JP2966541B2 - Photoelectric smoke detector - Google Patents

Photoelectric smoke detector

Info

Publication number
JP2966541B2
JP2966541B2 JP2127891A JP2127891A JP2966541B2 JP 2966541 B2 JP2966541 B2 JP 2966541B2 JP 2127891 A JP2127891 A JP 2127891A JP 2127891 A JP2127891 A JP 2127891A JP 2966541 B2 JP2966541 B2 JP 2966541B2
Authority
JP
Japan
Prior art keywords
light
circuit
light receiving
optical axis
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2127891A
Other languages
Japanese (ja)
Other versions
JPH04260197A (en
Inventor
淳之 広野
祥明 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12050669&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2966541(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2127891A priority Critical patent/JP2966541B2/en
Publication of JPH04260197A publication Critical patent/JPH04260197A/en
Application granted granted Critical
Publication of JP2966541B2 publication Critical patent/JP2966541B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、建物内外で火災時など
に発生する煙を感知する光電式煙感知器に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric smoke detector for detecting smoke generated in a fire or the like inside or outside a building.

【0002】[0002]

【従来の技術】従来より、煙感知器として煙粒子による
光の散乱を利用した光電式煙感知器が提供されている
(特開昭56−147294号公報、実開昭58−17
1591号公報、特開昭60−109189号公報、実
開昭60−13449号公報、実開昭62−20358
号公報等参照)。すなわち、図12に示すように、投光
素子1と受光素子2とを光軸が交差するように配置し、
投光素子1から監視空間に照射された光の煙粒子Pによ
る散乱光を受光素子2で受光するように構成したもので
ある。このように構成された光電式煙感知器では、監視
空間に煙粒子Pが存在すれば散乱光が生じることによっ
て受光素子2での受光量が増大するから、受光素子2で
の受光量の大小に応じて煙粒子3の存否を検知できるの
である。
2. Description of the Related Art Conventionally, photoelectric smoke detectors utilizing light scattering by smoke particles have been provided as smoke detectors (Japanese Patent Application Laid-Open No. 56-147294, Japanese Utility Model Application Laid-Open No. 58-17).
No. 1591, JP-A-60-109189, JP-A-60-13449, JP-A-62-20358
Reference). That is, as shown in FIG. 12, the light projecting element 1 and the light receiving element 2 are arranged so that the optical axes intersect,
The light receiving element 2 receives light scattered by the smoke particles P of light emitted from the light projecting element 1 to the monitoring space. In the photoelectric smoke detector configured as described above, if smoke particles P exist in the monitoring space, the amount of light received by the light receiving element 2 increases due to the generation of scattered light. , The presence or absence of the smoke particles 3 can be detected.

【0003】また、本発明者らは図13に示すように、
1個の投光素子1に対して複数個の受光素子2a,2b
を設けたものを提案している。この構成は、散乱光の強
度の角度分布が煙粒子Pの粒径に依存するという理論に
基づくものであり、複数の受光素子2a,2bを設けた
ことによって煙粒子Pの粒径を判定し、異なる粒径を有
した微粒子との識別をするものである。この構成では、
図14に示すように、発光素子1を駆動回路11によっ
て駆動し、図15に示すように間欠的に発光させるよう
になっており、各受光素子2a,2bから出力される受
光信号を受光回路21a,21bで電圧出力に変換した
後、対数増幅回路22a,22bで対数増幅するように
なっている。すなわち、2個の受光素子2a,2bから
出力される受光信号を対数増幅した後に、減算回路23
によって両対数増幅回路22a,22bの出力の差を求
めることにより、両受光素子2a,2bによる受光強度
の比を求めるのである。減算回路23による演算は、発
光素子1の各発光毎に同期するように、発振回路12お
よび論理回路13よりなる発光制御手段によって制御さ
れ、減算回路23による演算結果は、比較回路24より
なる判定手段に入力されて受光強度の比が所定値と比較
されるようになっている。このようにして得られた比較
回路24による判定結果に基づき、信号処理回路25を
通して出力回路26を作動させるのである。
[0003] Further, as shown in FIG.
A plurality of light receiving elements 2a and 2b for one light emitting element 1
Is proposed. This configuration is based on the theory that the angular distribution of the intensity of the scattered light depends on the particle size of the smoke particles P. By providing a plurality of light receiving elements 2a and 2b, the particle size of the smoke particles P is determined. This is to distinguish the particles from fine particles having different particle diameters. In this configuration,
As shown in FIG. 14, the light emitting element 1 is driven by the driving circuit 11 to emit light intermittently as shown in FIG. 15, and the light receiving signals output from the respective light receiving elements 2a and 2b are received by the light receiving circuit. After conversion into voltage output by 21a and 21b, logarithmic amplification is performed by logarithmic amplifier circuits 22a and 22b. That is, after the light receiving signals output from the two light receiving elements 2a and 2b are logarithmically amplified, the subtraction circuit 23
By calculating the difference between the outputs of the double logarithmic amplifier circuits 22a and 22b, the ratio between the light receiving intensities of the two light receiving elements 2a and 2b is determined. The calculation by the subtraction circuit 23 is controlled by a light emission control unit including the oscillation circuit 12 and the logic circuit 13 so as to synchronize with each light emission of the light emitting element 1. The ratio of the received light intensity inputted to the means is compared with a predetermined value. The output circuit 26 is operated through the signal processing circuit 25 based on the result of the judgment by the comparison circuit 24 obtained in this way.

