JP2703605B2 - Photoelectric smoke detector - Google Patents

Photoelectric smoke detector

Info

Publication number
JP2703605B2
JP2703605B2 JP3523389A JP3523389A JP2703605B2 JP 2703605 B2 JP2703605 B2 JP 2703605B2 JP 3523389 A JP3523389 A JP 3523389A JP 3523389 A JP3523389 A JP 3523389A JP 2703605 B2 JP2703605 B2 JP 2703605B2
Authority
JP
Japan
Prior art keywords
light
light receiving
ratio
optical axis
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3523389A
Other languages
Japanese (ja)
Other versions
JPH02213997A (en
Inventor
祥明 神戸
淳之 広野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP3523389A priority Critical patent/JP2703605B2/en
Publication of JPH02213997A publication Critical patent/JPH02213997A/en
Application granted granted Critical
Publication of JP2703605B2 publication Critical patent/JP2703605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は、建物内で火災時等に発生する煙を感知する
光電式煙感知器に関するものである。
The present invention relates to a photoelectric smoke detector for detecting smoke generated in a fire or the like in a building.

【従来の技術】[Prior art]

従来より煙感知器として煙粒子による光の散乱を利用
した光電式煙感知器が提供されている(特開昭56−1472
94号公報、実開昭58−171591号公報、特開昭60−109189
号公報、実開昭60−13449号公報、実開昭62−20358号公
報等参照)。すなわち、第7図に示すように、投光素子
1と受光素子8とを光軸が一致しないように配置し、投
光素子1から投光された光の煙粒子3による散乱光を受
光素子8で受光するようにしている。したがって、煙粒
子3が存在するときには受光素子8での受光量が増加す
るから、受光素子8での受光量の大小によって煙粒子3
の存在が検出できるわけである。
2. Description of the Related Art Conventionally, a photoelectric smoke sensor using light scattering by smoke particles has been provided as a smoke sensor (Japanese Patent Application Laid-Open No. 56-1472).
No. 94, Japanese Utility Model Laid-Open No. 58-171591, JP-A-60-109189
No., JP-A-60-13449, JP-A-62-20358, etc.). That is, as shown in FIG. 7, the light projecting element 1 and the light receiving element 8 are arranged so that the optical axes do not coincide with each other, and the light scattered by the smoke particles 3 of the light projected from the light projecting element 1 is received by the light receiving element. 8 to receive light. Therefore, when the smoke particles 3 are present, the amount of light received by the light receiving element 8 increases.
Can be detected.

【発明が解決しようとする課題】[Problems to be solved by the invention]

上記構成では、受光量の大小により煙粒子3の存否を
判定しているものであるから、感知器内に入った虫や水
蒸気等による反射光と煙粒子3による散乱光との識別が
できず、誤認が生じやすいという問題がある。また、感
知器内での反射光が受光素子8に常時入射しているから
バックグランドノイズが多く、煙粒子3が存在しないと
きと、煙粒子3が存在するときとの信号比率を大きくと
ることができず、ノイズマージンが小さいという問題が
ある。 本発明は上記問題点の解決を目的とするものであり、
散乱を生じている煙粒子の粒径を識別することにより、
水蒸気等による散乱光や虫等による反射光による誤検知
を防止し、感知器内部の反射光によるバックグランドノ
イズの影響を低減してノイズマージンが大きくとれるよ
うにした光電式煙感知器を提供しようとするものであ
る。
In the above configuration, since the presence or absence of the smoke particles 3 is determined based on the amount of received light, it is not possible to discriminate between reflected light due to insects, water vapor and the like entering the sensor and scattered light due to the smoke particles 3. However, there is a problem that misidentification is likely to occur. Also, since the reflected light in the detector is always incident on the light receiving element 8, the background noise is large, and the signal ratio between the absence of the smoke particles 3 and the presence of the smoke particles 3 is increased. However, there is a problem that the noise margin is small. The present invention is aimed at solving the above problems,
By identifying the size of the scattering smoke particles,
Provide a photoelectric smoke detector that prevents erroneous detection due to scattered light due to water vapor and the like and reflected light due to insects, reduces the effect of background noise due to reflected light inside the detector, and increases the noise margin. It is assumed that.

