detect the failure such as the disconnection of the optical fiber 30 with high reliability.
 不具合判定部50が光ファイバ30に断線または不具合が生じたことを判定したとき、システム制御部60は、高出力の加工レーザ光Lの出射を速やかに停止するように加工レーザ光源10を制御することにより、光ファイバ30から漏れ出た加工レーザ光Lによる周辺装置等の損傷を未然に防止することができる。 When a defect determination unit 50 determines that the disconnection or failure occurs in the optical fiber 30, the system control unit 60 controls the processing laser light source 10 to stop immediately the exit of the processing laser light L P high power by, damages such as a peripheral device by the working laser beam L P leaked from the optical fiber 30 can be prevented.
 [実施の形態2]
 図2を参照しながら、本開示に係る故障検出装置2の実施の形態2を説明する。図2は、本開示に係る故障検出装置2の概略的構成を示すブロック図である。実施の形態2に係る故障検出装置2は、概略、第2の光検出器26の代わりに、光ファイバ30を往復する第2の部分光LD2を検出する第3の光検出器28を備えた点を除き、実施の形態1のものと同様の構成を有するので、重複する点に関する説明を省略する。第3の光検出器28は、第1の収容室16に収容される。
Second Embodiment
A second embodiment of the failure detection device 2 according to the present disclosure will be described with reference to FIG. FIG. 2 is a block diagram showing a schematic configuration of the failure detection device 2 according to the present disclosure. The failure detection device 2 according to the second embodiment generally includes a third light detector 28 for detecting a second partial light LD2 reciprocating in the optical fiber 30, instead of the second light detector 26. Since the configuration is the same as that of the first embodiment except for the above points, the description of the overlapping points is omitted. The third light detector 28 is accommodated in the first accommodation chamber 16.
 実施の形態2に係る故障検出装置2は、実施の形態1と同様、概略、加工レーザ光源10と、検出レーザ光源20と、ハーフミラー22(分光器)と、光ファイバ30と、第1の光検出器24(受光器)と、不具合判定部50(判定部)とを備える。これらの構成および機能は、実施の形態1と同様である。 As in the first embodiment, the failure detection device 2 according to the second embodiment generally includes the processing laser light source 10, the detection laser light source 20, the half mirror 22 (spectrometer), the optical fiber 30, and the first A light detector 24 (light receiver) and a defect determination unit 50 (determination unit) are provided. These configurations and functions are the same as in the first embodiment.
 実施の形態2に係る故障検出装置2は、図2に示すコリメーションレンズ38の右側に図示した、光ファイバ30の光軸に対して垂直に配置された回折格子板42(グレーティングまたは反射部ともいう。)を備える。図2の回折格子板42は、加工レーザ光Lと同等の波長帯域の光を実質的に全透過させ、検出レーザ光Lの第2の部分光LD2と同等の波長帯域の光を光ファイバ30の出射端34に向けて実質的に全反射させるものである。また、図2で示すものとは異なるが、回折格子板42は、検出レーザ光Lの第2の部分光LD2のうち、一定比率の一部を透過させ、残りを光ファイバ30の出射端34に向けて反射させるものであってもよい。このとき、第2の部分光LD2が回折格子板42を透過する透過光と、回折格子板42で反射する反射光との相対的な強度比は一定である。 The failure detection device 2 according to the second embodiment is a diffraction grating plate 42 (also referred to as a grating or a reflection portion) disposed perpendicularly to the optical axis of the optical fiber 30, illustrated on the right side of the collimation lens 38 shown in FIG. ). Diffraction grating plate 42 in FIG. 2, substantially to the total transmitted light of the processing laser light L P equivalent wavelength band, the light of the second partial light L D2 equivalent wavelength band of the detection laser beam L D The light is substantially totally reflected toward the output end 34 of the optical fiber 30. Although different from that shown in Figure 2, the diffraction grating plate 42, of the second partial light L D2 of detection laser light L D, is transmitted through a portion of the constant ratio, emitting the remainder of the optical fiber 30 It may be reflected towards the end 34. At this time, the relative intensity ratio between the transmitted light through which the second partial light LD2 passes through the diffraction grating plate 42 and the reflected light reflected by the diffraction grating plate 42 is constant.
