JP7150497B2 - photoelectric smoke detector - Google Patents

photoelectric smoke detector Download PDF

Info

Publication number
JP7150497B2
JP7150497B2 JP2018124036A JP2018124036A JP7150497B2 JP 7150497 B2 JP7150497 B2 JP 7150497B2 JP 2018124036 A JP2018124036 A JP 2018124036A JP 2018124036 A JP2018124036 A JP 2018124036A JP 7150497 B2 JP7150497 B2 JP 7150497B2
Authority
JP
Japan
Prior art keywords
light
wavelength
smoke
scattered
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018124036A
Other languages
Japanese (ja)
Other versions
JP2020004162A (en
Inventor
哲也 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2018124036A priority Critical patent/JP7150497B2/en
Publication of JP2020004162A publication Critical patent/JP2020004162A/en
Application granted granted Critical
Publication of JP7150497B2 publication Critical patent/JP7150497B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、受光素子に対する散乱特性が異なるように2波長の光を発して火災による煙の種類を識別して検知する光電式煙感知器に関する。 The present invention relates to a photoelectric smoke sensor that emits light of two wavelengths with different scattering characteristics for a light receiving element to identify and detect the type of smoke caused by a fire.

従来の光電式煙感知器は、火災による煙に限らず、調理の煙やバスルームの湯気等により非火災報を発してしまうことがある。 A conventional photoelectric smoke sensor may emit a non-fire alarm not only for smoke from a fire, but also for smoke from cooking, steam from a bathroom, and the like.

このような火災以外の原因による非火災報を防止するため、2種類の波長の光を検煙空間に照射し、煙による散乱光について異なる波長の光強度の比を求めて煙の種類を判定し、煙識別の確度を高めて非火災報防止を確実なものとする光電式煙感知器が提案されている(特許文献1)。 In order to prevent such non-fire alarms due to causes other than fire, the smoke detection space is irradiated with light of two types of wavelengths, and the light intensity ratio of different wavelengths of light scattered by smoke is obtained to determine the type of smoke. On the other hand, a photoelectric smoke sensor has been proposed that increases the accuracy of smoke discrimination and ensures the prevention of non-fire alarms (Patent Document 1).

特許文献1の光電式煙感知器にあっては、異なる波長の光を発する2つの発光素子につき受光素子に対する散乱角を異ならせることで煙の種類による散乱特性の相違を作り出し、同時に2つの発光素子から発する光の波長を異ならせることで波長に起因した散乱特性の相違を作り出し、この散乱角の相違と波長の相違の相乗効果によって煙の種類による散乱光の光強度に顕著な差を持たせることで煙の識別確度を高め、調理の湯気やタバコの煙による非火災報を防止し、更に火災による煙についても黒煙火災と白煙火災といった燃焼物の種類を確実に識別することを可能にしている。 In the photoelectric smoke sensor of Patent Document 1, two light-emitting elements emitting light of different wavelengths are made to have different scattering angles with respect to a light-receiving element to create a difference in scattering characteristics depending on the type of smoke, and emit two lights at the same time. By varying the wavelength of the light emitted from the element, a difference in the scattering characteristics due to the wavelength is created, and the synergistic effect of the difference in the scattering angle and the difference in the wavelength produces a remarkable difference in the light intensity of the scattered light depending on the type of smoke. By increasing the accuracy of smoke identification, it is possible to prevent non-fire alarms due to steam from cooking and cigarette smoke, and to reliably distinguish between black smoke fires and white smoke fires for smoke from fires. making it possible.

特開2004-325211号公報Japanese Patent Application Laid-Open No. 2004-325211 特開平6-109631号公報JP-A-6-109631 特開平7-12724号公報JP-A-7-12724

しかしながら、このような従来の光電式煙感知器にあっては、2つの発光素子からの光軸が2本となって光が照射される範囲が広くなり、粉塵や結露により内部反射光が増大して非火災報が出力されることから、内部反射光を抑制するための処理や構造が複雑になる問題がある。 However, in such a conventional photoelectric smoke sensor, the two light-emitting elements have two optical axes, which widens the range of light irradiation, and increases the amount of internally reflected light due to dust and condensation. Since a non-fire alarm is output as a result, there is a problem that the processing and structure for suppressing the internally reflected light become complicated.

また、感知器の寿命を決定する部品である発光素子が2つとなるため、その分、故障の確率が大きくなり、製品寿命の低下の懸念があった。 In addition, since there are two light-emitting elements, which are parts that determine the life of the sensor, the probability of failure increases accordingly, and there is a concern that the life of the product will be shortened.

本発明は、異なる波長の光の散乱特性の相違による散乱光を受光して煙の種類を識別する検煙部構造につき、部品数を削減して構造を簡略化し、信頼性を向上可能とする光電式煙感知器を提供することを目的とする。 The present invention reduces the number of parts, simplifies the structure, and improves the reliability of the structure of the smoke detector that receives scattered light due to differences in the scattering characteristics of light of different wavelengths and identifies the type of smoke. It is an object of the present invention to provide a photoelectric smoke detector.

(光電式煙感知器)
本発明は、光電式煙感知器に於いて、
検煙空間に向け、第1波長の光と第1波長とは異なる第2波長の光を個別に発する発光素子と、
発光素子から発せられる第1波長及び第2波長の光を直接受光しない位置に設けられ、第1波長及び第2波長の双方感度を有し、検煙空間に存在する粒子による第1波長及び第2波長の散乱光を受光する受光素子と、
検煙空間を挟んで発光素子に対向した位置に配置され、第1波長及び第2波長の光の何れか一方の波長の光検煙空間へ向けて反射し、他方の波長の光は検煙空間へ向けて反射しない反射鏡と、
を備えたことを特徴とする。
(Photoelectric smoke detector)
The present invention is a photoelectric smoke sensor,
a light emitting element that separately emits light of a first wavelength and light of a second wavelength different from the first wavelength toward the smoke detection space;
It is provided at a position that does not directly receive the light of the first wavelength and the second wavelength emitted from the light emitting element, has sensitivity to both the first wavelength and the second wavelength, and is sensitive to the first wavelength and the second wavelength due to particles present in the smoke detection space. a light receiving element that receives the scattered light of the second wavelength ;
It is arranged at a position facing the light emitting element across the smoke detection space, and reflects light of either one of the light of the first wavelength and the light of the second wavelength toward the smoke detection space, and detects the light of the other wavelength. a reflector that does not reflect toward the smoke space ;
characterized by comprising

(検煙部構造1)
発光素子から発せられる第1波長及び第2波長の光の光軸と受光素子で受光する散乱光の光軸の交点、発光素及び受光素子の3点により形成される交点の角度が30°~70°の範囲の所定角度となるように発光素子と受光素子とが配置され、
反射鏡は第1波長の光を検煙空間へ向けて反射し、第2波長の光は検煙空間へ向けて反射せず、
発光素子から発せられる第1波長及び第2波長の光が検煙空間に存在する粒子により受光素子に向けて散乱する散乱光の第1散乱角を110°~150°の範囲に定め、反射鏡により検煙空間へ向けて反射された第1波長の光が検煙空間に存在する粒子により受光素子に向けて散乱する散乱光の第2散乱角を30°~70°の範囲に定める。
(Smoke detector structure 1)
The intersection of the optical axes of the light of the first and second wavelengths emitted from the light-emitting element and the optical axis of the scattered light received by the light-receiving element, and the intersection formed by the three points of the light-emitting element and the light-receiving element have an angle of 30° to 30°. The light- emitting element and the light-receiving element are arranged at a predetermined angle in the range of 70°,
the reflecting mirror reflects the light of the first wavelength toward the smoke detection space and does not reflect the light of the second wavelength toward the smoke detection space;
The light of the first wavelength and the second wavelength emitted from the light emitting element is scattered toward the light receiving element by the particles present in the smoke detection space. The second scattering angle of the light of the first wavelength reflected toward the smoke detection space by is scattered toward the light receiving element by the particles present in the smoke detection space is set within the range of 30° to 70°.

(検煙部構造1による煙の種類の識別)
検煙部構造1にあっては、受光素子で受光された、発光素子から発せられた第1波長の光が検煙空間に存在する粒子により散乱した散乱光の散乱光量と反射鏡で反射された第1波長の光が検煙空間に存在する粒子により散乱した散乱光散乱光量との合計散乱光量、発光素子から発せられた第2波長の光が検煙空間に存在する粒子により散乱した散乱光散乱光量とに基づき、煙の種類を識別し、識別された煙の種類に応じ火災判断を行う。
(Smoke type identification by smoke detector structure 1)
In the smoke detection section structure 1, the light of the first wavelength emitted from the light emitting element and received by the light receiving element is scattered by the particles present in the smoke detection space and reflected by the reflecting mirror. The total scattered light amount of the light of the first wavelength scattered by the particles present in the smoke detection space and the scattered light amount of the scattered light , and the light of the second wavelength emitted from the light emitting element scattered by the particles present in the smoke detection space The type of smoke is identified based on the amount of scattered light and the amount of scattered light obtained, and a fire judgment is made according to the identified type of smoke.