【0004】[0004]

【発明が解決しようとする課題】上述した前者の構成で
は、受光素子2による受光量の大小に基づいて煙粒子P
の存否を判定するものであるから、監視空間に侵入した
虫による反射光や水蒸気等の他の微粒子による散乱光
と、煙粒子による散乱光との識別ができないものであ
り、誤認が生じ易いという問題がある。また感知器の内
部で生じる反射光が受光素子2に常時入射しているもの
であるから、暗雑音が多くなり信号対雑音比を大きくと
ることができず、ノイズマージンが小さいという問題が
ある。
In the former configuration, the smoke particles P are determined based on the amount of light received by the light receiving element 2.
It is not possible to distinguish between reflected light from insects that have entered the monitoring space, scattered light from other fine particles such as water vapor, and scattered light from smoke particles, and misidentification is likely to occur. There's a problem. Further, since the reflected light generated inside the sensor is always incident on the light receiving element 2, there is a problem that the background noise increases, the signal-to-noise ratio cannot be increased, and the noise margin is small.

【0005】これに対して、後者の構成では、煙粒子P
の粒径を判定しているから、虫による反射光や他の微粒
子による散乱光との識別ができ、しかも、散乱光の強度
の角度分布に基づいて煙粒子Pの存否の判定を行うか
ら、暗雑音による影響がほとんどないのであって、前者
の構成の欠点はほぼ解消されることになる。一方、複数
個の受光素子2a,2bを用いるものであるから、受光
回路21a,21bや対数増幅回路22a,22bも受
光素子2a,2bと同数必要になるものである。しかし
ながら、受光強度の比を正確に求めるために対数増幅器
22a,22bの温度特性などを揃えるのは非常に困難
であるという問題がある。また、散乱光の受光強度は非
常に小さいものであり、たとえば受光素子2a,2bと
して一般的なフォトダイオードを用いている場合には、
検知すべき最低量の散乱光に対しては数pA程度の出力
電流しか得られないものである。すなわち、受光素子2
a,2bの出力電流は微小であるから、受光回路21
a,21bを低ノイズに設計する必要があり、複数の受
光回路21a,21bを設けるとコスト高につながると
いう問題が生じる。
On the other hand, in the latter configuration, the smoke particles P
Since the particle diameter of the particles is determined, it is possible to distinguish the reflected light from insects and the scattered light from other fine particles, and to determine the presence or absence of the smoke particles P based on the angular distribution of the intensity of the scattered light. Since the influence of the background noise is almost negligible, the disadvantage of the former configuration is almost eliminated. On the other hand, since a plurality of light receiving elements 2a and 2b are used, the same number of light receiving circuits 21a and 21b and logarithmic amplifier circuits 22a and 22b are required as the light receiving elements 2a and 2b. However, there is a problem that it is very difficult to make the temperature characteristics of the logarithmic amplifiers 22a and 22b uniform in order to accurately obtain the ratio of the received light intensity. Also, the light receiving intensity of the scattered light is very small. For example, when a general photodiode is used as the light receiving elements 2a and 2b,
With respect to the minimum amount of scattered light to be detected, only an output current of about several pA can be obtained. That is, the light receiving element 2
Since the output currents a and 2b are very small, the light receiving circuit 21
It is necessary to design a and 21b with low noise, and if a plurality of light receiving circuits 21a and 21b are provided, there arises a problem that the cost increases.

【0006】本発明は上記問題点の解決を目的とするも
のであり、散乱光によって煙粒子の粒径を識別すること
により、水蒸気等の煙以外の微粒子による散乱光や虫等
による反射光での誤検知を防止するとともに、感知器の
内部での反射光による暗雑音の影響を低減してノイズマ
ージンが大きく取れるようにし、しかも、受光手段を1
つにすることによって、温度特性がよく、比較的安価で
ある光電式煙感知器を提供しようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problem. By identifying the particle size of smoke particles based on scattered light, it is possible to obtain light scattered by fine particles other than smoke such as water vapor or reflected light by insects. Erroneous detection is prevented, the influence of dark noise due to reflected light inside the sensor is reduced, and a large noise margin can be obtained.
The present invention intends to provide a photoelectric smoke detector which has good temperature characteristics and is relatively inexpensive.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1では、監視空間に光を照射する複数個の投
光手段と、監視空間内に煙粒子が存在するときに生じる
散乱光を受光する受光手段と、受光手段から出力される
受光信号に基づいて監視空間内の煙粒子の存否を判定す
る受光信号処理手段と、各投光手段から監視空間に対し
て互いに異なる時刻に光が照射されるように各投光手段
の発光タイミングを設定する発光制御手段とを備え、各
投光手段は、光軸が受光手段の光軸に対してそれぞれ所
定の角度をなすように配置され、受光信号処理手段は、
各投光手段から監視空間に照射される光に対する散乱光
の受光手段による受光強度の比を求める比演算部と、求
めた比に基づいて煙粒子の存否を判定する判定部とを備
えているのである。
In order to achieve the above object, according to the present invention, a plurality of light projecting means for irradiating light to a monitoring space, and scattering generated when smoke particles are present in the monitoring space. Light receiving means for receiving light; light receiving signal processing means for determining the presence or absence of smoke particles in the monitoring space based on the light receiving signal output from the light receiving means; Light-emission control means for setting the light-emission timing of each light-projection means so that light is emitted, and each light-emission means is arranged such that the optical axis forms a predetermined angle with respect to the optical axis of the light-receiving means. And the received light signal processing means
A ratio calculation unit for calculating a ratio of a received light intensity of the scattered light to a light emitted to the monitoring space from each of the light projecting units; and a determination unit for determining the presence or absence of smoke particles based on the determined ratio. It is.