 さらに、光ファイバ30の入射端32から出射した検出レーザ光Lの第2の部分光LD2は、ハーフミラー22(分光器)の図中右上向きの面Sで、その一部が反射し、その残りが透過する。ただし図2において、第2の部分光LD2のうち、ハーフミラー22を透過する透過光を示す直線矢印を省略した。すなわち、検出レーザ光Lの第2の部分光LD2は、光ファイバ30を往復し、その一部の光(第3の部分光LD3)がハーフミラー22の面Sで反射して、第3の光検出器28に入射する。 Moreover, the second partial light L D2 of detection laser light L D emitted from the incident end 32 of the optical fiber 30 is a view in the right upwardly facing surface S 2 of the half mirror 22 (spectrometer), partially reflecting And the rest is transparent. However, in FIG. 2, among the second partial light LD 2 , the linear arrows indicating transmitted light transmitted through the half mirror 22 are omitted. That is, the second partial light L D2 of detection laser light L D is an optical fiber 30 reciprocates, a part of the light (third partial light L D3) is reflected by the surface S 2 of the half mirror 22 , And the third light detector 28.
 第3の光検出器28は、検出レーザ光Lの第3の部分光LD3を受光し、その光強度を測定するものである。また第3の光検出器28は、測定された第3の部分光LD3の光強度を示す信号Pを不具合判定部50に供給する。 Third photodetector 28 receives the third partial light L D3 of detection laser light L D, which measures the light intensity. The third photodetector 28 supplies a signal P 3 indicating the light intensity of the third partial light L D3 measured in fault determination unit 50.
 実施の形態2に係る不具合判定部50は、第1および第3の光検出器24,28から供給された光強度を示す信号P,Pを比較して、光ファイバ30に断線等の不具合があったか否かを判定する。不具合判定部50は、例えば信号P,Pの強度比(r=P/P)が閾値Thより小さいとき(r<Th)、光ファイバ30に不具合があったと判断してもよい。光ファイバ30が断線したとき、典型的には、検出レーザ光Lの第3の部分光LD3が光ファイバ30の入射端32から出射されることはなく、信号Pの強度は、ほぼゼロであり、強度比rもゼロである。このとき、不具合判定部50は、光ファイバ30が断線したと判定することができる。 The defect judging unit 50 according to the second embodiment compares the signals P 1 and P 3 indicating the light intensities supplied from the first and third light detectors 24 and 28 and It is determined whether or not there is a problem. For example, when the intensity ratio (r 2 = P 3 / P 1 ) of the signals P 1 and P 3 is smaller than the threshold value Th 2 (r 2 <Th 2 ), the defect determination unit 50 determines that the optical fiber 30 has a defect. You may When the optical fiber 30 is broken, typically, the third never partial light L D3 is emitted from the incident end 32 of the optical fiber 30, the intensity of the signal P 3 of the detection laser light L D is approximately It is zero, and the intensity ratio r 2 is also zero. At this time, the defect determination unit 50 can determine that the optical fiber 30 is broken.
 また、光ファイバ30の入射端32または出射端34に汚れ等が付着した場合、信号P,Pの強度比rはゼロとはならないが、不具合判定部50は、信号P,Pの強度比rと適当な閾値Thを比較することにより、加工レーザ光Lが汚れ等に照射されて、光ファイバ30の入射端32または出射端34が過剰に発熱した状態を不具合状態として適切に判定することができる。本開示に係る故障検出装置2は、上述のように、光ファイバ30そのものに伝送される安定した検出レーザ光である検出レーザ光Lを利用することにより、光ファイバ30の断線等の不具合をより高い信頼性で検出または判定することができる。 Further, when dirt or the like adheres to the input end 32 or the output end 34 of the optical fiber 30, the intensity ratio r 2 of the signals P 1 and P 3 does not become zero, but the defect determination unit 50 determines the signals P 1 and P by comparing the 3 intensity ratio r 2 with a suitable threshold value Th 2, the processing laser light L P is irradiated to the dirt, the state where the incident end 32 or exit end 34 of optical fiber 30 is excessively heating problem It can be properly determined as the state. Fault detection apparatus 2 according to the present disclosure, as described above, by utilizing the detection laser light L D is a stable detection laser light is transmitted into the optical fiber 30 itself, a problem such as disconnection of the optical fiber 30 It can be detected or determined with higher reliability.