(検煙部構造2)
発光素子から発せられる第1波長及び第2波長の光の光軸と受光素子で受光する散乱光の光軸の交点、発光素及び受光素子の3点により形成される交点の角度が110°~150°の範囲の所定角度となるように発光素子と受光素子とが配置され、
反射鏡は第2波長の光を検煙空間へ向けて反射し、第1波長の光を検煙空間へ向けて反射せず、
発光素子から発せられる第1波長及び第2波長の光が検煙空間に存在する粒子により受光素子に向けて散乱する散乱光の第1散乱角を30°~70°の範囲に定め、反射鏡により検煙空間へ向けて反射された第1波長の光が検煙空間に存在する粒子により受光素子に向けて散乱する散乱光の第2散乱角を110°~150°の範囲に定める。
(Smoke detector structure 2)
The intersection of the optical axes of the light of the first and second wavelengths emitted from the light-emitting element and the optical axis of the scattered light received by the light-receiving element, and the intersection formed by the three points of the light-emitting element and the light-receiving element form an angle of 110° to 110°. The light- emitting element and the light-receiving element are arranged at a predetermined angle in the range of 150°,
the reflecting mirror reflects the light of the second wavelength toward the smoke detection space and does not reflect the light of the first wavelength toward the smoke detection space;
The light of the first wavelength and the second wavelength emitted from the light emitting element is scattered toward the light receiving element by the particles present in the smoke detection space. The second scattering angle of the light of the first wavelength reflected toward the smoke detection space by scattering toward the light-receiving element by particles present in the smoke detection space is set within the range of 110° to 150°.

(検煙部構造2における煙の種類の識別)
検煙部構造2にあっては、受光素子で受光された、発光素子から発せられた第1波長の光が検煙空間に存在する粒子により散乱した散乱光の散乱光量、発光素子から発せられた第2波長の光が検煙空間に存在する粒子により散乱した散乱光の散乱光量と反射鏡で反射された第2波長の光が検煙空間に存在する粒子により散乱した散乱光の散乱光量との合計散乱光量とに基づき、煙の種類を識別し、識別された煙の種類に応じ火災判断を行う。
(Identification of types of smoke in smoke detector structure 2)
In the smoke detection section structure 2, the light of the first wavelength received by the light receiving element and emitted from the light emitting element is scattered by particles existing in the smoke detection space, and the amount of scattered light emitted from the light emitting element Scattered light amount of the second wavelength light scattered by particles existing in the smoke detection space and scattered light scattered by the second wavelength light reflected by the reflecting mirror Based on the amount of light and the total amount of scattered light, the type of smoke is identified, and a fire judgment is made according to the identified type of smoke.

(第1波長と第2波長の大小関係)
発光素子から発せられる第1波長の光に対し、第2波長の光の波長を短くする。例えば、発光素子から発せられる第1波長の光の中心波長を800nm以上に定め、第2波長の光の中心波長を600nm以下に定める。
(Size relationship between the first wavelength and the second wavelength)
The wavelength of the light of the second wavelength is made shorter than the light of the first wavelength emitted from the light emitting element. For example, the center wavelength of the light of the first wavelength emitted from the light emitting element is set to 800 nm or more, and the center wavelength of the light of the second wavelength is set to 600 nm or less.

(ダイクロイックミラー)
反射鏡をダイクロイックミラーとする。
(dichroic mirror)
A dichroic mirror is used as the reflecting mirror.

(2色LED)
発光素子を、第1波長の光を発する第1発光チップと第2波長の光を発する第2発光チップを備え、第1波長と第2波長の光を間欠的に発する2色LEDとする。
(2-color LED)
The light-emitting element is a two-color LED that intermittently emits light of the first and second wavelengths, having a first light-emitting chip that emits light of a first wavelength and a second light-emitting chip that emits light of a second wavelength.

(発光制御)
通常の監視状態では、発光素子から第1波長の光を発するように駆動し、受光素子所定受光が得られた際に、発光素子から第2波長の光を発するように駆動する。

(light emission control)
In a normal monitoring state, the light emitting element is driven to emit light of the first wavelength, and when a predetermined amount of light is received by the light receiving element , the light emitting element is driven to emit light of the second wavelength.

(基本的な効果)
本発明は、光電式煙感知器に於いて、検煙空間に向け、第1波長の光と第1波長とは異なる第2波長の光を個別に発する発光素子と、発光素子から発せられる第1波長及び第2波長の光を直接受光しない位置に設けられ、第1波長及び第2波長の双方感度を有し、検煙空間に存在する粒子による第1波長及び第2波長の散乱光を受光する受光素子と、検煙空間を挟んで発光素子に対向した位置に配置され、第1波長及び第2波長の光を検煙空間へ向けて反射し、他方の波長の光は検煙空間へ向けて反射しない反射鏡とを備えたため、検煙空間に対する発光素子からの光軸が1本となり、光が照射される範囲が限定され、粉塵や結露による内部反射光が低減して非火災報が抑制され、構造も簡単になることでコストも低減できる。
(basic effect)
In a photoelectric smoke sensor, the present invention comprises a light-emitting element that individually emits light of a first wavelength and light of a second wavelength different from the first wavelength toward a smoke detection space; Provided at a position that does not directly receive light of the first and second wavelengths, having sensitivity to both the first and second wavelengths, and scattered light of the first and second wavelengths caused by particles present in the smoke detection space and a light- receiving element that receives the smoke detection space, and is arranged at a position facing the light-emitting element across the smoke detection space, and reflects the light of the first wavelength and the second wavelength toward the smoke detection space, and the light of the other wavelength is the smoke detection space. Since it is equipped with a reflector that does not reflect toward the space, the light axis from the light emitting element to the smoke detection space becomes one, the range of light irradiation is limited, and the internally reflected light due to dust and condensation is reduced and non-existent. Fire alarms can be suppressed and the structure can be simplified, thereby reducing costs.

また、感知器の寿命を決める部品である発光素子が1つとなるため、故障確率が小さくなり、信頼性を高めることができ、環境負荷を低減できる。 In addition, since only one light-emitting element, which is a component that determines the life of the sensor, is used, the probability of failure is reduced, the reliability can be improved, and the environmental load can be reduced.

(検煙部構造1の効果)
また、検煙部構造1にあっては、発光素子から発せられる第1波長及び第2波長の光の光軸と受光素子で受光する散乱光の光軸の交点、発光素及び受光素子の3点により形成される交点の角度が30°~70°の範囲の所定角度となるように発光素子と受光素子とが配置され、反射鏡は第1波長の光を検煙空間へ向けて反射し、第2波長の光は検煙空間へ向けて反射せず、発光素子から発せられる第1波長及び第2波長の光が検煙空間に存在する粒子により受光素子に向けて散乱する散乱光の第1散乱角を110°~150°の範囲に定め、反射鏡により検煙空間へ向けて反射された第1波長の光が検煙空間に存在する粒子により受光素子に向けて散乱する散乱光の第2散乱角を30°~70°の範囲に定められ、更に、受光素子で受光された、発光素子から発せられた第1波長の光が検煙空間に存在する粒子により散乱した散乱光の散乱光量と反射鏡で反射された第1波長の光が検煙空間に存在する粒子により散乱した散乱光散乱光量との合計散乱光量、発光素子から発せられた第2波長の光が検煙空間に存在する粒子により散乱した散乱光散乱光量とに基づき、煙の種類を識別し、識別された煙の種類に応じ火災判断を行うようにしたため、発光素子から発した第1波長の光については、発光素子から発せられる光に基づく第1波長の散乱光と散乱角を異ならせた反射鏡で検煙空間へ向けて反射した光に基づく第1波長の散乱光との合成散乱光を受光素子で受光し、発光素子からの第2波長の光については、発光素子から発せられる光に基づく第2波長の散乱光を受光素子で受光することで、煙の種類による散乱特性の相違を作り出し、同時に発光素子から発する光の波長を異ならせることで波長に起因した散乱特性の相違を作り出し、この散乱角の相違と波長の相違の相乗効果によって煙の種類による散乱光の光強度に顕著な差を持たせることで煙の識別確度を高め、火災による煙から燻焼と燃焼を識別することにより、識別以降の火災対応、制御が異なり、更に、湯気やタバコは白煙よりもさらに大きな粒子である場合が多いことで、非火災要因として識別することにより、調理の湯気やタバコの煙による非火災報を確実に防止できる。
(Effect of smoke detector structure 1)
Further, in the smoke detector structure 1, the intersection of the optical axis of the light of the first wavelength and the second wavelength emitted from the light emitting element and the optical axis of the scattered light received by the light receiving element, the light emitting element and the light receiving element 3 The light- emitting element and the light-receiving element are arranged so that the intersection formed by the points has a predetermined angle in the range of 30° to 70°, and the reflecting mirror reflects the light of the first wavelength toward the smoke detection space. , The light of the second wavelength is not reflected toward the smoke detection space, and the light of the first and second wavelengths emitted from the light emitting element is scattered toward the light receiving element by particles existing in the smoke detection space. The first scattering angle is set in the range of 110° to 150°, and the light of the first wavelength reflected by the reflecting mirror toward the smoke detection space is scattered toward the light receiving element by particles present in the smoke detection space. The second scattering angle of is set in the range of 30 ° to 70 °, and the light of the first wavelength emitted from the light emitting element, which is received by the light receiving element, is scattered by particles present in the smoke detection space. Scattered light The total scattered light amount of the scattered light amount and the scattered light amount of the first wavelength reflected by the reflecting mirror and the scattered light amount scattered by the particles existing in the smoke detection space, and the second wavelength light emitted from the light emitting element Based on the amount of scattered light scattered by particles present in the smoke detection space, the type of smoke is identified, and a fire judgment is made according to the identified type of smoke. Therefore, the first wavelength emitted from the light emitting element For the light of , the scattered light of the first wavelength based on the light emitted from the light emitting element and the scattered light of the first wavelength based on the light reflected toward the smoke detection space by the reflecting mirrors with different scattering angles are scattered. Light is received by the light-receiving element, and for the light of the second wavelength from the light- emitting element, the scattered light of the second wavelength based on the light emitted from the light-emitting element is received by the light-receiving element. By creating a difference and at the same time varying the wavelength of the light emitted from the light emitting element, a difference in scattering characteristics due to the wavelength is created, and the synergistic effect of the difference in scattering angle and the difference in wavelength changes the light intensity of the scattered light depending on the type of smoke. By making a significant difference in the smoke identification accuracy, by distinguishing smoldering and combustion from fire smoke, fire response and control after identification are different, and steam and cigarettes are more important than white smoke. Furthermore, since they are often large particles, by identifying them as non-fire factors, it is possible to reliably prevent non-fire alarms due to steam from cooking or smoke from cigarettes.