【0008】請求項2では、投光手段は2個設けられ、
比演算部は、受光信号を対数増幅する対数増幅回路と、
対数増幅回路の出力を記憶する記憶回路と、対数増幅回
路の出力と記憶回路の記憶値との差を出力する減算回路
と、発光制御手段による各投光手段の発光タイミングに
同期して一方の投光手段の発光時に対数増幅回路の出力
を記憶回路に入力し、他方の投光手段の発光時に対数増
幅回路の出力を減算回路に入力するように切り換えるス
イッチ要素とを備えているのである。
According to claim 2, two light projecting means are provided,
The ratio calculation unit includes a logarithmic amplification circuit that logarithmically amplifies the received light signal,
A storage circuit that stores the output of the logarithmic amplifier circuit, a subtraction circuit that outputs the difference between the output of the logarithmic amplifier circuit and the storage value of the storage circuit, and one of the light emission control units in synchronization with the light emission timing of each light emitting unit. There is provided a switch element for inputting the output of the logarithmic amplifier circuit to the storage circuit when the light emitting means emits light and for inputting the output of the logarithmic amplifier circuit to the subtraction circuit when the other light emitting means emits light.

【0009】請求項3では、各投光手段の光軸と受光手
段の光軸との各交点から各投光手段までの距離が、各投
光手段ごとに異なるように各投光手段を配置しているの
である。請求項4では、各投光手段より監視空間に照射
される光の波長がそれぞれ異なるように設定してある。
According to a third aspect of the present invention, each light projecting means is arranged such that the distance from each intersection of the optical axis of each light projecting means and the optical axis of the light receiving means to each light projecting means is different for each light projecting means. It is doing. According to the fourth aspect, the wavelength of the light emitted from each light emitting means to the monitoring space is set to be different from each other.

【0010】[0010]

【作用】請求項1の構成によれば、煙粒子による散乱光
の強度の角度分布に基づいて煙粒子の粒径を求め、粒径
が所定の範囲以内であるときに煙粒子が存在すると判断
することができるから、散乱光を生じている煙粒子の粒
径が反映されることになり、煙粒子以外の微粒子による
散乱光や他の物体による反射光と、煙粒子による散乱光
とを識別できるようになり、誤検知を防止することがで
きるのである。また、散乱光の強度の角度分布によって
粒径を判定するから、受光強度の比を求めることができ
ればよいのであって、感知器の内部で生じる反射光など
による暗雑音の影響を受けにくく、ノイズマージンが大
きく取れるのである。さらに、受光手段は1つであるか
ら、受光信号の増幅などを行う回路を複数設ける必要が
ないのであって、複数系統の回路の温度特性を揃えた
り、低ノイズの回路を複数用いたりすることによるコス
ト増が抑制されるのである。
According to the first aspect of the present invention, the particle size of the smoke particle is determined based on the angular distribution of the intensity of the scattered light by the smoke particle, and it is determined that the smoke particle exists when the particle size is within a predetermined range. Can reflect the particle size of the smoke particles that generate the scattered light, and distinguish between the scattered light by fine particles other than the smoke particles and the reflected light by other objects and the scattered light by the smoke particles It is possible to prevent erroneous detection. Also, since the particle size is determined based on the angular distribution of the intensity of the scattered light, it is only necessary to be able to determine the ratio of the received light intensity, and it is hardly affected by dark noise due to reflected light or the like generated inside the sensor. The margin is large. Furthermore, since there is only one light receiving means, there is no need to provide a plurality of circuits for amplifying the light receiving signal, etc. Therefore, it is necessary to make the temperature characteristics of a plurality of circuits uniform or to use a plurality of low noise circuits. The cost increase due to the above is suppressed.

【0011】請求項2の構成は、望ましい実施態様であ
って、この構成によれば、対数増幅回路が1つになるか
ら、従来のように複数の対数増幅回路の温度特性を揃え
る必要がなく、設計が容易になるのである。請求項3の
構成では、各投光手段の光軸と受光手段の光軸との交点
までの距離を各投光手段ごとに異なるように設定してい
るのであって、各投光手段から照射された光の散乱光が
受光手段に対してほぼ同じ強度で入射するように距離を
設定しておけば、受光信号処理回路のダイナミックレン
ジを小さくすることができるのであり、設計が容易にな
るのである請求項4の構成では、各投光手段からの照射
光の波長を異ならせているので、各投光手段の光軸と受
光手段の光軸との交差角度を別々に設定することなく、
粒径を判定できることになる。
The structure of claim 2 is a desirable embodiment. According to this structure, since only one logarithmic amplifier circuit is used, it is not necessary to make the temperature characteristics of a plurality of logarithmic amplifier circuits uniform as in the related art. , Making the design easier. In the configuration of claim 3, the distance to the intersection of the optical axis of each light projecting means and the optical axis of the light receiving means is set differently for each light projecting means. If the distance is set so that the scattered light of the received light is incident on the light receiving means with almost the same intensity, the dynamic range of the light receiving signal processing circuit can be reduced, and the design becomes easier. In the configuration of certain claim 4, since the wavelength of the irradiation light from each light projecting means is made different, without separately setting the intersection angle between the optical axis of each light projecting means and the optical axis of the light receiving means,
The particle size can be determined.