 また、光ファイバ30に入射される検出レーザ光Lの光強度を示す信号P、および光ファイバの入射端と出射端との間を往復して伝送される検出レーザ光Lの光強度を示す信号Pのそれぞれの光強度の比、差異、または相対値の変化、に基づいて光ファイバ30の断線等の不具合を高い信頼性で検出することができる。 In addition, a signal P 1 indicating the light intensity of the detection laser light L D incident on the optical fiber 30 and the light intensity of the detection laser light L D transmitted back and forth between the incident end and the light emission end of the optical fiber can be detected in each of the ratio of light intensity, the difference or change in the relative value, high reliability problem such as disconnection of the optical fiber 30 on the basis of, of the signal P 3 indicating the.
 なお、実施の形態2は、実施の形態1とは異なり、第1および第3の光検出器24,28の両方を不具合判定部50に隣接して配置することができる。具体的には、第1および第3の光検出器24,28は、いずれも第1の収容室16に収容されている。不具合判定部50も、第1の収容室16に収容されている。すなわち実施の形態2に係る第3の光検出器28は、実施の形態1の第2の光検出器26より不具合判定部50の近くに配置することができる。よって、第3の光検出器28から不具合判定部50まで信号Pを送信するための電気的な配線距離を短くすることができ、故障検出装置2の構成をより簡便にすることができる。 In the second embodiment, unlike the first embodiment, both of the first and third photodetectors 24 and 28 can be disposed adjacent to the defect determination unit 50. Specifically, the first and third photodetectors 24 and 28 are both accommodated in the first accommodation chamber 16. The malfunction determination unit 50 is also accommodated in the first accommodation chamber 16. That is, the third light detector 28 according to the second embodiment can be disposed closer to the defect determination unit 50 than the second light detector 26 of the first embodiment. Therefore, the third can be shortened electrical wiring distance for transmitting the signals P 3 to the fault determining unit 50 from the photodetector 28, it is possible to further simplify the configuration of the failure detection device 2.
 このように不具合判定部50が光ファイバ30に断線または不具合が生じたことを判定したとき、システム制御部60は、高出力の加工レーザ光Lの出射を速やかに停止するように加工レーザ光源10を制御することにより、光ファイバ30から漏れ出た加工レーザ光Lによる周辺装置等の損傷を未然に防止することができる。 When such a defect determination unit 50 determines that the disconnection or failure occurs in the optical fiber 30, the system control unit 60, processing laser light source to stop immediately the exit of the processing laser light L P high power by controlling the 10, the damage such as the peripheral device according to the working laser beam L P leaked from the optical fiber 30 can be prevented.
 [実施の形態3]
 図3を参照しながら、本開示に係る故障検出装置3の実施の形態3を説明する。図3は、本開示に係る故障検出装置3の概略的構成を示すブロック図である。実施の形態3に係る故障検出装置3は、概略、実施の形態1の第2の光検出器26に加えて、実施の形態2の第3の光検出器28を備えた点を除き、実施の形態1のものと同様の構成を有するので、重複する点に関する説明を省略する。
Third Embodiment
Third Embodiment A third embodiment of the failure detection device 3 according to the present disclosure will be described with reference to FIG. FIG. 3 is a block diagram showing a schematic configuration of the failure detection device 3 according to the present disclosure. The failure detection apparatus 3 according to the third embodiment is implemented, except that the third light detector 28 of the second embodiment is provided in addition to the second light detector 26 of the first embodiment. Since the configuration is the same as that of the first embodiment, the description of the overlapping point is omitted.
 実施の形態3に係る故障検出装置3は、実施の形態1と同様、概略、加工レーザ光源10と、検出レーザ光源20と、ハーフミラー22(分光器)と、光ファイバ30と、第1の光検出器24(受光器)と、不具合判定部50(判定部)とを備える。これらの構成および機能は、実施の形態1と同様である。 As in the first embodiment, the failure detection device 3 according to the third embodiment generally includes the processing laser light source 10, the detection laser light source 20, the half mirror 22 (spectrometer), the optical fiber 30, and the first A light detector 24 (light receiver) and a defect determination unit 50 (determination unit) are provided. These configurations and functions are the same as in the first embodiment.