(検煙部構造2の効果)
また、検煙部構造2にあっては、発光素子から発せられる第1波長及び第2波長の光の光軸と受光素子で受光する散乱光の光軸の交点、発光素及び受光素子の3点により形成される交点の角度が110°~150°の範囲の所定角度となるように発光素子と受光素子とが配置され、反射鏡は第2波長の光を検煙空間へ向けて反射し、第1波長の光を検煙空間へ向けて反射せず、発光素子から発せられる第1波長及び第2波長の光が検煙空間に存在する粒子により受光素子に向けて散乱する散乱光の第1散乱角を30°~70°の範囲に定め、反射鏡により検煙空間へ向けて反射された第1波長の光が検煙空間に存在する粒子により受光素子に向けて散乱する散乱光の第2散乱角を110°~150°の範囲に定め、更に、受光素子で受光された、発光素子から発せられた第1波長の光が検煙空間に存在する粒子により散乱した散乱光の散乱光量、発光素子から発せられた第2波長の光が検煙空間に存在する粒子により散乱した散乱光の散乱光量と反射鏡で反射された第2波長の光が検煙空間に存在する粒子により散乱した散乱光の散乱光量との合計散乱光量とに基づき、煙の種類を識別し、識別された煙の種類に応じ火災判断を行うようにしたため、発光素子からの第1波長の光については、発光素子から発せられる光に基づく第1波長の散乱光を受光素子で受光し、発光素子から発した第2波長の光については、発光素子から発せられる光に基づく第2波長の散乱光と反射鏡で検煙空間へ向けて反射した光に基づく第2波長の散乱光との合成散乱光を受光素子で受光することで、煙の種類による散乱特性の相違を作り出し、同時に発光素子から発する光の波長を異ならせることで波長に起因した散乱特性の相違を作り出し、この散乱角の相違と波長の相違の相乗効果によって煙の種類による散乱光の光強度に顕著な差を持たせることで煙の識別確度を高め、調理の湯気やタバコの煙による非火災報を防止し、更に火災による煙についても黒煙火災と白煙火災といった燃焼物の種類を確実に識別することができる。
(Effect of smoke detector structure 2)
In the smoke detector structure 2, the intersection of the optical axis of the light of the first and second wavelengths emitted from the light emitting element and the optical axis of the scattered light received by the light receiving element, the light emitting element and the light receiving element The light- emitting element and the light-receiving element are arranged so that the intersection formed by the points has a predetermined angle in the range of 110° to 150°, and the reflecting mirror reflects the light of the second wavelength toward the smoke detection space. , light of the first wavelength is not reflected toward the smoke detection space, and light of the first and second wavelengths emitted from the light emitting element is scattered toward the light receiving element by particles present in the smoke detection space. The first scattering angle is set in the range of 30° to 70°, and the light of the first wavelength reflected by the reflecting mirror toward the smoke detection space is scattered toward the light receiving element by particles present in the smoke detection space. The second scattering angle of is set in the range of 110 ° to 150 °, and the light of the first wavelength emitted from the light emitting element, which is received by the light receiving element, is scattered by particles present in the smoke detection space . The amount of scattered light , the amount of scattered light of the second wavelength light emitted from the light emitting element scattered by the particles present in the smoke detection space, and the second wavelength light reflected by the reflecting mirror exist in the smoke detection space. Based on the scattered light amount of the scattered light scattered by the particles and the total scattered light amount, the type of smoke is identified, and the fire judgment is performed according to the identified smoke type. For the light of , the light receiving element receives the scattered light of the first wavelength based on the light emitted from the light emitting element, and for the light of the second wavelength emitted from the light emitting element, the second wavelength based on the light emitted from the light emitting element By receiving the synthesized scattered light of the scattered light of the second wavelength based on the light reflected toward the smoke detection space by the reflecting mirror and the scattered light of the second wavelength with the light receiving element, a difference in scattering characteristics depending on the type of smoke is created, and at the same time By varying the wavelength of the light emitted from the light-emitting element, a difference in the scattering characteristics due to the wavelength is created, and the synergistic effect of the difference in the scattering angle and the difference in the wavelength produces a remarkable difference in the light intensity of the scattered light depending on the type of smoke. To increase the identification accuracy of smoke, prevent non-fire alarms due to steam from cooking and smoke from cigarettes, and to reliably identify types of burning materials such as black smoke fire and white smoke fire with respect to smoke caused by fire. can be done.

(第1波長と第2波長の大小関係による効果)
また、発光素子から発せられる第1波長の光に対し、第2波長の光の波長を短くし、例えば、発光素子から発せられる第1波長の光の中心波長を800nm以上に定め、第2波長の光の中心波長を600nm以下に定めるようにしたため、発光素子から発する光の波長を十分に異ならせることで波長に起因した散乱特性の相違を作り出し、煙の種類による散乱光の光強度に顕著な差を持たせることができる。
(Effect of size relationship between first wavelength and second wavelength)
Further, the wavelength of the light of the second wavelength is shortened with respect to the light of the first wavelength emitted from the light emitting element, for example, the center wavelength of the light of the first wavelength emitted from the light emitting element is set to 800 nm or more, and the second wavelength is Since the central wavelength of the light is set to 600 nm or less, the wavelength of the light emitted from the light emitting element is sufficiently different to create a difference in the scattering characteristics due to the wavelength, and the light intensity of the scattered light depending on the type of smoke is remarkable. can make a big difference.

(ダイクロイックミラーの効果)
また、反射鏡をダイクロイックミラーとしたため、誘電体の多層膜などの薄膜を鏡面に形成させることで、発光素子からの第1波長又は第2波長の光を効率よく反射して仮想的な発光素子として利用できる。また、反射により光量を確保できるため、反射する波長の発光量が従来より少なくて済み、省電力化できる。
(Effect of dichroic mirror)
In addition, since the reflector is a dichroic mirror, by forming a thin film such as a dielectric multilayer film on the mirror surface, the light of the first wavelength or the second wavelength from the light emitting element can be efficiently reflected to form a virtual light emitting element. available as In addition, since the amount of light can be secured by reflection, the amount of light emitted at the wavelength to be reflected can be less than in the conventional case, and power can be saved.

(2色LEDの効果)
また、発光素子を、第1波長の光を発する第1発光チップと第2波長の光を発する第2発光チップを備え、第1波長と第2波長の光を間欠的に発する2色LEDとしたため、第1発光チップと第2発光チップは個別に駆動することができ、これにより第1波長の光と第2波長の光を間欠的に発することができる。また、2色LEDを使用したことで、波長の異なるLEDを2個配置した場合に比べ、部品点数の低減と省スペース化及び省電力化を図ることができる。
(Effect of two-color LED)
Also, the light-emitting element is a two-color LED that includes a first light-emitting chip that emits light of a first wavelength and a second light-emitting chip that emits light of a second wavelength, and that intermittently emits light of the first and second wavelengths. Therefore, the first light-emitting chip and the second light-emitting chip can be driven separately, thereby intermittently emitting light of the first wavelength and light of the second wavelength. In addition, by using two-color LEDs, it is possible to reduce the number of parts, save space, and save power compared to the case where two LEDs with different wavelengths are arranged.