【0012】[0012]

【実施例】(原理)構成を具体的に説明する前に、本発
明の原理について説明する。本発明は、微粒子による散
乱光の強度の角度分布が、照射光の波長および微粒子の
粒径に依存するというMieの散乱理論に基づいてなさ
れている。ここで、パラメータが2個あると扱いにくい
ので、照射光の波長λと、微粒子の粒径Dとを折り込ん
だ粒径パラメータαを、α=πD/λと定義して1つの
パラメータで議論できるようにする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Principle) Before describing the configuration in detail, the principle of the present invention will be described. The present invention is based on Mie's scattering theory that the angular distribution of the intensity of the scattered light by the fine particles depends on the wavelength of the irradiation light and the particle size of the fine particles. Here, since it is difficult to handle if there are two parameters, the particle diameter parameter α obtained by folding the wavelength λ of the irradiation light and the particle diameter D of the fine particles can be defined as α = πD / λ and discussed with one parameter. To do.

【0013】このようにして定義した粒径パラメータα
を0.3、2、5、10と設定した場合の散乱光の強度
の角度分布は、それぞれ図3ないし図6のようになる。
ただし、粒子は水であって屈折率を1.33としてい
る。また、図中の実線は投光手段の光軸と受光手段の光
軸とを含む平面に垂直な方向の偏光成分のみの強度を示
し、破線は上記平面に平行な方向の偏光成分のみの強度
を示したものである。受光手段の前に偏光フィルタのよ
うな偏光成分を抽出する手段を設けない場合には、偏光
方向を考慮する必要がなく、破線と実線との平均値が散
乱光の強度分布になる。
The particle diameter parameter α thus defined
Are set to 0.3, 2, 5, and 10, the angular distribution of the intensity of the scattered light is as shown in FIGS.
However, the particles are water and have a refractive index of 1.33. Also, the solid line in the figure indicates the intensity of only the polarization component in the direction perpendicular to the plane including the optical axis of the light projecting means and the optical axis of the light receiving means, and the broken line indicates the intensity of only the polarization component in the direction parallel to the plane. It is shown. When a means for extracting a polarized light component such as a polarizing filter is not provided before the light receiving means, it is not necessary to consider the polarization direction, and the average value of the dashed line and the solid line becomes the intensity distribution of the scattered light.

【0014】また、偏光方向を考慮しない場合において
投光手段の光軸に対する受光手段の光軸がなす角度が4
5度である位置と135度である位置との散乱光の強度
の比と、粒径パラメータとの関係を図7に示す。ここ
に、粒子は水であって屈折率mを1.33としている。
また、屈折率が異なる場合(m=1.44、m=1.5
5)について、m=1.33の場合と対比できるよう
に、図8に示している。
When the polarization direction is not considered, the angle formed by the optical axis of the light receiving means with respect to the optical axis of the light projecting means is 4 degrees.
FIG. 7 shows the relationship between the ratio of the intensity of the scattered light between the position of 5 degrees and the position of 135 degrees and the particle diameter parameter. Here, the particles are water and the refractive index m is 1.33.
When the refractive indexes are different (m = 1.44, m = 1.5
FIG. 8 shows 5) so that it can be compared with the case where m = 1.33.

【0015】さらに、図9には、投光手段の光軸に対す
る受光手段の光軸のなす角度が20度と50度である場
合の強度の比と、粒径パラメータとの関係を示し、図1
0には、20度と60度である場合の強度の比と、粒径
パラメータとの関係を示している。図9および図10で
は、いろいろな屈折率についての関係を示してあり、屈
折率が変わってもほぼ同じ傾向を示すことがわかる。
FIG. 9 shows the relationship between the intensity ratio and the particle diameter parameter when the angle between the optical axis of the light receiving means and the optical axis of the light projecting means is 20 degrees and 50 degrees. 1
0 indicates the relationship between the intensity ratio at 20 degrees and 60 degrees and the particle size parameter. FIGS. 9 and 10 show the relationship between various refractive indexes, and it can be seen that the same tendency is exhibited even when the refractive index changes.

【0016】いま、粒径パラメータを4とすれば、照射
光の波長が0.9μmであるときには、粒径パラメータ
の定義式によって、粒径は1.14μmになり、また、
光通信分野において近年用いられている波長1.55μ
mの投光素子によって照射光を得るようにすれば、粒径
は1.97μmになる。煙粒子の粒径は0.1〜1μm
であるから、粒径パラメータを適宜設定し、2箇所で検
知した散乱光の強度の比を求めれば、煙粒子と他の粒子
との識別ができるのである。
Assuming that the particle diameter parameter is 4, when the wavelength of the irradiation light is 0.9 μm, the particle diameter becomes 1.14 μm according to the definition formula of the particle diameter parameter.
1.55 μm wavelength recently used in the optical communication field
When the irradiation light is obtained by the m light projecting elements, the particle diameter becomes 1.97 μm. Smoke particle size is 0.1-1μm
Therefore, if the particle size parameter is appropriately set and the ratio of the intensity of the scattered light detected at two locations is determined, the smoke particles can be distinguished from other particles.