【課題を解決するための手段】[Means for Solving the Problems]

本発明では、上記目的を達成するために、散乱光を、
投光手段の光軸と受光手段の光軸とを含む面に対して電
界が平行な偏光成分と磁界が平行な偏光成分とに分離す
るスプリッタと、各偏光成分をそれぞれ受光する一対の
受光素子とにより受光手段を構成し、両受光素子の出力
レベルの比を演算しこの比が所定範囲内であるときに煙
粒子が存在すると判断する判別手段を設けている。
In the present invention, in order to achieve the above object, scattered light,
A splitter that separates a polarization component whose electric field is parallel to a plane including the optical axis of the light emitting unit and the optical axis of the light receiving unit into a polarization component whose electric field is parallel and a pair of light receiving elements that respectively receive each polarization component And light receiving means, and a determination means for calculating the ratio of the output levels of the two light receiving elements and determining that smoke particles are present when the ratio is within a predetermined range is provided.

【作用】[Action]

上記構成によれば、煙による散乱光に含まれている互
いに直交する偏光成分の強度の比率に基づいて煙粒子の
粒径を求め、粒径が所定の範囲内であるときに煙粒子が
存在すると判断するから、散乱を生じている粒子の粒径
が反映されることになり、煙粒子による散乱か他の物質
による反射かの識別が容易になるのである。 すなわち、一般に偏光性のない光をエアロゾルに照射
し、散乱光の偏光成分を、照射光と散乱光とを含む面
(以下、観測面と呼称する)に対して電界が平行な偏光
成分(TE偏光)と磁界が平行な偏光成分(TM偏光)とに
分離すると、TE偏光とTM偏光との強度の比率は、光の波
長とエアロゾルの粒子の粒径との関数になることが、Mi
e散乱理論によって知られている。したがって、散乱光
の偏光成分をTE偏光とTM偏光とに分離し、強度比(偏光
比)を求めれば、エアロゾルの粒子の粒径を知ることが
できるのである。 いま、TE偏光とTM偏光との強度をそれぞれIp,Isとし
て、入射光の進行方向に対する散乱光のなす角度(散乱
角)θにおける偏光比ρ(θ)を、 ρ(θ)=Ip(θ)/Is(θ) と表す。ここに、TE偏光とTM偏光との強度Ip,Isは散乱
角θに依存する。また、散乱を生じるエアロゾルの粒子
の粒径(直径)をD、照射光の波長をλとし、粒径パラ
メータαとして、次の値を定義する。 α=πD/λ このように定義された偏光比ρ(θ)と粒径パラメータ
αとの間には第5図のような関係がある。ここに、第5
図では散乱角θを90°に設定している。また、第5図で
は粒径パラメータαを粒子の半径aの関数としている。
一般に偏光比ρ(θ)は粒径パラメータαに対して複雑
な関数となるが、α<2の領域では、第5図に示すよう
に、ほぼ単調増加とみなすことができる。この領域にお
いて、照射光の波長を0.80〜0.95μmとすると、測定可
能な最大粒径Dは0.51〜0.61μmとなる。ここに、赤外
発光ダイオードや赤外半導体レーザーの一般的な波長は
0.80〜0.95μmであるから、照射光源としてこれらの素
子を用いることができる。また、光通信において近年用
いられている波長1.30μmもしくは1.55μmの発光素子
を用いれば、測定可能な最大粒径Dは、0.83μmあるい
は0.95μmとなる。 一方、煙粒子は0.1〜1μmであるから、偏光比を求
めれば煙粒子の存否が判定できるわけである。エアロゾ
ルの粒子の粒径をこのようにして求める方法は、偏光比
法と呼ばれている。
According to the above configuration, the particle size of the smoke particles is obtained based on the ratio of the intensities of the polarization components orthogonal to each other included in the scattered light due to the smoke, and when the particle size is within a predetermined range, the smoke particles are present. As a result, the particle size of the scattering particles is reflected, and it becomes easy to distinguish between scattering by smoke particles and reflection by other substances. That is, in general, the aerosol is irradiated with light having no polarization, and the polarization component of the scattered light is converted into a polarization component (TE) in which the electric field is parallel to a plane containing the irradiation light and the scattered light (hereinafter referred to as an observation plane). When polarized light and magnetic field are separated into parallel polarized light components (TM polarized light), the ratio of the intensity between TE polarized light and TM polarized light is a function of the wavelength of light and the particle size of aerosol particles.
Known by e-scattering theory. Therefore, if the polarization component of the scattered light is separated into TE polarized light and TM polarized light, and the intensity ratio (polarization ratio) is obtained, the particle size of the aerosol particles can be known. Now, assuming that the intensities of the TE-polarized light and the TM-polarized light are Ip and Is, respectively, the polarization ratio ρ (θ) at the angle (scattering angle) θ of the scattered light with respect to the traveling direction of the incident light is given by ρ (θ) = Ip (θ ) / Is (θ). Here, the intensity Ip, Is of the TE polarized light and the TM polarized light depends on the scattering angle θ. Further, the following values are defined as the particle diameter (diameter) of the aerosol particles that cause scattering, the wavelength of the irradiation light as λ, and the particle diameter parameter α. α = πD / λ There is a relationship as shown in FIG. 5 between the thus defined polarization ratio ρ (θ) and the particle diameter parameter α. Here, the fifth
In the figure, the scattering angle θ is set to 90 °. In FIG. 5, the particle diameter parameter α is a function of the radius a of the particle.
In general, the polarization ratio ρ (θ) is a complicated function with respect to the particle diameter parameter α, but in the region of α <2, it can be regarded as almost monotonic increase as shown in FIG. In this region, if the wavelength of the irradiation light is 0.80 to 0.95 μm, the maximum measurable particle diameter D is 0.51 to 0.61 μm. Here, the general wavelength of infrared light emitting diode and infrared semiconductor laser is
Since the thickness is 0.80 to 0.95 μm, these elements can be used as an irradiation light source. In addition, when a light emitting element having a wavelength of 1.30 μm or 1.55 μm, which is recently used in optical communication, is used, the maximum measurable particle diameter D is 0.83 μm or 0.95 μm. On the other hand, since the size of the smoke particles is 0.1 to 1 μm, the presence or absence of the smoke particles can be determined by determining the polarization ratio. The method of determining the particle size of the aerosol particles in this manner is called a polarization ratio method.