 実施の形態3に係る故障検出装置3は、図3に示すコリメーションレンズ38の右側に図示した、光ファイバ30の光軸に対して垂直に配置された回折格子板42(グレーティングまたは透過反射部ともいう。)を備える。図3の回折格子板42は、検出レーザ光Lの第2の部分光LD2のうち、一定比率の一部(透過光LD2T)を透過させ、残り(反射光LD2R)を光ファイバ30の出射端34に向けて反射させるものである。 The failure detection device 3 according to the third embodiment is a diffraction grating plate 42 (both a grating or a transmission / reflection portion) disposed perpendicularly to the optical axis of the optical fiber 30, illustrated on the right side of the collimation lens 38 shown in FIG. Say). The diffraction grating plate 42 of FIG. 3 transmits a part (transmitted light L D2T ) of a constant ratio in the second partial light L D2 of the detection laser light L D , and the remaining (reflected light L D2R ) as an optical fiber The light is reflected toward the emission end 34 of the T.30.
 図3の回折格子板42で透過した透過光LD2Tは、実施の形態1と同様、ビームスプリッタ40を介して、第2の光検出器26に入射する。また、図3の回折格子板42で反射した反射光LD2Rは、再び光ファイバ30に伝送され、実施の形態2と同様、ハーフミラー22(分光器)の図中右上向きの面Sで反射され、第3の光検出器28に入射する。 The transmitted light LD2T transmitted by the diffraction grating plate 42 in FIG. 3 is incident on the second light detector 26 via the beam splitter 40 as in the first embodiment. Further, the reflected light L D2R reflected by the diffraction grating plate 42 in Figure 3, is transmitted back to the optical fiber 30, as in the second embodiment, in the drawing the right upwardly facing surface S 2 of the half mirror 22 (spectrometer) It is reflected and enters the third light detector 28.
 光ファイバ30の出射端34側の検出レーザ光を受光する第2の光検出器26および光ファイバ30の入射端32の検出レーザ光を受光する第3の光検出器28は、実施の形態1および2と同様、検出レーザ光Lの第2の部分光LD2のうちの透過光LD2Tおよび反射光LD2Rを受光し、その光強度を測定し、その光強度を示す信号P,Pを不具合判定部50に供給する。 The second light detector 26 for receiving the detection laser light on the emission end 34 side of the optical fiber 30 and the third light detector 28 for receiving the detection laser light on the incident end 32 of the optical fiber 30 are the first embodiment. and 2 and similar, receives the transmitted light L D2T and the reflected light L D2R of the second partial light L D2 of detection laser light L D, to measure the light intensity, the signal P 2 indicating the light intensity, supplying P 3 to the fault determination unit 50.
 実施の形態3に係る不具合判定部50は、第1、第2および第3の光検出器24,26,28から供給された光強度を示す信号P,P,Pを比較して、光ファイバ30に断線等の不具合があったか否かを判定する。不具合判定部50は、例えば信号P,P,Pの強度比(r=P/P,r=P/P)がそれぞれ閾値Th,Thより小さいとき(r<Th,r<Th)、光ファイバ30に不具合があったと判断してもよい。光ファイバ30が断線したとき、典型的には、第2の部分光LD2のうちの透過光LD2Tおよび反射光LD2Rの光強度は、ほぼゼロであり、強度比r,rもゼロである。このとき、不具合判定部50は、光ファイバ30が断線したと判定することができる。 The defect judging unit 50 according to the third embodiment compares the signals P 1 , P 2 and P 3 indicating the light intensities supplied from the first, second and third photodetectors 24, 26 and 28. It is determined whether the optical fiber 30 has a defect such as a break. For example, when the intensity ratio (r 1 = P 2 / P 1 , r 2 = P 3 / P 1 ) of the signals P 1 , P 2 and P 3 is smaller than the threshold values Th 1 and Th 2 , for example It may be determined that there is a defect in the optical fiber 30 r 1 <Th 1 , r 2 <Th 2 ). When the optical fiber 30 is broken, typically, the light intensity of the transmitted light L D2T and the reflected light L D2R of the second partial light L D2 is substantially zero, the intensity ratio r 1, r 2 also It is zero. At this time, the defect determination unit 50 can determine that the optical fiber 30 is broken.