【0017】(実施例1)図1(A)に本実施例の光学
系の構成を示す。投光手段は2個設けられ、それぞれ投
光素子1a,1bと投光レンズ3a,3bとにより構成
される。投光素子1a,1bには、発光ダイオード、半
導体レーザ、キセノンランプ等が用いられる。投光レン
ズ3a,3bは集光レンズであって、投光素子1a,1
bからの照射光を煙粒子Pが導入される監視空間に導
く。監視空間に存在する煙粒子Pによって生じる散乱光
は受光手段に入射する。受光手段は、集光レンズである
受光レンズ4と受光素子2とからなる。受光素子2に
は、フォトトランジスタ、フォトダイオード、フォトダ
イオードと受光信号処理回路が一体化された集積回路等
が用いられる。ここに、各投光手段の光軸X1 ,X2
受光手段の光軸X0 とは所定の角度をなすように配置さ
れる。
(Embodiment 1) FIG. 1A shows the configuration of an optical system according to this embodiment. Two light projecting means are provided, each including light projecting elements 1a and 1b and light projecting lenses 3a and 3b. Light emitting diodes, semiconductor lasers, xenon lamps and the like are used for the light emitting elements 1a and 1b. The light projecting lenses 3a and 3b are condensing lenses,
The irradiation light from b is guided to the monitoring space where the smoke particles P are introduced. The scattered light generated by the smoke particles P existing in the monitoring space enters the light receiving means. The light receiving means includes a light receiving lens 4 as a condenser lens and a light receiving element 2. As the light receiving element 2, a phototransistor, a photodiode, an integrated circuit in which the photodiode and a light receiving signal processing circuit are integrated, or the like is used. Here, the optical axes X 1 and X 2 of the light projecting means and the optical axis X 0 of the light receiving means are arranged at a predetermined angle.

【0018】各投光素子1a,1bは、それぞれ図2に
示すように、間欠的に発光するように発光タイミングが
設定されている(aは投光素子1aの発光タイミング、
bは投光素子1bの発光タイミングを示す)。すなわ
ち、図1(B)に示すように、発振回路12より出力さ
れるパルスを論理回路13に入力して図2のような2系
統のタイミングパルスを生成するのであって、発振回路
12と論理回路13とにより発光タイミング制御手段が
構成される。各タイミングパルスは、駆動回路11a,
11bを通してそれぞれ投光素子1a,1bに入力され
る。
As shown in FIG. 2, each of the light emitting elements 1a and 1b is set to emit light intermittently (a is the light emitting timing of the light emitting element 1a,
b indicates the light emission timing of the light emitting element 1b). That is, as shown in FIG. 1B, a pulse output from the oscillation circuit 12 is input to a logic circuit 13 to generate two timing pulses as shown in FIG. The circuit 13 constitutes a light emission timing control unit. Each timing pulse is supplied to the drive circuit 11a,
The light is input to the light projecting elements 1a and 1b through the light emitting element 11b.

【0019】一方、受光素子2から出力される受光信号
は、受光信号処理手段によって処理される。受光信号処
理手段では、受光信号を受光回路21において受光量に
対応した電圧出力に変換した後、対数増幅回路22によ
って対数増幅する。対数増幅回路22の出力は、論理回
路13より出力されるタイミングパルスによって制御さ
れるスイッチ要素27を通して減算回路23と記憶回路
28とに選択的に入力される。たとえば、投光素子1a
が点灯しているときには、対数増幅回路22の出力を記
憶回路28に入力して記憶保持するようにし、投光素子
1bが点灯しているときには、対数増幅回路22の出力
を減算回路23に入力するのである。減算回路23で
は、対数増幅回路22の出力が入力されている期間に、
記憶回路28の記憶値との差を演算して出力する。ま
た、記憶回路28では次の値が入力されると、前の値は
消去されるようになっている。このようにして得られた
減算回路23の出力値は、各投光素子1a,1bが点灯
していたときの受光素子2での受光強度の比の対数にな
る。すなわち、対数増幅回路22、減算回路23、スイ
ッチ要素27、記憶回路28により、受光量の比を求め
る比演算部が構成されるのである。ここにおいて、スイ
ッチ要素27は、投光素子1a,1bの点灯期間に生じ
る散乱光のみが受光側で処理されるようにすることによ
って、外乱光による雑音成分を除去するようにしてあ
る。
On the other hand, the light receiving signal output from the light receiving element 2 is processed by the light receiving signal processing means. In the light receiving signal processing unit, the light receiving signal is converted into a voltage output corresponding to the amount of received light in the light receiving circuit 21 and then logarithmically amplified by the logarithmic amplifier 22. The output of the logarithmic amplification circuit 22 is selectively input to a subtraction circuit 23 and a storage circuit 28 through a switch element 27 controlled by a timing pulse output from the logic circuit 13. For example, the light emitting element 1a
When is turned on, the output of the logarithmic amplifier 22 is input to the storage circuit 28 to be stored and stored. When the light emitting element 1b is turned on, the output of the logarithmic amplifier 22 is input to the subtraction circuit 23. You do it. In the subtraction circuit 23, while the output of the logarithmic amplifier circuit 22 is being input,
The difference from the value stored in the storage circuit 28 is calculated and output. When the next value is input to the storage circuit 28, the previous value is deleted. The output value of the subtraction circuit 23 obtained in this way is the logarithm of the ratio of the received light intensity at the light receiving element 2 when each of the light emitting elements 1a and 1b is lit. That is, the logarithmic amplification circuit 22, the subtraction circuit 23, the switch element 27, and the storage circuit 28 constitute a ratio calculation unit for calculating the ratio of the amount of received light. Here, the switch element 27 removes noise components due to disturbance light by processing only the scattered light generated during the lighting period of the light emitting elements 1a and 1b on the light receiving side.

【0020】減算回路23の出力は、比較回路24に入
力され、減算回路23の出力値が、あらかじめ設定され
ている所定の範囲内であるかどうかが判定される。所定
の範囲内であるときには信号処理回路25を介して出力
回路26を作動させる。すなわち、比較回路24は監視
空間における煙粒子の存否を判定する判定部として機能
するのである。ここに、比較回路24の設定値は可変抵
抗VRにより調節可能となっている。
The output of the subtraction circuit 23 is input to the comparison circuit 24, and it is determined whether or not the output value of the subtraction circuit 23 is within a predetermined range. When it is within the predetermined range, the output circuit 26 is operated via the signal processing circuit 25. That is, the comparison circuit 24 functions as a determination unit that determines the presence or absence of smoke particles in the monitoring space. Here, the set value of the comparison circuit 24 can be adjusted by the variable resistor VR.