(発光制御の効果)
また、通常の監視状態では、発光素子から第1波長の光を発するように駆動し、受光素子所定受光が得られた際に、発光素子から第2波長の光を発するように駆動するようにしたため、通常の監視状態での消費電力を低減できる。
(Effect of light emission control)
In a normal monitoring state, the light emitting element is driven to emit light of the first wavelength, and when a predetermined amount of light is received by the light receiving element , the light emitting element is driven to emit light of the second wavelength. As a result, power consumption in the normal monitoring state can be reduced.

本発明による光電式煙感知器の回路構成を示したブロック図1 is a block diagram showing the circuit configuration of a photoelectric smoke sensor according to the present invention; 図1における検煙部構造の第1実施形態を示した説明図Explanatory diagram showing the first embodiment of the smoke detector structure in FIG. 綿灯芯とケロシンを燃焼した場合の煙に対する図2の検煙部構造により検出された受光出力とその比率を示した説明図Explanatory diagram showing the light receiving output detected by the structure of the smoke detection part in FIG. 図2の検煙部構造を用いた図1の回路ブロックによる火災感知制御を示したフローチャートFlowchart showing fire detection control by the circuit block of FIG. 1 using the smoke detector structure of FIG. 図1における検煙部構造の第2実施形態を示した説明図Explanatory drawing showing the second embodiment of the smoke detector structure in FIG. 綿灯芯とケロシンを燃焼した場合の煙に対する図5の検煙部構造により検出された受光出力とその比率を示した説明図Explanatory diagram showing the light receiving output detected by the structure of the smoke detection part in FIG.

[光電式煙感知器の回路構成]
図1は本発明による光電式煙感知器の回路構成を示したブロック図である。図1に示すように、本実施形態の光電式煙感知器10は、CPU、メモリ及び各種の入出力ポートを備えたコンピュータ回路で構成される制御部12、S端子とSC端子に接続された伝送線11a,11bを介して受信機との間で信号を送受信する伝送部14、伝送線11a,11bを介して供給された電源電圧を所定の安定化電圧に変換して出力する電源部15、発光駆動部16、検煙部18、増幅回路部28で構成される。
[Circuit Configuration of Photoelectric Smoke Detector]
FIG. 1 is a block diagram showing the circuit configuration of a photoelectric smoke sensor according to the present invention. As shown in FIG. 1, a photoelectric smoke sensor 10 of this embodiment is connected to a control unit 12, which is composed of a computer circuit having a CPU, a memory, and various input/output ports, an S terminal and an SC terminal. A transmission unit 14 that transmits and receives signals to and from a receiver via the transmission lines 11a and 11b, and a power supply unit 15 that converts the power supply voltage supplied via the transmission lines 11a and 11b into a predetermined stabilized voltage and outputs the voltage. , a light emission drive unit 16, a smoke detection unit 18, and an amplifier circuit unit 28.

検煙部18には発光素子20が設けられる。本実施形態にあっては、発光素子20として2色LED(2色発光ダイオード)を使用しており、2色LEDは、第1波長λ1の光を発する第1発光チップ22と、第1波長λ1とは異なる第2波長λ2の光を発する第2発光チップ24を備え、発光駆動部16により第1発光チップ22と第2発光チップ24を個別に駆動することにより、第1波長λ1の光又は第2波長λ2の光を発することができる。 A light-emitting element 20 is provided in the smoke detector 18 . In this embodiment, a two-color LED (two-color light-emitting diode) is used as the light-emitting element 20. The two-color LED includes a first light-emitting chip 22 that emits light of the first wavelength λ1, A second light emitting chip 24 that emits light of a second wavelength λ2 different from λ1 is provided. Alternatively, it can emit light of the second wavelength λ2.

受光素子26は発光素子20から発せられる第1波長λ1の光と第2波長λ2の光の双方に感度を持つフォトダイオード(PD)が使用される。 As the light receiving element 26, a photodiode (PD) having sensitivity to both the light of the first wavelength λ1 and the light of the second wavelength λ2 emitted from the light emitting element 20 is used.

[検煙部の第1実施形態]
図2は図1における検煙部の構造の第1実施形態を示した説明図であり、発光素子20と受光素子26の交差角θ2を90°以下とした場合である。
[First embodiment of smoke detector]
FIG. 2 is an explanatory view showing a first embodiment of the structure of the smoke detecting section in FIG. 1, where the crossing angle θ2 between the light emitting element 20 and the light receiving element 26 is 90° or less.

図2に示すように、外部からの煙が流入する検煙部18内には発光素子20、受光素子26及び波長選択性をもつ反射鏡として機能するダイクロイックミラー30が配置されている。 As shown in FIG. 2, a light-emitting element 20, a light-receiving element 26, and a dichroic mirror 30 functioning as a reflecting mirror having wavelength selectivity are arranged in the smoke detector 18 into which smoke from the outside flows.

2色LEDを用いた発光素子20は、第1発光チップ22から第1波長λ1の光を光軸20aの方向に照射し、また、第2発光チップ24から第2波長λ2の光を光軸20aの方向に照射する。 A light-emitting element 20 using a two-color LED emits light of a first wavelength λ1 from a first light-emitting chip 22 in the direction of an optical axis 20a, and emits light of a second wavelength λ2 from a second light-emitting chip 24 along an optical axis 20a. Irradiate in the direction of 20a.

発光素子20が発する第1波長λ1の光は中心波長を800nm以上に定めており、本実施形態ではλ1=900nmに設定している。また、発光素子20が発する第2波長λ2の光は中心波長を600nm以下に定めており、本実施形態ではλ2=500nmに設定している。 The light of the first wavelength λ1 emitted by the light emitting element 20 is set to have a center wavelength of 800 nm or more, and in this embodiment, λ1 is set to 900 nm. Further, the light of the second wavelength λ2 emitted by the light emitting element 20 is set to have a center wavelength of 600 nm or less, and in this embodiment, λ2 is set to 500 nm.

受光素子26は発光素子20からの光を直接受けることのない位置に配置され、発光素子20の光軸20aと受光素子26の光軸26aの交差角θ2は30°~70°の範囲の所定角度であり、本実施形態にあっては、交差角θ2を例えばθ2=30°に設定している。 The light receiving element 26 is arranged at a position where it does not directly receive the light from the light emitting element 20, and the intersection angle θ2 between the optical axis 20a of the light emitting element 20 and the optical axis 26a of the light receiving element 26 is a predetermined range of 30° to 70°. In this embodiment, the intersection angle θ2 is set to θ2=30°, for example.

ダイクロイックミラー30は発光素子20からの光軸20a上で検煙点Pを介して対向した位置に配置され、本実施形態にあっては、発光素子20の第1発光チップ22から発せられた第1波長λ1の光のみを反射するように構成されている。 The dichroic mirror 30 is arranged on the optical axis 20a from the light emitting element 20 at a position opposite to the smoke detecting point P. In this embodiment, the first light emitting chip 22 of the light emitting element 20 It is configured to reflect only light of one wavelength λ1.

受光素子26は発光素子20から発せられる第1波長λ1=900nmの光と第2波長λ2=500nmの光の双方に感度をもつ。発光素子20が第1波長λ1の光を発すると、検煙部18に流入した煙による散乱光が受光素子26で受光され、この場合の散乱角θ1はθ1=150°となり、受光素子26は後方散乱光を受光する。 The light receiving element 26 is sensitive to both the light of the first wavelength λ1=900 nm and the light of the second wavelength λ2=500 nm emitted from the light emitting element 20. FIG. When the light emitting element 20 emits light of the first wavelength λ1, the light scattered by the smoke flowing into the smoke detector 18 is received by the light receiving element 26. In this case, the scattering angle θ1 becomes 150°, and the light receiving element 26 is Receive backscattered light.

同時に、発光素子20から発せられた第1波長λ1の光はダイクロイックミラー30で反射されて検煙点Pの方向に戻り、検煙部18に流入している煙による散乱光が受光素子26で受光され、この場合の散乱角θ2は、発光素子20と受光素子26の交差角と同じθ2=30°となり、受光素子26は前方散乱光を受光する。 At the same time, the light of the first wavelength λ1 emitted from the light emitting element 20 is reflected by the dichroic mirror 30 and returns in the direction of the smoke detection point P. The light is received, and the scattering angle θ2 in this case becomes θ2=30°, which is the same as the crossing angle of the light emitting element 20 and the light receiving element 26, and the light receiving element 26 receives the forward scattered light.