 また、光ファイバ30の入射端32または出射端34に汚れ等が付着した場合、信号P,P,Pの強度比r,rはゼロとはならないが、不具合判定部50は、信号P,P,Pの強度比r,rと適当な閾値Th,Thとを比較することにより、加工レーザ光Lが汚れ等に照射されて、光ファイバ30の入射端32または出射端34が過剰に発熱した状態を不具合状態として適切に判定することができる。本開示に係る故障検出装置3は、上述のように、光ファイバ30そのものに伝送される安定した検出レーザ光である検出レーザ光Lを利用することにより、光ファイバ30の断線等の不具合をより高い信頼性で検出または判定することができる。 When dirt or the like adheres to the input end 32 or the output end 34 of the optical fiber 30, the intensity ratios r 1 and r 2 of the signals P 1 , P 2 and P 3 do not become zero, but the defect determination unit 50 , by comparing the signals P 1, P 2, the intensity ratio r 1 of P 3, r 2 with an appropriate threshold value Th 1, Th 2, the processing laser light L P is irradiated to the dirt, the optical fiber 30 A state in which the incident end 32 or the outgoing end 34 of the light source generates heat excessively can be appropriately determined as a failure state. Failure detection apparatus 3 according to the present disclosure, as described above, by utilizing the detection laser light L D is a stable detection laser light is transmitted into the optical fiber 30 itself, a problem such as disconnection of the optical fiber 30 It can be detected or determined with higher reliability.
 また、光ファイバ30に入射される検出レーザ光Lの光強度を示す信号P、光ファイバから出射される安定した検出レーザ光Lの光強度を示す信号P、および光ファイバの入射端と出射端との間を往復して伝送される検出レーザ光Lの光強度を示す信号Pのそれぞれの光強度の比、差異、または相対値の変化、に基づいて光ファイバ30の断線等の不具合を高い信頼性で検出することができる。 Further, a signal P 1 indicating the light intensity of the detection laser light L D incident on the optical fiber 30, a signal P 2 indicating the light intensity of the stable detection laser light L D emitted from the optical fiber, and an incidence of the optical fiber the ratio of the respective light intensity of the signal P 3 indicating the light intensity of the detection laser light L D is transmitted back and forth between the end and the exit end, differences or changes in the relative values, of the optical fiber 30 based on, Defects such as disconnection can be detected with high reliability.
 また実施の形態3に係る故障検出装置3は、実施の形態1の第2の光検出器26に加えて、実施の形態2の第3の光検出器28を備えたものであるので、光ファイバ30が断線したか否かを、より確実に判定することができる。 In addition to the second light detector 26 of the first embodiment, the failure detection device 3 according to the third embodiment is provided with the third light detector 28 of the second embodiment. Whether or not the fiber 30 is broken can be determined more reliably.
 このように不具合判定部50が光ファイバ30の断線等を判定すると、システム制御部60は、加工レーザ光源10を制御して、高出力の加工レーザ光Lの出射を直ちに停止し、加工レーザ光Lによる周辺装置等の損傷を未然に防止することができる。 With such fault determination unit 50 determines the disconnection or the like of the optical fiber 30, the system control unit 60 controls the processing laser light source 10, immediately stop the emission of the processing laser light L P high power processing laser damage such as a peripheral device by the light L P can be prevented.
 本開示は、高出力の加工レーザ光を伝送する光ファイバの故障検出装置および故障検出方法に利用することができる。 The present disclosure can be used for an optical fiber failure detection apparatus and failure detection method for transmitting high-power processing laser light.
1,2,3  光ファイバの故障検出装置
10  加工レーザ光源
12  ハーフミラー
,S  ハーフミラーの面
20  検出レーザ光源
22  ハーフミラー
24  第1の光検出器
26  第2の光検出器
28  第3の光検出器
30  光ファイバ
32  入射端
34  出射端
36  集光レンズ
38  コリメーションレンズ
40  ビームスプリッタ
42  回折格子板
50  不具合判定部(判定部)
60  システム制御部
  加工レーザ光
  検出レーザ光
D1  第1の部分光
D2  第2の部分光
D3  第3の部分光
D2R  第2の部分光の反射光
D2T  第2の部分光の透過光
1, 2, 3 Failure detection device 10 for optical fiber 10 Processing laser light source 12 Half mirror S 1 , S 2 Half mirror surface 20 Detection laser light source 22 Half mirror 24 First photodetector 26 Second photodetector 28 First detector 3 photodetector 30 optical fiber 32 incident end 34 outgoing end 36 condensing lens 38 collimation lens 40 beam splitter 42 diffraction grating plate 50 defect determination unit (determination unit)
60 system control unit L P processing laser beam L D detection laser light L D1 first partial light L D2 second partial light L D3 third partial light L D2R the second partial light reflected light L D2T second Partial light transmission