【0021】(実施例2)実施例1の構成では、投光手
段の光軸X1,X2 と、受光手段の光軸X0 とが1点で交
差するようにし、この交点から各投光手段までの距離を
等しく設定していたが、図3ないし図6によって明らか
なように、光軸X1,X2 と光軸X0 との交差角度が小さ
いほど、受光手段での受光強度が大きくなる傾向があ
る。2つの交差角度の関係や粒子の粒径にもよるが、粒
径パラメータが4であれば、交差角度が20度と50度
とのときには、図9に示したように、受光量がほぼ1桁
異なることになる。したがって、受光回路21、対数増
幅器22などには、広いダイナミックレンジが要求され
る。
(Embodiment 2) In the configuration of Embodiment 1, the optical axes X 1 , X 2 of the light projecting means and the optical axis X 0 of the light receiving means intersect at one point, and each of the projections starts from this intersection. Although the distance to the light means was set equal, as is apparent from FIGS. 3 to 6, the smaller the intersection angle between the optical axes X 1 , X 2 and the light axis X 0 , the more the light receiving intensity at the light receiving means. Tends to be large. Although depending on the relationship between the two intersection angles and the particle size of the particles, if the particle size parameter is 4, when the intersection angles are 20 degrees and 50 degrees, as shown in FIG. Will be orders of magnitude different. Therefore, a wide dynamic range is required for the light receiving circuit 21, the logarithmic amplifier 22, and the like.

【0022】そこで、図11に示すように、光軸X1,X
2 と光軸X0 との交差角度の小さい方、この例では受光
手段の光軸X0 に対する交差角度が20度の投光手段1
aを交差角度が50度の投光手段1bよりも交点から例
えば2倍の距離に遠ざける。このようにすれば、交差角
度が20度の投光手段1aに対応する受光素子2での受
光量は遠ざける前に比べて1/4に減少する。すなわ
ち、各投光素子1a,1bからの照射光に対する散乱光
の受光手段による受光強度がほぼ等しくなるから、受光
回路21、対数増幅回路22に対して広いダイナミック
レンジが要求されなくなり、回路設計が容易になるので
ある。
Therefore, as shown in FIG. 11, the optical axes X 1 , X
The light projecting means 1 having a smaller intersection angle between the optical axis 2 and the optical axis X 0 , in this example, the intersection angle of the light receiving means with respect to the optical axis X 0 is 20 degrees.
The distance a is, for example, twice as far from the intersection as the light projecting means 1b whose intersection angle is 50 degrees. In this way, the amount of light received by the light receiving element 2 corresponding to the light projecting means 1a having an intersection angle of 20 degrees is reduced to 1/4 of that before the distance. That is, since the light receiving intensity of the scattered light with respect to the irradiation light from each of the light projecting elements 1a and 1b by the light receiving means becomes substantially equal, a wide dynamic range is not required for the light receiving circuit 21 and the logarithmic amplifier circuit 22, and the circuit design is reduced It will be easier.

【0023】(実施例3)本実施例は、各投光素子1
a,1bからの照射光の波長を異ならせたものであっ
て、両投光手段の光軸X1,X2 が受光手段の光軸X0
対して異なる角度で配置されていない場合でも、粒子の
粒径を求めることが可能になるものである。なお、上記
各実施例において、投光手段の光軸X1,X2 と受光手段
の光軸X0とを同一平面上に配置しているが、必ずしも
同一平面に配置する必要はない。
(Embodiment 3) In this embodiment, each light emitting element 1
a, 1b, the wavelengths of the irradiating lights are different, and even if the optical axes X 1 , X 2 of both light projecting means are not arranged at different angles with respect to the optical axis X 0 of the light receiving means. , It is possible to determine the particle size of the particles. In each of the above embodiments, the optical axes X 1 and X 2 of the light projecting means and the optical axis X 0 of the light receiving means are arranged on the same plane, but they need not always be arranged on the same plane.

【0024】[0024]

【発明の効果】本発明は上述のように、煙粒子による散
乱光の強度の角度分布に基づいて煙粒子の粒径を求め、
粒径が所定の範囲以内であるときに煙粒子が存在すると
判断することができるから、散乱光を生じている煙粒子
の粒径が反映されることになり、煙粒子以外の微粒子に
よる散乱光や他の物体による反射光と、煙粒子による散
乱光とを識別できるようになり、誤検知を防止すること
ができるという利点を有する。また、散乱光の強度の角
度分布によって粒径を判定するから、受光強度の比を求
めることができればよいのであって、感知器の内部で生
じる反射光などによる暗雑音の影響を受けにくく、ノイ
ズマージンが大きく取れるのである。さらに、受光手段
は1つであるから、受光信号の増幅などを行う回路を複
数設ける必要がないのであって、複数系統の回路の温度
特性を揃えたり、低ノイズの回路を複数用いたりするこ
とによるコスト増が抑制されるという利点がある。
According to the present invention, as described above, the particle size of smoke particles is determined based on the angular distribution of the intensity of scattered light by the smoke particles.
Since it can be determined that smoke particles are present when the particle size is within a predetermined range, the particle size of the smoke particles causing the scattered light is reflected, and the scattered light by fine particles other than the smoke particles is reflected. This makes it possible to discriminate between light reflected by other objects and light scattered by smoke particles, thereby preventing erroneous detection. Also, since the particle size is determined based on the angular distribution of the intensity of the scattered light, it is only necessary to be able to determine the ratio of the received light intensity, and it is hardly affected by dark noise due to reflected light or the like generated inside the sensor. The margin is large. Furthermore, since there is only one light receiving means, there is no need to provide a plurality of circuits for amplifying the light receiving signal, etc. Therefore, it is necessary to make the temperature characteristics of a plurality of circuits uniform or to use a plurality of low noise circuits. Therefore, there is an advantage that cost increase due to is suppressed.