このため発光素子20が第1波長λ1の光を発した場合、受光素子26は発光素子20からの直接光による散乱角θ1=150°の後方散乱光と、ダイクロイックミラー30からの反射光による散乱角θ2=30°の前方散乱光の両方を受光し、合成散乱光量に対応した受光出力A1が得られる。 Therefore, when the light emitting element 20 emits light of the first wavelength λ1, the light receiving element 26 receives backscattered light at a scattering angle θ1=150° due to direct light from the light emitting element 20 and scattered light due to reflected light from the dichroic mirror 30. Both forward scattered lights at an angle θ2=30° are received, and a received light output A1 corresponding to the combined scattered light amount is obtained.

一方、発光素子20が第2波長λ2の光を発した場合には、検煙部18に流入した煙による第2波長λ2の散乱光が受光素子26で受光され、この場合の散乱角θ1はθ1=150°となり、受光素子26は後方散乱光のみを受光し、受光出力A2が得られる。 On the other hand, when the light emitting element 20 emits light of the second wavelength λ2, scattered light of the second wavelength λ2 due to the smoke flowing into the smoke detector 18 is received by the light receiving element 26, and the scattering angle θ1 in this case is θ1=150°, the light receiving element 26 receives only the backscattered light, and a light receiving output A2 is obtained.

[制御部による煙の識別]
図1に示した制御部12は、通常の監視状態では、発光駆動部16に指示して発光素子20の第1発光チップ22を所定周期で間欠駆動することで、第1波長λ1の光を発し、第1波長λ1による後方散乱光とダイクロイックミラー30の反射による前方散乱光の和となる合成散乱光が受光素子26で受光され、これに対応して増幅回路部28から出力される受光出力A1を検出しており、受光出力A1が所定の煙濃度、例えば注意警報を必要とする煙濃度に対応した閾値Ath以上となったことを判別すると、受光出力A1をメモリに記憶する。
[Smoke identification by control unit]
In a normal monitoring state, the control unit 12 shown in FIG. 1 instructs the light emission driving unit 16 to intermittently drive the first light emitting chip 22 of the light emitting element 20 at a predetermined cycle, thereby emitting light of the first wavelength λ1. Synthetic scattered light, which is the sum of the backward scattered light of the first wavelength λ1 and the forward scattered light reflected by the dichroic mirror 30, is received by the light receiving element 26, and the received light output is output from the amplifier circuit 28 in response to this. A1 is detected, and when it is determined that the received light output A1 has exceeded a predetermined smoke density, for example, a threshold value Ath corresponding to the smoke density requiring a caution alarm, the received light output A1 is stored in the memory.

続いて、制御部12は、煙の種類を識別するために発光素子20の第2発光チップ24を駆動して第2波長λ2の光を発する。この場合、ダイクロイックミラー30は第2波長λ2の光を反射しないので、受光素子26は第2波長λ2による後方散乱光のみを受光し、増幅回路部28から出力される受光出力A2を検出してメモリに記憶する。 Subsequently, the controller 12 drives the second light emitting chip 24 of the light emitting element 20 to emit light of the second wavelength λ2 in order to identify the type of smoke. In this case, since the dichroic mirror 30 does not reflect the light of the second wavelength λ2, the light receiving element 26 receives only the backscattered light of the second wavelength λ2 and detects the received light output A2 output from the amplifier circuit 28. Store in memory.

続いて、制御部12は、発光素子20から発せられた第1波長λ1の光による煙の後方散乱光とダイクロイックミラー30で反射された第1波長λ1の光による前方散乱光との合計散乱光による受光出力A1と、発光素子20から発せられた第2波長λ2の光による煙の散乱光による受光出力A2とを比較することにより、煙の種類を識別し、煙の種類に応じた判断基準により火災判断を行う。 Subsequently, the control unit 12 controls the total scattered light of the smoke backscattered light of the first wavelength λ1 emitted from the light emitting element 20 and the forward scattered light of the first wavelength λ1 reflected by the dichroic mirror 30. By comparing the received light output A1 from the second wavelength λ2 emitted from the light emitting element 20 and the scattered light of the smoke emitted from the light emitting element 20, the type of smoke is identified, and the judgment criteria according to the type of smoke Fire judgment is made by

[受光出力の比率による煙種類の判断]
図3は綿灯芯とケロシンを燃焼した場合の煙に対する図2の検煙部構造により検出された受光出力とその比率を示した説明図であり、燻焼煙となる白煙と燃焼煙となる黒煙を識別するため、その代表サンプルとして綿灯芯とケロシンを選んでいる。
[Judgment of smoke type by ratio of received light output]
FIG. 3 is an explanatory diagram showing the light receiving output detected by the smoke detector structure of FIG. In order to identify black smoke, cotton lamp wicks and kerosene are selected as representative samples.

図3に示すように、受光出力A1は、第1波長λ1=900nm、散乱角θ1=150°の後方散乱光と、第1波長λ1=900nm、散乱角θ2=30°の前方散乱光の和となり、また、受光出力A2は、第2波長λ2=500nm、散乱角θ1=150°の後方散乱光となる。 As shown in FIG. 3, the received light output A1 is the sum of the backward scattered light with the first wavelength λ1=900 nm and the scattering angle θ1=150° and the forward scattered light with the first wavelength λ1=900 nm and the scattering angle θ2=30°. , and the received light output A2 is backscattered light with a second wavelength λ2=500 nm and a scattering angle θ1=150°.

このような綿灯芯とケロシンの燃焼で測定された受光出力A1,A2の比率R=A1/A2を取ると、綿灯芯の場合はR=6.1となり、ケロシンの場合はR=1.6となり、綿灯芯とケロシンでは両者の比率Rに顕著な差異が表れ、比率Rに基づく煙の種類の識別が可能となる。 Taking the ratio R=A1/A2 of the light receiving outputs A1 and A2 measured by burning the cotton lamp wick and kerosene, R=6.1 for the cotton lamp wick and R=1.6 for the kerosene. Therefore, there is a remarkable difference in the ratio R between the cotton lamp wick and kerosene, and it is possible to identify the type of smoke based on the ratio R.

このため制御部12は、比率閾値Rthとして例えばRth=4を設定し、R>4の場合は燻焼火災による白煙が発生していると判断し、R<4の場合には燃焼火災による黒煙が発生していると判断し、判断した煙の種類又は火災の種類を示す識別情報を含む火災信号を受信機に送信して火災警報を出力させる制御を行う。 For this reason, the control unit 12 sets, for example, Rth=4 as the ratio threshold value Rth. It judges that black smoke is generated, and performs control to output a fire alarm by transmitting a fire signal including identification information indicating the judged type of smoke or the type of fire to the receiver.

なお、光電式煙感知器10にバスルーム等からの非火災要因となる湯気が流入した場合、比率R例えばR=10以上の大きな値となることから、例えば非火災閾値Rth2として例えばRth2=12を設定し、比率RがRth2以上の場合は非火災要因と判別し、非火災要因の識別情報を含む火災信号を送信しても良い。
When non-fire-causing steam from a bathroom or the like flows into the photoelectric smoke sensor 10, the ratio R becomes a large value, for example, R=10 or more. 12 may be set, and if the ratio R is Rth2 or more, it may be determined as a non-fire factor and a fire signal including identification information of the non-fire factor may be transmitted.

[感知器制御]
図4は図2の検煙部構造を用いた図1の回路ブロックによる火災感知制御を示したフローチャートであり、制御部12による制御動作となる。
[Detector control]
FIG. 4 is a flow chart showing the fire detection control by the circuit block of FIG. 1 using the smoke detector structure of FIG.

図4に示すように、制御部12はステップS1で発光駆動部16に指示して発光素子20の第1発光チップ22を所定周期で間欠的に発光駆動して第1波長λ1の光を検煙部18内に照射し、ステップS2で受光素子26で受光された第1波長λ1の後方散乱光とダイクロイックミラー30の反射による前方散乱光の和に対応した受光出力A1を検出し、ステップS3で所定の閾値Ath以上であることを判別すると、ステップS4に進み、そのとき検出している受光出力A1をメモリに記憶する。 As shown in FIG. 4, in step S1, the control unit 12 instructs the light emission driving unit 16 to intermittently drive the first light emitting chip 22 of the light emitting element 20 to emit light at a predetermined cycle to detect light of the first wavelength λ1. A light receiving output A1 corresponding to the sum of the backward scattered light of the first wavelength λ1 received by the light receiving element 26 and the forward scattered light reflected by the dichroic mirror 30 is detected in step S3. If it is determined that the value is equal to or greater than the predetermined threshold value Ath in step S4, the received light output A1 detected at that time is stored in the memory.

続いて、制御部12はステップS5で発光駆動部16に指示して発光素子20の第2発光チップ24を発光駆動して第2波長λ2の光を検煙部18内に照射し、ステップS6で受光素子26で受光された第2波長λ2の後方散乱光に対応した受光出力A2を検出してステップS7でメモリに記憶する。 Subsequently, in step S5, the control unit 12 instructs the light emission driving unit 16 to drive the second light emitting chip 24 of the light emitting element 20 to emit light of the second wavelength λ2 into the smoke detection unit 18, and step S6. , the received light output A2 corresponding to the backscattered light of the second wavelength λ2 received by the light receiving element 26 is detected and stored in the memory in step S7.