【実施例】【Example】

第1図に示すように、投光手段は、発光素子1と投光
レンズ2とからなる。発光素子1としては、発光ダイオ
ードや半導体レーザーが用いられ、単色ないし狭帯域の
光を放射する。投光レンズ2は、集光レンズであって、
発光素子1からの光を煙粒子3が導入される空間領域に
導く。ここに、発光素子1および投光レンズ2の光軸を
投光軸ltとし、光の進行方向を0°とする。 受光手段は、投光軸ltに対して所定の角度θをなす光
軸を受光軸lrとし、受光軸lr上には集光レンズである受
光レンズ4と、回折格子5と、受光素子7とが配設され
る。また、投光軸ltと受光軸lrとを含む面(観測面)内
で受光軸lrからずれた位置に受光素子6が配設される。
受光素子6,7としては、ホトトランジスタやホトダイオ
ード等が用いられる。 回折格子5は、第2図に示すように、表面に多数の溝
5aが形成されており、この溝5aが観測面に直交するよう
に配置されている。このような回折格子5については、
次のような性質が知られている。すなわち、回折効率を
回折波強度/入射波強度と定義し、波長λと格子定数d
との比(λ/d)に対する1次回折効率を測定すると、第
3図に示すような特性が得られる。ここに、第3図
(a)は溝5aの深さhと格子定数dとの比(h/d)を1.0
としたものであり、第3図(b)は同じく1.5、第3図
(c)は同じく2.0とした場合の1次回折効率を示して
いる。ここに、実線は電界が回折格子5の溝5aに平行な
偏光成分(回折格子の溝を基準としたTE偏光)の強度を
示し、破線は磁界が回折格子5の溝5aに平行な偏光成分
(回折格子の溝を基準としたTM偏光)の強度を示してい
る。この図より明らかなように、回折効率は偏光成分に
依存する(K.Yokomori:Appl.Opt.;23,14,2303(198
4)。すなわち、λ/d>1.6であれば、電界が溝5aに平行
な偏光成分では十分に高い回折効率が得られ、磁界が溝
5aに平行な偏光成分では回折効率がほぼ0になる。換言
すれば、1次回折光の大部分は電界が溝5aに平行な偏光
成分であると考えられ、受光軸lrの上の光の大部分は磁
界が溝5aに平行な偏光成分であると考えられるのであ
る。したがって、回折格子5はTE偏光とTM偏光とを分離
するスプリッタとして用いることができるのである。す
なわち、第1図の構成によれば、回折格子5の溝5aが観
測面(紙面)に直交しているから、観測面に対して電界
が平行な偏光成分(TE偏光)は受光軸lr上の受光素子7
に受光され、観測面に対して磁界が平行な偏光成分(TM
偏光)は受光軸lrから離れた受光素子6に受光されるの
である。 各受光素子6,7の出力Is,Ipは、第4図に示すように、
それぞれ受光回路11,12に入力され、各受光素子6,7の受
光量に対応した受光回路11,12の出力電圧Vs,Vpは、それ
ぞれ対数増幅回路13,14により対数増幅される。両対数
増幅回路13,14の出力は減算回路15に入力され、減算回
路15の出力として、受光回路11,12の出力電圧Vs,Vpの比
の対数(すなわち、In(Vp/Vs))が得られる。したが
って、減算回路15の出力値はTE偏光とTM偏光との強度比
(偏光比)の対数になる。比較回路16では、減算回路15
の出力値があらかじめ設定されている所定の範囲内であ
るかどうかを判定し、所定の範囲内であれば信号処理回
路17を介して出力回路18を作動させる。つまり、比較回
路16は判定手段として機能する。ここに、比較回路16の
設定値は可変抵抗器VRにより調節可能となっている。信
号処理回路17には、発光素子1を間欠点灯させる発振回
路19の出力が入力されており、受光系を発光素子1の点
滅に同期させることによって発光素子1から放射された
光の散乱光のみが処理されるようにし、雑音成分を除去
するようになっている。発振回路19と発光素子1との間
には発振回路19の出力を増幅するドライブ回路20が挿入
される。 上述したように、回折格子5を用いてTE偏光とTM偏光
とに分離すれば、受光素子6,7の間隔を小さくすること
ができるから、光学系と信号処理の回路部とをハイブリ
ッド化して1チップの光電子集積回路を構成することが
できる。また、上記実施例では、回折格子5を溝5aが観
測面に直交するように配置しているが、溝5aが観測面に
平行になるように配置する場合には、TE偏光が回折光と
なるから、TE偏光を受光する受光素子7を溝5aに直交す
る面内で観測面とは異なる部位に配置し、受光軸lr上に
TM偏光を受光する受光素子6を配置するようにすればよ
い。 また、回折格子5を用いる代わりに、第6図に示すよ
うに、ハーフミラー21とミラー22とからなるビームスプ
リッタと、一対の偏光板23,24とを用いて散乱光を電気
ベクトルが観測面に平行な偏光成分と、磁気ベクトルが
観測面に平行な偏光成分とに分離するようにしても、
「作用」の項で説明した原理に基づいて煙粒子を検出す
ることができる。この構成の場合には、部品点数が多く
なるとともに、ビームスプリッタや偏光板23,24が比較
的大きく、1チップ化は困難であるが、回折格子5を用
いる場合と同様に、粒径に基づいて煙粒子を識別するか
ら、感知器内での反射光や虫等による誤検出を防止でき
るのである。
As shown in FIG. 1, the light projecting means includes a light emitting element 1 and a light projecting lens 2. As the light emitting element 1, a light emitting diode or a semiconductor laser is used, and emits light of a single color or a narrow band. The light projecting lens 2 is a condenser lens,
The light from the light emitting element 1 is guided to a space region where the smoke particles 3 are introduced. Here, the optical axis of the light emitting element 1 and the light projecting lens 2 is defined as a light projecting axis lt, and the traveling direction of light is defined as 0 °. The light receiving means sets an optical axis forming a predetermined angle θ with respect to the light projecting axis lt as a light receiving axis lr, and on the light receiving axis lr, a light receiving lens 4 as a condenser lens, a diffraction grating 5, a light receiving element 7, Is arranged. Further, the light receiving element 6 is disposed at a position deviated from the light receiving axis lr in a plane (observation plane) including the light projecting axis lt and the light receiving axis lr.