Claims (11)

  1.  加工レーザ光を出射する加工レーザ光源と、
     検出レーザ光を出射する検出レーザ光源と、
     前記検出レーザ光を第1および第2の部分光に分割する分光器と、
     前記検出レーザ光の前記第1の部分光の強度を測定する第1の受光器と、
     前記検出レーザ光の前記第2の部分光および前記加工レーザ光を伝送する光ファイバと、
     前記光ファイバにより伝送された前記第2の部分光の強度を測定する第2の受光器と、
     前記第1および第2の受光器で測定された前記第1および第2の部分光の強度の相対比に基づいて、前記光ファイバに不具合があるか否かを判定する判定部と、を備えた
    故障検出装置。
    A processing laser light source for emitting processing laser light;
    A detection laser light source for emitting detection laser light;
    A spectroscope which splits the detection laser light into first and second partial lights;
    A first light receiver for measuring the intensity of the first partial light of the detection laser light;
    An optical fiber for transmitting the second partial light of the detection laser light and the processing laser light;
    A second light receiver for measuring the intensity of the second partial light transmitted by the optical fiber;
    A determination unit that determines whether the optical fiber has a defect based on the relative ratio of the intensities of the first and second partial lights measured by the first and second light receivers Failure detection device.
  2.  加工レーザ光を出射する加工レーザ光源と、
     検出レーザ光を出射する検出レーザ光源と、
     前記検出レーザ光を第1および第2の部分光に分割する分光器と、
     前記検出レーザ光の前記第1の部分光の強度を測定する第1の受光器と、
     前記検出レーザ光の前記第2の部分光および前記加工レーザ光を伝送する光ファイバと、
     前記光ファイバにより伝送された前記第2の部分光を前記光ファイバに向けて反射させる反射部と、
     前記反射部で反射し、前記光ファイバにより伝送された第2の部分光の反射光の強度を測定する第3の受光器と、
     前記第1および第3の受光器で測定された前記第1の部分光および前記第2の部分光の反射光の強度の相対比に基づいて、前記光ファイバに不具合があるか否かを判定する判定部と、を備えた
    故障検出装置。
    A processing laser light source for emitting processing laser light;
    A detection laser light source for emitting detection laser light;
    A spectroscope which splits the detection laser light into first and second partial lights;
    A first light receiver for measuring the intensity of the first partial light of the detection laser light;
    An optical fiber for transmitting the second partial light of the detection laser light and the processing laser light;
    A reflecting portion for reflecting the second partial light transmitted by the optical fiber toward the optical fiber;
    A third light receiver for measuring the intensity of the reflected light of the second partial light reflected by the reflection section and transmitted by the optical fiber;
    Based on the relative ratio of the intensity of the reflected light of the first partial light and the second partial light measured by the first and third light receivers, it is determined whether the optical fiber has a defect A failure detection device comprising:
  3.  加工レーザ光を出射する加工レーザ光源と、
     検出レーザ光を出射する検出レーザ光源と、
     前記検出レーザ光を第1および第2の部分光に分割する分光器と、
     前記検出レーザ光の前記第1の部分光の強度を測定する第1の受光器と、
     前記検出レーザ光の前記第2の部分光および前記加工レーザ光を伝送する光ファイバと、
     前記光ファイバにより伝送された前記第2の部分光を、部分的に光ファイバに向けて反射させるとともに、部分的に透過させる反射透過部と、
     前記反射透過部で透過した前記第2の部分光の透過光の強度を測定する第2の受光器と、
     前記反射透過部で反射し、前記光ファイバにより伝送された前記第2の部分光の反射光の強度を測定する第3の受光器と、
     前記第1、第2および第3の受光器で測定された前記第1の部分光、および前記第2の部分光の前記透過光ならびに前記反射光の強度の相対比に基づいて、前記光ファイバに不具合があるか否かを判定する判定部と、を備えた
    故障検出装置。
    A processing laser light source for emitting processing laser light;
    A detection laser light source for emitting detection laser light;
    A spectroscope which splits the detection laser light into first and second partial lights;
    A first light receiver for measuring the intensity of the first partial light of the detection laser light;
    An optical fiber for transmitting the second partial light of the detection laser light and the processing laser light;
    A reflective / transmissive portion that partially reflects the second partial light transmitted by the optical fiber toward the optical fiber and partially transmits the second partial light toward the optical fiber;
    A second light receiver for measuring the intensity of the transmitted light of the second partial light transmitted by the reflection / transmission section;
    A third light receiver for measuring the intensity of the reflected light of the second partial light reflected by the reflection / transmission section and transmitted by the optical fiber;
    The optical fiber based on the relative ratio of the intensities of the transmitted light and the reflected light of the first partial light and the second partial light measured by the first, second and third light receivers. And a determination unit that determines whether there is a problem with the unit.
  4.  前記検出レーザ光の前記第2の部分光は、前記加工レーザ光に比して、前記光ファイバにより伝送されている間に生じる光強度の損失がより小さい、
    請求項1~3のいずれか1項に記載の故障検出装置。
    The second partial light of the detection laser light has a smaller loss of light intensity generated while being transmitted by the optical fiber than the processing laser light.
    The failure detection device according to any one of claims 1 to 3.
  5.  前記検出レーザ光は、前記加工レーザ光に比して、ピーク波長がより短く、半値幅がより小さく、かつ出力強度がより小さい、
    請求項1~4のいずれか1項に記載の故障検出装置。
    The detection laser beam has a shorter peak wavelength, a smaller half width, and a smaller output intensity than the processing laser beam.
    The failure detection device according to any one of claims 1 to 4.