続いて、制御部12は、ステップS8で受光出力A1,A2の比率R=A1/A2を算出し、ステップS9で比率Rを例えば閾値Rth=4と比較し、比率Rが閾値Rth=4以上であれば、ステップS10に進んで白煙による燻焼火災と判断し、ステップS11で受光出力A1が閾値Ath1以上であることを判別するとステップS12に進み、白煙識別情報を含む火災信号を受信機に送信し、白煙による燻焼火災であることを示す火災警報を出力させる。 Subsequently, the control unit 12 calculates the ratio R=A1/A2 of the light receiving outputs A1 and A2 in step S8, compares the ratio R with, for example, a threshold value Rth=4 in step S9, and determines that the ratio R is equal to or greater than the threshold value Rth=4. If so, the process proceeds to step S10 to determine that the fire is smoldering due to white smoke. When it is determined in step S11 that the received light output A1 is equal to or greater than the threshold value Ath1, the process proceeds to step S12 to receive a fire signal including white smoke identification information. and output a fire alarm indicating a smoldering fire caused by white smoke.

一方、制御部12は、ステップ9で比率Rが閾値Rth=4未満であれば、ステップS13に進んで黒煙による燃焼火災と判断し、ステップS14で受光出力A2が閾値Ath2以上であることを判別するとステップS15に進み、黒煙識別情報を含む火災信号を受信機に送信し、黒煙による燃焼火災であることを示す火災警報を出力させる。
On the other hand, if the ratio R is less than the threshold value Rth=4 in step S9 , the control unit 12 proceeds to step S13 to determine that the combustion fire is caused by black smoke. is determined, the process proceeds to step S15, in which a fire signal including black smoke identification information is transmitted to the receiver to output a fire alarm indicating combustion fire due to black smoke.

[検煙部構造の第2実施形態]
図5は図1における検煙部の構造の第2実施形態を示した説明図であり、発光素子20と受光素子26の交差角θ2を90°以上とした場合である。
[Second embodiment of smoke detector structure]
FIG. 5 is an explanatory diagram showing a second embodiment of the structure of the smoke detector in FIG. 1, in which the crossing angle θ2 between the light emitting element 20 and the light receiving element 26 is 90° or more.

図5に示すように、外部からの煙が流入する検煙部18内には発光素子20、受光素子26及び反射鏡として機能するダイクロイックミラー30が配置されている。 As shown in FIG. 5, a light-emitting element 20, a light-receiving element 26, and a dichroic mirror 30 functioning as a reflecting mirror are arranged in the smoke detecting section 18 into which smoke from the outside flows.

2色LEDを用いた発光素子20は、第1発光チップ22から第1波長λ1の光を光軸20aの方向に照射し、また、第2発光チップ24から第2波長λ2の光を光軸20aの方向に照射する。発光素子20が発する第1波長λ1の光は中心波長を800nm以上に定めており、本実施形態ではλ1=900nmに設定している。また、発光素子20が発する第2波長λ2の光は中心波長を600nm以下に定めており、本実施形態ではλ2=500nmに設定している。 A light-emitting element 20 using a two-color LED emits light of a first wavelength λ1 from a first light-emitting chip 22 in the direction of an optical axis 20a, and emits light of a second wavelength λ2 from a second light-emitting chip 24 along an optical axis 20a. Irradiate in the direction of 20a. The light of the first wavelength λ1 emitted by the light emitting element 20 is set to have a center wavelength of 800 nm or more, and in this embodiment, λ1 is set to 900 nm. Further, the light of the second wavelength λ2 emitted by the light emitting element 20 is set to have a center wavelength of 600 nm or less, and in this embodiment, λ2 is set to 500 nm.

受光素子26は発光素子20からの光を直接受けることのない位置に配置され、発光素子20の光軸20aと受光素子26の光軸26aの交差角θ2は110°~150°の範囲の所定角度であり、本実施形態にあっては、交差角θ2を90°より大きい例えばθ2=150°に設定している。 The light receiving element 26 is arranged at a position where it does not directly receive the light from the light emitting element 20, and the intersection angle θ2 between the optical axis 20a of the light emitting element 20 and the optical axis 26a of the light receiving element 26 is a predetermined range of 110° to 150°. In this embodiment, the crossing angle θ2 is set to be larger than 90°, for example θ2=150°.

ダイクロイックミラー30は発光素子20からの光軸20a上で検煙点Pを介して対向した位置に配置され、本実施形態にあっては、発光素子20の第2発光チップ24から発せられた第2波長λ2の光のみを反射するように構成されている。 The dichroic mirror 30 is arranged on the optical axis 20a from the light emitting element 20 at a position facing the smoke detection point P. In this embodiment, the second light emitted from the second light emitting chip 24 of the light emitting element 20 It is configured to reflect only light of two wavelengths λ2.

受光素子26は発光素子20から発せられる第1波長λ1=900nmの光と第2波長λ2=500nmの光の双方に感度をもち、発光素子20が第1波長λ1の光を発した場合は、検煙部18に流入した煙による第1波長λ1の散乱光が受光素子26で受光され、この場合の散乱角θ1はθ1=30°となり、受光素子26は前方散乱光のみを受光し、受光出力A1が得られる。 The light receiving element 26 is sensitive to both the light of the first wavelength λ1=900 nm and the light of the second wavelength λ2=500 nm emitted from the light emitting element 20. When the light emitting element 20 emits the light of the first wavelength λ1, Scattered light of the first wavelength λ1 due to smoke flowing into the smoke detector 18 is received by the light receiving element 26. In this case, the scattering angle θ1 is 30°, and the light receiving element 26 receives only forward scattered light. An output A1 is obtained.

一方、発光素子20が第2波長λ2の光を発すると、検煙部18に流入した煙による散乱光が受光素子26で受光され、この場合の散乱角θ1はθ1=30°となり、受光素子26は前方散乱光を受光する。同時に、発光素子20から発せられた第2波長λ2の光はダイクロイックミラー30で反射されて検煙点Pの方向に戻り、検煙部18に流入している煙による散乱光が受光素子26で受光され、この場合の散乱角θ2は、発光素子20と受光素子26の交差角と同じθ2=150°となり、受光素子26は後方散乱光を受光する。 On the other hand, when the light emitting element 20 emits light of the second wavelength λ2, the light scattered by the smoke flowing into the smoke detector 18 is received by the light receiving element 26, and the scattering angle θ1 in this case becomes θ1=30°. 26 receives forward scattered light. At the same time, the light of the second wavelength λ2 emitted from the light emitting element 20 is reflected by the dichroic mirror 30 and returns in the direction of the smoke detection point P. The light is received, and the scattering angle θ2 in this case is θ2=150°, which is the same as the intersection angle between the light emitting element 20 and the light receiving element 26, and the light receiving element 26 receives the backscattered light.

このため発光素子20が第2波長λ2の光を発した場合、受光素子26は発光素子20からの直接光による散乱角θ1=30°の前方散乱光と、ダイクロイックミラー30からの反射光による散乱角θ2=150°の後方散乱光の両方を受光し、合成散乱光量に対応した受光出力A2が得られる。 Therefore, when the light emitting element 20 emits light of the second wavelength λ2, the light receiving element 26 receives forward scattered light at a scattering angle θ1=30° due to direct light from the light emitting element 20 and scattered light due to reflected light from the dichroic mirror 30. Both of the backscattered lights at the angle θ2=150° are received, and a received light output A2 corresponding to the combined scattered light amount is obtained.

[制御部による煙の識別]
図6は綿灯芯とケロシンを燃焼した場合の煙に対する図5の検煙部構造により検出された受光出力とその比率を示した説明図である。
[Smoke identification by control unit]
FIG. 6 is an explanatory diagram showing the light receiving output detected by the structure of the smoke detector shown in FIG.

図6に示すように、受光出力A1は、第1波長λ1=900nm、散乱角θ1=30°の前方散乱光となり、受光出力A2は、第2波長λ2=500nm、散乱角θ1=30°の前方散乱光と、第2波長λ2=500nm、散乱角θ2=150°の後方散乱光の和となる。 As shown in FIG. 6, the received light output A1 is forward scattered light with a first wavelength λ1=900 nm and a scattering angle θ1=30°, and the received light output A2 is forward scattered light with a second wavelength λ2=500 nm and a scattering angle θ1=30°. It is the sum of the forward scattered light and the backward scattered light with the second wavelength λ2=500 nm and the scattering angle θ2=150°.

このような綿灯芯とケロシンの燃焼で測定された受光出力A1,A2の比率R=A1/A2を取ると、綿灯芯の場合はR=2.7となり、ケロシンの場合はR=0.4となり、綿灯芯とケロシンでは両者の比率Rに差異が表れ、比率Rに基づく煙の種類の識別が可能となる。 Taking the ratio R=A1/A2 of the light receiving outputs A1 and A2 measured by burning the cotton lamp wick and kerosene, R=2.7 for the cotton lamp wick and R=0.4 for the kerosene. Thus, a difference appears in the ratio R between the cotton lamp wick and kerosene, and the type of smoke based on the ratio R can be identified.