As the light receiving elements 6, 7, a phototransistor, a photodiode, or the like is used. As shown in FIG. 2, the diffraction grating 5 has many grooves on the surface.
5a are formed, and the grooves 5a are arranged so as to be orthogonal to the observation surface. About such a diffraction grating 5,
The following properties are known: That is, the diffraction efficiency is defined as diffraction wave intensity / incident wave intensity, and the wavelength λ and the lattice constant d
When the first-order diffraction efficiency with respect to the ratio (λ / d) is measured, characteristics as shown in FIG. 3 are obtained. Here, FIG. 3A shows that the ratio (h / d) of the depth h of the groove 5a to the lattice constant d is 1.0.
FIG. 3 (b) shows the first-order diffraction efficiency when the same is set to 1.5, and FIG. 3 (c) shows the first-order diffraction efficiency when the same is set to 2.0. Here, the solid line indicates the intensity of the polarization component whose electric field is parallel to the groove 5a of the diffraction grating 5 (TE polarized light with reference to the groove of the diffraction grating), and the broken line indicates the polarization component whose magnetic field is parallel to the groove 5a of the diffraction grating 5. (TM polarized light with reference to the groove of the diffraction grating). As is clear from this figure, the diffraction efficiency depends on the polarization component (K. Yokomori: Appl. Opt .; 23, 14, 2303 (198
Four). That is, if λ / d> 1.6, a sufficiently high diffraction efficiency can be obtained with a polarization component whose electric field is parallel to the groove 5a,
The diffraction efficiency is almost zero for the polarized light component parallel to 5a. In other words, most of the first-order diffracted light is considered to be a polarization component whose electric field is parallel to the groove 5a, and most of the light on the light receiving axis lr is considered to be a polarization component whose magnetic field is parallel to the groove 5a. It is done. Therefore, the diffraction grating 5 can be used as a splitter for separating the TE polarized light and the TM polarized light. That is, according to the configuration of FIG. 1, since the groove 5a of the diffraction grating 5 is orthogonal to the observation surface (paper surface), the polarization component (TE polarization) whose electric field is parallel to the observation surface is on the light receiving axis lr. Light receiving element 7
Polarization component (TM)
(Polarized light) is received by the light receiving element 6 away from the light receiving axis lr. The outputs Is and Ip of the light receiving elements 6 and 7 are as shown in FIG.