  6.  請求項1~5のいずれか1項に記載の前記故障検出装置と、
     前記故障検出装置および前記加工レーザ光源を制御する制御部と、を備えた
    レーザ加工システム。
    The failure detection device according to any one of claims 1 to 5,
    A control unit configured to control the failure detection device and the processing laser light source.
  7.  検出レーザ光を出射する工程と、
     加工レーザ光を出射する工程と、
     前記検出レーザ光を第1および第2の部分光に分割する工程と、
     前記検出レーザ光の前記第1の部分光の強度を測定する工程と、
     前記検出レーザ光の前記第2の部分光および前記加工レーザ光を光ファイバにより伝送する工程と、
     前記光ファイバにより伝送された前記第2の部分光の強度を測定する工程と、
     測定された前記第1および第2の部分光の強度の相対比に基づいて、前記光ファイバに不具合があるか否かを判定する工程と、を備えた
    故障検出方法。
    Emitting a detection laser beam;
    Emitting a processing laser beam;
    Splitting the detection laser light into first and second partial lights;
    Measuring the intensity of the first partial light of the detection laser light;
    Transmitting the second partial light of the detection laser light and the processing laser light by an optical fiber;
    Measuring the intensity of the second partial light transmitted by the optical fiber;
    Determining whether or not the optical fiber is defective based on the measured relative ratio of the intensities of the first and second partial lights.
  8.  検出レーザ光を出射する工程と、
     加工レーザ光を出射する工程と、
     前記検出レーザ光を第1および第2の部分光に分割する工程と、
     前記検出レーザ光の前記第1の部分光の強度を測定する工程と、
     前記検出レーザ光の前記第2の部分光および前記加工レーザ光を光ファイバにより伝送する工程と、
     前記光ファイバにより伝送された前記第2の部分光を前記光ファイバに向けて反射させる工程と、
     前記光ファイバに向けて反射させ、前記光ファイバにより伝送された前記第2の部分光の反射光の強度を測定する工程と、
     測定された前記第1の部分光および前記第2の部分光の前記反射光の強度の相対比に基づいて、光ファイバに不具合があるか否かを判定する工程と、を備えた
    故障検出方法。
    Emitting a detection laser beam;
    Emitting a processing laser beam;
    Splitting the detection laser light into first and second partial lights;
    Measuring the intensity of the first partial light of the detection laser light;
    Transmitting the second partial light of the detection laser light and the processing laser light by an optical fiber;
    Reflecting the second partial light transmitted by the optical fiber toward the optical fiber;
    Measuring towards the optical fiber and measuring the intensity of the reflected light of the second partial light transmitted by the optical fiber;
    Determining whether or not there is a defect in the optical fiber based on the relative ratio of the intensity of the reflected light of the first partial light and the second partial light measured, and a failure detection method comprising .
  9.  検出レーザ光を出射する工程と、
     加工レーザ光を出射する工程と、
     前記検出レーザ光を第1および第2の部分光に分割する工程と、
     前記検出レーザ光の前記第1の部分光の強度を測定する工程と、
     前記検出レーザ光の前記第2の部分光および前記加工レーザ光を光ファイバにより伝送する工程と、
     前記光ファイバにより伝送された前記第2の部分光を、部分的に前記光ファイバに向けて反射させるとともに、部分的に透過させる工程と、
     部分的に透過させた前記第2の部分光の透過光の強度を測定する工程と、
     部分的に反射させた、前記光ファイバにより伝送された前記第2の部分光の反射光の強度を測定する工程と、
     測定された前記第1の部分光、および前記第2の部分光の前記透過光ならびに前記反射光の強度の相対比に基づいて、前記光ファイバに不具合があるか否かを判定する工程と、を備えた
    故障検出方法。
    Emitting a detection laser beam;
    Emitting a processing laser beam;
    Splitting the detection laser light into first and second partial lights;
    Measuring the intensity of the first partial light of the detection laser light;
    Transmitting the second partial light of the detection laser light and the processing laser light by an optical fiber;
    Reflecting the second partial light transmitted by the optical fiber partially toward the optical fiber and partially transmitting the second partial light toward the optical fiber;
    Measuring the intensity of the transmitted light of the partially transmitted second partial light;
    Measuring the intensity of the partially reflected light of the second partial light transmitted by the optical fiber;
    Determining whether the optical fiber has a defect based on the relative ratio of the intensities of the transmitted light and the reflected light of the first partial light and the second partial light measured; Failure detection method provided with
  10.  前記検出レーザ光の前記第2の部分光は、前記加工レーザ光に比して、前記光ファイバにより伝送されている間に生じる光強度の損失がより小さい、請求項7~9のいずれか1項に記載の故障検出方法。 10. The light emitting device according to claim 7, wherein the second partial light of the detection laser light has a smaller loss of light intensity generated while being transmitted by the optical fiber than the processing laser light. The fault detection method according to the above item.
  11.  前記検出レーザ光は、前記加工レーザ光に比して、ピーク波長がより短く、半値幅がより小さく、かつ出力強度がより小さい、
    請求項7~10のいずれか1項に記載の故障検出方法。
    The detection laser beam has a shorter peak wavelength, a smaller half width, and a smaller output intensity than the processing laser beam.
    The failure detection method according to any one of claims 7 to 10.
PCT/JP2018/034716 2017-09-21 2018-09-20 Fault detection device, laser machining system and fault detection method WO2019059249A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019543688A JP7194883B2 (en) 2017-09-21 2018-09-20 FAILURE DETECTION DEVICE, LASER PROCESSING SYSTEM AND FAILURE DETECTION METHOD
CN201880061161.8A CN111164404B (en) 2017-09-21 2018-09-20 Fault detection device, laser processing system, and fault detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-181745 2017-09-21
JP2017181745 2017-09-21