このため制御部12は、比率閾値Rthとして例えばRth=1.5を設定し、R>1.5の場合は燻焼による白煙が発生していると判断し、R<1.4の場合には燃焼による黒煙が発生していると判断し、判断した煙の種類を示す情報を含む火災信号を受信機に送信して火災警報を出力させる制御を行う。 For this reason, the control unit 12 sets, for example, Rth=1.5 as the ratio threshold value Rth. determines that black smoke is generated due to combustion, and controls to transmit a fire signal including information indicating the type of smoke determined to the receiver to output a fire alarm.

また、図6の検煙部構造を対象とした図1の制御部12による感知器制御は、図4のフローチャートに示した制御と基本的に同じになる。 Further, the sensor control by the control unit 12 in FIG. 1 targeting the smoke detector structure in FIG. 6 is basically the same as the control shown in the flow chart in FIG.

[本発明の変形例]
(発光素子の駆動制御)
上記の実施形態は、発光素子20から間欠的に第1波長λ1の光を発して受光出力A1を検出し、受光出力A1が閾値以上の場合に第2波長λ2を発して受光出力A2を検出して煙の種類を識別しているが、所定周期毎に、発光素子20から第1波長λ1の光と第2波長λ2の光を時間をずらして発して受光出力A1,A2を検出して煙の種類を識別するようにしても良い。
[Modification of the present invention]
(Drive control of light emitting element)
In the above embodiment, the light emitting element 20 intermittently emits light of the first wavelength λ1 to detect the received light output A1, and when the received light output A1 is equal to or greater than the threshold, emits the second wavelength λ2 to detect the received light output A2. The light of the first wavelength λ1 and the light of the second wavelength λ2 are emitted from the light emitting element 20 with a time lag at each predetermined cycle, and the received light outputs A1 and A2 are detected. You may make it identify the kind of smoke.

(散乱角)
上記の実施形態では、散乱角θ1を150°又は30°とした例を挙げているが、散乱角θ1は光電式煙感知器の要求仕様に合わせて適宜選択することができる。例えば感知器の大きさを小さくしたければ、散乱角θ1を小さくして検煙部18の幅を狭くすることができる。ただし、散乱角θ1が小さくなることに伴い、発光素子20からの光線が受光素子26に直接入射したり、検煙部18の壁面での反射光が受光素子26に入射する可能性があり、検煙部18の内部反射光対策が必要となる。
(Scattering angle)
In the above embodiment, the scattering angle θ1 is set to 150° or 30°, but the scattering angle θ1 can be appropriately selected according to the required specifications of the photoelectric smoke sensor. For example, if it is desired to reduce the size of the sensor, the width of the smoke detector 18 can be narrowed by reducing the scattering angle .theta.1. However, as the scattering angle θ1 decreases, the light beam from the light emitting element 20 may directly enter the light receiving element 26, or the reflected light from the wall surface of the smoke detector 18 may enter the light receiving element 26. Measures against internally reflected light from the smoke detector 18 are required.

逆に検煙部18の内部反射光の処理を効率的に行うためには、散乱角θ1を90°に近く大きめに設定することが望ましい。このように光電式煙感知器に要求される仕様により散乱角θ1を適宜選択することができる。 Conversely, in order to efficiently process the internally reflected light of the smoke detector 18, it is desirable to set the scattering angle θ1 to be close to 90° and to be relatively large. Thus, the scattering angle .theta.1 can be appropriately selected according to the specifications required for the photoelectric smoke sensor.

(その他)
また、本発明は、その目的と利点を損なうことのない適宜の変形を含み、更に、上記の実施形態に示した数値による限定は受けない。
(others)
Moreover, the present invention includes appropriate modifications that do not impair its purpose and advantages, and is not limited by the numerical values shown in the above embodiments.

10:光電式煙感知器
11a,11b:伝送線
12:制御部
14:伝送部
15:電源部
16:発光駆動部
18:検煙部
20:発光素子
20a,26a:光軸
22:第1発光チップ
24:第2発光チップ
26:受光素子
28:増幅回路部
30:ダイクロイックミラー
10: Photoelectric smoke detectors 11a, 11b: transmission line 12: control unit 14: transmission unit 15: power supply unit 16: light emission drive unit 18: smoke detection unit 20: light emitting elements 20a, 26a: optical axis 22: first light emission Chip 24: Second light emitting chip 26: Light receiving element 28: Amplifier circuit section 30: Dichroic mirror

Claims (10)

検煙空間に向け、第1波長の光と前記第1波長とは異なる第2波長の光を個別に発する発光素子と、
前記発光素子から発せられる前記第1波長及び前記第2波長の光を直接受光しない位置に設けられ、前記第1波長及び前記第2波長の双方感度を有し、前記検煙空間に存在する粒子による前記第1波長及び前記第2波長の散乱光を受光する受光素子と、
前記検煙空間を挟んで前記発光素子に対向した位置に配置され、前記第1波長及び前記第2波長の光の何れか一方の波長の光前記検煙空間へ向けて反射し、他方の波長の光は前記検煙空間へ向けて反射しない反射鏡と、
を備えたことを特徴とする光電式煙感知器。
a light emitting element that individually emits light of a first wavelength and light of a second wavelength different from the first wavelength toward the smoke detection space;
provided at a position not directly receiving light of the first wavelength and the second wavelength emitted from the light emitting element, having sensitivity to both the first wavelength and the second wavelength, and present in the smoke detection space a light-receiving element that receives scattered light of the first wavelength and the second wavelength by particles ;
arranged at a position facing the light emitting element with the smoke detection space interposed therebetween, and reflects light of either one of the first wavelength and the second wavelength toward the smoke detection space , a reflecting mirror that does not reflect light of the wavelength toward the smoke detection space ;
A photoelectric smoke sensor comprising:
請求項1記載の光電式煙感知器に於いて、
前記発光素子から発せられる前記第1波長及び前記第2波長の光の光軸と前記受光素子で受光する前記散乱光の光軸の交点、前記発光素及び前記受光素子の3点により形成される前記交点の角度が30°~70°の範囲の所定角度となるように前記発光素子と前記受光素子とが配置され、
前記反射鏡は前記第1波長の光を前記検煙空間へ向けて反射し、前記第2波長の光は前記検煙空間へ向けて反射せず、
前記発光素子から発せられる前記第1波長及び前記第2波長の光が前記検煙空間に存在する粒子により前記受光素子に向けて散乱する散乱光の第1散乱角を110°~150°の範囲に定め、前記反射鏡により前記検煙空間へ向けて反射された前記第1波長の光が前記検煙空間に存在する粒子により前記受光素子に向けて散乱する散乱光の第2散乱角を30°~70°の範囲に定めたことを特徴とする光電式煙感知器。
The photoelectric smoke sensor according to claim 1,
It is formed by three points: the intersection of the optical axis of the light of the first wavelength and the second wavelength emitted from the light emitting element and the optical axis of the scattered light received by the light receiving element, the light emitting element and the light receiving element The light- emitting element and the light-receiving element are arranged such that the angle of the intersection is a predetermined angle in the range of 30° to 70°,
the reflecting mirror reflects the light of the first wavelength toward the smoke detection space and does not reflect the light of the second wavelength toward the smoke detection space;
The light of the first wavelength and the light of the second wavelength emitted from the light emitting element is scattered toward the light receiving element by particles existing in the smoke detection space, and the first scattering angle of the scattered light is in the range of 110° to 150°. and the light of the first wavelength reflected by the reflecting mirror toward the smoke detection space is scattered toward the light receiving element by particles existing in the smoke detection space, and the second scattering angle of the scattered light is 30 A photoelectric smoke detector characterized in that the range is set between degrees and 70 degrees.
請求項2記載の光電式煙感知器に於いて、
前記受光素子で受光された、前記発光素子から発せられた前記第1波長の光が前記検煙空間に存在する粒子により散乱した散乱光の散乱光量と前記反射鏡で反射された前記第1波長の光が前記検煙空間に存在する粒子により散乱した散乱光の散乱光量との合計散乱光量、前記発光素子から発せられた前記第2波長の光が前記検煙空間に存在する粒子により散乱した散乱光の散乱光量とに基づき、煙の種類を識別し、識別された煙の種類に応じ火災判断を行うことを特徴とする光電式煙感知器。
The photoelectric smoke sensor according to claim 2,
Scattered light amount of light of the first wavelength emitted from the light-emitting element and scattered by particles present in the smoke detection space and the first wavelength reflected by the reflecting mirror, which is received by the light-receiving element The total scattered light amount of the scattered light scattered by the particles present in the smoke detection space, and the light of the second wavelength emitted from the light emitting element by the particles present in the smoke detection space 1. A photoelectric smoke detector, wherein the type of smoke is identified based on the amount of scattered scattered light and the amount of scattered light, and a fire judgment is made according to the identified type of smoke.
請求項1記載の光電式煙感知器に於いて、
前記発光素子から発せられる前記第1波長及び前記第2波長の光の光軸と前記受光素子で受光する前記散乱光の光軸の交点、前記発光素及び前記受光素子の3点により形成される前記交点の角度が110°~150°の範囲の所定角度となるように前記発光素子と前記受光素子とが配置され、
前記反射鏡は前記第2波長の光を前記検煙空間へ向けて反射し、前記第1波長の光は前記検煙空間へ向けて反射せず、
前記発光素子から発せられる前記第1波長及び前記第2波長の光が前記検煙空間に存在する粒子により前記受光素子に向けて散乱する散乱光の第1散乱角を30°~70°の範囲に定め、前記反射鏡により前記検煙空間へ向けて反射された前記第2波長の光が前記検煙空間に存在する粒子により前記受光素子に向けて散乱する散乱光の第2散乱角を110°~150°の範囲に定めたことを特徴とする光電式煙感知器。
The photoelectric smoke sensor according to claim 1,
It is formed by three points: the intersection of the optical axis of the light of the first wavelength and the second wavelength emitted from the light emitting element and the optical axis of the scattered light received by the light receiving element, the light emitting element and the light receiving element The light- emitting element and the light-receiving element are arranged such that the intersection angle is a predetermined angle in the range of 110° to 150°,
the reflecting mirror reflects the light of the second wavelength toward the smoke detection space and does not reflect the light of the first wavelength toward the smoke detection space;
The light of the first wavelength and the light of the second wavelength emitted from the light emitting element is scattered toward the light receiving element by particles existing in the smoke detection space, and the first scattering angle of the scattered light is in the range of 30° to 70°. and the light of the second wavelength reflected by the reflecting mirror toward the smoke detection space is scattered toward the light receiving element by particles existing in the smoke detection space, and the second scattering angle of the scattered light is 110 A photoelectric smoke detector characterized in that the range is set between ° and 150°.
請求項4記載の光電式煙感知器に於いて、
前記受光素子で受光された、前記発光素子から発せられた前記第1波長の光が前記検煙空間に存在する粒子により散乱した散乱光の散乱光量、前記発光素子から発せられた前記第2波長の光が前記検煙空間に存在する粒子により散乱した散乱光の散乱光量と前記反射鏡で反射された前記第2波長の光が前記検煙空間に存在する粒子により散乱した散乱光の散乱光量との合計散乱光量とに基づき、煙の種類を識別し、識別された煙の種類に応じ火災判断を行うことを特徴とする光電式煙感知器。
The photoelectric smoke sensor according to claim 4,
The scattered light amount of the light of the first wavelength emitted from the light-emitting element, which is received by the light-receiving element, is scattered by particles present in the smoke detection space ; Scattered light amount of light of the wavelength scattered by particles present in the smoke detection space and scattering of scattered light of the light of the second wavelength reflected by the reflecting mirror and scattered by particles present in the smoke detection space 1. A photoelectric smoke sensor that identifies the type of smoke based on the amount of light and the total amount of scattered light, and makes a fire judgment according to the identified type of smoke.
請求項1乃至5の何れかに記載の光電式煙感知器に於いて、
前記発光素子から発せられる前記第1波長の光に対し、前記第2波長の光の波長を短くしたことを特徴とする光電式煙感知器。
The photoelectric smoke sensor according to any one of claims 1 to 5,
A photoelectric smoke detector, wherein the wavelength of the light of the second wavelength is shorter than the light of the first wavelength emitted from the light emitting element.
請求項6記載の光電式煙感知器に於いて、
前記発光素子から発せられる前記第1波長の光の中心波長を800nm以上に定め、前記第2波長の光の中心波長を600nm以下に定めたことを特徴とする光電式煙感知器。
The photoelectric smoke sensor according to claim 6,
A photoelectric smoke sensor, wherein the central wavelength of the light of the first wavelength emitted from the light emitting element is set to 800 nm or more, and the central wavelength of the light of the second wavelength is set to 600 nm or less.
請求項1乃至7の何れかに記載の光電式煙感知器に於いて、
前記反射鏡をダイクロイックミラーとしたことを特徴とする光電式煙感知器。
The photoelectric smoke sensor according to any one of claims 1 to 7,
A photoelectric smoke detector, wherein the reflecting mirror is a dichroic mirror.
請求項1乃至8の何れかに記載の光電式煙感知器に於いて、
前記発光素子を、前記第1波長の光を発する第1発光チップと前記第2波長の光を発する第2発光チップを備え、前記第1波長と前記第2波長の光を間欠的に発する2色発光ダイオードとしたことを特徴とする光電式煙感知器。
The photoelectric smoke sensor according to any one of claims 1 to 8,
The light emitting element includes a first light emitting chip that emits light of the first wavelength and a second light emitting chip that emits light of the second wavelength, and intermittently emits light of the first wavelength and the light of the second wavelength. A photoelectric smoke detector characterized by using color light emitting diodes.
請求項1乃至9の何れかに記載の光電式煙感知器に於いて、
通常の監視状態では、前記発光素子から前記第1波長の光を発するように駆動し、前記受光素子所定受光が得られた際に、前記発光素子から前記第2波長の光を発するように駆動することを特徴とする光電式煙感知器。
The photoelectric smoke sensor according to any one of claims 1 to 9,
In a normal monitoring state, the light-emitting element is driven to emit light of the first wavelength, and when a predetermined amount of light is received by the light-receiving element , the light-emitting element emits light of the second wavelength. A photoelectric smoke detector characterized by driving as follows.
JP2018124036A 2018-06-29 2018-06-29 photoelectric smoke detector Active JP7150497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018124036A JP7150497B2 (en) 2018-06-29 2018-06-29 photoelectric smoke detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018124036A JP7150497B2 (en) 2018-06-29 2018-06-29 photoelectric smoke detector

Publications (2)

Publication Number Publication Date
JP2020004162A JP2020004162A (en) 2020-01-09
JP7150497B2 true JP7150497B2 (en) 2022-10-11

Family

ID=69100401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018124036A Active JP7150497B2 (en) 2018-06-29 2018-06-29 photoelectric smoke detector

Country Status (1)

Country Link
JP (1) JP7150497B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325211A (en) 2003-04-24 2004-11-18 Hochiki Corp Light scattering smoke detector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951038B2 (en) * 1980-05-31 1984-12-12 松下電工株式会社 Scattered light smoke detector
US4857895A (en) * 1987-08-31 1989-08-15 Kaprelian Edward K Combined scatter and light obscuration smoke detector
JPH1123458A (en) * 1997-05-08 1999-01-29 Nittan Co Ltd Smoke sensor and monitoring control system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325211A (en) 2003-04-24 2004-11-18 Hochiki Corp Light scattering smoke detector

Also Published As

Publication number Publication date
JP2020004162A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
US8232884B2 (en) Carbon monoxide and smoke detectors having distinct alarm indications and a test button that indicates improper operation
US9569946B2 (en) Smoke alarm according to the scattered light principle having a two-color light-emitting diode with different sizes of LED chips
AU2009299563B2 (en) A particulate detector
US7817049B2 (en) Combined scattered-light and extinction-based fire detector
US9666049B2 (en) Smoke detection unit with light-emitting diode and photo-detector, and with an LED chip arranged in the light-emitting diode and with a photosensor for determining a degree of aging and/or a compensation value for a light current, as well as a light-emitting diode
US7956329B2 (en) Flame detector and a method
US8994942B2 (en) Method for identifying interference object in scatter volume of optical fire detector and optical fire detector
JP4010455B2 (en) Scattered smoke detector
JP2016114959A (en) Photoelectric smoke detector
JP4027374B2 (en) Smoke detector and supervisory control system
TW201717834A (en) Surface treatment device and base station
AU2006251046B2 (en) Detector
JP7150497B2 (en) photoelectric smoke detector
US9881491B2 (en) Fire detector comprising a MOS gas sensor and a photoelectric detector
JP2761083B2 (en) Multi-wavelength extinction smoke detector
US10451259B2 (en) Headlight, vehicle with headlight and method for monitoring a headlight
JP7397934B2 (en) photoelectric smoke detector
JPH04205400A (en) Smoke sensor
JP2966541B2 (en) Photoelectric smoke detector
JPH11160238A (en) Photoelectric smoke sensor
JP7194883B2 (en) FAILURE DETECTION DEVICE, LASER PROCESSING SYSTEM AND FAILURE DETECTION METHOD
JP2002056475A (en) Photoelectric smoke detector
JP2022183856A (en) Detection device
JP2001283340A (en) Smoke sensor and monitor and control system
JPH0765269A (en) Photoelectric smoke sensor and its smoke sensing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220928

R150 Certificate of patent or registration of utility model

Ref document number: 7150497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150