The output voltages Vs, Vp of the light receiving circuits 11, 12, which are input to the light receiving circuits 11, 12, respectively and correspond to the amounts of light received by the light receiving elements 6, 7, are logarithmically amplified by logarithmic amplifiers 13, 14, respectively. The outputs of the log-log amplifying circuits 13 and 14 are input to a subtracting circuit 15, and the output of the subtracting circuit 15 is the logarithm of the ratio of the output voltages Vs and Vp of the light receiving circuits 11 and 12 (ie, In (Vp / Vs)) can get. Therefore, the output value of the subtraction circuit 15 is the logarithm of the intensity ratio (polarization ratio) between TE polarized light and TM polarized light. In the comparison circuit 16, the subtraction circuit 15
It is determined whether or not the output value is within a predetermined range set in advance. If the output value is within the predetermined range, the output circuit 18 is operated via the signal processing circuit 17. That is, the comparison circuit 16 functions as a determination unit. Here, the set value of the comparison circuit 16 can be adjusted by the variable resistor VR. The output of the oscillation circuit 19 for intermittently lighting the light emitting element 1 is input to the signal processing circuit 17, and only the scattered light of the light emitted from the light emitting element 1 is synchronized by synchronizing the light receiving system with the blinking of the light emitting element 1. Is processed, and a noise component is removed. A drive circuit 20 for amplifying the output of the oscillation circuit 19 is inserted between the oscillation circuit 19 and the light emitting element 1. As described above, if the light is separated into the TE polarized light and the TM polarized light using the diffraction grating 5, the distance between the light receiving elements 6 and 7 can be reduced. Therefore, the optical system and the signal processing circuit unit are hybridized. A one-chip optoelectronic integrated circuit can be configured. In the above embodiment, the diffraction grating 5 is arranged so that the groove 5a is orthogonal to the observation surface. However, when the diffraction grating 5 is arranged so that the groove 5a is parallel to the observation surface, the TE polarized light and the diffracted light are combined. Therefore, the light receiving element 7 for receiving the TE polarized light is arranged at a position different from the observation surface in a plane orthogonal to the groove 5a, and is positioned on the light receiving axis lr.
What is necessary is just to arrange the light receiving element 6 which receives TM polarized light. Instead of using the diffraction grating 5, as shown in FIG. 6, a beam splitter including a half mirror 21 and a mirror 22, and a pair of polarizing plates 23 and 24 are used to convert scattered light into an observation surface. And the magnetic vector separates into a polarization component parallel to the observation plane.
Smoke particles can be detected based on the principle described in the section of “action”. In the case of this configuration, the number of parts is increased, and the beam splitters and the polarizing plates 23 and 24 are relatively large, so that it is difficult to form one chip. This makes it possible to prevent erroneous detection due to reflected light or insects in the detector.