Publications (1)

Publication Number Publication Date
WO2019059249A1 true WO2019059249A1 (en) 2019-03-28

Family

ID=65810929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034716 WO2019059249A1 (en) 2017-09-21 2018-09-20 Fault detection device, laser machining system and fault detection method

Country Status (3)

Country Link
JP (1) JP7194883B2 (en)
CN (1) CN111164404B (en)
WO (1) WO2019059249A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182582A1 (en) * 2020-03-13 2021-09-16 パナソニックIpマネジメント株式会社 Failure detection device and laser machining system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263827A (en) * 1984-06-11 1985-12-27 Nec Corp Monitor device for optical fiber break accident
US4812641A (en) * 1987-02-03 1989-03-14 General Electric Company High power optical fiber failure detection system
JPH05277775A (en) * 1992-03-31 1993-10-26 Matsushita Electric Works Ltd Laser beam machine
JPH10193146A (en) * 1996-12-27 1998-07-28 Amada Co Ltd Method and device for detecting damage or the like of optical fiber in laser beam machine
JPH11344417A (en) * 1998-06-03 1999-12-14 Amada Eng Center Co Ltd Detecting method for fracture and incidence deviation of optical fiber and laser machining apparatus
US6259517B1 (en) * 1998-11-17 2001-07-10 Kaiser Optical Systems, Inc. Optical fiber breakage detection system
JP2007240258A (en) * 2006-03-07 2007-09-20 Shibaura Mechatronics Corp Breakage of delivery fiber detection system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762835B2 (en) * 2002-03-18 2004-07-13 Mississippi State University Fiber optic laser-induced breakdown spectroscopy sensor for molten material analysis
CN203216705U (en) * 2013-04-12 2013-09-25 华北电力大学(保定) Fault detection apparatus for laser and transmission medium
CN103712780B (en) * 2013-12-26 2016-02-24 合肥知常光电科技有限公司 A kind of detection method of inside of optical fibre absorption characteristic and pick-up unit
CN204594663U (en) * 2015-05-27 2015-08-26 广东高聚激光有限公司 A kind of optical fiber fusion quality monitoring system
CN105841924A (en) * 2016-03-17 2016-08-10 北京中科光讯科技有限公司 Method of using FBG demodulation instrument to detect optical cable state and system thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263827A (en) * 1984-06-11 1985-12-27 Nec Corp Monitor device for optical fiber break accident
US4812641A (en) * 1987-02-03 1989-03-14 General Electric Company High power optical fiber failure detection system
JPH05277775A (en) * 1992-03-31 1993-10-26 Matsushita Electric Works Ltd Laser beam machine
JPH10193146A (en) * 1996-12-27 1998-07-28 Amada Co Ltd Method and device for detecting damage or the like of optical fiber in laser beam machine
JPH11344417A (en) * 1998-06-03 1999-12-14 Amada Eng Center Co Ltd Detecting method for fracture and incidence deviation of optical fiber and laser machining apparatus
US6259517B1 (en) * 1998-11-17 2001-07-10 Kaiser Optical Systems, Inc. Optical fiber breakage detection system
JP2007240258A (en) * 2006-03-07 2007-09-20 Shibaura Mechatronics Corp Breakage of delivery fiber detection system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182582A1 (en) * 2020-03-13 2021-09-16 パナソニックIpマネジメント株式会社 Failure detection device and laser machining system
EP4119279A4 (en) * 2020-03-13 2023-10-18 Panasonic Intellectual Property Management Co., Ltd. Failure detection device and laser machining system

Also Published As

Publication number Publication date
CN111164404A (en) 2020-05-15
CN111164404B (en) 2022-05-17
JPWO2019059249A1 (en) 2020-11-05
JP7194883B2 (en) 2022-12-23

Similar Documents

Publication Publication Date Title
EP2756283B1 (en) Apparatus and method for measuring particle size distribution by light scattering
US10017102B2 (en) Lighting device with primary light source and phosphor volume with an evaluation unit
JP4347688B2 (en) Fiber optic equipment
US9116131B2 (en) Method and monitoring device for the detection and monitoring of the contamination of an optical component in a device for laser material processing
US10436714B2 (en) Detecting damage to a converter device
US20190212448A1 (en) Laser processing device and laser processing system
JP2019512170A (en) Optoelectronic components and methods of operating optoelectronic components
WO2019059249A1 (en) Fault detection device, laser machining system and fault detection method
US7193700B2 (en) Apparatus for monitoring the functionality of an optical element
EP4119279A1 (en) Failure detection device and laser machining system
JP5414645B2 (en) Laser processing equipment
TWI623755B (en) Power measuring device for high power fiber laser system
US11607746B2 (en) Laser device and laser processing device using same
JP5096975B2 (en) Gas detector
US4949345A (en) Method and apparatus for reducing the effect of random polarization on the power/energy output of lasers
KR101138454B1 (en) Laser system for output measurement and prevention of exit-hole damage and method of check normality.
JP2017224594A (en) Lighting module comprising laser element
US11179800B2 (en) Laser processing device
JP7472636B2 (en) Light source device, projector and machining device
CN219870231U (en) Detection device for detecting damage of optical fiber and polarization and wavelength beam combination illumination device
US20230025783A1 (en) Laser processing head and laser processing device
WO2024018807A1 (en) Concentration measurement device and method for detecting abnormality in same
JP7150497B2 (en) photoelectric smoke detector
JPH09141476A (en) Laser beam machine with high energy
KR20120114500A (en) Oil mist detector using transmission and absorption of light

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543688

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859132

Country of ref document: EP

Kind code of ref document: A1