【0025】また、請求項2の構成によれば、対数増幅
回路が1つになるから、従来のように複数の対数増幅回
路の温度特性を揃える必要がなく、設計が容易になると
いう利点がある。請求項3の構成では、各投光手段の光
軸と受光手段の光軸との交点までの距離を各投光手段ご
とに異なるように設定しているのであって、各投光手段
から照射された光の散乱光が受光手段に対してほぼ同じ
強度で入射するように距離を設定しておけば、受光信号
処理回路のダイナミックレンジを小さくすることができ
るのであり、設計が容易になるのである請求項4の構成
では、各投光手段からの照射光の波長を異ならせている
ので、各投光手段の光軸と受光手段の光軸との交差角度
を別々に設定することなく、粒径を判定できることにな
る。
According to the second aspect of the present invention, since only one logarithmic amplifier circuit is used, it is not necessary to make the temperature characteristics of a plurality of logarithmic amplifier circuits uniform as in the prior art, and the design is facilitated. is there. In the configuration of claim 3, the distance to the intersection of the optical axis of each light projecting means and the optical axis of the light receiving means is set differently for each light projecting means. If the distance is set so that the scattered light of the received light is incident on the light receiving means with almost the same intensity, the dynamic range of the light receiving signal processing circuit can be reduced, and the design becomes easier. In the configuration of certain claim 4, since the wavelength of the irradiation light from each light projecting means is made different, without separately setting the intersection angle between the optical axis of each light projecting means and the optical axis of the light receiving means, The particle size can be determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1を示し、(A)は光学系の構成図、
(B)はブロック図である。
FIG. 1 shows a first embodiment, in which (A) is a configuration diagram of an optical system,
(B) is a block diagram.

【図2】実施例1の動作説明図である。FIG. 2 is an operation explanatory diagram of the first embodiment.

【図3】本発明の原理説明図である。FIG. 3 is a diagram illustrating the principle of the present invention.

【図4】本発明の原理説明図である。FIG. 4 is a diagram illustrating the principle of the present invention.

【図5】本発明の原理説明図である。FIG. 5 is a diagram illustrating the principle of the present invention.

【図6】本発明の原理説明図である。FIG. 6 is a diagram illustrating the principle of the present invention.

【図7】本発明の原理説明図である。FIG. 7 is a diagram illustrating the principle of the present invention.

【図8】本発明の原理説明図である。FIG. 8 is a diagram illustrating the principle of the present invention.

【図9】本発明の原理説明図である。FIG. 9 is a diagram illustrating the principle of the present invention.

【図10】本発明の原理説明図である。FIG. 10 is a diagram illustrating the principle of the present invention.

【図11】実施例2の光学系の構成図である。FIG. 11 is a configuration diagram of an optical system according to a second embodiment.

【図12】従来例を示す要部断面図である。FIG. 12 is a sectional view of a main part showing a conventional example.

【図13】他の従来例を示す光学系の構成図である。FIG. 13 is a configuration diagram of an optical system showing another conventional example.

【図14】図13に示した従来例のブロック図である。14 is a block diagram of the conventional example shown in FIG.

【図15】図13に示した従来例の動作説明図である。FIG. 15 is an operation explanatory diagram of the conventional example shown in FIG.

【符号の説明】[Explanation of symbols]

1a 投光素子 1b 投光素子 2 受光素子 12 発振回路 13 論理回路 21 受光回路 22 対数増幅回路 23 減算回路 24 比較回路 27 スイッチ要素 28 記憶回路 P 煙粒子 1a light emitting element 1b light emitting element 2 light receiving element 12 oscillation circuit 13 logic circuit 21 light receiving circuit 22 logarithmic amplifier circuit 23 subtraction circuit 24 comparison circuit 27 switch element 28 storage circuit P smoke particle

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G08B 17/02 - 17/12 G01N 21/53 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G08B 17/02-17/12 G01N 21/53

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 監視空間に光を照射する複数個の投光手
段と、監視空間内に煙粒子が存在するときに生じる散乱
光を受光する受光手段と、受光手段から出力される受光
信号に基づいて監視空間内の煙粒子の存否を判定する受
光信号処理手段と、各投光手段から監視空間に対して互
いに異なる時刻に光が照射されるように各投光手段の発
光タイミングを設定する発光制御手段とを備え、各投光
手段は、光軸が受光手段の光軸に対してそれぞれ所定の
角度をなすように配置され、受光信号処理手段は、各投
光手段から監視空間に照射される光に対する散乱光の受
光手段による受光強度の比を求める比演算部と、求めた
比に基づいて煙粒子の存否を判定する判定部とを備えて
成ることを特徴とする光電式煙感知器。
1. A plurality of light projecting means for irradiating light to a monitored space, a light receiving means for receiving scattered light generated when smoke particles are present in the monitored space, and a light receiving signal output from the light receiving means. A light-receiving signal processing unit that determines the presence or absence of smoke particles in the monitoring space based on the light-receiving timing; and a light-emitting timing of each light-emitting unit such that light is emitted from the light-emitting unit to the monitoring space at different times. Light emission control means, wherein each light projection means is arranged so that an optical axis forms a predetermined angle with respect to the optical axis of the light reception means, and the light reception signal processing means irradiates the monitoring space from each light emission means. And a determination unit for determining the ratio of the intensity of the scattered light to the received light by the light receiving means, and a determination unit for determining the presence or absence of smoke particles based on the determined ratio. vessel.
【請求項2】 投光手段は2個設けられ、比演算部は、
受光信号を対数増幅する対数増幅回路と、対数増幅回路
の出力を記憶する記憶回路と、対数増幅回路の出力と記
憶回路の記憶値との差を出力する減算回路と、発光制御
手段による各投光手段の発光タイミングに同期して一方
の投光手段の発光時に対数増幅回路の出力を記憶回路に
入力し、他方の投光手段の発光時に対数増幅回路の出力
を減算回路に入力するように切り換えるスイッチ要素と
を備えて成ることを特徴とする請求項1記載の光電式煙
感知器。
2. A light emitting device comprising: two light projecting means;
A logarithmic amplifier circuit for logarithmically amplifying the received light signal, a storage circuit for storing the output of the logarithmic amplifier circuit, a subtraction circuit for outputting the difference between the output of the logarithmic amplifier circuit and the storage value of the storage circuit, The output of the logarithmic amplifier circuit is input to the storage circuit when one light emitting means emits light, and the output of the logarithmic amplifier circuit is input to the subtraction circuit when the other light emitting means emits light in synchronization with the light emitting timing of the light means. The photoelectric smoke detector according to claim 1, further comprising a switch element for switching.
【請求項3】 各投光手段の光軸と受光手段の光軸との
各交点から各投光手段までの距離が、各投光手段ごとに
異なるように各投光手段を配置して成ることを特徴とす
る請求項1または請求項2記載の光電式煙感知器。
3. The light projecting means is arranged such that the distance from each intersection of the optical axis of each light projecting means and the optical axis of the light receiving means to each light projecting means is different for each light projecting means. The photoelectric smoke detector according to claim 1 or 2, wherein:
【請求項4】 各投光手段より監視空間に照射される光
の波長がそれぞれ異なることを特徴とする請求項1ない
し請求項3のいずれかに記載の光電式煙感知器。
4. The photoelectric smoke detector according to claim 1, wherein wavelengths of light emitted from each light emitting means to the monitoring space are different from each other.
JP2127891A 1991-02-15 1991-02-15 Photoelectric smoke detector Expired - Lifetime JP2966541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2127891A JP2966541B2 (en) 1991-02-15 1991-02-15 Photoelectric smoke detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2127891A JP2966541B2 (en) 1991-02-15 1991-02-15 Photoelectric smoke detector

Publications (2)

Publication Number Publication Date
JPH04260197A JPH04260197A (en) 1992-09-16
JP2966541B2 true JP2966541B2 (en) 1999-10-25

Family

ID=12050669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2127891A Expired - Lifetime JP2966541B2 (en) 1991-02-15 1991-02-15 Photoelectric smoke detector

Country Status (1)

Country Link
JP (1) JP2966541B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4414166C1 (en) * 1994-04-22 1995-12-07 Lorenz Mesgeraetebau Method and device for measuring light scattering on particles
US7746239B2 (en) 2003-11-17 2010-06-29 Hochiki Corporation Light scattering type smoke detector
CN100463006C (en) * 2003-11-17 2009-02-18 报知机股份有限公司 Smoke sensor using scattering light
DE102004001699A1 (en) 2004-01-13 2005-08-04 Robert Bosch Gmbh fire alarm
JP2008250851A (en) * 2007-03-30 2008-10-16 Nohmi Bosai Ltd Photoelectric smoke detector
JP7203500B2 (en) * 2018-03-13 2023-01-13 古河電気工業株式会社 fire smoke detector

Also Published As

Publication number Publication date
JPH04260197A (en) 1992-09-16

Similar Documents

Publication Publication Date Title
US8947244B2 (en) Smoke detector utilizing broadband light, external sampling volume, and internally reflected light
US5187361A (en) Object detection apparatus of the photoelectric reflection type with sampled data
JP6830545B2 (en) How to determine the operating conditions of a laser-based particle detector
JP4027374B2 (en) Smoke detector and supervisory control system
US6188469B1 (en) Laser apparatus and method for speed measurement
US20190251816A1 (en) Smoke detection methodology
CH665724A5 (en) FLAME DETECTOR.
JP2966541B2 (en) Photoelectric smoke detector
JP2761083B2 (en) Multi-wavelength extinction smoke detector
JPH09269293A (en) Particulate detector
JPH04205400A (en) Smoke sensor
JP2972407B2 (en) Fire alarm
JPS59501283A (en) airborne particle detector
JP2703605B2 (en) Photoelectric smoke detector
JPH04124798A (en) Photoelectric smoke sensor
JPS5946841A (en) Photoelectric type smoke detector with test function
US20240046767A1 (en) Single-wave multi-angle smoke alarm algorithm
JPS63167242A (en) Fire judging device
JPH08292260A (en) Photoelectric sensor having self-diagnostic function
JP2004215315A (en) Photo-electric sensor and sensitivity setting method therefor
RU2682566C2 (en) Dust formation detection device for printed circuit boards of radio electronic equipment
JPS6012238Y2 (en) Transmitted light smoke detector
JPH07234183A (en) Light scattering type particle detection sensor
JPS5852182B2 (en) Dimming smoke detector
JPH074622Y2 (en) Object passage detector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12