【発明の効果】【The invention's effect】

本発明は上述のように、散乱光を、投光手段の光軸と
受光手段の光軸とを含む面に対して電界が平行な偏光成
分と磁界が平行な偏光成分とに分離するスプリッタと、
各偏光成分をそれぞれ受光する一対の受光素子とにより
受光手段を構成し、両受光素子の出力レベルの比を演算
しこの比が所定範囲内であるときに煙粒子が存在すると
判断する判別回路を設けているものであり、煙による散
乱光に含まれている互いに直交する偏光成分の強度の比
率に基づいて煙粒子の粒径を求め、粒径が所定の範囲内
であるときに煙粒子が存在すると判断するから、散乱を
生じている粒子の粒径が反映されることになり、煙粒子
による散乱か感知器の内周面や虫等の他の物体による反
射かの識別が容易になりるのである。その結果、誤検出
が防止され信頼性が高くなるという利点を有する。
As described above, the present invention provides a splitter that separates scattered light into a polarization component whose electric field is parallel to a plane including the optical axis of the light projecting unit and the optical axis of the light receiving unit, and a polarization component whose magnetic field is parallel to the plane. ,
A light-receiving means is constituted by a pair of light-receiving elements for receiving the respective polarized light components. A discriminating circuit for calculating the ratio of the output levels of the two light-receiving elements and determining that smoke particles are present when the ratio is within a predetermined range. The particle diameter of the smoke particles is determined based on the ratio of the intensity of the polarization components orthogonal to each other contained in the scattered light due to the smoke, and when the particle diameter is within a predetermined range, the smoke particles Since it is determined that there is a particle, the particle size of the scattering particle is reflected, and it becomes easy to distinguish between scattering by smoke particles and reflection by other objects such as the inner peripheral surface of the detector and insects. Because As a result, there is an advantage that erroneous detection is prevented and reliability is improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す概略構成図、第2図は
同上に用いる回折格子の要部断面図、第3図は同上に用
いる回折格子の動作説明図、第4図は同上の回路部のブ
ロック図、第5図は同上の原理説明図、第6図は本発明
の他の実施例を示す概略構成図、第7図は従来例を示す
概略断面図である。 1…発光素子、2…投光レンズ、3…煙粒子、4…受光
レンズ、5…回折格子、6,7…受光素子、13,14…対数増
幅回路、15…減算回路、16…比較回路。
FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention, FIG. 2 is a sectional view of a principal part of the diffraction grating used in the above embodiment, FIG. 3 is an operation explanatory diagram of the diffraction grating used in the embodiment, and FIG. FIG. 5 is a diagram illustrating the principle of the above, FIG. 6 is a schematic configuration diagram showing another embodiment of the present invention, and FIG. 7 is a schematic sectional view showing a conventional example. DESCRIPTION OF SYMBOLS 1 ... Light-emitting element, 2 ... Projection lens, 3 ... Smoke particle, 4 ... Light-receiving lens, 5 ... Diffraction grating, 6, 7 ... Light-receiving element, 13, 14 ... Logarithmic amplifier circuit, 15 ... Subtraction circuit, 16 ... Comparison circuit .

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光ビームを投光する投光手段と、投光手段
の光軸に対して光軸が所定角度をなすように配置された
受光手段とを備え、上記光ビームの煙粒子による散乱光
を受光手段により受光するようにした光電式煙感知器に
おいて、受光手段は、散乱光を、投光手段の光軸と受光
手段の光軸とを含む面に対して電界が平行な偏光成分と
磁界が平行な偏光成分とに分離するスプリッタと、各偏
光成分をそれぞれ受光する一対の受光素子とを備え、両
受光素子の出力レベルの比を演算しこの比が所定範囲内
であるときに煙粒子が存在すると判断する判別手段が設
けられて成ることを特徴とする光電式煙感知器。
A light projecting means for projecting a light beam; and a light receiving means arranged such that an optical axis forms a predetermined angle with respect to an optical axis of the light projecting means. In a photoelectric smoke sensor in which scattered light is received by a light receiving means, the light receiving means converts the scattered light into polarized light whose electric field is parallel to a plane including the optical axis of the light projecting means and the optical axis of the light receiving means. A splitter that separates the component into a parallel polarization component and a magnetic field, and a pair of light receiving elements that respectively receive the respective polarization components.When the ratio of the output levels of both light receiving elements is calculated and the ratio is within a predetermined range, A photoelectric smoke detector characterized in that a determination means for determining that smoke particles are present is provided in the smoke detector.
JP3523389A 1989-02-15 1989-02-15 Photoelectric smoke detector Expired - Fee Related JP2703605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3523389A JP2703605B2 (en) 1989-02-15 1989-02-15 Photoelectric smoke detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3523389A JP2703605B2 (en) 1989-02-15 1989-02-15 Photoelectric smoke detector

Publications (2)

Publication Number Publication Date
JPH02213997A JPH02213997A (en) 1990-08-27
JP2703605B2 true JP2703605B2 (en) 1998-01-26

Family

ID=12436124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3523389A Expired - Fee Related JP2703605B2 (en) 1989-02-15 1989-02-15 Photoelectric smoke detector

Country Status (1)

Country Link
JP (1) JP2703605B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576697A (en) * 1993-04-30 1996-11-19 Hochiki Kabushiki Kaisha Fire alarm system
US6859276B2 (en) * 2003-01-24 2005-02-22 Coulter International Corp. Extracted polarization intensity differential scattering for particle characterization

Also Published As

Publication number Publication date
JPH02213997A (en) 1990-08-27

Similar Documents

Publication Publication Date Title
JP2574780B2 (en) Reflective photoelectric switch
US20140285817A1 (en) Limited reflection type photoelectric sensor
JP2000146819A (en) Optical system for optical dust sensor
JPS5752005A (en) Focus detecting method
JP2703605B2 (en) Photoelectric smoke detector
JP2761083B2 (en) Multi-wavelength extinction smoke detector
JP2966541B2 (en) Photoelectric smoke detector
JPH11201718A (en) Sensor device and distance measuring equipment
JP2638959B2 (en) Retro-reflective photoelectric switch
JPH07146115A (en) Optical sensor
JPH07182666A (en) Light pickup system
JP3012128B2 (en) Coin discriminator
JPH06266925A (en) Paper sheet quality discriminator
JPS59119628A (en) Relfection type photoelectric switch
JP2006105774A (en) Optical object discrimination device and self-travelling cleaning machine
JPH0510880A (en) Gas detector
JPH08178830A (en) Detector
US6326608B1 (en) Polarization-type laser detection system
JPH11264928A (en) Focusing device
JPH0440314A (en) Optical measuring instrument
JPH04323542A (en) Smoke sensor
JP2020197397A (en) Fire sensor
JP3595861B2 (en) Photoelectric detector
JPS59182382A (en) Obstacle detector vehicle
JPH05240769A (en) Particle counter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees